WO2024049097A1 - 복합 고체 전해질, 이의 제조 방법 및 이를 포함하는 전고체 전지 - Google Patents

복합 고체 전해질, 이의 제조 방법 및 이를 포함하는 전고체 전지 Download PDF

Info

Publication number
WO2024049097A1
WO2024049097A1 PCT/KR2023/012522 KR2023012522W WO2024049097A1 WO 2024049097 A1 WO2024049097 A1 WO 2024049097A1 KR 2023012522 W KR2023012522 W KR 2023012522W WO 2024049097 A1 WO2024049097 A1 WO 2024049097A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
polymer
sulfide
composite solid
weight
Prior art date
Application number
PCT/KR2023/012522
Other languages
English (en)
French (fr)
Inventor
전도연
손병국
이승호
박창훈
민상혁
김인규
정하빈
이동건
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2024049097A1 publication Critical patent/WO2024049097A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfide-based composite solid electrolyte with improved atmospheric stability and chemical resistance, a method of manufacturing the same, and an all-solid-state battery containing the same.
  • All-solid-state batteries are batteries that replace the liquid electrolyte that fills between the anode and cathode of existing lithium secondary batteries with solid ones. They are safe because they do not pose the risk of explosion, and have a higher energy density than existing batteries, so they are attracting attention as next-generation batteries.
  • the solid electrolyte used in all-solid-state batteries is a solid material that can conduct lithium ions in the battery, and has high ionic conductivity comparable to the electrolyte solution currently used in lithium secondary batteries.
  • Core materials that make up solid electrolytes include polymers, sulfides, and oxides, but among them, sulfide-based solid electrolytes, which have high ductility and ionic conductivity, are considered suitable for manufacturing large, high-capacity batteries.
  • sulfide-based solid electrolytes have a problem in that they are highly reactive to moisture and react not only with moisture in the air but also with moisture in low humidity conditions to generate hydrogen sulfide (H 2 S), a harmful gas. Accordingly, not only does toxic hydrogen sulfide adversely affect the safety of workers, but there is a problem that the performance of the sulfide-based solid electrolyte itself deteriorates.
  • H 2 S hydrogen sulfide
  • the object of the present invention is to provide a composite solid electrolyte with improved atmospheric stability and chemical resistance.
  • the present invention provides a composite solid electrolyte, a method for manufacturing the composite solid electrolyte, and an all-solid-state battery.
  • the present invention relates to sulfide-based solid electrolyte particles; and a polymer coating layer formed on the sulfide-based solid electrolyte particles, wherein the polymer of the polymer coating layer includes a repeating unit represented by the following formula (I).
  • X is F or Cl.
  • the present invention provides the composite solid electrolyte according to (1) above, wherein the polymer of the polymer coating layer includes a repeating unit represented by the following formula (1).
  • the present invention provides the composite solid electrolyte according to (1) or (2) above, wherein the sulfide-based solid electrolyte has an azyrodite-type crystal structure.
  • the present invention provides the composite solid electrolyte according to any one of (1) to (3) above, wherein the polymer of the polymer coating layer has a weight average molecular weight (Mw) of 1,000 g/mol to 1,000,000 g/mol. do.
  • Mw weight average molecular weight
  • the present invention provides a composite solid electrolyte according to any one of (1) to (4) above, wherein the polymer coating layer is contained in an amount of 0.1 parts by weight to 10 parts by weight based on 100 parts by weight of the sulfide-based solid electrolyte particles. to provide.
  • the present invention provides the composite solid electrolyte according to any one of (1) to (5) above, wherein the initial ionic conductivity is 0.001 mS/cm to 20 mS/cm.
  • the present invention includes the steps of (A) preparing a mixture by mixing a polymer containing a repeating unit represented by the following formula (I) and a sulfide-based solid electrolyte; and (B) heat-treating the mixture at a temperature equal to or higher than the melting point of the polymer to form a polymer coating layer on the sulfide-based solid electrolyte particles.
  • the composite solid electrolyte according to any one of (1) to (7) comprising a. Provides a manufacturing method.
  • X is F or Cl.
  • the present invention provides a method for producing a composite solid electrolyte according to (8) above, wherein the polymer includes a repeating unit represented by the following formula (1).
  • the present invention is a composite solid electrolyte according to (8) or (9), wherein in step (A), the polymer is mixed in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the sulfide-based solid electrolyte. Provides a manufacturing method.
  • the present invention provides a method for producing a composite solid electrolyte according to any one of (8) to (10) above, wherein the mixing is dry mixing.
  • the present invention provides a method for producing a composite solid electrolyte according to any one of (8) to (11) above, wherein the heat treatment temperature is 180°C to 250°C.
  • the present invention provides an all-solid-state battery containing the composite solid electrolyte according to any one of (1) to (7) above.
  • the composite solid electrolyte according to the present invention has a polymer coating layer with excellent atmospheric stability and chemical resistance formed on the sulfide-based solid electrolyte particles, so not only is the composite solid electrolyte itself excellent in atmospheric stability, but it can also be used in wet conditions when manufacturing batteries. ) Chemical resistance can be improved in the process.
  • the composite solid electrolyte according to the present invention includes sulfide-based solid electrolyte particles; and a polymer coating layer formed on the sulfide-based solid electrolyte particles, wherein the polymer of the polymer coating layer includes a repeating unit represented by the following formula (I).
  • X is F or Cl.
  • the polymer of the polymer coating layer may include a repeating unit represented by the following formula (1).
  • the present inventors have found that in the case of the composite solid electrolyte according to the present invention, a polymer coating layer with excellent atmospheric stability (excellent moisture and oxygen blocking performance) is formed on the sulfide-based solid electrolyte particles, so that the composite solid electrolyte itself has excellent atmospheric stability.
  • the present invention was completed by finding that chemical resistance could be improved in dry and wet processes when manufacturing batteries.
  • the polymer coating layer includes a polymer including a repeating unit represented by the formula (I), and specifically includes a polymer including a repeating unit represented by the formula (1), and moisture or oxygen It can prevent decomposition and deterioration of sulfide-based solid electrolyte particles when exposed to . As a result, the generation of hydrogen sulfide, a toxic gas, can be suppressed. Additionally, it is possible to prevent the ionic conductivity of the composite solid electrolyte from decreasing.
  • the polymer coating layer includes a polymer containing a repeating unit represented by the formula (I), which has lower moisture permeability than polymers such as PTFE, PDMS, and EVA, and is specifically represented by the formula (1)
  • a polymer containing the indicated repeating unit By including a polymer containing the indicated repeating unit, the sulfide-based solid electrolyte particles can be better prevented from contacting moisture.
  • the polymer may be composed only of repeating units represented by Formula 1. That is, the polymer may be polychlorotrifluoroethylene (PCTFE).
  • PCTFE polychlorotrifluoroethylene
  • the sulfide-based solid electrolyte may have an azyrodite-type crystal structure in terms of high ionic conductivity and low reactivity with the lithium negative electrode.
  • the sulfide-based solid electrolyte may be a sulfide-based solid electrolyte containing Li, P, and S.
  • the sulfide-based solid electrolyte may have a composition represented by the following formula (2).
  • the composite solid electrolyte according to the present invention may have high ionic conductivity and low reactivity with the lithium negative electrode, and decomposition and deterioration of the sulfide-based solid electrolyte particles when exposed to moisture or oxygen can be suppressed.
  • M is one or more selected from Si, Sn, Nb, Ni, Ge, Ga and Al,
  • X is one or more selected from F, Cl, Br and I,
  • the M is a doping element doped into a solid electrolyte having an azyrodite-type crystal structure and is at least one selected from Sn, Nb, Ni, Ge, Ga and Al, specifically selected from Sn, Nb, Ge and Al. There may be more than one type.
  • the polymer of the polymer coating layer may have a weight average molecular weight (Mw) of 1,000 g/mol to 1,000,000 g/mol.
  • the polymer of the polymer coating layer may have a weight average molecular weight (Mw) of 1,000 g/mol or more, 200,000 g/mol or less, 500,000 g/mol or less, or 1,000,000 g/mol or less.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the polymer is within the above range, a uniform and thin polymer coating layer can be formed, thereby minimizing the decrease in ionic conductivity and improving the moisture barrier effect.
  • the polymer coating layer may be included in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the sulfide-based solid electrolyte particles. Specifically, the polymer coating layer may be included in an amount of 0.1 parts by weight or more, 0.5 parts by weight or more, 5 parts by weight or less, 7 parts by weight or less, and 10 parts by weight or less with respect to 100 parts by weight of the sulfide-based solid electrolyte particles. In this case, the moisture blocking effect can be improved and the decrease in ionic conductivity can be minimized.
  • the solid electrolyte has an initial ionic conductivity of 0.001 mS/cm to 20 mS/cm, specifically, 0.001 mS/cm or more, 0.01 mS/cm or more, 5 mS/cm or less, 10 mS/cm or less, and 20 mS/cm. It may be below. The higher the ionic conductivity of the electrolyte, the better, but if the initial ionic conductivity satisfies the above range, the effect of improving moisture stability can be excellent.
  • the initial ionic conductivity is a value calculated from resistance values measured in a drying room at a temperature of 22° C. and a relative humidity of 0.7% immediately after manufacturing the composite solid electrolyte. Specifically, it is a value calculated through the following method.
  • the composite solid electrolyte is the amount of hydrogen sulfide (H 2 S) generated during the first hour when the composite solid electrolyte is exposed to an air atmosphere at a temperature of 25° C. and a relative humidity of 0.5% to 0.6%. This may be 10 cm 3 or less per 1 g of the composite solid electrolyte.
  • the composite solid electrolyte according to the present invention has excellent moisture stability, so the amount of hydrogen sulfide, a toxic gas, is generated and the generation rate is slow, thereby ensuring process safety.
  • the composite solid electrolyte according to the present invention can be manufactured by coating sulfide-based solid electrolyte particles with a polymer composition containing a polymer containing a repeating unit represented by the following formula (I).
  • X is F or Cl.
  • the polymer may include a repeating unit represented by the following formula (1).
  • the method for producing a composite solid electrolyte according to the present invention includes the steps of (A) preparing a mixture by mixing a polymer containing a repeating unit represented by the formula (I) and a sulfide-based solid electrolyte; and (B) heat treating the mixture at a temperature equal to or higher than the melting point of the polymer to form a polymer coating layer on the sulfide-based solid electrolyte particles.
  • the step (A) is a step of preparing a mixture by mixing a polymer containing a repeating unit represented by Formula I (specifically, a polymer containing a repeating unit represented by Formula 1) and a sulfide-based solid electrolyte.
  • the polymer containing the repeating unit represented by Formula I, the polymer containing the repeating unit represented by Formula 1, and the sulfide-based solid electrolyte are the same as those described in the composite solid electrolyte according to the present invention.
  • the sulfide-based solid electrolyte can be synthesized through, for example, mechanical milling and solid phase synthesis.
  • the sulfide-based solid electrolyte is prepared by weighing three types of precursors, Li 2 S, P 2 S 5 , and LiCl, according to stoichiometry, mixing them by performing ball milling, and heat-treating the obtained mixed precursors to crystallize them. , It can be manufactured by pulverizing it again through ball milling. At this time, the mixing, heat treatment, and grinding processes may be performed in an inert gas atmosphere.
  • the polymer in step (A), may be mixed in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the sulfide-based solid electrolyte. Specifically, the polymer may be present in an amount of 0.1 parts by weight or more, 1 part by weight or more, 2 parts by weight or more, 6 parts by weight or less, 7 parts by weight or less, and 10 parts by weight or less with respect to 100 parts by weight of the sulfide-based solid electrolyte. In this case, a uniform polymer coating layer is formed, and a composite solid electrolyte with appropriate ionic conductivity and excellent moisture barrier effect can be manufactured.
  • the mixing may be dry mixing.
  • the mixing may involve ball milling the polymer and the sulfide-based solid electrolyte particles.
  • the dry mixing can be performed using a planetary ball mill equipped with zirconia balls, and can be performed while rotating at a speed of 100 rpm to 200 rpm for uniform mixing.
  • the step (B) is a step of forming a polymer coating layer on the sulfide-based solid electrolyte particles by heat treating the mixture at a temperature higher than the melting point of the polymer. That is, this is the step of melting the polymer to form a polymer coating layer on the sulfide-based solid electrolyte particles.
  • the heat treatment temperature may be 180°C to 250°C, specifically 180°C to 230°C, and more specifically 180°C to 220°C.
  • the polymer can be sufficiently melted while minimizing agglomeration of electrolyte particles, thereby creating a uniform composite solid electrolyte.
  • the heat treatment may be performed in an inert atmosphere to prevent side reactions from occurring.
  • the heat treatment may be performed for 1 hour to 8 hours, specifically, 1 hour or more, 2 hours or more, 4 hours or less, 5 hours or less, and 8 hours or less so that the polymer is sufficiently melted and agglomeration of electrolyte particles is minimized. .
  • the present invention provides an all-solid-state battery including the above composite solid electrolyte.
  • the all-solid-state battery includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and a solid electrolyte layer containing the composite solid electrolyte according to the present invention disposed between the positive electrode and the negative electrode.
  • the all-solid-state battery according to the present invention has excellent moisture stability, so the initial efficiency, lifespan characteristics, and output characteristics of the battery can be excellent.
  • the all-solid-state battery of the present invention can be manufactured according to conventional methods known in the art.
  • it can be manufactured by stacking and pressing so that a solid electrolyte layer exists between the anode and the cathode.
  • the positive electrode can be manufactured by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material, and a solvent on a positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical changes in the battery.
  • stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , surface treated with nickel, titanium, silver, etc. can be used.
  • the bonding power of the positive electrode active material can be strengthened by forming fine irregularities on the surface, and it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and may specifically include lithium metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel, or aluminum.
  • the lithium metal oxide is lithium-manganese-based oxide (for example, LiMnO 2 , LiMn 2 O 4 , etc.), lithium-cobalt-based oxide (for example, LiCoO 2, etc.), lithium-nickel-based oxide (for example, For example, LiNiO 2 etc.), lithium-nickel-manganese oxide (for example, LiNi 1-Y Mn Y O 2 (here, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (here , 0 ⁇ Z ⁇ 2), etc.), lithium-nickel-cobalt oxide (for example, LiNi 1-Y1 Co Y1 O 2 (where 0 ⁇ Y1 ⁇ 1), etc.), lithium-manganese-cobalt oxide Oxides (
  • the lithium metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li(Ni 1/3 Mn 1/3 Co 1/ 3 )O 2 , Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 , Li(Ni 0.7 Mn 0.15 Co 0.15 )O 2 and Li(Ni 0.8 Mn 0.1 Co 0.1 )O 2 etc.), or lithium nickel cobalt aluminum oxide (for example, Li (Ni 0.8 Co 0.15 Al 0.05 )O 2 , etc.), etc., and considering the remarkable improvement effect due to control of the type and content ratio of the constituent elements forming the lithium composite metal oxide, the lithium composite metal oxide is Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , It may be Li(Ni 0.5 Mn 0.3 Co 0.2
  • the positive electrode active material may be included in an amount of 60% to 99% by weight, specifically 70% to 99% by weight, and more specifically 80% to 98% by weight, based on the total weight of solids excluding the solvent in the slurry for the positive electrode. there is.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, poly Examples include propylene, ethylene-propylene-diene monomer, sulfonated ethylene-propylene-diene monomer, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.
  • the binder is contained in an amount of 1% to 20% by weight, specifically 1% to 15% by weight, more specifically 1% to 10% by weight, based on the total weight of solids excluding the solvent in the slurry for the positive electrode. You can.
  • the conductive material is a component to further improve the conductivity of the positive electrode active material.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • graphite Carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Metal powders such as carbon fluoride, aluminum, and nickel powder
  • Conductive whiskers such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material is contained in an amount of 1% to 20% by weight, specifically 1% to 15% by weight, more specifically 1% to 10% by weight, based on the total weight of solids excluding the solvent in the slurry for the positive electrode. may be included.
  • the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that achieves a desirable viscosity when including the positive electrode active material, and optionally a binder and a conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the solid concentration including the positive electrode active material and optionally the binder and the conductive material is 50% to 95% by weight, specifically 70% to 95% by weight, more specifically 70% to 90% by weight. % may be included.
  • the negative electrode may be manufactured by coating a negative electrode slurry containing a negative electrode active material, a binder, a conductive material, and a solvent on a negative electrode current collector, or a graphite electrode made of carbon (C) or the metal itself may be used as the negative electrode.
  • a negative electrode slurry containing a negative electrode active material, a binder, a conductive material, and a solvent on a negative electrode current collector, or a graphite electrode made of carbon (C) or the metal itself may be used as the negative electrode.
  • the negative electrode current collector when a negative electrode is manufactured by coating a negative electrode slurry on the negative electrode current collector, the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • This negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel. Surface treatment with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used.
  • the bonding power of the negative electrode active material can be strengthened by forming fine irregularities on the surface, and can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.
  • the negative electrode active materials include natural graphite, artificial graphite, and carbonaceous materials; lithium-containing titanium complex oxide (LTO), metals (Me) that are Si, SiO x , Sn, Li, Zn, Mg, Cd, Ce, Ni or Fe; alloys composed of the metals (Me); Oxide (MeO x ) of the metal (Me); and one or more types of negative electrode active materials selected from the group consisting of a complex of the metal (Me) and carbon.
  • the anode active material may be specifically a silicon-based anode active material containing silicon (Si), silicon oxide (SiO x ), or silicon alloy. In this case, a thin and stable SEI layer containing siloxane bonds is formed, which can further improve the high-temperature stability and lifespan characteristics of the battery.
  • the negative electrode active material may be included in an amount of 60% to 99% by weight, specifically 70% to 99% by weight, and more specifically 80% to 98% by weight, based on the total weight of solids excluding the solvent in the negative electrode slurry. there is.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, poly Examples include propylene, ethylene-propylene-diene monomer, sulfonated ethylene-propylene-diene monomer, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.
  • the binder is contained in an amount of 1% to 20% by weight, specifically 1% to 15% by weight, more specifically 1% to 10% by weight, based on the total weight of solids excluding the solvent in the slurry for the negative electrode. may be included.
  • the conductive material is a component to further improve the conductivity of the negative electrode active material.
  • These conductive materials are not particularly limited as long as they have conductivity without causing chemical changes in the battery, and examples include graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the conductive material may be included in an amount of 1% to 20% by weight, specifically 1% to 15% by weight, and more specifically 1% to 10% by weight, based on the total weight of solids excluding the solvent in the slurry for the negative electrode. .
  • the solvent may include an organic solvent such as water or NMP (N-methyl-2-pyrrolidone), and may be used in an amount that provides a desirable viscosity when including the negative electrode active material, and optionally a binder and a conductive material. You can.
  • the solid content including the negative electrode active material and optionally the binder and conductive material may be included so that the concentration is 50% by weight to 95% by weight, specifically 70% by weight to 90% by weight.
  • metal itself When using metal itself as the negative electrode, it can be manufactured by physically bonding, rolling, or depositing the metal on the metal thin film itself or the negative electrode current collector.
  • the deposition method may use electrical metal deposition or chemical vapor deposition.
  • the metal to be bonded/rolled/deposited on the metal thin film itself or the negative electrode current collector is a group consisting of lithium (Li), nickel (Ni), tin (Sn), copper (Cu), and indium (In). It may include one type of metal or an alloy of two types of metals selected from.
  • the solid electrolyte layer may further include a binder in addition to the solid electrolyte according to the present invention.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, poly Examples include propylene, ethylene-propylene-diene monomer, sulfonated ethylene-propylene-diene monomer, styrene-butadiene rubber, fluorine rubber, and various copolymers thereof.
  • the binder may be included in an amount of 1% to 20% by weight, specifically 1% to 15% by weight, and more specifically 1% to 10% by weight, based on the total weight of the solid electrolyte layer.
  • the present invention provides a battery module including the all-solid-state battery as a unit cell and a battery pack including the same. Since the battery module and battery pack include the secondary battery with high capacity, high rate characteristics, and cycle characteristics, they are medium-to-large devices selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage systems. It can be used as a power source.
  • Li 2 S, P 2 S 5 , and LiCl Three types of precursors, Li 2 S, P 2 S 5 , and LiCl, were dry mixed (ball milled) at a molar ratio of 5:1:2.
  • a planetary ball mill equipped with zirconia balls was used, and the mixture was rotated at a speed of 300 to 700 rpm for uniform mixing.
  • the obtained mixed precursor was crystallized by heat treatment at 600°C for 12 hours, and then ground again through ball milling to prepare Li 6 PS 5 Cl powder having an azyrodite-type crystal structure. All of the above processes were performed under an inert Ar atmosphere.
  • a mixture was prepared by dry mixing (ball milling) the polymer PCTFE (Mw: 20,000 g/mol) and the Li 6 PS 5 Cl powder having an azirodite-type crystal structure prepared in the preparation example at a weight ratio of 5:95.
  • a planetary ball mill equipped with zirconia balls was used and rotated at a speed of 100 to 200 rpm for uniform mixing.
  • the mixture was heat treated for 2 hours at a temperature in the range of 180°C to 250°C to form a polymer coating layer on Li 6 PS 5 Cl particles having an azyrodite-type crystal structure. All of the above processes were performed under an inert Ar atmosphere.
  • PCTFE Mw: 150,000 g/mol
  • PCTFE Mw: 20,000 g/mol
  • Li 6 PS 5 Cl powder having an azirodite-type crystal structure prepared in Preparation Example was used as a solid electrolyte in Comparative Example 1.
  • Li 6 PS 5 Cl particles having an argyrodite-type crystal structure were produced in the same manner as in Example 1, except that PTFE (Polytetrafluoroethylene) (Sigma Aldrich) was used as the polymer and heat treatment was performed at 330° C. for 2 hours. A composite solid electrolyte on which a polymer coating layer containing PTFE was formed was prepared.
  • PTFE Polytetrafluoroethylene
  • a polymer coating layer containing PDMS was formed on Li 6 PS 5 Cl particles having an argyrodite-type crystal structure in the same manner as Example 1, except that PDMS (JNC, Silaplane FM-0725) was used as the polymer.
  • the formed composite solid electrolyte was prepared.
  • Example 2 In the same manner as in Example 1, except that EVA (ethylene-vinyl acetate copolymer) (Sigma Aldrich) was used as the polymer, EVA was applied on Li 6 PS 5 Cl particles having an azirodite-type crystal structure. A composite solid electrolyte with a polymer coating layer was prepared.
  • EVA ethylene-vinyl acetate copolymer
  • the composite solid electrolytes of Examples 1 and 2 according to the present invention have an initial ionic conductivity at a level capable of driving a battery.
  • Example 1 According to the present invention generate less hydrogen sulfide, a toxic gas, compared to the solid electrolytes of Comparative Examples. From this, Example 1 according to the present invention It can be confirmed that the composite solid electrolyte of and 2 has superior moisture stability.
  • the polymer coating layer includes a polymer containing a repeating unit represented by the formula (I) described herein, and when exposed to moisture or oxygen, the sulfide-based solid electrolyte particles decompose, It can be seen that deterioration can be suppressed. As a result, it can be seen that the composite solid electrolyte according to the present invention not only has excellent atmospheric stability, but also ensures process safety in dry and wet processes when manufacturing batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 종래의 황화물계 고체 전해질의 대기 안정성을 향상시키고자 하는 발명으로, 황화물계 고체 전해질 입자; 및 상기 황화물계 고체 전해질 입자 상에 형성된 고분자 코팅층;을 포함하고, 상기 고분자 코팅층의 고분자는 본 명세서에 기재된 화학식 I로 표시되는 반복 단위를 포함하는 것인 복합 고체 전해질, 이의 제조 방법 및 이를 포함하는 전고체 전지에 관한 것이다.

Description

복합 고체 전해질, 이의 제조 방법 및 이를 포함하는 전고체 전지
관련 출원과의 상호 인용
본 출원은 2022년 08월 30일자 한국특허출원 제10-2022-0109284호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원이 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 대기 안정성과 내화학성이 향상된 황화물계 복합 고체 전해질, 이의 제조 방법 및 이를 포함하는 전고체 전지에 관한 것이다.
전고체 전지는 기존 리튬 이차전지의 양극과 음극 사이를 채우고 있는 액체 전해질을 고체로 바꾼 전지로서, 폭발 위험이 없어 안전하면서도 기존의 전지에 비해 에너지 밀도가 높아 차세대 전지로 주목받고 있다. 전고체 전지에 사용되는 고체 전해질은 전지 내 리튬 이온이 전도 가능한 고체 상태의 물질로, 현재 리튬 이차전지에 적용되는 전해액 수준의 높은 이온 전도도를 지니고 있다. 고체 전해질을 구성하는 핵심 소재로는 폴리머, 황화물, 산화물 등이 있지만, 그 중에서도 연성이 크고 이온 전도도가 높은 황화물계 고체 전해질이 고용량 대형 전지의 제조에 적합한 것으로 평가받는다.
그러나, 황화물계 고체 전해질은 수분에 대한 반응성이 높아 대기 중의 수분뿐만 아니라, 습도가 낮은 조건에서의 수분과도 반응하여 유해 가스인 황화수소(H2S)를 발생시키는 문제가 있다. 이에 따라, 유독한 황화수소가 작업자의 안전성에 악영향을 미칠 뿐만 아니라, 황화물계 고체 전해질 자체의 성능이 열화되는 문제가 있다.
이에, 대기 안정성과 내화학성이 우수한 황화물계 고체 전해질에 대한 개발이 필요한 실정이다.
본 발명의 목적은 대기 안정성과 내화학성이 개선된 복합 고체 전해질을 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위하여, 본 발명은 복합 고체 전해질, 복합 고체 전해질의 제조 방법 및 전고체 전지를 제공한다.
(1) 본 발명은 황화물계 고체 전해질 입자; 및 상기 황화물계 고체 전해질 입자 상에 형성된 고분자 코팅층;을 포함하고, 상기 고분자 코팅층의 고분자는 하기 화학식 I로 표시되는 반복 단위를 포함하는 것인 복합 고체 전해질을 제공한다.
[화학식 I]
Figure PCTKR2023012522-appb-img-000001
상기 화학식 I에서,
X는 F 또는 Cl이다.
(2) 본 발명은 상기 (1)에 있어서, 상기 고분자 코팅층의 고분자는 하기 화학식 1로 표시되는 반복 단위를 포함하는 것인 복합 고체 전해질을 제공한다.
[화학식 1]
Figure PCTKR2023012522-appb-img-000002
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 황화물계 고체 전해질은 아지로다이트형 결정 구조를 가지는 것인 복합 고체 전해질을 제공한다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 고분자 코팅층의 고분자는 중량평균분자량(Mw)이 1,000g/mol 내지 1,000,000g/mol인 것인 복합 고체 전해질을 제공한다.
(5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 상기 고분자 코팅층은 상기 황화물계 고체 전해질 입자 100중량부에 대하여 0.1중량부 내지 10중량부로 포함되는 것인 복합 고체 전해질을 제공한다.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 초기 이온 전도도가 0.001mS/cm 내지 20mS/cm인 복합 고체 전해질을 제공한다.
(7) 본 발명은 상기 (1) 내지 (6) 중 어느 하나에 있어서, 상기 복합 고체 전해질을 온도 25℃, 상대습도 0.5% 내지 0.6%의 대기(Air) 분위기에 노출시켰을 때, 최초 1시간 동안 발생한 황화수소(H2S)의 발생량이 상기 복합 고체 전해질 1g 당 10cm3 이하인 복합 고체 전해질을 제공한다.
(8) 본 발명은 (A) 하기 화학식 I로 표시되는 반복 단위를 포함하는 고분자와 황화물계 고체 전해질을 혼합하여 혼합물을 준비하는 단계; 및 (B) 상기 혼합물을 상기 고분자의 용융점 이상의 온도로 열처리하여 상기 황화물계 고체 전해질 입자 상에 고분자 코팅층을 형성시키는 단계;를 포함하는 상기 (1) 내지 (7) 중 어느 하나에 따른 복합 고체 전해질의 제조 방법을 제공한다.
[화학식 I]
Figure PCTKR2023012522-appb-img-000003
상기 화학식 I에서,
X는 F 또는 Cl이다.
(9) 본 발명은 상기 (8)에 있어서, 상기 고분자는 하기 화학식 1로 표시되는 반복 단위를 포함하는 것인 복합 고체 전해질의 제조 방법을 제공한다.
[화학식 1]
Figure PCTKR2023012522-appb-img-000004
(10) 본 발명은 상기 (8) 또는 (9)에 있어서, 상기 (A) 단계에서 상기 고분자는 상기 황화물계 고체 전해질 100중량부에 대하여 0.1중량부 내지 10중량부로 혼합되는 것인 복합 고체 전해질의 제조 방법을 제공한다.
(11) 본 발명은 상기 (8) 내지 (10) 중 어느 하나에 있어서, 상기 혼합은 건식 혼합인 복합 고체 전해질의 제조 방법을 제공한다.
(12) 본 발명은 상기 (8) 내지 (11) 중 어느 하나에 있어서, 상기 열처리 온도는 180℃ 내지 250℃인 복합 고체 전해질의 제조 방법을 제공한다.
(13) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 따른 복합 고체 전해질을 포함하는 전고체 전지를 제공한다.
본 발명에 따른 복합 고체 전해질은 황화물계 고체 전해질 입자 상에 대기 안정성 및 내화학성이 우수한 고분자 코팅층이 형성되어 있어, 복합 고체 전해질 자체의 대기 안정성이 우수할 뿐만 아니라, 전지를 제조할 때 습식(wet) 공정에서 내화학성이 개선될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서, “*”는 반복 단위 간의 연결 부위이며, 말단인 경우 F, Cl 또는 H이다.
복합 고체 전해질
본 발명에 따른 복합 고체 전해질은, 황화물계 고체 전해질 입자; 및 상기 황화물계 고체 전해질 입자 상에 형성된 고분자 코팅층;을 포함하고, 상기 고분자 코팅층의 고분자는 하기 화학식 I로 표시되는 반복 단위를 포함하는 것이다.
[화학식 I]
Figure PCTKR2023012522-appb-img-000005
상기 화학식 I에서,
X는 F 또는 Cl이다.
본 발명에 따르면, 상기 고분자 코팅층의 고분자는 하기 화학식 1로 표시되는 반복 단위를 포함하는 것일 수 있다.
[화학식 1]
Figure PCTKR2023012522-appb-img-000006
본 발명자들은 본 발명에 따른 복합 고체 전해질의 경우, 황화물계 고체 전해질 입자 상에 대기 안정성이 우수한(수분 및 산소 차단 성능이 우수한) 고분자 코팅층이 형성되어 있어, 복합 고체 전해질 자체의 대기 안정성이 우수할 뿐만 아니라, 전지를 제조할 때 건식(dry) 및 습식(wet) 공정에서 내화학성이 개선될 수 있다는 것을 알아내고 본 발명을 완성하였다.
본 발명에 따른 복합 고체 전해질은, 상기 고분자 코팅층이 상기 화학식 I로 표시되는 반복 단위를 포함하는 고분자를 포함하여, 구체적으로 상기 화학식 1로 표시되는 반복 단위를 포함하는 고분자를 포함하여, 수분 또는 산소에 노출되었을 때 황화물계 고체 전해질 입자가 분해, 열화되는 것을 억제할 수 있다. 결과적으로, 유독 가스인 황화수소가 발생하는 것을 억제할 수 있다. 그리고, 상기 복합 고체 전해질의 이온 전도도가 저하되는 것을 방지할 수 있다.
본 발명에 따른 복합 고체 전해질은, 상기 고분자 코팅층이 PTFE, PDMS, EVA 등의 고분자에 비해 수분 투과도가 보다 낮은 상기 화학식 I로 표시되는 반복 단위를 포함하는 고분자를 포함하여, 구체적으로 상기 화학식 1로 표시되는 반복 단위를 포함하는 고분자를 포함하여, 황화물계 고체 전해질 입자가 수분과 접촉하는 것을 보다 더 잘 차단할 수 있다.
본 발명에 따르면, 상기 고분자는 수분 안정성을 보다 개선하기 위한 측면에서, 구체적으로, 화학식 1로 표시되는 반복 단위로만 이루어진 것일 수 있다. 즉, 상기 고분자는 폴리클로로트리플루오로에틸렌(PCTFE)일 수 있다.
본 발명에 따르면, 상기 황화물계 고제 전해질은 높은 이온 전도도와 리튬 음극과의 낮은 반응성 측면에서 아지로다이트형 결정 구조를 가지는 것일 수 있다. 상기 황화물계 고체 전해질은 Li, P 및 S를 포함하는 황화물계 고체 전해질일 수 있다.
예를 들어, 상기 황화물계 고체 전해질은 하기 화학식 2로 표시되는 조성을 가지는 것일 수 있다. 이 경우, 본 발명에 따른 복합 고체 전해질이 높은 이온 전도도를 가지고, 리튬 음극과의 반응성이 낮을 수 있으며, 수분 또는 산소에 노출되었을 때 황화물계 고체 전해질 입자가 분해, 열화되는 것이 억제될 수 있다.
[화학식 2]
Lia(P1-bMb)ScXd
화학식 2에서,
M은 Si, Sn, Nb, Ni, Ge, Ga 및 Al 중에서 선택되는 1종 이상이고,
X는 F, Cl, Br 및 I 중에서 선택되는 1종 이상이며,
5.0<a<7.5, 0≤b≤0.7, 3.5≤c≤7, 0.8≤d≤1.7이다.
상기 M은 아지로다이트형 결정 구조를 가지는 고체 전해질에 도핑되는 도핑 원소로 Sn, Nb, Ni, Ge, Ga 및 Al 중에서 선택되는 1종 이상, 구체적으로는 Sn, Nb, Ge 및 Al 중에서 선택되는 1종 이상일 수 있다.
본 발명에 따르면, 상기 고분자 코팅층의 고분자는 상기 고분자 코팅층의 고분자는 중량평균분자량(Mw)이 1,000g/mol 내지 1,000,000g/mol일 수 있다. 구체적으로, 상기 고분자 코팅층의 고분자는 중량평균분자량(Mw)이 1,000g/mol 이상, 200,000g/mol 이하, 500,000g/mol 이하, 1,000,000g/mol 이하인 것일 수 있다. 고분자의 중량평균분자량(Mw)이 상기 범위 내인 경우, 균일하고 얇은 고분자 코팅층 형성이 가능하여, 이온 전도도 감소가 최소화되면서, 수분 차단 효과가 보다 개선될 수 있다.
본 발명에 따르면, 상기 고분자 코팅층은 상기 황화물계 고체 전해질 입자 100중량부에 대하여 0.1중량부 내지 10중량부로 포함되는 것일 수 있다. 구체적으로 상기 고분자 코팅층은 상기 황화물계 고체 전해질 입자 100중량부에 대하여 0.1중량부 이상, 0.5중량부 이상, 5중량부 이하, 7중량부 이하, 10중량부 이하로 포함되는 것일 수 있다. 이 경우, 수분 차단 효과가 개선될 수 있고, 이온 전도도 감소를 최소화할 수 있다.
본 발명에 따르면, 상기 고체 전해질은 초기 이온 전도도가 0.001mS/cm 내지 20mS/cm, 구체적으로, 0.001mS/cm 이상, 0.01mS/cm 이상, 5mS/cm 이하, 10mS/cm 이하, 20mS/cm 이하일 수 있다. 전해질의 이온 전도도는 높을수록 좋지만, 초기 이온 전도도가 상기 범위를 만족하는 경우, 수분 안정성 개선 효과가 우수할 수 있다.
상기 초기 이온 전도도는 복합 고체 전해질 제조 직후, 온도 22℃, 상대습도 0.7%의 드라잉 룸 내에서 측정된 저항 값으로부터 계산된 값이다. 구체적으로, 다음과 같은 방법을 통해 계산된 값이다.
i) 복합 고체 전해질 제조 직후, 복합 고체 전해질 분말을 150mg 취해 직경 13mm의 SUS 몰드에 투입함.
ii) 상기 몰드를 절연용 PEEK와 함께 프레스기에 장착한 상태로 Potentiostat을 SUS 몰드에 연결한 후에, 370MPa로 가압하여 전해질 구조를 충분히 치밀화한 후, 압력을 천천히 낮추어 100MPa로 유지하면서, 측정 주파수 1Hz ~ 7MHz까지의 교류 임피던스 측정을 수행함.
iii) 나이퀴스트 플롯(Nyquist plot)을 통해, 측정된 저항 값으로부터 이온 전도도를 계산함.
본 발명에 따르면, 상기 복합 고체 전해질은 상기 복합 고체 전해질을 온도 25℃, 상대습도 0.5% 내지 0.6%의 대기(Air) 분위기에 노출시켰을 때, 최초 1시간 동안 발생한 황화수소(H2S)의 발생량이 상기 복합 고체 전해질 1g 당 10cm3 이하인 것일 수 있다.
즉, 본 발명에 따른 복합 고체 전해질은 수분 안정성이 우수하여, 유독 가스인 황화수소 발생량이 적고 발생 속도가 느려 공정 안전성을 확보할 수 있다.
복합 고체 전해질의 제조 방법
본 발명에 따른 복합 고체 전해질은 황화물계 고체 전해질 입자를 하기 화학식 I로 표시되는 반복 단위를 포함하는 고분자를 포함하는 고분자 조성물로 코팅하여 제조할 수 있다.
[화학식 I]
Figure PCTKR2023012522-appb-img-000007
상기 화학식 I에서,
X는 F 또는 Cl이다.
본 발명에 따르면, 상기 고분자는 하기 화학식 1로 표시되는 반복 단위를 포함하는 것일 수 있다.
[화학식 1]
Figure PCTKR2023012522-appb-img-000008
구체적으로, 본 발명에 따른 복합 고체 전해질의 제조 방법은 (A) 상기 화학식 I로 표시되는 반복 단위를 포함하는 고분자와 황화물계 고체 전해질을 혼합하여 혼합물을 준비하는 단계; 및 (B) 상기 혼합물을 상기 고분자의 용융점 이상의 온도로 열처리하여 상기 황화물계 고체 전해질 입자 상에 고분자 코팅층을 형성시키는 단계;를 포함한다.
(A) 단계
상기 (A) 단계는 상기 화학식 I로 표시되는 반복 단위를 포함하는 고분자(구체적으로 상기 화학식 1로 표시되는 반복 단위를 포함하는 고분자)와 황화물계 고체 전해질을 혼합하여 혼합물을 준비하는 단계이다.
상기 화학식 I로 표시되는 반복 단위를 포함하는 고분자, 상기 화학식 1로 표시되는 반복 단위를 포함하는 고분자 및 상기 황화물계 고체 전해질은 상기 본 발명에 따른 복합 고체 전해질에서 기술한 것과 동일한 것이다.
한편, 상기 황화물계 고체 전해질은 예를 들어, 기계적 밀링법 및 고상 합성법을 통해 합성할 수 있다. 구체적으로, 상기 황화물계 고체 전해질은 Li2S, P2S5, LiCl 3종의 전구체를 화학양론에 맞추어 칭량한 후, 볼 밀링을 수행하여 혼합하고, 수득한 혼합 전구체를 열처리하여 결정화시킨 후, 다시 볼 밀링을 통해 분쇄하여 제조할 수 있다. 이때, 혼합, 열처리, 분쇄 공정은 비활성 가스 분위기에서 수행하는 것일 수 있다.
본 발명에 따르면, 상기 (A) 단계에서 상기 고분자는 상기 황화물계 고체 고체 전해질 100중량부에 대하여 0.1중량부 내지 10중량부로 혼합되는 것일 수 있다. 구체적으로, 상기 고분자는 상기 황화물계 고체 고체 전해질 100중량부에 대하여 0.1중량부 이상, 1중량부 이상, 2중량부 이상, 6중량부 이하, 7중량부 이하, 10중량부 이하일 수 있다. 이 경우, 균일한 고분자 코팅층이 형성되어, 적절한 이온 전도도를 가지면서도 수분 차단 효과가 우수한 복합 고체 전해질이 제조될 수 있다.
본 발명에 따르면, 상기 혼합은 건식 혼합일 수 있다. 구체적으로, 상기 혼합은 상기 고분자와 상기 황화물계 고체 전해질 입자를 볼 밀링하는 것일 수 있다. 상기 건식 혼합은 지르코니아 볼을 투입한 유성 볼밀 장비를 사용하여 수행될 수 있으며, 균일한 혼합을 위해 100rpm 내지 200rpm의 속도로 회전시키면서 수행될 수 있다.
(B) 단계
상기 (B) 단계는 상기 혼합물을 상기 고분자의 용융점 이상의 온도로 열처리하여 상기 황화물계 고체 전해질 입자 상에 고분자 코팅층을 형성시키는 단계이다. 즉, 상기 고분자를 용융시켜 황화물계 고체 전해질 입자 상에 고분자 코팅층을 형성시키는 단계이다.
본 발명에 따르면, 상기 열처리 온도는 180℃ 내지 250℃, 구체적으로 180℃ 내지 230℃, 더욱 구체적으로 180℃ 내지 220℃일 수 있다. 이 경우, 고분자가 충분히 용융되면서도 전해질 입자의 응집을 최소화할 수 있어, 균일한 복합 고체 전해질이 생성되는 이점이 있다.
상기 열처리는 부반응이 발생하는 것을 방지하기 위해 비활성 분위기에서 수행되는 것일 수 있다.
상기 열처리는 고분자가 충분히 용융되면서도 전해질 입자의 응집이 최소화되도록, 1시간 내지 8시간, 구체적으로, 1시간 이상, 2시간 이상, 4시간 이하, 5시간 이하, 8시간 이하동안 수행되는 것일 수 있다.
전고체 전지
본 발명은 상기 복합 고체 전해질을 포함하는 전고체 전지를 제공한다.
구체적으로, 상기 전고체 전지는 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 상기 양극 및 음극 사이에 배치된 본 발명에 따른 복합 고체 전해질을 포함하는 고체 전해질층을 포함한다.
본 발명에 따른 전고체 전지는 수분 안정성이 우수하여, 전지의 초기 효율, 수명 특성 및 출력 특성이 우수할 수 있다.
이때, 본 발명의 전고체 전지는 당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들면, 양극과 음극 사이에 고체 전해질층이 존재하도록 적층하고 가압하여 제조할 수 있다.
(1) 양극
상기 양극은 양극 집전체 상에 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극용 슬러리를 코팅하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 표면에 미세한 요철을 형성하여 양극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 자립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물 (예를 들면 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 양극 활물질은 양극용 슬러리 중 용매를 제외한 고형분 전체 중량을 기준으로 60중량% 내지 99중량%, 구체적으로는 70중량% 내지 99중량%, 보다 구체적으로는 80중량% 내지 98중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분이다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈, 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 설폰화 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
통상적으로 상기 바인더는 양극용 슬러리 중 용매를 제외한 고형분 전체 중량을 기준으로 1중량% 내지 20중량%, 구체적으로는 1중량% 내지 15중량%, 보다 구체적으로는 1중량% 내지 10중량%로 포함될 수 있다.
상기 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위한 성분이다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
통상적으로 상기 도전재는, 양극용 슬러리 중 용매를 제외한 고형물 전체 중량을 기준으로 1중량% 내지 20중량%, 구체적으로는 1중량% 내지 15중량%, 보다 구체적으로는 1중량% 내지 10중량%로 포함될 수 있다.
상기 용매는 NMP(N-메틸-2-피롤리돈) 등의 유기 용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50중량% 내지 95중량%, 구체적으로는 70중량% 내지 95중량%, 보다 구체적으로는 70중량% 내지 90중량%가 되도록 포함될 수 있다.
(2) 음극
상기 음극은 예를 들어, 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 음극용 슬러리를 코팅하여 제조하거나, 탄소(C)로 이루어진 흑연 전극 또는 금속 자체를 음극으로 사용할 수 있다.
예를 들어, 상기 음극 집전체 상에 음극용 슬러리를 코팅하여 음극을 제조하는 경우, 상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, SiOx, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물(MeOx); 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 음극 활물질을 들 수 있다. 음극 활물질은 구체적으로는 실리콘(Si), 실리콘 산화물(SiOx) 또는 실리콘 합금(silicon alloy) 등을 포함하는 실리콘계 음극 활물질이 사용될 수 있다. 이 경우, 실록산 결합을 포함하는 얇고 안정한 SEI 층이 형성되어, 전지의 고온 안정성 및 수명 특성을 보다 더 개선시킬 수 있다.
상기 음극 활물질은 음극용 슬러리 중 용매를 제외한 고형분 전체 중량을 기준으로 60중량% 내지 99중량%, 구체적으로는 70중량% 내지 99중량%, 보다 구체적으로는 80중량% 내지 98중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분이다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈, 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 설폰화 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
통상적으로 상기 바인더는, 음극용 슬러리 중 용매를 제외한 고형분 전체 중량을 기준으로 1중량% 내지 20중량%, 구체적으로는 1중량% 내지 15중량%, 보다 구체적으로는 1중량% 내지 10중량%로 포함될 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분이다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 도전재는 음극용 슬러리 중 용매를 제외한 고형분 전체 중량을 기준으로 1중량% 내지 20중량%, 구체적으로는 1중량% 내지 15중량%, 보다 구체적으로는 1중량% 내지 10중량%로 포함될 수 있다.
상기 용매는 물 또는 NMP(N-메틸-2-피롤리돈) 등의 유기 용매를 포함할 수 있으며, 상기 음극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 고형분의 농도가 50중량% 내지 95중량%, 구체적으로는 70중량% 내지 90중량%가 되도록 포함될 수 있다.
상기 음극으로서, 금속 자체를 사용하는 경우, 금속 박막 자체 또는 상기 음극 집전체 상에 금속을 물리적으로 접합, 압연 또는 증착 등을 시키는 방법으로 제조할 수 있다. 상기 증착하는 방식은 금속을 전기적 증착법 또는 화학적 증착법(chemical vapor deposition)을 사용할 수 있다.
예를 들어, 상기 금속 박막 자체 또는 상기 음극 집전체 상에 접합/압연/증착되는 금속은 리튬(Li), 니켈(Ni), 주석(Sn), 구리(Cu) 및 인듐(In)으로 이루어진 군에서 선택되는 1종의 금속 또는 2종의 금속의 합금 등을 포함할 수 있다.
(3) 고체 전해질층
고체 전해질층은 본 발명에 따른 고체 전해질 이외에 바인더를 더 포함할 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분이다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈, 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머, 설폰화 에틸렌-프로필렌-디엔 모노머, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
통상적으로 상기 바인더는, 고체 전해질층 전체 중량을 기준으로 1중량% 내지 20중량%, 구체적으로는 1중량% 내지 15중량%, 보다 구체적으로는 1중량% 내지 10중량%로 포함될 수 있다.
본 발명은 상기 전고체 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 구체적인 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
제조예
Li2S, P2S5, LiCl 3종의 전구체를 5:1:2의 몰비로 건식 혼합(볼 밀링)하였다. 건식 혼합 시, 지르코니아 볼을 투입한 유성 볼밀 장비 사용하였으며, 균일한 혼합을 위해 300rpm 내지 700rpm의 속도로 회전시켰다. 이후, 수득한 혼합 전구체를 600℃에서 12시간 열처리하여 결정화시킨 후, 다시 볼 밀링을 통해 분쇄하여 아지로다이트형 결정 구조를 가지는 Li6PS5Cl 분말을 제조하였다. 상기 과정은 모두 비활성 Ar 분위기 하에서 수행하였다.
실시예 및 비교예
실시예 1
고분자로 PCTFE(Mw: 20,000g/mol)와 제조예에서 제조한 아지로다이트형 결정 구조를 가지는 Li6PS5Cl 분말을 5:95의 중량비로 건식 혼합(볼 밀링)하여 혼합물을 준비하였다. 건식 혼합 시, 지르코니아 볼을 투입한 유성 볼밀 장비를 사용하였으며, 균일한 혼합을 위해 100rpm 내지 200rpm의 속도로 회전시켰다. 상기 혼합물을 180℃ 내지 250℃ 범위 내 온도에서 2시간 동안 열처리하여, 아지로다이트형 결정 구조를 가지는 Li6PS5Cl 입자 상에 고분자 코팅층을 형성하였다. 상기 과정은 모두 비활성 Ar 분위기 하에서 수행하였다.
결과적으로, 아지로다이트형 결정 구조를 가지는 Li6PS5Cl 입자 상에, PCTFE를 포함하는 고분자 코팅층이 형성된 복합 고체 전해질을 수득하였다.
실시예 2
고분자로 PCTFE(Mw: 20,000g/mol) 대신 PCTFE(Mw: 150,000g/mol)를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 아지로다이트형 결정 구조를 가지는 Li6PS5Cl 입자 상에, PCTFE를 포함하는 고분자 코팅층이 형성된 복합 고체 전해질을 제조하였다.
비교예 1
제조예에서 제조한 아지로다이트형 결정 구조를 가지는 Li6PS5Cl 분말을 비교예 1의 고체 전해질로 사용하였다.
비교예 2
고분자로 PTFE(Polytetrafluoroethylene)(시그마 알드리치社)를 사용한 것과, 열처리를 330℃에서 2시간 수행한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 아지로다이트형 결정 구조를 가지는 Li6PS5Cl 입자 상에, PTFE를 포함하는 고분자 코팅층이 형성된 복합 고체 전해질을 제조하였다.
비교예 3
고분자로 PDMS(JNC社, Silaplane FM-0725)를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 아지로다이트형 결정 구조를 가지는 Li6PS5Cl 입자 상에, PDMS를 포함하는 고분자 코팅층이 형성된 복합 고체 전해질을 제조하였다.
비교예 4
고분자로 EVA(Ethylene-vinyl acetate copolymer)(시그마 알드리치社)를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 아지로다이트형 결정 구조를 가지는 Li6PS5Cl 입자 상에, EVA를 포함하는 고분자 코팅층이 형성된 복합 고체 전해질을 제조하였다.
구분 고분자 종류 중량평균분자량(Mw)
(g/mol)
실시예 1 PCTFE 20,000
실시예 2 PCTFE 150,000
비교예 1 - -
비교예 2 PTFE -
비교예 3 PDMS 10,000
비교예 4 EVA -
실험예 1: 초기 이온 전도도 평가
실시예 1 및 2의 복합 고체 전해질 분말을 제조한 직후, 각각 150mg씩 취해 직경 13mm의 SUS 몰드에 투입하였다. 상기 몰드를 절연용 PEEK와 함께 프레스기에 장착한 상태로 Potentiostat을 SUS 몰드에 연결하였다. 370MPa로 가압하여 전해질 구조를 충분히 치밀화한 후, 압력을 천천히 낮추어 100MPa로 유지하면서, 측정 주파수 1Hz ~ 7MHz까지의 교류 임피던스 측정을 수행하였다. 나이퀴스트 플롯(Nyquist plot)을 통해, 측정된 저항 값으로부터 이온 전도도를 계산하여, 하기 표 2에 나타내었다. 모든 측정은 온도 22℃, 상대습도 0.7%의 드라잉 룸 내에서 수행되었다.
구분 초기 이온 전도도
(mS/cm)
실시예 1 2.20
실시예 2 2.10
표 2를 참조하면, 본 발명에 따른 실시예 1 및 2의 복합 고체 전해질은 전지를 구동할 수 있는 수준의 초기 이온 전도도를 가지는 것을 확인할 수 있다.
실험예 2: 황화수소 기체 발생량 평가
실시예 1 및 2의 복합 고체 전해질, 비교예 1의 고체 전해질 및 비교예 2 내지 4의 복합 고체 전해질 분말을 각각 5mg씩 취해 황화수소 센서가 비치된 글로브 박스 내(온도 25℃, 상대습도 0.59%로 제어된 건조 대기(Air) 분위기)에 1시간 이상 방치하였다. 방치 직후 1시간 동안의 황화수소 발생량을 통해, 복합 고체 전해질 1g 당 황화수소 발생량을 산출하였고, 이를 하기 표 3에 나타내었다.
구분 최초 1시간 동안 발생한 황화수소(H2S)의 발생량
(cm3)
실시예 1 5.98
실시예 2 6.30
비교예 1 26.05
비교예 2 11.12
비교예 3 16.34
비교예 4 13.20
표 3을 참조하면, 본 발명에 따른 실시예 1 및 2의 복합 고체 전해질은 비교예들의 고체 전해질에 비해, 유독 가스인 황화수소 발생량이 적은 것을 확인할 수 있고, 이로부터, 본 발명에 따른 실시예 1 및 2의 복합 고체 전해질은 수분 안정성이 보다 우수하다는 것을 확인할 수 있다.
이에 따라, 본 발명에 따른 복합 고체 전해질은, 상기 고분자 코팅층이 본 명세서에 기재된 화학식 I로 표시되는 반복 단위를 포함하는 고분자를 포함하여, 수분 또는 산소에 노출되었을 때 황화물계 고체 전해질 입자가 분해, 열화되는 것을 억제할 수 있다는 것을 알 수 있다. 결과적으로, 본 발명에 따른 복합 고체 전해질은 그 자체의 대기 안정성이 우수할 뿐만 아니라, 전지를 제조할 때 건식(dry) 및 습식(wet) 공정에서 공정 안전성을 확보할 수 있다는 것을 알 수 있다.

Claims (13)

  1. 황화물계 고체 전해질 입자; 및
    상기 황화물계 고체 전해질 입자 상에 형성된 고분자 코팅층;을 포함하고,
    상기 고분자 코팅층의 고분자는 하기 화학식 I로 표시되는 반복 단위를 포함하는 것인 복합 고체 전해질:
    [화학식 I]
    Figure PCTKR2023012522-appb-img-000009
    상기 화학식 I에서,
    X는 F 또는 Cl이다.
  2. 청구항 1에 있어서,
    상기 고분자 코팅층의 고분자는 하기 화학식 1로 표시되는 반복 단위를 포함하는 것인 복합 고체 전해질:
    [화학식 1]
    Figure PCTKR2023012522-appb-img-000010
    .
  3. 청구항 1에 있어서,
    상기 황화물계 고체 전해질은 아지로다이트형 결정 구조를 가지는 것인 복합 고체 전해질.
  4. 청구항 1에 있어서,
    상기 고분자 코팅층의 고분자는 중량평균분자량(Mw)이 1,000g/mol 내지 1,000,000g/mol인 것인 복합 고체 전해질.
  5. 청구항 1에 있어서,
    상기 고분자 코팅층은 상기 황화물계 고체 전해질 입자 100중량부에 대하여 0.1중량부 내지 10중량부로 포함되는 것인 복합 고체 전해질.
  6. 청구항 1에 있어서,
    초기 이온 전도도가 0.01mS/cm 내지 20mS/cm인 복합 고체 전해질.
  7. 청구항 1에 있어서,
    상기 복합 고체 전해질을 온도 25℃, 상대습도 0.5% 내지 0.6%의 대기(Air) 분위기에 노출시켰을 때, 최초 1시간 동안 발생한 황화수소(H2S)의 발생량이 상기 복합 고체 전해질 1g 당 10cm3 이하인 복합 고체 전해질.
  8. (A) 하기 화학식 I로 표시되는 반복 단위를 포함하는 고분자와 황화물계 고체 전해질을 혼합하여 혼합물을 준비하는 단계; 및
    (B) 상기 혼합물을 상기 고분자의 용융점 이상의 온도로 열처리하여 상기 황화물계 고체 전해질 입자 상에 고분자 코팅층을 형성시키는 단계;를 포함하는 청구항 1에 따른 복합 고체 전해질의 제조 방법:
    [화학식 I]
    Figure PCTKR2023012522-appb-img-000011
    상기 화학식 I에서,
    X는 F 또는 Cl이다.
  9. 청구항 8에 있어서,
    상기 고분자는 하기 화학식 1로 표시되는 반복 단위를 포함하는 것인 복합 고체 전해질의 제조 방법:
    [화학식 1]
    Figure PCTKR2023012522-appb-img-000012
    .
  10. 청구항 8에 있어서,
    상기 (A) 단계에서 상기 고분자는 상기 황화물계 고체 전해질 100중량부에 대하여 0.1중량부 내지 10중량부로 혼합되는 것인 복합 고체 전해질의 제조 방법.
  11. 청구항 8에 있어서,
    상기 혼합은 건식 혼합인 복합 고체 전해질의 제조 방법.
  12. 청구항 8에 있어서,
    상기 열처리 온도는 180℃ 내지 250℃인 복합 고체 전해질의 제조 방법.
  13. 청구항 1 내지 청구항 7 중 어느 한 항에 따른 복합 고체 전해질을 포함하는 전고체 전지.
PCT/KR2023/012522 2022-08-30 2023-08-24 복합 고체 전해질, 이의 제조 방법 및 이를 포함하는 전고체 전지 WO2024049097A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0109284 2022-08-30
KR20220109284 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024049097A1 true WO2024049097A1 (ko) 2024-03-07

Family

ID=90098223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012522 WO2024049097A1 (ko) 2022-08-30 2023-08-24 복합 고체 전해질, 이의 제조 방법 및 이를 포함하는 전고체 전지

Country Status (2)

Country Link
KR (1) KR20240031075A (ko)
WO (1) WO2024049097A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160013630A (ko) * 2014-07-28 2016-02-05 울산과학기술원 산학협력단 고분자 코팅층으로 표면개질된 황화물계 고체전해질 입자, 이의 제조방법, 및 이를 포함하는 전고체전지
KR20170050562A (ko) * 2015-10-30 2017-05-11 주식회사 엘지화학 황화물계 고체 전해질, 이의 제조방법 및 이를 포함하는 전고체 전지
KR20190062998A (ko) * 2017-11-29 2019-06-07 전자부품연구원 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
KR20210065147A (ko) * 2018-11-08 2021-06-03 다이킨 고교 가부시키가이샤 피복 입자, 정극, 부극, 전고체 전지, 및 황화물계 전고체 전지용 코팅 조성물
WO2022065813A1 (ko) * 2020-09-23 2022-03-31 주식회사 엘지에너지솔루션 미세 쇼트 방지를 위한 고분자층을 포함하는 전고체전지용 음극 및 이를 포함하는 전고체전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160013630A (ko) * 2014-07-28 2016-02-05 울산과학기술원 산학협력단 고분자 코팅층으로 표면개질된 황화물계 고체전해질 입자, 이의 제조방법, 및 이를 포함하는 전고체전지
KR20170050562A (ko) * 2015-10-30 2017-05-11 주식회사 엘지화학 황화물계 고체 전해질, 이의 제조방법 및 이를 포함하는 전고체 전지
KR20190062998A (ko) * 2017-11-29 2019-06-07 전자부품연구원 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
KR20210065147A (ko) * 2018-11-08 2021-06-03 다이킨 고교 가부시키가이샤 피복 입자, 정극, 부극, 전고체 전지, 및 황화물계 전고체 전지용 코팅 조성물
WO2022065813A1 (ko) * 2020-09-23 2022-03-31 주식회사 엘지에너지솔루션 미세 쇼트 방지를 위한 고분자층을 포함하는 전고체전지용 음극 및 이를 포함하는 전고체전지

Also Published As

Publication number Publication date
KR20240031075A (ko) 2024-03-07

Similar Documents

Publication Publication Date Title
WO2019147017A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019050282A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2019059552A2 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019083221A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018143753A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020080887A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지 및 그의 제조방법
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질
WO2020111545A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2021049918A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019031766A2 (ko) 리튬금속과 무기물 복합박막 제조방법 및 이를 이용한 리튬 이차전지 음극의 전리튬화 방법
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020197278A1 (ko) 리튬 이차 전지
WO2019093864A2 (ko) 리튬 코발트계 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 이차 전지
WO2018124593A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019078685A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019078672A2 (ko) 이차전지용 양극활물질 제조방법 및 이를 이용하는 이차전지
WO2021096265A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법
WO2024049097A1 (ko) 복합 고체 전해질, 이의 제조 방법 및 이를 포함하는 전고체 전지
WO2021080384A1 (ko) 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2020009313A1 (ko) 리튬-전해질 용매의 공삽입을 통해 전기화학특성이 향상된 몰리브덴 설파이드 전극을 포함하는 이차전지 시스템
WO2019245306A1 (ko) 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860774

Country of ref document: EP

Kind code of ref document: A1