WO2020005014A1 - 복합재 - Google Patents

복합재 Download PDF

Info

Publication number
WO2020005014A1
WO2020005014A1 PCT/KR2019/007900 KR2019007900W WO2020005014A1 WO 2020005014 A1 WO2020005014 A1 WO 2020005014A1 KR 2019007900 W KR2019007900 W KR 2019007900W WO 2020005014 A1 WO2020005014 A1 WO 2020005014A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
less
parts
metal
metal foam
Prior art date
Application number
PCT/KR2019/007900
Other languages
English (en)
French (fr)
Inventor
김소진
신종민
유동우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/254,364 priority Critical patent/US12104115B2/en
Priority to JP2020570788A priority patent/JP7090942B2/ja
Priority to EP19825703.2A priority patent/EP3815819B1/en
Priority to CN201980040864.7A priority patent/CN112334254B/zh
Publication of WO2020005014A1 publication Critical patent/WO2020005014A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1134Inorganic fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1143Making porous workpieces or articles involving an oxidation, reduction or reaction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • B22F2003/1131Foaming in a liquid suspension and decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/005Article surface comprising protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/06Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes composite, e.g. polymers with fillers or fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application is for composites.
  • Heat dissipating materials can be used in a variety of applications. For example, since batteries and various electronic devices generate heat during operation, a material capable of effectively controlling such heat is required.
  • a material having good heat dissipation characteristics is known as a ceramic material having good thermal conductivity, but since such a material is inferior in workability, a composite material prepared by blending the ceramic filler having a high thermal conductivity in a polymer matrix may be used.
  • the above-described method causes various problems because a large amount of filler components must be applied to ensure high thermal conductivity.
  • the material itself tends to be hard, and in this case, impact resistance and the like are inferior.
  • the present application is directed to a composite material, and an object of the present invention is to provide a composite material or a method of manufacturing the same, which is excellent in thermal conductivity and excellent in other physical properties such as impact resistance and workability.
  • the physical properties in which the measured temperature and / or the measured pressure affect the results are measured at normal temperature and / or normal pressure, unless otherwise specified.
  • room temperature is a natural temperature that is warmed or undecreased, and means, for example, any temperature in the range of 10 ° C to 30 ° C, about 23 ° C or about 25 ° C.
  • the unit of temperature is Celsius (degreeC) unless there is particular notice.
  • atmospheric pressure is a natural pressure that is not pressurized or depressurized, and typically refers to about one atmosphere at atmospheric pressure.
  • the physical properties are those measured at the natural humidity, which is not specifically controlled at the normal temperature and / or normal pressure.
  • composite may refer to a material including a metal foam and a polymer component.
  • metal foam or metal skeleton refers to a porous structure containing metal as a main component.
  • the main component of the metal is that the proportion of the metal is 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight or more, based on the total weight of the metal foam or metal skeleton. It means when the weight percent or more, 85 weight% or more, 90 weight% or more or 95 weight% or more.
  • the upper limit of the ratio of the metal contained as the main component is not particularly limited. For example, the ratio of the metal may be about 100 wt% or less, 99 wt% or less, or about 98 wt% or less.
  • the term porosity is when the porosity is at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, or at least 80%. It may mean.
  • the upper limit of the porosity is not particularly limited and may be, for example, less than about 100%, about 99% or less, about 98% or less, 95% or less, 90% or less, 85% or less, or about 80% or less.
  • the porosity can be calculated in a known manner by calculating the density of the metal foam or the like.
  • the composite material of the present application has a high thermal conductivity, and thus can be used as a material for controlling heat, for example, a heat radiation material.
  • the composite material has a thermal conductivity of about 0.4 W / mK or more, 0.45 W / mK or more, 0.5 W / mK or more, 0.55 W / mK or more, 0.6 W / mK or more, 0.65 W / mK or more, 0.7 W / mK or more, 0.75 W / mK or more, 0.8 W / mK or more, 0.85 W / mK or more, 0.9 W / mK or more, 0.95 W / mK or more, 1 W / mK or more, 1.5 W / mK or more, 2, W / mK 2.5 W / mK or more, 3 W / mK or more, 3.5 W / mK or more, 4 W / mK or more, 4.5 W / mK or more, 5 W / mK or more, 5.5 W / mK or more, 6 W / mK or more
  • the thermal conductivity of the composite is not particularly limited as the composite may have an excellent thermal control function, and in one example, about 100 W / mK or less, 90 W / mK or less, 80 W / mK or less, 70 W / mK or less, 60 W / mK or less, 50 W / mK or less, 40 W / mK or less, 30 W / mK or less, 20 W / mK or less, 15 W / mK or less, or 10 W / mK or less.
  • the method of measuring the thermal conductivity is not particularly limited, and can be measured by, for example, the method described in Examples described later.
  • the composite material of the present application has the excellent thermal conductivity as described above, and can also stably secure other physical properties such as workability or impact resistance, and this effect can be achieved by the contents described herein.
  • the present application applies a metal foam in which a metal oxide is introduced to a surface as the metal foam in a composite material in which a metal foam and a polymer component are combined.
  • the metal oxide is grown on the surface of the metal foam by a specific method and may be an oxide having a protrusion shape.
  • Such metal oxides have excellent interfacial properties with polymers in which the metal foam is an organic material by controlling the surface properties thereof without sacrificing the advantages of the metal foam, for example, excellent thermal conductivity, processability, and mechanical strength. Can be represented. Therefore, the composite material containing such a metal foam can exhibit excellent properties.
  • the protruding shape means a shape having an aspect ratio of approximately 1 to 8.
  • the aspect ratio of the protrusion shape may be about 7.5 or less, 7 or less, 6.5 or less, 6 or less, 5.5 or less, 5 or less, 4.5 or less, 4 or less, 3.5 or less, or 3 or less in another example.
  • the aspect ratio of the oxide in the above may be the ratio (L / S) of the largest dimension (L) and small dimension (S) of the dimensions (Dimension), such as the height to the width of the oxide confirmed through an optical microscope or the like, When the dimensions (L, S) are in the same unit. By the presence of such a projection-shaped oxide, the desired effect can be excellently achieved.
  • the area ratio of the metal oxide present on the surface of the metal foam in the metal foam may be in the range of 5% to 60%.
  • the area ratio may be about 7% or more or 10% or more, or 55% or less, 50% or less, 45% or less, 40% or less, 35% or less or 30% or less in another example.
  • the area ratio is a percentage of the area where the oxide is present relative to the total area of the metal foam and is confirmed through the area of the oxide and the area of the metal foam which are confirmed by an optical microscope, or the weight of the metal foam and the weight of the oxide. It can also be converted.
  • the form of the metal foam included in the composite material is not particularly limited, but may be a film shape in one example.
  • a polymer component existing on the surface or inside of the metal foam in the form of a film is added.
  • Such a polymer component may form a surface layer on at least one surface of the metal foam, or may be present by being filled in voids in the metal foam, and in some cases, may be filled in the metal foam while forming the surface layer. It may be.
  • the polymer component may form the surface layer on at least one surface, a part surface or all surfaces of the metal foam surface.
  • the polymer component may form a surface layer on at least an upper surface and / or a lower surface of the metal foam. The surface layer may be formed to cover the entire surface of the metal foam, or may be formed to cover only a part of the surface.
  • the metal foam in the composite may have a porosity in the range of about 10% to 99%.
  • the metal foam having such porosity has a porous metal skeleton forming a suitable heat transfer network, and thus excellent thermal conductivity can be ensured even when a small amount of the metal foam is applied.
  • the porosity is at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60% or at 65%. Or less, 98% or less, 95% or less, 90% or less, 85% or less, 80% or less, or 75% or less.
  • the metal foam may be in the form of a film.
  • the thickness of the film may be adjusted in consideration of the desired thermal conductivity or thickness ratio in manufacturing the composite according to the method described below.
  • the thickness of the film is, for example, about 10 ⁇ m or more, about 20 ⁇ m or more, about 30 ⁇ m or more, about 40 ⁇ m or more, about 45 ⁇ m or more, about 50 ⁇ m or more, about 55 ⁇ m or more, in order to ensure the desired thermal conductivity. , At least about 60 ⁇ m, at least about 65 ⁇ m or at least about 70 ⁇ m.
  • the upper limit of the thickness of the film is controlled according to the purpose, but is not particularly limited, but for example, about 1,000 ⁇ m or less, about 900 ⁇ m or less, about 800 ⁇ m or less, about 700 ⁇ m or less, about 600 ⁇ m or less, about 500 up to about 400 ⁇ m, up to about 300 ⁇ m, up to about 200 ⁇ m, or up to about 150 ⁇ m.
  • the thickness of the object when the thickness of the object is not constant, the thickness may be the minimum thickness, the maximum thickness, or the average thickness of the object.
  • the metal foam may be a material having high thermal conductivity.
  • the metal foam has a thermal conductivity of about 8 W / mK, about 10 W / mK, about 15 W / mK, about 20 W / mK, about 25 W / mK, about 30 W / mK or more, about 35 W / mK or more, about 40 W / mK or more, about 45 W / mK or more, about 50 W / mK or more, about 55 W / mK or more, about 60 W / mK or more, about 65 W / mK Or at least about 70 W / mK, at least about 75 W / mK, at least about 80 W / mK, at least about 85 W / mK, or at least about 90 W / mK.
  • the thermal conductivity is not particularly limited as the numerical value is higher, so that the desired thermal control characteristics can be secured while applying a small amount of metal foam, and for example,
  • the skeleton of the metal foam may be made of various kinds of metals or metal alloys, and a material capable of exhibiting thermal conductivity in the above-mentioned range may be selected from the metals or metal alloys.
  • Such materials may include any one metal selected from the group consisting of tin, copper, gold, silver, aluminum, nickel, iron, cobalt, magnesium, molybdenum, tungsten, and zinc, or alloys of two or more of the above.
  • the present invention is not limited thereto.
  • Such metal foams are variously known, and methods for producing metal foams are also variously known.
  • a metal foam in which an oxide is formed on a surface thereof may be applied to a metal foam manufactured by such a known method.
  • a method of manufacturing the metal foam itself a method of sintering a pore-forming agent such as a salt and a composite material of a metal, a method of coating a metal on a support such as a polymer foam, and sintering in such a state or a slurry method are known. However, all of these methods can be applied. The method for producing a suitable metal foam from the composite of the present application will be described later.
  • the composite further includes a polymer component present on the surface of the metal foam or inside the metal foam as described above, wherein the ratio of the thickness (MT) and the total thickness (T) of the metal foam of the composite (T / MT) may be 2.5 or less.
  • the thickness ratio may be about 2 or less, 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, 1.15 or less, or 1.1 or less.
  • the lower limit of the ratio of the thickness is not particularly limited, but in one example, it may be about 1 or more, about 1.01 or more, about 1.02 or more, about 1.03 or more, about 1.04 or more, or about 1.05 or more. While the desired thermal conductivity is secured under such a thickness ratio, a composite having excellent workability, impact resistance, or the like can be provided.
  • the kind of the polymer component included in the composite of the present application is not particularly limited, and for example, may be selected in consideration of processability, impact resistance, insulation, and the like of the composite.
  • Examples of the polymer component that can be applied in the present application include, but are not limited to, one or more selected from the group consisting of a known acrylic resin, silicone resin, epoxy resin, urethane resin, amino resin and phenol resin.
  • the composite material it is possible to secure excellent thermal conductivity while minimizing the proportion of the components that mainly secure the thermal conductivity through the application of the above-described metal foam, and thus to secure the desired physical properties without damage such as workability or impact resistance. Do.
  • the ratio (MV / PV) of the volume (PV) of the polymer component and the volume (MV) of the metal foam included in the composite may be 10 or less.
  • the ratio MW / PV may be 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, 1 or less, or 0.5 or less in another example.
  • the lower limit of the volume ratio is not particularly limited and may be, for example, about 0.1.
  • the volume ratio may be calculated through the weight of the polymer component and the metal foam included in the composite and the density of the components.
  • a thermally conductive filler may be included in the polymer component in order to secure higher thermal conductivity.
  • thermally conductive filler means a filler having a thermal conductivity of about 1 W / mK or more, about 5 W / mK or more, about 10 W / mK or more, or about 15 W / mK or more.
  • the thermal conductivity of the thermally conductive filler may be about 400 W / mK or less, about 350 W / mK or less or about 300 W / mK or less.
  • the kind of thermally conductive filler is not particularly limited, and for example, a ceramic filler or a carbon filler can be applied.
  • fillers examples include alumina, aluminum nitride (AlN), boron nitride (BN), silicon nitride, silicon nitride, SiC, or BeO, and fillers such as carbon nanotubes and graphite, but are not limited thereto. no.
  • the form or proportion of the filler included is not particularly limited.
  • the filler may have various shapes such as approximately spherical, needle, plate, dendrites, or star shapes, but is not particularly limited thereto.
  • the thermally conductive filler may have an average particle diameter in the range of 0.001 ⁇ m to 80 ⁇ m.
  • the average particle diameter of the filler may be 0.01 ⁇ m or more, 0.1 or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, 5 ⁇ m or more, or about 6 ⁇ m or more.
  • the average particle diameter of the filler is, in another example, about 75 ⁇ m or less, about 70 ⁇ m or less, about 65 ⁇ m or less, about 60 ⁇ m or less, about 55 ⁇ m or less, about 50 ⁇ m or less, about 45 ⁇ m or less, about 40 ⁇ m or less, about 35 ⁇ m or less, about 30 ⁇ m or less, about 25 ⁇ m or less, about 20 ⁇ m or less, about 15 ⁇ m or less, about 10 ⁇ m or less, or about 5 ⁇ m or less.
  • the proportion of the filler can be adjusted within a range that ensures the desired properties or is not damaged.
  • the filler may be included in a volume ratio of about 80 vol% or less in the composite.
  • the volume ratio is a value calculated based on the weight and density of each of the components constituting the composite, for example, the metal foam, the polymer component and the filler.
  • the volume ratio may be about 75 vol% or less, 70 vol% or less, 65 vol% or less, 60 vol% or less, 55 vol% or less, 50 vol% or less, 45 vol% or less, 40 vol% or less, 35 vol It may be about% or less or about 30 vol% or less, or about 1 vol% or more, 2 vol% or more, 3 vol% or more, 4 vol% or more, or 5 vol% or more.
  • the present application also relates to a method for producing the composite.
  • the manufacturing method may include preparing a metal foam and introducing a polymer component into the manufactured metal foam.
  • the manufacturing method of the metal foam the step of sintering a metal structure containing a metal component to obtain a porous metal sintered body; And following the sintering step, contacting the porous metal sintered body with oxygen.
  • oxygen By contacting the oxygen under the appropriate conditions, it is possible to grow the above-mentioned projection-shaped oxide on the surface of the metal foam, and the projection-shaped oxide controls the surface area of the metal foam without compromising the advantages of the metal foam. can do.
  • the term metal structure refers to a structure before undergoing a process performed to form a metal foam such as the sintering, that is, a structure before forming the metal foam.
  • the metal structure although referred to as a porous metal structure does not necessarily have to be porous by itself, and may be referred to as a porous metal structure for convenience as long as it can form a metal foam that is finally a porous metal structure.
  • metal components included in the metal structure there is no particular limitation on the kind of metal components included in the metal structure, and the above-described materials may be used.
  • the metal component forming the metal structure may be in powder form.
  • the metals in the metal component may have an average particle diameter in the range of about 0.1 ⁇ m to about 200 ⁇ m.
  • the average particle diameter is, in another example, about 0.5 ⁇ m or more, about 1 ⁇ m or more, about 2 ⁇ m or more, about 3 ⁇ m or more, about 4 ⁇ m or more, about 5 ⁇ m or more, about 6 ⁇ m or more, about 7 ⁇ m or more, or about 8 ⁇ m. It may be abnormal.
  • the average particle diameter may be about 150 ⁇ m or less, 100 ⁇ m or less, 90 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less.
  • metal in a metal component what differs in an average particle diameter can also be applied.
  • the average particle diameter may be selected in appropriate range in consideration of the form of the desired metal foam, for example, the thickness and porosity of the metal foam, and the like is not particularly limited.
  • the average particle size mentioned in this specification is what is called a median particle size (also called D50 particle size), and can be calculated
  • the metal structure including the metal component as described above may be formed using a slurry (hereinafter, referred to as slurry A) that includes at least the metal component, a dispersant, and a binder.
  • slurry A a slurry that includes at least the metal component, a dispersant, and a binder.
  • the proportion of the metal component in the slurry A is not particularly limited, and may be selected in consideration of the desired viscosity, process efficiency, and the like. In one example, the proportion of the metal component in the slurry A may be about 0.5% to 95% by weight, but is not limited thereto.
  • the ratio is, in another example, at least about 1%, at least about 1.5%, at least about 2%, at least about 2.5%, at least about 3%, at least about 5%, at least 10%, at least 15%, at least 20%, at 25%.
  • Alcohols include methanol, ethanol, propanol, pentanol, octanol, ethylene glycol, propylene glycol, pentanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, glycerol, texanol Or monohydric alcohols having 1 to 20 carbon atoms such as terpineol, or dihydric alcohols having 1 to 20 carbon atoms or higher polyhydric alcohols such as ethylene glycol, propylene glycol, hexanediol, octanediol or pentanediol, and the like. It may be, but the kind is not limited to the above.
  • Slurry A may further comprise a binder.
  • the kind of binder is not specifically limited, It can select suitably according to the kind of metal component, a dispersing agent, etc. which were applied at the time of manufacture of slurry A.
  • the binder may be a polyalkylene carbonate having an alkylene unit having 1 to 8 carbon atoms, such as an alkyl cellulose having 1 to 8 carbon atoms such as methyl cellulose or ethyl cellulose, polypropylene carbonate, or polyethylene carbonate;
  • a polyvinyl alcohol-based binder such as polyvinyl alcohol or polyvinylacetate may be exemplified, but is not limited thereto.
  • the proportion of each component in the slurry A is not particularly limited. This ratio may be adjusted in consideration of process efficiency such as coating property or moldability in the process using slurry A.
  • the binder in slurry A may be included in a ratio of about 1 to 500 parts by weight based on 100 parts by weight of the above-described metal component.
  • the ratio is, in another example, at least about 2 parts by weight, at least about 3 parts by weight, at least about 4 parts by weight, at least about 5 parts by weight, at least about 6 parts by weight, at least about 7 parts by weight, at least about 8 parts by weight, about 9 parts by weight.
  • Dispersant in the slurry A may be included in a ratio of about 10 to 2,000 parts by weight with respect to 100 parts by weight of the binder.
  • the ratio is, in another example, at least about 20 parts by weight, at least about 30 parts by weight, at least about 40 parts by weight, at least about 50 parts by weight, at least about 60 parts by weight, at least about 70 parts by weight, at least about 80 parts by weight, about 90 parts by weight.
  • the unit weight part means a ratio of weights between components, unless otherwise specified.
  • Slurry A may further comprise a solvent if necessary.
  • a solvent an appropriate solvent may be used in consideration of the solubility of components of the slurry A, for example, the metal component and the binder.
  • the solvent one having a dielectric constant in the range of about 10 to 120 can be used.
  • the dielectric constant may be about 20 or more, about 30 or more, about 40 or more, about 50 or more, about 60 or more, or about 70 or more, about 110 or less, about 100 or less, or about 90 or less.
  • solvent examples include water, alcohols having 1 to 8 carbon atoms such as ethanol, butanol or methanol, dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), or N-methylpyrrolidinone (NMP), but are not limited thereto. no.
  • alcohols having 1 to 8 carbon atoms such as ethanol, butanol or methanol
  • DMSO dimethyl sulfoxide
  • DMF dimethyl formamide
  • NMP N-methylpyrrolidinone
  • the solvent When the solvent is applied, it may be present in the slurry A in a ratio of about 50 to 400 parts by weight relative to 100 parts by weight of the binder, but is not limited thereto.
  • Slurry A may also contain known additives which are additionally required in addition to the components mentioned above.
  • the slurry may not include a so-called blowing agent in order to effectively obtain the desired pore characteristics and to form an oxide of a desired level in an oxidation process described later.
  • blowing agent includes components which are commonly referred to in the art as blowing agents, as well as components that can exhibit foaming effects in relation to other components in the slurry. Therefore, the foaming process may not proceed during the process of manufacturing the metal foam in the present application.
  • the manner of forming the metal structure using the slurry A as described above is not particularly limited. Various methods for forming a metal structure are known in the field of manufacturing a metal foam, and all of these methods may be applied in the present application.
  • the metal structure may maintain the slurry A in an appropriate template or coat the slurry A in an appropriate manner to form the metal structure.
  • the metal structure may be in the form of a film or a sheet.
  • the thickness thereof is 2,000 ⁇ m or less, 1,500 ⁇ m or less, 1,000 ⁇ m or less, 900 ⁇ m or less, 800 ⁇ m or less, 700 ⁇ m or less, 600 ⁇ m or less, 500 ⁇ m or less, 400 ⁇ m Or about 300 ⁇ m or less, 200 ⁇ m or less, 150 ⁇ m or less, about 100 ⁇ m or less, about 90 ⁇ m or less, about 80 ⁇ m or less, about 70 ⁇ m or less, about 60 ⁇ m or less, or about 55 ⁇ m or less.
  • Metal foams generally have brittle characteristics in terms of their porous structural characteristics, and thus are difficult to manufacture in the form of a film or sheet, in particular in the form of a thin film or sheet, and have a problem of brittleness even when manufactured.
  • the lower limit of the thickness of the structure is not particularly limited.
  • the thickness of the film or sheet structure may be about 1 ⁇ m or more, about 5 ⁇ m or more, 10 ⁇ m or more, or about 15 ⁇ m or more.
  • the porous metal sintered body may be formed by sintering the metal structure formed in the above manner.
  • the manner of performing sintering for producing the metal foam is not particularly limited, and a known sintering method may be applied. That is, the sintering may be performed by applying an appropriate amount of heat to the metal structure in an appropriate manner.
  • the heat applied in the case of sintering the metal structure by applying heat is not particularly limited. That is, what is necessary is just to adjust the heat
  • the porous metal sintered body may be formed by sintering the metal structure at any temperature within the range of 700 ° C to 2,000 ° C.
  • the sintering time can also be appropriately adjusted, for example, it can be sintered for a time in the range of about 30 minutes to 600 minutes.
  • a metal structure including the metal component may be formed by using a slurry (hereinafter referred to as slurry B) in another example, the metal component, an aqueous solvent, and an organic solvent and a surfactant.
  • slurry B may be a slurry comprising foaming components, unlike slurry A.
  • the kind of metal component contained in the slurry B, and the ratio of the said metal component in a slurry are the same as that of the said slurry A.
  • the said slurry B contains a metal powder (the said metal component), an aqueous solvent, an organic solvent, and surfactant.
  • a metal powder the said metal component
  • an aqueous solvent an organic solvent
  • surfactant When the ratio and type of the aqueous solvent, the organic solvent and the surfactant are controlled in the slurry, a fine emulsion is formed in the metal foam precursor, and the foaming process may proceed while the emulsion is vaporized under appropriate conditions. For example, due to the difference in vapor pressure between the organic solvent and the aqueous solvent, a component having a larger vapor pressure may be vaporized in the foaming process to control the pore characteristics of the metal foam.
  • aqueous solvent water or other polar solvents may be applied, and water may be typically applied.
  • Such an aqueous solvent may be included in a ratio of 10 to 100 parts by weight with respect to 100 parts by weight of the metal powder in the slurry.
  • the ratio of the aqueous solvent is about 15 parts by weight or more, about 20 parts by weight or more, about 25 parts by weight or more, about 30 parts by weight or more, about 35 parts by weight or more, about 40 parts by weight or more, about 45 parts by weight or more About 50 parts by weight, about 55 parts by weight or more, about 60 parts by weight or more, about 95 parts by weight or less, about 90 parts by weight or less, about 85 parts by weight or less, about 80 parts by weight or less, about 75 parts by weight or less It may be about 70 parts by weight or less.
  • an appropriate kind may be selected without particular limitation.
  • a hydrocarbon type organic solvent can be applied, for example.
  • an organic solvent having 4 to 12 carbon atoms may be applied, and specific examples thereof include n-pentane, neopentane, hexane, isohexane, cyclohexane, heptane, isoheptane, octane, toluene or benzene.
  • Such an organic solvent may be included in a ratio of 0.01 to 10 parts by weight with respect to 100 parts by weight of the metal powder in the slurry.
  • the ratio of the organic solvent is about 0.05 parts by weight or more, about 0.1 parts by weight or more, about 0.15 parts by weight or more, about 0.2 parts by weight or more, about 0.25 parts by weight or more, about 0.3 parts by weight or more, or about 0.35 parts by weight or more.
  • Surfactants may be included to form suitable microemulsions in the metal foam precursors and / or to appropriately control the aforementioned vaporization.
  • any one selected from the group consisting of an amphoteric surfactant, a nonionic surfactant and an anionic surfactant, or a mixture of two or more thereof may be applied.
  • a mixture of two or more surfactants of different structures within one kind may be applied even when one kind of surfactant is used among amphoteric surfactants, nonionic surfactants and anionic surfactants.
  • an appropriate kind for forming a desired fine emulsion may be selected, and a kind of an aqueous solvent and an organic solvent applied in the process may be considered.
  • Anionic surfactants are surfactants in which a part showing a surfactant activity is an anion as is known, and as anionic surfactants, for example, a carboxylate compound, a sulfate compound, and an isethionate.
  • anionic surfactants for example, a carboxylate compound, a sulfate compound, and an isethionate.
  • Compounds, sulfosuccinate compounds, taurate compounds and / or glutamate compounds may be applied, but are not limited thereto.
  • Nonionic surfactants are surfactants which are not separated into ions as is known, and examples of such surfactants include alkyl polyglucoside surfactants, fatty acid alkanolamide surfactants, or amine oxide and higher alcohols.
  • Surfactant in the form in which ethylene oxide is added and in the form in which ethylene oxide is added to oil may be used.
  • Amphoteric surfactants are surfactants having an anionic site and a cationic site at the same time.
  • examples of such surfactants include betaines such as cocamidopropyl betaine, lauramidopropyl betaine, cocobetaine or lauryl beta. Phosphorous or the like, but for example, lauryl hydroxysulfane, lauramidopropylsulfane, cocamidopropyl hydroxysulfane or cocosulfane may be used, but is not limited thereto.
  • any one of anionic, nonionic or amphoteric surfactants of the above-mentioned formulas may be used alone, or two or more kinds of surfactants may be mixed and used.
  • the surfactant may be included in a ratio of 1 to 10 parts by weight based on 100 parts by weight of the metal powder in the slurry.
  • the ratio is about 1.5 parts by weight or more, about 2 parts by weight, about 2.5 parts by weight, about 3 parts by weight, about 3.5 parts by weight, about 4 parts by weight or about 4.5 parts by weight or more, About 9.5 parts by weight or less, about 9 parts by weight or less, about 8.5 parts by weight or less, about 8 parts by weight or less, about 7.5 parts by weight or less, about 7 parts by weight or less, about 6.5 parts by weight or less, about 6 parts by weight or 5.5 parts by weight The following degree may be sufficient.
  • Slurry B may further contain necessary components in addition to the said component.
  • the slurry may further comprise a binder.
  • binder it can select suitably according to the kind of binder which has water solubility, a metal powder, an aqueous solvent, an organic solvent, and / or surfactant applied at the time of manufacture of a slurry, without a restriction
  • the binder the same kind of material as that described as the binder in the first slurry may be applied.
  • the binder may be included in a ratio of 1 to 100 parts by weight with respect to 100 parts by weight of the metal powder in the slurry.
  • the ratio is about 2 parts by weight or more, about 3 parts by weight or more, about 4 parts by weight or more, about 5 parts by weight or more, about 6 parts by weight or more, about 7 parts by weight or more, about 8 parts by weight or more, or about 9 parts by weight.
  • the amount may be about 20 parts by weight or less, or about 15 parts by weight or less. Under such a ratio, metal foam having desired pore characteristics can be effectively produced.
  • the slurry B may further include a plasticizer.
  • a plasticizer an appropriate kind that can impart plasticity to the above-described slurry system or metal foam may be selected.
  • a polyhydric alcohol, an oil or fat, an ether compound or an ester compound may be applied, but the present invention is not limited thereto. no.
  • the plasticizer may be included in a ratio of 0.5 to 10 parts by weight with respect to 100 parts by weight of the metal powder in the slurry.
  • the ratio is about 1 part by weight or more, about 1.5 parts by weight or more, about 2 parts by weight or more, about 2.5 parts by weight or more, or about 3 parts by weight or more, about 9 parts by weight or less, about 8 parts by weight or less, 7 About 5 weight part or less, about 5 weight part or less, or about 4 weight part or less may be sufficient. Under such a ratio, metal foam having desired pore characteristics can be effectively produced.
  • Slurry B may also contain known additives which are additionally required in addition to the components mentioned above.
  • the method of forming the metal foam precursor using the slurry B is not particularly limited, and the same as in the case of slurry A.
  • the metal sintered body can be obtained through the same sintering process as in the case of the slurry A mentioned above.
  • the foaming process may proceed before the sintering process.
  • the foaming process may be applied in the case of precursors formed from slurry B, or formed using slurry A and B together, and not applied when slurry A is used alone.
  • the foaming process may be carried out, for example, by vaporizing the emulsion in a state where a desired fine emulsion is formed in the precursor.
  • the foaming process may be performed by maintaining the metal foam precursor at a temperature within a range of about 20 ° C. to 100 ° C. for a suitable time.
  • the foaming process may proceed while the fine emulsion vaporizes due to the difference in vapor pressure between the aqueous solvent and the organic solvent.
  • the foaming process time is not particularly limited as determined according to the purpose, for example, may be performed for a time in the range of about 1 minute to 10 hours, but is not limited thereto.
  • the metal foam precursor may be manufactured by sintering the metal foam precursor formed in the above manner.
  • the manner in which the sintering is performed is not particularly limited, and the contents described in the case of the slurry A may be equally applied.
  • the metal sintered body formed as described above is contacted with oxygen to modify the surface.
  • This contact process with oxygen can be performed immediately following a sintering process.
  • the contact with oxygen may be performed while cooling the porous metal sintered body immediately after the sintering process, and the contact with oxygen occurs when the temperature of the atmosphere in which the porous metal sintered body is present reaches a certain level. You can start The cooling may be forced cooling or natural cooling.
  • the oxide can be grown on the surface of the metal foam through the control of the contact conditions with oxygen, and in particular, the object can be achieved by appropriately growing the oxide in the form of a protrusion.
  • the contacting with oxygen may include: naturally or forcibly cooling the sintered body after sintering the metal structure; And contacting the sintered body with oxygen when the temperature is within the range of 300 ° C. to 600 ° C. in the natural or forced cooling process.
  • the contact with oxygen may be performed while the metal foam is cooled after the sintering process, in which case the surface-modified metal foam may be formed in one step.
  • the contact with oxygen may be performed in an atmosphere having an oxygen concentration of 1 ppm to 1,000 ppm, or in an oxygen concentration atmosphere of 10 ppm to 1,000 ppm for proper growth of an oxide.
  • the sintering of the metal structure may be performed under an atmosphere of a reactive gas or an inert gas such as hydrogen or argon, and after the sintering is performed in the reaction or inert gas atmosphere, the sintered body is cooled to a desired temperature.
  • oxygen may be injected at an appropriate concentration to perform contact with oxygen.
  • the concentration of oxygen may be adjusted by injecting oxygen, for example, to have a concentration intended for a chamber or the like.
  • the contact with oxygen for surface modification may be performed while cooling the porous metal sintered body.
  • the cooling may be forced cooling or natural cooling. That is, the surface modification process may be performed by injecting oxygen at an appropriate time while cooling the metal sintered body after the sintering process for forming the metal sintered body.
  • oxygen may be contacted with oxygen by injecting oxygen at an appropriate point in the cooling process after sintering without contacting oxygen with the metal structure.
  • the contact with oxygen can be started and performed at a temperature of 300 ° C to 600 ° C. That is, after cooling, the sintered body can be cooled while the temperature reaches the above range, and oxygen can be injected to advance contact with the oxygen.
  • the oxygen contact start point temperature is, in another example, about 320 ° C. or higher, 340 ° C. or higher, 360 ° C. or higher, 380 ° C. or higher, or 580 ° C. or lower, 560 ° C. or lower, 540 ° C. or lower, 520 ° C. or lower or 500 ° C. It may be:
  • the contact with oxygen may be performed at the temperature up to a point where the holding temperature (ambient temperature) of the porous metal sintered body is cooled to about 10 ° C. to 50 ° C.
  • the cooling rate is not particularly limited.
  • the cooling may be natural cooling.
  • the contact with oxygen may be performed while the temperature falls from the oxygen contact start temperature to the oxygen contact end temperature by natural cooling, for example, may be performed for 10 minutes to 5 hours.
  • a composite may be prepared by introducing a polymer component into or on the surface of the metal foam.
  • the method of introducing the polymer component is not particularly limited and is carried out in a known manner.
  • it may include the step of curing the polymer composition in the state that the curable polymer composition is present on the surface or inside of the metal foam.
  • the polymer composition applied above, and such polymer components are variously known in the art. That is, for example, by using a material having a suitable viscosity among known components, the composite can be produced by curing through a known method.
  • a composite material including a metal foam and a polymer component, and having excellent thermal conductivity and excellent other physical properties such as impact resistance, processability, and insulation.
  • 1 is a photograph of a metal foam formed in the embodiment.
  • the copper foam As the metal foam, as the copper metal foam, a projection-shaped oxide was present on the surface, and a film-shaped copper foam having a thickness of about 90 ⁇ m and a porosity of about 65% to 75% was used.
  • the copper foam uses copper (Cu) powder having an average particle diameter (D50 particle diameter) of about 10 to 20 ⁇ m as a metal component, alpha-terpineol as a dispersant, and poly as a binder. It was prepared as a slurry to which vinyl acetate (Polyvinylacetate) was applied. The weight ratio (Cu: dispersant: binder) of the metal component (Cu), dispersant and binder in the slurry was about 1: 1.11: 0.09.
  • the slurry was coated to form a film of this thickness and dried at a temperature of about 100 ° C. for about 40 minutes. Subsequently, the film-shaped structure was heat treated (sintered) at a temperature of about 900 ° C. for about 1 hour in a hydrogen / argon gas atmosphere of 4% to form a porous metal sintered body by combining metal components while removing organic components. After sintering, the sintered body is naturally cooled and the oxygen gas is injected at a concentration of about 400 ppm to 700 ppm when the ambient temperature reaches about 500 ° C., and the oxygen and oxygen until the ambient temperature reaches room temperature (about 25 ° C.). Contact.
  • Example 1 is a photograph of the sheet prepared in Example 1, it can be seen from the photograph that the oxide of the projection form on the surface of the metal foam is grown.
  • the aspect ratio of the protrusion shape was in the range of about 1 to 3, and the area ratio of the oxide was about 10% to about 30%.
  • the copper foam was impregnated into a thermosetting silicone resin composition (Dow corning, PDMS, Sylgard 183 Kit), and the excess composition was removed using an applicator so that the thickness of the final composite was about 110 ⁇ m.
  • the composite was then prepared by holding the material in an oven at about 120 ° C. for about 10 minutes to cure.
  • the ratio (MV / PV) of the volume of the polymer component (PV) and the volume of the metal foam (MV) is about It was about 0.3.
  • the thermal conductivity of this composite was about 5.12 W / mK.
  • the said thermal conductivity is a value with respect to the thickness direction (Z-axis) of a composite material.
  • thermosetting silicone resin composition a composite material was prepared in the same manner as in Example 1 except for using another kind of composition (Dow corning, PDMS, Sylgard 527 Kit). The thermal conductivity of the prepared composite was measured in the manner mentioned above and was about 6.86 W / mK.
  • the composite material was manufactured in the same manner as in Example 2, except that the boron nitride powder having a plate shape was introduced in a thermosetting silicone resin composition (Dow corning, PDMS, Sylgard 527 Kit) at a ratio of about 10% by weight.
  • the thermal conductivity of the prepared composite was measured in the above-mentioned manner and was about 10.14 W / mK.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 출원은 복합재 및 그의 제조 방법을 제공한다. 본 출원에서는, 금속폼과 고분자 성분을 포함하고, 우수한 열전도도를 가지면서, 내충격성, 가공성 및 절연성 등의 다른 물성도 우수한 복합재를 제공할 수 있다.

Description

복합재
본 출원은 2018년 6월 29일자 제출된 대한민국 특허출원 제10-2018-0075959호에 기초하여 우선권을 주장하며, 해당 대한민국 특허출원 문헌에 개시된 내용은 본 명세서의 일부로서 포함된다.
본 출원은 복합재에 대한 것이다.
방열 소재는 다양한 용도에서 사용될 수 있다. 예를 들면, 배터리나 각종 전자 기기는 작동 과정에서 열이 발생하기 때문에, 이러한 열을 효과적으로 제어할 수 있는 소재가 요구된다.
방열 특성이 좋은 소재는 열전도도가 좋은 세라믹 소재 등이 알려져 있으나, 이러한 소재는 가공성이 떨어지기 때문에, 고분자 매트릭스 내에 높은 열전도율을 나타내는 상기 세라믹 필러 등을 배합하여 제조한 복합 소재가 사용될 수 있다.
그렇지만, 상기 방식에 의해서는 높은 열전도도를 확보하기 위해서 다량의 필러 성분이 적용되어야 하기 때문에, 다양한 문제가 발생한다. 예를 들면, 다량의 필러 성분을 포함하는 소재의 경우, 소재 자체가 딱딱하게 되는 경향이 있고, 이러한 경우에 내충격성 등이 떨어진다.
본 출원은, 복합재에 대한 것이고, 일 예시에서 열전도 특성이 우수하면서도, 내충격성이나 가공성 등 다른 물성도 우수하게 확보되는 복합재 또는 그 제조 방법을 제공하는 것을 목적으로 한다.
본 명세서에서 언급하는 물성 중에서 측정 온도 및/또는 측정 압력이 결과에 영향을 미치는 물성은, 특별히 달리 언급하지 않는 한, 상온 및/또는 상압에서 측정한 결과이다.
용어 상온은 가온되거나, 감온되지 않은 자연 그대로의 온도이고, 예를 들면, 10℃ 내지 30℃의 범위 내의 어느 한 온도, 약 23℃ 또는 약 25℃ 정도의 온도를 의미한다. 또한, 본 명세서에서 온도의 단위는 특별히 달리 규정하지 않는 한 섭씨(℃)이다.
용어 상압은 가압 또는 감압되지 않은 자연 그대로의 압력이고, 통상 대기압 수준의 약 1기압 정도를 의미한다.
본 명세서에서 측정 습도가 결과에 영향을 미치는 물성의 경우, 해당 물성은 상기 상온 및/또는 상압 상태에서 특별히 조절되지 않은 자연 그대로의 습도에서 측정한 물성이다.
본 출원은 복합재에 대한 것이다. 본 출원에서 용어 복합재는 금속폼과 고분자 성분을 포함하는 재료를 의미할 수 있다.
본 명세서에서 용어 금속폼 또는 금속 골격은, 금속을 주성분으로 포함하는 다공성 구조체를 의미한다. 상기에서 금속을 주성분으로 한다는 것은, 금속폼 또는 금속 골격의 전체 중량을 기준으로 금속의 비율이 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상, 90 중량% 이상 또는 95 중량% 이상인 경우를 의미한다. 상기 주성분으로 포함되는 금속의 비율의 상한은 특별히 제한되지 않으며, 예를 들면, 상기 금속의 비율은 100 중량% 이하, 99 중량% 이하 또는 98 중량% 이하 정도일 수 있다.
본 명세서에서 용어 다공성은, 기공도(porosity)가 적어도 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 75% 이상 또는 80% 이상인 경우를 의미할 수 있다. 상기 기공도의 상한은 특별히 제한되지 않으며, 예를 들면, 약 100% 미만, 약 99% 이하, 약 98% 이하, 95% 이하, 90% 이하, 85% 이하 또는 80% 이하 정도일 수 있다. 상기 기공도는 금속폼 등의 밀도를 계산하여 공지의 방식으로 산출할 수 있다.
본 출원의 복합재는, 높은 열전도도를 가지며, 이에 따라서 예를 들면, 방열 소재와 같이 열의 제어를 위한 소재로 사용될 수 있다.
예를 들면, 상기 복합재는 열전도도가 약 0.4 W/mK 이상, 0.45 W/mK 이상, 0.5 W/mK 이상, 0.55 W/mK 이상, 0.6 W/mK 이상, 0.65 W/mK 이상, 0.7 W/mK 이상, 0.75 W/mK 이상, 0.8 W/mK 이상, 0.85 W/mK 이상, 0.9 W/mK 이상, 0.95 W/mK 이상, 1 W/mK 이상, 1.5 W/mK 이상, 2, W/mK 이상 2.5 W/mK 이상, 3 W/mK 이상, 3.5 W/mK 이상, 4 W/mK 이상, 4.5 W/mK 이상 또는 5 W/mK 이상, 5.5 W/mK 이상, 6 W/mK 이상, 6.5 W/mK 이상, 7 W/mK 이상, 7.5 W/mK 이상, 8 W/mK 이상, 8.5 W/mK 이상, 9 W/mK 이상, 9.5 W/mK 이상 또는 10 W/mK 이상일 수 있다. 상기 복합재의 열전도도는, 높을수록 복합재가 우수한 열 제어 기능을 가질 수 있는 것이어서 특별히 제한되지 않으며, 일 예시에서 약 100 W/mK 이하, 90 W/mK 이하, 80 W/mK 이하, 70 W/mK 이하, 60 W/mK 이하, 50 W/mK 이하, 40 W/mK 이하, 30 W/mK 이하, 20 W/mK 이하, 15 W/mK 이하 또는 10 W/mK 이하일 수 있다. 상기 열전도도를 측정하는 방식은 특별히 제한되지 않으며, 예를 들면, 후술하는 실시예에서 기재된 방식으로 측정할 수 있다.
본 출원의 복합재는 상기와 같은 우수한 열전도 특성을 가지는 동시에 가공성이나 내충격성 등의 다른 물성도 안정적으로 확보될 수 있으며, 이러한 효과는 본 명세서에서 설명하는 내용에 의해 달성될 수 있다.
하나의 예시에서 본 출원에서는 금속폼과 고분자 성분이 복합화된 복합재에서 상기 금속폼으로서 표면에 금속 산화물이 도입된 금속폼을 적용한다. 상기 금속 산화물은, 특정한 방식에 의해 금속폼의 표면에 성장한 것으로 돌기 형태를 가진 산화물일 수 있다. 이러한 금속 산화물은, 금속폼이 가지는 장점, 예를 들면, 우수한 열전도성이나, 가공성, 기계적 강도 등을 희생시키지 않으면서, 그 표면 특성을 조절하여 상기 금속폼이 유기 소재인 고분자와 우수한 계면 특성을 나타내도록 할 수 있다. 따라서 이러한 금속폼을 포함하는 복합재는 우수한 특성을 나타낼 수 있다.
상기에서 돌기 형상은, 종횡비(aspect ratio)가 대략 1 내지 8의 범위 내인 형상을 의미한다. 상기 돌기 형상의 종횡비는 다른 예시에서 약 7.5 이하, 7 이하, 6.5 이하, 6 이하, 5.5 이하, 5 이하, 4.5 이하, 4 이하, 3.5 이하 또는 3 이하일 수 있다. 상기에서 산화물의 종횡비는, 광학 현미경 등을 통해 확인되는 산화물의 높이 내지 폭 등의 치수(Dimension) 중에서 가장 큰 치수(L) 및 작은 치수(S)의 비율(L/S)일 수 있고, 이 때 상기 치수(L, S)는 동일 단위에서의 치수이다. 이와 같은 돌기 형상의 산화물의 존재에 의해서 목적하는 효과를 우수하게 달성할 수 있다.
상기 금속폼에서 금속폼의 표면에 존재하는 금속 산화물의 면적 비율이 5% 내지 60%의 범위 내일 수 있다. 상기 면적 비율은, 다른 예시에서 약 7% 이상 또는 10% 이상이거나, 55% 이하, 50% 이하, 45% 이하, 40% 이하, 35% 이하 또는 30% 이하 정도일 수 있다. 상기 면적 비율은, 금속폼의 전체 면적 대비 산화물이 존재하는 면적의 백분율이고, 광학 현미경 등으로 확인되는 산화물의 면적과 금속폼의 면적을 통해 확인하거나, 금속폼의 중량과 산화물의 중량 등을 통해서 환산할 수도 있다.
복합재에 포함되는 금속폼의 형태는 특별히 제한되지는 않으나, 일 예시에서 필름 형상일 수 있다. 본 출원의 복합재에서는 상기 필름 형태의 금속폼의 표면이나 내부에 존재하는 고분자 성분이 추가된다.
이러한 고분자 성분은, 상기 금속폼의 적어도 하나의 표면상에서 표면층을 형성하고 있거나, 금속폼 내부의 공극에 충전되어 존재할 수 있으며, 경우에 따라서는 상기 표면층을 형성하면서 또한 금속폼의 내부에 충전되어 있을 수도 있다. 표면층을 형성하는 경우에, 금속폼의 표면 중에서 적어도 한 표면, 일부의 표면 또는 모든 표면에 대해서 고분자 성분이 표면층을 형성하고 있을 수 있다. 일 예시에서는 적어도 금속폼의 주표면인 상부 및/또는 하부 표면에 상기 고분자 성분이 표면층을 형성하고 있을 수 있다. 상기 표면층은, 금속폼의 표면 전체를 덮도록 형성될 수도 있고, 일부 표면만을 덮도록 형성될 수도 있다.
복합재에서 금속폼은, 기공도(porosity)가 약 10% 내지 99%의 범위 내일 수 있다. 이러한 기공도를 가지는 금속폼은, 적합한 열전달 네트워크를 형성하고 있는 다공성의 금속 골격을 가지고, 따라서 해당 금속폼을 소량 적용하는 경우에도 우수한 열전도도를 확보할 수 있다. 다른 예시에서 상기 기공도는, 15% 이상, 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상, 45% 이상, 50% 이상, 55% 이상, 60% 이상 또는 65% 이상이거나, 98% 이하, 95% 이하 정도, 90% 이하 정도, 85% 이하 정도, 80% 이하 정도 또는 75% 이하 정도일 수 있다.
전술한 바와 같이 금속폼은 필름 형태일 수 있다. 이러한 경우에 필름의 두께는 후술하는 방식에 따라 복합재를 제조함에 있어서, 목적하는 열전도도나 두께 비율 등을 고려하여 조절될 수 있다. 상기 필름의 두께는, 목적으로 하는 열전도도의 확보를 위해, 예를 들면, 약 10μm 이상, 약 20μm 이상, 약 30μm 이상, 약 40μm 이상, 약 45 μm 이상, 약 50 μm 이상, 약 55 μm 이상, 약 60 μm 이상, 약 65 μm 이상 또는 약 70 μm 이상일 수 있다. 상기 필름의 두께의 상한은 목적에 따라서 제어되는 것으로 특별히 제한되는 것은 아니나, 예를 들면, 약 1,000 μm 이하, 약 900 μm 이하, 약 800 μm 이하, 약 700 μm 이하, 약 600 μm 이하, 약 500 μm 이하, 약 400 μm 이하, 약 300 μm 이하, 약 200 μm 이하 또는 약 150 μm 이하 정도일 수 있다.
본 명세서에서 두께는 해당 대상의 두께가 일정하지 않은 경우에는, 그 대상의 최소 두께, 최대 두께 또는 평균 두께일 수 있다.
금속폼은 열전도도가 높은 소재일 수 있다. 일 예시에서 상기 금속폼은 열전도도가, 약 8 W/mK 이상, 약 10 W/mK 이상, 약 15 W/mK 이상, 약 20 W/mK 이상, 약 25 W/mK 이상, 약 30 W/mK 이상, 약 35 W/mK 이상, 약 40 W/mK 이상, 약 45 W/mK 이상, 약 50 W/mK 이상, 약 55 W/mK 이상, 약 60 W/mK 이상, 약 65 W/mK 이상, 약 70 W/mK 이상, 약 75 W/mK 이상, 약 80 W/mK 이상, 약 85 W/mK 이상 또는 약 90 W/mK 이상인 금속 또는 금속 합금을 포함하거나, 그로부터 이루어질 수 있다. 상기 열전도도는, 그 수치가 높을수록 적은 양의 금속폼을 적용하면서 목적하는 열 제어 특성을 확보할 수 있기 때문에 특별히 제한되는 것은 아니며, 예를 들면, 약 1,000 W/mK 이하 정도일 수 있다.
금속폼의 골격은, 다양한 종류의 금속이나 금속 합금으로 이루어질 수 있는데, 이러한 금속이나 금속 합금 중에서 상기 언급된 범위의 열전도도를 나타낼 수 있는 소재가 선택되면 된다. 이러한 소재로는, 주석, 구리, 금, 은, 알루미늄, 니켈, 철, 코발트, 마그네슘, 몰리브덴, 텅스텐 및 아연으로 이루어진 군에서 선택된 어느 하나의 금속이나 상기 중 2종 이상의 합금 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
이러한 금속폼은 다양하게 공지되어 있고, 금속폼을 제조하는 방법 역시 다양하게 공지되어 있다. 본 출원에서는 이러한 공지의 방식으로 제조된 금속폼에 후술하는 특정 방식으로 표면에 산화물을 형성시킨 금속폼을 적용할 수 있다.
금속폼 자체를 제조하는 방식으로는, 염 등의 기공 형성제와 금속의 복합 재료를 소결하는 방식, 고분자 폼 등의 지지체에 금속을 코팅하고, 그 상태로 소결하는 방식이나 슬러리법 등이 알려져 있고, 이러한 방식이 모두 적용될 수 있다. 본 출원의 복합재에서 적합한 금속폼을 제조하는 방법에 대해서는 후술한다.
복합재는, 전술한 바와 같이 상기 금속폼의 표면 또는 금속폼의 내부에 존재하는 고분자 성분을 추가로 포함하는데, 이러한 복합체의 상기 금속폼의 두께(MT) 및 전체 두께(T)의 비율(T/MT)은, 2.5 이하일 수 있다. 상기 두께의 비율은 다른 예시에서 약 2 이하, 1.5 이하, 1.4 이하, 1.3 이하, 1.2 이하, 1.15 이하 또는 1.1 이하일 수 있다. 상기 두께의 비율의 하한은 특별히 제한되는 것은 아니나, 일 예시에서 약 1 이상, 약 1.01 이상, 약 1.02 이상, 약 1.03 이상, 약 1.04 이상 또는 약 1.05 이상일 수 있다. 이러한 두께 비율 하에서 목적하는 열전도도가 확보되면서, 가공성이나 내충격성 등이 우수한 복합재가 제공될 수 있다.
본 출원의 복합재에 포함되는 고분자 성분의 종류는 특별히 제한되지 않으며, 예를 들면, 복합재의 가공성이나 내충격성, 절연성 등을 고려하여 선택될 수 있다. 본 출원에서 적용될 수 있는 고분자 성분의 예로는, 공지의 아크릴 수지, 실리콘 수지, 에폭시 수지, 우레탄 수지, 아미노 수지 및 페놀 수지로 이루어진 군에서 선택된 하나 이상을 들 수 있지만, 이에 제한되는 것은 아니다.
상기 복합재의 경우, 전술한 금속폼의 적용을 통해서 주로 열전도도를 확보하는 성분의 비율을 최소화하면서도 우수한 열전도도를 확보할 수 있고, 따라서 가공성이나 내충격성 등의 손해 없이 목적하는 물성의 확보가 가능하다.
일 예시에서 상기 복합재에 포함되는 고분자 성분의 부피(PV)와 금속폼의 부피(MV)의 비율(MV/PV)은 10 이하일 수 있다. 상기 비율(MW/PV)은 다른 예시에서 9 이하, 8 이하, 7 이하, 6 이하, 5 이하, 4 이하, 3 이하, 2 이하, 1 이하 또는 0.5 이하 정도일 수 있다. 상기 부피 비율의 하한은 특별히 제한되지 않고, 예를 들면, 약 0.1 정도일 수 있다. 상기 부피 비율은, 복합재에 포함되는 고분자 성분과 금속폼의 중량과 해당 성분들의 밀도를 통해 산출할 수 있다.
하나의 예시에서 보다 높은 열전도도의 확보를 위해 상기 고분자 성분에 열전도성 필러를 포함시킬 수도 있다.
본 출원에서 용어 열전도성 필러는, 열전도도가 약 1 W/mK 이상, 약 5 W/mK 이상, 약 10 W/mK 이상 또는 약 15 W/mK 이상인 필러를 의미한다. 상기 열전도성 필러의 열전도도는 약 400 W/mK 이하, 약 350 W/mK 이하 또는 약 300 W/mK 이하일 수 있다. 열전도성 필러의 종류는 특별히 제한되지 않고, 예를 들면, 세라믹 필러 또는 탄소계 필러 등을 적용할 수 있다. 이러한 필러로는, 알루미나, AlN(aluminum nitride), BN(boron nitride), 질화 규소(silicon nitride), SiC 또는 BeO 등이나, 탄소나노튜브나 그래파이트 등과 같은 필러가 예시될 수 있으나, 이에 제한되는 것은 아니다.
포함되는 상기 필러의 형태나 비율은 특별히 제한되지 않는다. 일 예시에서 상기 필러의 형태는 대략 구형, 침상, 판형, 덴드라이트형 또는 성형(star shape) 등의 다양한 형태를 가질 수 있지만, 상기 형태에 특별히 제한되는 것은 아니다.
하나의 예시에서 상기 열전도성 필러는, 평균 입경이 0.001 ㎛ 내지 80 ㎛의 범위 내에 있을 수 있다. 상기 필러의 평균 입경은 다른 예시에서 0.01 ㎛ 이상, 0.1 이상, 0.5㎛ 이상, 1 ㎛ 이상, 2㎛ 이상, 3㎛ 이상, 4㎛ 이상, 5㎛ 이상 또는 약 6㎛ 이상일 수 있다. 상기 필러의 평균 입경은 다른 예시에서 약 75㎛ 이하, 약 70㎛ 이하, 약 65㎛ 이하, 약 60㎛ 이하, 약 55㎛ 이하, 약 50㎛ 이하, 약 45㎛ 이하, 약 40㎛ 이하, 약 35㎛ 이하, 약 30㎛ 이하, 약 25㎛ 이하, 약 20㎛ 이하, 약 15㎛ 이하, 약 10㎛ 이하 또는 약 5㎛ 이하일 수 있다.
필러의 비율은, 목적하는 특성이 확보되거나, 혹은 손상되지 않은 범위 내에서 조절될 수 있다. 일 예시에서 상기 필러는 복합재 내에서 부피 비율로 약 80vol% 이하 정도로 포함될 수 있다. 상기에서 부피 비율은, 복합재를 구성하는 성분, 예를 들면, 상기 금속폼, 고분자 성분 및 필러 각각의 중량과 밀도를 기준으로 계산한 수치이다.
상기 부피 비율은 다른 예시에서 약 75 vol% 이하, 70 vol% 이하, 65 vol% 이하, 60 vol% 이하, 55 vol% 이하, 50 vol% 이하, 45 vol% 이하, 40 vol% 이하, 35 vol% 이하 또는 30 vol% 이하 정도이거나, 약 1 vol% 이상, 2 vol% 이상, 3 vol% 이상, 4 vol% 이상 또는 5 vol% 이상 정도일 수 있다.
본 출원은, 또한 상기 복합재의 제조 방법에 대한 것이다. 상기 제조 방법은 금속폼을 제조하는 단계와 제조된 금속폼에 고분자 성분을 도입하는 단계를 포함할 수 있다. 상기 금속폼의 제조 방법은, 금속 성분을 포함하는 금속 구조체를 소결하여 다공성의 금속 소결체를 얻는 단계; 및 상기 소결 단계에 이어서 상기 다공성의 금속 소결체를 산소와 접촉시키는 단계를 포함할 수 있다. 적정 조건에서의 상기 산소와의 접촉을 통해 금속폼의 표면에 전술한 돌기 형상의 산화물을 성장시킬 수 있고, 이러한 돌기 형상의 산화물은 금속폼의 장점을 훼손하지 않으면서 해당 금속폼의 표면적을 제어할 수 있다.
본 출원에서 용어 금속 구조체는, 상기 소결 등과 같이 금속폼을 형성하기 위해 수행되는 공정을 거치기 전의 구조체, 즉 금속폼을 형성하기 전의 구조체를 의미한다. 또한, 상기 금속 구조체는, 다공성 금속 구조체라고 호칭되더라도 반드시 그 자체로 다공성일 필요는 없으며, 최종적으로 다공성의 금속 구조체인 금속폼을 형성할 수 있는 것이라면, 편의상 다공성 금속 구조체라고 호칭될 수 있다.
금속 구조체에 포함되는 금속 성분의 종류에는 특별한 제한이 없고, 전술한 소재가 사용될 수 있다.
금속 구조체를 형성하는 금속 성분은 분말(powder) 형태일 수 있다. 예를 들면, 상기 금속 성분 내의 금속들은, 평균 입경이 약 0.1㎛ 내지 약 200㎛의 범위 내에 있을 수 있다. 상기 평균 입경은 다른 예시에서 약 0.5㎛ 이상, 약 1㎛ 이상, 약 2㎛ 이상, 약 3㎛ 이상, 약 4㎛ 이상, 약 5㎛ 이상, 약 6㎛ 이상, 약 7㎛ 이상 또는 약 8㎛ 이상일 수 있다. 상기 평균 입경은 다른 예시에서 약 150㎛ 이하, 100㎛ 이하, 90㎛ 이하, 80㎛ 이하, 70㎛ 이하, 60㎛ 이하, 50㎛ 이하, 40㎛ 이하, 30㎛ 이하 또는 20㎛ 이하일 수 있다. 금속 성분 내의 금속으로는 서로 평균 입경이 상이한 것을 적용할 수도 있다. 상기 평균 입경은, 목적하는 금속폼의 형태, 예를 들면, 금속폼의 두께나 기공도 등을 고려하여 적절한 범위를 선택할 수 있고, 이는 특별히 제한되지 않는다.
본 명세서에서 언급하는 평균 입경은, 소위 메디안 입경(D50 입경으로도 호칭됨)으로서, 공지의 입도 분석 방식에 의해 구할 수 있다.
본 출원에서 상기와 같은 금속 성분을 포함하는 금속 구조체를, 일 예시에서 상기 금속 성분, 분산제 및 바인더를 적어도 포함하는 슬러리(이하, 슬러리 A라고 호칭할 수 있음)를 사용하여 형성할 수 있다.
상기 슬러리 A 내에서 금속 성분의 비율은 특별히 제한되지 않고, 목적하는 점도나 공정 효율 등을 고려하여 선택될 수 있다. 일 예시에서 슬러리 A 내에서의 금속 성분의 비율은 중량을 기준으로 0.5% 내지 95% 정도일 수 있지만, 이에 제한되는 것은 아니다. 상기 비율은 다른 예시에서 약 1% 이상, 약 1.5% 이상, 약 2% 이상, 약 2.5% 이상, 약 3% 이상, 약 5% 이상, 10% 이상, 15% 이상, 20% 이상, 25% 이상, 30% 이상, 35% 이상, 40% 이상, 45% 이상, 50% 이상, 55% 이상, 60% 이상, 65% 이상, 70% 이상, 75% 이상 또는 80% 이상이거나, 약 90% 이하, 약 85% 이하, 약 80% 이하, 약 75% 이하, 약 70% 이하, 약 65% 이하, 60% 이하, 55% 이하, 50% 이하, 45% 이하, 40% 이하, 35% 이하, 30% 이하, 25% 이하, 20% 이하, 15% 이하, 10% 이하 또는 5% 이하 정도일 수 있지만, 이에 제한되지는 않는다.
분산제로는, 예를 들면, 알코올이 적용될 수 있다. 알코올로는, 메탄올, 에탄올, 프로판올, 펜탄올, 옥타놀, 에틸렌글리콜, 프로필렌글리콜, 펜탄놀, 2-메톡시에탄올, 2-에톡시에탄올, 2-부톡시에탄올, 글리세롤, 텍사놀(texanol) 또는 테르피네올(terpineol) 등과 같은 탄소수 1 내지 20의 1가 알코올 또는 에틸렌글리콜, 프로필렌글리콜, 헥산디올, 옥탄디올 또는 펜탄디올 등과 같은 탄소수 1 내지 20의 2가 알코올 또는 그 이상의 다가 알코올 등이 사용될 수 있으나, 그 종류가 상기에 제한되는 것은 아니다.
슬러리 A는 바인더를 추가로 포함할 수 있다. 바인더의 종류는 특별히 제한되지 않으며, 슬러리 A의 제조 시에 적용된 금속 성분이나 분산제 등의 종류에 따라 적절하게 선택할 수 있다. 예를 들면, 상기 바인더로는, 메틸 셀룰로오스 또는 에틸 셀룰로오스 등의 탄소수 1 내지 8의 알킬기를 가지는 알킬 셀룰로오스, 폴리프로필렌 카보네이트 또는 폴리에틸렌 카보네이트 등의 탄소수 1 내지 8의 알킬렌 단위를 가지는 폴리알킬렌 카보네이트 또는 폴리비닐알코올 또는 폴리비닐아세테이트 등의 폴리비닐알코올계 바인더 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
슬러리 A 내에서 각 성분의 비율은 특별히 제한되지 않는다. 이러한 비율은 슬러리 A를 사용한 공정 시에 코팅성이나 성형성 등의 공정 효율을 고려하여 조절될 수 있다.
예를 들면, 슬러리 A 내에서 바인더는 전술한 금속 성분 100 중량부 대비 약 1 내지 500 중량부의 비율로 포함될 수 있다. 상기 비율은 다른 예시에서 약 2 중량부 이상, 약 3 중량부 이상, 약 4 중량부 이상, 약 5 중량부 이상, 약 6 중량부 이상, 약 7 중량부 이상, 약 8 중량부 이상, 약 9 중량부 이상, 약 10 중량부 이상, 약 20 중량부 이상, 약 30 중량부 이상, 약 40 중량부 이상, 약 50 중량부 이상, 약 60 중량부 이상, 약 70 중량부 이상, 약 80 중량부 이상, 약 90 중량부 이상, 약 100 중량부 이상, 약 110 중량부 이상, 약 120 중량부 이상, 약 130 중량부 이상, 약 140 중량부 이상, 약 150 중량부 이상, 약 200 중량부 이상 또는 약 250 중량부 이상일 수 있고, 약 450 중량부 이하, 약 400 중량부 이하, 약 350 중량부 이하. 약 300 중량부 이하, 약 250 중량부 이하, 약 200 중량부 이하, 약 150 중량부 이하, 약 100 중량부 이하, 약 90 중량부 이하, 약 80 중량부 이하, 약 70 중량부 이하, 약 60 중량부 이하, 약 50 중량부 이하, 약 40 중량부 이하, 약 30 중량부 이하, 약 20 중량부 이하 또는 약 10 중량부 이하일 수 있다.
슬러리 A 내에서 분산제는, 상기 바인더 100 중량부 대비 약 10 내지 2,000 중량부의 비율로 포함될 수 있다. 상기 비율은 다른 예시에서 약 20중량부 이상, 약 30중량부 이상, 약 40중량부 이상, 약 50중량부 이상, 약 60중량부 이상, 약 70중량부 이상, 약 80중량부 이상, 약 90중량부 이상, 약 100중량부 이상, 약 110중량부 이상, 약 120중량부 이상, 약 130중량부 이상, 약 140중량부 이상, 약 150중량부 이상, 약 160중량부 이상, 약 170중량부 이상, 약 180 중량부 이상, 약 190 중량부 이상, 약 200 중량부 이상, 약 300 중량부 이상, 약 400 중량부 이상, 약 500 중량부 이상, 약 550 중량부 이상, 약 600 중량부 이상 또는 약 650 중량부 이상일 수 있고, 약 1,800 중량부 이하, 약 1,600 중량부 이하, 약 1,400 중량부 이하, 약 1,200 중량부 이하, 약 1,000 중량부 이하, 약 800 중량부 이하, 약 600 중량부 이하, 약 400 중량부 이하, 약 300 중량부 이하, 약 250 중량부 이하 또는 약 200 중량부 이하, 약 150 중량부 이하 또는 약 120 중량부 이하 정도일 수 있다.
본 명세서에서 단위 중량부는 특별히 달리 규정하지 않는 한, 각 성분간의 중량의 비율을 의미한다. 슬러리 A에서 분산제나 바인더의 비율을 상기와 같이 제어함으로써, 소결 공정 후에 이어지는 금속 산화물 형성 과정에서 목적하는 적절한 수준의 금속 산화물을 형성할 수 있다.
슬러리 A는 필요하다면, 용매를 추가로 포함할 수 있다. 다만, 소결 후 산소와의 접촉으로 이어지는 본 출원의 공정에서 금속폼의 표면을 보다 효율적으로 개질하는 관점에서는 슬러리 A로서 용매를 포함하지 않는 슬러리 A를 사용하는 것이 유리할 수 있다. 용매로는 슬러리 A의 성분, 예를 들면, 상기 금속 성분이나 바인더 등의 용해성을 고려하여 적절한 용매가 사용될 수 있다. 예를 들면, 용매로는, 유전 상수가 약 10 내지 120의 범위 내에 있는 것을 사용할 수 있다. 상기 유전 상수는 다른 예시에서 약 20 이상, 약 30 이상, 약 40 이상, 약 50 이상, 약 60 이상 또는 약 70 이상이거나, 약 110 이하, 약 100 이하 또는 약 90 이하일 수 있다. 이러한 용매로는, 물이나 에탄올, 부탄올 또는 메탄올 등의 탄소수 1 내지 8의 알코올, DMSO(dimethyl sulfoxide), DMF(dimethyl formamide) 또는 NMP(N-methylpyrrolidinone) 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
용매가 적용될 경우에 상기는 상기 바인더 100 중량부 대비 약 50 내지 400 중량부의 비율로 슬러리 A 내에 존재할 수 있지만, 이에 제한되는 것은 아니다.
슬러리 A는 상기 언급한 성분 외에 추가적으로 필요한 공지의 첨가제를 포함할 수도 있다. 다만, 목적하는 기공 특성을 효과적으로 얻고, 후술하는 산화 공정에서 목적하는 수준의 산화물을 형성하기 위해서 상기 슬러리는 소위 발포제를 포함하지 않을 수 있다. 용어 발포제는 업계에서 통상 발포제로 호칭되는 성분은 물론 슬러리 내의 다른 성분과의 관계에서 발포 효과를 나타낼 수 있는 성분도 포함된다. 따라서, 본 출원에서 금속폼을 제조하는 과정 중에는 발포 공정이 진행되지 않을 수 있다.
상기와 같은 슬러리 A를 사용하여 상기 금속 구조체를 형성하는 방식은 특별히 제한되지 않는다. 금속폼의 제조 분야에서는 금속 구조체를 형성하기 위한 다양한 방식이 공지되어 있고, 본 출원에서는 이와 같은 방식이 모두 적용될 수 있다. 예를 들면, 상기 금속 구조체는, 적정한 틀(template)에 상기 슬러리 A를 유지하거나, 혹은 슬러리 A를 적정한 방식으로 코팅하여 상기 금속 구조체를 형성할 수 있다.
이와 같은 금속 구조체의 형태는 목적하는 금속폼에 따라 정해지는 것으로 특별히 제한되지 않는다. 하나의 예시에서 상기 금속 구조체는, 필름 또는 시트 형태일 수 있다. 예를 들면, 상기 구조체가 필름 또는 시트 형태일 때에 그 두께는 2,000㎛ 이하, 1,500㎛ 이하, 1,000㎛ 이하, 900㎛ 이하, 800㎛ 이하, 700㎛ 이하, 600㎛ 이하, 500㎛ 이하, 400㎛ 이하, 300㎛ 이하, 200㎛ 이하, 150㎛ 이하, 약 100㎛ 이하, 약 90㎛ 이하, 약 80㎛ 이하, 약 70㎛ 이하, 약 60㎛ 이하 또는 약 55㎛ 이하일 수 있다. 금속폼은, 다공성인 구조적 특징상 일반적으로 브리틀한 특성을 가지고, 따라서 필름 또는 시트 형태, 특히 얇은 두께의 필름 또는 시트 형태로 제작이 어렵고, 제작하게 되어도 쉽게 부스러지는 문제가 있다. 그렇지만, 본 출원의 방식에 의해서는, 얇은 두께이면서도, 내부에 균일하게 기공이 형성되고, 기계적 특성이 우수한 금속폼의 형성이 가능하다.
상기에서 구조체의 두께의 하한은 특별히 제한되지 않는다. 예를 들면, 상기 필름 또는 시트 형태의 구조체의 두께는 약 1㎛ 이상, 약 5㎛ 이상, 10㎛ 이상 또는 약 15㎛ 이상일 수 있다.
상기와 같은 방식으로 형성된 금속 구조체를 소결하여 다공성 금속 소결체를 형성할 수 있다. 이러한 경우에 상기 금속폼을 제조하기 위한 소결을 수행하는 방식은 특별히 제한되지 않으며, 공지의 소결법을 적용할 수 있다. 즉, 적절한 방식으로 상기 금속 구조체에 적정한 양의 열을 인가하는 방식으로 상기 소결을 진행할 수 있다.
열을 인가하여 금속 구조체를 소결하는 경우에 인가되는 열은 특별히 제한되지 않는다. 즉, 사용된 금속의 성질이나 목적하는 기계적 강도 등을 고려하여 열의 인가 조건을 적절하게 조절하면 된다.
일 예시에서 상기 다공성 금속 소결체는, 금속 구조체를 700℃ 내지 2,000℃의 범위 내의 어느 한 온도에서 소결하여 형성할 수 있다.
또한, 소결 시간도 적절하게 조절될 수 있으며, 예를 들면, 약 30분 내지 600분의 범위 내의 시간 동안 소결될 수 있다.
본 출원의 다른 예시에서 상기 금속 성분을 포함하는 금속 구조체를다른 예시에서 상기 금속 성분, 수성 용매 및 유기 용매 및 계면 활성제를 슬러리(이하, 슬러리 B라고 호칭할 수 있음)를 사용하여 형성할 수 있다. 슬러리 B는 슬러리 A와는 달리 발포 성분을 포함하는 슬러리일 수 있다.
슬러리 B에 포함되는 금속 성분의 종류나 슬러리 내의 상기 금속 성분의 비율은 상기 슬러리 A의 경우와 같다.
상기 슬러리 B는, 금속 분말(상기 금속 성분)과 수성 용매와 유기 용매 및 계면활성제를 포함한다. 슬러리 내에서 상기 수성 용매, 유기 용제 및 계면활성제의 비율 및 종류를 조절하게 되면, 금속폼 전구체 내에서 미세 에멀젼이 형성되고, 이러한 에멀젼이 적정 조건에서 기화되면서 발포 공정이 진행될 수 있다. 예를 들어, 상기 유기 용제 및 수성 용매간의 증기압의 차이로 인해서 보다 큰 증기압을 가지는 성분이 발포 과정에서 기화되면서 금속폼의 기공 특성을 제어할 수 있다.
상기에서 수성 용매로는, 물 또는 기타 극성 용매를 적용할 수 있으며, 대표적으로는 물이 적용될 수 있다. 이러한 수성 용매는 슬러리 내에서 금속 분말 100 중량부 대비 10 내지 100 중량부의 비율로 포함될 수 있다. 상기 수성 용매의 비율은 다른 예시에서 15 중량부 이상 정도, 20 중량부 이상 정도, 25 중량부 이상 정도, 30 중량부 이상 정도, 35 중량부 이상 정도, 40 중량부 이상 정도, 45 중량부 이상 정도, 50 중량부 이상 정도, 55 중량부 이상 정도 또는 60 중량부 이상 정도이거나, 95 중량부 이하 정도, 90 중량부 이하 정도, 85 중량부 이하 정도, 80 중량부 이하 정도, 75 중량부 이하 정도 또는 70 중량부 이하 정도일 수도 있다.
상기 유기 용제로는, 특별한 제한 없이 적절한 종류가 선택될 수 있다. 이러한 유기 용제로는, 예를 들면, 탄화수소계 유기 용제를 적용할 수 있다. 상기 탄화수소계 유기 용제로는, 탄소수 4 내지 12의 유기 용제가 적용될 수 있으며, 구체적인 예로는 n-펜탄, 네오펜탄, 헥산, 이소헥산, 사이클로헥산, 헵탄, 이소헵탄, 옥탄, 톨루엔 또는 벤젠 등이 적용될 수 있다. 이러한 유기 용제는 슬러리 내에서 금속 분말 100 중량부 대비 0.01 내지 10 중량부의 비율로 포함될 수 있다. 상기 유기 용제의 비율은 다른 예시에서 0.05 중량부 이상 정도, 0.1 중량부 이상 정도, 0.15 중량부 이상 정도, 0.2 중량부 이상 정도, 0.25 중량부 이상 정도, 0.3 중량부 이상 정도, 0.35 중량부 이상 정도, 0.4 중량부 이상 정도, 0.45 중량부 이상 정도, 0.5 중량부 이상 정도, 0.55 중량부 이상 정도, 0.6 중량부 이상 정도, 0.65 중량부 이상 정도, 0.7 중량부 이상 정도, 0.75 중량부 이상 정도, 0.8 중량부 이상 정도, 0.85 중량부 이상 정도, 0.9 중량부 이상 정도, 0.95 중량부 이상 정도, 1 중량부 이상 정도, 1.05 중량부 이상 정도, 1.1 중량부 이상 정도, 1.15 중량부 이상 정도, 1.2 중량부 이상 정도, 1.25 중량부 이상 정도, 1.3 중량부 이상 정도, 1.35 중량부 이상 정도, 1.4 중량부 이상 정도 또는 1.45 중량부 이상 정도이거나, 9 중량부 이하 정도, 8 중량부 이하 정도, 7 중량부 이하 정도, 6 중량부 이하 정도, 5 중량부 이하 정도, 4 중량부 이하 정도, 3 중량부 이하 정도 또는 2 중량부 이하 정도일 수도 있다.
금속폼 전구체 내에서의 적절한 미세 에멀젼을 형성 및/또는 전술한 기화의 적합한 조절을 위해서 계면활성제가 포함될 수 있다.
본 출원에서 계면활성제로는, 양쪽성 계면활성제, 비이온 계면활성제 및 음이온 계면활성제로 이루어진 군에서 선택된 어느 하나 또는 상기 중에서 2종 이상의 혼합물을 적용할 수 있다. 경우에 따라서는 양쪽성 계면활성제, 비이온 계면활성제 및 음이온 계면활성제 중에서 어느 한 종류의 계면활성제가 사용되는 경우에도 그 한 종류 내에서 서로 다른 구조의 2 이상의 계면활성제의 혼합이 적용될 수도 있다.
위와 같은 계면활성제 중에서 목적하는 미세 에멀젼을 형성하기 위한 적정한 종류가 선택될 수 있으며, 이 과정에서 적용된 수성 용매 및 유기 용제의 종류가 고려될 수 있다.
음이온 계면활성제는, 공지된 바와 같이 계면 활성을 나타내는 부분이 음이온인 계면활성제이고, 음이온 계면활성제로는, 예를 들면, 카복실레이트(carboxylate) 화합물, 설페이트(sulfate) 화합물, 이세티오네이트(isethionate) 화합물, 설포석시네이트(sulfosuccinate) 화합물, 타우레이트(taurate) 화합물 및/또는 글루타메이트(glutamate) 화합물이 적용될 수 있지만, 이에 제한되는 것은 아니다.
비이온 계면활성제는, 공지된 바와 같이 이온으로 분리되지 않는 계면활성제이고, 이러한 계면활성제로는 예를 들면, 알킬 폴리글루코사이드계 계면활성제, 지방산 알카놀 아마이드계 계면활성제, 또는 아민 옥사이드계와 고급 알코올에 에틸렌옥시드가 부가된 형태 및 오일에 에틸렌옥시드가 부가된 형태의 계면활성제 등이 사용될 수 있다.
양쪽성 계면활성제는, 음이온 부위와 양이온 부위를 동시에 가지는 계면활성제이며, 이러한 계면활성제로는, 베타인류, 예를 들면, 코카미도프로필 베타인이나, 라우라미도프로필 베타인, 코코베타인 또는 라우릴 베타인 등이나, 설테인계, 예를 들면, 라우릴히드록시설테인, 라우라미도프로필설테인, 코카미도프로필히드록시설테인 또는 코코설테인 등이 적용될 수 있지만, 이에 제한되는 것은 아니다.
계면활성제로는, 상기 언급된 각 화학식의 음이온, 비이온 또는 양쪽성 계면활성제 중 어느 한 종류의 계면활성제가 단독으로 사용되거나, 2종 이상의 계면활성제가 혼합되어 사용될 수 있다.
계면활성제는, 슬러리 내에서 금속 분말 100 중량부 대비 1 내지 10 중량부의 비율로 포함될 수 있다. 상기 비율은 다른 예시에서 대략 1.5 중량부 이상 정도, 2 중량부 이상 정도, 2.5 중량부 이상 정도, 3 중량부 이상 정도, 3.5 중량부 이상 정도, 4 중량부 이상 정도 또는 4.5 중량부 이상 정도이거나, 9.5 중량부 이하 정도, 9 중량부 이하 정도, 8.5 중량부 이하 정도, 8 중량부 이하 정도, 7.5 중량부 이하 정도, 7 중량부 이하 정도, 6.5 중량부 이하 정도, 6 중량부 이하 또는 5.5 중량부 이하 정도일 수도 있다.
슬러리 B도, 상기 성분 외에도 필요한 성분을 추가로 포함할 수 있다. 예를 들면, 슬러리는 바인더를 추가로 포함할 수 있다.
바인더로는, 특별한 제한 없이, 예를 들면, 수용성을 가지는 바인더나, 슬러리의 제조 시에 적용된 금속 분말, 수성 용매, 유기 용제 및/또는 계면활성제 등의 종류에 따라 적절하게 선택할 수 있다. 예를 들면, 상기 바인더로는, 전술한 제 1 슬러리에서 바인더로서 기술한 것과 동일한 종류의 물질이 적용될 수 있다.
바인더는, 슬러리 내에서 금속 분말 100 중량부 대비 1 내지 100 중량부의 비율로 포함될 수 있다. 상기 비율은 다른 예시에서 2 중량부 이상 정도, 3 중량부 이상 정도, 4 중량부 이상 정도, 5 중량부 이상 정도, 6 중량부 이상 정도, 7 중량부 이상 정도, 8 중량부 이상 정도, 9 중량부 이상 정도 또는 10 중량부 이상 정도이거나, 90 중량부 이하 정도, 80 중량부 이하 정도, 70 중량부 이하 정도, 60 중량부 이하 정도, 50 중량부 이하 정도, 40 중량부 이하 정도, 30 중량부 이하 정도, 20 중량부 이하 정도 또는 15 중량부 이하 정도일 수도 있다. 이러한 비율 하에서 목적하는 기공 특성의 금속폼을 효과적으로 제조할 수 있다.
금속폼 또는 그 전구체에 가소성을 부여하기 위해서 슬러리 B는 가소제를 추가로 포함할 수도 있다. 가소제로는, 전술한 슬러리 시스템 또는 금속폼에 가소성을 부여할 수 있는 적절한 종류가 선택될 수 있으며, 예를 들면, 다가 알코올, 유지, 에테르 화합물 또는 에스테르 화합물 등이 적용될 수 있지만, 이에 제한되는 것은 아니다.
가소제는 포함되는 경우, 슬러리 내에서 금속 분말 100 중량부 대비 0.5 내지 10 중량부의 비율로 포함될 수 있다. 상기 비율은 다른 예시에서 1 중량부 이상 정도, 1.5 중량부 이상 정도, 2 중량부 이상 정도, 2.5 중량부 이상 정도 또는 3 중량부 이상 정도이거나, 9 중량부 이하 정도, 8 중량부 이하 정도, 7 중량부 이하 정도, 6 중량부 이하 정도, 5 중량부 이하 정도 또는 4 중량부 이하 정도일 수도 있다. 이러한 비율 하에서 목적하는 기공 특성의 금속폼을 효과적으로 제조할 수 있다.
슬러리 B는 상기 언급한 성분 외에 추가적으로 필요한 공지의 첨가제를 포함할 수도 있다.
상기 슬러리 B를 사용하여 상기 금속폼 전구체를 형성하는 방식은 특별히 제한되지 않고, 슬러리 A의 경우와 같다.
슬러리 B를 사용한 금속 전구체의 경우에도 상기 언급된 슬러리 A의 경우와 같은 소결 공정을 통해 금속 소결체를 얻을 수 있다.
슬러리 B로 형성한 금속 전구체의 경우, 소결 공정 전에 발포 공정이 진행될 수도 있다. 발포 공정은, 슬러리 B로 형성되거나, 슬러리 A와 B를 함께 사용하여 형성된 전구체의 경우에 적용되고, 슬러리 A만 사용한 경우에는 적용되지 않을 수 있다. 발포 공정은, 예를 들어, 전구체 내에서 목적하는 미세 에멀젼이 형성된 상태에서 상기 에멀젼을 기화시키는 방식으로 발포 공정이 진행될 수 있다. 예를 들면, 상기 발포 공정은, 금속폼 전구체를 약 20℃ 내지 100℃의 범위 내의 온도에서 적정 시간 동안 유지하여 수행할 수 있다. 이러한 조건에서 수성 용매와 유기 용제간의 증기압의 차이에 의해서 미세 에멀젼이 기화하면서 발포 공정이 진행될 수 있다. 상기 발포 공정 시간은 목적에 따라 정해지는 것으로서 특별히 제한되지 않으며, 예를 들면, 약 1분 내지 10 시간 정도의 범위 내의 시간 동안 수행될 수 있지만, 이에 제한되는 것은 아니다.
상기와 같은 방식으로 형성된 금속폼 전구체를 소결하여 금속폼 소결체를 제조할 수 있다. 이러한 경우에 상기 소결을 수행하는 방식은 특별히 제한되지 않으며, 상기 슬러리 A의 경우에 기술한 내용이 동일하게 적용될 수 있다.
본 출원의 제조 방법에서는 상기와 같이 형성된 금속 소결체를 산소와 접촉시켜서 표면을 개질한다. 이러한 산소와의 접촉 공정은, 소결 공정에 이어서 바로 수행할 수 있다. 하나의 예시에서 상기 산소와의 접촉은 소결 공정 후에 바로 다공성 금속 소결체를 냉각시키면서 수행할 수 있고, 상기 냉각 과정에서 다공성 금속 소결체가 존재하는 분위기의 온도가 일정 수준에 이르렀을 때에 산소와의 접촉을 시작할 수 있다. 상기 냉각은 강제 냉각일 수도 있고, 자연 냉각일 수도 있다. 본 출원에서는 이러한 산소와의 접촉 조건의 제어를 통해 금속폼의 표면에 산화물을 성장시킬 수 있으며, 특히 돌기 형태의 산화물을 적절하게 성장시킴으로써 목적을 달성할 수 있다.
따라서, 일 예시에서 상기 산소와의 접촉 단계는, 상기 금속 구조체의 소결 후에 소결체를 자연 또는 강제 냉각시키는 단계; 및 상기 자연 또는 강제 냉각 과정에서 온도가 300℃ 내지 600℃의 범위 내가 되었을 때에 소결체를 산소와 접촉시키는 단계를 포함할 수 있다.
하나의 예시에서 상기 산소와의 접촉 공정은 상기 소결 공정에 이어서 금속폼을 냉각시키면서 수행할 수 있고, 이 경우 단일 공정(one step)으로 표면 개질된 금속폼을 형성할 수 있다.
일 예시에서 적절한 산화물의 성장을 위해서 상기 산소와의 접촉은 상기 산소 농도가 1 ppm 내지 1,000 ppm인 분위기에서 수행할 수 있고, 10 ppm 내지 1,000 ppm의 산소 농도 분위기에서 수행할 수도 있다. 일 예시에서 금속 구조체의 소결은, 수소, 아르곤 등의 반응 가스 혹은 불활성 가스의 분위기 하에서 수행될 수 있는데, 상기 반응 혹은 불활성 가스 분위기에서 소결을 수행한 후에 소결체를 냉각시키다가, 목적하는 적정 온도에 이르렀을 때에 산소를 적정 농도로 주입하여 산소와의 접촉을 수행할 수 있다. 상기 산소의 농도는, 예를 들면, 챔버 등에 의도된 농도를 가지도록 산소를 주입하여 조절할 수 있다.
일 예시에서 상기 표면 개질을 위한 산소와의 접촉은, 상기 다공성 금속 소결체를 냉각시키면서 수행할 수 있다. 상기 냉각은 강제 냉각이거나, 자연 냉각일 수 있다. 즉, 상기 금속 소결체를 형성하기 위한 소결 공정 후에 금속 소결체를 냉각시키면서 적정 시점에서 산소를 주입하는 방식으로 상기 표면 개질 공정을 수행할 수 있다.
상기 소결 시에는 산소와 금속 구조체를 접촉시키지 않고, 소결 후 냉각 과정의 적정 시점에서 산소를 주입하여 상기 산소와의 접촉을 수행할 수 있다.
하나의 예시에서는, 산소와의 접촉은 300℃ 내지 600℃의 온도에서 시작 및 수행할 수 있다. 즉, 소결 후에 소결체를 냉각시키면서 온도가 상기 범위에 이른 때에 산소를 주입하여 산소와의 접촉을 진행할 수 있다. 상기 산소 접촉 시작 시점 온도는 다른 예시에서 약 320℃ 이상, 340℃ 이상, 360℃ 이상, 380℃ 이상 또는 400℃ 이상이거나, 580℃ 이하, 560℃ 이하, 540℃ 이하, 520℃ 이하 또는 500℃ 이하일 수 있다.
일 예시에서 상기 산소와의 접촉은 상기 온도에서 시작하여 다공성 금속 소결체의 유지 온도(주변 온도)가 약 10℃ 내지 50℃ 정도까지 냉각되는 시점까지 수행할 수 있다.
상기와 같이 산소와의 접촉을 소결체를 냉각시키면서 수행하는 경우에 냉각 속도는 특별히 제한되지 않는다. 일 예시에서는 상기 냉각은 자연 냉각일 수 있다.
예를 들면, 상기 산소와의 접촉은, 자연 냉각에 의해서 상기 온도가 산소 접촉 시작 온도에서 산소 접촉 종료 온도까지 떨어질 동안 수행할 수 있는데, 예를 들면, 10분 내지 5 시간 동안 수행할 수 있다.
상기와 같은 산소와의 접촉을 통해서 목적하는 표면 특성을 가지는 금속폼을 얻을 수 있다.
상기와 같은 방식으로 금속폼의 표면에 산화물을 형성한 후에 그 금속폼의 표면 또는 내부에 고분자 성분을 도입하여 복합재를 제조할 수 있다. 이 때 고분자 성분을 도입하는 방법은 특별히 제한되지 않고, 공지의 방식으로 수행한다. 예를 들어, 경화성 고분자 조성물 등을 사용하는 경우에는, 상기 금속폼의 표면 또는 내부에 경화성 고분자 조성물이 존재하는 상태에서 상기 고분자 조성물을 경화시키는 단계를 포함할 수 있다.
상기 방법에서 적용되는 금속폼에 대한 구체적인 내용은 이미 기술한 바와 같고, 제조되는 복합재에 대한 구체적인 사항 역시 상기 기술한 내용에 따를 수 있다.
한편, 상기에서 적용되는 고분자 조성물 역시 경화 등을 통해 상기 언급한 고분자 성분을 형성할 수 있는 것이라면 특별한 제한은 없으며, 이러한 고분자 성분은 업계에 다양하게 공지되어 있다. 즉, 예를 들면, 공지의 성분 중에서 적절한 점도를 가지는 재료를 사용하여, 공지의 방식을 통해 경화를 진행하여 상기 복합재를 제조할 수 있다.
본 출원에서는, 금속폼과 고분자 성분을 포함하고, 우수한 열전도도를 가지면서, 내충격성, 가공성 및 절연성 등의 다른 물성도 우수한 복합재를 제공할 수 있다.
도 1은, 실시예에서 형성된 금속폼에 대한 사진이다.
이하 실시예 및 비교예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 제한되는 것은 아니다.
실시예 1.
금속폼으로는 구리 금속폼으로서, 표면에 돌기 형태의 산화물이 존재하고, 두께가 약 90 μm 정도이며, 기공도가 약 65% 내지 75%인 필름 형상의 구리폼을 사용하였다. 상기 구리폼은, 금속 성분으로서 평균 입경(D50 입경)이 약 10 내지 20μm 정도인 구리(Cu) 분말을 사용하고, 분산제로서, 알파-터르피네올(alpha-terpineol)을 사용하며, 바인더로서 폴리비닐아세테이트(Polyvinylacetate)를 적용한 슬러리로 제조하였다. 슬러리에서 금속 성분(Cu), 분산제 및 바인더의 중량 비율(Cu:분산제:바인더)은 1:1.11:0.09 정도였다. 상기 슬러리를 상기 두께의 필름이 형성되도록 코팅하고, 약 100℃의 온도에서 약 40분 동안 건조하였다. 이어서 4%의 수소/아르곤 가스 분위기에서 상기 필름 형태의 구조체를 약 900℃의 온도에서 약 1 시간 동안 열처리(소결)하여, 유기 성분을 제거하면서 금속 성분을 결합시켜서 다공성 금속 소결체를 제조하였다. 소결 후에 소결체를 자연 냉각시키면서 주위 온도가 약 500℃ 정도가 된 시점에서 산소 가스를 약 400 ppm 내지 700 ppm의 범위의 농도가 되도록 주입하여 주위 온도가 상온(약 25℃)이 될 때까지 산소와 접촉시켰다. 도 1은 실시예 1에서 제조된 시트에 대한 사진이고, 사진으로부터 금속폼의 표면에 돌기 형태의 산화물이 성장한 것을 확인할 수 있다. 상기 돌기 형상의 종횡비는 대략 1 내지 3의 범위 내였으며, 산화물의 면적 비율은 약 10% 내지 30% 정도였다. 상기 구리폼을 열경화성 실리콘 수지 조성물(Dow corning, PDMS, Sylgard 183 Kit)에 함침시키고, 어플리케이터를 이용하여 최종 복합재의 두께가 약 110μm 정도가 되도록 과량의 조성물을 제거하였다. 이어서 상기 재료를 약 120℃의 오븐에 약 10분 정도 유지하여 경화시킴으로써 복합재를 제조하였다. 적용된 고분자 성분(실리콘 수지)와 금속폼(구리폼) 각각의 밀도 및 적용 중량을 기준으로 계산한 결과 고분자 성분의 부피(PV)와 금속폼의 부피(MV)의 비율(MV/PV)은 약 0.3 정도였다. 이 복합재의 열전도도는 약 5.12 W/mK 정도였다.
상기 열전도도는, 복합재의 열확산도(A), 비열(B) 및 밀도(C)를 구하여 열전도도=ABC의 수식으로 구하였고, 상기 열확산도(A)는, 레이저 플래쉬법(LFA 장비, 모델명: LFA467)을 이용하여 측정하였으며, 비열은 DSC(Differential Scanning Calorimeter) 장비를 통해 측정하였고, 밀도는 아르키메데스법을 이용하여 측정하였다. 또한, 상기 열전도도는 복합재의 두께 방향(Z축)에 대한 값이다.
실시예 2.
열경화성 실리콘 수지 조성물로서, 다른 종류의 조성물(Dow corning, PDMS, Sylgard 527 Kit)를 사용한 것을 제외하고는 실시예 1과 같은 방식으로 복합재를 제조하였다. 제조된 복합재의 열전도도를 상기 언급된 방식으로 측정한 결과 약 6.86 W/mK 정도였다.
실시예 3.
열경화성 실리콘 수지 조성물(Dow corning, PDMS, Sylgard 527 Kit)에 판상형의 질화 붕소 분말을 약 10 중량% 정도의 비율로 도입하여 사용한 것을 제외하고는 실시예 2와 같은 방식으로 복합재를 제조하였다. 제조된 복합재의 열전도도를 상기 언급된 방식으로 측정한 결과 약 10.14 W/mK 정도였다.

Claims (15)

  1. 표면 또는 내부에 금속 산화물이 형성되어 있는 금속폼 및 상기 금속폼의 표면 또는 금속폼의 내부에 존재하는 고분자 성분을 포함하고,
    열전도도가 0.4 W/mK 이상인 복합재.
  2. 제 1 항에 있어서, 금속 산화물은 돌기 형상인 복합재.
  3. 제 2 항에 있어서, 돌기 형상의 종횡비가 1 내지 8의 범위 내인 복합재.
  4. 제 1 항에 있어서, 금속폼의 표면에 존재하는 금속 산화물의 면적 비율이 5% 내지 60%의 범위 내인 복합재.
  5. 제 1 항에 있어서, 금속폼의 두께(MT) 및 전체 두께(T)의 비율(T/MT)이 2.5 이하인 복합체.
  6. 제 1 항에 있어서, 고분자 성분의 부피(PV)와 금속폼의 부피(MV)의 비율(MV/PV)은 10 이하인 복합재.
  7. 금속 성분을 포함하는 금속 구조체를 소결하여 다공성 금속 소결체를 얻는 단계; 상기 소결에 이어서 상기 다공성 금속 소결체를 산소와 접촉시키는 단계 및 상기 다공성 금속 소결체의 표면 또는 내부에 고분자 성분을 도입하는 단계를 포함하는 복합재의 제조 방법.
  8. 제 7 항에 있어서, 금속 구조체는, 금속 성분, 분산제 및 바인더를 포함하는 슬러리로 제조하는 복합재의 제조 방법.
  9. 제 8 항에 있어서, 분산제는, 알코올인 복합재의 제조 방법.
  10. 제 8 항에 있어서, 바인더는 알킬 셀룰로오스, 폴리알킬렌 카보네이트 또는 폴리비닐알코올 화합물인 복합재의 제조 방법.
  11. 제 8 항에 있어서, 슬러리는, 금속 성분 100 중량부 대비 1 내지 500 중량부의 바인더를 포함하는 복합재의 제조 방법.
  12. 제 8 항에 있어서, 슬러리는, 바인더 100 중량부 대비 10 내지 2,000 중량부의 분산제를 포함하는 복합재의 제조 방법.
  13. 제 7 항에 있어서, 산소와의 접촉은 300℃ 내지 600℃의 온도에서 수행하는 복합재의 제조 방법.
  14. 제 13 항에 있어서, 금속 구조체의 소결 후에 소결체를 자연 냉각시키는 단계; 및 상기 자연 냉각 과정에서 온도가 300℃ 내지 600℃의 범위 내가 되었을 때에 소결체를 산소와 접촉시키는 복합재의 제조 방법.
  15. 제 13 항에 있어서, 산소와의 접촉은 1 ppm 내지 10,000 ppm의 산소 농도 하에서 수행하는 복합재의 제조 방법.
PCT/KR2019/007900 2018-06-29 2019-06-28 복합재 WO2020005014A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/254,364 US12104115B2 (en) 2018-06-29 2019-06-28 Composite material
JP2020570788A JP7090942B2 (ja) 2018-06-29 2019-06-28 複合材
EP19825703.2A EP3815819B1 (en) 2018-06-29 2019-06-28 Method for producing a composite
CN201980040864.7A CN112334254B (zh) 2018-06-29 2019-06-28 复合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0075959 2018-06-29
KR1020180075959A KR20200002454A (ko) 2018-06-29 2018-06-29 복합재

Publications (1)

Publication Number Publication Date
WO2020005014A1 true WO2020005014A1 (ko) 2020-01-02

Family

ID=68987477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007900 WO2020005014A1 (ko) 2018-06-29 2019-06-28 복합재

Country Status (6)

Country Link
US (1) US12104115B2 (ko)
EP (1) EP3815819B1 (ko)
JP (1) JP7090942B2 (ko)
KR (2) KR20200002454A (ko)
CN (1) CN112334254B (ko)
WO (1) WO2020005014A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683045A4 (en) * 2017-09-15 2020-09-23 LG Chem, Ltd. COMPOSITE MATERIAL

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064404A (ja) * 2001-06-11 2003-03-05 Sumitomo Electric Ind Ltd 金属多孔体、それを用いた金属複合材およびそれらの製造方法
US7632565B1 (en) * 1997-04-28 2009-12-15 The United States Of America As Represented By The Secretary Of The Navy Porous metal/organic polymeric composites
KR20130047913A (ko) * 2011-11-01 2013-05-09 성균관대학교산학협력단 고표면적 분말의 형성 방법
US20140116661A1 (en) * 2012-10-24 2014-05-01 Huawei Technologies Co., Ltd. Thermal Pad, Method for Fabricating Thermal Pad, Heat Dissipating Apparatus and Electronic Device
KR20180041343A (ko) * 2016-10-14 2018-04-24 주식회사 엘지화학 금속합금폼의 제조 방법
KR20180075959A (ko) 2016-12-27 2018-07-05 이래에이엠에스 주식회사 자동차용 캘리퍼 브레이크의 브레이크 패드 조립체
KR20190030980A (ko) * 2017-09-15 2019-03-25 주식회사 엘지화학 복합재

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0764489B1 (en) * 1995-04-03 2002-02-13 Mitsubishi Materials Corporation Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery
JP3166060B2 (ja) 1995-12-11 2001-05-14 三菱マテリアル株式会社 放熱シート
KR20070079891A (ko) 2006-02-03 2007-08-08 김경일 방열시트
EP2021303A4 (en) * 2006-04-21 2010-05-26 Metafoam Technologies Inc OPEN CELL POROUS MATERIAL AND MANUFACTURING METHOD THEREFOR
JP2008207152A (ja) 2007-02-28 2008-09-11 Tohoku Univ 反応効率を高めた多孔質金属体およびその製造方法
KR101061981B1 (ko) * 2008-11-04 2011-09-05 한국생산기술연구원 금속 다공질체, 수처리 및 전기도금용 다공질 불용성 전극,및 이들의 제조방법
US8329091B2 (en) * 2009-01-30 2012-12-11 Widener University Porous metallic structures
US8246719B2 (en) * 2009-09-25 2012-08-21 Air Products And Chemicals, Inc. Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials
CN102443797B (zh) * 2011-12-13 2016-07-20 中国第一汽车股份有限公司 覆盖有抗氧化层的泡沫铁金属载体煅烧工艺
CN103990792B (zh) * 2014-03-28 2016-05-04 燕山大学 一种制备颗粒强化金属基纳米复合材料的方法
WO2018087076A1 (de) 2016-11-09 2018-05-17 Basf Se Metallschaum-kunststoff-komposite
KR102218854B1 (ko) 2016-11-30 2021-02-23 주식회사 엘지화학 금속폼의 제조 방법
CN106813226B (zh) * 2016-12-30 2019-08-20 深圳市大族元亨光电股份有限公司 一种石墨烯金属导热垫片的制备方法
KR102191615B1 (ko) 2017-09-22 2020-12-15 주식회사 엘지화학 복합재
CN107936777B (zh) * 2018-01-03 2024-01-26 梧州三和新材料科技有限公司 一种三维网络多孔导热散热器件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632565B1 (en) * 1997-04-28 2009-12-15 The United States Of America As Represented By The Secretary Of The Navy Porous metal/organic polymeric composites
JP2003064404A (ja) * 2001-06-11 2003-03-05 Sumitomo Electric Ind Ltd 金属多孔体、それを用いた金属複合材およびそれらの製造方法
KR20130047913A (ko) * 2011-11-01 2013-05-09 성균관대학교산학협력단 고표면적 분말의 형성 방법
US20140116661A1 (en) * 2012-10-24 2014-05-01 Huawei Technologies Co., Ltd. Thermal Pad, Method for Fabricating Thermal Pad, Heat Dissipating Apparatus and Electronic Device
KR20180041343A (ko) * 2016-10-14 2018-04-24 주식회사 엘지화학 금속합금폼의 제조 방법
KR20180075959A (ko) 2016-12-27 2018-07-05 이래에이엠에스 주식회사 자동차용 캘리퍼 브레이크의 브레이크 패드 조립체
KR20190030980A (ko) * 2017-09-15 2019-03-25 주식회사 엘지화학 복합재

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683045A4 (en) * 2017-09-15 2020-09-23 LG Chem, Ltd. COMPOSITE MATERIAL
US11685851B2 (en) 2017-09-15 2023-06-27 Lg Chem, Ltd. Composite material

Also Published As

Publication number Publication date
US12104115B2 (en) 2024-10-01
EP3815819B1 (en) 2023-12-27
EP3815819A1 (en) 2021-05-05
US20210269696A1 (en) 2021-09-02
KR20200002454A (ko) 2020-01-08
CN112334254B (zh) 2023-11-07
JP2021529255A (ja) 2021-10-28
CN112334254A (zh) 2021-02-05
EP3815819A4 (en) 2021-08-04
JP7090942B2 (ja) 2022-06-27
KR20220006130A (ko) 2022-01-14
KR102513847B1 (ko) 2023-03-24

Similar Documents

Publication Publication Date Title
Larson et al. Direct ink writing of silicon carbide for microwave optics
WO2018212554A1 (ko) 금속폼의 제조 방법
US20180194692A1 (en) Barium titanate foam ceramics and preparation method thereof
WO2020067837A1 (ko) 복합재
WO2018212555A1 (ko) 히트파이프의 제조 방법
WO2018004259A2 (ko) 이온전도성 막의 제조 방법
WO2020005014A1 (ko) 복합재
WO2016024658A1 (ko) 탄소나노물질을 포함하는 상전이 복합체 및 이의 제조방법
WO2019059730A1 (ko) 복합재
WO2019054799A1 (ko) 복합재
WO2019009672A1 (ko) 금속폼의 제조 방법
WO2020005013A1 (ko) 전자파 차폐 필름
WO2020256394A1 (ko) 복합재의 제조 방법 및 복합재
KR20200002456A (ko) 금속폼의 제조 방법
WO2020005015A1 (ko) 복합재
WO2019009668A1 (ko) 금속폼의 제조방법
WO2021029480A1 (ko) 바인더 프리 자가지지형 전극 및 이의 제조방법
CN107986790B (zh) 一种抗氧化HfC/SiC泡沫及其制备方法
CN111171718A (zh) 一种绝缘性好的涂层及其涂装工艺
KR20200036798A (ko) 복합재
KR20200002455A (ko) 금속폼의 제조 방법
JPWO2018164118A1 (ja) ペースト組成物、炭化物焼結体およびその製造方法、並びに耐火部材
KR102094098B1 (ko) Pcb 미세회로의 수리를 위한 구리 회로의 형성 방법
WO2023182690A1 (ko) 육방정계 질화붕소를 이용한 열전도성 복합소재
WO2024101594A1 (ko) 광소결용 잉크 조성물, 산화물계 고체 전해질 시트 및 전고체 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020570788

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019825703

Country of ref document: EP