WO2023234717A1 - 복합 고체 전해질 제조방법 - Google Patents

복합 고체 전해질 제조방법 Download PDF

Info

Publication number
WO2023234717A1
WO2023234717A1 PCT/KR2023/007478 KR2023007478W WO2023234717A1 WO 2023234717 A1 WO2023234717 A1 WO 2023234717A1 KR 2023007478 W KR2023007478 W KR 2023007478W WO 2023234717 A1 WO2023234717 A1 WO 2023234717A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
composite
polymer
composite solid
ceramic
Prior art date
Application number
PCT/KR2023/007478
Other languages
English (en)
French (fr)
Inventor
남성현
한혜은
김동규
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority claimed from KR1020230070146A external-priority patent/KR20230166967A/ko
Publication of WO2023234717A1 publication Critical patent/WO2023234717A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a composite solid electrolyte.
  • Lithium-ion batteries that use a liquid electrolyte have a structure in which the cathode and anode are separated by a separator, so if the separator is damaged by deformation or external impact, a short circuit may occur, which can lead to risks such as overheating or explosion. Therefore, the development of a solid electrolyte that can ensure safety in the field of lithium-ion secondary batteries can be said to be a very important task.
  • Lithium secondary batteries using solid electrolytes have the advantage of increasing the safety of the battery, improving the reliability of the battery by preventing electrolyte leakage, and making it easy to manufacture thin batteries.
  • lithium metal can be used as a negative electrode, which can improve energy density. Accordingly, it is expected to be applied to small secondary batteries as well as high-capacity secondary batteries for electric vehicles, and is attracting attention as a next-generation battery.
  • polymer solid electrolytes can be ion-conducting polymer materials or oxide or sulfide inorganic materials with ion-conducting properties, and composite solid electrolytes that are a mixture of polymer materials and inorganic materials have also been proposed.
  • Such a conventional composite solid electrolyte was manufactured by preparing a solution or slurry in which polymers and inorganic materials were mixed and dispersed, then solution casting and high temperature drying of the solution onto a substrate.
  • the conventional composite solid electrolyte manufacturing technology has a limitation in that it is difficult to manufacture a composite solid electrolyte with improved ionic conductivity because the uniform dispersion of inorganic substances in the polymer solution is not smooth, resulting in the formation of non-uniform inorganic particle distribution in the composite solid electrolyte.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2017-0045011
  • the purpose of the present invention is to provide a method for manufacturing a composite solid electrolyte that improves ion conductivity and enables continuous processing.
  • Another object of the present invention is to provide an all-solid-state battery containing the composite solid electrolyte prepared by the above manufacturing method.
  • the present invention includes (1) a first process of producing a first composite layer by mixing a first polymer, which is an ultraviolet curable polymer, a photoinitiator, and a ceramic compound;
  • the first to third processes are performed continuously, providing a method for producing a composite solid electrolyte.
  • the present invention provides a ceramic ion conductor layer containing a ceramic compound; second polymer; and lithium salt; and provides a composite solid electrolyte prepared by the production method of the present invention.
  • the present invention provides an all-solid-state battery containing a composite solid electrolyte manufactured by the manufacturing method of the present invention.
  • the method for manufacturing a composite solid electrolyte according to the present invention can effectively improve ionic conduction of lithium ions by forming a ceramic ion conductor containing a first polymer, which is an ultraviolet curable polymer, and a ceramic compound, and using the ceramic ion conductor to form a ceramic ion conductor.
  • the ionic conductivity of solid electrolyte can be improved.
  • the composite solid electrolyte production method according to the present invention can produce a composite solid electrolyte in a continuous process and mass production is possible.
  • 1 is a flow chart of the method for producing a composite solid electrolyte of the present invention.
  • the conventional composite solid electrolyte manufacturing method was manufactured by coating a solution or slurry in which polymers and inorganic materials were mixed and dispersed on a base film using a method such as solution casting and drying the solution.
  • this method had a problem in that the ionic conductivity of the solid electrolyte was not improved due to the non-uniform dispersion of inorganic substances in the polymer solution.
  • the particles of the ceramic compound are uniformly dispersed in the ceramic ion conductor layer, and ion conductivity is improved.
  • a solution containing a first polymer, which is a UV-curable polymer, and a ceramic compound is irradiated with ultraviolet rays and then cured to produce the first composite, so that the ceramic compound can be uniformly dispersed in the first polymer solution.
  • a ceramic ion conductor in which the ceramic compound particles are uniformly dispersed, ionic conduction of lithium ions can be improved and a composite solid electrolyte with improved ionic conductivity can be manufactured.
  • the composite solid electrolyte manufacturing method of the present invention can be manufactured in a continuous process and mass production is possible.
  • the present invention relates to a method for producing a composite solid electrolyte.
  • the method for producing a composite solid electrolyte of the present invention includes,
  • a first process of manufacturing a first composite layer by mixing a first ultraviolet curable polymer, a photoinitiator, and a ceramic compound;
  • the first to third processes may be performed continuously.
  • the first process is,
  • the step (1-1) is a step of preparing a composition for forming a first composite containing a first polymer, which is an ultraviolet curable polymer, a photoinitiator, and a ceramic compound.
  • the ultraviolet curable polymer refers to a polymer that forms crosslinks using ultraviolet (UV) rays.
  • UV ultraviolet
  • the UV-curable polymer may have physical properties showing maximum absorbance in at least some or all of the ultraviolet rays (e.g., wavelengths of 300 nm to 400 nm) in the absorbance spectrum for wavelengths.
  • the first polymer may include one or more selected from the group consisting of polyisocyanurate (PIR), epoxy, polyurethane, polyacrylate, and poly(methyl methacrylate) (PMMA). You can.
  • PIR polyisocyanurate
  • epoxy epoxy
  • polyurethane polyurethane
  • polyacrylate polyacrylate
  • PMMA poly(methyl methacrylate)
  • UV-curable acrylate-based monomers include hexanediol diacrylate (HDDA), tripropylene glycol diacrylate (TPGDA), ethylene glycol diacrylate (EGDA), and trimethyl Trimethylolpropane triacrylate (TMPTA), trimethylolpropane ethoxylated triacrylate (TMPEOTA), glycerol propoxylated triacrylate (GPTA), pentaerythritol tetraacrylate ( Examples include, but are not limited to, pentaerythritol tetraacrylate (PETA) and dipentaerythritol hexaacrylate (DPHA), and acrylate-based monomers commonly used in the field can be used without any restrictions. there is.
  • HDDA hexanediol diacrylate
  • TPGDA tripropylene glycol diacrylate
  • EGDA ethylene glycol diacrylate
  • TMPTA trimethyl Trimethylolpropane triacrylate
  • the photoinitiator refers to a substance that initiates a photopolymerization reaction when receiving ultraviolet rays from an ultraviolet ray generator.
  • the photoinitiator is 1-hydroxy-cyclohexyl-phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-1-propanone, 2-hydroxy-1-[4-(2-hydroxyethoxy )Phenyl]2-methyl-1-propanone, methylbenzoylformate, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone, 2-benzoyl-2-(dimethylamino)-1-[4-(4-mo) Porinyl)phenyl]-1-butanone, 2-methyl-1-[4[(methylthio)phenyl]-2(4-morpholinyl)-1-propanondiphenyl (2,4,6-trimethylbenzoyl ) -phosphine oxide, or bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, etc., but is not limited thereto.
  • the photopolymerization initiator can be used as a commercially available product such as Irgacure 184, Irgacure 500, Irgacure 651, Irgacure 369, Irgacure 907, Darocur 1173, Darocur MBF, Irgacure 819, Darocur TPO, Irgacure 907, Esacure KIP 100F, etc. .
  • the photopolymerization initiator can be used alone or in a mixture of two or more different types.
  • the content of the photoinitiator may be 1 to 5% by weight based on the content of the first polymer. If the content of the photoinitiator is less than 1% by weight or more than 5% by weight based on the content of the first polymer, forming a first composite layer may be difficult because crosslinking between the first polymer and the ceramic compound is not formed.
  • the ceramic compound may be an oxide-based or phosphate-based solid electrolyte.
  • the oxide-based or phosphate-based solid electrolytes include garnet-type lithium-lanthanum-zirconium oxide (LLZO, Li7La 3 Zr 2 O 12 ) and perovskite-type lithium-lanthanum-titanium oxide (LLTO).
  • Li 3x La 2/3-x TiO 3 Li 3x La 2/3-x TiO 3
  • phosphate-based NASICON type lithium-aluminum-titanium phosphate-based Li 1+x Al x Ti 2-x (PO 4 ) 3
  • lithium-aluminum-germanium phosphate LAGP, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3
  • lithium-silicon-titanium phosphate LSTP, LiSiO 2 TiO 2 (PO 4 ) 3
  • lithium-lanthanum Li 3x La 2/3-x TiO 3
  • -At least one type may be selected from the group consisting of zirconium-titanium oxide (LLZTO) compounds.
  • oxide-based or phosphate-based solid electrolyte requires a sintering process at 1000°C or higher because the grain boundary resistance is very high. This causes problems such as volatilization of lithium at high temperatures, phase transition, and formation of impurity phases.
  • oxide-based or phosphate-based solid electrolytes generally have ionic conductivity values of up to 10 -4 to 10 -3 S/cm at room temperature, are stable in high voltage areas, and are stable in air, so they have the advantage of being easy to synthesize and handle. .
  • each material can be compensated for by mixing the first polymer according to the present invention with a heterogeneous material to produce a hybrid solid electrolyte.
  • the oxide-based or phosphate-based solid electrolyte has high high temperature stability because it does not easily combust or ignite even under high temperature conditions of 400°C or higher. Therefore, when the ceramic ion conductor layer includes the oxide-based or phosphate-based solid electrolyte, the mechanical strength, high-temperature stability, and ionic conductivity of the composite solid electrolyte for a lithium secondary battery can be improved.
  • the composition for forming the first composite may be prepared by adding a photoinitiator and a ceramic compound to a solution of a first polymer, which is an ultraviolet curable polymer.
  • the solvent used in preparing the first polymer solution may be a polar solvent, for example, water. That is, the first polymer solution may be an aqueous solution.
  • the concentration of the first polymer solution can be appropriately adjusted taking into account the degree to which the application process can proceed smoothly when applying the first complex forming solution to the base film.
  • the first polymer may be included in an amount of 5 to 20% by weight, specifically, 5% by weight or more, 7% by weight or more, or 9% by weight or more, based on the total weight of the first polymer aqueous solution, and 13% by weight. It may be 17% by weight or less or 20% by weight or less. If the first polymer is included in less than 5% by weight, the concentration is too dilute and may flow when applied on the base film, and if it is included in more than 20% by weight, it may be difficult to apply it in a uniform foil form.
  • the ceramic compound may include 1 part by weight or more and less than 10 parts by weight based on 1 part by weight of the first polymer. More specifically, the weight ratio of the first polymer and the ceramic compound is 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8 or 1:9. You can. If the ceramic compound contains less than 1 part by weight relative to 1 part by weight of the first polymer, the connection between the ceramic compounds is not smooth after the sintering process, which is the second process, making it difficult to form a ceramic ion conductor with a crosslinked structure, and mechanical The physical properties are also weak and easily broken or destroyed, making it impossible to manufacture a composite solid electrolyte.
  • the ceramic compound contains more than 10 parts by weight based on 1 part by weight of the first polymer, the ceramic compound is not uniformly dispersed within the first polymer, resulting in aggregation of ceramic compound particles. This occurs, phase separation occurs between the first polymer and the aggregated ceramic compound particles, making it difficult to form a ceramic ion conductor layer, resulting in the production of a composite solid electrolyte with reduced ionic conductivity.
  • the step (1-2) is a step of unwinding the base film using an unwinder and supplying it to the transfer path.
  • the unwinder unwinds and supplies a base film wound in a roll shape through a predetermined transfer path, and can unwind and supply the base film by its own drive.
  • a rewinder ( The base film can be unwound and supplied by the driving force of the rewinder.
  • the first process of the present invention may be a roll-to-roll process.
  • the base film is not particularly limited as long as it can serve as a support on which the first composite forming composition is applied.
  • the base film may include stainless steel (SS), polyethylene terephthalate film, polytetrafluoroethylene film, polyethylene film, polypropylene film, polybutene film, polybutadiene film, vinyl chloride copolymer film, and polyurethane film. , ethylene-vinyl acetate film, ethylene-propylene copolymer film, ethylene-ethyl acrylate copolymer film, ethylene-methyl acrylate copolymer film, or polyimide film.
  • the step (1-3) is a step of forming a coating film by applying the first composite forming composition on the base film.
  • the application method is not particularly limited as long as it is a method that can apply the first composite forming composition in the form of a film on the base film.
  • the application method includes bar coating, roll coating, spin coating, slit coating, die coating, blade coating, It may be comma coating, slot die coating, lip coating, spray coating, or solution casting.
  • a solution casting method may be used. More specifically, the composition for forming the first composite prepared in step (1-1) is placed in a mixer, and then the mixer is placed on the base film to form the first complex on the base film supplied through the transfer path. A coating film can be formed by continuously casting the forming composition.
  • the step (1-4) is a step of producing a first composite layer by transporting the base film on which the coating film is formed to an ultraviolet ray irradiation section, irradiating the coating film with ultraviolet rays, and then curing the coating film.
  • the wavelength of ultraviolet rays (UV) used in the curing reaction may be 200 to 400 nm.
  • the ultraviolet curing speed is fast, so the first composite layer can be quickly manufactured.
  • step (1-4) the step of thermally aging the base film including the first composite layer by transferring the base film including the first composite layer to a heat aging section may be further included. there is.
  • the heat aging may be performed at 50°C to 100°C. Specifically, it may be 50°C or higher, 60°C or higher, or 70°C or higher, and may be 80°C or lower, 90°C or lower, or 100°C or lower.
  • the first composite layer can be further hardened, thereby improving the mechanical properties of the first composite layer by reducing the amount of unreacted functional groups in the first polymer.
  • residual stress formed inside the first polymer during the coating and ultraviolet curing process can be alleviated.
  • the adhesion between the base film and the first composite layer can be improved, thereby solving the problem of the first composite layer being peeled off from the base material during the process.
  • the step (1-5) is a step of winding and recovering the base film including the first composite layer using a rewinder.
  • the rewinder can recover the base film including the first composite layer by winding it into a roll shape, and can wind the base film including the first composite layer by its own drive.
  • the first process is a roll-to-roll process and can be manufactured continuously.
  • the second process may be performed continuously after steps (1-5).
  • the second process is,
  • the step (2-1) is a step of unwinding the base film including the first composite layer using an unwinder and peeling and slitting the first composite layer from the base film.
  • the unwinder unwinds and supplies the base film including the first composite layer wound in a roll shape through a predetermined transfer path, and can unwind and supply the base film including the first composite layer by its own drive. there is.
  • the first composite layer is peeled from the base film, and then slitting is performed to a desired area.
  • the step (2-2) is a step of manufacturing a ceramic ion conductor layer by sintering the base film including the slitted first composite layer.
  • sintering refers to a process of applying sufficient temperature and pressure to make the first composite layer into a harder mass of particles.
  • the ceramic ion conductor layer may be manufactured by sintering the first composite layer, thermally decomposing the components of the first polymer, and sintering the remaining particles of the ceramic compound.
  • the first polymer serves as a support so that the particles of the ceramic compound can be connected to each other, and the particles of the ceramic compound can be connected to each other to form a ceramic ion conductor having a single cross-linked structure.
  • the ceramic ion conductor layer may include a cross-linked structure including a ceramic compound.
  • the ceramic ion conductor may serve to form an ion conduction path for lithium ions.
  • the sintering can be performed by thermally decomposing the components of the first polymer and appropriately selecting conditions that allow the particles of the ceramic compound to connect to each other to form an ion conductor with a cross-linked structure.
  • the sintering temperature may be performed at a temperature of 800 °C to 1300 °C.
  • the sintering temperature may be 850 °C or higher, 900 °C or higher, 950 °C or higher, 1300 °C or lower, 1250 °C or lower, 1200 °C or higher. It may be below °C.
  • a third process may be performed continuously after step (2-2).
  • the third process is,
  • (3-1) preparing a composition containing a second polymer and a lithium salt
  • the second composite layer includes the ceramic ion conductor layer, a composite solid electrolyte with improved ionic conductivity can be manufactured.
  • the step (3-1) is a step of preparing a composition containing a second polymer and a lithium salt.
  • the second polymer may be a polymer that has excellent solubility of lithium salts and allows the polymer solution to permeate well into the ceramic ion conductor, making it easy to manufacture the final composite solid electrolyte.
  • the second polymer polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyacrylate, poly(methyl methacrylate, PMMA) , PSTFSI, polyurethane, nylon, poly(dimethylsiloxane), gelatin, methylcellulose, agar, dextran, poly(vinyl pyrrolidone) , poly(acryl amide), poly(acrylic acid), starch-carboxymethyl cellulose, hyaluronic acid-methylcellulose, It may include one or more selected from the group consisting of chitosan, poly(N-isopropylacrylamide), and amino-terminated polyethylene glycol (amino-terminated PEG).
  • the lithium salt is included in a dissociated state inside the structure formed by the ceramic ion conductor layer, thereby improving the ionic conductivity of the composite solid electrolyte.
  • the lithium salt is mainly dissociated inside the second polymer, and may serve to compensate for the loss of lithium ions generated from the ceramic compound particles during the high temperature sintering process in the second process.
  • the lithium salt is LiNO 3 , LiOH, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 It may include one or more selected from the group consisting of SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC(CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 Nli, and (FSO 2 ) 2 NLi. .
  • the composition may be prepared by adding lithium salt to a solution containing the second polymer.
  • the solvent used in preparing the second polymer solution may be a polar solvent, for example, water. That is, the second polymer solution may be an aqueous polymer solution.
  • the concentration of the solution containing the second polymer can be appropriately adjusted considering the degree to which the coating process of coating the ceramic ion conductor layer can proceed smoothly.
  • the second polymer may be included in an amount of 5 to 20% by weight, specifically, 5% by weight or more, 7% by weight or more, or 9% by weight or more, and 13% by weight. It may be 17% by weight or less or 20% by weight or less. If the second polymer is included in less than 5% by weight, the concentration is too dilute to coat the surface of the ceramic ion conductor layer, and if it is included in more than 20% by weight, the concentration is too high to uniformly coat the surface of the ceramic ion conductor layer. It can be difficult.
  • the molar ratio ([Li]/[G]) of the molar concentration ([G]) of the second polymer and the lithium ([Li]) of the lithium salt may be 0.1 to 0.5, specifically 0.1 or more, 0.2 or more, or It may be 0.3 or more, 0.4 or less, or 0.5 or less. If the molar ratio ([Li]/[G]) is less than 0.1, the content of lithium salt may decrease and the ionic conductivity of the composite solid electrolyte may decrease, and if the molar ratio ([Li]/[G]) is more than 0.5, lithium salt may be reduced. Ion conductivity may decrease due to aggregation of ions. Therefore, the composite solid electrolyte according to the present invention requires a second polymer and an appropriate amount of lithium salt composition in the second composite layer.
  • the step (3-2) is a step of coating the ceramic ion conductor layer with the composition.
  • the coating method is not particularly limited as long as it is used in the art, and dipping, spraying, doctor blade, or spin coating may be used, and dipping may be preferably used.
  • the step (3-3) is a step of forming a second composite layer by curing the ceramic ion conductor layer coated with the composition.
  • the curing may be thermal curing or ultraviolet curing.
  • the ultraviolet curing is the same as described above.
  • the thermal curing may be performed while the ceramic ion conductor layer is immersed in the mixed solution.
  • the heat curing step may be performed at 50°C to 150°C, but is not limited thereto.
  • the heat curing step is performed at 50°C to 150°C, 60°C to 150°C, 70°C to 150°C, 80°C to 150°C, 90°C to 150°C, 100°C to 150°C, and 50°C to It may be performed at 140°C, 50°C to 130°C, 50°C to 120°C, 50°C to 110°C, or 50°C to 100°C, but is not limited thereto.
  • the thermal curing step is performed below the temperature range, the formation of the second composite may be incomplete, and if performed above the temperature range, the composite solid may be formed by thermal decomposition of the second polymer and lithium salts. There may be difficulties in manufacturing electrolytes.
  • the ceramic ion conductor layer coated with the second composite layer is a composite solid electrolyte to be manufactured in the present invention, and the composite solid electrolyte has improved ionic conductivity, and can specifically exhibit ionic conductivity of 10 -5 S/cm or more. .
  • the composite solid electrolyte is a solid electrolyte, it can improve the performance of an all-solid-state battery by exhibiting an ionic conductivity of at least the same level as that of a conventional liquid electrolyte.
  • the method for producing a composite solid electrolyte of the present invention is a continuous process that is carried out continuously, and mass production is possible.
  • the method for producing a composite solid electrolyte of the present invention is a continuous process in which the first to third processes are performed continuously, and mass production is possible.
  • a ceramic ion conductor layer containing a ceramic compound; second polymer; and lithium salt; wherein the composite solid electrolyte may be manufactured by the manufacturing method of the present invention described above.
  • the ceramic ion conductor layer may be obtained by sintering the first composite layer described above. Accordingly, the ceramic ion conductor layer may include a cross-linked structure formed by connecting particles of the ceramic compound to each other.
  • the first polymer serves as a support so that the particles of the ceramic compound can be connected to each other.
  • the present invention seeks to provide a composite solid electrolyte including a ceramic ion conductor layer including a cross-linked structure that forms an ion conduction path for lithium ions, a second polymer, and a lithium salt.
  • the ceramic ion conductor may serve to improve ionic conductivity of the composite solid electrolyte by uniformly dispersing ceramic compound particles therein.
  • the composite solid electrolyte may be in the form of a free standing film.
  • the free-standing film refers to a film that can maintain its film form by itself without a separate support at room temperature and pressure.
  • the freestanding film exhibits elasticity, can minimize brittleness, and has properties as a support that stably contains lithium ions, so it may be suitable as a composite solid electrolyte.
  • the ionic conductivity of the composite solid electrolyte may be 10 -5 S/cm or more.
  • the composite solid electrolyte is a solid electrolyte, it can improve the performance of an all-solid-state battery by exhibiting an ionic conductivity of at least the same level as that of a conventional liquid electrolyte.
  • the present invention also relates to an all-solid-state battery including the composite solid electrolyte, wherein the all-solid-state battery includes a cathode, an anode, and a composite solid electrolyte interposed between the cathode and the anode, and the composite solid electrolyte is prepared as described above. It is manufactured by the method and has the above-mentioned characteristics.
  • the composite solid electrolyte includes a ceramic ion conductor and thus improves ion conduction of lithium ions, so it may be suitable as an electrolyte for an all-solid-state battery.
  • the positive electrode included in the all-solid-state battery includes a positive electrode active material layer, and the positive active material layer may be formed on one side of the positive electrode current collector.
  • the positive electrode active material layer includes a positive electrode active material, a binder, and a conductive material.
  • the positive electrode active material is not particularly limited as long as it is a material that can reversibly occlude and release lithium ions, for example, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), Li[Ni x Co y Mn z M v ]O 2
  • the positive electrode active material may be included in an amount of 40 to 80% by weight based on the total weight of the positive electrode active material layer.
  • the content of the positive electrode active material may be 40% by weight or more or 50% by weight or more, and may be 70% by weight or less or 80% by weight or less. If the content of the positive electrode active material is less than 40% by weight, the connectivity between the wet positive electrode active material layer and the dry positive electrode active material layer may be insufficient, and if the content of the positive electrode active material is more than 80% by weight, mass transfer resistance may increase.
  • the binder is a component that assists the bonding of the positive electrode active material and the conductive material and the bonding to the current collector, and includes styrene-butadiene rubber, acrylated styrene-butadiene rubber, acrylonitrile copolymer, acrylonitrile-butadiene rubber, and nitrile.
  • polyvinylpyrrolidone polyvinylpyridine
  • polyvinyl alcohol polyvinyl acetate
  • polyepichlorohydrin polyphosphazene
  • polyacrylonitrile polystyrene
  • latex acrylic resin, phenol resin, epoxy resin, carboxymethyl cellulose.
  • the binder may include one or more selected from the group consisting of styrene-butadiene rubber, polytetrafluoroethylene, carboxymethylcellulose, polyacrylic acid, lithium polyacrylate, and polyvinylidene fluoride.
  • the binder may be included in an amount of 1% to 30% by weight based on the total weight of the positive electrode active material layer.
  • the content of the binder may be 1% by weight or more or 3% by weight or more, and 15% by weight. It may be less than or equal to 30% by weight. If the content of the binder is less than 1% by weight, the adhesion between the positive electrode active material and the positive electrode current collector may decrease. If it exceeds 30% by weight, the adhesion is improved, but the content of the positive electrode active material may decrease accordingly, lowering battery capacity.
  • the conductive material is not particularly limited as long as it prevents side reactions in the internal environment of the all-solid-state battery and has excellent electrical conductivity without causing chemical changes in the battery.
  • Representative examples include graphite or conductive carbon.
  • graphite such as natural graphite and artificial graphite
  • Carbon black such as carbon black, acetylene black, Ketjen black, Denka black, thermal black, channel black, furnace black, lamp black, and thermal black
  • Carbon-based materials with a crystal structure of graphene or graphite Carbon-based materials with a crystal structure of graphene or graphite
  • Conductive fibers such as carbon fiber and metal fiber; fluorinated carbon; Metal powders such as aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate;
  • Conductive oxides such as titanium oxide; and conductive polymers such as polyphenylene derivatives; may be used alone or in a mixture of two or more types, but are not necessarily limited thereto.
  • the conductive material may typically be included in an amount of 0.5% to 30% by weight based on the total weight of the positive electrode active material layer.
  • the content of the conductive material may be 0.5% by weight or more or 1% by weight or more, and 20% by weight or less. It may be 30% by weight or less. If the content of the conductive material is too small (less than 0.5% by weight), it may be difficult to expect an improvement in electrical conductivity or the electrochemical properties of the battery may deteriorate, and if it is too large (more than 30% by weight), the amount of positive electrode active material is relatively small. Capacity and energy density may decrease.
  • the method of including the conductive material in the positive electrode is not greatly limited, and conventional methods known in the art, such as coating the positive electrode active material, can be used.
  • the positive electrode current collector supports the positive electrode active material layer and serves to transfer electrons between the external conductor and the positive electrode active material layer.
  • the positive electrode current collector is not particularly limited as long as it has high electronic conductivity without causing chemical changes in the all-solid-state battery.
  • the positive electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, silver, etc., aluminum-cadmium alloy, etc. You can.
  • the positive electrode current collector may have a fine uneven structure on the surface of the positive electrode current collector or may adopt a three-dimensional porous structure to strengthen the bonding force with the positive electrode active material layer. Accordingly, the positive electrode current collector may include various forms such as film, sheet, foil, mesh, net, porous material, foam, and non-woven fabric.
  • the above positive electrode can be manufactured according to a conventional method, and specifically, a composition for forming a positive electrode active material layer prepared by mixing a positive electrode active material, a conductive material, and a binder in an organic solvent is applied and dried on the positive electrode current collector, and selectively applied. It can be manufactured by compression molding on a current collector to improve electrode density. At this time, it is preferable to use an organic solvent that can uniformly disperse the positive electrode active material, binder, and conductive material and that evaporates easily. Specifically, acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, etc. are mentioned.
  • the negative electrode included in the all-solid-state battery includes a negative electrode active material layer, and the negative electrode active material layer may be formed on one side of the negative electrode current collector.
  • the negative electrode active material is a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal, or a lithium alloy. may include.
  • the material capable of reversibly inserting or de-inserting lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • the material that can react with the lithium ion (Li + ) to reversibly form a lithium-containing compound may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy includes, for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
  • the negative electrode active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
  • the negative electrode active material may be included in an amount of 40 to 80% by weight based on the total weight of the negative electrode active material layer.
  • the content of the negative electrode active material may be 40% by weight or more or 50% by weight or more, and may be 70% by weight or less or 80% by weight or less. If the content of the negative electrode active material is less than 40% by weight, the connectivity between the wet negative electrode active material layer and the dry negative electrode active material layer may be insufficient, and if the content of the negative electrode active material is more than 80% by weight, mass transfer resistance may increase.
  • the binder is the same as described above for the positive electrode active material layer.
  • the conductive material is the same as described above for the positive electrode active material layer.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • the negative electrode current collector may include copper, stainless steel, aluminum, nickel, titanium, calcined carbon, and copper. Surface treatment of stainless steel with carbon, nickel, titanium, silver, etc., aluminum-cadmium alloy, etc. can be used.
  • the negative electrode current collector may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics with fine irregularities formed on the surface.
  • the manufacturing method of the negative electrode is not particularly limited, and it can be manufactured by forming a negative electrode active material layer on a negative electrode current collector using a layer or film forming method commonly used in the art. For example, methods such as compression, coating, and deposition can be used. In addition, the case where a metallic lithium thin film is formed on a metal plate through initial charging after assembling a battery without a lithium thin film on the negative electrode current collector is also included in the negative electrode of the present invention.
  • the present invention provides a battery module including the all-solid-state battery as a unit cell, a battery pack including the battery module, and a device including the battery pack as a power source.
  • the device include a power tool that is powered by an omni-electric motor and moves; Electric vehicles, including Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), etc.; Electric two-wheeled vehicles, including electric bicycles (E-bikes) and electric scooters (E-scooters); electric golf cart; Examples include, but are not limited to, power storage systems.
  • Electric vehicles including Electric Vehicle (EV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), etc.
  • Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters)
  • electric golf cart Examples include, but are not limited to, power storage systems.
  • a ceramic ion conductor containing the first polymer and a ceramic compound as shown in Table 1 below was manufactured, and a composite solid electrolyte containing the same was prepared.
  • PIR Thiol-ene polyisocyanurate
  • DI water distilled water
  • the first composite layer in the form of a cross-linked structure was prepared by inducing cross-linking of PIR.
  • the base film containing the prepared first composite layer was recovered by winding it using a rewinder.
  • the peeled first composite layer was slitted to a desired size.
  • the slitted first composite layer is heated from room temperature to 800°C at a rate of 1°C/min and sintered at 800°C for 2 hours to thermally decompose the PIR component contained in the first composite layer and remove the remaining LLZO.
  • a ceramic ion conductor layer formed by sintering particles was manufactured.
  • a solution containing PEO and LiTFSI was prepared (where the molar ratio of “O” contained in PEO and “Li” contained in the lithium salt ([Li]/[O]) is 0.4).
  • the ceramic ion conductor layer was immersed in the prepared solution for 5 minutes, and then dried in a vacuum drying oven at a temperature of 100° C. for 12 hours to prepare a composite solid electrolyte.
  • a composite solid electrolyte was prepared in the same manner as Example 1, except that LSTP was used instead of the ceramic compound LLZO.
  • a composite solid electrolyte was prepared in the same manner as Example 1, except that the weight ratio of UV curable polymer (PIR) and ceramic compound (LLZO) was 1:10.
  • a composite solid electrolyte was prepared in the same manner as Example 1, except that the weight ratio of the UV curable polymer (PIR) and the ceramic compound (LLZO) was 10:1.
  • a composite solid electrolyte was prepared in the same manner as Example 1, except that 0.1% by weight of photoinitiator was used.
  • a composite solid electrolyte was prepared in the same manner as Example 1, except that 0.4% by weight of photoinitiator was used.
  • a composite solid electrolyte was prepared in the same manner as in Example 1, except that the molar ratio ([Li]/[O]) of “O” contained in PVA and “Li” contained in lithium salt was 0.08.
  • a composite solid electrolyte was prepared in the same manner as Example 1, except that the molar ratio ([Li]/[O]) of “O” contained in PVA and “Li” contained in lithium salt was 0.52.
  • a composite solid electrolyte was prepared in the same manner as Example 1, except that PEO was used instead of the polymer PVA.
  • a composite solid electrolyte was prepared in the same manner as Example 1, except that PIR was used instead of the polymer PVA.
  • a composite solid electrolyte was prepared in the same manner as Example 1, except that the step after the sintering process was not performed.
  • a composite solid electrolyte was prepared in the same manner as Comparative Example 2, except that instead of curing after irradiation with ultraviolet rays (UV), it was dried at 80° C. for 2 hours.
  • UV ultraviolet rays
  • the composite solid electrolyte was punched into a circle with a size of 1.7671 cm2, and the punch was sandwiched between two sheets of stainless steel (SS). A coin cell was manufactured by placing the composite solid electrolyte.
  • Equation 1 ⁇ i is the ionic conductivity of the composite solid electrolyte (S/cm), R is the resistance of the composite solid electrolyte ( ⁇ ) measured with the electrochemical impedance spectrometer, and L is the thickness of the composite solid electrolyte. ( ⁇ m), and A means the area of the composite solid electrolyte (cm 2 ).
  • Example 1 1.5 x 10 -5 O
  • Example 2 1.3 x 10 -5 O
  • Example 3 - X Impossible to prepare solution (aggregation of ceramic particles)
  • Example 4 - X No ion conductors formed after sintering
  • Example 5 - X Cross-linked film cannot be manufactured
  • Example 6 - X Cross-linked film cannot be manufactured
  • Example 7 - X Brittle film formation, difficult to handle, ionic conductivity impossible to measure
  • Example 8 - X Sticky gel formation
  • Example 9 1.5 x 10 -5 O
  • Example 10 1.0 x 10 -5 O
  • Comparative Example 1 - X Since it is not sintered, it is impossible to form a ceramic ion conductor. Comparative example 2 - X Cross-linked film cannot be manufactured
  • a ceramic ion conductor is formed by applying a sintering process after UV irradiation and curing of a solution in which the first polymer, which is the UV curable polymer, and a ceramic compound are mixed at an appropriate weight ratio in an appropriate range, and the above process is performed. It was confirmed that a composite solid electrolyte could be manufactured using the ceramic ion conductor prepared through (Examples 1, 2, 9, and 10).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 자외선 경화성 고분자인 제1 고분자와 세라믹 화합물을 포함하는 세라믹 이온 전도체를 형성함으로써, 리튬 이온의 이온 전도도를 효과적으로 개선할 수 있으며, 상기 세라믹 이온 전도체를 이용하여 복합 고체 전해질의 이온 전도도도 향상시킬 수 있다. 또한, 본 발명은 연속 공정으로 복합 고체 전해질을 제조할 수 있으며, 대량 생산이 가능하다.

Description

복합 고체 전해질 제조방법
본 출원은 2022년 5월 31일자 한국 특허출원 제10-2022-0066951호 및 2023년 5월 31일자 한국 특허출원 제10-2023-0070146호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 복합 고체 전해질 제조방법에 관한 것이다.
액체 전해질을 사용하는 리튬 이온전지는 분리막에 의해 음극과 양극이 구획되는 구조여서 변형이나 외부 충격으로 분리막이 훼손되면 단락이 발생할 수 있으며 이로 인해 과열 또는 폭발 등의 위험으로 이어질 수 있다. 따라서 리튬 이온 이차 전지 분야에서 안전성을 확보할 수 있는 고체 전해질의 개발은 매우 중요한 과제라고 할 수 있다.
고체 전해질을 이용한 리튬 이차전지는 전지의 안전성이 증대되며, 전해액의 누출을 방지할 수 있어 전지의 신뢰성이 향상되며, 박형의 전지 제작이 용이하다는 장점이 있다. 또한, 음극으로 리튬 금속을 사용할 수 있어 에너지 밀도를 향상시킬 수 있으며 이에 따라 소형 이차 전지와 더불어 전기 자동차용의 고용량 이차 전지 등에 응용이 기대되어 차세대 전지로 각광받고 있다.
고체 전해질 중에서도 고분자 고체 전해질은 이온 전도성 재질의 고분자 재료가 사용되거나 이온 전도 특성을 갖는 산화물 또는 황화물의 무기 재료가 사용될 수 있으며, 고분자 재료와 무기 재료가 혼합된 복합 고체 전해질도 제안되고 있다.
이와 같은 종래 복합 고체 전해질은 고분자 및 무기물을 혼합하여 분산시킨 용액 또는 슬러리를 제조한 후, 상기 용액을 기재 위에 솔루션 캐스팅(solution casting) 및 고온 건조 공정을 통해 제조되었다. 그러나, 종래 복합 고체 전해질 제조 기술은 고분자 용액 내에 무기물의 균일한 분산이 원활하지 않아 복합 고체 전해질 내에 불균일한 무기물 입자 분포가 형성되어 이온 전도도가 향상된 복합 고체 전해질을 제조하기가 어려운 한계가 있다.
종래 복합 고체 전해질의 이러한 한계를 극복하기 위하여, 고분자 및 무기물이 균일하게 분산되어 이를 포함하는 복합 고체 전해질의 이온 전도도를 향상시킬 수 있으며, 연속 공정이 가능한 복합 고체 전해질 제조방법에 대한 기술개발이 요구되고 있다.
[선행문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개 특허 제10-2017-0045011호
본 발명의 목적은 이온 전도도 개선 및 연속 공정이 가능한 복합 고체 전해질 제조방법을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 제조방법으로 제조된 복합 고체 전해질을 포함하는 전고체 전지를 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명은 (1)자외선 경화성 고분자인 제1 고분자, 광 개시제 및 세라믹 화합물을 혼합하여 제1 복합체층을 제조하는 제1 공정;
(2)상기 제1 복합체층을 소결하여 세라믹 이온 전도체를 제조하는 제2 공정; 및
(3)상기 세라믹 이온 전도체층을 제2 고분자 및 리튬염을 포함하는 조성물로 코팅 및 경화하여 제2 복합체층을 제조하는 제3 공정;을 포함하며,
상기 제1 내지 제3 공정은 연속적으로 수행되는, 복합 고체 전해질 제조방법을 제공한다.
또한, 본 발명은 세라믹 화합물을 포함하는 세라믹 이온 전도체층; 제2 고분자; 및 리튬염;을 포함하는, 상기 본 발명의 제조방법으로 제조된 복합 고체 전해질을 제공한다.
또한, 본 발명은 상기 본 발명의 제조방법으로 제조된 복합 고체 전해질을 포함하는 전고체 전지를 제공한다.
본 발명에 따른 복합 고체 전해질 제조방법은 자외선 경화성 고분자인 제1 고분자 및 세라믹 화합물을 포함하는 세라믹 이온 전도체를 형성함으로써, 리튬 이온의 이온 전도를 효과적으로 개선할 수 있으며, 상기 세라믹 이온 전도체를 이용하여 복합 고체 전해질의 이온 전도도를 향상시킬 수 있다.
또한, 본 발명에 따른 복합 고체 전해질 제조방법은 연속 공정으로 복합 고체 전해질을 제조할 수 있으며, 대량 생산이 가능하다.
도 1은 본 발명의 복합 고체 전해질 제조방법의 흐름도이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
종래의 복합 고체 전해질 제조방법은 고분자 및 무기물을 혼합하여 분산시킨 용액 또는 슬러리를 기재 필름 위에 솔루션 캐스팅(solution casting) 등의 방식으로 코팅하고, 이를 건조시켜 제조하였다. 그러나, 이러한 방식은 고분자 용액 내에 무기물의 불균일한 분산으로 인해 고체 전해질의 이온 전도도가 개선되지 않은 문제점이 있었다.
이를 개선하기 위하여, 본 발명에서는 자외선 경화성 고분자인 제1 고분자 및 세라믹 화합물을 이용하여 제조된 세라믹 이온 전도체층을 통해, 상기 세라믹 화합물의 입자가 세라믹 이온 전도체층에 균일하게 분산되고, 이온 전도도가 향상된 복합 고체 전해질을 제조하는 방법을 제공하고자 하였다.
상기 복합 고체 전해질의 제조 방법에서는, UV 경화성 고분자인 제1 고분자 및 세라믹 화합물을 포함하는 용액에 자외선을 조사시킨 후 경화하여 제1 복합체를 제조함으로써 세라믹 화합물이 제1 고분자 용액 내에 균일하게 분산될 수 있다. 상기 세라믹 화합물 입자들이 균일하게 분산된 세라믹 이온전도체를 제조함으로써 리튬 이온의 이온 전도를 개선시키고, 이온 전도도가 향상된 복합 고체 전해질을 제조할 수 있다. 또한, 본 발명의 복합 고체 전해질 제조방법은 연속 공정으로 제조할 수 있으며, 대량 생산이 가능하다.
복합 고체 전해질 제조방법
본 발명은 복합 고체 전해질 제조방법에 관한 것으로, 본 발명의 복합 고체 전해질 제조방법은,
(1)자외선 경화성 고분자인 제1 고분자, 광 개시제 및 세라믹 화합물을 혼합하여 제1 복합체층을 제조하는 제1 공정;
(2)상기 제1 복합체층을 소결하여 세라믹 이온 전도체층을 제조하는 제2 공정; 및
(3)상기 세라믹 이온 전도체층을 제2 고분자 및 리튬염을 포함하는 조성물로 코팅 및 경화하여 제2 복합체층을 제조하는 제3 공정;을 포함한다.
상기 제1 공정 내지 제3 공정은 연속적으로 수행되는 것일 수 있다.
이하, 각 단계별로 본 발명에 따른 복합 고체 전해질의 제조방법을 보다 상세히 설명한다.
상기 제1 공정은,
(1-1)자외선 경화성 고분자인 제1 고분자, 광 개시제 및 세라믹 화합물을 포함하는 제1 복합체 형성용 조성물을 제조하는 단계;
(1-2)언와인더를 이용하여 기재 필름을 풀어서 이송 경로로 공급하는 단계;
(1-3)상기 기재 필름 상에 상기 제1 복합체 형성용 조성물을 도포하여 도포막을 형성하는 단계;
(1-4)상기 도포막이 형성된 기재 필름을 자외선 조사 구간으로 이송시키고, 상기 도포막에 자외선을 조사시킨 후 경화하여 제1 복합체층을 제조하는 단계; 및
(1-5)리와인더를 이용하여 상기 제1 복합체층을 포함하는 기재 필름을 감아 회수하는 단계;를 포함할 수 있다.
상기 (1-1)단계는 자외선 경화성 고분자인 제1 고분자, 광 개시제 및 세라믹 화합물을 포함하는 제1 복합체 형성용 조성물을 제조하는 단계이다.
상기 자외선 경화성 고분자는 자외선(UV)을 이용하여 가교 결합을 형성하는 고분자를 의미한다. 상기 자외선 경화성 고분자는 광 개시제 존재 하에 자외선(UV)이 조사되면, 광중합 반응이 개시되어 광 가교 결합을 형성할 수 있다. 따라서, 상기 UV 경화성 고분자는 파장에 대한 흡광도 스펙트럼에서 자외선 (예를 들면, 300 nm 내지 400 nm의 파장) 영역 중 적어도 일부의 파장 영역 또는 전 영역에서 최대 흡광도를 나타내는 물성을 가질 수 있다.
상기 제1 고분자는 폴리이소시아누레이트(polyisocyanurate, PIR), 에폭시, 폴리우레탄, 폴리아크릴레이트 및 폴리(메틸 메타크릴레이트)(poly(methyl methacrylate,PMMA)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
상기 폴리아크릴레이트에서, UV 경화형 아크릴레이트계 모노머로는 헥산디올디아크릴레이트(hexanediol diacrylate, HDDA), 트리프로필렌글리콜 디아크릴레이트(tropropyleneglycoldiacrylate, TPGDA), 에틸렌글리콜 디아크릴레이트(ethyleneglycoldiacrylate, EGDA), 트리메틸올프로판 트리아크릴레이트(trimethylolpropane triacrylate, TMPTA), 트리메틸올프로판에톡시 트리아크릴레이트(trimethylolpropane ethoxylated triacrylate, TMPEOTA), 글리세린 프로폭실화 트리아크릴레이트(glycerol propoxylated triacrylate, GPTA), 펜타에리트리톨 테트라아크릴레이트(pentaerythritol tetraacrylate, PETA), 및 디펜타에리트리톨 헥사아크릴레이트(depentaerythritol hexaacrylate, DPHA) 등을 예로 들 수 있으나, 이에 한정되는 것은 아니며, 해당 분야에서 일반적으로 사용되는 아크릴레이트계 모노머는 별다른 제한 없이 사용될 수 있다.
상기 광 개시제(photoinitiator)는 자외선 생성기에서 나오는 자외선을 받으면 광중합 반응을 개시하게 하는 물질을 의미한다.
상기 광 개시제는 1-하이드록시-시클로헥실-페닐 케톤, 2-하이드록시-2-메틸-1-페닐-1-프로판온, 2-하이드록시-1-[4-(2-하이드록시에톡시)페닐]2-메틸-1-프로판온, 메틸벤조일포르메이트, α,α-디메톡시-α-페닐아세토페논, 2-벤조일-2-(디메틸아미노)-1-[4-(4-모포린일)페닐]-1-부타논, 2-메틸-1-[4[(메틸티오)페닐]-2(4-몰포린일)-1-프로판온디페닐(2,4,6-트리메틸벤조일)-포스핀옥사이드, 또는 비스(2,4,6-트리메틸벤조일)-페닐포스핀옥사이드 등을 예로 들 수 있으나, 이에 한정되지 않는다. 또한, 상기 광중합 개시제는 현재 시판되고 있는 상품으로 Irgacure 184, Irgacure 500, Irgacure 651, Irgacure 369, Irgacure 907, Darocur 1173, Darocur MBF, Irgacure 819, Darocur TPO, Irgacure 907, Esacure KIP 100F 등을 사용할 수 있다. 상기 광중합 개시제는 단독으로 또는 서로 다른 2종 이상을 혼합하여 사용할 수 있다.
상기 광 개시제의 함량은 제1 고분자의 함량 기준 1 내지 5 중량%일 수 있다. 상기 광개시제의 함량이 상기 제1 고분자의 함량 기준 1 중량% 미만이거나, 5 중량%를 초과하는 경우, 제1 고분자 및 세라믹 화합물 간 가교 결합이 형성되지 않아 제1 복합체층 형성이 어려울 수 있다.
상기 세라믹 화합물은 산화물계 또는 인산염계 고체전해질일 수 있다. 상기 산화물계 또는 인산염계 고체전해질로는 가넷(Garnet)형 리튬-란타늄-지르코늄 산화물계(LLZO, Li7La3Zr2O12), 페로브스카이트(perovskite)형 리튬-란타늄-티타늄 산화물계(LLTO, Li3xLa2/3-xTiO3), 인산염(phosphate)계의 나시콘(NASICON)형 리튬-알루미늄-티타늄 인산염계(LATP, Li1+xAlxTi2-x(PO4)3), 리튬-알루미늄-게르마늄 인산염계(LAGP, Li1.5Al0.5Ge1.5(PO4)3)계, 리튬-실리콘-티타늄 인산염계(LSTP, LiSiO2TiO2(PO4)3) 및 리튬-란타늄-지르코늄-티타늄 산화물계(LLZTO) 화합물로 이루어진 군으로부터 1종 이상이 선택될 수 있다. 상기 산화물계 또는 인산염계 고체 전해질은 결정립 경계 저항(grain boundary resistance)이 매우 큰 이유로 1000℃ 이상에서 소결과정이 필요하다. 이로 인한 고온에서의 리튬의 휘발 문제, 상전이, 불순물 상 형성 등의 문제들을 가진다. 하지만 산화물계 또는 인산염계 고체전해질은 일반적으로 상온에서 최대 10-4~10-3 S/cm의 이온전도도 값을 가지며, 고전압 영역에서 안정하고, 공기 중에서 안정해 합성 및 취급이 용이한 장점들이 있다.
따라서, 본 발명에 따른 상기 제1 고분자와 이종 물질과 혼합하여 하이브리드 고체 전해질 제조를 통해 각 재료가 갖는 단점들을 보완할 수 있다.
상기 산화물계 또는 인산염계 고체 전해질은 400℃ 이상의 고온 조건 하에서도 쉽게 연소되거나 발화현상을 일으키지 않으므로 고온 안정성이 높다. 따라서, 상기 세라믹 이온 전도체층은 상기 산화물계 또는 인산염계 고체 전해질을 포함하는 경우, 리튬 이차 전지용 복합 고체 전해질의 기계적 강도는 물론, 고온 안정성 및 이온 전도도를 향상시킬 수 있다.
상기 제1 복합체 형성용 조성물은 자외선 경화성 고분자인 제1 고분자 용액에 광 개시제 및 세라믹 화합물을 첨가하여 제조된 것일 수 있다.
상기 제1 고분자 용액 제조시 사용되는 용매는 극성 용매일 수 있으며, 예를 들어 물일 수 있다. 즉, 상기 제1 고분자 용액은 수용액일 수 있다.
상기 제1 고분자 용액의 농도는, 상기 제1 복합체 형성용 용액을 기재 필름에 도포할 때 도포 공정이 원활이 진행될 수 있을 정도를 감안하여 적절히 조절할 수 있다. 예를 들어, 상기 제1 고분자 수용액 총 중량에 대하여 제1 고분자는 5 내지 20 중량%로 포함될 수 있으며, 구체적으로, 5 중량% 이상, 7 중량% 이상 또는 9 중량% 이상일 수 있고, 13 중량% 이하, 17 중량% 이하 또는 20 중량% 이하일 수 있다. 상기 제1 고분자가 5 중량% 미만으로 포함되면 농도가 지나치게 묽어 기재 필름 상에 도포시 흘러내릴 수 있고, 20 중량%를 초과하여 포함되면 균일한 박 형태로 도포하기가 어려울 수 있다.
또한, 상기 세라믹 화합물은 상기 제1 고분자 1 중량부에 대하여 1 중량부 이상 내지 10 중량부 미만을 포함할 수 있다. 보다 구체적으로, 상기 제1 고분자 및 세라믹 화합물의 중량비는 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8 또는 1:9일 수 있다. 상기 세라믹 화합물이 상기 제1 고분자의 1 중량부에 대하여 1 중량부 미만을 포함하면, 제2 공정인 소결 공정 이후 세라믹 화합물 간의 연결이 원활하지 않아 가교 결합 구조의 세라믹 이온전도체의 형성이 어렵고, 기계적 물성 또한 취약하여 쉽게 부스러지거나 파괴되어 복합 고체 전해질의 제조가 불가한 문제가 있다. 또한, 상기 세라믹 화합물이 상기 제1 고분자의 1 중량부에 대하여 10 중량부 초과하여 포함하면, 상기 세라믹 화합물이 상기 제1 고분자 내에 균일하게 분산되지 않아, 세라믹 화합물 입자들이 서로 뭉치는(aggregation) 현상이 발생하고, 상기 제1 고분자와 뭉쳐진 세라믹 화합물 입자 간의 상분리가 발생하여, 세라믹 이온 전도체층의 형성이 어려워져 결과적으로 이온 전도도가 저하된 복합 고체 전해질이 제조되는 문제가 있다.
상기 (1-2)단계는 언와인더(unwinder)를 이용하여 기재 필름을 풀어서 이송 경로로 공급하는 단계이다.
상기 언와인더는 롤(roll) 형상으로 감긴 기재 필름을 소정의 이송 경로로 풀어서 공급하는 것으로, 자체의 구동에 의해 기재 필름을 풀어서 공급할 수 있으며, 제1 복합체를 포함하는 기재 필름을 감는 리와인더(rewinder)의 구동력에 의해 기재 필름을 풀어서 공급할 수 있다.
따라서, 본 발명의 제1 공정은 롤-투-롤(roll-to-roll)공정일 수 있다.
상기 기재 필름은 상기 제1 복합체 형성용 조성물이 도포되는 지지체 역할을 할 수 있다면 특별히 제한되는 것은 아니다. 예를 들어, 상기 기재 필름은 SS(Stainless Steel), 폴리에틸렌테레프탈레이트 필름, 폴리테트라플로오루에틸렌 필름, 폴리에틸렌 필름, 폴리프로필렌 필름, 폴리부텐 필름, 폴리부타디엔 필름, 염화비닐 공중합체 필름, 폴리우레탄 필름, 에틸렌-비닐 아세테이트 필름, 에틸렌-프로필렌 공중합체 필름, 에틸렌-아크릴산 에틸 공중합체 필름, 에틸렌-아크릴산 메틸 공중합체 필름 또는 폴리이미드 필름일 수 있다.
상기 (1-3)단계는 상기 기재 필름 상에 상기 제1 복합체 형성용 조성물을 도포하여 도포막을 형성하는 단계이다.
본 발명에서 도포 방법은 상기 제1 복합체 형성용 조성물을 상기 기재 필름 상에 막 형태로 도포할 수 있는 방법이라면 특별히 제한되는 것은 아니다. 예를 들어, 상기 도포 방법은 바코팅(bar coating), 롤코팅(roll coating), 스핀코팅(spin coating), 슬릿코팅(slit coating), 다이코팅(die coating), 블레이드코팅(blade coating), 콤마코팅(comma coating), 슬롯다이코팅(slot die coating), 립코팅(lip coating), 스프레이 코팅(spray coating) 또는 솔루션캐스팅(solution casting)일 수 있다.
본 발명의 일 구체예로, 솔루션캐스팅 방법이 사용될 수 있다. 보다 구체적으로, 상기 (1-1)단계에서 제조한 제1 복합체 형성용 조성물을 믹서(mixer)에 넣은 뒤, 상기 믹서를 기재 필름 상에 위치시켜 이송 경로로 공급되는 기재 필름 상에 제1 복합체 형성용 조성물을 연속적으로 캐스팅하여 도포막을 형성할 수 있다.
상기 (1-4)단계는 상기 도포막이 형성된 기재 필름을 자외선 조사 구간으로 이송시키고, 상기 도포막에 자외선을 조사시킨 후 경화하여 제1 복합체층을 제조하는 단계이다.
상기 경화 반응에서 사용되는 자외선(UV)의 파장은 200 내지 400 nm일 수 있다.
상기 자외선 경화는 속도가 빨라 제1 복합체층을 빠르게 제조할 수 있다.
상기 (1-4)단계 이후, 상기 제1 복합체층을 포함하는 기재 필름을 열 노화 구간으로 이송시켜 제1 복합체층을 포함하는 기재 필름을 열 노화(thermal aging)시키는 단계를 추가로 포함할 수 있다.
상기 열 노화는 50℃ 내지 100℃에서 수행될 수 있으며, 구체적으로, 50℃ 이상, 60℃ 이상 또는 70℃ 이상일 수 있고, 80℃ 이하, 90℃ 이하 또는 100℃ 이하일 수 있다.
상기 열 노화를 통하여 제1 복합체층이 추가로 경화될 수 있어 제1 고분자 내 미반응된 작용기의 양을 감소시킴으로써 제1 복합체층의 기계적 물성을 향상시킬 수 있다. 뿐만 아니라 코팅 및 자외선 경화 과정 중 제1 고분자 내부에 형성된 잔류응력을 완화시킬 수 있다. 또한, 기재 필름과 제1 복합체층 사이의 접착력을 개선시킬 수 있어 공정 중 제1 복합체층이 기재로부터 박리되는 문제를 해결할 수 있다.
상기 (1-5)단계는 리와인더(rewinder)를 이용하여 상기 제1 복합체층을 포함하는 기재 필름을 감아 회수하는 단계이다.
상기 리와인더는 상기 제1 복합체층을 포함하는 기재 필름을 롤 형상으로 감아 회수할 수 있으며, 자체의 구동에 의해 제1 복합체층을 포함하는 기재 필름을 감을 수 있다.
본 발명의 복합 고체 전해질 제조방법에 있어서, 상기 제1 공정은 롤-투-롤 공정이며, 연속적으로 제조가 가능하다.
상기 (1-5)단계 이후에 연속적으로 제2 공정이 실시될 수 있다. 상기 제2 공정은,
(2-1)언와인더를 이용하여 제1 복합체층을 포함하는 기재 필름을 풀고, 기재 필름에서 제1 복합체층을 박리하여 슬리팅하는 단계; 및
(2-2)상기 슬리팅된 제1 복합체층을 소결하여 세라믹 이온 전도체층을 제조하는 단계;를 포함할 수 있다.
상기 (2-1)단계는 언와인더를 이용하여 제1 복합체층을 포함하는 기재 필름을 풀고, 기재 필름에서 제1 복합체층을 박리하여 슬리팅하는 단계이다.
상기 언와인더는 롤(roll) 형상으로 감긴 제1 복합체층을 포함하는 기재 필름을 소정의 이송 경로로 풀어서 공급하는 것으로, 자체의 구동에 의해 제1 복합체층을 포함하는 기재 필름을 풀어서 공급할 수 있다.
이후 기재 필름으로부터 제1 복합체층을 박리한 후, 원하는 면적으로 슬리팅(slitting)을 실시한다.
상기 (2-2)단계는 상기 슬리팅된 제1 복합체층을 포함하는 기재 필름을 소결(sintering)하여 세라믹 이온 전도체층을 제조하는 단계이다.
여기서, 소결(sintering)이란, 제1 복합체층을 더욱 단단한 입자들의 덩어리로 만들기 위해, 충분한 온도 및 압력을 가하는 공정을 의미한다.
상기 세라믹 이온 전도체층은 상기 제1 복합체층을 소결(sintering)하여 상기 제1 고분자의 성분을 열분해시키고, 잔류하는 세라믹 화합물의 입자가 소결하여 제조될 수 있다.
상기 소결 과정을 거치며 제1 고분자는 상기 세라믹 화합물의 입자들이 서로 연결될 수 있도록 지지체 역할을 하고, 상기 세라믹 화합물의 입자들이 서로 연결되어 하나의 가교 결합 구조를 가지는 세라믹 이온 전도체를 형성할 수 있다.
상기 세라믹 이온 전도체층은 세라믹 화합물을 포함하는 가교 결합 구조를 포함할 수 있다.
상기 세라믹 이온 전도체는 리튬이온의 이온 전도 경로(path)를 형성하는 역할을 할 수 있다.
상기 소결(sintering)은 제1 고분자의 성분을 열분해하고, 세라믹 화합물의 입자가 서로 연결되어 가교 결합 구조의 이온전도체를 형성할 수 있을 정도의 조건을 적절히 선택하여 수행될 수 있다. 예컨대, 상기 소결 온도는 800℃ 내지 1300 ℃의 온도에서 수행될 수 있으며, 구체적으로, 상기 소결 온도는 850℃ 이상, 900℃ 이상, 950℃ 이상 일 수 있고, 1300℃ 이하, 1250℃ 이하, 1200℃ 이하일 수 있다.
상기 (2-2)단계 이후에 연속적으로 제3 공정이 실시될 수 있다. 상기 제3 공정은,
(3-1)제2 고분자 및 리튬염을 포함하는 조성물을 제조하는 단계;
(3-2)상기 조성물로 상기 세라믹 이온 전도체층을 코팅하는 단계; 및
(3-3)상기 조성물로 코팅된 세라믹 이온 전도체층을 경화시켜 제2 복합체층을 제조하는 단계;를 포함할 수 있다.
상기 제2 복합체층은 상기 세라믹 이온 전도체층을 포함함으로써, 이온 전도도가 향상된 복합 고체 전해질을 제조할 수 있다.
상기 (3-1)단계는 제2 고분자 및 리튬염을 포함하는 조성물을 제조하는 단계이다.
상기 제2 고분자는 리튬염의 용해성이 우수하고, 고분자 용액이 상기 세라믹 이온 전도체에 잘 스며들어 최종 복합 고체 전해질의 제조가 용이한 고분자일 수 있다. 상기 제2 고분자의 구체예로서, 폴리비닐알코올(polyvinyl alcohol, PVA), 폴리에틸렌옥사이드(polyethylene oxide, PEO), 폴리아크릴레이트(polyacrylate), 폴리(메틸 메타크릴레이트)(poly(methyl methacrylate,PMMA), PSTFSI, 폴리우레탄, 나일론, 폴리(디메틸실록세인), 젤라틴(gelatin), 메틸셀룰로오스(methylcellulose), 아가(agar), 덱스트린(dextran), 폴리(비닐 피롤리돈)(poly(vinyl pyrrolidone)), 폴리(아크릴아미드)(poly(acryl amide)), 폴리(아크릴산)(poly(acrylic acid)), 전분-카복시메틸 셀룰로오스(starch-carboxymethyl cellulose), 히알루론산-메틸셀룰로오스(hyaluronic acid-methylcellulose), 키토산(chitosan), 폴리(N-이소아크릴아미드)(poly(N-isopropylacrylamide)) 및 아미노기 말단 폴리에틸렌글리콜(amino-terminated PEG)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에 있어서, 상기 리튬염은 상기 세라믹 이온 전도체층에 의해 형성된 구조의 내부에 해리된 상태로 포함되어, 복합 고체 전해질의 이온 전도도를 향상시킬 수 있다. 또한, 상기 리튬염은 주로 제2 고분자 내부에 해리되어 있고, 상기 제2 공정에서 고온 소결 공정 중 세라믹 화합물 입자에서 발생한 리튬 이온의 손실을 보상하는 역할을 할 수 있다.
상기 리튬염은 LiNO3, LiOH, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2Nli 및 (FSO2)2NLi으로 이루어진 군에서 선택된 1종 이상을 포함하는 것일 수 있다.
상기 조성물은 제2 고분자를 포함하는 용액에 리튬염을 첨가하여 제조된 것일 수 있다.
상기 제2 고분자 용액 제조시 사용되는 용매는 극성 용매일 수 있으며, 예를 들어 물일 수 있다. 즉, 상기 제2 고분자 용액은 고분자 수용액일 수 있다.
상기 제2 고분자를 포함하는 용액의 농도는, 세라믹 이온 전도체층을 코팅하는 코팅 공정이 원활이 진행될 수 있을 정도를 감안하여 적절히 조절할 수 있다. 예를 들어, 상기 제2 고분자 용액 총 중량에 대하여 제2 고분자는 5 내지 20 중량%로 포함될 수 있으며, 구체적으로, 5 중량% 이상, 7 중량% 이상 또는 9 중량% 이상일 수 있고, 13 중량% 이하, 17 중량% 이하 또는 20 중량% 이하일 수 있다. 상기 제2 고분자가 5 중량% 미만으로 포함되면 농도가 지나치게 묽어 세라믹 이온 전도체층 표면을 코팅할 수 없고, 20 중량%를 초과하여 포함되면 농도가 지나치게 높아 세라믹 이온 전도체층의 표면을 균일하게 코팅하기 어려울 수 있다.
상기 제2 고분자의 몰 농도 ([G]) 와 상기 리튬염의 리튬([Li])의 몰비([Li]/[G])는 0.1 내지 0.5 일 수 있으며, 구체적으로는 0.1 이상, 0.2 이상 또는 0.3 이상일 수 있고, 0.4 이하 또는 0.5 이하일 수 있다. 상기 몰비([Li]/[G])가 0.1 미만이면 리튬염의 함량이 감소되어 복합 고체 전해질의 이온전도도가 저하될 수 있고, 상기 몰비([Li]/[G])가 0.5 초과이면, 리튬 이온의 aggregation으로 인하여 이온 전도도가 저하될 수 있다. 따라서, 본 발명에 따른 복합 고체 전해질은 상기 제2 복합체층에 제2 고분자 및 적정량의 리튬염 조성이 필요하다.
상기 (3-2)단계는 상기 조성물로 상기 세라믹 이온 전도체층을 코팅하는 단계이다.
상기 코팅은 당 업계에서 사용되는 것이라면 그 방법을 특별히 한정하는 것은 아니며, 침지, 스프레이, 닥터 블레이드 또는 스핀 코팅 등이 사용될 수 있으며, 바람직하게는 침지가 사용될 수 있다.
상기 (3-3)단계는 조성물로 코팅된 세라믹 이온 전도체층을 경화시켜 제2 복합체층을 형성하는 단계이다.
상기 경화는 열 경화 또는 자외선 경화일 수 있다.
상기 자외선 경화는 상술한 바와 동일하다.
상기 열 경화는 상기 혼합 용액에 상기 세라믹 이온 전도체층을 침지한 상태에서 경화를 진행하는 것일 수 있다.
상기 열경화 단계는 50℃ 내지 150℃에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 열경화하는 단계는 50℃ 내지 150℃, 60℃ 내지 150℃, 70℃℃ 내지 150℃, 80℃ 내지 150℃, 90℃ 내지 150℃, 100℃ 내지 150℃, 50℃ 내지 140℃, 50℃ 내지 130℃, 50℃ 내지 120℃, 50℃ 내지 110℃ 또는 50℃ 내지 100℃에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 열경화하는 단계가 상기 온도 범위 미만에서 수행되는 경우, 상기 제2 복합체의 형성이 불완전할 수 있으며, 상기 온도 범위를 초과하여 수행되는 경우, 상기 제2 고분자 및 리튬염들의 열분해에 의해 복합 고체 전해질의 제조에 어려움이 있을 수 있다.
상기 제2 복합체층이 코팅된 세라믹 이온 전도체층은 본 발명에서 제조하고자 하는 복합 고체 전해질이며, 상기 복합 고체 전해질은 향상된 이온 전도도를 가지며, 구체적으로 10-5S/cm 이상의 이온 전도도를 나타낼 수 있다. 상기 복합 고체 전해질은 고체 전해질임에도 불구하고 종래 액체 전해질 대비 동등 수준 이상의 이온전도도를 나타내어 전고체 전지의 성능을 향상시킬 수 있다.
상기 본 발명의 복합 고체 전해질 제조방법은 연속적으로 실시되는 연속 공정이며, 대량 생산이 가능하다.
상기 본 발명의 복합 고체 전해질 제조방법은 제1 내지 제3 공정이 연속적으로 실시되는 연속 공정이며, 대량 생산이 가능하다.
복합 고체 전해질
또한, 본 발명은
세라믹 화합물을 포함하는 세라믹 이온 전도체층; 제2 고분자; 및 리튬염;을 포함하는 복합 고체 전해질에 관한 것으로, 상기 복합 고체 전해질은 상술한 본 발명의 제조방법으로 제조된 것일 수 있다.
상기 세라믹 이온 전도체층 제2 고분자 및 리튬염에 대한 내용은 상술한 바와 동일하다.
상기 세라믹 이온 전도체층은 상술한 제1 복합체층을 소결하여 얻은 것일 수 있다. 따라서, 상기 세라믹 이온 전도체층은 상기 세라믹 화합물의 입자들이 서로 연결되어 형성된 하나의 가교 결합 구조를 포함할 수 있다. 상기 제1 고분자는 상기 세라믹 화합물의 입자들이 서로 연결될 수 있도록 지지체 역할을 한다.
종래의 복합 고체 전해질은 고분자 및 무기물을 혼합하여 분산시킨 용액 또는 슬러리를 기재 위에 솔루션 캐스팅 등의 방식으로 코팅 및 건조시켜 제조하였다. 그러나, 이러한 방식은 고분자 용액 내에 무기물의 불균일한 분산 및 침전으로 인해 고체 전해질의 이온 전도도가 개선되지 않은 문제점이 있었다.
이를 개선하기 위하여, 본 발명에서는 리튬 이온의 이온 전도 경로를 형성하는 가교 결합 구조 구조를 포함하는 세라믹 이온 전도체층, 제2 고분자 및 리튬염을 포함하는 복합 고체 전해질을 제공하고자 한다. 상기 세라믹 이온 전도체는 그의 내부에 세라믹 화합물의 입자가 균일하게 분산되어 복합 고체 전해질의 이온 전도도를 향상시키는 역할을 할 수 있다.
상기 복합 고체 전해질은 프리스탠딩 필름(free standing film) 형태인 것일 수 있다. 상기 프리스탠딩 필름이란 상온·상압에서 별도의 지지체 없이 그 자체로 필름 형태를 유지할 수 있는 필름을 의미한다.
상기 프리스탠딩 필름은 탄성을 나타내어 취성을 최소화할 수 있고, 리튬 이온을 안정적으로 함유하는 지지체로서의 특성을 가지므로, 복합 고체 전해질로서 적합한 형태일 수 있다.
본 발명에 있어서, 상기 복합 고체 전해질의 이온전도도는 10-5S/cm 이상인 것일 수 있다.
상기 복합 고체 전해질은 고체 전해질임에도 불구하고 종래 액체 전해질 대비 동등 수준 이상의 이온전도도를 나타내어 전고체 전지의 성능을 향상시킬 수 있다.
전고체 전지
본 발명은 또한, 상기 복합 고체 전해질을 포함하는 전고체 전지에 관한 것으로, 상기 전고체 전지는 음극, 양극 및 상기 음극과 양극 사이에 개재되는 복합 고체 전해질을 포함하며, 상기 복합 고체 전해질은 상기 제조방법으로 제조된 것이며, 전술한 특징을 갖는 것이다.
구체적으로, 상기 복합 고체 전해질은 세라믹 이온 전도체를 포함하여 리튬 이온의 이온 전도가 향상되므로, 전고체 전지의 전해질로서 적합할 수 있다.
본 발명에 있어서, 상기 전고체 전지에 포함된 양극은 양극 활물질층을 포함하며, 상기 양극 활물질층은 양극 집전체의 일 면에 형성될 것일 수 있다.
상기 양극 활물질층은 양극 활물질, 바인더 및 도전재를 포함한다.
또한, 상기 양극 활물질은, 리튬이온을 가역적으로 흡장 및 방출하는 것이 가능한 물질이면 특별히 한정되지 않고, 예를 들면, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), Li[NixCoyMnzMv]O2(상기 식에서, M은 Al, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고; 0.3≤x<1.0, 0≤y, z≤0.5, 0≤v≤0.1, x+y+z+v=1이다), Li(LiaMb-a-b'M'b')O2-cAc(상기 식에서, 0≤a≤0.2, 0.6≤b≤1, 0≤b'≤0.2, 0≤c≤0.2이고; M은 Mn과, Ni, Co, Fe, Cr, V, Cu, Zn 및 Ti로 이루어진 군에서 선택되는 1종 이상을 포함하며; M'는 Al, Mg 및 B로 이루어진 군에서 선택되는 1종 이상이고, A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이다.) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+yMn2-yO4 (여기서, y 는 0 - 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물 (Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-yMyO2 (여기서, M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, y=0.01 - 0.3임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-yMyO2 (여기서, M=Co, Ni, Fe, Cr, Zn 또는 Ta 이고, y=0.01 - 0.1임) 또는 Li2Mn3MO8 (여기서, M=Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
또한, 상기 양극 활물질은 상기 양극 활물질층 전체 중량을 기준으로 40 내지 80 중량%로 포함될 수 있다. 구체적으로, 상기 양극 활물질의 함량은 40 중량% 이상 또는 50 중량% 이상일 수 있고, 70 중량% 이하 또는 80 중량% 이하일 수 있다. 상기 양극 활물질의 함량이 40 중량% 미만이면 습식 양극 활물질층과 건식 양극 활물질층의 연결성이 부족해질 수 있고, 80 중량% 초과이면 물질 전달 저항이 커질 수 있다.
또한, 상기 바인더는 양극 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분으로서, 스티렌-부타디엔 고무, 아크릴화 스티렌-부타디엔 고무, 아크릴로니트릴 공중합체, 아크릴로니트릴-부타디엔 고무, 니트릴 부타디엔 고무, 아크릴로니트릴-스티렌-부타디엔 공중합체, 아크릴 고무, 부틸 고무, 플루오린 고무, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌/프로필렌 공중합체, 폴리부타디엔, 폴리에틸렌 옥사이드, 클로로설폰화 폴리에틸렌, 폴리비닐피롤리돈, 폴리비닐피리딘, 폴리비닐 알코올, 폴리비닐 아세테이트, 폴리에피클로로하이드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스티렌, 라텍스, 아크릴 수지, 페놀수지, 에폭시 수지, 카복시메틸셀룰로오스, 하이드록시프로필 셀룰로오스, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부티레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸셀룰로오스, 시아노에틸수크로스, 폴리에스테르, 폴리아미드, 폴리에테르, 폴리이미드, 폴리카복실레이트, 폴리카복시산, 폴리아크릴산, 폴리아크릴레이트, 리튬 폴리아크릴레이트, 폴리메타크릴산, 폴리메타크릴레이트, 폴리아크릴아미드, 폴리우레탄, 폴리비닐리덴 플루오라이드 및 폴리(비닐리덴 플루오라이드)-헥사플루오로프로펜으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 바람직하기로, 상기 바인더는 스티렌-부타디엔 고무, 폴리테트라플루오로에틸렌, 카복시메틸셀룰로오스, 폴리아크릴산, 리튬 폴리아크릴레이트 및 폴리비닐리덴 플루오라이드으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
또한, 상기 바인더는 상기 양극 활물질층 전체 중량을 기준으로 1 중량% 내지 30 중량%로 포함될 수 있고, 구체적으로는, 상기 바인더의 함량은 1 중량% 이상 또는 3 중량% 이상일 수 있고, 15 중량% 이하 또는 30 중량% 이하일 수 있다. 상기 바인더의 함량이 1 중량% 미만이면 양극 활물질과 양극 집전체와의 접착력이 저하될 수 있고, 30 중량%를 초과하면 접착력은 향상되지만 그만큼 양극 활물질의 함량이 감소하여 전지 용량이 낮아질 수 있다.
또한, 상기 도전재는 전고체 전지의 내부 환경에서 부반응을 방지하고, 당해 전지에 화학적 변화를 유발하지 않으면서 우수한 전기전도성을 가지는 것이라면 특별히 제한되지 않으며, 대표적으로는 흑연 또는 도전성 탄소를 사용할 수 있으며, 예컨대, 천연 흑연, 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 써멀 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 결정구조가 그라펜이나 그라파이트인 탄소계 물질; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄 분말, 니켈 분말 등의 금속 분말; 산화 아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 및 폴리페닐렌 유도체 등의 도전성 고분자;를 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 도전재는 통상적으로 상기 양극 활물질층 전체 중량을 기준으로 0.5 중량% 내지 30 중량%로 포함될 수 있으며, 구체적으로 상기 도전재의 함량은 0.5 중량% 이상 또는 1 중량% 이상일 수 있고, 20 중량% 이하 또는 30 중량% 이하일 수 있다. 상기 도전재의 함량이 0.5 중량% 미만으로 너무 적으면 전기전도성 향상 효과를 기대하기 어렵거나 전지의 전기화학적 특성이 저하될 수 있으며, 30 중량%를 초과하여 너무 많으면 상대적으로 양극 활물질의 양이 적어져 용량 및 에너지 밀도가 저하될 수 있다. 양극에 도전재를 포함시키는 방법은 크게 제한되지 않으며, 양극 활물질에의 코팅 등 당분야에 공지된 통상적인 방법을 사용할 수 있다.
또한, 상기 양극 집전체는 상기 양극 활물질층을 지지하며, 외부 도선과 양극 활물질층 사이에서 전자를 전달하는 역할을 하는 것이다.
상기 양극 집전체는 전고체 전지에 화학적 변화를 유발하지 않으면서 높은 전자 전도성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 상기 양극 집전체로 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체는 양극 활물질층과의 결합력을 강화시키 위해 양극 집전체의 표면에 미세한 요철 구조를 가지거나 3차원 다공성 구조를 채용할 수 있다. 이에 따라, 상기 양극 집전체는 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 포함할 수 있다.
상기와 같은 양극은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 양극 활물질과 도전재 및 바인더를 유기 용매 상에서 혼합하여 제조한 양극 활물질층 형성용 조성물을 양극 집전체 위에 도포 및 건조하고, 선택적으로 전극 밀도의 향상을 위하여 집전체에 압축 성형하여 제조할 수 있다. 이때 상기 유기 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하다. 구체적으로는 아세토니트릴, 메탄올, 에탄올, 테트라히드로퓨란, 물, 이소프로필알코올 등을 들 수 있다.
본 발명에 있어서, 상기 전고체 전지에 포함된 상기 음극은 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 집전체의 일 면에 형성된 것일 수 있다.
상기 음극 활물질은 리튬 이온(Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
바람직하게 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로, 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.
상기 음극 활물질은 상기 음극 활물질층 전체 중량을 기준으로 40 내지 80 중량%로 포함될 수 있다. 구체적으로, 상기 음극 활물질의 함량은 40 중량% 이상 또는 50 중량% 이상일 수 있고, 70 중량% 이하 또는 80 중량% 이하일 수 있다. 상기 음극 활물질의 함량이 40 중량% 미만이면 습식 음극 활물질층과 건식 음극 활물질층의 연결성이 부족해질 수 있고, 80 중량% 초과이면 물질 전달 저항이 커질 수 있다.
또한, 상기 바인더는 상기 양극 활물질층에서 상술한 바와 같다.
또한, 상기 도전재는 상기 양극 활물질층에서 상술한 바와 같다.
또한, 상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면, 상기 음극 집전체는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.
상기 음극의 제조방법은 특별히 제한되지 않으며, 음극 집전체 상에 당업계에서 통상적으로 사용되는 층 또는 막의 형성방법을 이용하여 음극 활물질층을 형성하여 제조할 수 있다. 예컨대 압착, 코팅, 증착 등의 방법을 이용할 수 있다. 또한, 상기 음극 집전체에 리튬 박막이 없는 상태로 전지를 조립한 후 초기 충전에 의해 금속판 상에 금속 리튬 박막이 형성되는 경우도 본 발명의 음극에 포함된다.
또한, 본 발명은, 상기 전고체 전지를 단위전지로 포함하는 전지모듈, 상기 전지모듈을 포함하는 전지팩, 및 상기 전지팩을 전원으로 포함하는 디바이스를 제공한다.
이 때, 상기 디바이스의 구체적인 예로는, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
하기 실시예 및 비교예에서는, 하기 표 1에 기재된 바와 같은 제1 고분자 및 세라믹 화합물 등을 포함하는 세라믹 이온 전도체를 제조하고, 이를 포함하는 복합 고체 전해질을 제조하였다.
제1 고분자 세라믹 화합물 제1 고분자 및 세라믹 화합물의 중량비 광개시제 함량 (wt%) UV 조사 여부 소결 공정 적용 여부 제2 고분자 리튬염 [Li]/[O]
실시예 1 PIR LLZO 1 : 2 1 O O PVA LiTFSI 0.4
실시예 2 PIR LSTP 1 : 2 1 O O PVA LiTFSI 0.4
실시예 3 PIR LLZO 1 : 10 1 O O PVA LiTFSI 0.4
실시예 4 PIR LLZO 10 : 1 1 O O PVA LiTFSI 0.4
실시예 5 PIR LLZO 1 : 2 0.1 O O PVA LiTFSI 0.4
실시예 6 PIR LLZO 1 : 2 0.4 O O PVA LiTFSI 0.4
실시예 7 PIR LLZO 1 : 2 1 O O PVA LiTFSI 0.08
실시예 8 PIR LLZO 1 : 2 1 O O PVA LiTFSI 0.52
실시예 9 PIR LLZO 1 : 2 1 O O PEO LiTFSI 0.4
실시예 10 PIR LLZO 1 : 2 1 O O PIR LiTFSI 0.4
비교예 1 PIR LLZO 1 : 2 1 O X - - -
비교예 2 PIR LLZO 1 : 2 1 X (단순건조) X - - -
실시예 1. 복합 고체 전해질 제조
(1)복합체 제조
티올-엔 폴리이소시아누레이트(thiol-ene polyisocyanurate, PIR)를 증류수(DI water)에 혼합하여 10wt% PIR 수용액을 제조하였다. 상기 PIR 수용액에 세라믹 화합물인 LLZO 파우더를 포함하는 용액을 제조하였다. 상기 용액에 광개시제로서 2-hydroxy-2-methyl-1-phenyl-1-propanone을 1 중량% 첨가하였다. 이 때, PIR 및 LLZO의 중량비는 1:2가 되도록 하였다.
상기 용액을 믹서에 넣은 후, 언와인더에 의해 이송경로로 공급되는 기재 필름인 SS foil 상에 바코팅 방법으로 도포한 후, 이를 자외선 조사 구간으로 이송시켜 자외선(UV)을 조사시킨 후 경화하여, PIR의 가교 결합을 유도함으로써 가교 결합 구조 형태의 제1 복합체층을 제조하였다. 상기 제조된 제1 복합체층을 포함하는 기재 필름을 리와인더를 사용하여 감아 회수하였다.
(2)세라믹 이온 전도체층 제조
언와인더에 의해 이송경로로 공급되는 상기 제1 복합체층을 포함하는 기재 필름에서 제1 복합체층을 박리한 후, 상기 박리된 제1 복합체층을 원하는 크기로 슬리팅하였다. 슬리팅된 제1 복합체층을 상온에서 800℃까지 1℃/min의 속도로 승온하여 800℃에서 2시간 동안 소결(sintering)하여 제1 복합체층에 포함된 PIR 성분을 열분해시키고, 잔류하는 LLZO의 입자들이 소결되어 형성된 세라믹 이온 전도체층을 제조하였다.
(3)복합 고체 전해질의 제조
PEO 및 LiTFSI를 포함하는 용액을 제조하였다(여기서, PEO에 포함된 “O” 및 리튬염에 포함된 “Li”의 몰비 ([Li]/[O])는 0.4임). 상기 세라믹 이온 전도체층을 상기 제조된 용액에 5분 동안 침지시킨 후, 이를 진공 건조 오븐으로 100℃의 온도에서 12시간 동안 건조시켜 복합 고체 전해질을 제조하였다.
실시예 2.
세라믹 화합물인 LLZO 대신 LSTP를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
실시예 3.
UV 경화성 고분자(PIR) 및 세라믹 화합물(LLZO)의 중량비가 1:10인 것을 제외하고, 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
실시예 4.
UV 경화성 고분자(PIR) 및 세라믹 화합물(LLZO)의 중량비가 10:1인 것을 제외하고, 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
실시예 5.
광개시제 함량을 0.1 중량% 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
실시예 6.
광개시제 함량을 0.4 중량% 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
실시예 7.
PVA에 포함된 “O” 및 리튬염에 포함된 “Li”의 몰비 ([Li]/[O])가 0.08 인 것을 제외하고, 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
실시예 8.
PVA에 포함된 “O” 및 리튬염에 포함된 “Li”의 몰비 ([Li]/[O])가 0.52 인 것을 제외하고, 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
실시예 9.
고분자 PVA 대신 PEO를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
실시예 10.
고분자 PVA 대신 PIR를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
비교예 1.
복합체 제조 후, 소결 공정 이후 단계를 거치지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 복합 고체 전해질을 제조하였다.
비교예 2.
자외선(UV)을 조사시킨 후 경화하는 것 대신 80 ℃에서 2 시간 동안 건조하는 것을 제외하고, 비교예 2와 동일한 방법으로 복합 고체 전해질을 제조하였다.
실험예 1.
실시예 및 비교예에서 제조된 필름 형태의 복합 고체 전해질의 이온전도도를 측정하기 위하여, 1.7671㎠ 크기의 원형으로 상기 복합 고체 전해질을 타발하고, 두 장의 스테인레스 스틸(stainless steel, SS) 사이에 상기 타발된 복합 고체 전해질을 배치하여 코인셀을 제조하였다.
전기화학 임피던스 스펙트로미터(electrochemical impedance spectrometer, EIS, VM3, Bio Logic Science Instrument)를 사용하여 25 ℃에서 amplitude 10 mV 및 스캔 범위 500 KHz 내지 20 MHz의 조건으로 저항을 측정한 후, 하기 식 1을 이용하여, 상기 복합 고체 전해질의 이온전도도를 계산하였다.
[식 1]
Figure PCTKR2023007478-appb-img-000001
상기 식 1에서, σi는 복합 고체 전해질의 이온전도도(S/cm)이고, R은 상기 전기화학 임피던스 스텍트로미터로 측정한 복합 고체 전해질의 저항(Ω)이고, L은 복합 고체 전해질의 두께(㎛)이고, A는 복합 고체 전해질의 면적(cm2)을 의미한다.
상기 식 1을 이용하여 계산된 복합 고체 전해질의 이온전도도, 프리스탠딩 필름(freestanding film) 형성 가능 여부 및 복합 고체 전해질의 외관을 관찰한 결과를 하기 표 2에 기재하였다. 이때, 상기 프리스탠딩 필름 형성 가능 여부(형성: ○, 미형성: X) 및 복합 고체 전해질의 외관은 육안으로 관찰하였다.
이온전도도
(S/cm)
프리스탠딩 필름 형성 여부 비고
실시예 1 1.5 x 10-5 O
실시예 2 1.3 x 10-5 O
실시예 3 - X 용액 제조 불가(세라믹 입자의 aggregation)
실시예 4 - X 소결 후 이온 전도체 형성 불가
실시예 5 - X 가교 필름 제조 불가
실시예 6 - X 가교필름 제조 불가
실시예 7 - X Brittle한 필름 형성, handling 어렵고, 이온전도도 측정 불가
실시예 8 - X Sticky한 겔 형성
실시예 9 1.5 x 10-5 O
실시예 10 1.0 x 10-5 O
비교예1 - X 소결하지 않아 세라믹 이온전도체 형성 불가
비교예2 - X 가교 필름 제조 불가
상기 표 2에서와 같이, 상기 자외선 경화성 고분자인 제1 고분자 및 세라믹 화합물을 적정 범위의 중량비로 혼합한 용액윽 UV 조사 및 경화한 후, 소결 공정을 적용함으로써, 세라믹 이온 전도체를 형성하고, 상기 공정을 통해 제조된 세라믹 이온 전도체를 이용하여 복합 고체 전해질을 제조할 수 있다는 것을 확인하였다 (실시예 1, 2, 9 및 10).
실시예 3 및 4에서, UV 경화성 고분자인 제1 고분자와 세라믹 화합물의 중량비가 1:10 초과이거나, 10:1 미만인 경우, 세라믹 이온 전도체가 형성되지 않음을 확인하였다. 따라서, 본 발명에 따른 세라믹 이온 전도체층을 형성하기 위해 적정 범위의 제1 고분자 및 세라믹 화합물의 중량비가 만족되어야함을 확인하였다.
실시예 5 및 6에서, 적정 범위의 광 개시제 함량을 포함하지 않으면, 가교 필름의 제조가 불가함을 확인하였다.
실시예 7 및 8에서, 복합 고체 전해질 제조시, 제2 고분자 및 리튬염의 농도가 0.1 내지 0.5 범위를 벗어날 경우, 필름 형성이 불가하여 원하는 복합 고체 전해질 제조에 부적합함을 확인하였다.
비교예 1 및 2를 통해, 단순히 UV 경화성 고분자를 사용하더라도, UV 조사 및 경화를 하지 않거나, 소결공정을 적용하지 않으면, 세라믹 이온전도체 또는 가교 필름 형성이 되지 않음을 알 수 있었다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (18)

  1. (1)자외선 경화성 고분자인 제1 고분자, 광 개시제 및 세라믹 화합물을 혼합하여 제1 복합체층을 제조하는 제1 공정;
    (2)상기 제1 복합체층을 소결하여 세라믹 이온 전도체층을 제조하는 제2 공정; 및
    (3)상기 세라믹 이온 전도체층을 제2 고분자 및 리튬염을 포함하는 조성물로 코팅 및 경화하여 제2 복합체층을 제조하는 제3 공정;을 포함하며,
    상기 제1 내지 제3 공정은 연속적으로 수행되는, 복합 고체 전해질 제조방법.
  2. 제1항에 있어서,
    상기 제1 고분자는 폴리이소시아누레이트(polyisocyanurate, PIR), 에폭시, 폴리우레탄, 폴리아크릴레이트 및 폴리메틸메타크릴레이트(polymethyl methacrylate, PMMA)로 이루어진 군에서 선택된 1종 이상을 포함하는 것인, 복합 고체 전해질 제조방법.
  3. 제1항에 있어서,
    상기 세라믹 화합물은 리튬-란타늄-지르코늄 산화물계(LLZO), 리튬-실리콘-티타늄 인산염계(LSTP), 리튬-란타늄-티타늄 산화물계(LLTO), 리튬-알루미늄-티타늄 인산염계(LATP), 리튬-알루미늄-게르마늄 인산염계(LAGP) 및 리튬-란타늄-지르코늄-티타늄 산화물계(LLZTO) 화합물로 이루어진 군에서 선택된 1종 이상을 포함하는 것인, 복합 고체 전해질 제조방법.
  4. 제1항에 있어서,
    상기 세라믹 화합물은 상기 제1 고분자의 1 중량부에 대하여 1 중량부 이상 10 중량부 미만으로 포함하는 것인, 복합 고체 전해질 제조방법.
  5. 제1항에 있어서,
    상기 광 개시제는 제1 고분자 함량 기준 1 내지 5 중량%로 포함하는 것인, 복합 고체 전해질 제조방법.
  6. 제1항에 있어서,
    상기 세라믹 이온 전도체층은 상기 제1 고분자 및 세라믹 화합물 간의 가교 결합 구조를 포함하는 것인, 복합 고체 전해질 제조방법.
  7. 제1항에 있어서,
    상기 제2 고분자는 폴리비닐알코올(polyvinyl alcohol, PVA), 폴리에틸렌옥사이드(polyethylene oxide, PEO), 폴리아크릴레이트(polyacrylate), 폴리(메틸 메타크릴레이트)(poly(methyl methacrylate,PMMA), 폴리(4-스티렌설포닐(트리플루오로메틸설포닐)이미드(poly(4-styrenesulfonyl(trifluoromethylsulfonyl)imide, PSTFSI), 폴리우레탄, 나일론, 폴리(디메틸실록세인), 젤라틴(gelatin), 메틸셀룰로오스(methylcellulose), 아가(agar), 덱스트린(dextran), 폴리(비닐 피롤리돈)(poly(vinyl pyrrolidone)), 폴리(아크릴아미드)(poly(acryl amide)), 폴리(아크릴산)(poly(acrylic acid)), 전분-카복시메틸 셀룰로오스(starch-carboxymethyl cellulose), 히알루론산-메틸셀룰로오스(hyaluronic acid-methylcellulose), 키토산(chitosan), 폴리(N-이소아크릴아미드)(poly(N-isopropylacrylamide)) 및 아미노기 말단 폴리에틸렌글리콜(amino-terminated PEG)로 이루어진 군에서 선택된 1종 이상을 포함하는 것인, 복합 고체 전해질 제조방법.
  8. 제1항에 있어서,
    상기 리튬염은 LiNO3, LiOH, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2Nli 및 (FSO2)2NLi으로 이루어진 군에서 선택된 1종 이상을 포함하는 것인, 복합 고체 전해질 제조방법.
  9. 제1항에 있어서,
    상기 제1 공정은,
    (1-1)자외선 경화성 고분자인 제1 고분자, 광 개시제 및 세라믹 화합물을 포함하는 제1 복합체 형성용 조성물을 제조하는 단계;
    (1-2)언와인더를 이용하여 기재 필름을 풀어서 이송 경로로 공급하는 단계;
    (1-3)상기 기재 필름 상에 상기 제1 복합체 형성용 조성물을 도포하여 도포막을 형성하는 단계;
    (1-4)상기 도포막이 형성된 기재 필름을 자외선 조사 구간으로 이송시키고, 상기 도포막에 자외선을 조사시킨 후 경화하여 제1 복합체층을 제조하는 단계; 및
    (1-5)리와인더를 이용하여 상기 제1 복합체층을 포함하는 기재 필름을 감아 회수하는 단계;를 포함하는, 복합 고체 전해질 제조방법.
  10. 제9항에 있어서,
    상기 (1-4)단계 이후,
    상기 제1 복합체층을 포함하는 기재 필름을 열 노화 구간으로 이송시켜 제1 복합체층을 포함하는 기재 필름을 열 노화시키는 단계를 추가로 포함하는 것인, 복합 고체 전해질 제조방법.
  11. 제10항에 있어서,
    상기 열 노화는 50℃ 내지 100℃에서 수행되는 것인, 복합 고체 전해질의 제조방법.
  12. 제9항에 있어서,
    상기 (1-5)단계 이후, 제2 공정은,
    (2-1)언와인더를 이용하여 제1 복합체층을 포함하는 기재 필름을 풀고, 기재 필름에서 제1 복합체층을 박리하여 슬리팅하는 단계; 및
    (2-2)상기 슬리팅된 제1 복합체층을 포함하는 기재 필름을 소결하여 세라믹 이온 전도체층을 제조하는 단계;를 포함하는, 복합 고체 전해질 제조방법.
  13. 제12항에 있어서,
    상기 소결은 800℃ 내지 1300℃에서 수행되는 것인, 복합 고체 전해질 제조방법.
  14. 제12항에 있어서,
    상기 (2-2)단계 이후, 제3 공정은,
    (3-1)제2 고분자 및 리튬염을 포함하는 조성물을 제조하는 단계;
    (3-2)상기 조성물로 상기 세라믹 이온 전도체층을 코팅하는 단계; 및
    (3-3)상기 조성물로 코팅된 세라믹 이온 전도체층을 경화시켜 제2 복합체층을 제조하는 단계;를 포함하는, 복합 고체 전해질 제조방법.
  15. 제14항에 있어서,
    상기 경화는 열 경화 또는 자외선 경화인 것인, 복합 고체 전해질 제조방법.
  16. 제1항에 있어서,
    상기 제2 고분자의 몰농도([G])에 대한 리튬([Li])의 몰비는 0.1 내지 0.5인 것인, 복합 고체 전해질 제조방법.
  17. 세라믹 화합물을 포함하는 세라믹 이온 전도체층; 제2 고분자; 및 리튬염;을 포함하는, 제1항의 제조방법으로 제조된 복합 고체 전해질.
  18. 제1항의 제조방법으로 제조된 복합 고체 전해질을 포함하는, 전고체 전지.
PCT/KR2023/007478 2022-05-31 2023-05-31 복합 고체 전해질 제조방법 WO2023234717A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0066951 2022-05-31
KR20220066951 2022-05-31
KR1020230070146A KR20230166967A (ko) 2022-05-31 2023-05-31 복합 고체 전해질 제조방법
KR10-2023-0070146 2023-05-31

Publications (1)

Publication Number Publication Date
WO2023234717A1 true WO2023234717A1 (ko) 2023-12-07

Family

ID=89025205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007478 WO2023234717A1 (ko) 2022-05-31 2023-05-31 복합 고체 전해질 제조방법

Country Status (1)

Country Link
WO (1) WO2023234717A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021831A (ko) * 2013-06-21 2016-02-26 하이드로-퀘벡 모두-고체-상태의 리튬-황 전기화학 셀 및 이의 제조방법
KR20160079405A (ko) * 2014-12-26 2016-07-06 현대자동차주식회사 유무기 복합 고체전해질막, 그 제조방법 및 이를 포함하는 전고체 전지
KR20170045011A (ko) 2015-10-16 2017-04-26 한국생산기술연구원 고분자 복합공정에 의한 llzo 고체전해질의 제조방법 및 그 방법을 포함하는 리튬이차전지의 제조방법
KR20180021797A (ko) * 2015-06-24 2018-03-05 콴텀스케이프 코포레이션 복합 전해질
JP2019029330A (ja) * 2017-07-25 2019-02-21 行政院原子能委員會核能研究所 全固体電池、ハイブリッド構造固体電解質膜及び製造方法
KR20210045832A (ko) * 2019-10-17 2021-04-27 (주)그리너지 유무기 복합 고체 고분자 전해질, 이를 포함하는 일체형 전극 구조체 및 전기화학소자, 그리고 상기 유무기 복합 고체 고분자 전해질의 제조방법
KR20220066951A (ko) 2019-10-25 2022-05-24 덱스테러티, 인크. 매우 얇은 객체 또는 피처의 로봇 파지를 검출
KR20230070146A (ko) 2021-11-13 2023-05-22 한석희 레이트레이싱을 활용한 인공지능 기반 미술 창작 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021831A (ko) * 2013-06-21 2016-02-26 하이드로-퀘벡 모두-고체-상태의 리튬-황 전기화학 셀 및 이의 제조방법
KR20160079405A (ko) * 2014-12-26 2016-07-06 현대자동차주식회사 유무기 복합 고체전해질막, 그 제조방법 및 이를 포함하는 전고체 전지
KR20180021797A (ko) * 2015-06-24 2018-03-05 콴텀스케이프 코포레이션 복합 전해질
KR20170045011A (ko) 2015-10-16 2017-04-26 한국생산기술연구원 고분자 복합공정에 의한 llzo 고체전해질의 제조방법 및 그 방법을 포함하는 리튬이차전지의 제조방법
JP2019029330A (ja) * 2017-07-25 2019-02-21 行政院原子能委員會核能研究所 全固体電池、ハイブリッド構造固体電解質膜及び製造方法
KR20210045832A (ko) * 2019-10-17 2021-04-27 (주)그리너지 유무기 복합 고체 고분자 전해질, 이를 포함하는 일체형 전극 구조체 및 전기화학소자, 그리고 상기 유무기 복합 고체 고분자 전해질의 제조방법
KR20220066951A (ko) 2019-10-25 2022-05-24 덱스테러티, 인크. 매우 얇은 객체 또는 피처의 로봇 파지를 검출
KR20230070146A (ko) 2021-11-13 2023-05-22 한석희 레이트레이싱을 활용한 인공지능 기반 미술 창작 시스템

Similar Documents

Publication Publication Date Title
WO2019117531A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2021060811A1 (ko) 이차전지의 제조방법
WO2024029854A1 (ko) 고속 충전 리튬이차전지용 전해액, 이를 포함하는 리튬이차전지 및 리튬이차전지의 제조 방법
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021020805A1 (ko) 복합 음극 활물질, 이의 제조방법, 이를 포함하는 음극, 및 이차전지
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2023234717A1 (ko) 복합 고체 전해질 제조방법
WO2020242247A1 (ko) 황-탄소 복합체, 이를 포함하는 리튬-황 전지용 양극, 및 상기 양극을 포함하는 리튬-황 전지
WO2021034130A1 (ko) 이온 전도성 고분자, 이를 포함하는 리튬이차전지용 전극 및 리튬이차전지
WO2021015488A1 (ko) 이차전지의 제조방법
WO2022119408A1 (ko) 음극의 제조방법
WO2023234716A1 (ko) 복합 고체 전해질 제조방법
WO2024158214A1 (ko) 고이온전도도 고체 전해질막, 이의 제조방법 및 이를 포함하는 전고체 전지
WO2024080807A1 (ko) 복합 고체 전해질의 제조방법 및 이로부터 제조된 복합 고체 전해질
WO2023153716A1 (ko) 전사 적층체, 리튬 이차 전지용 음극 제조 방법, 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023234715A1 (ko) 고분자 고체 전해질 제조방법
WO2023177204A1 (ko) 리튬 이차전지용 음극 및 이의 제조방법
WO2023234710A1 (ko) 고분자 고체 전해질 및 이의 제조방법
WO2021167381A1 (ko) 리튬 이차 전지 및 이의 제조방법
WO2024128887A1 (ko) 리튬 이차전지의 충방전 방법
WO2024136601A1 (ko) 고체 전해질막 및 이를 포함하는 전고체 전지
WO2023090805A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2024128783A1 (ko) 전사 적층체, 전사 적층체의 제조 방법, 리튬 이차 전지용 전극의 제조 방법 및 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23816377

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023816377

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023816377

Country of ref document: EP

Effective date: 20240626