WO2020226361A1 - 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지 - Google Patents

고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지 Download PDF

Info

Publication number
WO2020226361A1
WO2020226361A1 PCT/KR2020/005757 KR2020005757W WO2020226361A1 WO 2020226361 A1 WO2020226361 A1 WO 2020226361A1 KR 2020005757 W KR2020005757 W KR 2020005757W WO 2020226361 A1 WO2020226361 A1 WO 2020226361A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
polymer sheet
porous polymer
solid
electrolyte membrane
Prior art date
Application number
PCT/KR2020/005757
Other languages
English (en)
French (fr)
Inventor
이정필
김은비
조성주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US17/268,749 priority Critical patent/US20210328260A1/en
Priority to EP20802764.9A priority patent/EP3819975A4/en
Priority to JP2021530766A priority patent/JP7247340B2/ja
Priority to CN202080004566.5A priority patent/CN112585796B/zh
Publication of WO2020226361A1 publication Critical patent/WO2020226361A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all-solid-state battery electrolyte membrane, an all-solid-state battery including the electrolyte membrane, and a method of manufacturing the electrolyte membrane.
  • a lithium ion battery using a liquid electrolyte has a structure in which a negative electrode and a positive electrode are partitioned by a separator, so if the separator is damaged by deformation or external impact, a short circuit may occur, which may lead to a risk of overheating or explosion. Therefore, it can be said that the development of a solid electrolyte that can secure safety in the field of lithium ion secondary batteries is a very important task.
  • a lithium secondary battery using a solid electrolyte has advantages in that the safety of the battery is increased, leakage of an electrolyte solution can be prevented, so that the reliability of the battery is improved, and it is easy to manufacture a thin-type battery.
  • An aspect of the present invention is to solve the above-described technical problem, it is an object of the present invention to provide a solid electrolyte membrane for an all-solid battery having high ionic conductivity and high mechanical strength, and an all-solid battery including the same.
  • another object of the present invention is to provide a solid electrolyte membrane having the above-described characteristics and a method of manufacturing an all-solid-state battery including the same.
  • An aspect of the present invention provides a method of manufacturing a solid electrolyte membrane for an all-solid battery according to the following embodiments.
  • the first embodiment is a first embodiment.
  • the heat treatment in step (S11) relates to a method of manufacturing a solid electrolyte membrane for an all-solid battery, which is performed at a temperature lower than the melting point of the porous polymer sheet in step (S10).
  • the heat treatment in step (S11) relates to a method of manufacturing a solid electrolyte membrane for an all-solid battery that is performed at 50°C to 300°C for 10 minutes to 24 hours.
  • the porous polymer sheet of the step (S10) relates to a method of manufacturing an electrolyte membrane for an all-solid battery having a porosity of 20 vol% to 50 vol% and an average pore diameter of 20 nm to 500 nm.
  • the ratio (B/A) of the average pore diameter (B) in the heat-treated porous polymer sheet in the (S11) step to the average pore diameter (A) in the porous polymer sheet in the (S10) step is 1.1 to 100. It relates to a method of manufacturing a solid electrolyte membrane for a solid battery.
  • the ratio (D/C) of the porosity (D) of the heat-treated porous polymer sheet in the (S11) step to the porosity (C) of the porous polymer sheet in step (S10) is 1.1 to 3 It relates to a method of manufacturing a solid electrolyte membrane.
  • the end of the porous polymer sheet is fixed and then heat treated, so that the average pore diameter is greater than the average pore diameter of the porous polymer sheet in the step (S10) and the porosity of the porous polymer sheet in the step (S10). It is a step of obtaining a heat-treated porous polymer sheet having a greater porosity,
  • the step (S11) is a step of heat treatment so that the porous polymer sheet has a porosity of 30 vol% to 90 vol% and a pore diameter of 100 nm to 100 ⁇ m after fixing the end of the porous polymer sheet. It relates to a method of manufacturing a membrane.
  • the porous polymer sheet of the step (S10) is a polymer film containing a polyolefin-based polymer resin, and the polymer film has a thickness of 5 ⁇ m to 50 ⁇ m. It relates to a method of manufacturing a solid electrolyte membrane for an all-solid battery.
  • Another aspect of the present invention provides a solid electrolyte membrane for an all-solid battery according to the following embodiments.
  • the porous polymer sheet has a porosity of 30 vol% to 90 vol% and an average pore diameter of 100 nm to 100 ⁇ m,
  • It relates to a solid electrolyte membrane for an all-solid-state battery in which the solid electrolyte material is filled into the pores of the porous polymer sheet, and the solid electrolyte material and the porous polymer sheet are combined.
  • the melting point of the porous polymer sheet relates to a solid electrolyte membrane for an all-solid battery that is 50 °C to 300 °C.
  • the porous polymer sheet relates to a solid electrolyte membrane for an all-solid battery that is a polymer film containing a polyolefin-based polymer resin.
  • the porous polymer sheet relates to a solid electrolyte membrane for an all-solid battery obtained by heat treatment at a temperature below the melting point.
  • the solid electrolyte membrane is 15 ⁇ m to 50 ⁇ m thickness, it has a tensile strength according to the all-solid battery, a solid electrolyte membrane that is 100kgf / cm 2 to 2,000kgf / cm 2.
  • Another aspect of the present invention provides an all-solid-state battery including a solid electrolyte membrane according to any one of the embodiments described above.
  • the solid electrolyte membrane according to an aspect of the present invention includes a porous polymer sheet
  • mechanical strength may be increased.
  • by fixing the end of the porous polymer sheet before heat treatment of the porous polymer sheet and then performing heat treatment it is possible to increase the ionic conductivity as it has a higher porosity and a larger pore diameter than the porous polymer sheet before heat treatment.
  • the solid electrolyte membrane according to an aspect of the present invention is advantageous in improving the energy density of a battery because it is a composite of a porous polymer sheet and a solid electrolyte material, so that it has excellent strength and can be manufactured in a thin film of 50 ⁇ m or less.
  • FIG. 1 is a schematic cross-sectional view of a conventional solid electrolyte membrane.
  • FIG. 2 is a process flow diagram schematically illustrating a method of manufacturing a solid electrolyte membrane according to an embodiment of the present invention.
  • FIG. 3 schematically shows a cross-section of a solid electrolyte membrane according to an embodiment of the present invention.
  • the present invention relates to a method of manufacturing a solid electrolyte membrane for an all-solid battery.
  • the present invention relates to a solid electrolyte membrane for an all-solid battery manufactured according to the above manufacturing method and an all-solid battery including the same.
  • the all-solid-state battery according to the present invention by filling the heat-treated polymer sheet with a solid electrolyte material, the thickness of the solid electrolyte membrane can be reduced to about 50 ⁇ m or less, and the ionic conductivity is high and the energy density of the battery can be increased.
  • the porous polymer sheet is provided, mechanical strength is increased, so that the solid electrolyte membrane is less damaged by lithium dendrites.
  • 1 schematically shows a conventional solid electrolyte membrane.
  • 2 is a schematic diagram of a solid electrolyte membrane and a method of manufacturing the solid electrolyte according to an embodiment of the present invention.
  • the present invention will be described in more detail with reference to the drawings.
  • the thickness of the solid electrolyte membrane is controlled to about 100 ⁇ m in order to increase the mechanical strength of the solid electrolyte membrane as in the prior art, energy density decreases and processability is disadvantageous. Further, even if the thickness is increased, since the strength of the solid electrolyte membrane 20 itself is low, there is a problem that the membrane itself is damaged by the lithium dendrites D generated from the negative electrode 10 and a short circuit occurs.
  • the present inventors considered a method of compounding a porous polymer sheet with a solid electrolyte material in order to solve the above problems.
  • a typical polymer sheet has a low porosity of 20 vol% to 50 vol% and a small average pore diameter of 20 nm to 500 nm, which makes it difficult to manufacture, and there is a problem that ionic conductivity is not high even when a solid electrolyte is filled.
  • the solid electrolyte membrane for an all-solid battery includes a solid electrolyte material and a porous polymer sheet having a plurality of pores, and the pores of the polymer sheet are formed by the solid electrolyte material. It has a filled structure,
  • the porous polymer sheet has a porosity of 30 vol% to 90 vol% and a pore diameter of 100 nm to 100 ⁇ m.
  • the existing porous polymer sheet unlike the existing porous polymer sheet, it has a high porosity and pore diameter. Accordingly, the content of the solid electrolyte material filled in the pores of the porous sheet is increased, so that ionic conductivity may be improved. In addition, by including the polymer sheet at the same time, it can have high mechanical strength.
  • the solid electrolyte membrane 100 for an all-solid battery according to an aspect of the present invention
  • the porous polymer sheet has a porosity of 30 vol% to 90 vol% and an average pore diameter of 100 nm to 100 ⁇ m,
  • the solid electrolyte material 102 is filled in the pores of the porous polymer sheet 101 so that the solid electrolyte material and the porous polymer sheet are combined. This is schematically shown in FIG. 3.
  • the porous polymer sheet is a porous material including a plurality of pores, and includes a polymer resin.
  • the porous polymer sheet according to the present invention may be obtained by heat treatment at a temperature below the melting point of the porous polymer sheet. For example, it may be heat-treated within 50°C to 300°C, or 70°C to 250°C, or 100°C to 200°C.
  • the solid electrolyte membrane according to an aspect of the present invention has a porous polymer sheet having a wider average pore diameter and a higher porosity than that of the heat-treated porous polymer sheet, so that filling by the solid electrolyte is easy.
  • the heat treated porous polymer sheet may have an open-cell structure in which a plurality of pores having wide pores and high porosity are connected to each other. That is, the pores have a structure connected to each other, so that a material having fluidity can pass from one side of the substrate to the other side. Accordingly, lithium ions can more smoothly move between the positive electrode and the negative electrode of the battery.
  • the porous polymer sheet may have a porosity of 30 vol% to 90 vol%, or 40 vol% to 80 vol%, or 50 vol% to 70 vol%.
  • the porous polymer sheet may have an average pore diameter of 100 nm to 100 ⁇ m, or 500 nm to 10 ⁇ m, or 1 ⁇ m to 5 ⁇ m.
  • the ionic conductivity can be increased by about 10% or more compared to the porous polymer sheet before heat treatment.
  • the porous polymer sheet may be a polymer film including a polyolefin-based polymer resin.
  • a polyolefin-based polymer film when heat treatment is performed, it shrinks. Accordingly, when heat treatment is performed after fixing the end of the film as in one aspect of the present invention, a polymer film having a larger pore size than before heat treatment can be obtained.
  • a nonwoven fabric there is little change in pore size before/after heat treatment, and thus it is difficult to use it as a porous polymer sheet according to an aspect of the present invention.
  • the polyolefin-based polymer resin may include polyethylene, polypropylene, polybutylene, polypentene, or two or more of them.
  • the melting point of the porous polymer sheet may be 50 °C to 300 °C.
  • the porous polymer sheet may have a desired pore size and porosity in the present invention.
  • the porous polymer sheet may have a thickness of about 5 ⁇ m to 50 ⁇ m. Within the above range, the strength of the solid electrolyte membrane can achieve a desired level and at the same time achieve a high energy density.
  • the solid electrolyte material is filled in the pores of the porous polymer sheet so that the solid electrolyte material and the porous polymer sheet are combined.
  • the solid electrolyte material is obtained by forming a solid electrolyte containing a solid electrolyte material in a film form and then press-fitting into the porous polymer sheet, as described later. As the solid electrolyte material is pressed from the film form, a dead space inside the solid electrolyte membrane may decrease.
  • the solid electrolyte material of the present invention mainly serves to transfer lithium ions, any material having high ionic conductivity, for example, 10 -5 S/cm or more, preferably 10 -4 S/cm or more can be used. And, it is not limited to a specific component.
  • the solid electrolyte material is a polymer solid electrolyte formed by adding a polymer resin to a solvated electrolyte salt, or an organic electrolyte solution containing an organic solvent and an electrolyte salt, an ionic liquid, a monomer or an oligomer, etc. It may be a polymer gel electrolyte, and further, it may be a sulfide-based solid electrolyte having high ionic conductivity or an oxide-based solid electrolyte having excellent stability.
  • the polymer solid electrolyte is, for example, a polyether polymer, a polycarbonate polymer, an acrylate polymer, a polysiloxane polymer, a phosphazene polymer, a polyethylene derivative, an alkylene oxide derivative.
  • the polymer solid electrolyte is a polymer resin, a branched copolymer in which an amorphous polymer such as PMMA, polycarbonate, polysiloxane (pdms) and/or phosphazene is copolymerized with a comonomer in a PEO (polyethylene oxide) main chain, a comb polymer resin (comb) -like polymer) and a crosslinked polymer resin may be included, and may be a mixture of the polymers.
  • an amorphous polymer such as PMMA, polycarbonate, polysiloxane (pdms) and/or phosphazene is copolymerized with a comonomer in a PEO (polyethylene oxide) main chain, a comb polymer resin (comb) -like polymer) and a crosslinked polymer resin
  • PEO polyethylene oxide
  • comb comb polymer resin
  • crosslinked polymer resin may be included, and may be a mixture
  • the polymer gel electrolyte includes an organic electrolyte solution containing an electrolyte salt and a polymer resin, and the organic electrolyte solution includes 60 to 400 parts by weight based on the weight of the polymer resin.
  • the polymer applied to the gel electrolyte is not limited to a specific component, for example, polyether-based, PVC-based, PMMA-based, polyacrylonitrile (PAN), polyvinylidene fluoride (PVdF), and polyvinyl fluoride.
  • Poly(vinylidene fluoride-hexafluoro) propylene: PVdF-HFP, etc. may be included. And it may be a mixture of the above polymers.
  • the electrolyte salt may be represented by Li + X - as an ionizable lithium salt.
  • These lithium salts are preferably LiTFSI, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC(CF 3 SO 2 ) 3 , (CF 3 SO 2 ) ⁇ 2NLi, It may be one selected from the group consisting of lithium chloroborate, lower aliphatic lithium carboxylic acid, 4-phenyl borate lithium imide, and combinations thereof. More preferably, it may be LiTFSI (lithium bistrifluoromethanesulfonimide).
  • the sulfide-based solid electrolyte includes Li, X and S, and X is P, Ge, B, Si, Sn, As, Cl, F, I, or two or more of them. It may include.
  • the oxide-based solid electrolyte includes Li, A and O, and A may include La, Zr, Ti, Al P, I, or two or more of them.
  • the solid electrolyte membrane is about 50 ⁇ m or less, preferably about 15 ⁇ m to 50 ⁇ m.
  • the thickness may have an appropriate thickness in consideration of ionic conductivity, physical strength, and energy density of a battery to be applied within the above-described range.
  • the thickness may be 10 ⁇ m or more, 20 ⁇ m or more, or 30 ⁇ m or more.
  • the thickness may be 50 ⁇ m or less, 45 ⁇ m or less, or 40 ⁇ m or less.
  • the solid electrolyte membrane may have a porosity of 15 vol% or less and about 10 vol% or less. As described above, the solid electrolyte membrane according to the present invention may have high mechanical strength despite being a thin film.
  • the solid electrolyte membrane is formed by placing the electrolyte film on the surface of the polymer sheet prepared by using a polymer electrolyte material, and pressing the electrolyte film into the interior of the polymer sheet. It can be prepared by filling the pores of the polymer sheet by a polymer electrolyte.
  • a porous polymer sheet 301 is prepared (S10, FIG. 2A).
  • the porous polymer sheet may be a polymer film including a polyolefin-based polymer resin, and the polymer film may have a thickness of 5 ⁇ m to 100 ⁇ m.
  • the porous polymer sheet of the step (S10) may have a low porosity of 20 vol% to 50 vol% and a small pore diameter of 20 nm to 500 nm.
  • the porous polymer sheet may be a polymer film formed by melting, extruding, and stretching a polymer material by a dry method, a polymer film manufactured by extracting a plasticizer by a wet method to form pores, and may be in a state in which the film is formed. .
  • the end of the already formed porous polymer sheet is fixed and then heat treated (S11).
  • the end may be fixed by the separation membrane fastening jig (J) as shown in FIG.
  • a method of fixing the end of the formed porous polymer sheet is not particularly limited as long as it is a means capable of fixing the porous polymer sheet heat-shrinkable by heat treatment.
  • the porous polymer sheet in step (S10) still retains residual stress after film formation. That is, the porous polymer sheet stretched by stretching has the property of returning to its original size or shape.
  • a porous polymer sheet having a higher porosity and a wide average pore diameter can be provided by fixing the end of the porous polymer sheet in step (S11) and heat treatment.
  • the heat-treated porous polymer sheet 301' is shown in FIG. 2B.
  • the porosity and pore diameter may also be reduced by heat shrinkage of the sheet, but in the present invention, by heat treatment after fixing the end, the obtained porous polymer sheet is 30 vol. It may have a porosity of% to 90 vol% and a pore diameter of 100 nm to 100 ⁇ m.
  • step (S11) may be performed at a temperature lower than the melting point of the porous polymer sheet in step (S10).
  • the heat treatment in step (S11) may be performed at 50°C to 300°C, or 100°C to 200°C, or 120°C to 150°C.
  • the heat treatment time may be performed within the range of 10 minutes to 24 hours, or 30 minutes to 12 hours, or 1 hour to 6 hours.
  • the pore portion in the sheet may be melted after the heat treatment, and the porosity and pore diameter may be increased by fixing the ends.
  • the ratio of the average pore diameter (B) in the heat-treated porous polymer sheet in the (S11) step to the average pore diameter (A) in the porous polymer sheet in the (S10) step (B/A ) May be 1.1 to 100, or 2 to 50, or 5 to 10.
  • the ratio (D/C) of the porosity (D) of the heat-treated porous polymer sheet in the (S11) step to the porosity (C) of the porous polymer sheet in the (S10) step is It may be 1.1 to 3, or 1.2 to 2.5, or 1.5 to 2.
  • step (S10) by pressing the solid electrolyte material into the porous polymer sheet having a higher porosity and pore diameter than in step (S10), higher ionic conductivity may be provided.
  • the heat treatment may be performed in an air atmosphere under the temperature and time conditions.
  • the step (S11) may be a step of performing heat treatment so that the porous polymer sheet has a porosity of 30 vol% to 90 vol% and a pore diameter of 100 nm to 100 ⁇ m after fixing the end of the porous polymer sheet.
  • a laminated structure is obtained by disposing a solid electrolyte film 302 including a solid electrolyte material on at least one surface of the heat-treated porous polymer sheet 301' (S13, FIG. 2C).
  • a solid electrolyte film including a solid electrolyte material may be prepared in the following manner.
  • a solid electrolyte material and a solvent are mixed to prepare a slurry for preparing a solid electrolyte film.
  • the solvent may be appropriately selected depending on the solid electrolyte material used. For example, when an alkylene oxide-based electrolyte such as ethylene oxide is used as the solid polymer material, acetonitrile may be used as a solvent.
  • the concentration of the solid content in the slurry may be about 5 wt% to 15 wt%, and at this time, the temperature of the slurry is increased to 40° C. to 60° C. to promote uniform mixing of the solvent and the polymer electrolyte. I can.
  • the slurry is applied to a release sheet such as a terephthalate film, and formed into a film having a predetermined thickness.
  • the coating and molding may use a known coating method such as a doctor blade. After drying, the solvent is removed, and an electrolyte film is obtained.
  • the obtained solid electrolyte film is disposed on at least one surface of the heat-treated porous polymer sheet to obtain a laminated structure.
  • a slurry prepared by dispersing a polymer-based solid electrolyte material in a solvent was used.
  • the all-solid battery does not use a liquid electrolyte, the pores generated by the volatilization of the solvent have no choice but to act as resistance.
  • a solid electrolyte film is used instead of the solid electrolyte slurry. That is, since the solvent is used in the form of a dried solid electrolyte film, formation of pores that can act as resistance can be prevented. In addition, it is easy to handle.
  • the pressing may be appropriately performed by one or more methods such as a roll press, a uniaxial press or a jig.
  • the electrolyte membrane may have an appropriate thickness and/or porosity by controlling process conditions such as a press, a roller, a jig gap, an applied pressure, and a temperature.
  • the pressing member may further include a separate heating member so that the surface of the member facing the electrolyte film may be heated. In this way, since the electrolyte film is heated by the pressing member to increase ductility, the electrolyte film can be well pressed into the sheet even under relatively low pressure conditions.
  • the electrolyte film is heated to room temperature (25° C.) to 180° C. in order to promote the inflow of the material into the pores of the polymer sheet by increasing the ductility of the material before being introduced into the press-fitting process after manufacture. It may be heated, and this heating method is not limited to a specific method, but may be performed by allowing the film to stand for several hours in an oven heated to a predetermined temperature.
  • the all-solid-state battery includes a positive electrode, a negative electrode, and a solid electrolyte membrane.
  • the positive electrode and the negative electrode have a current collector and an electrode active material layer formed on at least one surface of the current collector, and the active material layer includes a plurality of electrode active material particles and a solid electrolyte.
  • the electrode may further include at least one of a conductive material and a binder resin as necessary.
  • the electrode may further include various additives for the purpose of supplementing or improving physicochemical properties of the electrode.
  • the negative active material may include carbon such as non-graphitized carbon and graphite-based carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : Al, B, P, Si, elements of groups 1, 2 and 3 of the periodic table, halogen, metal complex oxides such as 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8); Lithium metal; Lithium alloy; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi
  • the electrode active material may be used without limitation as long as it can be used as a positive electrode active material for a lithium ion secondary battery.
  • the current collector may exhibit electrical conductivity such as a metal plate, and may be appropriate according to the polarity of the current collector electrode known in the field of secondary batteries.
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of the mixture including the electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and examples thereof include graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; It may include one or a mixture of two or more selected from conductive materials such as polyphenylene derivatives.
  • the binder resin is not particularly limited as long as it is a component that aids in bonding of an active material and a conductive material and bonding to a current collector, and for example, polyvinylidene fluoride polyvinyl alcohol, carboxymethylcellulose (CMC ), starch, hydroxypropylcellulose, recycled cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber, Fluorine rubber and various copolymers.
  • the binder resin may be included in a range of 1 to 30% by weight, or 1 to 10% by weight, based on 100% by weight of the electrode layer.
  • the electrode active material layer may include one or more additives such as an oxidation stabilizer additive, a reduction stabilizer additive, a flame retardant, a heat stabilizer, and an antifogging agent, if necessary.
  • additives such as an oxidation stabilizer additive, a reduction stabilizer additive, a flame retardant, a heat stabilizer, and an antifogging agent, if necessary.
  • the solid electrolyte may further include one or more of a polymer-based solid electrolyte, an oxide-based solid electrolyte, and a sulfide-based solid electrolyte.
  • the solid electrolyte may be different for a positive electrode, a negative electrode, and a solid electrolyte membrane, or the same one may be used for two or more battery elements.
  • a polymer electrolyte having excellent oxidation stability may be used as a solid electrolyte.
  • a polymer electrolyte having excellent reduction stability it is preferable to use a polymer electrolyte having excellent reduction stability as a solid electrolyte.
  • any material with high ionic conductivity for example, 10 -7 s/cm or more or 10 -7 s/cm or more can be used. It is not limited to ingredients.
  • the polymer electrolyte may be a solid polymer electrolyte formed by adding a polymer resin to each independently solvated lithium salt, or a polymer gel electrolyte containing an organic electrolyte containing an organic solvent and a lithium salt in the polymer resin. have.
  • the polymer electrolyte may refer to the description of the solid electrolyte membrane.
  • the sulfide-based solid electrolyte contains sulfur (S) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and may include Li-PS-based glass or Li-PS-based glass ceramic.
  • Non-limiting examples of such sulfide-based solid electrolytes include Li 2 SP 2 S 5 , Li 2 S-LiI-P 2 S 5 , Li 2 S-LiI-Li 2 OP 2 S 5 , Li 2 S-LiBr-P 2 S 5 , Li 2 S-Li 2 OP 2 S 5 , Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 SP 2 S 5 -P 2 O 5 , Li 2 SP 2 S 5 -SiS 2 , Li 2 SP 2 S 5 -SnS, Li 2 SP 2 S 5 -Al 2 S 3 , Li 2 S-GeS 2 , Li 2 S-GeS 2 -ZnS, and the like, and may contain one or more
  • the oxide-based solid electrolyte contains oxygen (O) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • Non-limiting examples thereof include LLTO-based compounds, Li 6 La 2 CaTa 2 O 12 , Li 6 La 2 ANb 2 O 12 (A is Ca or Sr), Li 2 Nd 3 TeSbO 12 , Li 3 BO 2.5 N 0.5 , Li 9 SiAlO 8 , LAGP compound, LATP compound, Li 1+x Ti 2-x Al x Si y (PO 4 ) 3-y (here, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), LiAl x Zr 2-x (PO 4 ) 3 (here, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), LiTi x Zr 2-x (PO 4 ) 3 (here, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), LISICON-based compounds, LIPON-based compounds, perovskite-based compounds, Nasicon-based compounds, and may
  • the present invention provides a secondary battery having the above-described structure.
  • the present invention provides a battery module including the secondary battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • a specific example of the device may include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • a polyethylene porous polymer sheet (porosity: 37 vol%, pore diameter: 43 nm) having a thickness of 6.8 ⁇ m was prepared.
  • the end of the porous polymer sheet was fixed using a jig, and heat-treated in an oven at 120° C. for 30 minutes.
  • the porosity of the heat-treated porous polymer sheet was 45 vol%, and the pore diameter was 96 nm.
  • a second porous polymer sheet was prepared in the same manner as in Preparation Example 1, except that the prepared porous polymer sheet was heat-treated at 120° C. for 1 hour.
  • a second porous polymer sheet was prepared in the same manner as in Preparation Example 1, except that the prepared porous polymer sheet was heat-treated at 150° C. for 30 minutes.
  • a polyethylene porous polymer sheet (porosity: 37 vol%, pore diameter: 43 nm) having a thickness of 6.8 ⁇ m was prepared. That is, the porous polymer sheet according to Preparation Example 4 did not undergo an additional heat treatment process.
  • a porous polymer sheet was manufactured in the same manner as in Preparation Example 1, except that the prepared porous polymer sheet was heat-treated without fixing the ends.
  • Table 1 shows the physical properties of the porous polymer sheets according to Preparation Examples 1 to 5.
  • polyethylene oxide PEO, Mw 600,000
  • LiTFSI LiTFSI
  • the solid electrolyte material was stirred with acetonitrile at 60° C. overnight to prepare a slurry for preparing a solid electrolyte film of about 10 wt%.
  • the slurry for preparing the solid electrolyte film was applied to the terephthalate release film at room temperature using a doctor blade, and dried naturally at room temperature to obtain a solid electrolyte film having a thickness of about 50 ⁇ m.
  • the prepared solid electrolyte film was placed on one surface of the heat-treated porous polymer sheet prepared in Preparation Example 1 to obtain a laminated structure.
  • the laminated structure was put into a roll press, and the gap between the rolls was sequentially lowered to perform pressing three times. Through this, the solid electrolyte film was pressed into the pores of the heat-treated porous polymer sheet. Finally, a solid electrolyte membrane for an all-solid battery having a thickness of about 20 ⁇ m was obtained.
  • a solid electrolyte membrane was prepared in the same manner as in Example 1, except that the heat-treated porous polymer sheet prepared in Preparation Example 2 was used and the thickness was controlled to be 50 ⁇ m.
  • a solid electrolyte membrane was prepared in the same manner as in Example 1, except that the heat-treated porous polymer sheet prepared in Preparation Example 3 was used. At this time, the thickness of the prepared solid electrolyte membrane was 20 ⁇ m.
  • a solid electrolyte membrane was prepared in the same manner as in Example 1, except that the porous polymer sheet according to Preparation Example 4 was used and the thickness was controlled to be 50 ⁇ m.
  • Polyethylene oxide (PEO, Mw 600,000) was prepared and mixed with LiTFSI to obtain a solid electrolyte material.
  • the solid electrolyte material was stirred with acetonitrile at 60° C. overnight to prepare a slurry for preparing a solid electrolyte film of about 10 wt%.
  • the slurry for preparing the solid electrolyte film was applied to the terephthalate release film at room temperature using a doctor blade, and dried naturally at room temperature to obtain a solid electrolyte film having a thickness of about 50 ⁇ m.
  • Comparative Example 2 is a case in which the porous polymer sheet is not used.
  • a solid electrolyte membrane was prepared in the same manner as in Example 1, except that the heat-treated porous polymer sheet prepared in Preparation Example 5 was used.
  • the average pore diameter in the porous polymer sheet or solid electrolyte membrane was measured using a capillary flow porometer.
  • the number of measurements should be at least 3, and the average value of the pore size obtained after measurement was calculated.
  • the porous polymer sheet or solid solid electrolyte membrane obtained in each of Preparation Examples, Examples, and Comparative Examples was cut into a size of 2.834 cm 2 and the weight and volume thereof were measured (apparent density measurement), and the design dimensions (true density) and By comparison, the porosity was calculated. That is, from the composition ratio of the materials included in the obtained porous polymer sheet or solid electrolyte membrane and the density of each component, the true density of each porous polymer sheet or solid electrolyte membrane is calculated, and the apparent density and true density are calculated. The porosity was calculated from the difference.
  • the thickness of the porous polymer sheet or solid electrolyte membrane obtained in each of Preparation Examples, Examples and Comparative Examples was measured through a mouser.
  • the time for 100 mL of air to pass through the porous polymer sheet or the solid electrolyte membrane was measured using an air permeability measuring device.
  • the solid electrolyte membrane obtained in each of the Examples and Comparative Examples was cut to a size of 1.7671 cm 2 . It was placed between two sheets of stainless steel (SUS) to fabricate a coin cell. Using this analysis device (VMP3, Bio logic science instrument), the electrochemical impedance was measured under conditions of amplitude 10mV and scan range 500khz to 0.1mHz at 60°C.
  • the solid electrolyte membrane prepared in each Example and Comparative Example was cut into a size of 15 mm x 50 mm.
  • the tensile strength was measured using a UTM device after tape bonding to both ends of the sample.
  • the electrode active material is NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), the conductive material is VGCF (Vapor grown carbon fiber), and a high molecular solid solid electrolyte (PEO + LiTFSI, 18:1 mol ratio) 80:3
  • the mixture was mixed at a weight ratio of 17, added to acetonitrile, and stirred to prepare an electrode slurry.
  • This was applied to an aluminum current collector having a thickness of 20 ⁇ m using a doctor blade, and the resultant was vacuum-dried at 120° C. for 4 hours. Thereafter, the vacuum drying result was subjected to a rolling process using a roll press to obtain an electrode having an electrode loading of 2 mAh/cm 2, an electrode layer thickness of 48 ⁇ m, and a porosity of 22 vol%.
  • the prepared positive electrode was prepared by punching in a circular shape of 1.4875 cm 2 .
  • a lithium metal thin film cut into a circular shape of 1.7671 cm 2 was prepared as a counter electrode.
  • a coin-shaped half-cell was prepared by interposing the solid electrolyte membranes obtained in each of the Examples and Comparative Examples between these two electrodes.
  • the all-solid-state battery prepared above was charged and discharged at 60°C at 0.05C to evaluate the initial discharge capacity and discharge.
  • Example 3 As can be seen from Table 2, in Examples 1 to 3, the ionic resistance was decreased compared to Comparative Example 1. This appears to be due to an increase in the amount of impregnation and the easy impregnation of the solid electrolyte as the heat-treated porous polymer sheet having an increased porosity and an average pore diameter is used. Particularly, in Example 3, even when the solid electrolyte membrane was thinned, the tensile strength increased, and at the same time, the ionic resistance decreased, and thus an effect of improving the discharge capacity could be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 전고체 전지용 고체 전해질막의 제조방법 및 이에 의해 제조된 고체 전해질막에 대한 것으로서, 열처리된 다공성 고분자 시트와 고체 전해질 재료를 포함하며, 상기 고체 전해질 재료가 상기 열처리된 다공성 고분자 시트의 기공을 충진하는 방식으로 고체 전해질 재료와 상기 다공성 고분자 시트가 복합화되어 있는 것이다. 이에 따라, 기계적 강도가 높으며 이온 전도도가 높은 전고체 전지용 고체 전해질막을 제공할 수 있다.

Description

고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지
본 출원은 2019년 5월 3일자로 출원된 한국특허출원 제10-2019-0052529호에 기초한 우선권을 주장한다. 본 발명은 전고체 전지용 전해질막 및 상기 전해질막을 포함하는 전고체 전지 및 상기 전해질막을 제조하는 방법에 대한 것이다.
액체 전해질을 사용하는 리튬 이온 전지는 분리막에 의해 음극과 양극이 구획되는 구조여서 변형이나 외부 충격으로 분리막이 훼손되면 단락이 발생할 수 있으며 이로 인해 과열 또는 폭발 등의 위험으로 이어질 수 있다. 따라서 리튬 이온 이차 전지 분야에서 안전성을 확보할 수 있는 고체 전해질의 개발은 매우 중요한 과제라고 할 수 있다.
고체 전해질을 이용한 리튬 이차 전지는 전지의 안전성이 증대되며, 전해액의 누출을 방지할 수 있어 전지의 신뢰성이 향상되며, 박형의 전지 제작이 용이하다는 장점이 있다.
그러나, 고체 전해질을 포함하는 고체 전해질막을 박막화하는 경우, 기계적 강도가 저하되는 문제가 있으며, 또한, 고체 전해질막은 양극과 음극 사이에서 이온 채널로 역할하므로 여전히 높은 이온 전도도가 요구된다.
본 발명의 일 측면은 전술한 기술적 과제를 해결하기 위한 것으로서, 높은 이온 전도도를 가지며 기계적 강도가 높은 전고체 전지용 고체 전해질 막 및 이를 포함하는 전고체 전지를 제공하는 것을 본 발명의 목적으로 한다. 또한, 본 발명의 일 측면은 전술한 특징을 갖는 고체 전해질막 및 이를 포함하는 전고체 전지를 제조하는 방법을 제공하는 것을 또 다른 목적으로 한다. 한편, 본 발명의 다른 목적 및 장점들은 하기 설명에 의해서 이해될 수 있을 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 기재된 수단 또는 방법 및 이의 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면은 하기 구현예들에 따른 전고체 전지용 고체 전해질막의 제조방법을 제공한다.
제1 구현예는,
(S10) 다공성 고분자 시트를 준비하는 단계;
(S11) 상기 다공성 고분자 시트의 단부를 고정한 후 열처리하는 단계;
(S12) 상기 열처리된 다공성 고분자 시트의 적어도 일측 표면에 고체 전해질 재료를 포함하는 고체 전해질 필름을 배치하여 적층 구조물을 수득하는 단계; 및
(S13) 상기 적층 구조물을 가압하여 상기 열처리된 다공성 고분자 시트를 상기 고체 전해질 재료로 충진하는 단계;를 포함하는 전고체 전지용 고체 전해질막의 제조방법에 관한 것이다.
제2 구현예는, 제1 구현예에 있어서,
상기 (S11) 단계의 열처리는 상기 (S10) 단계의 다공성 고분자 시트의 융점보다 낮은 온도에서 수행되는 것인 전고체 전지용 고체 전해질막의 제조방법에 관한 것이다.
제3 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 (S11) 단계의 열처리는 50 ℃ 내지 300 ℃ 에서 10분 내지 24시간 동안 수행되는 것인 전고체 전지용 고체 전해질막의 제조방법에 관한 것이다.
제4 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 상기 (S10) 단계의 다공성 고분자 시트는 20vol% 내지 50vol%의 기공도 및 20 nm 내지 500 nm의 평균 기공 직경을 갖는 것인 전고체 전지용 전해질막의 제조방법에 관한 것이다.
제5 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 (S10) 단계의 다공성 고분자 시트 내 평균 기공 직경(A) 대비 상기 (S11) 단계의 열처리된 다공성 고분자 시트 내 평균 기공 직경(B)의 비(B/A)는 1.1 내지 100인 것인 전고체 전지용 고체 전해질막의 제조방법에 관한 것이다.
제6 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 (S10) 단계의 다공성 고분자 시트의 기공도(C) 대비 상기 (S11) 단계의 열처리된 다공성 고분자 시트의 기공도(D)의 비(D/C)는 1.1 내지 3인 것인 전고체 전지용 고체 전해질막의 제조방법에 관한 것이다.
제7 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 (S11) 단계는 상기 다공성 고분자 시트의 단부를 고정한 후 열처리 하여, 상기 (S10) 단계의 다공성 고분자 시트의 평균 기공 직경보다 큰 평균 기공 직경 및 상기 (S10) 단계의 다공성 고분자 시트의 기공도보다 더 큰 기공도를 갖는 열처리된 다공성 고분자 시트를 수득하는 단계이며,
상기 (S11) 단계는 상기 다공성 고분자 시트의 단부를 고정한 후, 상기 다공성 고분자 시트가 30vol% 내지 90vol%의 기공도 및 100nm 내지 100 ㎛ 의 기공 직경을 갖도록 열처리하는 단계인 것인 전고체 전지용 고체 전해질막의 제조방법에 관한 것이다.
제8 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 (S10) 단계의 다공성 고분자 시트는 폴리올레핀계 고분자 수지를 포함하는 고분자 필름이며, 상기 고분자 필름은 두께가 5 ㎛ 내지 50 ㎛인 것인 전고체 전지용 고체 전해질막의 제조방법에 관한 것이다.
본 발명의 다른 일 측면은 하기 구현예들에 따른 전고체 전지용 고체 전해질막을 제공한다.
제9 구현예는,
고체 전해질 재료 및 적어도 하나 이상의 다공성 고분자 시트를 포함하고,
상기 다공성 고분자 시트는 30vol% 내지 90vol%의 기공도 및 100 nm 내지 100 ㎛의 평균 기공 직경을 가지며,
상기 고체 전해질 재료가 상기 다공성 고분자 시트의 기공 내로 충진되어, 상기 고체 전해질 재료와 상기 다공성 고분자 시트가 복합화되어 있는 것인 전고체 전지용 고체 전해질막에 관한 것이다.
제10 구현예는, 제9 구현예에 있어서,
상기 다공성 고분자 시트의 융점은 50 ℃ 내지 300 ℃ 인 것인 전고체 전지용 고체 전해질막에 관한 것이다.
제11 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 다공성 고분자 시트는 폴리올레핀계 고분자 수지를 포함하는 고분자 필름인 것인 전고체 전지용 고체 전해질막에 관한 것이다.
제12 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 다공성 고분자 시트는 융점 이하의 온도에서 열처리하여 수득된 것인 전고체 전지용 고체 전해질막에 관한 것이다.
제13 구현예는, 전술한 구현예 중 어느 한 구현예에 있어서,
상기 고체 전해질막은 두께가 15㎛ 내지 50㎛ 이며, 인장강도가 100kgf/cm 2 내지 2,000kgf/cm 2인 것인 전고체 전지용 고체 전해질막에 관한 것이다.
본 발명의 또 다른 일 측면은 전술한 구현예 중 어느 한 구현예에 따른 고체 전해질 막을 포함하는 전고체 전지를 제공한다.
본 발명의 일 측면에 따른 고체 전해질막은 다공성 고분자 시트를 구비함에 따라, 기계적 강도를 높일 수 있다. 또한, 다공성 고분자 시트의 열처리 전에 다공성 고분자 시트의 단부를 고정한 후 열처리 함으로써, 열처리 전 다공성 고분자 시트에 비해 높은 기공도 및 큰 기공 직경을 가짐에 따라 이온 전도도를 높일 수 있다. 또한, 본 발명의 일 측면에 따른 고체 전해질막은 다공질의 고분자 시트와 고체 전해질 재료가 복합화되어 있어 강도가 우수하면서도 50 ㎛ 이하의 박막형으로 제조될 수 있어 전지의 에너지 밀도 향상에 유리하다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 종래 고체 전해질막의 단면을 개략적으로 도시화하여 나타낸 것이다.
도 2는 본 발명의 일 실시양태에 따른 고체 전해질막의 제조 방법을 개략적으로 도식화하여 나타낸 공정 흐름도이다.
도 3은 본 발명의 일 실시양태에 따른 고체 전해질막의 단면을 개략적으로 도시화하여 나타낸 것이다.
이하 본 발명의 구현예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
이어지는 상세한 설명에서 사용된 특정한 용어는 편의를 위한 것이지 제한적인 것은 아니다. '우', '좌', '상면' 및 '하면'의 단어들은 참조가 이루어진 도면들에서의 방향을 나타낸다. '내측으로' 및 '외측으로'의 단어들은 각각 지정된 장치, 시스템 및 그 부재들의 기하학적 중심을 향하거나 그로부터 멀어지는 방향을 나타낸다. '전방', '후방', '상방', '하방' 및 그 관련 단어들 및 어구들은 참조가 이루어진 도면에서의 위치들 및 방위들을 나타내며 제한적이어서는 안된다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함한다.
본 발명은 전고체 전지용 고체 전해질막의 제조방법에 관한 것이다. 또한, 본 발명은 상기 제조방법에 따라 제조된 전고체 전지용 고체 전해질막 및 이를 포함하는 전고체 전지에 대한 것이다. 본 발명에 따른 전고체 전지는 열처리된 고분자 시트 내에 고체 전해질 재료를 충진함으로써, 고체 전해질막의 두께를 약 50 ㎛ 이하로 박막화 할 수 있으며 이온 전도도가 높고 전지의 에너지 밀도를 높일 수 있다. 또한, 다공성 고분자 시트를 구비함에 따라 기계적 강도를 높여 리튬 덴드라이트에 의한 고체 전해질막의 손상이 적다.
도 1은 종래 고체 전해질막을 개략적으로 도시화하여 나타낸 것이다. 도 2는 본 발명의 일 실시양태에 따른 고체 전해질막 및 상기 고체 전해질을 제조하는 방법을 개략적으로 도식화하여 나타낸 것이다. 이하, 도면을 참조하여 본 발명을 더욱 상세하게 설명한다.
도 1을 참조하면, 종래와 같이 고체 전해질막의 기계적 강도를 높이기 위하여 고체 전해질막의 두께를 약 100 ㎛로 제어하는 경우, 에너지 밀도가 감소하며 공정성 면에서도 불리하다. 또한, 두께를 증가시키더라도 고체 전해질막(20) 자체의 강도가 낮기 때문에 음극(10)으로부터 생성된 리튬 덴드라이트(D)에 의해 막 자체가 손상되어 단락이 발생하는 문제가 있었다.
본 발명자들은 상기와 같은 문제를 해결하기 위하여 다공성의 고분자 시트를 고체 전해질 재료와 복합화하는 방법을 고려하였다.
그러나 통상의 고분자 시트는 20vol% 내지 50vol%의 낮은 기공도 및 20 nm 내지 500 nm의 작은 평균 기공 직경을 가져 제작이 어렵고, 고체 전해질을 충진하더라도 이온전도도가 높지 않은 문제가 있다.
전술한 문제를 해결하기 위하여, 본 발명의 일 측면에 따른 전고체 전지용 고체 전해질막은 고체 전해질 재료와 복수의 기공을 갖는 다공성의 고분자 시트를 포함하며, 상기 고분자 시트의 기공이 상기 고체 전해질 재료에 의해 충진된 구조를 갖는 것이며,
특히, 상기 다공성 고분자 시트는 30vol% 내지 90vol%의 기공도 및 100 nm 내지 100 ㎛ 의 기공 직경을 가지는 것이다.
즉, 기존의 다공성 고분자 시트와 달리 높은 기공도 및 기공 직경을 가지는 것이다. 이에 따라, 다공성 시트의 기공 내에 충진된 고체 전해질 재료의 함량이 높아져 이온 전도도가 개선될 수 있다. 또한, 동시에 고분자 시트를 포함함으로써, 높은 기계적 강도를 가질 수 있다.
즉, 본 발명의 일 측면에서는, 다공성 고분자 시트를 고정한 후 열처리하는 공정을 추가로 거침으로써, 기계적 강도를 높임과 동시에 이온전도도를 증가시킨 전고체 전지용 고체 전해질막을 제공할 수 있다.
본 발명의 일 측면에 따른 전고체 전지용 고체 전해질막(100)은,
고체 전해질 재료 및 적어도 하나 이상의 다공성 고분자 시트를 포함하고,
상기 다공성 고분자 시트는 30vol% 내지 90vol%의 기공도 및 100 nm 내지 100 ㎛의 평균 기공 직경을 가지며,
상기 고체 전해질 재료(102)가 상기 다공성 고분자 시트(101)의 기공 내 충진되어, 상기 고체 전해질 재료와 상기 다공성 고분자 시트가 복합화되어 있는 것이다. 이를 도 3에 개략적으로 나타내었다.
상기 다공성 고분자 시트는 복수의 기공을 포함하는 다공성 소재인 것으로서, 고분자 수지를 포함한다. 본 발명에 따른 다공성 고분자 시트는 다공성 고분자 시트의 융점 이하의 온도에서 열처리하여 수득된 것일 수 있다. 예를 들어, 50 ℃ 내지 300 ℃, 또는 70 ℃ 내지 250 ℃, 또는 100 ℃ 내지 200 ℃ 내에서 열처리한 것일 수 있다.
이에 따라, 본 발명의 일 측면에 따른 고체 전해질막은 열처리된 다공성 고분자 시트에 비해 넓은 평균 기공 직경 및 높은 기공도를 갖는 다공성 고분자 시트를 구비함에 따라, 고체 전해질에 의한 충진이 용이하다.
본 발명에 따르면, 열처리된 다공성 고분자 시트의 내부가 넓은 기공 및 높은 기공도를 갖는 다수의 기공들이 서로 연결된 오픈 셀(open-cell) 구조일 수 있다. 즉, 상기 기공들은 상호간에 서로 연결된 구조로 되어 있어서 기재의 한쪽 면으로부터 다른쪽 면으로 유동성을 갖는 물질이 통과할 수 있는 것이다. 이에 따라, 리튬 이온이 전지의 양극과 음극 사이를 보다 원활히 이동할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 다공성 고분자 시트는 30vol% 내지 90vol%, 또는 40vol% 내지 80vol%, 또는 50vol% 내지 70vol%의 기공도를 가질 수 있다.
또한, 본 발명의 구체적인 일 실시양태에 있어서, 상기 다공성 고분자 시트는 100nm 내지 100 ㎛, 또는 500 nm 내지 10 ㎛, 또는 1 ㎛ 내지 5 ㎛의 평균 기공 직경을 가질 수 있다.
상기와 같이 넓은 평균 기공 직경 및 높은 기공도를 가짐에 따라, 열처리되기 전의 다공성 고분자 시트 대비 이온 전도도를 약 10% 이상 높일 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 다공성 고분자 시트는 폴리올레핀계 고분자 수지를 포함하는 고분자 필름일 수 있다. 폴리올레핀계 고분자 필름의 경우, 열처리를 하는 경우, 수축하게 된다. 따라서, 본 발명의 일 측면에서와 같이 필름의 단부를 고정한 후 열처리하는 경우, 열처리 전에 비해 기공 크기가 커진 고분자 필름을 얻을 수 있다. 반면, 부직포를 사용하는 경우에는, 열처리 전/후의 기공 크기 변화가 적어, 본 발명의 일 측면에 따른 다공성 고분자 시트로 사용하기에 어려움이 있다.
이 때, 상기 폴리올레핀계 고분자 수지는 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐 또는 이들 중 2 이상을 포함하는 것일 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 다공성 고분자 시트의 융점은 50 ℃ 내지 300 ℃ 일 수 있다. 상기 다공성 고분자 시트는 상기 고분자 시트의 융점보다 낮은 온도에서 열처리 됨에 따라, 본 발명에서 목적하고자 하는 기공 크기 및 기공도를 가질 수 있다.
본 발명의 일 실시양태에 있어서, 상기 다공성 고분자 시트는 약 5 ㎛ 내지 50 ㎛의 두께를 가질 수 있다. 상기 범위 내에서 고체 전해질막의 강도가 소망하는 수준을 달성함과 동시에 높은 에너지 밀도를 달성할 수 있다.
본 발명에서, 상기 고체 전해질 재료는 상기 다공성 고분자 시트의 기공 내에 충진되어 상기 고체 전해질 재료와 상기 다공성 고분자 시트가 복합화 되어 있는 것이다.
본 발명에서 상기 고체 전해질 재료는 후술하는 바와 같이, 고체 전해질 재료를 포함하는 고체 전해질을 필름 형태로 제막한 후 상기 다공성 고분자 시트에 압입되는 방법으로 얻어지는 것이다. 상기 고체 전해질 재료가 필름 형태로부터 압임됨에 따라 고체 전해질 막 내부에 데드 스페이스(death space)가 감소할 수 있다.
본 발명의 일 실시양태에 있어서, 고체 전해질 재료는 환원 안정성이 우수한 고체 전해질을 사용하는 것이 바람직하다. 본 발명의 고체 전해질 재료는 주로 리튬 이온을 전달하는 역할을 하기 때문에, 이온 전도도가 높은 소재, 예를 들어 10 -5 S/cm 이상, 바람직하게는 10 -4 S/cm 이상인 것이면 어느 것이나 사용 가능하며, 특정한 성분으로 한정되는 것은 아니다.
이때, 상기 고체 전해질 재료는, 용매화된 전해질 염에 고분자 수지가 첨가되어 형성된 고분자 고체 전해질이거나, 유기용매와 전해질 염을 함유한 유기 전해액, 이온성 액체, 모노머 또는 올리고머 등을 고분자 수지에 함유시킨 고분자 겔 전해질일 수 있으며, 나아가, 이온전도도가 높은 황화물계 고체 전해질 또는 안정성이 우수한 산화물계 고체 전해질일 수도 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 고분자 고체 전해질은 예를 들어, 폴리에테르계 고분자, 폴리카보네이트계 고분자, 아크릴레이트계 고분자, 폴리실록산계 고분자, 포스파젠계 고분자, 폴리에틸렌 유도체, 알킬렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화비닐리덴, 이온성 해리기를 포함하는 중합체 등을 포함할 수 있다.
상기 고분자 고체 전해질은 고분자 수지로서 PEO(poly ethylene oxide) 주쇄에 PMMA, 폴리카보네이트, 폴리실록산(pdms) 및/또는 포스파젠과 같은 무정형 고분자를 공단량체로 공중합시킨 가지형 공중합체, 빗형 고분자 수지 (comb-like polymer) 및 가교 고분자 수지 등이 포함될 수 있고, 상기 고분자 들의 혼합물일 수 있다.
또한, 상기 고분자 겔 전해질은 전해질 염을 포함하는 유기 전해액과 고분자 수지를 포함하는 것으로서, 상기 유기 전해액은 고분자 수지의 중량 대비 60~400 중량부를 포함하는 것이다. 겔 전해질에 적용되는 고분자는 특정한 성분으로 한정되는 것은 아니나, 예를 들어, 폴리에테르계, PVC계, PMMA계, 폴리아크릴로니트릴(Polyacrylonitrile, PAN), 폴리불화비닐리덴(PVdF), 폴리불화비닐리덴-육불화프로필렌(poly(vinylidene fluoride-hexafluoro propylene: PVdF-HFP 등이 포함될 수 있다. 그리고 상기 고분자 들의 혼합물일 수 있다.
그리고, 상기 전해질 염은 이온화 가능한 리튬염으로서 Li +X -로 표현할 수 있다. 이러한 리튬염은 바람직하게는 LiTFSI, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10Cl 10, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3CO 2, LiCH 3SO 3, LiCF 3SO 3, LiN(SO 2CF 3) 2, LiN(SO 2C 2F 5) 2, LiC 4F 9SO 3, LiC(CF 3SO 2) 3, (CF 3SO 2)·2NLi, 리튬 클로로보레이트, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬 이미드 및 이들의 조합으로 이루어진 군으로부터 선택되는 1종일 수 있다. 보다 바람직하게는 LiTFSI(lithium bistrifluoromethanesulfonimide)일 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 황화물계 고체 전해질은 Li, X 및 S를 포함하며, 상기 X는 P, Ge, B, Si, Sn, As, Cl, F, I 또는 이들 중 2 이상을 포함할 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 산화물계 고체 전해질은 Li, A 및 O를 포함하며, 상기 A는 La, Zr, Ti, Al P, I 또는 이들 중 2 이상을 포함할 수 있다.
본 발명에 있어서, 상기 고체 전해질막은 약 50 ㎛이하, 바람직하게는 약 15㎛ 내지 50㎛인 것이다. 상기 두께는 상기 전술한 범위 내에서 이온 전도도, 물리적 강도, 적용되는전지의 에너지 밀도 등을 고려하여 적절한 두께를 가질 수 있다. 예를 들어 이온 전도도나 에너지 밀도의 측면에서 상기 두께는 10㎛ 이상, 또는 20㎛ 이상 또는 30㎛ 이상으로 할 수 있다. 한편, 물리적 강도의 측면에서 상기 두께는 50㎛ 이하, 또는 45㎛ 이하, 또는 40 ㎛이하로 할 수 있다. 또한, 상기 고체 전해질막은 상기 두께 범위를 나타내면서 동시에 약 100kgf/cm 2 내지 약 2,000kgf/cm 2의 인장강도를 가질 수 있다. 또한, 상기 고체 전해질막은 15vol% 이하 약 10vol% 이하의 기공도를 가질 수 있다. 이와 같이 본 발명에 따른 고체 전해질막은 박막임에도 불구하고 높은 기계적 강도를 가질 수 있다.
본 발명의 일 실시양태에 있어서, 상기 고체 전해질막은 고분자 전해질 재료를 이용하여 전해질 필름을 제조한 상기 고분자 시트의 표면에 상기 전해질 필름을 배치하고 가압하여 가압에 의해 전해질 필름이 고분자 시트의 내부로 인입되면서 고분자 전해질에 의해 고분자 시트의 기공이 충진되는 방법으로 제조될 수 있다.
이하, 도 2를 참조하여 본 발명의 일 측면에 따른 고체 전해질막의 제조방법을 더욱 상세하게 설명한다.
우선, 다공성 고분자 시트(301)를 준비한다(S10, 도 2a). 상기 다공성 고분자 시트는 폴리올레핀계 고분자 수지를 포함하는 고분자 필름일 수 있으며, 상기 고분자 필름은 두께가 5 ㎛ 내지 100 ㎛ 일 수 있다. 상기 (S10) 단계의 다공성 고분자 시트는 20vol% 내지 50vol%의 낮은 기공도 및 20 nm 내지 500 nm의 작은 기공 직경을 갖는 것일 수 있다.
상기 다공성 고분자 시트는 건식법에 의해 고분자 재료를 용융, 압출 및 연신하여 성막한 고분자 필름, 습식법에 의해 가소제를 추출하여 기공을 형성하는 방식으로 제조된 고분자 필름 일 수 있으며, 제막이 끝난 상태일 수 있다.
이 후, 이미 제막된 다공성 고분자 시트의 단부를 고정한 후 열처리한다(S11). 이 때, 단부는 도 2와 같이 분리막 체결 지그(J)에 의해 고정할 수 있다. 제막된 다공성 고분자 시트의 단부를 고정하는 방법은 열처리에 의해 열수축되는 다공성 고분자 시트를 고정할 수 있는 수단이면 특별히 제한되지 않는다. (S10) 단계의 다공성 고분자 시트는 제막 후에도 여전히 잔류 응력이 남아 있다. 즉, 연신에 의해 늘어난 다공성 고분자 시트가 본래 크기 또는 모양으로 돌아가려는 성질을 지니고 있다. 잔류 응력을 가지는 다공성 고분자 시트에 (S11)과 같이 열처리하는 경우, 열에 의해 노출된 다공성 고분자 시트 내 잔류 응력이 해소되어 열수축을 시작한다. 한편 본 발명에서는 (S11) 단계의 다공성 고분자 시트의 단부를 고정하고 열처리함으로써, 보다 높은 기공도 및 넓은 평균 기공 직경을 가지는 다공성 고분자 시트를 제공할 수 있다. 열처리된 다공성 고분자 시트(301')를 도 2b에 나타내었다.
만약, 다공성 고분자 시트의 단부를 고정하지 않는 경우에는 단순한 시트의 열수축에 의해 기공도 및 기공 직경도 열처리 전에 비해 감소할 수 있으나, 본 발명에서는 단부를 고정한 후에 열처리함으로써, 수득된 다공성 고분자 시트가 30vol% 내지 90vol%의 기공도 및 100nm 내지 100 ㎛ 의 기공 직경을 갖도록 할 수 있다.
이 때, 상기 (S11) 단계의 열처리는 상기 (S10) 단계의 다공성 고분자 시트의 융점보다 낮은 온도에서 수행되는 것일 수 있다.
구체적으로, 상기 (S11) 단계의 열처리는 50 ℃ 내지 300 ℃, 또는 100 ℃ 내지 200 ℃, 또는 120 ℃ 내지 150 ℃ 에서 수행될 수 있다.
또한, 상기 열처리 시간은 10분 내지 24시간, 또는 30분 내지 12시간, 또는 1시간 내지 6시간 범위 내에서 수행될 수 있다.
상기와 같이 온도 범위 및 시간에서 수행됨에 따라 열처리 후 시트 내 기공 부분이 용융될 수 있으며, 단부 고정에 의해 기공도 및 기공 직경을 높일 수 있다.
본 발명의 일 실시양태에 있어서, 상기 (S10) 단계의 다공성 고분자 시트 내 평균 기공 직경(A) 대비 상기 (S11) 단계의 열처리된 다공성 고분자 시트 내 평균 기공 직경(B)의 비(B/A)는 1.1 내지 100, 또는 2 내지 50, 또는 5 내지 10 일 수 있다.
본 발명의 일 실시양태에 있어서, 상기 (S10) 단계의 다공성 고분자 시트의 기공도(C) 대비 상기 (S11) 단계의 열처리된 다공성 고분자 시트의 기공도(D)의 비(D/C)는 1.1 내지 3, 또는 1.2 내지 2.5, 또는 1.5 내지 2 일 수 있다.
상기와 같이 (S10) 단계에 비해 높은 기공도 및 기공 직경을 가지는 다공성 고분자 시트에 고체 전해질 재료를 압임함에 따라 보다 높은 이온전도도를 제공할 수 있다.
이 때, 상기 열처리는 상기 온도 및 시간 조건에서 공기 분위기에서 수행된 것일 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 (S11) 단계는 상기 다공성 고분자 시트의 단부를 고정한 후 열처리 하여, 상기 (S10) 단계의 다공성 고분자 시트의 평균 기공 직경보다 큰 평균 기공 직경 및 상기 (S10) 단계의 다공성 고분자 시트의 기공도보다 더 큰 기공도를 갖는 열처리된 다공성 고분자 시트를 수득하는 단계이며,
상기 (S11) 단계는 상기 다공성 고분자 시트의 단부를 고정한 후, 상기 다공성 고분자 시트가 30vol% 내지 90vol%의 기공도 및 100nm 내지 100 ㎛ 의 기공 직경을 갖도록 열처리하는 단계일 수 있다.
다음으로, 상기 열처리된 다공성 고분자 시트(301')의 적어도 일측 표면에 고체 전해질 재료를 포함하는 고체 전해질 필름(302)을 배치하여 적층 구조물을 수득한다(S13, 도 2c).
이 때, 고체 전해질 재료를 포함하는 고체 전해질 필름은 다음과 같은 방식으로 준비될 수 있다. 고체 전해질 재료와 용매를 혼합하여 고체 전해질 필름 제조용 슬러리를 준비한다. 상기 용매는 사용되는 고체 전해질 재료에 따라 적절한 것을 선택할 수 있다. 예를 들어, 고체 고분자 재료로 에틸렌 옥사이드와 같은 알킬렌 옥사이드계 전해질을 사용하는 경우에는 용매로 아세토니트릴(Acetonitrile)을 사용할 수 있다. 본 발명의 구체적인 일 실시양태에 있어서 상기 슬러리 중 고형분의 농도는 약 5wt% 내지 15wt%일 수 있으며, 이때 슬러리의 온도를 높여 40℃ 내지 60℃로 하여 용매와 고분자 전해질의 균일한 혼합을 촉진할 수 있다.
다음으로 상기 슬러리를 테레프탈레이트 필름 등의 이형시트에 도포하고 소정의 두께를 갖는 필름의 모양으로 성형한다. 상기 도포 및성형은 닥터 블레이드와 같은 공지의 코팅 방법을 사용할 수 있다. 이후 건조하여 용매를 제거하고 전해질 필름을 수득한다.
이와 같이 얻어진 고체 전해질 필름을 상기 열처리된 다공성 고분자 시트의 적어도 일측 표면에 배치하여 적층 구조물을 수득한다.
종래 고분자계 고체 전해질 재료를 용매에 분산시킨 슬러리를 사용하였다. 그러나 전고체 전지에서는 액체 전해질을 사용하지 않기 때문에, 상기 용매가 휘발됨에 따라 생기는 기공은 저항으로 작용할 수 밖에 없었다. 그러나, 본 발명에서는 이와 같이 고체 전해질 슬러리가 아닌 고체 전해질 필름을 사용한다. 즉, 용매가 건조된 고체 전해질 필름 형태로 사용하므로, 저항으로 작용할 수 있는 기공 형성을 방지할 수 있다. 또한, 취급이 용이하다.
마지막으로, 상기 (S12)의 적층 구조물을 가압하여 상기 열처리된 다공성 고분자 시트를 상기 고체 전해질 재료로 충진하여 상기 고체 전해질 재료와 상기 다공성 고분자 시트를 복합화한다(S14).
상기 가압은 롤 프레스, 일축 프레스나 지그 등 1종 이상의 방법으로 적절하게 수행될 수 있다. 이때, 프레스, 롤러, 지그의 간격, 인가되는 압력, 온도와 같은 공정 조건을 제어함으로서 전해질막이 적절한 두께 및/또는 기공도를 갖도록 할 수 있다. 이때, 상기 가압 부재는 전해질 필름과 대면하는 부재의 표면이 가열될 수 있도록 별도의 가열 부재가 더 구비될 수 있다. 이와 같이 가압 부재에 의해 전해질 필름이 가열되어 연성이 높아지므로 상대적으로 낮은 압력 조건하에서도 전해질 필름이 시트 내로 잘 압입될 수 있다.
한편, 본 발명의 일 실시양태에 있어서, 상기 전해질 필름은 제조 후 압입 공정에 투입되기 전에 재료의 연성을 높여 재료가 고분자 시트의 기공 내로 유입되는 것을 촉진하기 위해 상온(25℃) 내지 180℃로 가온될 수 있으며, 이러한 가온 방법은 특정한 방법으로 한정되는 것은 아니나 상기 필름을 소정 온도로 가온된 오븐에서 수 시간 정치 시키는 방법으로 진행될 수 있다.
본 발명의 다른 일 측면은 전술한 고체 전해질막을 포함하는 전고체 전지를 제공한다. 상기 전고체 전지는 양극, 음극 및 고체 전해질막을 포함한다.
본 발명에 있어서, 상기 양극과 음극은 집전체 및 상기 집전체의 적어도 일측 표면에 전극 활물질층이 형성되어 있으며, 상기 활물질층은 복수의 전극 활물질 입자와 고체 전해질을 포함한다. 또한 상기 전극은 필요에 따라 도전재 및 바인더 수지 중 하나 이상을 더 포함할 수 있다. 또한, 상기 전극은 전극의 물리화학적 특성의 보완이나 개선의 목적으로 다양한 첨가제를 더 포함할 수 있다.
본 발명에 있어서, 음극 활물질로는 리튬 이온 이차 전지의 음극 활물질로 사용 가능한 물질이면 어느 것이나 사용될 수 있다. 예를 들어, 상기 음극 활물질은 난흑연화 탄소, 흑연계 탄소 등의 탄소; Li xFe 2O 3(0≤x≤1), Li xWO 2(0≤x≤1), Sn xMe 1-xMe' yO z(Me: Mn, Fe, Pb, Ge; Me’: Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO 2, PbO, PbO 2, Pb 2O 3, Pb 3O 4, Sb 2O 3, Sb 2O 4, Sb 2O 5, GeO, GeO 2, Bi 2O 3, Bi 2O 4, 및 Bi 2O 5 등의 금속 산화물; 폴리아세틸렌 등의 도전성고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄산화물 등에서 선택된 1종 또는 2종 이상을사용할 수 있다. 구체적인 일 실시양태에 있어서 상기 음극 활물질은 탄소계 물질 및/또는 Si을 포함할 수 있다.
양극의 경우, 전극 활물질은 리튬이온 이차 전지의 양극 활물질로 사용 가능한것이면 제한 없이 사용할 수 있다. 예를 들어, 상기 양극 활물질은, 리튬 코발트 산화물(LiCoO 2), 리튬 니켈 산화물(LiNiO 2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li 1+xMn 2-xO 4(여기서, x 는 0 ~ 0.33 임), LiMnO 3, LiMn 2O 3, LiMnO 2등의 리튬 망간 산화물; 리튬 동 산화물(Li 2CuO 2); LiV 3O 8, LiV 3O 4, V 2O 5, Cu 2V 2O 7등의 바나듐 산화물; 화학식 LiNi 1-xM xO 2(여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn 2-xM xO 2(여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li 2Mn 3MO 8(여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; LiNi xMn 2-xO 4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn 2O 4; 디설파이드 화합물; Fe 2(MoO 4) 3등을 포함할 수 있다. 그러나, 이들만으로 한정되는 것은 아니다.
본 발명에 있어서 상기 집전체는 금속판 등 전기 전도성을 나타내는 것으로서 이차 전지 분야에서 공지된 집전체 전극의 극성에 따라 적절한것을 사용할 수 있다.
본 발명에 있어서 상기 도전재는 통상적으로 전극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재에서 선택된 1종 또는 2종 이상의 혼합물을 포함할 수 있다.
본 발명에 있어서, 상기 바인더 수지는 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분이면 특별히 제한되지 않으며, 예를 들어 폴리불화비닐리덴 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다. 상기 바인더 수지는 통상적으로 전극층 100 중량% 대비 1 내지 30 중량%, 또는 1 내지 10중량%의 범위로 포함될 수 있다.
한편 본 발명에 있어서, 상기 전극 활물질층은 필요에 따라서 산화안정 첨가제, 환원 안정 첨가제, 난연제, 열안정제, 무적제(antifogging agent) 등과 같은 첨가제를 1종 이상 포함할 수 있다.
본 발명에 있어서, 상기 고체 전해질은 고분자계 고체 전해질, 산화물계 고체 전해질 및 황화물계 고체 전해질 중 하나 이상을 더 포함할 수 있다.
본 발명에 있어서 상기 고체 전해질은 양극, 음극 및 고체 전해질막에 대해 서로 다른 것이거나 둘 이상의 전지 소자에 대해 동일한 것을 사용할 수 있다. 예를 들어 양극의 경우 고체 전해질로는 산화 안정성이 우수한 고분자 전해질을 사용할 수있다. 또한, 음극의 경우에는 고체 전해질로 환원 안정성이 우수한 고분자 전해질을 사용하는 것이 바람직하다. 그러나 이에 한정되는 것은 아니며 전극에서 주로 리튬 이온의 전달 역할을 하기 때문에 이온 전도도가 높은 소재, 예를 들어 또는 10 -7 s/cm 이상 또는 10 -7 s/cm 이상인 것이면 어느 것이나 사용 가능하며, 특정한 성분으로 한정되는 것은 아니다.
본 발명에 있어서, 상기 고분자 전해질은 각각 독립적으로 용매화된 리튬염에 고분자 수지가 첨가되어 형성된 고체 고분자 전해질이거나, 유기 용매와 리튬염을 함유한 유기 전해액을 고분자 수지에 함유시킨 고분자 겔 전해질일 수 있다.
본 발명에 있어서, 상기 고분자 전해질은 고체 전해질막에 대해 설명한 내용을 참조할 수 있다.
상기 황화물계 고체 전해질은 황(S)을 함유하고 주기율표 제1족 또는 제2족에 속하는 금속의 이온 전도성을 갖는 것으로서, Li-P-S계 유리나 Li-P-S계 유리 세라믹을 포함할 수 있다. 이러한 황화물계 고체 전해질의 비제한적인 예로는 Li 2S-P 2S 5, Li 2S-LiI-P 2S 5, Li 2 S-LiI-Li 2O-P 2S 5, Li 2S-LiBr-P 2S 5, Li 2S-Li 2O-P 2S 5, Li 2S-Li 3PO 4-P 2S 5, Li 2S-P 2S 5-P 2O 5, Li 2S-P 2S 5-SiS 2, Li 2S-P 2S 5-SnS, Li 2S-P 2S 5 -Al 2S 3, Li 2S-GeS 2, Li 2S-GeS 2-ZnS 등을 들 수 있으며, 이 중 하나 이상을 포함할 수 있다.
또한, 상기 산화물계 고체 전해질은 산소(O)를 포함하고 주기율표 제1족 또는 제2족에 속하는 금속의 이온 전도성을 갖는 것이다. 이의 비제한적인 예로는 LLTO계 화합물, Li 6La 2CaTa 2O 12, Li 6La 2ANb 2O 12(A는 Ca 또는 Sr), Li 2Nd 3TeSbO 12, Li 3BO 2.5N 0.5, Li 9SiAlO 8, LAGP계 화합물, LATP계 화합물, Li 1+xTi 2-xAl xSi y(PO 4) 3-y(여기에서, 0≤x≤1, 0≤y≤1), LiAl xZr 2-x(PO 4) 3(여기에서, 0≤x≤1, 0≤y≤1), LiTi xZr 2-x(PO 4) 3(여기에서, 0≤x≤1, 0≤y≤1), LISICON계 화합물, LIPON계 화합물, 페롭스카이트계 화합물, 나시콘계 화합물, 및 LLZO계 화합물 중 선택된 1 종 이상을 포함할 수 있다.
또한, 본 발명은 전술한 구조를 갖는 이차 전지를 제공한다. 또한, 본 발명은, 상기 이차 전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다. 이 때, 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
제조예 1
먼저, 두께 6.8 ㎛의 폴리에틸렌 다공성 고분자 시트(기공도: 37vol%, 기공직경: 43 nm)를 준비하였다.
이 후, 상기 다공성 고분자 시트의 단부를 지그를 이용하여 고정하고, 120 ℃의 오븐에서 30분 동안 열처리하였다. 열처리된 다공성 고분자 시트의 기공도는 45vol% 이었으며, 기공 직경은 96 nm 이었다.
제조예 2
준비된 다공성 고분자 시트를 120 ℃에서 1시간 동안 열처리한 것을 제외하고는, 제조예 1과 동일한 방법으로 제2 다공성 고분자 시트를 제조하였다.
제조예 3
준비된 다공성 고분자 시트를 150 ℃에서 30분 동안 열처리한 것을 제외하고는, 제조예 1과 동일한 방법으로 제2 다공성 고분자 시트를 제조하였다.
제조예 4
두께 6.8 ㎛의 폴리에틸렌 다공성 고분자 시트(기공도: 37 vol%, 기공직경: 43 nm)를 준비하였다. 즉, 제조예 4에 따른 다공성 고분자 시트는 추가적인 열처리 공정을 거치지 않은 것이다.
제조예 5
준비된 다공성 고분자 시트의 단부를 고정하지 않고 열처리한 것을 제외하고는 제조예 1과 동일한 방법으로 다공성 고분자 시트를 제조하였다.
제조예 1 내지 5에 따른 다공성 고분자 시트의 물성을 표 1에 나타내었다.
실시예 1
다음과 같이, 폴리에틸렌옥사이드(PEO, Mw 60만)를 준비하였으며 이를 LiTFSI와 혼합하여 고체 전해질 재료를 수득하였다. 상기 고체 전해질 재료에서 PEO와 LiTFSI는 9:1의 몰비([EO]/[Li +]=9:1 몰비)로 혼합 준비되었다. 상기 고체 전해질 재료를 아세토니트릴과 60℃ 조건에서 밤새 교반하여 약 10wt%의 고체 전해질 필름 제조용 슬러리를 준비하였다. 다음으로 상온에서 테레프탈레이트 이형 필름에 상기 고체 전해질 필름 제조용 슬러리를 닥터 블레이드를 이용해서 도포하고 상온 조건에서 자연 건조하여 약 50㎛ 두께의 고체 전해질 필름을 수득하였다.
이후 준비된 고체 전해질 필름을 제조예 1에서 제조된 상기 열처리된 다공성 고분자 시트의 일측 표면에 배치하여 적층 구조물을 수득하였다. 상기 적층 구조물을 롤 프레스에 투입하고 롤 사이의 간격을 순차적으로 낮춰 가압을 3회 진행하였다. 이를 통해 고체 전해질 필름이 상기 열처리된 다공성 고분자 시트의 기공 내로 압입되었다. 최종적으로 약 20㎛ 두께의 전고체 전지용 고체 전해질막을 얻었다.
실시예 2
제조예 2에서 제조된 열처리된 다공성 고분자 시트를 이용하고 두께가 50 ㎛가 되도록 제어한 것을 제외하고는 실시예 1과 동일한 방법으로 고체 전해질 막을 제조하였다.
실시예 3
제조예 3에서 제조된 열처리된 다공성 고분자 시트를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 고체 전해질 막을 제조하였다. 이 때, 제조된 고체 전해질 막의 두께는 20 ㎛이었다.
비교예 1
제조예 4에 따른 다공성 고분자 시트를 이용하고 두께가 50 ㎛가 되도록 제어한 것을 제외하고는 실시예 1과 동일한 방법으로 고체 전해질 막을 제조하였다.
비교예 2
폴리에틸렌옥사이드(PEO, Mw 60만)를 준비하였으며 이를 LiTFSI와 혼합하여 고체 전해질 재료를 수득하였다. 상기 고체 전해질 재료에서 PEO와 LiTFSI는 9:1의 몰비([EO]/[Li +]=9:1 몰비)로 혼합 준비되었다. 상기 고체 전해질 재료를 아세토니트릴과 60℃ 조건에서 밤새 교반하여 약 10wt%의 고체 전해질 필름 제조용 슬러리를 준비하였다. 다음으로 상온에서 테레프탈레이트 이형 필름에 상기 고체 전해질 필름 제조용 슬러리를 닥터 블레이드를 이용해서 도포하고 상온 조건에서 자연 건조하여 약 50㎛ 두께의 고체 전해질 필름을 수득하였다.
즉, 비교예 2는 다공성 고분자 시트를 사용하지 않은 경우이다.
비교예 3
제조예 5에서 제조된 열처리된 다공성 고분자 시트를 이용한 것을 제외하고는 실시예 1과 동일한 방법으로 고체 전해질 막을 제조하였다.
물성 측정방법
평균 기공 직경의 측정
Capillary flow porometer 장비를 이용하여 다공성 고분자 시트 또는 고체 전해질 막 내 평균 기공 직경을 측정하였다.
측정 개수는 최소 3개 이상으로 하며, 측정 후 구한 기공 크기의 평균 값을 구하였다.
기공도의 측정
상기 각 제조예, 실시예 및 비교예에서 수득된 다공성 고분자 시트 또는 고체 고체 전해질막을 2.834 cm 2의 크기로 절단하고 이의 무게와 부피를 측정한 후(겉보기 밀도 측정) 이를 설계 치수(진밀도)와 비교하여 기공도를 계산하였다. 즉, 수득된 다공성 고분자 시트 또는 고체 전해질막에 포함된 재료들의 조성비와 각 성분들의 밀도로부터 각 다공성 고분자 시트 또는 고체 전해질막의 진밀도를 계산하고 겉보기 밀도(apparent density)와 진밀도(true density)의 차이로부터 기공도를 계산하였다.
두께 측정
상기 각 제조예, 실시예 및 비교예에서 수득된 다공성 고분자 시트 또는 고체 전해질 막의 두께는 마우저를 통해 측정하였다.
통기도(Air permeability) 측정
통기도 측정 장비를 이용하여 100mL의 공기가 다공성 고분자 시트 또는 고체 전해질 막을 통과하는 시간을 측정하였다.
이온 저항 측정
상기 각 실시예 및 비교예에서 수득된 고체 전해질막을 1.7671cm 2의 크기로 절단하였다. 이를 두 장의 스텐레스 스틸(SUS) 사이에 배치하여 코인셀을 제작하였다. 이를 분석 장치(VMP3, Bio logic science instrument)를 사용하여, 60℃에서amplitude 10mV 및 scan range 500khz 내지 0.1mHz 조건으로 전기화학적 임피던스를 측정하였다.
인장 강도 측정
각 실시예 및 비교예에서 제작된 고체 전해질막을 15 mm x 50 mm 크기로 절단하였다. 측정시 집게 물림으로 인한 고체전해질막의 손상을 최소화하기 위해 샘플 양 끝단에 테이프 접착 후, UTM 장비를 이용하여 인장강도를 측정하였다.
방전용량 측정
양극 제작을 위해 전극 활물질은 NCM811(LiNi 0.8Co 0.1Mn 0.1O 2), 도전재는 VGCF(Vapor grown carbon fiber) 및 고분자계 고체 고체 전해질(PEO + LiTFSI, 18:1 mol비)을 80:3:17의 중량비로 혼합하여 아세토니트릴에 투입하고 교반하여 전극 슬러리를 제조하였다. 이를 두께가 20㎛인 알루미늄 집전체에 닥터 블레이드를 이용하여 도포하고 그 결과물을 120℃에서 4시간 동안 진공 건조시켰다. 이후 상기 진공 건조 결과물을 롤 프레스를 이용하여 압연 공정을 진행하여, 2mAh/cm 2의 전극 로딩, 전극층 두께가 48㎛, 기공도가 22vol%인 전극을 수득하였다.
상기에서 제조된 양극을 1.4875cm 2의 원형으로 타발하여 준비하였다. 1.7671cm 2의 원형으로 절단된 리튬 금속 박막을 상대 전극으로 준비하였다. 이 두 전극 사이에 각 실시예 및 비교예에서 수득된 고체 전해질막을 개재시켜 코인형 하프셀(half-cell)을 제조하였다.
상기에서 제조된 전고체 전지에 대해 60℃에서 0.05C로 충전 및 방전을 수행하여, 초기 방전용량방전을 평가하였다.
충전 조건: CC(정전류)/CV(정전압), (4.15V, 0.005C current cut-off)
방전 조건: CC(정전류) 조건 3V, (0.05C)
구분 (S10) 단계의 다공성 고분자 시트 내 평균 기공 직경(A) (S11) 단계의 다공성 고분자 시트 내 평균 기공 직경(B) 직경비(B/A) (S10) 단계의 다공성 고분자 시트의 기공도(C)(vol%) (S11) 단계의 다공성 고분자 시트의 기공도(D) (vol%) 기공도의 비(D/C) (S11) 단계의 다공성 고분자 시트의 두께(㎛) (S11) 단계의 다공성 고분자 시트의 통기도(s/100ml)
제조예 1 43 nm 96 nm 2.23 37 45 1.21 6.3 106
제조예 2 43 nm 125 nm 2.91 37 58 1.57 6 78
제조예 3 43 nm 138 nm 3.21 37 62 1.68 5.9 72
제조예 4 43 nm - - 37 - - 6.8 165
제조예 5 43 nm 36 nm 0.84 37 28 0.76 6.7 218
상기 표 1에서 보는 바와 같이, (S10) 단계의 다공성 고분자 시트의 단부를 고정한 후에 열처리를 한 경우 기공도 및 평균 기공 직경이 모두 증가하였다. 이는 (S11) 단계의 다공성 고분자 시트의 기공도 및 평균 기공 직경으로부터 확인할 수 있었다. 또한, 이에 따라 (S11) 단계의 다공성 고분자 시트의 통기도가 열처리 되기 전에 비해 현저히 개선되었다. 특히 제조예 1 내지 3으로부터 열처리 온도 및 열처리 시간을 제어함에 따라 수득되는 (S11) 단계의 다공성 고분자 시트의 기공도, 평균 기공 직경 및 두께를 제어할 수 있다.
반면, 제조예 5와 같이, (S10) 단계의 다공성 고분자 시트의 단부를 고정하지 않은 상태에서 열처리하는 경우에는 기공도 및 평균 기공 직경이 감소하는 것을 확인할 수 있었다. 이는, 가해지는 열에너지에 의해 제1 다공성 고분자 시트 내 잔류 응력이 해소되면서 총 디멘젼(dimension)이 감소하기 때문인 것으로 보인다.
구분 고체 전해질 막의 두께 (㎛) 고체 전해질 막의 이온 저항 (ohm) 고체 전해질 막의 인장강도(kgf/cm 2) 고체 전해질 막의 방전용량 (mAh/g @4.0V)
실시예 1 20 14 724 -
실시예 2 50 38 543 -
실시예 3 20 12 665 137
비교예 1 50 45 607 112
비교예 2 50 25 407 126
비교예 3 50 53 632 -
상기 표 2에서 알 수 있듯이, 실시예 1 내지 실시예 3은 이온 저항이 비교예 1에 비해 감소하였다. 이는 증가된 기공도 및 평균 기공 직경을 갖는 열처리된 다공성 고분자 시트를 사용함에 따라 고체 전해질의 함침이 용이하며 함침량이 증가함에 따른 것으로 보인다. 특히, 실시예 3은 고체 전해질 막이 박막화됨에도 인장 강도는 증가하였으며, 동시에 이온 저항은 감소하여 방전 용량의 개선 효과도 얻을 수 있었다.
한편, 비교예 3과 같이 다공성 고분자 시트의 열처리시 단부를 고정하지 않는 경우에는, 열처리에 의해 다공성 고분자 시트 내 기공 크기를 증가시킬 수 없었다. 오히려 열처리에 의해 다공성 고분자 시트 내 기공 크기가 감소되었다. 이에 따라 고체 전해질 재료의 함침이 어려워 저항이 크게 나타났으며, 인장 강도 또한 증가할 수 없었다.
[부호의 설명]
10: 리튬 메탈 음극
20: 고체 전해질 막
D: 리튬 덴드라이트
301: 다공성 고분자 시트
301': 열처리된 다공성 고분자 시트
302: 고체 전해질 시트
100: 고체 전해질 막
101: 다공성 고분자 시트
102: 고체 전해질 재료

Claims (14)

  1. (S10) 다공성 고분자 시트를 준비하는 단계;
    (S11) 상기 다공성 고분자 시트의 단부를 고정한 후 열처리하는 단계;
    (S12) 상기 열처리된 다공성 고분자 시트의 적어도 일측 표면에 고체 전해질 재료를 포함하는 고체 전해질 필름을 배치하여 적층 구조물을 수득하는 단계; 및
    (S13) 상기 적층 구조물을 가압하여 상기 열처리된 다공성 고분자 시트를 상기 고체 전해질 재료로 충진하는 단계;를 포함하는 전고체 전지용 고체 전해질막의 제조방법.
  2. 제1항에 있어서,
    상기 (S11) 단계의 열처리는 상기 (S10) 단계의 다공성 고분자 시트의 융점보다 낮은 온도에서 수행되는 것인 전고체 전지용 고체 전해질막의 제조방법.
  3. 제1항에 있어서,
    상기 (S11) 단계의 열처리는 50 ℃ 내지 300 ℃ 에서 10분 내지 24시간 동안 수행되는 것인 전고체 전지용 고체 전해질막의 제조방법.
  4. 제1항에 있어서,
    상기 상기 (S10) 단계의 다공성 고분자 시트는 20vol% 내지 50vol%의 기공도 및 20 nm 내지 500 nm의 평균 기공 직경을 갖는 것인 전고체 전지용 전해질막의 제조방법.
  5. 제1항에 있어서,
    상기 (S10) 단계의 다공성 고분자 시트 내 평균 기공 직경(A) 대비 상기 (S11) 단계의 열처리된 다공성 고분자 시트 내 평균 기공 직경(B)의 비(B/A)는 1.1 내지 100인 것인 전고체 전지용 고체 전해질막의 제조방법.
  6. 제1항에 있어서,
    상기 (S10) 단계의 다공성 고분자 시트의 기공도(C) 대비 상기 (S11) 단계의 열처리된 다공성 고분자 시트의 기공도(D)의 비(D/C)는 1.1 내지 3인 것인 전고체 전지용 고체 전해질막의 제조방법.
  7. 제1항에 있어서,
    상기 (S11) 단계는 상기 다공성 고분자 시트의 단부를 고정한 후 열처리 하여, 상기 (S10) 단계의 다공성 고분자 시트의 평균 기공 직경보다 큰 평균 기공 직경 및 상기 (S10) 단계의 다공성 고분자 시트의 기공도보다 더 큰 기공도를 갖는 열처리된 다공성 고분자 시트를 수득하는 단계이며,
    상기 (S11) 단계는 상기 다공성 고분자 시트의 단부를 고정한 후, 상기 다공성 고분자 시트가 30vol% 내지 90vol%의 기공도 및 100nm 내지 100 ㎛ 의 기공 직경을 갖도록 열처리하는 단계인 것인 전고체 전지용 고체 전해질막의 제조방법.
  8. 제1항에 있어서,
    상기 (S10) 단계의 다공성 고분자 시트는 폴리올레핀계 고분자 수지를 포함하는 고분자 필름이며, 상기 고분자 필름은 두께가 5 ㎛ 내지 50 ㎛인 것인 전고체 전지용 고체 전해질막의 제조방법.
  9. 고체 전해질 재료 및 적어도 하나 이상의 다공성 고분자 시트를 포함하고,
    상기 다공성 고분자 시트는 30vol% 내지 90vol%의 기공도 및 100 nm 내지 100 ㎛의 평균 기공 직경을 가지며,
    상기 고체 전해질 재료가 상기 다공성 고분자 시트의 기공 내로 충진되어, 상기 고체 전해질 재료와 상기 다공성 고분자 시트가 복합화되어 있는 것인 전고체 전지용 고체 전해질막.
  10. 제9항에 있어서,
    상기 다공성 고분자 시트의 융점은 50℃ 내지 300℃ 인 것인 전고체 전지용 고체 전해질막.
  11. 제9항에 있어서,
    상기 다공성 고분자 시트는 폴리올레핀계 고분자 수지를 포함하는 고분자 필름인 것인 전고체 전지용 고체 전해질막.
  12. 제9항에 있어서,
    상기 다공성 고분자 시트는 융점 이하의 온도에서 열처리하여 수득된 것인 전고체 전지용 고체 전해질막.
  13. 제9항에 있어서,
    상기 고체 전해질막은 두께가 15㎛ 내지 50㎛ 이며, 인장강도가 100kgf/cm 2 내지 2,000kgf/cm 2인 것인 전고체 전지용 고체 전해질막.
  14. 제9항 내지 제13항 중 어느 한 항에 따른 고체 전해질막을 포함하는 전고체 전지.
PCT/KR2020/005757 2019-05-03 2020-04-29 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지 WO2020226361A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/268,749 US20210328260A1 (en) 2019-05-03 2020-04-29 Solid electrolyte membrane, method for manufacturing same and solid-state battery including same
EP20802764.9A EP3819975A4 (en) 2019-05-03 2020-04-29 SOLID ELECTROLYTE MEMBRANE, ITS MANUFACTURING PROCESS AND ANY SOLID BATTERY INCLUDING THE SAME
JP2021530766A JP7247340B2 (ja) 2019-05-03 2020-04-29 固体電解質膜、その製造方法及びそれを含む全固体電池
CN202080004566.5A CN112585796B (zh) 2019-05-03 2020-04-29 固体电解质膜、其制造方法以及包含其的固态电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0052529 2019-05-03
KR20190052529 2019-05-03

Publications (1)

Publication Number Publication Date
WO2020226361A1 true WO2020226361A1 (ko) 2020-11-12

Family

ID=73051526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005757 WO2020226361A1 (ko) 2019-05-03 2020-04-29 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지

Country Status (6)

Country Link
US (1) US20210328260A1 (ko)
EP (1) EP3819975A4 (ko)
JP (1) JP7247340B2 (ko)
KR (1) KR102491164B1 (ko)
CN (1) CN112585796B (ko)
WO (1) WO2020226361A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024013560A1 (ja) * 2022-07-13 2024-01-18 日産自動車株式会社 全固体電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066808A (ja) * 2005-09-01 2007-03-15 Toyota Motor Corp 固体電解質膜の製造方法
KR20080005530A (ko) * 2005-04-05 2008-01-14 하우매트 코포레이션 고체 산화물 연료전지 전해질 및 이의 제조방법
JP2018101641A (ja) * 2018-03-19 2018-06-28 古河機械金属株式会社 固体電解質シート、全固体型リチウムイオン電池、および固体電解質シートの製造方法
KR20180076949A (ko) * 2016-12-28 2018-07-06 현대자동차주식회사 연료전지용 고분자 전해질막 및 그 제조방법
KR20180099548A (ko) * 2017-02-27 2018-09-05 울산과학기술원 고체 전해질 필름, 이의 제조 방법, 및 이를 포함하는 전고체전지
KR20190052529A (ko) 2017-11-08 2019-05-16 한국전자통신연구원 신축성 폴리이미드 기판 및 그 제조방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107832A (ja) * 1996-04-26 1998-01-13 Mitsui Petrochem Ind Ltd 高強度ポリプロピレン多孔フィルム及びその製造方法
JP2001176479A (ja) * 1999-12-16 2001-06-29 Nitto Denko Corp 電気化学素子用セパレータのための多孔質膜
JP4601114B2 (ja) * 2000-02-28 2010-12-22 日東電工株式会社 薄膜状電解質
JP2002184466A (ja) * 2000-12-12 2002-06-28 Mitsubishi Chemicals Corp 携帯機器用電池
JP2005216667A (ja) * 2004-01-29 2005-08-11 Hitachi Ltd 固体高分子電解質複合膜、固体電解質複合膜/電極接合体、及びそれを用いた燃料電池
CN101155861B (zh) * 2005-03-31 2010-12-22 东燃化学株式会社 聚烯烃微多孔膜及其制造方法
KR101243070B1 (ko) * 2005-09-28 2013-03-13 도레이 배터리 세퍼레이터 필름 주식회사 폴리에틸렌 미세 다공막의 제조 방법 및 전지용 세퍼레이터
US8089746B2 (en) * 2005-10-18 2012-01-03 Toray Industries, Inc. Microporous film for electric storage device separator and electric storage device separator using the same
US8795565B2 (en) * 2006-02-21 2014-08-05 Celgard Llc Biaxially oriented microporous membrane
JP2007227031A (ja) * 2006-02-21 2007-09-06 Nissan Motor Co Ltd ガス拡散電極用材料の製造方法、ガス拡散電極及び固体高分子電解質型燃料電池
JP2008103229A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 固体電解質成形体の製造方法及びこれを用いる全固体電池
JP5173262B2 (ja) * 2007-05-29 2013-04-03 日本ゴア株式会社 固体高分子電解質膜の製造方法、固体高分子電解質膜、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
JP5651120B2 (ja) * 2009-10-15 2015-01-07 三菱製紙株式会社 リチウム二次電池用基材及びリチウム二次電池用セパレータ
JP5630827B2 (ja) * 2010-08-05 2014-11-26 日東電工株式会社 ポリオレフィン多孔質膜およびその製造方法ならびにその製造装置
WO2012042965A1 (ja) * 2010-09-30 2012-04-05 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP6310716B2 (ja) * 2014-02-10 2018-04-11 古河機械金属株式会社 固体電解質シート、全固体型リチウムイオン電池、および固体電解質シートの製造方法
FR3023982B1 (fr) * 2014-07-17 2016-08-12 Blue Solutions Batterie lithium soufre
FR3030122B1 (fr) * 2014-12-10 2017-01-13 Blue Solutions Batterie lithium organique
CA3031591A1 (en) * 2016-07-25 2018-02-01 Tokyo Institute Of Technology Electrolyte membrane and method for producing same
JP6774378B2 (ja) * 2017-05-23 2020-10-21 本田技研工業株式会社 リチウムイオン二次電池
CN109638349B (zh) * 2018-12-04 2022-08-16 中国科学院山西煤炭化学研究所 一种无机-有机纳米复合固态电解质隔膜及其制备方法和应用
KR102449206B1 (ko) * 2018-12-21 2022-09-28 주식회사 엘지에너지솔루션 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080005530A (ko) * 2005-04-05 2008-01-14 하우매트 코포레이션 고체 산화물 연료전지 전해질 및 이의 제조방법
JP2007066808A (ja) * 2005-09-01 2007-03-15 Toyota Motor Corp 固体電解質膜の製造方法
KR20180076949A (ko) * 2016-12-28 2018-07-06 현대자동차주식회사 연료전지용 고분자 전해질막 및 그 제조방법
KR20180099548A (ko) * 2017-02-27 2018-09-05 울산과학기술원 고체 전해질 필름, 이의 제조 방법, 및 이를 포함하는 전고체전지
KR20190052529A (ko) 2017-11-08 2019-05-16 한국전자통신연구원 신축성 폴리이미드 기판 및 그 제조방법
JP2018101641A (ja) * 2018-03-19 2018-06-28 古河機械金属株式会社 固体電解質シート、全固体型リチウムイオン電池、および固体電解質シートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3819975A4

Also Published As

Publication number Publication date
JP2021534564A (ja) 2021-12-09
CN112585796B (zh) 2024-04-12
KR20200127894A (ko) 2020-11-11
US20210328260A1 (en) 2021-10-21
CN112585796A (zh) 2021-03-30
EP3819975A4 (en) 2021-11-03
JP7247340B2 (ja) 2023-03-28
KR102491164B1 (ko) 2023-01-20
EP3819975A1 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2019190126A1 (ko) 전고체 전지용 복합 고체 전해질 막 및 이를 포함하는 전고체 전지
WO2017217596A1 (ko) 리튬금속전지용 복합 전해질, 그 제조방법 및 이를 포함한 리튬금속전지
WO2015065102A1 (ko) 리튬 이차전지
WO2017196012A1 (ko) 고분자 전해질용 조성물 및 이를 포함하는 리튬 이차전지
WO2019240547A1 (ko) 고체 전해질막 및 이를 포함하는 전고체 전지
WO2017171442A1 (ko) 겔 폴리머 전해질용 조성물, 이로부터 제조된 겔 폴리머 전해질, 및 이를 포함하는 전기화학소자
WO2020159296A1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2019004699A1 (ko) 리튬 이차전지
WO2018056615A1 (ko) 다중 보호층을 포함하는 음극 및 이를 포함하는 리튬이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2021096313A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022055258A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021150097A1 (ko) 고상-액상 하이브리드 전해질 막 및 이의 제조방법
WO2021118094A1 (ko) 고상-액상 하이브리드 전해질 막, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021145690A1 (ko) 고상-액상 하이브리드 전해질 막을 포함하는 전고체 전지의 제조방법 및 고상-액상 하이브리드 전해질 막
WO2021172857A1 (ko) 이차전지의 제조방법
WO2021071125A1 (ko) 리튬 이차 전지 및 리튬 이차 전지의 제조방법
WO2020226361A1 (ko) 고체 전해질막 및 이를 제조하는 방법 및 이를 포함하는 전고체 전지
WO2020226334A1 (ko) 고체 전해질막 및 이를 포함하는 전고체 전지
WO2017074116A1 (ko) 다층 구조의 고분자 전해질 및 이를 포함하는 전고체 전지
WO2020197278A1 (ko) 리튬 이차 전지
WO2023008953A1 (ko) 습윤 접착력이 우수한 절연층을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530766

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE