WO2016048041A2 - 이온전달 고분자 함유 복합막 및 이의 제조방법 - Google Patents

이온전달 고분자 함유 복합막 및 이의 제조방법 Download PDF

Info

Publication number
WO2016048041A2
WO2016048041A2 PCT/KR2015/010028 KR2015010028W WO2016048041A2 WO 2016048041 A2 WO2016048041 A2 WO 2016048041A2 KR 2015010028 W KR2015010028 W KR 2015010028W WO 2016048041 A2 WO2016048041 A2 WO 2016048041A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer layer
polymer
particles
functional additive
composite membrane
Prior art date
Application number
PCT/KR2015/010028
Other languages
English (en)
French (fr)
Other versions
WO2016048041A3 (ko
Inventor
문식원
노태근
정봉현
민근기
이정배
변수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/509,547 priority Critical patent/US10418646B2/en
Priority to EP15844211.1A priority patent/EP3200258B1/en
Priority to CN201580051462.9A priority patent/CN106716699B/zh
Publication of WO2016048041A2 publication Critical patent/WO2016048041A2/ko
Publication of WO2016048041A3 publication Critical patent/WO2016048041A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present specification relates to an ion transport polymer-containing composite membrane and a method of manufacturing the same.
  • a fuel cell is a stationary energy converter that obtains electrical and thermal energy directly and simultaneously from fuel by electrochemically reacting externally supplied fuel with oxygen.
  • PAFC phosphate type
  • PEM solid molecular type
  • MCFC molten carbonate type
  • SOFC Solid oxide type
  • AFC alkali type
  • Fuel cells are more efficient than conventional internal combustion engines, so they use less fuel and have the advantage of being a pollution-free energy source that does not generate environmental pollutants such as SO x , NO x , and VOC.
  • SO x sulfur dioxide
  • NO x nitrogen oxide
  • VOC vanadium carbide
  • there are additional advantages such as a small area required for production facilities and a short construction period.
  • fuel cells have a variety of application fields ranging from mobile power sources for portable devices, transportation power sources for automobiles, and the like to distributed power generation for home and power projects.
  • the potential market size is expected to be wide.
  • the Redox Flow Battery is one of the rechargeable fuel cells. Inside the redox flow battery, there is an electrolyte containing various kinds of electroactive materials, which is a secondary battery in which charge and discharge are caused by oxidation and reduction reactions of the electrolyte. The main difference from a typical battery is that the charge and discharge are performed while circulating the electrolyte where energy is stored. Specifically, unlike the other cells, the redox flow battery has a mechanism in which the active material is present as ions in an aqueous solution rather than a solid state, and stores and generates electrical energy by oxidation / reduction reactions of the respective ions at the anode and the cathode.
  • a redox flow battery is an electrolyte (solution) in which an active material of an electrode is dissolved in a solvent.
  • an oxidation reaction occurs at the positive electrode and a reduction reaction occurs at the negative electrode.
  • the electromotive force of is determined by the difference between the standard electrode potential (E0) of the redox couple constituting the positive electrolyte and the negative electrolyte.
  • Redox couples include Fe / Cr, V / Br, Zn / Br, Zn / Ce, and V / V.
  • vanadium (V / V) redox couples are used in consideration of the amount of electricity that can be stored and economical efficiency.
  • the electrolyte is supplied by the pump from the electrolyte tank and at the same time has the advantages of the fuel cell having the high output characteristics and the advantages of the normal cell is fast redox reaction on the surface of the positive electrode and the negative electrode.
  • Ion exchange resin is used to prepare a separator that penetrates only hydrogen, and when prepared using only polymer resin, the selective permeability of hydrogen ions is low and the physical strength is also weak.
  • additives are mixed and used to increase the ion conductivity and the selectivity of hydrogen.
  • the present specification is to provide an ion transport polymer-containing composite membrane and its preparation method.
  • An exemplary embodiment of the present specification includes two or more polymer layers including an ion transfer polymer, and the polymer layer is made of an ion transfer polymer, or a first polymer layer made of an ion transfer polymer and a stabilizer; And a second polymer layer provided on the first polymer layer, the second polymer layer having an ion transfer polymer and functional additive particles, wherein the functional additive particles include at least one of silicon element-containing particles, graphite oxide particles, metal particles, and metal oxide particles. It provides a composite membrane which is one.
  • Another embodiment of the present specification is a cathode; anode; And it provides an electrochemical cell comprising the above-described composite film disposed between the negative electrode and the positive electrode.
  • Another embodiment of the present specification includes two or more polymer layers including an ion transfer polymer, wherein the polymer layer is made of an ion transfer polymer, or a first polymer layer made of an ion transfer polymer and a stabilizer; And a second polymer layer provided on the first polymer layer, the second polymer layer having an ion transfer polymer and functional additive particles, wherein the functional additive particles include at least one of silicon element-containing particles, graphite oxide particles, metal particles, and metal oxide particles. It provides a method for producing a composite membrane that is one.
  • the polymer layer including the ion-transfer polymer without the functional additive particles and the polymer layer including the functional additive particles and the ion-transfer polymer may be in a desired form.
  • a composite membrane can be obtained.
  • the composite membrane may be prevented from splitting, and the functional additive particles may be locally put in a desired amount at a desired position, thereby minimizing the amount of the functional additive particles, and the equivalent amount of the functional additives.
  • the use of particles can also maximize the function of the additives.
  • FIG. 1 is a diagram illustrating a structure of a composite film according to the prior art and some embodiments of the present specification.
  • Example 3 is a cross-sectional SEM image of the composite film of Example 1.
  • An exemplary embodiment of the present specification includes two or more polymer layers including an ion transfer polymer, and two or more of the polymer layers include functional additive particles having different contents from each other; Or at least one layer of the polymer layer comprises functional additive particles, and at least one layer of the polymer layer does not include functional additive particles.
  • the content of the silica particles are adjusted to 3% by weight, 5% by weight, 20% by weight, 30% by weight, 40% by weight and 50% by weight, respectively.
  • the film containing more than 30% by weight of silica particles does not become a film and the film breaks. Therefore, when the content of silica particles in the film is large, it can be seen that it is not possible to form a film and thus cannot be produced as an electrolyte film.
  • An exemplary embodiment of the present specification includes two or more polymer layers including an ion transfer polymer, and the polymer layer is made of an ion transfer polymer, or a first polymer layer made of an ion transfer polymer and a stabilizer; And a second polymer layer provided on the first polymer layer, the second polymer layer having an ion transfer polymer and functional additive particles, wherein the functional additive particles include at least one of silicon element-containing particles, graphite oxide particles, metal particles, and metal oxide particles. It provides a composite membrane which is one.
  • the content of the functional additive particles may be 30% by weight or more and 80% by weight or less. Since the polymer layer containing no functional additive particles is provided together, there is an advantage in that a film can be formed even if the content of the functional additive particles is high in the polymer layer containing the functional additive particles. Specifically, based on the total weight of the second polymer layer, the content of the functional additive particles may be 30% by weight or more and 80% by weight or less.
  • the thickness of the polymer layer including the functional additive particles may be 60 ⁇ m or more and 150 ⁇ m or less. Since the polymer layer containing no functional additive particles is provided together, there is an advantage in that a film can be formed even if the thick layer of the polymer layer containing the functional additive particles is thick. Specifically, the thickness of the second polymer layer may be 60 ⁇ m or more and 150 ⁇ m or less.
  • the composite membrane according to an exemplary embodiment of the present specification includes at least one polymer layer and functional additive particles including the functional additive particles. It includes all of at least one polymer layer that does not contain.
  • At least one surface of the polymer layer including the functional additive particles may be in contact with the polymer layer not containing the functional additive particles.
  • the first polymer layer may be in contact with one surface of the second polymer layer.
  • a polymer layer not including the functional additive particles may be provided by contacting a lower portion of the polymer layer including the functional additive particles.
  • the structure of such a composite film is illustrated in Fig. 1B-1.
  • a polymer layer which does not include the functional additive particles may be provided in contact with an upper portion of the polymer layer including the functional additive particles.
  • the structure of such a composite film is illustrated in Fig. 1B-2.
  • the composite film may include two or more layers having different densities.
  • the composite membrane may be prepared by first forming a high density layer of a polymer layer including the functional additive particles and a polymer layer not including the functional additive particles, and then forming a small density layer.
  • the composite membrane may be manufactured to simultaneously form a polymer layer including the functional additive particles and a polymer layer not including the functional additive particles so that a higher density layer is formed under a lower density layer. have.
  • the composite may include one or more layers of polymer layers not including the functional additive particles, which are respectively provided on the upper and lower portions of the polymer layer including the functional additive particles.
  • the first polymer layer may be formed of an ion transfer polymer provided on the opposite surface of the surface of the second polymer layer, or may further include a fourth polymer layer made of an ion transfer polymer and a stabilizer.
  • the second polymer layer and the fourth polymer layer may be provided in contact with each other, and the second polymer layer and the first polymer layer may be provided in contact with each other.
  • the polymer additive layer including the functional additive particles is not provided on the upper and lower portions of the polymer layer including the functional additive particles, the polymer additive layer including the functional additive particles is not exposed to the electrolyte solution, thereby deteriorating or dropping the functional additive particles.
  • the durability is improved by preventing.
  • the second polymer layer may be provided inside in the thickness direction of the composite film. Specifically, it may be located within the range of 10% or more and 90% or less of the thickness of the composite film from the upper or lower surface of the composite film. More specifically, it may be located within the range of 30% or more and 70% or less of the thickness of the composite film from the upper or lower surface of the composite film.
  • the composite may include a polymer layer that does not include the functional additive particles provided on the upper and lower portions of the polymer layer including the functional additive particles, respectively.
  • the composite may include one or more layers of the polymer layer including the functional additive particles respectively provided on the upper and lower portions of the polymer layer not containing the functional additive particles.
  • At least one layer of the polymer layer including the functional additive particles may include two or more kinds of functional additive particles different from each other.
  • the second polymer layer may further include a third polymer layer having ion-transfer polymers and functional additive particles provided on opposite surfaces of the first polymer layer.
  • the first polymer layer and the second polymer layer may be provided in contact with each other, and the first polymer layer and the third polymer layer may be provided in contact with each other.
  • the functional additive particles of the second polymer layer and the functional additive particles of the third polymer layer may be the same or different from each other.
  • the composite may include a polymer layer including the functional additive particles provided on the upper and lower portions of the polymer layer not including the functional additive particles, respectively.
  • the polymer layer including the functional additive particles provided on the upper and lower portions of the polymer layer not containing the functional additive particles, respectively shows a case containing the functional additive particles of the same component
  • the polymer layer including the functional additive particles provided on the upper and lower portions of the polymer layer not containing the functional additive particles, respectively shows the case where the functional additive particles of different components are included. .
  • the functional additive particles may include one or more selected from a material capable of preventing the permeation of an electrolyte such as water or a vanadium solution and a material capable of increasing conductivity, but are not limited thereto.
  • the functional additive particles may be selected from the group consisting of inorganic or organic materials.
  • the inorganic material may be selected from the group consisting of metals, metal oxides, nonmetals and nonmetal oxides, but is not limited thereto.
  • the functional additive particles may include at least one of silicon element-containing particles, graphite oxide particles, metal particles, and metal oxide particles.
  • the silicon element-containing particles are not particularly limited as long as they contain a silicon element.
  • the silicon element-containing particles may be silicon (Si) particles, silica particles, or silica particles having sulfonic acid groups.
  • the metal particles or metal oxide particles may include at least one of Ag, Ni, Cu, Ag, Ni, Cu, Ti, Pt, and oxides thereof.
  • the particle diameter of the functional additive particles may be 1 nm or more and 100 ⁇ m or less.
  • the particle diameter of the functional additive particles may be nano size, for example, may be 1 nm or more and 1,000 nm or less.
  • At least one layer of the polymer layer may include two or more kinds of ion transfer polymers different from each other.
  • the ion transport polymer contained in the adjacent polymer layer of the polymer layer may be the same as or different from each other.
  • the ion transport polymer of the polymer layer containing the functional additive particles may be the same as the ion transport polymer of the polymer layer not containing the functional additive particles.
  • the ion transport polymer of the polymer layer containing the functional additive particles may be different from the ion transport polymer of the polymer layer not containing the functional additive particles.
  • the ion transport polymer between the polymer layers containing the functional additive particles may be the same.
  • the ion transport polymer between the polymer layer containing the functional additive particles may be different.
  • Another embodiment of the present specification provides a composite membrane including an ion-transfer polymer and a functional additive particle, wherein the concentration of the functional additive particle in the thickness direction of the composite membrane has a portion different from the remaining portion.
  • the composite membrane including the ion-transfer polymer and the functional additive particles may be included from the one side to the position of 80% of the total thickness in the thickness direction of the composite membrane.
  • the functional additive particles may be included from one surface to 50% of the total thickness in the thickness direction of the composite membrane.
  • the concentration of the functional additive particles in the thickness direction of the composite film may be gradually changed.
  • the concentration of the functional additive particles in the upper direction of the composite membrane may be gradually increased.
  • the concentration of the functional additive particles in the downward direction of the composite membrane may be gradually increased.
  • one or more layers of the polymer layer not including the functional additive particles may be further included in the upper or lower portion of the composite membrane in which the concentration of the functional additive particles gradually changes in the thickness direction of the composite membrane.
  • one or more layers of the polymer layer not including the functional additive particles may be further included on the upper and lower portions of the composite membrane in which the concentration of the functional additive particles gradually changes in the thickness direction of the composite membrane. have.
  • one or more layers of the polymer layer including the functional additive particles may be further included on or below the composite membrane in which the concentration of the functional additive particles gradually changes in the thickness direction of the composite membrane.
  • one or more layers of the polymer layer including the functional additive particles may be further included on the upper and lower portions of the composite membrane in which the concentration of the functional additive particles gradually changes in the thickness direction of the composite membrane.
  • the stacking number and the stacking order of the present specification may be different, the number of layers including the composite material may be one or more layers, and the number of layers may be infinitely large.
  • the content of the functional additive particles included in the entire composite membrane is 0.01 wt% to 99.9 wt% based on the entire composite membrane.
  • each polymer layer including the functional additive particles in the polymer layer is 0.01 to 99.9% by weight of the functional additive particles based on each polymer layer.
  • particles capable of increasing conductivity such as Ag, Ni, and Cu particles, may increase hydrogen ion conductivity.
  • the binder serves to hold the particles may be a polymer resin, and may prevent the transfer of hydrogen ions when the polymer content is appropriate.
  • the thickness of the composite film may be 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness of each polymer layer including the functional additive particles may be 0.1 nm or more and 1000 ⁇ m or less. According to the exemplary embodiment of the present specification, the thickness of each polymer layer not including the functional additive particles may be 0.1 nm or more and 1000 ⁇ m or less.
  • the thickness ratio between the polymer layer having a different content of the functional additive particles, or the thickness ratio of the polymer layer containing the functional additive particles and the polymer layer not containing the functional additive particles is 1:10 6 or more. 10 6 : 1 or less.
  • the thickness ratio t1: t2 of each layer is from 1: 0.1 to 1: 10000.
  • thickness may mean the distance between two opposing major surfaces of a composite membrane or polymer layer.
  • the introduction of excess functional particles may cause the membrane to crack or the particles to separate from the membrane, but according to some embodiments of the present invention, when the polymer layer is made of several layers, The content can be greatly increased. In addition, it is possible to maximize the functionality by making a layer containing a large amount of functional particles locally and to make the film uniform during film formation.
  • any polymer capable of conducting hydrogen ion may be used without limitation.
  • the ion transfer polymer examples include an ion exchange resin of hydrocarbon; Fluorine-based ion resins; It may include one or more selected from anionic resin, but is not limited thereto.
  • the fluorine-based ion resin may be Nafion (DuPont).
  • examples of the ion-transfer polymer include a copolymer including a repeating unit of Formula A and a repeating unit of Formula B.
  • Examples of the ion transfer polymer include a copolymer including a repeating unit of Formula A and a repeating unit of Formula B.
  • X 1 , X 2 and X 3 are the same as or different from each other, and each independently represented by one of the following Chemical Formulas 1 to 3,
  • n and n refer to the number of repeating units, 1 ⁇ m ⁇ 500, 1 ⁇ n ⁇ 500,
  • L 1 is directly connected or is selected from -CZ 2 Z 3- , -CO-, -O-, -S-, -SO 2- , -SiZ 2 Z 3- , and a substituted or unsubstituted divalent fluorene group. Which one,
  • Z 2 and Z 3 are the same as or different from each other, and each independently one of hydrogen, an alkyl group, a trifluoromethyl group (-CF 3 ), and a phenyl group,
  • S 1 to S 5 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; Cyano group; Nitrile group; Nitro group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • a, b and c are the same as or different from each other, and each independently an integer of 0 or more and 4 or less,
  • p and q are the same as or different from each other, and each independently an integer of 0 or more and 4 or less,
  • a ' is an integer of 1 or more and 5 or less
  • Y 1 is represented by any one of Formulas 4 to 6,
  • L 2 is directly connected, or is selected from -CO-, -SO 2- , and a substituted or unsubstituted divalent fluorene group,
  • d, e, and h are the same as or different from each other, and each independently an integer of 0 or more and 4 or less,
  • f and g are the same as or different from each other, and each independently an integer of 0 or more and 3 or less,
  • b ' is an integer of 1 or more and 5 or less
  • the at least one independently is -SO 3 H, -SO 3 - M +, -COOH, -COO - M +, -PO 3 H 2, -PO 3 H - M + or -PO 3 2- 2M +, and, wherein M is a group 1 element, and the remainder are the same or different, and each independently hydrogen; heavy hydrogen; Halogen group; Cyano group; Nitrile group; Nitro group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substituted or unsubstituted amine group; Substituted or unsubstituted
  • Another embodiment of the present specification may include a copolymer in which the ion transport polymer further includes a repeating unit represented by the following Formula C.
  • Z is a trivalent organic group.
  • Z is a trivalent organic group, which may combine with additional repeating units in each of three directions to extend the polymer chain.
  • Formula A is hydrophobic, and Formula B means hydrophilic.
  • the "hydrophilic” is a hydrophilic ion transfer functional group -SO 3 H, -SO 3 - M + , -COOH, -COO - M + , -PO 3 H 2 , -PO 3 H - M + or -PO 3 2- 2M + (M is a repeating unit including a periodic table group 1 element).
  • the ratio of the repeating units of Formula A and Formula B in the entire copolymer may be 1: 0.001 to 1: 1000.
  • the weight average molecular weight of the copolymer may be 500 g / mol or more and 5,000,000 g / mol or less.
  • the weight average molecular weight of the copolymer is in the range, the mechanical properties of the composite membrane including the copolymer are not lowered, and solubility of the appropriate copolymer can be maintained.
  • the kind and particle diameter of the functional additive particles are as described above.
  • Another embodiment of the present specification includes two or more polymer layers including an ion transfer polymer, two or more of the polymer layers include different amounts of functional additive particles from each other; Or at least one of the polymer layers comprises functional additive particles, and at least one layer of the polymer layers does not include functional additive particles.
  • Another embodiment of the present specification provides a composite membrane including an ion-transfer polymer and a functional additive particle, wherein the concentration of the functional additive particle in the thickness direction of the composite membrane has a portion different from the remaining portion.
  • each of the polymer layer or the composite film may be manufactured by an inkjet method or a roll printing method, but is not limited thereto.
  • the polymer layers may be manufactured and laminated, respectively, and after forming any one polymer layer, thereafter, coating a composition for forming an additional polymer layer thereon and curing as necessary. Alternatively, it may be dried to form an additional polymer layer.
  • a composite film may be formed by batch curing or drying. At this time, by varying the content of the functional additive particles in the composition for forming each polymer layer to be sequentially coated, it is possible to produce a composite membrane having a portion in which the concentration of the functional additive particles is different from the rest in the thickness direction of the composite membrane.
  • the polymer layer may be manufactured through a continuous process, but is not limited thereto.
  • the polymer layer may be manufactured and laminated one by one in a sheet form, but is not limited thereto.
  • One embodiment of the present specification is a cathode; anode; And it provides an electrochemical cell comprising the composite film disposed between the negative electrode and the positive electrode.
  • the composite membrane may serve as a separator.
  • the electrochemical cell may be a fuel cell.
  • the electrochemical cell may be a flow battery.
  • the fuel cell or flow battery may use a structure, a material, and a method known in the art, except for including the aforementioned composite membrane as a separator.
  • composition A was added to the substrate by adding 20% by weight of Nafion and 80% by weight of the solvent (the ratio of the weight of isopropyl alcohol and water as a solvent to 7: 3) as the ion-transfer polymer onto the substrate, and the thickness was 120.
  • the 1st polymer layer which is micrometers was formed.
  • Silica particles (50 nm) are added to the composition A as functional additive particles so that the weight ratio of the ion transfer polymer and the silica particles is 4: 6, and a second polymer layer having a thickness of 60 ⁇ m is formed on the first polymer layer.
  • a composite membrane To prepare a composite membrane.
  • composition A having no functional additive particles was applied onto the substrate by adding 20% by weight of Nafion and 80% by weight of a solvent (the ratio of the weight of isopropyl alcohol and water as a solvent to 7: 3) as the ion-transfer polymer on the substrate to obtain a thickness of 100
  • the 1st polymer layer which is micrometers was formed.
  • Silica particles (50 nm) are added to the composition A as functional additive particles so that the weight ratio of the ion transfer polymer and the silica particles is 4: 6, and a second polymer layer having a thickness of 60 ⁇ m is formed on the first polymer layer. did.
  • composition A which does not have a functional additive particle was apply
  • Example 1 silica particles (50 nm) are added to the composition A as functional additive particles to form a second polymer layer such that the weight ratio of the ion transfer polymer and the silica particles on the first polymer layer is 90:10. ,
  • a composite membrane was manufactured in the same manner as in Example 1, except that a third polymer layer having a thickness of 130 ⁇ m was further formed on the opposite side of the substrate.
  • a single layer polymer layer having a thickness of 120 ⁇ m was formed on the substrate with the same composition as that of the first polymer layer of Example 1.
  • Example 1 silica particles (50 nm) were added to the composition A as functional additive particles so that the weight ratio of the ion transfer polymer and the silica particles was 95: 5, and a single layer polymer layer having a thickness of 150 ⁇ m was placed on the substrate. Formed.
  • Example 1 silica particles (50 nm) were added to the composition A as functional additive particles so that the weight ratio of the ion transfer polymer and the silica particles was 90:10, and a single layer polymer layer having a thickness of 150 ⁇ m was placed on the substrate. Formed.
  • a single layer polymer layer having a thickness of 100 ⁇ m to 120 ⁇ m was formed on the substrate using the same composition as that of the second polymer layer of Example 1.
  • the film was cracked and could not be used as a film of an electrochemical cell.
  • Example 1 The membrane prepared in Example 1 and Comparative Examples 1 to 3 was used as a separator to measure the ion conductivity and the vanadium permeability of the separator.
  • Ion conductivity was calculated by measuring the on-resistance (impedance) in 0.5M sulfuric acid aqueous solution through the through-plane conductivity of the membrane through the following process.
  • the permeability of hydrogen permeability is the intrinsic conductivity of the membrane whose thickness of the separator is corrected.
  • Membrane resistance (R mem ) R cell (total resistance of the cell in the sulfuric acid solution cell) -R electrolyte (sulfuric acid solution resistance)
  • Vanadium permeability was measured using a first aqueous solution containing 1M VOSO 4 and 2M sulfuric acid and a second aqueous solution containing 1M MgSO 4 and 2M sulfuric acid. Blocking the first and second aqueous solutions with a separator, measuring the concentration of vanadium and the thickness of the separator that passed through the separator over time, and determining the diffusion coefficient of the separator according to the Fick's 1 st laws of diffusion. D (D: diffusion coefficient) was calculated
  • CA concentration of vanadium ions in enrichment side (mol L -1 )

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Fuel Cell (AREA)

Abstract

본 명세서는 이온전달 고분자 함유 복합막 및 이의 제조방법에 관한 것이다.

Description

이온전달 고분자 함유 복합막 및 이의 제조방법
본 발명은 2014년 09월 23일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0127095 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 이온전달 고분자 함유 복합막 및 이의 제조방법에 관한 것이다.
연료전지는 외부에서 공급되는 연료와 산소를 촉매작용에 의해 전기화학적으로 반응시켜 연료에서 직접적으로 그리고 동시에 전기에너지와 열에너지를 얻어내는 정지형 에너지 변환장치이다. 연료전지의 공기전극(양극)과 연료전극(음극) 사이에는 전해질이라고 불리는 이온 투과층이 있으며, 이 전해질의 종류에 의해서 인산형(PAFC), 고체분자형(PEM), 용융탄산염형(MCFC), 고체산화물형(SOFC), 알칼리형(AFC)의 5종류로 분류된다.
연료전지는 기존 내연기관에 비하여 효율이 높아 연료 사용량이 적으며, SOx, NOx, VOC 등의 환경오염 물질을 발생시키지 않는 무공해 에너지원이라는 장점이 있다. 또한, 생산설비에 필요한 입지면적이 적고 건설 기간이 짧다는 등의 추가적 장점이 있다.
따라서 연료전지는 휴대용 기기 등의 이동용 전원, 자동차 등의 수송용 전원, 가정용 및 전력사업용으로 이용가능한 분산형 발전에 이르기까지 응용분야가 다양하다. 특히, 차세대 운송 장치인 연료전지 자동차의 운영이 실용화될 경우, 그 잠재 시장 규모는 광범위할 것으로 예상된다.
레독스 플로우 배터리는(Redox Flow Battery)는 재충전이 가능한 연료전지 중 하나이다. 레독스 플로우 배터리 내부에는 여러 종류의 전기활성물질을 포함하고 있는 전해질이 있는데, 이 전해질의 산화 및 환원 반응에 의해 충방전이 일어나는 이차전지이다. 일반적인 전지와의 가장 큰 차이점은 에너지가 저장되는 전해질을 순환시키면서 충전과 방전이 이루어진다는 점이다. 구체적으로, 레독스 플로우 전지는 다른 전지와는 다르게 활물질이 고체가 아닌 수용액 상태의 이온으로 존재하며, 양극과 음극에서 각 이온들의 산화/환원 반응에 의해 전기 에너지를 저장 및 발생하는 메커니즘을 가진다. 즉, 레독스 플로우 전지는 전극의 활물질이 용매에 녹아 있는 전해액(용액) 상태이며, 산화수가 다른 양극전해액과 음극전해액으로 구성된 전지를 충전시키면 양극에서는 산화반응이, 음극에서는 환원반응이 일어나며, 전지의 기전력은 양극전해액과 음극전해액을 구성하고 있는 레독스 커플(redox couple)의 표준전극전위(E0)의 차이에 의해서 결정된다. 레독스 커플에는 Fe/Cr, V/Br, Zn/Br, Zn/Ce, V/V 등이 있으나, 저장가능한 전기량이나 경제성 등을 고려해서 바나듐(V/V) 레독스 커플이 많이 사용되고 있다. 한편, 전해액은 전해액 탱크로부터 펌프에 의해 공급되며 양극과 음극의 표면에서 산화환원 반응속도가 빠른 일반 전지의 장점과 높은 출력 특성을 가지는 연료전지의 장점을 동시에 가진다.
수소만 투과하는 분리막을 제조하기 위하여 이온교환 수지를 이용하는데, 고분자 수지만을 이용하여 제작할 경우, 수소이온의 선택적 투과도가 낮고, 물리적 강도 또한 약하다. 이와 같은 고분자 수지의 한계를 극복하기 위하여 수소의 이온전도도 및 선택투과도를 높이기 위하여 첨가물을 혼합하여 사용하고 있다.
그러나, 종래의 복합막 제조기술은 이온교환 수지 용액에 첨가물을 혼합하여 하나의 용액으로서 단층의 형태로서 제막한다. 이와 같은 방법은 무기물의 첨가량에 한계가 있다. 또한, 물질을 균일하게 분산하기 어렵기 때문에 잘 분산되지 않은 첨가물로 인하여 막이 갈라지게 되는 단점이 있다.
본 명세서는 이온전달 고분자 함유 복합막 및 이의 제조방법을 제공하고자 한다.
본 명세서의 일 실시상태는 이온전달 고분자를 포함하는 고분자층을 2 이상 포함하고, 상기 고분자층은 이온전달 고분자로 이루어지거나, 이온전달 고분자 및 안정제로 이루어진 제1 고분자층; 및 상기 제1 고분자층 상에 구비되고, 이온전달 고분자 및 기능성 첨가물 입자를 갖는 제2 고분자층을 포함하며, 상기 기능성 첨가물 입자는 실리콘 원소함유 입자, 그라파이트 옥사이드 입자, 금속 입자 및 금속 산화물 입자 중 적어도 하나인 것인 복합막을 제공한다.
본 명세서의 또 다른 실시상태는 음극; 양극; 및 상기 음극과 상기 양극 사이에 배치된 전술한 복합막을 포함하는 전기화학 전지를 제공한다.
본 명세서의 또 다른 실시상태는 이온전달 고분자를 포함하는 고분자층을 2 이상 포함하고, 상기 고분자층은 이온전달 고분자로 이루어지거나, 이온전달 고분자 및 안정제로 이루어진 제1 고분자층; 및 상기 제1 고분자층 상에 구비되고, 이온전달 고분자 및 기능성 첨가물 입자를 갖는 제2 고분자층을 포함하며, 상기 기능성 첨가물 입자는 실리콘 원소함유 입자, 그라파이트 옥사이드 입자, 금속 입자 및 금속 산화물 입자 중 적어도 하나인 것인 복합막의 제조방법을 제공한다.
본 명세서에 기재된 실시상태들에 따르면, 막의 형태에 따라 기능성 첨가물 입자를 포함하지 않고 이온전달 고분자를 포함하는 고분자층과, 기능성 첨가물 입자 및 이온전달 고분자를 포함하는 고분자층의 위치에 따라 원하는 형태의 복합막을 얻을 수 있다.
또한, 전술한 실시상태들에 따르면, 복합막이 갈라지는 것을 막을 수도 있고, 기능성 첨가물 입자를 국부적으로 원하는 위치에 원하는 양 만큼 넣을 수 있으므로, 기능성 첨가물 입자의 양을 최소화할 수도 있고, 동등한 양의 기능성 첨가물 입자를 사용하는 경우에도 첨가물의 기능을 극대화할 수 있다.
도 1은 종래기술 및 본 명세서의 몇몇 실시상태에 따른 복합막의 구조를 예시한 도이다.
도 2는 실리카 함유량을 증가시켜 제조된 단일막의 제막한 후 이미지이다.
도 3은 실시예 1의 복합막의 단면 SEM이미지이다.
도 4는 실시예 2의 복합막의 단면 SEM이미지이다.
도 5는 실시예 3의 복합막의 단면 SEM이미지이다.
도 6은 비교예 3의 복합막의 단면 SEM이미지이다.
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서의 일 실시상태는 이온전달 고분자를 포함하는 고분자층을 2 이상 포함하고, 상기 고분자층 중 2 이상은 서로 상이한 함량의 기능성 첨가물 입자를 포함하거나; 또는 상기 고분자층 중 적어도 한 층은 기능성 첨가물 입자를 포함하고, 상기 고분자층 중 적어도 한 층은 기능성 첨가물 입자를 포함하지 않는 것인 복합막을 제공한다.
도 2는 실리카 입자의 함유량을 증가시켜 제조된 단일막을 제막한 후 이미지이다. 구체적으로, 이온전달 고분자와 실리카 입자의 중량의 합을 기준으로, 실리카 입자의 함량을 각각 3중량%, 5중량%, 20중량%, 30중량%, 40중량% 및 50중량%로 조절하여 제막한 결과, 30중량% 이상의 실리카 입자가 포함된 막은 제막이 되지 않고 막이 깨지는 것을 알 수 있다. 따라서, 막에서 실리카 입자의 함유량이 많으면, 제막이 되지 않아 전해질막으로 제조할 수 없는 것을 알 수 있다.
본 명세서의 일 실시상태는 이온전달 고분자를 포함하는 고분자층을 2 이상 포함하고, 상기 고분자층은 이온전달 고분자로 이루어지거나, 이온전달 고분자 및 안정제로 이루어진 제1 고분자층; 및 상기 제1 고분자층 상에 구비되고, 이온전달 고분자 및 기능성 첨가물 입자를 갖는 제2 고분자층을 포함하며, 상기 기능성 첨가물 입자는 실리콘 원소함유 입자, 그라파이트 옥사이드 입자, 금속 입자 및 금속 산화물 입자 중 적어도 하나인 것인 복합막을 제공한다.
상기 기능성 첨가물 입자를 포함하는 고분자층의 총 중량을 기준으로, 상기 기능성 첨가물 입자의 함량은 30중량% 이상 80중량% 이하일 수 있다. 기능성 첨가물 입자를 포함하지 않는 고분자층이 함께 구비됨으로써, 기능성 첨가물 입자를 포함하는 고분자층에서 기능성 첨가물 입자의 함량이 높아도 제막이 가능한 장점이 있다. 구체적으로, 상기 제2 고분자층의 총 중량을 기준으로, 상기 기능성 첨가물 입자의 함량은 30중량% 이상 80중량% 이하일 수 있다.
상기 기능성 첨가물 입자를 포함하는 고분자층의 두께는 60㎛ 이상 150㎛ 이하일 수 있다. 기능성 첨가물 입자를 포함하지 않는 고분자층이 함께 구비됨으로써, 기능성 첨가물 입자를 포함하는 고분자층의 두께가 두꺼운 후막이어도 제막이 가능한 장점이 있다. 구체적으로, 상기 제2 고분자층의 두께는 60㎛ 이상 150㎛ 이하일 수 있다.
도 1의 (a)와 같이, 복합막의 전체에 기능성 첨가물 입자가 분포되어 있는 종래기술과 달리, 본 명세서의 실시상태에 따른 복합막은 기능성 첨가물 입자를 포함하는 적어도 하나의 고분자층과 기능성 첨가물 입자를 포함하지 않는 적어도 하나의 고분자층을 모두 포함한다.
상기 기능성 첨가물 입자를 포함하는 고분자층의 적어도 일면은 상기 기능성 첨가물 입자를 포함하지 않은 고분자층과 접촉되어 있을 수 있다.
상기 제1 고분자층은 상기 제2 고분자층과 일면이 접촉될 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 기능성 첨가물 입자를 포함하는 고분자층의 하부에 접촉하여 상기 기능성 첨가물 입자를 포함하지 않는 고분자층이 구비될 수 있다. 이와 같은 복합막의 구조를 도 1의 (b-1)에 예시하였다.
본 명세서의 일 실시상태에 따르면, 상기 기능성 첨가물 입자를 포함하는 고분자층의 상부에 접촉하여 상기 기능성 첨가물 입자를 포함하지 않는 고분자층이 구비될 수 있다. 이와 같은 복합막의 구조를 도 1의 (b-2)에 예시하였다.
상기 복합막은 밀도가 서로 상이한 2층 이상을 포함할 수 있다.
일 예로, 상기 복합막은 상기 기능성 첨가물 입자를 포함하는 고분자층과 상기 기능성 첨가물 입자를 포함하지 않는 고분자층 중 밀도가 큰 층을 먼저 형성한 후 밀도가 작은 층을 형성하여 제조할 수 있다.
또 하나의 예로서, 상기 복합막은 상기 기능성 첨가물 입자를 포함하는 고분자층과 상기 기능성 첨가물 입자를 포함하지 않는 고분자층을 동시에 형성하여 밀도가 큰 층이 밀도가 작은 층의 아래에 형성하도록 제조할 수 있다.
상기 복합체는 상기 기능성 첨가물 입자를 포함하는 고분자층의 상부 및 하부에 각각 구비된 상기 기능성 첨가물 입자를 포함하지 않는 고분자층을 한 층 이상 포함할 수 있다.
상기 제1 고분자층이 구비된 제2 고분자층의 표면의 반대면에 구비된 이온전달 고분자로 이루어지거나, 이온전달 고분자 및 안정제로 이루어진 제4 고분자층을 더 포함할 수 있다. 구체적으로, 상기 제2 고분자층과 제4 고분자층은 서로 접촉하여 구비되고, 상기 제2 고분자층과 제1 고분자층은 서로 접촉하여 구비될 수 있다.
기능성 첨가물 입자를 포함하는 고분자층의 상부 및 하부에 기능성 첨가물 입자를 포함하지 않는 고분자층이 구비되는 경우, 기능성 첨가물 입자를 포함하는 고분자층이 전해질액에 노출되지 않아 기능성 첨가물 입자가 변질되거나 탈락되는 것을 방지하여 내구성이 향상되는 장점이 있다.
상기 제2 고분자층은 복합막의 두께방향으로 내부에 구비될 수 있다. 구체적으로, 상기 복합막의 상면 또는 하면으로부터 상기 복합막의 두께의 10% 이상 90% 이하의 범위 내에 위치할 수 있다. 더 구체적으로, 상기 복합막의 상면 또는 하면으로부터 상기 복합막의 두께의 30% 이상 70% 이하의 범위 내에 위치할 수 있다.
도 1의 (c)에 도시된 바와 같이, 상기 복합체는 상기 기능성 첨가물 입자를 포함하는 고분자층의 상부 및 하부에 각각 구비된 상기 기능성 첨가물 입자를 포함하지 않는 고분자층을 포함할 수 있다.
상기 복합체는 상기 기능성 첨가물 입자를 포함하지 않는 고분자층의 상부 및 하부에 각각 구비된 상기 기능성 첨가물 입자를 포함한 고분자층을 한 층 이상 포함할 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 기능성 첨가물 입자가 포함된 고분자층 중 적어도 한 층은 서로 상이한 기능성 첨가물 입자를 2종 이상 포함할 수 있다.
상기 제2 고분자층이 구비된 제1 고분자층의 표면의 반대면에 구비된 이온전달 고분자 및 기능성 첨가물 입자를 갖는 제3 고분자층을 더 포함할 수 있다. 구체적으로, 상기 제1 고분자층과 제2 고분자층은 서로 접촉하여 구비되고, 상기 제1 고분자층과 제3 고분자층은 서로 접촉하여 구비될 수 있다.
상기 제2 고분자층의 기능성 첨가물 입자와 제3 고분자층의 기능성 첨가물 입자는 서로 동일하거나 상이할 수 있다.
도 1의 (d) 및 (e)에 도시된 바와 같이, 상기 복합체는 상기 기능성 첨가물 입자를 포함하지 않는 고분자층의 상부 및 하부에 각각 구비된 상기 기능성 첨가물 입자를 포함한 고분자층을 포함할 수 있다. 구체적으로, 도 1의 (d)에서, 기능성 첨가물 입자를 포함하지 않는 고분자층의 상부 및 하부에 각각 구비된 상기 기능성 첨가물 입자를 포함한 고분자층은 서로 같은 성분의 기능성 첨가물 입자를 포함하는 경우를 나타낸 것이며, 도 1의 (e)에서, 기능성 첨가물 입자를 포함하지 않는 고분자층의 상부 및 하부에 각각 구비된 상기 기능성 첨가물 입자를 포함한 고분자층은 서로 상이한 성분의 기능성 첨가물 입자를 포함하는 경우를 나타낸 것이다.
상기 기능성 첨가물 입자는 물이나 바나듐 용액과 같은 전해액의 투과를 막을 수 있는 물질 및 전도도를 올릴 수 있는 물질 중에서 선택되는 1 이상을 포함할 수 있으나 이에 한정되는 것은 아니다.
상기 기능성 첨가물 입자는 무기물 또는 유기물로 이루어진 군에서 선택될 수 있다. 상기 무기물은 금속, 금속산화물, 비금속 및 비금속산화물로 이루어진 군에서 선택될 수 있으나, 이에 한정되는 것은 아니다. 예를 들면, 상기 기능성 첨가물 입자는 실리콘 원소함유 입자, 그라파이트 옥사이드 입자, 금속 입자 및 금속 산화물 입자 중 적어도 하나를 포함할 수 있다.
상기 실리콘 원소함유 입자는 규소 원소를 포함한다면 특별히 한정하지 않으나, 예를 들면, 실리콘(Si) 입자, 실리카 입자 또는 술폰산기를 갖는 실리카 입자 등일 수 있다.
상기 금속 입자 또는 금속 산화물 입자는 Ag, Ni, Cu, Ag, Ni, Cu, Ti, Pt 및 이들의 산화물 중 적어도 하나를 포함할 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 기능성 첨가물 입자의 입경은 1nm 이상 100 ㎛ 이하일 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 기능성 첨가물 입자의 입경은 나노크기일 수 있으며, 에컨대 1nm 이상 1,000nm 이하일 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 고분자층 중 적어도 한 층은 서로 상이한 2종 이상의 이온전달 고분자를 포함할 수 있다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 고분자층들 중 인접한 고분자층에 포함된 이온전달 고분자는 서로 동일할 수도 있고, 상이할 수도 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 기능성 첨가물 입자가 포함된 고분자층의 이온전달 고분자는 상기 기능성 첨가물 입자가 포함되지 않은 고분자층의 이온전달 고분자와 동일한 것일 수 있다.
또한, 상기 기능성 첨가물 입자가 포함된 고분자층의 이온전달 고분자는 상기 기능성 첨가물 입자가 포함되지 않은 고분자층의 이온전달 고분자와 상이한 것일 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 기능성 첨가물 입자가 포함된 고분자층 간 이온전달 고분자는 동일한 것일 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 기능성 첨가물 입자가 포함된 고분자층 간 이온전달 고분자는 상이한 것일 수 있다.
본 명세서의 또 하나의 실시상태는 이온전달 고분자 및 기능성 첨가물 입자를 포함하는 복합막으로서, 상기 복합막의 두께 방향으로 기능성 첨가물 입자의 농도가 나머지 부분과 상이한 부분을 갖는 복합막의 제조방법을 제공한다.
본 명세서의 일 실시상태에 따르면, 이온전달 고분자 및 기능성 첨가물 입자를 포함하는 것인 복합막으로서, 상기 복합막의 두께 방향으로 일면으로부터 전체 두께의 80%가 되는 위치까지 상기 기능성 첨가물 입자가 포함될 수 있다. 예컨대, 상기 복합막의 두께 방향으로 일면으로부터 전체 두께의 50%가 되는 위치까지 상기 기능성 첨가물 입자가 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 복합막의 두께 방향으로 기능성 첨가물 입자의 농도가 점진적으로 변화할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 복합막의 상부 방향으로 기능성 첨가물 입자의 농도가 점진적으로 증가할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 복합막의 하부 방향으로 기능성 첨가물 입자의 농도가 점진적으로 증가할 수 있다.
본 명세서의 몇몇 실시상태에 따르면, 상기 복합막의 두께 방향으로 기능성 첨가물 입자의 농도가 점진적으로 변화하는 복합막의 상부 또는 하부에 상기 기능성 첨가물 입자를 포함하지 않는 고분자층을 한 층 이상 더 포함할 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 복합막의 두께 방향으로 기능성 첨가물 입자의 농도가 점진적으로 변화하는 복합막의 상부 및 하부에 상기 기능성 첨가물 입자를 포함하지 않는 고분자층을 한 층 이상 더 포함할 수 있다.
본 명세서의 몇몇 다른 실시상태에 따르면, 상기 복합막의 두께 방향으로 기능성 첨가물 입자의 농도가 점진적으로 변화하는 복합막의 상부 또는 하부에 상기 기능성 첨가물 입자를 포함하는 고분자층을 한 층 이상 더 포함할 수 있다.
본 명세서의 몇몇 다른 실시상태에 따르면, 상기 복합막의 두께 방향으로 기능성 첨가물 입자의 농도가 점진적으로 변화하는 복합막의 상부 및 하부에 상기 기능성 첨가물 입자를 포함하는 고분자층을 한 층 이상 더 포함할 수 있다.
본 명세서의 적층 개수와 적층 순서는 다를 수 있으며, 복합 소재를 포함하는 층의 적층 개수는 한 층 이상일 수 있고, 층의 개수는 무한히 많을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 복합막 전체에 포함되는 기능성 첨가물 입자의 함량은 복합막 전체를 기준으로 0.01 중량% 내지 99.9 중량%이다. 또한, 상기 고분자층 중 기능성 첨가물 입자를 포함하는 각 고분자층은 기능성 첨가물 입자를 각 고분자층을 기준으로 0.01 중량% 내지 99.9 중량%이다.
본 명세서의 일 실시상태에 따르면, 실리카 입자, MMT, 그라핀 옥사이드 입자 등 물이나 바나듐 용액과 같은 전해액의 투과를 막을 수 있는 입자의 함량이 많으면 수소이온의 투과를 막을 수 있고, 물이나 바나듐 이온의 투과 또한 막을 수 있다.
본 명세서의 또 다른 실시상태에 따르면, Ag, Ni, Cu 입자 등 전도성을 높일 수 있는 입자는 수소 이온전도도를 높일 수 있다. 상기 전도성을 높일 수 있는 입자가 적절한 함량으로 첨가될 경우 전지의 단락 유발을 방지할 수 있다. 상기 입자들을 잡아주는 바인더 역할은 고분자 수지가 하게 되며, 고분자 함량이 적절한 경우 수소 이온의 전달을 저해하는 것을 방지할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 복합막의 두께는 0.1㎛ 이상 1000 ㎛ 이하일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기능성 첨가물 입자를 포함하는 각 고분자 층의 두께는 0.1 nm 이상 1000 ㎛ 이하일 수 있다. 본 명세서의 일 실시상태에 따르면, 상기 기능성 첨가물 입자를 포함하지 않는 각 고분자 층의 두께는 0.1 nm 이상 1000 ㎛ 이하 일 수 있다.
본 명세서의 일 실시상태에 따르면, 기능성 첨가물 입자의 함량이 상이한 고분자층들 간의 두께 비, 또는 기능성 첨가물 입자를 포함하는 고분자 층과 기능성 첨가물 입자를 포함하지 않는 고분자층의 두께비는 1:106 이상 106:1 이하일 수 있다.
예컨대, 도 1의 (b-1, 2)에 있어서, 각 층의 두께비 t1:t2는 1:0.1에서 1:10000까지 이다.
또 하나의 예로서, 도 1의 (c)에 있어서, 각 층의 두께비 t1:t2:t3= a:b:c 에서 a:b 는 0.1:1에서 10000:1이고, b:c는 0.01:1에서 1:100일 수있다.
또 하나의 예로서, 도 1의 (d)에 있어서, 각 층의 두께비 t1:t2:t3= d:e:f에서 d:e = 1:10000에서 1:0.1이고, d:f = 100:1에서 1:100 일 수 있다.
본 명세서에서 "두께"는 복합막 또는 고분자 층의 대향하는 2개의 주 면 사이의 거리를 의미할 수 있다.
일반적으로 과량의 기능성 입자를 도입하게 되면, 막이 갈라지거나 입자가 막에서 분리될 수 있으나, 본원 발명의 몇몇 실시예에 따라 여러 층으로 제조 시 고분자 층이 기능성 입자의 층을 잡아 주기 때문에 기능성 입자의 함량을 크게 높일 수 있다. 또한, 국부적으로 기능성 입자가 다량으로 함량된 층을 만들어 기능성을 극대화하고 제막 시 막을 균일하게 만들 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 이온전달 고분자로서, 수소 이온 전도 가능한 고분자라면 제한되지 않고 사용될 수 있다.
상기 이온전달 고분자의 예로는 하이드로카본의 이온교환 수지; 불소계 이온 수지; 음이온 수지 중에서 선택되는 1 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다. 예를 들면, 상기 불소계 이온 수지로는 Nafion(DuPont社)일 수 있다.
구체적으로, 상기 이온전달 고분자의 예로는 하기 화학식 A의 반복단위 및 하기 화학식 B의 반복단위를 포함하는 공중합체가 있다.
상기 이온전달 고분자의 예로는 하기 화학식 A의 반복단위 및 하기 화학식 B의 반복단위를 포함하는 공중합체가 있다.
[화학식 A]
Figure PCTKR2015010028-appb-I000001
[화학식 B]
Figure PCTKR2015010028-appb-I000002
상기 화학식 A 및 화학식 B에서,
X1, X2 및 X3은 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 1 내지 화학식 3 중 어느 하나로 표시되고,
[화학식 1]
Figure PCTKR2015010028-appb-I000003
[화학식 2]
Figure PCTKR2015010028-appb-I000004
[화학식 3]
Figure PCTKR2015010028-appb-I000005
상기 화학식 1 내지 화학식 3에서,
m 및 n는 반복단위 수를 의미하고, 1 ≤ m ≤ 500, 1 ≤ n ≤ 500이며,
L1은 직접연결이거나, -CZ2Z3-, -CO-, -O-, -S-, -SO2-, -SiZ2Z3-, 및 치환 또는 비치환된 2가의 플루오렌기 중 어느 하나이고,
Z2 및 Z3 는 서로 동일하거나 상이하며, 각각 독립적으로 수소, 알킬기, 트리플루오로메틸기(-CF3) 및 페닐기 중 어느 하나이고,
S1 내지 S5는 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
a, b 및 c는 서로 동일하거나 상이하며, 각각 독립적으로 0 이상 4 이하인 정수이고,
p 및 q는 서로 동일하거나 상이하며, 각각 독립적으로 0 이상 4 이하인 정수이고,
a'은 1 이상이고 5 이하인 정수이며,
상기 화학식 B에서, Y1은 하기 화학식 4 내지 화학식 6 중 어느 하나로 표시되고,
[화학식 4]
Figure PCTKR2015010028-appb-I000006
[화학식 5]
Figure PCTKR2015010028-appb-I000007
[화학식 6]
Figure PCTKR2015010028-appb-I000008
상기 화학식 4 내지 6에서,
L2는 직접연결이거나, -CO-, -SO2-, 및 치환 또는 비치환된 2가의 플루오렌기 중에서 선택되는 어느 하나이고,
d, e, 및 h는 서로 동일하거나 상이하며, 각각 독립적으로 0 이상 4 이하인 정수이고,
f 및 g는 서로 동일하거나 상이하며, 각각 독립적으로 0 이상 3 이하인 정수이고,
b'은 1 이상 5 이하인 정수이며,
T1 내지 T5 중에서 서로 동일하거나 상이하고, 각각 독립적으로 적어도 하나는 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+ 또는 -PO3 2-2M+ 이며, 상기 M은 1족 원소이고, 나머지는 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 또 다른 실시상태는, 상기 이온전달 고분자는 하기 화학식 C로 표시되는 반복단위를 더 포함하는 것인 공중합체를 포함할 수 있다.
[화학식 C]
Figure PCTKR2015010028-appb-I000009
상기 화학식 C에서, Z는 3가 유기기이다. 상기 화학식 C에서, Z는 3가 유기기로서, 세 방향 각각으로 추가의 반복단위와 결합하여 고분자 사슬을 신장시킬 수 있다.
상기 화학식 A는 소수성(hydrophobic)이고, 상기 화학식 B는 친수성(hydrophilic)을 의미한다. 상기 "친수성"은 친수성의 이온전달 관능기 -SO3H, -SO3 -M+, -COOH, -COO-M+, -PO3H2, -PO3H-M+ 또는 -PO3 2-2M+(상기 M은 주기율표 1족 원소)를 포함하는 반복단위이다.
본 명세서의 또 다른 실시상태에 따르면, 상기 공중합체 전체에서 상기 화학식 A 및 상기 화학식 B의 반복단위의 비율은 1:0.001 내지 1:1000일 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 공중합체의 중량평균 분자량은 500 g/mol 이상 5,000,000 g/mol 이하일 수 있다. 상기 공중합체의 중량평균 분자량이 범위 내에 있을 때, 상기 공중합체를 포함하는 복합막의 기계적 물성이 저하되지 않고, 적절한 공중합체의 용해도를 유지할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 기능성 첨가물 입자의 종류 및 입경은 전술한 바와 같다.
본 명세서의 또 다른 실시상태는 이온전달 고분자를 포함하는 고분자층을 2 이상 포함하고, 상기 고분자층 중 2 이상은 서로 상이한 함량의 기능성 첨가물 입자를 포함하거나; 또는 상기 고분자층 중 적어도 한 층은 기능성 첨가물 입자를 포함하고, 상기 고분자층 중 적어도 한 층은 기능성 첨가물 입자를 포함하지 않는 것인 복합막의 제조방법을 제공한다.
본 명세서의 또 다른 실시상태는 이온전달 고분자 및 기능성 첨가물 입자를 포함하는 복합막으로서, 상기 복합막의 두께 방향으로 기능성 첨가물 입자의 농도가 나머지 부분과 상이한 부분을 갖는 복합막의 제조방법을 제공한다.
본 명세서의 또 다른 실시상태에 따르면, 상기 각각의 고분자층 또는 복합막은 잉크젯 방식, 롤프린팅 방식 법으로 제조될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 또 다른 실시상태에 따르면, 상기 고분자층들은 각각 제조하여 라미네이션 할 수 있으나, 어느 하나의 고분자층을 형성한 후, 그 위에 추가의 고분자층을 형성하기 위한 조성물을 코팅하고 필요에 따라 경화 또는 건조하여 추가의 고분자층을 형성할 수도 있다. 또 하나의 예로서, 각각의 고분자층 형성용 조성물을 순차적으로 코팅한 후, 일괄 경화 또는 건조에 의하여 복합막을 형성할 수도 있다. 이 때, 순차적으로 코팅하는 각각의 고분자층 형성용 조성물 내의 기능성 첨가물 입자의 함량을 상이하게 함으로써, 복합막의 두께 방향으로 기능성 첨가물 입자의 농도가 나머지 부분과 상이한 부분을 갖는 복합막을 제조할 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 고분자층은 연속 공정을 통하여 제조될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 또 다른 실시상태에 따르면, 상기 고분자층은 시트(sheet) 형태로 한장씩 제조하여 라미네이션할 수 있으나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태는 음극; 양극; 및 상기 음극과 상기 양극 사이에 배치되는 상기 복합막을 포함하는 전기화학 전지를 제공한다. 상기 복합막은 분리막의 역할을 수행할 수 있다.
또한, 본 명세서의 또 다른 실시상태에 따르면, 상기 전기화학 전지는 연료전지일 수 있다.
본 명세서의 또 다른 실시상태에 따르면, 상기 전기화학 전지는 플로우 배터리일 수 있다.
상기 연료전지 또는 플로우 배터리는 전술한 복합막을 분리막으로 포함하는 것을 제외하고는 해당 기술분야에 알려져 있는 구조, 재료 및 방법을 이용할 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.
[실시예 1]
기재 상에 이온전달 고분자로서 Nafion 20 중량% 및 용매 80 중량%(용매로서 아이소프로필 알코올과 물의 무게의 비가 7:3)에 첨가하여 기능성 첨가물 입자가 없는 조성물 A를 기재 상에 도포하여 두께가 120㎛인 제1 고분자층을 형성했다.
이온전달 고분자와 실리카 입자의 중량비가 4:6이 되도록, 기능성 첨가물 입자로서 실리카 입자(50nm)를 상기 조성물 A에 첨가하고, 상기 제1 고분자층 상에 두께가 60 ㎛인 제2 고분자층을 형성하여 복합막을 제조했다.
[실시예 2]
기재 상에 이온전달 고분자로서 Nafion 20 중량% 및 용매 80 중량%(용매로서 아이소프로필 알코올과 물의 무게의 비가 7:3)에 첨가하여 기능성 첨가물 입자가 없는 조성물 A를 기재 상에 도포하여 두께가 100㎛인 제1 고분자층을 형성했다.
이온전달 고분자와 실리카 입자의 중량비가 4:6이 되도록, 기능성 첨가물 입자로서 실리카 입자(50nm)를 상기 조성물 A에 첨가하고, 상기 제1 고분자층 상에 두께가 60 ㎛인 제2 고분자층을 형성했다.
상기 제2 고분자층 상에, 기능성 첨가물 입자가 없는 조성물 A를 다시 도포하여 두께가 100㎛인 제4 고분자층이 형성된 복합막을 제조했다.
[실시예 3]
실시예 1에서, 상기 제1 고분자층 상에 이온전달 고분자와 실리카 입자의 중량비가 90:10이 되도록, 기능성 첨가물 입자로서 실리카 입자(50nm)를 상기 조성물 A에 첨가하여 제2 고분자층을 형성하고,
이온전달 고분자와 그라파이트 옥사이드 (Graphene oxide) 입자의 중량비가 98.8:1.2가 되도록, 기능성 첨가물 입자가 없는 조성물 A에 그라파이트 옥사이드를 첨가하여 실시예 1의 제1 고분자층에 제2 고분자층이 구비된 면의 반대면 상에 두께가 130㎛인 제3 고분자층을 더 형성한 것을 제외하고 실시예 1과 동일하게 복합막을 제조했다.
[비교예 1]
기재 상에 실시예 1의 제1 고분자층의 조성물과 같은 조성물로 두께가 120 ㎛인 단층의 고분자층을 형성했다.
[비교예 2]
실시예 1에서, 이온전달 고분자와 실리카 입자의 중량비가 95:5가 되도록, 기능성 첨가물 입자로서 실리카 입자(50nm)를 상기 조성물 A에 첨가하고, 기판 상에 두께가 150 ㎛인 단층의 고분자층을 형성했다.
[비교예 3]
실시예 1에서, 이온전달 고분자와 실리카 입자의 중량비가 90:10이 되도록, 기능성 첨가물 입자로서 실리카 입자(50nm)를 상기 조성물 A에 첨가하고, 기판 상에 두께가 150 ㎛인 단층의 고분자층을 형성했다.
[비교예 4]
기재 상에 실시예 1의 제2 고분자층의 조성물과 같은 조성물로 두께가 100㎛ 내지 120㎛인 단층의 고분자층을 형성했다.
그러나, 상기 조성물을 기재 상에 도포한 후 건조하여 막을 형성하는 과정에서 막이 갈라져 전기화학 전지의 막으로 사용할 수 없는 상태였다.
[실험예 1]
실시예 1 내지 3 및 비교예 3에서 제조된 막의 수직단면의 주사전자현미경을 촬영하여, 그 결과를 각각 도 3 내지 도 6에 도시했다.
[실험예 2]
실시예 1 및 비교예 1 내지 3에서 제조된 막을 분리막으로 사용하여 상기 분리막의 이온전도도 및 바나듐 투과도를 측정했다.
이온전도도는 0.5M 황산 수용액에서 온저항(impedance)을 측정하여 분리막의 투과 수소 이온 전도도(Through-plane conductivity)를 하기 과정을 통해 계산했다. 이때, 상기 투과 수소 이온 전도도는 분리막의 두께가 보정된 막의 고유 전도도이다.
1) 분리막 저항(Rmem)=Rcell(황산 수용액 셀 안에 막을 넣은 cell 전체 저항)-Relectrolyte(황산 수용액 저항)
2) 면저항(Area resistance,RA)=Rmem × A(분리막의 면적)
3) 저항계수(Resistivity, ρ)=RA/L(분리막의 두께)
4) 투과전도도(Conductivity, K)=1/ ρ= L/RA
바나듐 투과도는 1M VOSO4와 2M 황산을 포함한 제1 수용액과 1M MgSO4와 2M 황산을 포함한 제2 수용액을 이용하여 측정했다. 제1 및 제2 수용액을 분리막으로 차단하고, 시간에 따라 분리막을 투과한 바나듐의 농도와 분리막의 두께를 측정하여 하기 픽의 확산 제1 법칙(Fick's 1st laws of diffusion)에 따라 분리막의 확산계수D(D: diffusion coefficient)를 구했다. 이때, 확산계수를 바나듐 투과도로 측정했으며, 상기 확산계수는 분리막의 두께가 보정된 분리막의 고유의 값이다.
Figure PCTKR2015010028-appb-I000010
D: diffusion coefficients of vanadium ions (m2s-1)
A: effective area of the membrane (m2)
L: thickness of the membrane (m)
CA: concentration of vanadium ions in enrichment side (mol L-1)
CB: concentration of vanadium ions in deficiency side (mol L-1)
t: test time
그 결과는 하기 표 1에 나타냈다.
구분 비교예 1 비교예 2 비교예 3 실시예 1
투과 이온전도도 (S/cm) 0.032 0.030 0.029 0.021
바나듐 투과도(D)(cm2/min)Ⅹ10-6 15.8 8.31 6.80 3.63

Claims (17)

  1. 이온전달 고분자를 포함하는 고분자층을 2 이상 포함하고,
    상기 고분자층은 이온전달 고분자로 이루어지거나, 이온전달 고분자 및 안정제로 이루어진 제1 고분자층; 및
    상기 제1 고분자층 상에 구비되고, 이온전달 고분자 및 기능성 첨가물 입자를 갖는 제2 고분자층을 포함하며,
    상기 기능성 첨가물 입자는 실리콘 원소함유 입자, 그라파이트 옥사이드 입자, 금속 입자 및 금속 산화물 입자 중 적어도 하나인 것인 복합막.
  2. 청구항 1에 있어서, 상기 제2 고분자층의 총 중량을 기준으로, 상기 기능성 첨가물 입자의 함량은 30중량% 이상 80중량% 이하이며,
    상기 제2 고분자층의 두께는 60㎛ 이상 150㎛ 이하인 것인 복합막.
  3. 청구항 1에 있어서, 상기 제1 고분자층은 상기 제2 고분자층과 접촉된 것인 복합막.
  4. 청구항 1에 있어서, 상기 제1 고분자층이 구비된 제2 고분자층의 표면의 반대면에 구비된 이온전달 고분자로 이루어지거나, 이온전달 고분자 및 안정제로 이루어진 제4 고분자층을 더 포함하는 것인 복합막.
  5. 청구항 4에 있어서, 상기 제2 고분자층은 상기 복합막의 상면 또는 하면으로부터 상기 복합막의 두께의 10% 이상 90% 이하의 범위 내에 위치하는 것인 복합막.
  6. 청구항 1에 있어서, 상기 제2 고분자층이 구비된 제1 고분자층의 표면의 반대면에 구비된 이온전달 고분자 및 기능성 첨가물 입자를 갖는 제3 고분자층을 더 포함하는 것인 복합막.
  7. 청구항 6에 있어서, 상기 제2 고분자층의 기능성 첨가물 입자와 상기 제3 고분자층의 기능성 첨가물 입자는 서로 상이한 것인 복합막.
  8. 청구항 1에 있어서, 상기 기능성 첨가물 입자의 직경은 1nm 이상 100㎛ 이하인 것인 복합막.
  9. 청구항 1에 있어서, 상기 실리콘 원소함유 입자는 실리콘 입자, 실리카 입자 또는 술폰산기를 갖는 실리카 입자인 것인 복합막.
  10. 청구항 1에 있어서, 상기 금속 입자 또는 금속 산화물 입자는 Ag, Ni, Cu, Ag, Ni, Cu, Ti, Pt 및 이들의 산화물 중 적어도 하나를 포함하는 것인 복합막.
  11. 청구항 1에 있어서, 상기 고분자층 중 적어도 한 층은 서로 상이한 2종 이상의 이온전달 고분자를 포함하는 것인 복합막.
  12. 청구항 1에 있어서, 상기 고분자층들 중 인접한 고분자층에 포함된 이온전달 고분자는 서로 동일하거나 상이한 것인 복합막.
  13. 청구항 6에 있어서, 상기 제2 고분자층 및 제3 고분자층에서, 각각의 두께 방향으로 기능성 첨가물 입자의 농도가 나머지 부분과 상이한 부분을 갖는 것인 복합막.
  14. 청구항 6에 있어서, 상기 제2 고분자층 및 제3 고분자층에서, 각각의 두께 방향으로 상기 기능성 첨가물 입자의 농도가 점진적으로 변화하는 것인 복합막.
  15. 청구항 1에 있어서, 상기 이온전달 고분자는 하이드로카본의 이온교환 수지; 불소계 이온 수지; 음이온 수지 중에서 선택되는 1 이상을 포함하는 것인 복합막.
  16. 음극; 양극; 및 상기 음극과 상기 양극 사이에 배치되는 청구항 1 내지 15 중 어느 한 항에 따른 복합막을 포함하는 전기화학 전지.
  17. 청구항 16에 있어서, 상기 전기화학 전지는 연료전지 또는 레독스 플로우 배터리인 것인 전기화학 전지.
PCT/KR2015/010028 2014-09-23 2015-09-23 이온전달 고분자 함유 복합막 및 이의 제조방법 WO2016048041A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/509,547 US10418646B2 (en) 2014-09-23 2015-09-23 Composite membrane containing ion transfer polymer and method for preparing same
EP15844211.1A EP3200258B1 (en) 2014-09-23 2015-09-23 Composite membrane containing ion transfer polymer and method for preparing same
CN201580051462.9A CN106716699B (zh) 2014-09-23 2015-09-23 包含离子转移聚合物的复合膜及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0127095 2014-09-23
KR20140127095 2014-09-23

Publications (2)

Publication Number Publication Date
WO2016048041A2 true WO2016048041A2 (ko) 2016-03-31
WO2016048041A3 WO2016048041A3 (ko) 2016-05-19

Family

ID=55582214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010028 WO2016048041A2 (ko) 2014-09-23 2015-09-23 이온전달 고분자 함유 복합막 및 이의 제조방법

Country Status (5)

Country Link
US (1) US10418646B2 (ko)
EP (1) EP3200258B1 (ko)
KR (1) KR101933125B1 (ko)
CN (1) CN106716699B (ko)
WO (1) WO2016048041A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500229A (ja) * 2018-09-25 2022-01-04 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC 一価選択性陽イオン交換膜

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190124960A (ko) 2018-04-27 2019-11-06 한국과학기술연구원 나노홀 그래핀 시트가 코팅된 연료전지용 복합 고분자 전해질막 및 그 제조 방법
KR102271430B1 (ko) 2018-04-27 2021-07-01 한국과학기술연구원 나노홀 그래핀 시트가 코팅된 연료전지용 복합 고분자 전해질막 및 그 제조 방법
KR102248538B1 (ko) 2018-05-17 2021-05-04 주식회사 엘지화학 이온 교환 분리막 및 이를 포함하는 흐름전지

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389700B2 (ja) * 2004-07-07 2009-12-24 株式会社デンソー ワイパ制御装置
CN101095256A (zh) * 2004-09-08 2007-12-26 复合燃料公司 膜以及具有粘结促进层的膜电极组件
JP5110783B2 (ja) * 2004-10-28 2012-12-26 ルネサスエレクトロニクス株式会社 半導体装置
KR100778502B1 (ko) 2005-06-28 2007-11-29 삼성에스디아이 주식회사 연료 전지용 고분자 전해질 막, 이를 포함하는 연료 전지용막-전극 어셈블리 및 연료 전지 시스템
EP1739781B1 (en) 2005-06-28 2009-08-19 Samsung SDI Co., Ltd. Polymer membrane and membrane-electrode assembly for fuel cell and fuel cell system comprising same
US8574716B2 (en) * 2006-01-23 2013-11-05 Hitachi Chemical Co., Ltd. Ionic polymer devices and methods of fabricating the same
KR100701473B1 (ko) 2006-04-28 2007-03-29 한양대학교 산학협력단 계면활성제 및 무기충진제를 포함하는 수소이온전도성고분자복합막 및 이를 포함하는 연료전지
KR100786841B1 (ko) 2007-01-11 2007-12-20 삼성에스디아이 주식회사 연료 전지용 고분자 전해질 막 및 이를 포함하는 막-전극어셈블리 및 이를 포함하는 연료 전지 시스템
JP5126578B2 (ja) 2007-07-18 2013-01-23 大日本印刷株式会社 固体高分子形燃料電池用電解質膜とこれを用いた電解質膜−触媒層接合体及び電解質膜−電極接合体、並びに燃料電池
US9023553B2 (en) 2007-09-04 2015-05-05 Chemsultants International, Inc. Multilayered composite proton exchange membrane and a process for manufacturing the same
KR100978609B1 (ko) 2007-11-27 2010-08-27 한양대학교 산학협력단 불소가스를 이용한 직접불소화법에 의해 표면처리된수소이온전도성 고분자막, 이를 포함하는 막-전극 어셈블리및 연료전지
KR101000214B1 (ko) 2008-05-28 2010-12-10 주식회사 엘지화학 이온전도성 수지 파이버, 이온전도성 복합막, 막-전극 접합체 및 연료전지
JP2010027606A (ja) 2008-06-20 2010-02-04 Canon Inc イオン伝導性高分子複合膜、膜電極接合体、燃料電池およびイオン伝導性高分子複合膜の製造方法
KR101146191B1 (ko) 2009-01-16 2012-05-25 강원대학교산학협력단 나노 복합체 전해질 막의 제조방법, 그로부터 제조된 나노 복합체 전해질 막 및 그를 구비한 막-전극 어셈블리
US20120202099A1 (en) 2011-02-08 2012-08-09 United Technologies Corporation Flow battery having a low resistance membrane
JP5936889B2 (ja) * 2012-03-09 2016-06-22 本田技研工業株式会社 燃料電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500229A (ja) * 2018-09-25 2022-01-04 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC 一価選択性陽イオン交換膜

Also Published As

Publication number Publication date
EP3200258A4 (en) 2018-02-21
WO2016048041A3 (ko) 2016-05-19
CN106716699A (zh) 2017-05-24
KR20160035565A (ko) 2016-03-31
EP3200258A2 (en) 2017-08-02
US10418646B2 (en) 2019-09-17
US20170309927A1 (en) 2017-10-26
KR101933125B1 (ko) 2018-12-27
CN106716699B (zh) 2020-07-14
EP3200258B1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2016048041A2 (ko) 이온전달 고분자 함유 복합막 및 이의 제조방법
WO2018105970A1 (ko) 비수성 전해질 및 이를 포함하는 리튬 이차 전지
WO2014178621A1 (ko) 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지
WO2015080475A1 (ko) 고분자 전해질막, 고분자 전해질막을 포함하는 막 전극 접합체 및 막 전극 접합체를 포함하는 연료전지
WO2022124853A1 (ko) 이차전지용 분리막, 이의 제조방법 및 상기 분리막을 포함하는 리튬이차전지
WO2016140508A1 (ko) 전기화학 소자용 분리막의 제조방법 및 제조장치
WO2018048134A1 (ko) 연료전지용 막-전극 계면 접착층, 이를 이용한 막-전극 접합체 및 연료전지
WO2017171285A2 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치
WO2020138627A1 (ko) 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2022075637A1 (ko) 전극조립체의 적층 불량 검출 방법, 절연 부재를 포함하는 전극조립체 및 이를 포함하는 전지 셀
WO2021066544A1 (ko) 높은 분산 안정성을 갖는 이오노머 분산액, 그 제조방법, 및 그것을 이용하여 제조된 고분자 전해질막
WO2021006496A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
WO2016117915A1 (ko) 고분자 전해질 막 및 그 제조방법
WO2023085778A1 (ko) 리튬 이차 전지용 고상-액상 하이브리드 전해질막
WO2016122195A1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2022131629A1 (ko) 막-전극 어셈블리 및 그 제조방법
WO2019050324A1 (ko) 고체산화물 연료 전지 및 이를 포함하는 전지 모듈
WO2021133044A1 (ko) 고분자 전해질막, 이를 포함하는 막-전극 어셈블리, 및 이것의 내구성 측정방법
WO2016013728A1 (ko) 평관형 세그먼트 고체산화물 연료전지 및 그 제조방법
WO2022065960A1 (ko) 리튬 이차 전지용 분리막 및 이의 제조방법
WO2021034159A4 (ko) 리튬이차전지용 복합분리막 및 이의 제조방법
WO2019139415A1 (ko) 연료전지용 기체확산층, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료 전지 및 연료전지용 기체확산층의 제조방법
WO2018194393A1 (ko) 화학적 개질을 이용한 이온교환막의 제조방법 및 이에 따라 제조된 이온교환막
WO2021133045A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
WO2019143097A1 (ko) 막 전극 접합체의 제조방법 및 적층체

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15509547

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015844211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844211

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844211

Country of ref document: EP

Kind code of ref document: A2