WO2024101594A1 - 광소결용 잉크 조성물, 산화물계 고체 전해질 시트 및 전고체 리튬 이차전지 - Google Patents

광소결용 잉크 조성물, 산화물계 고체 전해질 시트 및 전고체 리튬 이차전지 Download PDF

Info

Publication number
WO2024101594A1
WO2024101594A1 PCT/KR2023/011353 KR2023011353W WO2024101594A1 WO 2024101594 A1 WO2024101594 A1 WO 2024101594A1 KR 2023011353 W KR2023011353 W KR 2023011353W WO 2024101594 A1 WO2024101594 A1 WO 2024101594A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
ink composition
sintering
structural unit
solid electrolyte
Prior art date
Application number
PCT/KR2023/011353
Other languages
English (en)
French (fr)
Inventor
김경준
박명수
박지영
Original Assignee
에스케이온 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220150853A external-priority patent/KR20240069393A/ko
Application filed by 에스케이온 주식회사 filed Critical 에스케이온 주식회사
Publication of WO2024101594A1 publication Critical patent/WO2024101594A1/ko

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an ink composition for optical sintering containing lithium ion conductive oxide, an oxide-based solid electrolyte sheet, and an all-solid lithium secondary battery.
  • Solid electrolytes applied to all-solid-state lithium secondary batteries are mainly classified into sulfide-based, polymer-based, and oxide-based solid electrolytes.
  • oxide-based solid electrolytes are considered the next-generation solid electrolyte material due to their excellent chemical/thermal stability and mechanical strength. It is attracting attention.
  • Solid electrolytes used in all-solid-state lithium secondary batteries are manufactured by a sintering process.
  • solid electrolytes are manufactured using a thermal sintering process, a laser sintering process, or a microwave sintering process.
  • the heat sintering process involves various processes such as temperature increase, heat treatment, and cooling, it has the disadvantage of requiring a very long process time, and because the process is carried out in a high temperature environment, there are restrictions on substrate selection.
  • the rapid thermal annealing (RTA) process raises temperature very quickly, making the process time shorter than the general heat treatment process. However, it still relies on natural cooling, so it takes a long time to cool, and residual heat is generated. There are problems such as destruction of materials for forming lithium ion secondary batteries due to stress.
  • the purpose of one embodiment is to provide an ink composition for optical sintering containing a binder with excellent solubility.
  • the purpose of one embodiment is to provide an oxide-based solid electrolyte sheet that can be manufactured in a short period of time by sintering at high speed through optical sintering, and that can be made thin and have a large area without an additional processing process.
  • the purpose of one embodiment is to provide an all-solid lithium secondary battery with improved safety, energy density, etc., including the oxide-based solid electrolyte sheet.
  • the ink composition for optical sintering includes a binder containing a polymer containing a hydroxy group, an acetyl group, and an acetal group, and the Hansen Solubility Parameter (HSP) value of the polymer is 18 MPa 0.5 to 18 MPa. 28 MPa 0.5 , and the weight average molecular weight of the polymer is 1.0 ⁇ 10 4 g/mol to 9.0 ⁇ 10 4 g/mol.
  • HSP Hansen Solubility Parameter
  • the polymer may include a polyvinyl acetal copolymer including a structural unit having a hydroxy group, a structural unit having an acetyl group, and a structural unit having an acetal group.
  • the structural unit having the hydroxy group may be a structural unit represented by the following formula (1).
  • L 1 may be a single bond or alkylene having 1 to 5 carbon atoms.
  • the structural unit having the acetyl group may be a structural unit represented by the following formula (2).
  • L 2 may be a single bond or alkylene having 1 to 5 carbon atoms.
  • the structural unit having the acetal group may be a structural unit represented by the following formula (3).
  • R may be hydrogen, substituted or unsubstituted hydrocarbyl having 1 to 10 carbon atoms.
  • the content of the structural unit having the hydroxy group may be 4% by weight to 25% by weight.
  • the content of the structural unit having an acetyl group may be 1% by weight to 12% by weight.
  • the content of the structural unit having the acetal group may be 65% by weight to 85% by weight.
  • the polymer may be a random copolymer.
  • the viscosity of the ink composition for optical sintering may be 1,000 cp to 10,000 cp at 25°C.
  • the ink composition for optical sintering may further include lithium ion conductive oxide particles, a solvent, and a plasticizer.
  • the Hansen Solubility Parameter (HSP) value of the solvent may be 18 MPa 0.5 to 28 MPa 0.5 .
  • the solvent is one or more selected from the group consisting of 1,3-dioxane, dimethyl carbonate, acetonitrile, methylpyrrolidone, dimethylformamide, acetone, isopropanol, n-propanol, n-hexane, and toluene. You can.
  • the plasticizer includes dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), di-isononyl phthalate (DINP), diethylhexyl phthalate (Di(2-ethylhexyl)phthalate, It may be one or more selected from the group consisting of DEHP), di(n-octyl)phthalate (DNOP), and di-isodecyl phthalate (DIDP).
  • DEHP dibutyl phthalate
  • BBP butyl benzyl phthalate
  • DINP di-isononyl phthalate
  • Di(2-ethylhexyl)phthalate It may be one or more selected from the group consisting of DEHP), di(n-octyl)phthalate (DNOP), and di-isodecyl phthalate (DIDP).
  • the lithium ion conductive oxide particles may be one or more selected from the group consisting of garnet compounds, NASICON compounds, and perovskite compounds.
  • An oxide-based solid electrolyte sheet includes the ink composition for optical sintering.
  • the oxide-based solid electrolyte sheet may have an ionic conductivity of 10 -6 S/cm to 10 -2 S/cm.
  • the oxide-based solid electrolyte sheet may have an area of 0.25 cm 2 or more and a thickness of 10 ⁇ m to 300 ⁇ m.
  • a method of manufacturing an oxide-based solid electrolyte sheet includes applying the ink composition for photosintering on a substrate; drying the substrate to manufacture an oxide-based sheet; and photo-sintering the oxide-based sheet to produce an oxide-based solid electrolyte sheet.
  • the temperature of the oxide-based sheet during photosintering may be 25°C to 500°C.
  • An all-solid lithium secondary battery includes the oxide-based solid electrolyte sheet.
  • an ink composition for optical sintering containing a binder that has excellent solubility and does not cause agglomeration during slurry production can be provided.
  • an oxide-based solid electrolyte sheet that is sintered at high speed through photosintering and manufactured in a short period of time without loss of materials such as lithium or destruction of the substrate, and that can be made thin and have a large area without an additional processing process.
  • an all-solid-state lithium secondary battery with high safety and high energy density can be provided.
  • Figures 1A to 1D are conceptual diagrams showing step by step the connection structure between particles and the shape of the particles changing as sintering progresses.
  • Figure 2 is a photograph showing the degree of dissolution of the primary slurry of Example 1, Comparative Example 1, and Comparative Example 2.
  • Figure 3 is a photograph showing before and after sintering the oxide-based solid electrolyte sheet of Preparation Example 1.
  • Figure 4 is a graph showing electrochemical impedance results for measuring the ionic conductivity of the oxide-based solid electrolyte sheet of Preparation Example 1.
  • the 'sintering' phenomenon refers to a phenomenon in which powder-type particles adhere tightly to each other and solidify due to heat, and refers to a process in which the powder-type particles adhere to each other through a thermal activation process to form a single lump. .
  • 'light-sintering' refers to sintering by generating a thermal reaction within the material by inducing resonance between the unique wavelength range of the material and the wavelength range of the light through light and the resulting heat generation phenomenon.
  • polymer may include oligomers and polymers, and may include homopolymers and copolymers.
  • the copolymers include alternating copolymers and block copolymers. It may be a copolymer, a random copolymer, a branched copolymer, a cross-linked copolymer, or a combination thereof.
  • the temperature rise is carried out very quickly, so it can be carried out in a short period of time compared to the general high temperature sintering process, but it is still difficult to solve the problem of the substrate being deformed or destroyed.
  • the reaction progresses locally near the area where the laser is incident, so the application area during the sintering process is narrow, so the sintering process takes a long time, and the process using a microwave requires a long period of time. In this case, the sintering depth is shallow and there are limitations in selecting a substrate.
  • one embodiment seeks to provide a technology for sintering an oxide-based solid electrolyte sheet by applying an optical sintering process.
  • the optical sintering is a process of densifying particles through a photothermal effect by applying an instantaneous light pulse, and has the advantage of being able to sinter the slurry printed on a substrate in a very short time at room temperature and atmospheric pressure.
  • this optical sintering process can not only be applied to large-area substrates, but also allows high-speed sintering at room temperature in the air, so productivity can be improved through mass production.
  • a slurry containing an oxide-based solid electrolyte, a binder, a solvent, etc. (hereinafter also referred to as an ink composition for photosintering) may be applied and then photosintered.
  • the The ink composition for optical sintering can easily control the slurry to have an appropriate viscosity even with a small amount of solvent, and may include a binder that can effectively bind the oxide-based solid electrolyte.
  • the ink composition for optical sintering is a slurry for producing a thin film oxide-based solid electrolyte sheet by optical sintering, and the ink composition for optical sintering may include an oxide solid electrolyte.
  • the oxide-based solid electrolyte may be lithium ion conductive oxide-based particles having a particle shape.
  • the lithium ion conductive oxide particles are particles in the form of powdered compounds containing oxygen elements and having conductivity for lithium ions, and are one or more selected from zirconium (Zr), phosphate (PO 4 ), and titanium (Ti). may include.
  • the lithium ion conductive oxide particles include lithium lanthanum zirconium oxide (LLZO)-based compounds, lithium lanthanum titanate oxide (LLTO)-based compounds, lithium aluminum germanium phosphate (LAGP)-based compounds, and lithium aluminum titanium phosphate (LATP). It may be one or more compounds selected from )-based compounds. More specifically, the lithium ion conductive oxide particle is expressed by the chemical formula Li 7 La 3 Zr 2 O 12 and may be a lithium lanthanum zirconium oxide (LLZO)-based compound having a garnet structure.
  • LLZO lithium lanthanum zirconium oxide
  • LAGP lithium aluminum germanium phosphate
  • LATP lithium aluminum titanium phosphate
  • an oxide-based solid electrolyte sheet having characteristics such as excellent ionic conductivity, stability with lithium metal, and wide potential window range can be manufactured. You can.
  • the ink composition for optical sintering may include a binder containing a polymer containing a hydroxy group, an acetyl group, and an acetal group.
  • the binder can properly bind oxide-based particles and contribute to improving the adhesion of the slurry to the substrate.
  • the binder may include a polymer containing a hydroxy group, an acetyl group, and an acetal group, and specifically, a structural unit having a hydroxy group, a structural unit having an acetyl group, a structural unit having an acetal group, or a combination thereof. It may contain polyvinyl acetal copolymer.
  • the polyvinyl acetal copolymer may include a structural unit having a hydroxy group.
  • the structural unit having the hydroxy group provides the effect of improving strength, binding force, and solubility in polar solvents, and may be a structural unit represented by the following formula (1).
  • L 1 may be a single bond or an alkylene having 1 to 5 carbon atoms, specifically a single bond or an alkylene having 1 to 3 carbon atoms, and more specifically, a single bond or methylene.
  • the polyvinyl acetal copolymer may include structural units having two or more different hydroxyl groups.
  • the content of the structural unit having the hydroxy group may be 4% by weight to 25% by weight, specifically 12% by weight to 20% by weight, and more specifically, It may be 15% to 17% by weight. If the content of the structural unit having the hydroxy group is less than the above range, problems may occur such as lowering the strength of the slurry, lowering the intermolecular bonding force, and lowering solubility in polar solvents, and if it exceeds the above range, excessive rigidity may occur in the slurry. Sheeting (coating, tape casting, etc.) may become difficult.
  • the polyvinyl acetal copolymer may include a structural unit having an acetyl group.
  • the structural unit having the acetyl group contributes to lowering the viscosity and glass transition temperature of the solution and may be a structural unit represented by the following formula (2).
  • L 2 may be a single bond or an alkylene having 1 to 5 carbon atoms, specifically a single bond or an alkylene having 1 to 3 carbon atoms, and more specifically, a single bond or methylene.
  • the polyvinyl acetal copolymer may include structural units having two or more different acetyl groups.
  • the content of the structural unit having the acetyl group may be 1% by weight to 12% by weight, and may specifically be greater than 1% by weight and less than or equal to 12% by weight, and specifically 3% by weight. It may be from 9% by weight, and more specifically, from 4% to 6% by weight. If the content of the structural unit having the acetyl group is less than the above range, the viscosity of the solution may become excessively high and the glass transition temperature may increase, and if it exceeds the above range, the viscosity of the solution may decrease and the glass transition temperature may be lowered, making it possible to prepare a slurry. The process can be difficult.
  • the polyvinyl acetal copolymer may include a structural unit having an acetal group. Specifically, by including the structural unit having the acetal group, the ductility and flexibility of the polyvinyl acetal copolymer can be improved, compatibility with heterogeneous resins can be improved, and it may be a structural unit represented by the following formula (3).
  • R may be hydrogen, a substituted or unsubstituted hydrocarbyl having 1 to 10 carbon atoms, and specifically, may be a substituted or unsubstituted hydrocarbyl having 1 to 5 carbon atoms, and specifically, substituted or unsubstituted hydrocarbyl having 1 to 5 carbon atoms. It may be a ringed hydrocarbyl having 1 to 4 carbon atoms, and more specifically, it may be methyl or propyl.
  • polyvinyl acetal copolymer (polyvinylacetoacetal), which is the alkyl group of R having 1 carbon number, can be obtained by acetalization with acetaldehyde, and polyvinyl acetal copolymer (polyvinyl butyral), which is the alkyl group of 3 carbon atoms. ) can be obtained by acetalization with butyl aldehyde.
  • the polyvinyl acetal copolymer may include structural units having two or more different acetal groups.
  • the polyvinyl acetal copolymer may include a polyvinylacetoacetal structural unit and a polyvinyl butyral structural unit.
  • the content of the structural unit having the acetal group may be 65% by weight to 85% by weight, and may specifically be more than 65% by weight and less than 85% by weight, and specifically 70% by weight. It may be from 80% by weight, and more specifically, from 75% to 79% by weight. If the content of the structural unit having the acetal group is less than the above range, problems such as lowered ductility, lowered flexibility, and lowered compatibility with other types of resin may occur.
  • the polyvinyl acetal copolymer may include a structural unit having a hydroxy group, a structural unit having an acetyl group, and a structural unit having an acetal group, and may include a structural unit having a hydroxy group, a structural unit having an acetyl group, and an acetal group.
  • the constituent units may each be as described above.
  • the polyvinyl acetal copolymer may be a random polyvinyl acetal copolymer in which structural units having a hydroxy group, structural units having an acetyl group, and structural units having an acetal group are arranged irregularly, for example, in the following formula 4: can be expressed.
  • l, m and n are each independently an integer of 1 or more, and L 1 , L 2 and R may be as described above.
  • the polyvinyl acetal copolymer may include a polyvinyl alcohol structural unit, a polyvinyl acetate structural unit, and a polyvinylacetoacetal structural unit and/or a polyvinyl butyral structural unit.
  • the average degree of polymerization of the binder, specifically the polymer, and more specifically the polyvinyl acetal copolymer may be 10000 or less, and the weight average molecular weight may be 1.0 ⁇ 10 4 g/mol to 9.0 ⁇ 10 4 g/mol.
  • the weight average molecular weight may be specifically 3.0 ⁇ 10 4 g/mol to 8.0 ⁇ 10 4 g/mol, and more specifically, 5.0 ⁇ 10 4 g/mol to 7.0 ⁇ 10 4 g/mol.
  • the weight average molecular weight is less than the above range, the adhesion of the ink composition formed as a slurry may significantly deteriorate, and if it exceeds the above range, the solubility of the binder may be reduced and the ductility of the sheet may be greatly reduced.
  • the binder may be included in an amount of 2% to 40% by weight based on the total weight of the ink composition for optical sintering.
  • the flexibility of the electrolyte sheet can be further increased.
  • the ink composition for optical sintering may include a solvent.
  • the solvent can be appropriately used as long as it has the property of dissolving the binder. It is not limited thereto, but may be one or more selected from the group consisting of alcohols, ketones, amides, esters, ethers, aromatic hydrocarbons, etc., Specifically, it may be one or more selected from the group consisting of 2-Propanol, Toluene, Terpineol, NMP (N-Methyl-2-Pyrrolidone), etc., and more specifically, 2-Propanol and toluene can be mixed and used.
  • the solvent may be included in an amount of 15% by weight to 45% by weight based on the total weight of the ink composition for optical sintering. If the solvent content is less than 15% by weight, mixing of the ink composition for optical sintering may not be smooth, and if it exceeds 45% by weight, the viscosity of the slurry may be lowered, making sheet molding difficult.
  • the ink composition for optical sintering may also include a plasticizer.
  • the plasticizer By including the plasticizer, the plastic processability of the ink composition for optical sintering can be improved and flexibility can be imparted to the adhesive layer formed by the ink composition for optical sintering.
  • the plasticizer is not particularly limited as long as it has good compatibility, low vapor pressure, and high plasticization efficiency, but for example, phthalic acid ester plasticizer, trimellitic acid ester plasticizer, and phosphoric acid ester. At least one selected from the group consisting of Phosphoric Acid Ester plasticizer, Epoxy plasticizer, Polyester plasticizer, Aliphatic Acid Ester plasticizer, and Chlorinated paraffin plasticizer. It may be a phthalate-based (Phthalic Acid Ester) plasticizer.
  • the plasticizer includes dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), di-isononyl phthalate (DINP), and diethylhexyl phthalate (Di(2- One or more phthalate-based (Phthalic Acid Ester) selected from the group consisting of ethylhexyl)phthalate (DEHP), di(n-octyl)phthalate (DNOP), di-isodecyl phthalate (DIDP), etc. ) Plasticizers may be used.
  • DBP dibutyl phthalate
  • BBP butyl benzyl phthalate
  • DINP di-isononyl phthalate
  • Di(2- One or more phthalate-based (Phthalic Acid Ester) selected from the group consisting of ethylhexyl)phthalate (DEHP), di(n-octyl)phthalate (DNOP), di-isodecyl
  • the plasticizer When adding the plasticizer, the plasticizer may be included in an amount of 5% to 20% by weight based on the total weight of the ink composition for optical sintering. If the content of the plasticizer is within the above range, the flexibility of the resulting electrolyte sheet can be increased and the viscosity of the slurry caused by the binder can be broken down.
  • the ink composition for optical sintering may include a dispersant.
  • the dispersant can suppress agglomeration even when the concentration of the inorganic solid electrolyte is high and form a uniform solid electrolyte layer.
  • the dispersant is not particularly limited as long as it is commonly used for dispersing inorganic substances in inorganic slurries, such as oxide-based solid electrolyte layers.
  • surfactants, polycarboxylic acid ammonium salts, and fatty acid-based dispersants can be used.
  • commercial products such as KD-1, KD-2, KD-4, KD-6, KD-7, KD-9, KD-13, KD-20, KD-24, KD-25, KD-57, etc. Dispersants can be used.
  • the dispersant When adding the dispersant, the dispersant may be included in an amount of 0.001 to 10% by weight based on the total weight of the ink composition for optical sintering. If the content of the dispersant is within the above range, the homogeneity of the obtained electrolyte sheet can be further improved.
  • HSP Hansen Solubility Parameter
  • the Hansen Solubility Parameter refers to the parameter discovered by Charles M.Hansen, and the Hansen solubility parameter value, ⁇ t , is derived experimentally and theoretically as follows: It is expressed by combining the three parameters ( ⁇ d , ⁇ p , ⁇ h ).
  • the unit of Hansen Solubility Parameter (HSP) may be MPa 0.5 .
  • ⁇ d Energy parameter due to dispersion forces between molecules.
  • ⁇ p Energy parameter due to dipole interactions between molecules.
  • ⁇ h Energy parameter due to hydrogen bonding between molecules.
  • Hansen Solubility Parameter is a vector quantity expressed as ( ⁇ d , ⁇ p , ⁇ h ), and can be expressed by plotting the three parameters in a three-dimensional space (Hansen space) with coordinate axes.
  • the Hansen Solubility Parameter (HSP) of a commonly used substance can be obtained by referring to a known information source, such as a database.
  • a known information source such as a database.
  • the Hansen Solubility Parameter (HSP) can be calculated from the chemical structure of the substance or the Hansen dissolution method described later by using computer program software such as Hansen Solubility Parameters in Practice (HSPiP). You can.
  • the Hansen Solubility Parameter (HSP) of a mixture containing two or more substances can be calculated as the vector sum of the Hansen Solubility Parameter (HSP) of each substance multiplied by the volume ratio of each substance to the entire mixture.
  • HSP Hansen solubility parameter
  • the Hansen solubility parameter (HSP) of a random copolymer containing three structural units can be calculated from Equation 1 below. [Reference: Journal of Applied Polymer Science, vol. 42, 99-106 (1991)]
  • n i Number of moles of structural unit i of random copolymer
  • HSP Hansen solubility parameter
  • ⁇ ijk Density of random copolymer composed of structural units i, j, and k
  • Equation 2 The relationship between the Hansen solubility parameter (HSP ⁇ t ) and the three parameters ( ⁇ d , ⁇ p , ⁇ h ) can be calculated from Equation 2:
  • ⁇ t 2 ⁇ d 2 + ⁇ p 2 + ⁇ h 2
  • the ⁇ t value which is the Hansen Solubility Parameter (HSP) of the binder according to one embodiment, may be 18 MPa 0.5 to 28 MPa 0.5 , specifically 19 MPa 0.5 to 22 MPa 0.5 . Since the ⁇ t value, which is the Hansen Solubility Parameter (HSP) of the polyvinyl acetal copolymer, satisfies the above range, it can be easily dissolved in a mixed solvent combining a polar solvent and a non-polar solvent.
  • the ⁇ t value which is the Hansen Solubility Parameter (HSP) of the solvent according to one embodiment, may be 18 MPa 0.5 to 28 MPa 0.5 , specifically 18 MPa 0.5 to 24 MPa 0.5 .
  • HSP Hansen Solubility Parameter
  • the viscosity of the ink composition for optical sintering may be 1,000 cp to 10,000 cp at 25°C, and specifically may be 4,000 cp to 8,000 cp. If the viscosity of the ink composition for optical sintering exceeds the above range, the fluidity of the slurry may be lowered and homogeneity such as streaks may not be secured when applying the ink composition or during molding. If the viscosity is below the above range, the rheological properties suitable for coating may not be achieved. Because it is difficult to secure, it may be difficult to apply a certain amount of loading or more to the surface of the substrate.
  • the ink composition for optical sintering includes an oxide-based electrolyte powder, a binder, and a solvent, and may further include a dispersant and a plasticizer if necessary.
  • the method of manufacturing the ink composition for optical sintering is not particularly limited, and can be prepared by mixing and stirring the above components.
  • a binder solution can be prepared by mixing a binder and a solvent, adding a plasticizer and a dispersant if necessary, followed by stirring, and mixing oxide-based electrolyte powder with the binder solution to prepare a slurry.
  • oxide-based electrolyte powder when oxide-based electrolyte powder is added after preparing the binder solution, the effect of increasing the dispersibility of the oxide in the slurry can be obtained.
  • An oxide-based solid electrolyte sheet can be manufactured by applying the ink composition for photosintering on a substrate, drying it to produce an oxide-based sheet, and photosintering the same.
  • the substrate is not particularly limited and may be a current collector in the form of copper (Cu) or aluminum (Al) foil, or may be a negative electrode or positive electrode for an all-solid-state lithium secondary battery. Considering the optical sintering process to be performed and the characteristics of the ink composition for optical sintering, the flexibility, shape, type, etc. of the substrate can be appropriately selected.
  • the substrate is not limited thereto, but may have a thickness of 5 ⁇ m to 200 ⁇ m, and more specifically, may have a thickness of 10 ⁇ m to 50 ⁇ m.
  • the method of applying the ink composition for optical sintering on a substrate is not particularly limited, and may be applied by methods such as bar coating, casting, or spraying.
  • An oxide-based sheet can be manufactured by applying an ink composition for optical sintering on the substrate and drying it to remove the solvent in the composition.
  • the method of drying the slurry applied on the substrate is not particularly limited, and drying can be performed, for example, using a convection oven or the like. The drying may be done at a temperature of 50°C to 200°C, specifically, at a temperature of 80 to 120°C, and may be dried for 0.5 hours to 5 hours, specifically for 1 hour to 3 hours.
  • the oxide-based sheet obtained after the drying may have a thickness of 10 to 300 ⁇ m.
  • the thickness of the oxide-based sheet may be 50 ⁇ m or more, 70 ⁇ m or more, 250 ⁇ m or less, and 200 ⁇ m or less.
  • an oxide-based solid electrolyte sheet that is thin and has excellent durability can be manufactured.
  • An oxide-based solid electrolyte sheet can be manufactured by photosintering the prepared oxide-based thin film sheet.
  • volumetric shrinkage rate is within 3% ( Figure 1b), while the contact area between particles increases and coarsening progresses as sintering continues.
  • the volumetric shrinkage rate may increase from 10% to around 20% (FIGS. 1C to 1D). In this way, when the particles in the thin film are excessively coarsened and the volumetric shrinkage rate increases, problems such as delamination from the substrate and/or cracking of the thin film and deterioration of function may occur.
  • the contact form is appropriately adjusted to prevent peeling due to excessive coarsening and volume shrinkage, but the surface contact state is maintained to ensure a dense structure and ion movement path, so that the structure in which ion conduction occurs corresponds to the sintered form.
  • Figure 1b when applying the optical sintering process, sintering is possible at high speed, and it is possible to control the shape of the particles according to the degree of sintering to form the particle shape as shown in FIG. 1b. Additionally, the particles may be appropriately coarsened as needed, taking into account the flexibility, shape, etc. of the substrate.
  • the oxide-based solid electrolyte sheet may include photosintered lithium ion conductive oxide-based particles.
  • the photosintered lithium-ion conductive oxide-based particles may correspond to the lithium-ion conductive oxide-based particles. .
  • the photosintered lithium ion conductive oxide particles may be different from each other in shape, color, connection structure between particles, etc. as the lithium ion conductive oxide particles are photosintered.
  • the photosintering may be performed using a pulse method.
  • the pulse method refers to a method of irradiating strong light that is generated momentarily by applying a strong voltage as a pulse to a device such as a lamp that generates light, and the irradiated and supplied light energy generates heat and induces optical sintering. You can.
  • the optical sintering device that generates light in a pulse manner is not particularly limited as long as it can operate under pulse conditions set as follows.
  • the light irradiation time per pulse On-time
  • operating voltage V
  • duty cycle %
  • number of cycles heating frequency (Fire rate, Hz) constituting the total pulse, and number of repetitions etc.
  • the light irradiation time (On-time) per pulse may be 1000 to 4500 ⁇ s.
  • the light irradiation time per pulse (On-time) may be 1200 ⁇ s or more, or 1400 ⁇ s or more, and may be 4400 ⁇ s or less, 4200 ⁇ s or less, or 4000 ⁇ s or less.
  • the operating voltage (V) during photosintering may be 100 to 450 V.
  • the operating voltage (V) may be 120 V or higher, or 150 V or higher, and may be 440 V or lower, 430 V or lower, or 420 V or lower.
  • the duty cycle (%) during photosintering may be 10 to 100%. Specifically, the duty cycle (%) may be 20 to 90%.
  • the duty cycle can be calculated as the ratio (%) of the light irradiation time (On-time) per pulse to the pulse period.
  • the number of cycles during photosintering may be 1 to 20. Specifically, the number of cycles during photosintering may be 5 to 15.
  • the photosintering process time calculated by Equation 1 below can be shortened. This allows the sintering process to be carried out in a short period of time.
  • T s is the photosintering process time (s)
  • T r is the temperature increase frequency (Fire rate, Hz)
  • C is the number of repetitions.
  • the heating frequency (fire rate, Hz) constituting the total pulse during photosintering may be 1 to 50 Hz. Specifically, the heating frequency (fire rate, Hz) that constitutes the total pulse during photosintering may be 10 or more and 40 Hz or less.
  • the number of repetitions during the photosintering may be 50 to 1000 times. Specifically, the number of repetitions during photosintering may be 100 or more and 400 or less.
  • the temperature of the substrate may be maintained below 300°C. Specifically, during photosintering, the temperature of the substrate may be maintained at 5°C to 100°C, 10°C to 50°C, and 15°C to 30°C. More specifically, during the photosintering, the temperature of the substrate may be substantially maintained at room temperature (RT) of 20°C to 25°C. If the temperature of the substrate is maintained within the above-mentioned range during photosintering, thermal stress can be prevented from remaining on the substrate, thereby substantially alleviating problems such as destruction of the substrate and reduced durability. Various types of substrates can be selected and applied to the optical sintering process without restrictions.
  • the light energy irradiated during the photosintering may be 25 to 150 J/s ⁇ cm 2 . Specifically, the light energy irradiated during the photosintering may be 40 to 120 J/s ⁇ cm 2 .
  • the oxide-based solid electrolyte sheet may have an area of 0.25 cm 2 or more. Specifically, the oxide-based solid electrolyte sheet may have an area of 0.5 to 50 cm 2 .
  • the width and length of the oxide-based solid electrolyte sheet may each be 0.5 cm or more. Specifically, the width and length of the oxide-based solid electrolyte sheet may each be 0.5 to 10 cm.
  • the oxide-based solid electrolyte sheet When the area, width, length, etc. of the oxide-based solid electrolyte sheet are within the above-mentioned range, it has a relatively large area and size compared to the oxide-based solid electrolyte manufactured by the existing process, and the productivity and economic feasibility of manufacturing the oxide-based solid electrolyte sheet etc. can be even better.
  • the oxide-based solid electrolyte sheet may have a thickness of 10 to 300 ⁇ m. Specifically, the thickness of the oxide-based solid electrolyte sheet may be 30 ⁇ m or more, 200 ⁇ m or less, or 100 ⁇ m or less. When the thickness of the oxide-based solid electrolyte sheet is within the above-mentioned range, it has excellent ionic conductivity as a thin film and can secure higher energy density when applied to an all-solid lithium secondary battery.
  • the oxide-based solid electrolyte sheet may have a porosity of 0.1 to 20%. Specifically, the oxide-based solid electrolyte sheet may have a porosity of 1% or more, 5% or more, 10% or more, and 15% or less. When the porosity of the oxide-based solid electrolyte sheet is within the above-mentioned range, optical sintering can proceed smoothly and the sheet can have excellent density and durability.
  • the ion conductivity of the oxide-based solid electrolyte sheet may be 10 -6 S/cm to 10 -2 S/cm, specifically 10 -5 S/cm to 10 -2 S/cm, and more specifically, , it may be 10 -5 S/cm to 10 -3 S/cm.
  • the ionic conductivity value may be a value measured at room temperature (25°C).
  • the oxide-based solid electrolyte sheet is manufactured through a smooth optical sintering process to suppress element diffusion between the substrate and the sheet, thereby suppressing diffusion of elements. It can be seen that the formation of an interface between the substrate and the sheet and the increase in resistance are substantially suppressed.
  • the oxide-based solid electrolyte sheet can be manufactured by optical sintering to form a thin-film oxide electrolyte layer, and selective sintering can be possible because light energy is irradiated locally only to the surface.
  • optical sintering can create a structure that forms the same connection points between particles as sintering using heat in a short period of time, within a few seconds, and can be manufactured regardless of the shape of the sheet depending on the size of the light source.
  • An all-solid lithium secondary battery according to one embodiment may include an oxide-based solid electrolyte sheet according to any one of the above-described embodiments.
  • An all-solid lithium secondary battery may include an oxide-based solid electrolyte sheet according to any one of the above-described embodiments.
  • the substrate may be an anode or a cathode for an all-solid lithium secondary battery.
  • the all-solid lithium secondary battery may include the oxide-based solid electrolyte sheet between the positive electrode and the negative electrode for the all-solid lithium secondary battery.
  • the positive electrode is not particularly limited, and the positive electrode active material may be lithium-transition metal oxide such as lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMn 2 O 4 ), or lithium nickel oxide (LiNiO 2 ), or some of these transition metals. may include a lithium-transition metal complex oxide substituted with another transition metal.
  • the lithium-transition metal complex oxide is Li x Ni a Co b Mn c Al d O y (0 ⁇ x ⁇ 1.1, 2 ⁇ y ⁇ 2.02, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, 0 ⁇ It may be an NCM-based positive electrode active material represented by the chemical formula: c ⁇ 1, 0 ⁇ d ⁇ 1, 0 ⁇ a+b+c+d ⁇ 1).
  • the positive electrode active material may be a lithium iron phosphate (LFP)-based positive electrode active material represented by the chemical formula LiFePO 4 .
  • the negative electrode is not particularly limited, and the negative electrode active material includes carbon-based active materials such as artificial graphite and natural graphite, silicon-based active materials such as silicon oxide (SiOx; 0 ⁇ x ⁇ 2) and Si-C composite, and metals such as lithium metal. It can be included.
  • carbon-based active materials such as artificial graphite and natural graphite
  • silicon-based active materials such as silicon oxide (SiOx; 0 ⁇ x ⁇ 2) and Si-C composite
  • metals such as lithium metal. It can be included.
  • the manufacturing method of the all-solid-state lithium secondary battery is not particularly limited, but a slurry containing a negative electrode or positive electrode active material is formed on a current collector, and then a negative electrode or positive electrode is manufactured through processes such as drying and rolling, respectively, and the negative electrode or positive electrode is manufactured respectively.
  • the all-solid-state lithium secondary battery can be manufactured by forming a slurry containing colored oxide particles and then drying the resulting oxide-based thin film sheet, followed by a light sintering process to form an oxide-based solid electrolyte sheet. there is.
  • the all-solid lithium secondary battery includes the oxide-based solid electrolyte sheet described above, there is no risk of ignition due to electrolyte leakage, and it can have excellent performance such as high energy density.
  • Lithium lanthanum zirconium oxide (LLZO; Li 7 La 3 Zr 2 O 12 ) lithium ion conductive oxide particles and the primary slurry were weighed and added at a weight ratio of 1:1 and mixed for the second time at 3,000 rpm for 5 minutes using a Thinky paste mixer.
  • An ink composition for optical sintering was prepared by stirring.
  • HSP Hansen solubility parameter
  • An ink composition for optical sintering was prepared by polymerization in the same manner as in Example 1, except that the binder was changed to the PVA2 binder shown in Table 2 below.
  • HSP Hansen solubility parameter
  • An ink composition for optical sintering was prepared by polymerization in the same manner as in Example 1, except that the binder was changed to the PVA2 binder in Table 2 below.
  • HSP Hansen solubility parameter
  • Figure 2 is a photograph showing the degree of dissolution of the primary slurry of Example 1, Comparative Example 1, and Comparative Example 2. Referring to Figure 2, it can be seen that in the case of the primary slurry of Example 1, all of the binder is dissolved and exists in a liquid state, and in the primary slurry of Comparative Examples 1 and 2, all of the binder is not dissolved and solid content remains. It can be confirmed with the naked eye.
  • Example 1 The ink composition for optical sintering of Example 1 was cast at a loading weight (LW) of 2000 mg/cm 2 on a substrate (Cu-foil current collector) having a thickness of 20 ⁇ m and then dried at room temperature for 1 hour to obtain a density of about 60 to 200. An oxide-based thin film sheet with a thickness of ⁇ m was manufactured.
  • LW loading weight
  • Cu-foil current collector Cu-foil current collector
  • the oxide-based thin film sheet prepared above was cut to a size of 1 cm ⁇ 1 cm to 3 cm ⁇ 3 cm and loaded into an optical sintering equipment (PulseForge Invent). Thereafter, the oxide-based thin film sheet was photosintered according to the photosintering conditions in Table 5 below to manufacture the oxide-based solid electrolyte sheet of Preparation Example 1 having a thickness of about 50 to 150 ⁇ m, which is shown in Figure 3. It was. At this time, the temperature of the substrate was maintained at a room temperature of 20°C to 25°C.
  • the oxide-based solid electrolyte sheet of Preparation Example 1 was effectively sintered using light energy within a few seconds.
  • the metal sheet used as the current collector did not show any deformation due to thermal energy, and that only the oxide-based thin film sheet was selectively sintered.
  • the oxide-based thin film sheets of Comparative Preparation Examples 1 and 2 were manufactured in the same manner as Preparation Example 1, except that the ink composition for optical sintering of Example 1 was changed to the ink composition for optical sintering of Comparative Examples 1 and 2. A thin film was not formed.
  • Electrochemical impedance analysis was performed on the oxide-based solid electrolyte sheet of Preparation Example 1 using a potentiostat (VMP-300) in an air atmosphere at room temperature (25°C), and the resistance component was measured to determine the ionic conductivity according to Equation 2 below. The calculated results are shown in Figure 4.
  • Equation 2 ⁇ is the ionic conductivity value (S/cm)
  • D is the thickness of the oxide-based solid electrolyte sheet (cm)
  • R is the measured impedance resistance value (1/S)
  • S is the oxide-based solid electrolyte sheet. This is the area of the electrolyte sheet (cm 2 ).
  • the electrolyte sample after photosintering was confirmed to have 1.32 ⁇ 10 -5 S/cm, demonstrating excellent performance.
  • the oxide-based solid electrolyte sheet of Preparation Example 1 has no risk of ignition due to electrolyte leakage, and can provide an all-solid lithium secondary battery with high energy density and excellent ion conductivity.

Landscapes

  • Secondary Cells (AREA)

Abstract

일 구현예에 따른 광소결용 잉크 조성물은 용해도가 우수하여 슬러리 제조 시 뭉침 현상이 발생하지 않는 바인더를 포함하여 제조될 수 있다. 일 구현예에 따른 산화물계 박막 시트는 광소결용 잉크 조성물을 포함함으로써 광소결을 통해 입자 간의 연결 형태, 입자 형상, 조밀도 등이 적절하게 형성되어 내구성 및 이온 전도도가 우수하고, 기판으로부터 박리 현상 등의 발생없이 산화물계 고체 전해질 시트를 제조할 수 있다. 일 구현예에 따른 산화물계 고체 전해질 시트는 광소결을 통해 고속으로 소결되어 리튬 등의 재료 소실 또는 기판 파괴 없이 단기간에 제조되고, 추가 가공 공정없이 박막화 및 대면적화가 가능하다.

Description

광소결용 잉크 조성물, 산화물계 고체 전해질 시트 및 전고체 리튬 이차전지
본 개시는 리튬 이온 전도성 산화물을 포함하는 광소결용 잉크 조성물, 산화물계 고체 전해질 시트 및 전고체 리튬 이차전지에 관한 것이다.
최근 환경 문제에 대한 관심이 커짐에 따라, 대기오염의 주요 원인 중 하나인 화석연료 기반 차량을 대체할 수 있는 전기자동차(EV), 신재생에너지를 활용하는 ESS(Energy Storage System) 등에 대한 연구가 활발히 진행되고 있다. 이러한 전기자동차(EV) 등의 동력원으로 높은 방전 전압 및 출력 안정성을 갖는 리튬 이차전지가 주로 사용되고 있다.
한편, 유기용매 등의 액체전해질을 적용하는 기존의 리튬 이차전지는 전해질의 누출로 인한 발화 위험성이 존재하며, 전극 반응에 의해 전해질이 분해되어 전지가 팽창하는 문제점 등이 존재한다. 또한, 이러한 문제점을 방지하기 위해 기존의 리튬 이차전지에 포함되는 분리막으로 인하여, 전지의 고에너지 밀도를 확보하는 것에 한계가 존재한다. 이에 따라, 상기 문제점을 해결하기 위하여 고체 상태의 전해질을 적용한 전고체 리튬 이차전지에 대한 연구 및 개발이 활발히 진행되고 있다.
전고체 리튬 이차전지에 적용되는 고체 전해질은 주로 황화물계, 고분자계, 산화물계 고체 전해질 등으로 분류되며, 이 중 산화물계 고체 전해질은 화학적/열적 안정성, 기계적 강도 등이 우수하여 차세대 고체 전해질 소재로 주목받고 있다.
전고체 리튬 이차전지에 사용되는 고체 전해질은 소결 공정에 의해 제조되며, 일반적으로, 고체 전해질은 열소결 공정, 레이저 소결 공정 또는 마이크로 웨이브 소결 공정을 사용하여 제조되었다.
그러나, 상기 열소결 공정은 승온, 열처리 및 냉각과 같은 다양한 공정이 진행되기 때문에, 공정 시간이 매우 길다는 단점이 있고, 고온의 환경에 공정이 진행되기 때문에 기판 선택에 제약이 따른다.
상기와 같은 소결에 장시간이 소요되는 열소결의 문제를 해결할 수 있는 소결법으로, 급속열처리 공정이 있다. 상기 급속열처리공정(RTA, rapid thermal annealing)은 승온을 매우 빠른 시간 내에 진행하여 일반 열처리 공정에 비해 공정 시간이 짧아지기는 하나, 여전히 냉각을 자연 냉각에 의존하기 때문에 냉각 시간이 오래 걸리고, 잔류 열응력에 의해 리튬 이온 이차전지를 형성하기 위한 재료 파괴와 같은 문제가 있다.
일 구현예의 목적은, 용해도가 우수한 바인더를 포함하는 광소결용 잉크 조성물을 제공하는 것이다.
일 구현예의 목적은, 광소결을 통해 고속으로 소결되어 단기간에 제조 가능하고, 추가 가공 공정없이 박막화 및 대면적화가 가능한 산화물계 고체 전해질 시트를 제공하는 것이다.
일 구현예의 목적은, 상기 산화물계 고체전해질 시트를 포함하여 안전성, 에너지 밀도 등이 향상된 전고체 리튬 이차전지를 제공하는 것이다.
일 구현예에 따른 광소결용 잉크 조성물은 하이드록시기, 아세틸기 및 아세탈기를 포함하는 중합체를 포함하는 바인더를 포함하며, 상기 중합체의 한센 용해도 파라미터(Hansen Solubility Parameter, HSP) 값은 18 MPa0.5 내지 28 MPa0.5이고, 상기 중합체의 중량평균 분자량은 1.0 × 104 g/mol 내지 9.0 × 104 g/mol이다.
상기 중합체는 하이드록시기를 갖는 구성단위, 아세틸기를 갖는 구성단위 및 아세탈기를 갖는 구성단위를 포함하는 폴리비닐아세탈 공중합체를 포함할 수 있다.
상기 하이드록시기를 갖는 구성단위는 하기 화학식 1로 표시되는 구성단위일 수 있다.
[화학식 1]
Figure PCTKR2023011353-appb-img-000001
(상기 화학식 1에서, L1은 단일결합 또는 탄소수 1 내지 5의 알킬렌일 수 있다.)
상기 아세틸기를 갖는 구성단위는 하기 화학식 2로 표시되는 구성단위일 수 있다.
[화학식 2]
Figure PCTKR2023011353-appb-img-000002
(상기 화학식 2에서, L2는 단일결합 또는 탄소수 1 내지 5의 알킬렌일 수 있다.)
상기 아세탈기를 갖는 구성단위는 하기 화학식 3으로 표시되는 구성단위일 수 있다.
[화학식 3]
Figure PCTKR2023011353-appb-img-000003
(상기 화학식 3에서, R은 수소, 치환 또는 비치환된 탄소수1 내지 10의 하이드로카빌일 수 있다.)
상기 폴리비닐아세탈 공중합체의 100 중량%에 대하여, 상기 하이드록시기를 갖는 구성단위의 함량은 4 중량% 내지 25 중량%일 수 있다.
상기 폴리비닐아세탈 공중합체의 100 중량%에 대하여, 상기 아세틸기를 갖는 구성단위의 함량은 1 중량% 내지 12 중량%일 수 있다.
상기 폴리비닐아세탈 공중합체의 100 중량%에 대하여, 상기 아세탈기를 갖는 구성단위의 함량은 65 중량% 내지 85 중량%일 수 있다.
상기 중합체는 랜덤(random) 공중합체일 수 있다.
상기 광소결용 잉크 조성물의 점도는 25℃ 기준 1,000 cp 내지 10,000 cp일 수 있다.
상기 광소결용 잉크 조성물은 리튬 이온 전도성 산화물계 입자, 용매 및 가소제를 더 포함할 수 있다.
상기 용매의 한센 용해도 파라미터(Hansen Solubility Parameter, HSP) 값은 18 MPa0.5내지 28 MPa0.5일 수 있다.
상기 용매는 1,3-dioxane(다이옥산), 디메틸 카보네이트, 아세토니트릴, 메틸피롤리돈, 다이메틸폼아마이드, 아세톤, 이소프로판올, n-프로판올, n-헥산 및 톨루엔으로 이루어진 군에서 선택되는 1개 이상일 수 있다.
상기 가소제는 디부틸 프탈레이트(dibuthyl phthalate, DBP), 부틸벤질프탈레이트(Butyl benzyl phthalate, BBP), 디이소노닐프탈레이트(di-isononyl phthalate, DINP), 디에틸헥실프탈레이트(Di(2-ethylhexyl)phthalate, DEHP), 다이노말옥틸프탈레이트(Di(n-octyl)phthalate, DNOP) 및 디이소데실프탈레이트(di-isodecyl phthalate DIDP)로 이루어진 군에서 선택되는 1개 이상일 수 있다.
상기 리튬 이온 전도성 산화물계 입자는 가넷(Garnet) 화합물, 나시콘(NASICON) 화합물 및 페로브스카이트(Perovskite) 화합물로 이루어진 군에서 선택되는 1개 이상일 수 있다.
일 구현예에 따른 산화물계 고체 전해질 시트는 상기 광소결용 잉크 조성물을 포함한다.
상기 산화물계 고체 전해질 시트는 10-6 S/cm 내지 10-2 S/cm의 이온 전도도를 가질 수 있다.
상기 산화물계 고체 전해질 시트는 0.25 cm2 이상의 면적 및 10 ㎛ 내지 300 ㎛의 두께를 가질 수 있다.
일 구현예에 따른 산화물계 고체 전해질 시트 제조 방법은 상기 광소결용 잉크 조성물을 기판 상에 도포하는 단계; 상기 기판을 건조하여 산화물계 시트를 제조하는 단계; 및 상기 산화물계 시트를 광소결하여 산화물계 고체 전해질 시트를 제조하는 단계를 포함하는 산화물계 고체 전해질 시트 제조 방법을 제공한다.
상기 광소결 시 산화물계 시트의 온도는 25℃ 내지 500℃일 수 있다.
일 구현예에 따른 전고체 리튬 이차전지는 상기 산화물계 고체 전해질 시트를 포함한다.
일 구현예에 따르면 용해도가 우수하여 슬러리 제조 시 뭉침 현상이 발생하지 않는 바인더를 포함하는 광소결용 잉크 조성물을 제공할 수 있다.
일 구현예에 따르면, 광소결을 통해 고속으로 소결되어 리튬 등의 재료 소실 또는 기판 파괴 없이 단기간에 제조되고, 추가 가공 공정없이 박막화 및 대면적화가 가능한 산화물계 고체 전해질 시트를 제공할 수 있다.
일 구현예에 따르면, 안전성이 높고, 에너지 밀도가 높은 전고체 리튬 이차전지를 제공할 수 있다.
도 1a 내지 도 1d는 소결 진행에 따라 입자 간 연결 구조 및 입자 형상이 변화하는 형태를 각각 단계적으로 나타내는 개념도이다.
도 2는 실시예 1, 비교예 1 및 비교예 2의 1차 슬러리의 용해 정도를 나타내는 사진이다.
도 3은 제조예 1의 산화물계 고체 전해질 시트의 소결 전후를 나타내는 사진이다.
도 4는 제조예 1의 산화물계 고체 전해질 시트의 이온전도도를 측정하기 위한 전기화학 임피던스 결과를 나타내는 그래프이다.
이하, 일 구현예의 구체적인 실시 형태를 설명한다. 그러나 일 구현예의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 일 구현예의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.
또한, 본 개시에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하며, 본 개시 전체에 걸쳐 동일 참조 부호 또는 유사한 방식으로 부여된 참조 부호는 동일 구성 요소 또는 대응하는 구성요소를 지칭하는 것으로 한다.
본 개시에서, '소결(Sintering)' 현상이란 열로 인해 분말 형태의 입자들이 서로 단단히 밀착되어 고결하는 현상으로, 상기 분말 형태의 입자들이 열적 활성화 과정을 통해 밀착되어 하나의 덩어리로 되는 과정을 의미한다.
본 개시에서, '광소결(Light-Sintering)'이란 빛을 통해 물질이 가진 고유의 파장영역과 빛의 파장영역 간의 공명현상 및 이로 인한 발열현상을 유도하여, 재료 내에 열반응을 발생시켜 소결하는 것을 의미한다.
본 개시에서, 특별한 정의가 없는 한, "중합체"는 올리고머(oligomer)와 중합체(polymer)를 포함한 것일 수 있고, 동종 중합체와 공중합체를 포함하는 것일 수 있다, 상기 공중합체는 교호 공중합체, 블록 공중합체, 랜덤 공중합체, 가지 공중합체, 가교 공중합체, 또는 이들을 모두 포함하는 것일 수 있다.
일반적인 고온 소결 공정을 산화물 성형체의 제조 시 적용할 경우, 1000℃이상의 온도에서 1시간 내지 24시간 이상의 장기간 동안 산화물 성형체를 소결하여 형성함에 따라 리튬 등의 성분이 휘발 또는 증발하여 재료가 손실될 수 있으며, 소결 조건에 따른 밀도 제어가 어려우며, 기판 전체가 가열됨에 따라 기판이 변형 또는 파괴되는 문제가 존재한다. 또한, 이러한 고온 소결 공정을 통해서는 제조되는 산화물계 시트의 박막화 및 균질한 표면 형성에 어려움이 있어 추가적인 가공 공정이 요구된다.
한편, RTA(Rapid Thermal Annealing) 공정의 경우, 승온을 매우 빠른 시간 내에 진행하여 일반적인 고온 소결 공정 대비 단기간으로 진행이 가능하나 기판이 변형되거나 파괴되는 문제는 여전히 해결하기 어렵다. 또한, 레이저(Laser)를 이용하는 공정의 경우 레이저가 입사되는 영역 부근에서 국부적으로 반응이 진행됨에 따라 소결 공정 시 적용 면적이 협소하여 소결 공정에 장기간이 소요되며, 마이크로 웨이브(Microwave)를 이용하는 공정의 경우 소결 깊이(Depth)가 얕으며 기판 선택에 제약이 있는 단점이 있다.
이에, 일 구현예는 광소결 공정을 적용하여 산화물계 고체 전해질 시트를 소결하는 기술을 제공하고자 한다.
상기 광소결은 순간적인 광펄스를 인가하여 광열 효과로 입자들을 치밀화하는 공정으로서, 기판에 프린팅된 슬러리를 상온 및 대기압 조건에서 매우 짧은 시간 안에 소결이 가능하다는 장점이 있다. 또한, 이러한 광소결 공정은 대면적의 기판에 적용할 수 있을 뿐만 아니라, 대기 상온에서 고속 소결이 가능하므로 대량 생산에 따른 생산성 향상이 가능할 수 있다.
광소결에 의해 산화물계 고체 전해질 시트를 제조 시, 산화물계 고체 전해질, 바인더, 용매 등이 포함된 슬러리(이하, 광소결용 잉크 조성물이라고도 함)를 도포 후 광소결할 수 있다, 이 때, 상기 광소결용 잉크 조성물은 적은 양의 용매로도 슬러리가 적절한 점도를 가지도록 용이하게 제어할 수 있으면서도 산화물계 고체 전해질을 효과적으로 바인딩할 수 있는 바인더를 포함할 수 있다.
광소결용 잉크 조성물
일 구현예에 따르는 광소결용 잉크 조성물은 광소결법에 의해 박막의 산화물계 고체 전해질 시트를 제작하기 위한 슬러리로서, 상기 광소결용 잉크 조성물은 산화물 고체 전해질을 포함할 수 있다.
상기 산화물계 고체 전해질은 입자상을 갖는 리튬 이온 전도성 산화물계 입자일 수 있다. 상기 리튬 이온 전도성 산화물계 입자는 산소 원소를 포함하고 리튬 이온에 대한 전도성을 갖는 화합물을 분말화한 형태의 입자로서, 지르코늄(Zr), 인산염(PO4) 및 티타늄(Ti) 중에서 선택된 1종 이상을 포함할 수 있다.
구체적으로, 상기 리튬 이온 전도성 산화물계 입자는 리튬 란타넘 지르코늄 옥사이드(LLZO)계 화합물, 리튬 란타넘 티타네이트 옥사이드(LLTO)계 화합물, 리튬 알루미늄 게르마늄 인산염(LAGP)계 화합물, 리튬 알루미늄 티타늄 인산염(LATP)계 화합물 중에서 선택된 1종 이상의 화합물일 수 있다. 더욱 구체적으로, 상기 리튬 이온 전도성 산화물계 입자는 Li7La3Zr2O12의 화학식으로 표현되며 가넷(Garnet) 구조를 갖는 리튬 란타넘 지르코늄 옥사이드(LLZO)계 화합물일 수 있다. 상기 리튬 이온 전도성 산화물계 입자로 상술한 종류의 화합물, 특히 LLZO계 화합물을 적용할 경우, 우수한 이온 전도도, 리튬 금속과의 안정성, 넓은 전위 창 범위 등의 특성을 갖는 산화물계 고체 전해질 시트를 제조할 수 있다.
상기 광소결용 잉크 조성물은 하이드록시기, 아세틸기 및 아세탈기를 포함하는 중합체를 포함하는 바인더를 포함할 수 있다. 상기 바인더는 산화물계 입자들을 적절히 결합하고 기판에 대한 슬러리의 접착력 향상에 기여할 수 있다.
상기 바인더는 하이드록시기, 아세틸기 및 아세탈기를 포함하는 중합체를 포함할 수 있고, 구체적으로, 하이드록시기를 갖는 구성단위, 아세틸기를 갖는 구성단위, 아세탈기를 갖는 구성단위, 또는 이들의 조합을 포함하는 폴리비닐아세탈 공중합체를 포함할 수 있다.
상기 폴리비닐아세탈 공중합체는 하이드록시기를 갖는 구성단위를 포함할 수있다. 구체적으로, 상기 하이드록시기를 갖는 구성단위는 강도, 결합력 및 극성 용매에 대한 용해도를 향상시키는 효과를 제공하는 것으로서, 하기 화학식 1로 표시되는 구성단위일 수 있다.
[화학식 1]
Figure PCTKR2023011353-appb-img-000004
상기 화학식 1에서, L1은 단일결합 또는 탄소수 1 내지 5의 알킬렌일 수 있고, 구체적으로 단일결합 또는 탄소수 1 내지 3일 수 있으며, 더욱 구체적으로 단일결합 또는 메틸렌일 수 있다.
상기 폴리비닐아세탈 공중합체는 2 이상의 상이한 하이드록실기를 갖는 구성단위를 포함할 수 있다.
상기 폴리비닐아세탈 공중합체 100 중량%에 대하여, 상기 하이드록시기를 갖는 구성단위의 함량은 4 중량% 내지 25 중량%일 수 있으며, 구체적으로 12 중량% 내지 20 중량%일 수 있고, 보다 구체적으로는 15 중량% 내지 17 중량%일 수 있다. 상기 하이드록시기를 갖는 구성단위의 함량이 상기 범위 미만인 경우 슬러리의 강도 저하, 분자간 결합력 저하 및 극성 용매에 대한 용해도가 낮아지는 문제가 발생할 수 있고, 상기 범위를 초과할 경우 슬러리에 과도하게 강성이 생겨 시트화(코팅, 테이프캐스팅 등)를 하기 힘들어질 수 있다
상기 폴리비닐아세탈 공중합체는 아세틸기를 갖는 구성단위를 포함할 수 있다. 구체적으로, 상기 아세틸기를 갖는 구성단위는 용액의 점도 및 유리전이온도를 저하시키는데 기여하는 것으로서, 하기 화학식 2로 표시되는 구성단위일 수 있다.
[화학식 2]
Figure PCTKR2023011353-appb-img-000005
상기 화학식 2에서, L2는 단일결합 또는 탄소수 1 내지 5의 알킬렌일 수 있으며, 구체적으로 단일결합 또는 탄소수 1 내지 3일 수 있으며, 더욱 구체적으로 단일결합 또는 메틸렌일 수 있다.
상기 폴리비닐아세탈 공중합체는 2 이상의 상이한 아세틸기를 갖는 구성단위를 포함할 수 있다.
상기 폴리비닐아세탈 공중합체 100 중량%에 대하여, 상기 아세틸기를 갖는 구성단위의 함량은 1 중량% 내지 12 중량%일 수 있으며, 구체적으로 1 중량% 초과 12 중량% 이하일 수 있으며, 구체적으로 3 중량% 내지 9 중량%일 수 있고, 보다 구체적으로는 4 중량% 내지 6 중량%일 수 있다. 상기 아세틸기를 갖는 구성단위의 함량이 상기 범위 미만인 경우 용액 점도가 지나치게 높아지며, 유리전이온도가 높아지는 문제가 발생할 수 있으며, 상기 범위를 초과하는 경우, 용액의 점도가 감소하고 유리전이온도가 낮아져 슬러리 제조공정이 어려울 수 있다.
상기 폴리비닐아세탈 공중합체는 아세탈기를 갖는 구성단위를 포함할 수 있다. 구체적으로, 상기 아세탈기를 갖는 구성단위를 포함함으로써 상기 폴리비닐아세탈 공중합체의 연성 및 유연성이 향상될 수 있고, 이종 수지와의 호환성 높일 수 있고, 하기 화학식 3으로 표시되는 구성단위일 수 있다.
[화학식 3]
Figure PCTKR2023011353-appb-img-000006
상기 화학식 3에서, R은 수소, 치환 또는 비치환된 탄소수 1 내지 10의 하이드로카빌일 수 있고, 구체적으로, 치환 또는 비치환된 탄소수 1 내지 5의 하이드로카빌일 수 있고, 구체적으로, 치환 또는 비치환된 탄소수 1 내지 4의 하이드로카빌일 수 있고, 더욱 구체적으로, 메틸 또는 프로필일 수 있다. 예를 들어, 상기 R의 탄소수 1의 알킬기인 폴리비닐아세탈 공중합체(폴리비닐아세토아세탈)는 아세트 알데하이드로 아세탈화함으로써 얻어질 수 있고, 탄소수 3의 알킬기인 폴리비닐아세탈 공중합체(폴리비닐부티랄)는 부틸 알데하이드로 아세탈화함으로써 얻어질 수 있다.
상기 폴리비닐아세탈 공중합체는 2 이상의 상이한 아세탈기를 갖는 구성단위를 포함할 수 있다. 예를 들어, 상기 폴리비닐아세탈 공중합체는 폴리비닐아세토아세탈 구성단위 및 폴리비닐부티랄 구조단위를 포함할 수 있다.
상기 폴리비닐아세탈 공중합체 100 중량%에 대하여, 상기 아세탈기를 갖는 구성단위의 함량은 65 중량% 내지 85 중량%일 수 있으며, 구체적으로 65 중량% 초과 85 중량% 이하일 수 있으며, 구체적으로 중량% 70 내지 80 중량%일 수 있고, 보다 구체적으로는 75 중량% 내지 79 중량%일 수 있다. 상기 아세탈기를 갖는 구성단위의 함량이 상기 범위 미만인 경우 연성이 낮아지고, 유연성이 낮아지며 다른 타입의 수지와의 호환성이 낮아지는 문제가 발생할 수 있다.
일 예로, 상기 폴리비닐아세탈 공중합체는 하이드록시기를 갖는 구성단위, 아세틸기를 갖는 구성단위 및 아세탈기를 갖는 구성단위를 포함할 수 있고, 하이드록시기를 갖는 구성단위, 아세틸기를 갖는 구성단위 및 아세탈기를 갖는 구성단위는 각각 전술한 바와 같을 수 있다.
상기 폴리비닐아세탈 공중합체는 하이드록시기를 갖는 구성단위, 아세틸기를 갖는 구성단위 및 아세탈기를 갖는 구성단위가 불규칙적으로 배열된 랜덤(Random) 폴리비닐아세탈 공중합체일 수 있으며, 예를 들어 하기 화학식 4로 표현될 수 있다.
[화학식 4]
Figure PCTKR2023011353-appb-img-000007
상기 화학식 4에서, l, m 및 n은 각각 독립적으로 1 이상의 정수이고, L1, L2 및 R은 전술한 바와 같을 수 있다.
예를 들어, 상기 폴리비닐아세탈 공중합체는 폴리비닐알코올 구성단위, 폴리비닐아세테이트 구성단위, 및 폴리비닐아세토아세탈 구성단위 및/또는 폴리비닐부티랄 구성단위를 포함할 수 있다.
상기 바인더, 구체적으로 상기 중합체, 더욱 구체적으로 상기 폴리비닐아세탈 공중합체의평균 중합도는 10000 이하일 수 있으며, 또한 중량평균분자량은 1.0 × 104 g/mol 내지 9.0 × 104 g/mol일 수 있다. 상기 중량평균 분자량은 구체적으로는 3.0 × 104 g/mol 내지 8.0 × 104 g/mol이며, 보다 구체적으로는 5.0 × 104 g/mol 내지 7.0 × 104 g/mol일 수 있다. 중량평균분자량이 상기 범위 미만인 경우 슬러리로 형성된 잉크 조성물의 접착력이 현저히 악화될 수 있으며, 상기 범위를 초과할 경우 상기 바인더의 용해도가 저하될 수 있으며, 시트의 연성이 크게 낮아질 수 있다.
상기 바인더는 광소결용 잉크 조성물 전체 중량에 대하여 2 중량% 내지 40 중량%의 함량으로 포함될 수 있다. 상기 바인더의 함량이 상기 범위 내로 포함될 경우, 전해질 시트의 유연성을 한층 더 높일 수 있다.
일 구현예에 따르는 광소결용 잉크 조성물은 용매를 포함할 수 있다. 상기 용매는 상기 바인더를 용해할 수 있는 성질을 갖는 것이라면 적절하게 사용할 수 있는 것으로서, 이에 한정하지 않으나, 알코올, 케톤, 아마이드, 에스테르, 이터, 방향족 탄화수소 등 이루어진 군에서 선택되는 1개 이상일 수 있으며, 구체적으로 2-프로판올(2-Propanol), 톨루엔(Toluene), 테르피네올(Terpineol), NMP(N-Methyl-2-Pyrrolidone) 등으로 이루어진 군에서 선택되는 1개 이상일 수 있으며, 보다 구체적으로는 2-프로판올(2-Propanol) 및 톨루엔(Toluene)을 혼합하여 사용할 수 있다.
상기 용매는 광소결용 잉크 조성물 전체 중량에 대하여 15 중량% 내지 45 중량%의 함량으로 포함할 수 있다. 상기 용매의 함량이 15 중량% 미만이면 광소결용 잉크 조성물의 혼합이 원활하게 되지 않을 수 있고, 45 중량%를 초과하면 슬러리의 점도가 낮아져 시트 성형이 어려울 수 있다.
상기 광소결용 잉크 조성물은 가소제를 또한 포함할 수 있다. 상기 가소제를포함함으로써, 광소결용 잉크 조성물의 소성 가공성을 향상시킬 수 있고, 광소결용 잉크 조성물에 의하여 형성되는 점착층에 유연성을 부여할 수 있다.
상기 가소제는 상용성이 좋고, 증기압이 낮으며 가소화 효율이 높은 것이라면 특별히 한정되지 않으나, 예를 들어, 프탈레이트계(Phthalic Acid Ester) 가소제, 트리멜리트산 에스테르계(Trimellitic Acid Ester) 가소제, 인산 에스테르계(Phosphoric Acid Ester) 가소제, 에폭시계(Epoxy) 가소제, 폴리에스터계(Polyester) 가소제, 지방족 에스트레스계(Aliphatic Acid Ester) 가소제, 염소화 파라핀계(Chlorinated paraffin) 가소제 등에서 선택되는 선택되는 1개 이상일 수 있으며, 구체적으로 프탈레이트계(Phthalic Acid Ester) 가소제일 수 있다.
보다 구체적으로, 상기 가소제는 디부틸 프탈레이트(dibuthyl phthalate, DBP), 부틸벤질프탈레이트(Butyl benzyl phthalate, BBP), 디이소노닐프탈레이트(di-isononyl phthalate, DINP), 디에틸헥실프탈레이트(Di(2-ethylhexyl)phthalate, DEHP), 다이노말옥틸프탈레이트(Di(n-octyl)phthalate, DNOP), 디이소데실프탈레이트(di-isodecyl phthalate DIDP) 등으로 이루어진 군에서 선택되는 1개 이상의 프탈레이트계(Phthalic Acid Ester) 가소제가 사용될 수 있다.
상기 가소제를 투입하는 경우, 상기 가소제는 광소결용 잉크 조성물 전체 중량에 대하여 5 중량% 내지 20 중량%의 함량으로 포함할 수 있다. 상기 가소제의 함량이 상기 범위 내이면, 얻어지는 전해질 시트의 유연성을 높이고 및 바인더로 인한 슬러리의 점성을 해쇄 할 수 있다.
상기 광소결용 잉크 조성물은 분산제를 포함할 수 있다. 상기 분산제는 무기 고체 전해질의 농도가 높은 경우에 있어서도 그 응집을 억제하여, 균일한 고체 전해질층을 형성할 수 있다. 상기 분산제는 산화물계 고체 전해질층과 같이 무기물 슬러리에서 무기물의 분산을 위해 통상적으로 사용되는 것이라면 특별히 한정되지 않으며, 예를 들어, 계면활성제, 폴리카르복실산 암모늄염 및 지방산 계열의 분산제를 사용할 수 있으며, 구체적으로, 상용제품인 KD-1, KD-2, KD-4, KD-6, KD-7, KD-9, KD-13, KD-20, KD-24, KD-25, KD-57 등의 분산제를 사용할 수 있다.
상기 분산제를 투입하는 경우, 상기 분산제는 광소결용 잉크 조성물 전체 중량에 대하여 0.001 내지 10 중량%의 함량으로 포함할 수 있다. 상기 분산제의 함량이 상기 범위 내이면, 얻어지는 전해질 시트의 균질성을 한층 더 높일 수 있다.
상기 용매 중 2-프로판올(2-Propanol) 및 톨루엔(Toluene) 용매의 한센 용해도 파라미터(HSP) 값을 하기 표 1에 도시하였다.
δd 2 δp 2 δh 2 δt 2
2-Propanol 15.8 6.1 16.4 23.6
Toluene 18.0 1.4 2.0 18.2
본 개시에서, 한센 용해도 파라미터(Hansen Solubility Parameter, HSP, δt)는 챨리스 한센(Charles M.Hansen)에 의해 발견된 파라미터를 의미하며, 한센 용해도 파라미터 값인 δt는 실험적 및 이론적으로 유도된 다음의 3개의 파라미터(δd, δp, δh)를 조합시킴으로써 표현된다. 한센 용해도 파라미터(HSP)의 단위는 MPa0.5일 수 있다.
δt: 한센 용해도 파라미터.
δd: 분자 간의 분산력에 의한 에너지 파라미터.
δp: 분자 간의 쌍극자 상호 작용에 의한 에너지 파라미터.
δh: 분자 간의 수소 결합에 의한 에너지 파라미터.
한센 용해도 파라미터(HSP)는 (δd, δp, δh)와 같이 표시되는 벡터 양이며, 3개의 파라미터를 좌표 축으로 하는 삼차원 공간(한센 공간)에 플롯하여 표현할 수 있다. 일반적으로 사용되는 물질의 한센 용해도 파라미터(HSP)는 데이터 베이스 등 공지의 정보 출처, 예컨대 데이터 베이스를 참조하여 원하는 물질의 한센 용해도 파라미터(HSP)를 얻을 수 있다. 데이터 베이스에 한센 용해도 파라미터(HSP)가 등록되지 않은 물질은 예컨대 Hansen Solubility Parameters in Practice(HSPiP) 등 컴퓨터 프로그램 소프트웨어를 이용함으로써 물질의 화학 구조나 후술하는 한센 용해 구법으로부터 한센 용해도 파라미터(HSP)를 계산할 수 있다.
2종류 이상의 물질을 포함하는 혼합물의 한센 용해도 파라미터(HSP)는 각 물질의 한센 용해도 파라미터(HSP)에 혼합물 전체에 대한 각 물질의 체적 비율을 곱한 값의 벡터 합으로 산출될 수 있다. 예를 들어, 3개의 구성단위를 포함하는 랜덤(random) 공중합체의 한센 용해도 파라미터 (HSP)는 다음의 수학식 1으로부터 계산될 수 있다. [참고 문헌: Journal of Applied Polymer Science, vol. 42, 99-106 (1991)]
[수학식 1]
Figure PCTKR2023011353-appb-img-000008
ni: 랜덤(Random) 공중합체의 구성단위 i의 몰수
Mi: 랜덤(Random) 공중합체의 구성단위 i의 분자량
ρi: 상기 구성단위 i만으로 이루어진 고분자의 밀도
δi: 상기 구성단위 i만으로 이루어진 고분자의 한센 용해도 파라미터(HSP)
ρijk: 구성단위 i, j, k로 이루어진 랜덤(Random) 공중합체의 밀도
한센 용해도 파라미터(HSPδt)와 3개의 파라미터(δd, δp, δh)와의 관계는 다음의 수학식 2으로부터 계산될 수 있다:
[수학식 2]
δt 2 = δd 2 + δp 2 + δh 2
일 구현예에 따르는 바인더의 한센 용해도 파라미터(HSP)인 δt 값은 18 MPa0.5 내지 28 MPa0.5일 수 있으며, 구체적으로는 19 MPa0.5 내지 22 MPa0.5일 수 있다. 상기 폴리비닐아세탈 공중합체의 한센 용해도 파라미터(HSP)인 δt 값이 상기 범위를 만족함으로써, 극성 용매와 무극성 용매가 조합된 혼합용매에 용이하게 용해될 수 있다.
일 구현예에 따르는 용매의 한센 용해도 파라미터(HSP)인 δt 값은 18 MPa0.5 내지 28 MPa0.5이며, 구체적으로는 18 MPa0.5 내지 24 MPa0.5일 수 있다. 상기 용매의 한센 용해도 파라미터(HSP)인 δt 값이 상기 범위를 만족함으로써, 상기 바인더를 용이하게 용해할 수 있다.
일 구현예에 따르는 광소결용 잉크 조성물의 점도는 25℃ 기준 1,000 cp 내지 10,000cp일 수 있으며, 구체적으로 4,000 cp 내지 8,000cp일 수 있다. 상기 광소결용 잉크 조성물의 점도가 상기 범위를 초과하는 경우 슬러리의 유동성이 낮아져 잉크 조성물 도포 시, 성형 시 줄무늬 발생 등의 균질성이 확보되지 않을 수 있고, 상기 범위 미만인 경우, 코팅에 적합한 유변 물성의 확보가 어려워 기판 표면에 일정량 이상의 로딩으로 도포하기가 어려울 수 있다.
상기 광소결용 잉크 조성물은 상술한 바와 같이, 산화물계 전해질 분말, 바인더 및 용매를 포함하고, 필요에 따라 분산제 및 가소제를 더 포함할 수 있다. 상기 광소결용 잉크 조성물을 제조하는 방법은 특별히 한정하지 않으며, 상기 각 성분을 혼합하고 교반함으로써 제조할 수 있다.
보다 구체적으로는 바인더 및 용매를 혼합하고, 필요에 따라서 가소제 및 분산제를 첨가한 후에 교반하여 바인더 용액을 제조하고, 상기 바인더 용액에 산화물계 전해질 분말을 혼합하여 슬러리를 제조할 수 있다. 상기 광소결용 잉크 조성물을 제조함에 있어서 바인더 용액을 제조한 후에 산화물계 전해질 분말을 투입하는 경우, 슬러리 내 산화물의 분산성이 높아지는 효과를 얻을 수 있다.
산화물계 고체 전해질 시트
상기 광소결용 잉크 조성물을 기판 상에 도포하고, 건조하여 산화물계 시트를 제조하고, 이를 광소결함으로써 산화물계 고체 전해질 시트를 제조할 수 있다.
상기 기판은 특별히 한정되지 않으며, 구리(Cu) 또는 알루미늄(Al) 호일 형태의 집전체일 수도 있고, 전고체 리튬 이차전지용 음극 또는 양극일 수도 있다. 이후 진행할 광소결 공정 및 광소결용 잉크 조성물 특성을 고려하여, 기판의 유연성, 형상, 종류 등을 적절히 선택할 수 있다.
상기 기판은 이에 한정하는 것은 아니지만, 5 ㎛ 내지 200 ㎛의 두께를 가질 수 있으며, 보다 구체적으로는 10 ㎛ 내지 50 ㎛의 두께일 수 있다.
상기 광소결용 잉크 조성물을 기판 상에 도포하는 방법은 특별히 한정되지 않으며, 바 코팅, 캐스팅, 또는 분무 등의 방법으로 도포할 수 있다.
상기 기판 상에 광소결용 잉크 조성물을 도포한 후에 건조하여 조성물 중의 용매를 제거함으로써 산화물계 시트를 제조할 수 있다. 기판 상에 도포된 슬러리를 건조시키는 방법은 특별히 한정되지 않으며, 예를 들어, 컨벡션 오븐(Convection Oven) 등에 의해 건조를 수행할 수 있다. 상기 건조는 50℃ 내지 200℃의 온도에서, 구체적으로는, 80 내지 120℃의 온도에서 건조될 수 있으며, 0.5 시간 내지 5시간 동안, 구체적으로는 1시간 내지 3시간 동안 건조될 수 있다.
상기 건조 후에 얻어진 상기 산화물계 시트는 10 내지 300 μm의 두께를 가질 수 있다. 구체적으로, 상기 산화물계 시트의 두께는 50 μm 이상일 수 있고, 70 μm 이상일 수 있고, 250 μm 이하일 수 있고, 200 μm 이하일 수 있다. 상기 산화물계 시트의 두께가 상술한 범위 내일 경우, 얇은 두께로 박막화되고, 내구성 등이 우수한 산화물계 고체 전해질 시트를 제조할 수 있다.
상기 제조된 산화물계 박막 시트를 광소결함으로써 산화물계 고체 전해질 시트를 제조할 수 있다.
앞서 설명한 바와 같이, 광소결을 이용하면 단기간에 소결을 진행하는 것이 가능하며, 이에 따라 소결도를 조절하는 것이 가능하다. 도 1a 내지 도 1d를 참고하여 이를 구체적으로 설명한다. 소결 과정에서 입자 간의 입계(입자가 서로 접하고 있는 경계)는 소결의 초기단계 시 점(Point) 접촉의 형태에서 점차 면(Surface) 접촉의 형태로 접촉 영역이 확장된다(도 1a 내지 도 1d). 도 1a에 나타낸 바와 같이 각각의 입자들이 초기 형상을 유지하고 있는 점(Point) 접촉 형태의 경우, 단순 접촉으로서 이온의 이동 시 큰 저항을 받게 된다. 반면, 소결을 통하여 접촉 면적이 증가하여 면 (Surface) 접촉 형태가 될 경우, 이온 이동 경로의 저항이 낮아져 빠른 이온 전도가 가능하며, 조밀화에 따라 내구성이 증가하여 시트 형상이 잘 유지될 수 있다.
한편, 이러한 입자 간 접촉 영역 확장에 따라 입자 사이의 빈 공간인 기공이 줄어들고 부피 수축이 발생할 수 있다. 이 때, 입자 간의 접촉 형태 및 조대화의 정도에 따라 부피 수축률에 차이가 발생할 수 있다. 구체적으로, 소결 진행에 따라 결정립계(Grain Boundary; GB)가 형성되는 단계의 경우 부피 수축율이 3% 이내에 해당하는 반면(도 1b), 계속된 소결에 따라 입자 간의 접촉면적 증가 및 조대화가 진행된 단계의 경우 부피 수축률이 10%에서 20% 내외까지 증가할 수 있다(도 1c 내지 도 1d). 이처럼 박막 내 입자의 지나친 조대화 및 부피 수축률 증가 시, 기판으로부터 박리 및/또는 박막의 균열이 발생하여 기능이 저하되는 등의 문제가 발생할 수 있다.
이에 따라, 지나친 조대화 및 부피 수축에 따른 박리현상 등이 일어나지 않도록 접촉 형태를 적절히 조절하되, 면접촉 상태를 유지하여 조밀한 구조 및 이온이동경로를 확보하여 이온 전도가 이루어지는 구조가 소결 형태에 해당한다(도 1b). 이와 관련하여 광소결 공정을 적용할 경우 고속으로 소결이 가능하며, 소결 정도의 조절에 따라 입자의 형상을 제어하여 도 1b과 같은 입자 형태를 형성하는 것이 가능하다. 또한, 기판의 유연성, 형상 등을 고려하여 필요에 따라 입자를 적절하게 조대화할 수도 있다.
상기 산화물계 고체 전해질 시트는 광소결된 리튬 이온 전도성 산화물계 입자를 포함할 수 있다. 앞서 설명한 리튬 이온 전도성 산화물계 입자를 포함하는 산화물계 박막 시트를 광소결하여 제조되는 산화물계 고체 전해질 시트에서, 광소결된 리튬 이온 전도성 산화물계 입자는 상기 리튬 이온 전도성 산화물계 입자에 대응될 수 있다. 상기 광소결된 리튬 이온 전도성 산화물계 입자는 리튬 이온 전도성 산화물계 입자가 광소결되어 입자의 형태, 색깔, 입자 간 연결 구조 등이 서로 상이할 수 있다.
상기 광소결은 펄스 방식으로 수행될 수 있다. 상기 펄스 방식이란 빛을 발생시키는 램프 등의 장치에 강한 전압을 펄스로 인가하여 순간적으로 발생하는 강한 빛을 조사하는 방식을 의미하며, 조사되어 공급된 빛 에너지는 열을 발생시켜 광소결을 유도할 수 있다. 이 때, 펄스 방식으로 빛을 발생시키는 광소결 장치는 아래과 같이 설정된 펄스 조건 등으로 작동할 수 있는 장치라면 특별히 제한되지 않는다.
상기 광소결 시 펄스당 광 조사 시간(On-time), 작동 전압(V), 듀티 사이클(Duty cycle)(%), 사이클 횟수, 총 펄스를 구성하는 승온 주파수(Fire rate, Hz), 반복 횟수 등은 광소결 장치의 컨트롤러, 파워 서플라이 등을 제어하여 적절하게 가변(조절)할 수 있다.
상기 광소결 시 펄스당 광 조사 시간(On-time)은 1000 내지 4500 μs일 수 있다. 구체적으로, 펄스당 광 조사 시간(On-time)은 1200 μs 이상, 또는 1400 μs 이상일 수 있고, 4400 μs 이하, 4200 μs 이하, 또는 4000 μs 이하일 수 있다.
상기 광소결 시 작동 전압(V)은 100 내지 450 V일 수 있다. 구체적으로, 작동 전압 (V)은 120 V 이상, 또는 150 V 이상일 수 있고, 440 V 이하, 430 V 이하, 또는 420 V 이하일 수 있다.
상기 광소결 시 듀티 사이클(%)은 10 내지 100%일 수 있다. 구체적으로, 듀티 사이클 (%)은 20 내지 90% 일 수 있다. 상기 듀티 사이클은 펄스 주기 대비 상기 펄스당 광 조사 시간(On-time)의 비율(%)의 값으로 계산될 수 있다.
상기 광소결 시 사이클 횟수는 1 내지 20회일 수 있다. 구체적으로, 상기 광소결 시 사이클 횟수는 5 내지 15회일 수 있다.
상기 광소결 시 광 조사 시간(On-time), 작동 전압(V), 듀티 사이클(%), 사이클 횟수가 상술한 범위 내로 제어될 경우, 하기 식 1에 의해 산출되는 광소결 공정 시간을 단축시킬 수 있어 단기간에 소결 과정을 진행할 수 있다.
[식 1]
Ts = C / Tr
상기 식 1에서, Ts는 광소결 공정 시간(s)이고, Tr은 승온 주파수(Fire rate, Hz) 이고, C는 반복 횟수이다.
상기 광소결 시 총 펄스를 구성하는 승온 주파수(Fire rate, Hz)는 1 내지 50 Hz일 수 있다. 구체적으로, 상기 광소결 시 총 펄스를 구성하는 승온 주파수(Fire rate, Hz)는 10 이상일 수 있고, 40 Hz 이하일 수 있다.
상기 광소결 시 반복 횟수는 50 내지 1000회일 수 있다. 구체적으로, 상기 광소결 시 반복 횟수는 100회 이상일 수 있고, 400회 이하일 수 있다.
상기 광소결 시 기판의 온도는 300℃ 이하로 유지될 수 있다. 구체적으로, 상기 광소결 시 기판의 온도는 5℃ 내지 100 ℃, 10℃ 내지 50℃, 15℃ 내지 30℃로 유지될 수 있다. 더욱 구체적으로, 상기 광소결 시 기판의 온도는 실질적으로 20℃ 내지 25℃의 실온(RT)으로 유지될 수 있다. 상기 기판의 온도가 광소결 시 상술한 범위 내로 유지될 경우, 기판에 열 응력(Thermal Stress)이 잔류하는 것을 방지할 수 있어 기판의 파괴, 내구력 감소 등의 문제가 발생하는 것을 실질적으로 완화할 수 있으며, 제약 없이 다양한 종류의 기판을 선택하여 광소결 공정에 적용할 수 있다.
상기 광소결 시 조사된 광 에너지는 25 내지 150 J/s·cm2일 수 있다. 구체적으로, 상기 광소결 시 조사된 광 에너지는 40 내지 120 J/s·cm2일 수 있다.
상기 산화물계 고체 전해질 시트는 0.25 cm2 이상의 면적을 가질 수 있다. 구체적으로, 상기 산화물계 고체 전해질 시트는 0.5 내지 50 cm2의 면적을 가질 수 있다.
상기 산화물계 고체 전해질 시트의 폭 및 길이는 각각 0.5 cm 이상일 수 있다. 구체적으로, 상기 산화물계 고체 전해질 시트의 폭 및 길이는 각각 0.5 내지 10 cm일 수 있다.
상기 산화물계 고체 전해질 시트의 면적, 폭, 길이 등이 상술한 범위일 경우, 기존 공정으로 제조되는 산화물계 고체 전해질 대비 상대적으로 큰 면적 및 크기를 갖는 것으로서, 산화물계 고체 전해질 시트 제조의 생산성, 경제성 등이 더욱 우수할 수 있다.
상기 산화물계 고체 전해질 시트는 10 내지 300 μm의 두께를 가질 수 있다. 구체적으로, 상기 산화물계 고체 전해질 시트의 두께는 30 μm 이상일 수 있고, 200 μm 이하, 또는 100 μm 이하일 수 있다. 상기 산화물계 고체 전해질 시트의 두께가 상술한 범위 내일 경우, 얇은 두께를 갖는 박막으로서 이온 전도성이 우수하며, 전고체 리튬 이차전지에 적용 시 더욱 높은 에너지 밀도를 확보할 수 있다.
상기 산화물계 고체 전해질 시트는 공극률이 0.1 내지 20 %일 수 있다. 구체적으로, 상기 산화물계 고체 전해질 시트는 공극률이 1 % 이상일 수 있고, 5 %이상일 수 있고, 10 % 이상일 수 있고, 15 % 이하일 수 있다. 상기 산화물계 고체 전해질 시트의 공극률이 상술한 범위 내일 경우, 광소결이 원활하게 진행되어 시트의 조밀도 및 내구성이 우수할 수 있다.
상기 산화물계 고체 전해질 시트의 이온 전도도는 10-6 S/cm 내지 10-2 S/cm일 수 있고, 구체적으로 10-5 S/cm 내지 10-2 S/cm 일 수 있고, 더욱 구체적으로는, 10-5 S/cm 내지 10-3 S/cm 일 수 있다. 이 때, 상기 이온 전도도 값은 상온(25℃ 에서 측정된 값일 수 있다.
상기 기판에 포함된 원소 및/또는 바인더 버닝 잔존물의 함량이 상술한 범위 내일 경우, 상기 산화물계 고체 전해질 시트가 원활한 광소결 공정을 통해 제조되어 상기 기판 및 시트 사이의 원소 확산이 억제되며, 이로 인해 기판 및 시트 사이의 계면 형성 및 저항 증가가 실질적으로 억제됨을 확인할 수 있다.
상기 산화물계 고체 전해질 시트는 광소결에 의해 제조됨으로써 박막형의 박막형의 산화물 전해질 층을 형성할 수 있고 표면에만 국부적으로 광에너지가 조사되기 때문에 선택적으로 소결이 가능할 수 있다.
또한, 광소결로 인해 수 초내 단시간에 열을 이용한 소결과 동일한 입자간 연결점을 형성하는 구조를 만들 수 있으며, 광원의 크기에 따라 시트의 형상에 구애받지 않고 제조가 가능할 수 있다.
전고체 리튬 이차전지
일 구현예에 따른 전고체 리튬 이차전지는, 상술한 구현예들 중 어느 하나에 따른 산화물계 고체 전해질 시트를 포함할 수 있다.
다른 일 구현예에 따른 전고체 리튬 이차전지는, 상술한 구현예들 중 어느 하나에 따른 산화물계 고체 전해질 시트를 포함할 수 있다. 이 때, 상기 기판은 전고체 리튬 이차전지용 양극 또는 음극일 수 있다. 구체적으로, 상기 전고체 리튬 이차전지는 전고체 리튬 이차전지용 양극 및 음극 사이에 상기 산화물계 고체 전해질 시트를 포함할 수 있다.
상기 양극은 특별히 제한되지 않으며, 양극 활물질로 리튬 코발트 산화물(LiCoO2), 리튬 망간 산화물(LiMn2O4) 또는 리튬 니켈 산화물(LiNiO2) 등의 리륨-전이금속 산화물, 또는 이들 전이금속의 일부가 다른 전이금속으로 치환된 리튬-전이금속 복합 산화물을 포함할 수 있다. 구체적으로, 상기 리튬-전이금속 복합 산화물은 LixNiaCobMncAldOy(0<x≤1.1, 2≤y≤2.02, 0<a<1, 0<b<1, 0<c<1, 0<d<1, 0<a+b+c+d≤1)의 화학식으로 표시되는 NCM계 양극 활물질일 수 있다. 또한, 상기 양극 활물질은 LiFePO4의 화학식으로 표시되는 리튬인산철(LFP)계 양극 활물질일 수도 있다.
상기 음극은 특별히 제한되지 않으며, 음극 활물질로 인조 흑연, 천연 흑연 등의 탄소계 활물질, 실리콘 산화물(SiOx; 0<x<2), Si-C 복합체 등의 규소계 활물질, 리튬 메탈 등의 금속을 포함할 수 있다.
상기 전고체 리튬 이차전지의 제조방법은 특별히 한정되지 않으나, 집전체 상에 음극 또는 양극 활물질을 포함하는 슬러리를 형성 후 건조, 압연 등의 공정을 거쳐 음극 또는 양극을 각각 제조하고, 상기 음극 또는 양극 상에 유색의 산화물 입자 등을 포함하는 슬러리를 형성 후 건조하여 형성된 산화물계 박막 시트에 대하여 광소결 공정을 진행하여 산화물계 고체 전해질 시트를 형성하는 방식을 통해 상기 전고체 리튬 이차전지를 제조할 수 있다.
상기 전고체 리튬 이차전지가 위에서 설명한 산화물계 고체 전해질 시트를 포함할 경우, 전해질의 누출로 인한 발화 위험성 등이 없고, 고에너지 밀도 등의 우수한 성능을 가질 수 있다.
이하에서는, 구체적인 실험예들을 참조하여 본 발명의 실시예들에 대해 추가적으로 설명한다. 실험예에 포함된 실시예 및 비교예들은 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 개시의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
1. 광소결용 잉크 조성물 제조
(1) 실시예 1
하기 표 2에 따른 PVA1 바인더 0.42g, 2-propanol 1.58g 및 톨루엔 1.58g을 혼합한 용매 3.16g, Croda社의 Hypermer KD-6 분산제 0.2g 및 DBP 가소제 0.65g를 Thinky社 페이스트 믹서로 3,000 rpm, 5 분간 1차 교반하여 1차 슬러리를 제조하였다. 이때, 폴리비닐아세탈 구성단위는 폴리비닐부티랄 구성단위에 폴리비닐아세토아세탈 구성단위가 소량 혼합된 구조이다.
리튬 란탄 지르코늄 산화물(LLZO; Li7La3Zr2O12) 리튬 이온 전도성 산화물계 입자와 상기 1차 슬러리를 1 : 1의 중량비로 칭량하여 투입하고 Thinky社 페이스트 믹서로 3,000 rpm, 5 분간 2차 교반하여 광소결용 잉크 조성물을 제조하였다.
또한, 상기 PVA1 바인더의 한센 용해도 파라미터(Hansen solubility parameter, HSP) 값을 상기 수학식 1을 사용하여 도출하였다. 상기 수학식 1의 사용을 위해 필요한 값인 랜덤(Random) 공중합체의 3종의 구성요소 각각만으로 이루어진 고분자의 분자량, 밀도, 한센 용해도 파라미터(HSP)를 표 3에 나타내었다. 상기 PVA1 바인더의 한센 용해도 파라미터(Hansen solubility parameter, HSP) 값을 하기 표 4에 나타내었다.
(2) 비교예 1
바인더를 하기 표 2의 PVA2바인더로 변경한 점을 제외하고, 실시예 1과 같은 방법으로 중합하여 광소결용 잉크 조성물을 제조하였다.
또한, 상기 PVA2 바인더의 한센 용해도 파라미터(Hansen solubility parameter, HSP) 값을 측정하여 하기 표 4에 나타내었다. 상기 한센 용해도 파라미터 값은 상기 수학식 1을 사용하여 확인하였다.
(3) 비교예 2
바인더를 하기 표 2의 PVA2의 바인더로 변경한 점을 제외하고, 실시예 1과 같은 방법으로 중합하여 광소결용 잉크 조성물을 제조하였다.
또한, 상기 PVA3 바인더의 한센 용해도 파라미터(Hansen solubility parameter, HSP) 값을 측정하여 하기 표 4에 나타내었다. 상기 한센 용해도 파라미터 값은 수학식 1을 사용하여 확인하였다.
구성단위 함량 (몰%) 중량평균분자량
(×104 g/mol)
Tg (℃)
폴리비닐알코올(Poly(vinyl alcohol)) 폴리비닐아세테이트(Poly(vinyl acetate)) 폴리비닐아세탈(Poly(vinyl acetal))
PVA1 23 5 72 6.6 67
PVA2 34 1 65 11 74
PVA3 30 2 68 9.2 73
δd δp δh δt 구성단위의 분자량
(g/mol)
밀도
(g/cm3)
폴리비닐알코올(Poly(vinyl alcohol)) 17.5 12.5 10 23.7 44.05 1.25
폴리비닐아세테이트(Poly(vinyl acetate)) 20.9 11.3 9.7 25.7 86.09 1.19
폴리비닐부티랄(Poly(vinyl butyral)) 19.1 9.5 8 22.8 141.21 1.14
δd δp δh δt
PVA1 17.0 8.5 7.2 20.3
PVA2 16.7 8.4 7.0 19.9
PVA3 16.9 8.4 7.1 20.2
2. 1차 슬러리의 용해도 평가
도 2는 실시예 1, 비교예 1 및 비교예 2의 1차 슬러리의 용해 정도를 나타내는 사진이다. 도 2를 참조하면, 실시예 1의 1차 슬러리의 경우 바인더가 모두 용해되어 액상으로 존재하는 것을 확인할 수 있으며, 비교예 1 및 2의 1차 슬러리는 바인더가 모두 용해되지 않고 고형분이 남아 있는 것을 육안으로 확인할 수 있다.
3. 광소결을 통한 산화물계 고체 전해질 시트 제조
제조예 1
실시예 1의 광소결용 잉크 조성물을 20 ㎛의 두께를 갖는 기판(Cu-foil 집전체)에 2000 mg/cm2의 로딩 중량(LW)으로 캐스팅 후 상온에서 1시간 동안 건조하여 약 60 내지 200 ㎛의 두께를 갖는 산화물계 박막 시트를 제조하였다.
상기 제조한 산화물계 박막 시트를 1 cm × 1 cm 내지 3 cm × 3 cm의 크기로 커팅하여 광소결 장비(PulseForge社 Invent)에 장입하였다. 이후, 하기 표 5의 광소결 조건에 따라 상기 산화물계 박막 시트에 대하여 광소결을 진행하여 약 50 내지 150 ㎛의 두께를 갖는 제조예 1의 산화물계 고체 전해질 시트를 제조하였으며, 이를 도 3에 나타내었다. 이때, 기판의 온도는 20℃ 내지 25℃의 실온으로 유지되었다.
광소결 조건
한 펄스를 구성하는 조건 전압 (Voltage) 300 V
펄스당 광 조사시간 (On-time) 3000 μs
듀티 사이클 (Duty Cycle) 60%
사이클 횟수 10회
작동 조건 Fire rate 25 Hz
반복 횟수 250회
조사된 광 에너지 75 J/s·cm2
도 3을 참조하면, 제조예 1의 산화물계 고체 전해질 시트는 수 초 내로 광에너지를 이용하여 소결이 효과적으로 진행되었음을 확인할 수 있다. 또한, 표면에만 국부적으로 광에너지가 조사된 결과 집전체로 사용된 금속 시트에 열에너지로 인한 변형이 나타나지 않았으며, 산화물계 박막 시트에서만 선택적으로 소결이 된 것을 확인할 수 있다.
비교제조예 1 및 2
실시예 1의 광소결용 잉크 조성물을 비교예 1 및 2의 광소결용 잉크 조성물로 변경한 것을 제외하고는 제조예 1과 같은 방법으로 비교제조예 1 및 2의 산화물계 박막 시트를 제조하였으나, 박막이 형성되지 않았다.
4. 이온 전도도 특성 평가
제조예 1의 산화물계 고체 전해질 시트에 대하여 상온(25 ℃) 대기 분위기에서 포텐시오스탯(VMP-300)을 통해 전기화학 임피던스 분석을 실시하였으며, 저항 성분을 측정하여 하기 식 2에 따라 이온 전도도를 계산한 결과를 도 4에 나타냈다.
[식 2]
σ = D / (R × S)
상기 식 2에서, σ는 이온 전도도 값(S/cm)이고, D는 산화물계 고체 전해질 시트의 두께(cm)이고, R은 측정된 임피던스 저항 값(1/S)이고, S는 산화물계 고체 전해질 시트의 면적(cm2)이다.
도 4를 참고하면, 광소결 이후 전해질 샘플의 경우 1.32 × 10-5 S/cm로 확인되어, 우수한 성능을 나타낸 것을 확인할 수 있다.
이에 따라, 상기 제조예 1의 산화물계 고체 전해질 시트는 전해질의 누출로 인한 발화 위험성 등이 없고, 고에너지 밀도를 가지면서도 이온 전도성이 우수한 전고체 리튬 이차전지를 제공할 수 있다.
위에서 설명된 내용은 단지 본 개시의 원리를 적용한 예시일 뿐이며, 본 발명의 범위를 벗어나지 않는 범위에서 다른 구성이 더 포함될 수 있다.

Claims (20)

  1. 하이드록시기, 아세틸기 및 아세탈기를 포함하는 중합체를 포함하는 바인더를 포함하며,
    상기 중합체의 한센 용해도 파라미터(Hansen Solubility Parameter, HSP) 값은 18 MPa0.5 내지 28 MPa0.5이고,
    상기 중합체의 중량평균 분자량은 1.0 × 104 g/mol 내지 9.0 × 104 g/mol인 광소결용 잉크 조성물.
  2. 제1항에 있어서,
    상기 중합체는 하이드록시기를 갖는 구성단위, 아세틸기를 갖는 구성단위 및 아세탈기를 갖는 구성단위를 포함하는 폴리비닐아세탈 공중합체를 포함하는 광소결용 잉크 조성물.
  3. 제2항에 있어서,
    상기 하이드록시기를 갖는 구성단위는 하기 화학식 1로 표시되는 구성단위인 광소결용 잉크 조성물.
    [화학식 1]
    Figure PCTKR2023011353-appb-img-000009
    (상기 화학식 1에서, L1은 단일결합 또는 탄소수 1 내지 5의 알킬렌이다.)
  4. 제2항에 있어서,
    상기 아세틸기를 갖는 구성단위는 하기 화학식 2로 표시되는 구성단위인 광소결용 잉크 조성물.
    [화학식 2]
    Figure PCTKR2023011353-appb-img-000010
    (상기 화학식 2에서, L2는 단일결합 또는 탄소수 1 내지 5의 알킬렌이다.)
  5. 제2항에 있어서,
    상기 아세탈기를 갖는 구성단위는 하기 화학식 3으로 표시되는 구성단위인 광소결용 잉크 조성물.
    [화학식 3]
    Figure PCTKR2023011353-appb-img-000011
    (상기 화학식 3에서, R은 수소, 치환 또는 비치환된 탄소수 1 내지 10의 하이드로카빌이다.)
  6. 제2항에 있어서,
    상기 폴리비닐아세탈 공중합체의 100 중량%에 대하여, 상기 하이드록시기를 갖는 구성단위의 함량은 4 중량% 내지 25 중량%인 광소결용 잉크 조성물.
  7. 제2항에 있어서,
    상기 폴리비닐아세탈 공중합체의 100 중량%에 대하여, 상기 아세틸기를 갖는 구성단위의 함량은 1 중량% 내지 12 중량%인 광소결용 잉크 조성물.
  8. 제2항에 있어서,
    상기 폴리비닐아세탈 공중합체의 100 중량%에 대하여, 상기 아세탈기를 갖는 구성단위의 함량은 65 중량% 내지 85 중량%인 광소결용 잉크 조성물.
  9. 제1항에 있어서,
    상기 중합체는 랜덤(random) 공중합체인 광소결용 잉크 조성물.
  10. 제1항에 있어서,
    상기 광소결용 잉크 조성물의 점도는 25℃ 기준 1,000 cp 내지 10,000 cp인 광소결용 잉크 조성물.
  11. 제1항에 있어서,
    상기 광소결용 잉크 조성물은 리튬 이온 전도성 산화물계 입자, 용매 및 가소제를 더 포함하는 광소결용 잉크 조성물.
  12. 제11항에 있어서,
    상기 용매의 한센 용해도 파라미터(Hansen Solubility Parameter, HSP) 값은 18 MPa0.5 내지 28 MPa0.5인 광소결용 잉크 조성물.
  13. 제11항에 있어서,
    상기 용매는 1,3-dioxane(다이옥산), 디메틸 카보네이트, 아세토니트릴, 메틸피롤리돈, 다이메틸폼아마이드, 아세톤, 이소프로판올, n-프로판올, n-헥산 및 톨루엔으로 이루어진 군에서 선택되는 1개 이상인 광소결용 잉크 조성물.
  14. 제11항에 있어서,
    상기 가소제는 디부틸 프탈레이트(dibuthyl phthalate, DBP), 부틸벤질프탈레이트(Butyl benzyl phthalate, BBP), 디이소노닐프탈레이트(di-isononyl phthalate, DINP), 디에틸헥실프탈레이트(Di(2-ethylhexyl)phthalate, DEHP), 다이노말옥틸프탈레이트(Di(n-octyl)phthalate, DNOP) 및 디이소데실프탈레이트(di-isodecyl phthalate DIDP)로 이루어진 군에서 선택되는 1개 이상인 광소결용 잉크 조성물.
  15. 제11항에 있어서,
    상기 리튬 이온 전도성 산화물계 입자는 가넷(Garnet) 화합물, 나시콘(NASICON) 화합물 및 페로브스카이트(Perovskite) 화합물로 이루어진 군에서 선택되는 1개 이상인 광소결용 잉크 조성물.
  16. 제1항 내지 제15항 중 어느 한 항에 따른 광소결용 잉크 조성물로 제조된 산화물계 고체 전해질 시트.
  17. 제16항에 있어서,
    상기 산화물계 고체 전해질 시트는 10-6 S/cm 내지 10-2 S/cm의 이온 전도도를 갖고,
    상기 산화물계 고체 전해질 시트는 0.25 cm2 이상의 면적 및 10 ㎛ 내지 300 ㎛의 두께를 갖는, 산화물계 고체 전해질 시트.
  18. 제1항 내지 제15항 중 어느 한 항에 따른 광소결용 잉크 조성물을 기판 상에 도포하는 단계;
    상기 기판을 건조하여 산화물계 시트를 제조하는 단계; 및
    상기 산화물계 시트를 광소결하여 산화물계 고체 전해질 시트를 제조하는 단계를 포함하는 산화물계 고체 전해질 시트 제조 방법.
  19. 제18항에 있어서,
    상기 산화물계 시트의 광소결 시 산화물계 시트의 온도는 25℃ 내지 500℃인 산화물계 고체 전해질 시트 제조 방법.
  20. 제16항의 산화물계 고체 전해질 시트를 포함하는,
    전고체 리튬 이차전지.
PCT/KR2023/011353 2022-11-11 2023-08-02 광소결용 잉크 조성물, 산화물계 고체 전해질 시트 및 전고체 리튬 이차전지 WO2024101594A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0150853 2022-11-11
KR1020220150853A KR20240069393A (ko) 2022-11-11 광소결용 잉크 조성물, 산화물계 고체 전해질 시트 및 전고체 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2024101594A1 true WO2024101594A1 (ko) 2024-05-16

Family

ID=91033128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011353 WO2024101594A1 (ko) 2022-11-11 2023-08-02 광소결용 잉크 조성물, 산화물계 고체 전해질 시트 및 전고체 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2024101594A1 (ko)

Similar Documents

Publication Publication Date Title
WO2014092334A1 (ko) 수계 코팅액을 이용한 유/무기 복합 코팅 다공성 분리막과 그의 제조방법 및 상기 분리막을 이용한 전기화학소자
WO2018105970A1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
WO2019156460A1 (ko) 고체 고분자 전해질 및 이를 포함하는 리튬 이차 전지
WO2020080897A1 (ko) 시아노에틸 기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 분산제, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지
WO2020138627A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2019168352A1 (ko) 음극 활물질 및 이의 제조 방법, 상기 음극 활물질을 포함하는 음극 및 리튬 이차전지
WO2019031766A2 (ko) 리튬금속과 무기물 복합박막 제조방법 및 이를 이용한 리튬 이차전지 음극의 전리튬화 방법
WO2018236064A1 (ko) 다층 구조 고분자 고체 전해질 및 이를 포함하는 전고체 전지
WO2024101594A1 (ko) 광소결용 잉크 조성물, 산화물계 고체 전해질 시트 및 전고체 리튬 이차전지
WO2021150097A1 (ko) 고상-액상 하이브리드 전해질 막 및 이의 제조방법
WO2024029854A1 (ko) 고속 충전 리튬이차전지용 전해액, 이를 포함하는 리튬이차전지 및 리튬이차전지의 제조 방법
WO2024091010A1 (ko) 분리막용 중합체 조성물 및 이를 포함하는 이차전지
WO2022065958A1 (ko) 전극
WO2020009505A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2022191645A1 (ko) 전극 및 이의 제조방법
WO2020226361A1 (ko) 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지
KR20240069393A (ko) 광소결용 잉크 조성물, 산화물계 고체 전해질 시트 및 전고체 리튬 이차전지
WO2023171847A1 (ko) Pp/ca 분리막의 제조 방법 및 상기 분리막을 이용한 전지
WO2022164284A1 (ko) 전극
WO2023234717A1 (ko) 복합 고체 전해질 제조방법
WO2019050203A2 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2023027364A1 (ko) 비수계 용매 치환된 수계 바인더를 포함하는 절연 조성물을 이용한 이차전지용 전극 제조방법
WO2022164280A1 (ko) 전극
WO2024049097A1 (ko) 복합 고체 전해질, 이의 제조 방법 및 이를 포함하는 전고체 전지
WO2024091023A1 (ko) 이차전지용 음극 및 이의 제조방법