WO2020255281A1 - 半導体光素子 - Google Patents

半導体光素子 Download PDF

Info

Publication number
WO2020255281A1
WO2020255281A1 PCT/JP2019/024206 JP2019024206W WO2020255281A1 WO 2020255281 A1 WO2020255281 A1 WO 2020255281A1 JP 2019024206 W JP2019024206 W JP 2019024206W WO 2020255281 A1 WO2020255281 A1 WO 2020255281A1
Authority
WO
WIPO (PCT)
Prior art keywords
active layer
spot size
width
size converter
semiconductor optical
Prior art date
Application number
PCT/JP2019/024206
Other languages
English (en)
French (fr)
Inventor
歩 淵田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/024206 priority Critical patent/WO2020255281A1/ja
Priority to JP2020544546A priority patent/JP6925540B2/ja
Priority to US17/600,491 priority patent/US20220173573A1/en
Priority to CN202080043299.2A priority patent/CN114008879A/zh
Priority to PCT/JP2020/017985 priority patent/WO2020255565A1/ja
Priority to TW109119864A priority patent/TWI740538B/zh
Publication of WO2020255281A1 publication Critical patent/WO2020255281A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • H01S2301/185Semiconductor lasers with special structural design for influencing the near- or far-field for reduction of Astigmatism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1057Comprising an active region having a varying composition or cross-section in a specific direction varying composition along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/106Comprising an active region having a varying composition or cross-section in a specific direction varying thickness along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2224Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Definitions

  • This application relates to a semiconductor optical device.
  • a spot size converter unit is integrated in a straight portion of the laser by providing a tapered waveguide in which the active layer width gradually narrows toward the emission end side.
  • the structure is known (for example, Patent Document 1).
  • the active layer electrons and holes injected from the electrodes above and below the semiconductor layer are recombined, and light emission and gain can be obtained.
  • the light generated in the active layer propagates in the straight part of the laser and the spot size converter part, and is amplified while obtaining a gain.
  • the amplified light propagates in the resonator composed of the Hekikai end face mirrors before and after the semiconductor laser, and is repeatedly reflected by the end face mirrors.
  • the width of the active layer gradually narrows toward the exit end face, so that the light confinement in the active layer gradually weakens, and the light seeps out into the semiconductor layer in which the active layer is embedded. Therefore, the spot size on the exit end face can be expanded. If the spot size of the near field image (NFP: Near Field Pattern) near the emission end face is large, the diffraction of the emitted light becomes small, so that in the far field image (FFP: Far Field Pattern) than when the spot size converter is not integrated.
  • the beam width can be narrowed. Light having such a narrow beam width has advantages such as easy alignment with the core of the fiber, suppression of eclipse of light with respect to the fiber, and high coupling efficiency.
  • Patent Document 2 proposes a structure in which the width of the mesa structure in which the waveguide portion is embedded is narrower than the width of the mesa structure in which the active layer is embedded in the embedded semiconductor laser including the butt joint structure of the active layer and the optical waveguide. With this structure, it is possible to suppress the scattered light generated in the butt joint structure from propagating in the mesa in which the waveguide is embedded, so that the mode disturbance can be improved.
  • the embedded semiconductor laser in which the conventional spot size converter is integrated is configured as described above, and the width of the mesa structure in which the active layer is embedded is widened in order to sufficiently widen the spot size at the emission end.
  • the electrode area provided on the mesa for injecting current into the active layer increases, so that the parasitic capacitance of the semiconductor laser increases.
  • An element with a large parasitic capacitance cannot follow the high-speed electric signal, and the optical output signal waveform of the emitted light becomes dull.
  • the method of forming a spot size converter using the same active layer as the laser and integrating it in the laser is widely used for high-power lasers that do not require light intensity modulation or lasers that are modulated at a relatively low speed of 1.5 Gbps or less. Although it is used, it has the problem that it is not suitable for high-speed modulation applications.
  • the spot size converter unit uses a semiconductor waveguide different from the active layer constituting the laser unit. Often forms. In this case, since it is not necessary to inject a current into the spot size converter section, it is not necessary to provide an electrode on the mesa. Therefore, since the mesa width can be widened without worrying about the parasitic capacitance, both high-speed modulation and a narrow emission beam width can be achieved at the same time.
  • the present application discloses a technique for solving the above-mentioned problems, and an object of the present application is to provide a semiconductor optical device provided with a spot size converter unit having a small parasitic capacitance and capable of high-speed modulation.
  • the semiconductor optical device disclosed in the present application is a semiconductor optical device having a mesa structure in which an active layer is embedded, and is located at a straight portion having a uniform width of the active layer and a light emitting side of the straight portion. It is composed of a spot size converter section in which the light confinement in the active layer is weaker than that in the straight portion and the spot size of light at the light emitting end is larger than the spot size of light in the straight portion, and is parallel to the layer surface of the active layer. In the same plane, the average value of the width of the mesa structure in the straight portion is set to be smaller than the value of the width of the mesa structure at the exit end of the spot size converter portion.
  • a semiconductor optical device provided with a spot size converter having a small parasitic capacitance and capable of high-speed modulation can be obtained.
  • FIG. 5 is a schematic cross-sectional view of a surface including an active layer showing the configuration of a semiconductor optical device according to the first embodiment. It is sectional drawing which shows the structure of the straight part of the semiconductor optical element according to Embodiment 1, and is perpendicular to the optical axis.
  • FIG. 5 is a schematic cross-sectional view perpendicular to the optical axis showing the configuration of the spot size converter portion of the semiconductor optical element according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view of a surface including an active layer showing another configuration of the semiconductor optical device according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view of a surface including an active layer showing still another configuration of the semiconductor optical device according to the first embodiment.
  • FIG. 5 is a schematic side sectional view parallel to the optical axis showing the configuration of the semiconductor optical element according to the second embodiment.
  • FIG. 5 is a schematic cross-sectional view perpendicular to the optical axis showing the configuration of a straight portion of the semiconductor optical element according to the second embodiment.
  • FIG. 5 is a schematic cross-sectional view perpendicular to the optical axis showing the configuration of the spot size converter portion of the semiconductor optical element according to the second embodiment. It is a top view which shows a part of the manufacturing process of the semiconductor optical element by Embodiment 2.
  • FIG. FIG. 5 is a schematic cross-sectional view of a surface including an active layer showing the configuration of a semiconductor optical device according to the third embodiment.
  • FIG. 5 is a schematic cross-sectional view perpendicular to the optical axis showing the configuration of the straight portion of the semiconductor optical element according to the third embodiment.
  • FIG. 5 is a schematic cross-sectional view perpendicular to the optical axis showing the configuration of the spot size converter portion of the semiconductor optical element according to the third embodiment.
  • FIG. 5 is a schematic cross-sectional view of a surface including an active layer showing the configuration of a semiconductor optical device according to the fourth embodiment.
  • FIG. 5 is a schematic cross-sectional view of a surface including an active layer showing another configuration of the semiconductor optical device according to the fourth embodiment. It is a figure which shows an example of the internal light intensity distribution of the semiconductor optical element according to Embodiment 4.
  • 20A and 20B are diagrams showing an example of the FFP of the semiconductor optical device according to the fourth embodiment in comparison with the semiconductor optical element according to the first embodiment.
  • FIG. 1 is a schematic xz cross-sectional view of a surface including an active layer showing the configuration of a semiconductor laser which is a semiconductor optical element in the first embodiment.
  • the horizontal direction perpendicular to the optical axis of the resonator of the semiconductor laser is x
  • the stacking direction of the semiconductor layers is y
  • the light propagation direction is z.
  • the semiconductor laser is composed of a straight-moving portion A on the rear end surface side and a spot size converter portion B on the front end surface side on the light emitting side.
  • the total length of the semiconductor laser including the straight portion A and the spot size converter portion B is often in the range of 150 um to 400 um, but is not limited to this range.
  • FIG. 1 is a schematic xz cross-sectional view of a surface including an active layer showing the configuration of a semiconductor laser which is a semiconductor optical element in the first embodiment.
  • the horizontal direction perpendicular to the optical axis of the resonator of the semiconductor laser is x
  • FIG. 2 is an xy cross section of the straight portion A, that is, a schematic cross-sectional view perpendicular to the optical axis
  • FIG. 3 is an xy cross section of the spot size converter portion B, that is, a schematic cross-sectional view perpendicular to the optical axis.
  • the semiconductor optical device of the first embodiment can be manufactured, for example, as follows. First (001) on top of n-type InP substrate 1 having a carrier concentration 4x10 18 / cm 3 doped with Si having a major surface, a carrier concentration of 4x10 18 / cm 3, n-type InP cladding layer with a thickness of 0.5um 2.
  • An active layer 3 made of an AlGaInAs-based or InGaAsP-based semiconductor material having a thickness of 0.2 um is grown using a semiconductor film growth apparatus such as MOCVD or MBE.
  • MOCVD Metal Organic Chemical Vap-doped InP substrate
  • a p-type InP substrate or an Fe-doped InP substrate may be used.
  • the InP type not only the InP type but also a semiconductor material such as a GaAs type or a GaN type may be used.
  • the active layer may include multiple quantum well structures.
  • etching is performed to a depth reaching the n-type InP substrate 1 or the n-type InP clad layer 2, and the active layer 3 is included.
  • the ridge structure 30 is formed.
  • the active layer width wr 1 in the straight portion A is uniform and is often about 0.8 to 1.6 um, but is not limited to this range as long as the single mode condition is satisfied. If the active layer width wr 2 at the light emitting end of the spot size converter unit B satisfies wr 1 > wr 2 , it may include a tapered structure in which the width gradually narrows toward the emitting end.
  • n-type InP blocking layer 5 having a carrier concentration 1x10 19 / cm 3.
  • a semi-insulating material such as InP doped with Ru or Fe may be used, or layers having different carrier concentrations or polarities, or a combination of a plurality of semiconductor laminated films thereof may be used.
  • a p-type clad layer 6 having a carrier concentration of 1x10 19 / cm 3 is formed on the n-type InP block layer 5 and the active layer 3 of the ridge structure 30, and then the n-type InP substrate 1 or the n-type InP clad layer 2 is formed. Etching is performed until the temperature reaches the above, and the active layer 3 forms a mesa structure 7 embedded therein. At this time, there is a relationship of W 1 ⁇ W 2 between the width of the mesa structure in the straight portion A, that is, the mesa width W 1 and the mesa width W 2 of the spot size converter portion B. As shown in FIG.
  • the straight portion A may include a tapered structure in which the mesa width gradually increases toward the exit end.
  • the mesa width may be such that the average value of the mesa width in the straight-ahead portion A is smaller than the value of the mesa width at the exit end of the spot size converter portion B.
  • n electrode 8 is provided on the back surface of the n-type InP substrate 1, and a p electrode 9 is provided on the front surface of the p-type clad layer 6.
  • the n-electrode 8 and the p-electrode 9 are composed of a single metal containing Au, Pt, Zn, Ge, Ni, Ti, etc., or a combination of these metals.
  • a semiconductor laser has a capacitor structure in which a semiconductor laminated film is sandwiched between an n electrode 8 and a p electrode 9, so that a parasitic capacitance exists.
  • the semiconductor optical device of the first embodiment operates as follows. First, when a current is injected between the p electrode 9 and the n electrode 8, the holes supplied from the p-type clad layer 6 are narrowed by the n-type InP block layer 5 and are efficiently injected into the active layer 3. Similarly, electrons are supplied from the n-type substrate 1 and the n-type InP clad layer 2 and injected into the active layer 3. When the electrons and holes injected in the active layer 3 are recombined, light emission and gain can be obtained. Since the refractive index of the active layer 3 is generally higher than that of the surrounding embedded layer and block layer, the luminescence generated by recombination is confined in the active layer 3.
  • the rear end surface mirror of the straight portion A and the front end surface mirror on the light emitting side of the spot size converter unit B form a Fabry-Perot resonator, and the light emitted from the active layer 3 passes through the resonator while gaining a gain. Propagate and resonate.
  • the laser oscillates and the laser beam is emitted from the end face.
  • the ridge width wr 1 is wide in the straight portion A, light is strongly confined in the active layer 3.
  • the spot size converter section B since the ridge width wr 2 is narrow, the light is weakly confined, and the light that seeps out to the outside of the active layer 3 increases, resulting in a large spot size. In this way, the spot size converter unit B converts the spot size so that the spot size of the light at the light emitting end is larger than the spot size of the light of the straight-ahead unit A. If the spot size of NFP is large at the emission end, the diffraction of light becomes small, so that the FFP beam width of the emission light becomes narrow.
  • FIGS. 6 and 7. The results of simulating the relationship between the mesa width and the FFP width in the x-direction and y-direction of the emitted beam by the beam propagation method (BPM) are shown in FIGS. 6 and 7.
  • the oscillation wavelength was 1270 nm
  • the refractive index of the active layer 3 was 3.355
  • the refractive index of the InP layer was 3.207
  • the ridge width wr 1 1.5 um
  • wr 2 0.6 um.
  • the length used for the simulation as the straight portion A is 10 um
  • the length of the spot size converter portion B is 90 um
  • the ridge structure 30 of the spot size converter portion B in contact with the straight portion A is long.
  • the configuration includes a taper structure of 25 um.
  • FFP width is constant regardless of this, whereas in the comparative example, when the mesa width W 1 is narrower than 14 um, the FFP width begins to change. In particular, in the range of W 1 ⁇ 6 um, the horizontal FFP half-value full width FFPx widens as the mesa width W 1 is narrowed, and the spot size converter unit B is not functioning.
  • FIG. 8 shows an xz plan view of the relative light intensity distribution in the comparative example in FIGS. 1 and 9.
  • the boundary 77 of the mesa structure 7 is illustrated by a white line in FIGS. 8 and 9.
  • the light in the spot size converter section B, the light spreads in the horizontal direction toward the emission end, while the light spreads sufficiently in the vicinity of the emission end because the mesa width W 2 is narrow. Not done. Therefore, if the mesa width W 1 is narrower than 6 um in the comparative example of FIG.
  • the horizontal FFP width FFPx of the comparative example is narrower than that of the first embodiment because of this mode disturbance.
  • a mode disorder causes, for example, a large variation in the emission beam width due to a variation in the mesa width W 2 generated in the wafer surface, or a disorder in the emission beam shape and a decrease in coupling efficiency to the optical fiber. Not preferable.
  • the spot size at the emission end is set regardless of the mesa width W 1 of the straight traveling portion A.
  • the semiconductor laser has a capacitor structure in which a semiconductor layer is sandwiched between a p electrode 9 on the mesa structure 7 and an n electrode 8 on the back surface of the n-type InP substrate 1.
  • the capacitance C of the capacitor is generally expressed by the equation (1).
  • is the dielectric constant of the semiconductor layer
  • S is the area of the electrodes
  • d is the distance between the electrodes.
  • C ⁇ S / d (1)
  • the electrode area S on the mesa increases, and the element capacitance C of the laser, that is, the parasitic capacitance increases.
  • the mesa width W 2 of the spot size converter portion required to obtain the narrow full width at half maximum of FFP is left wide, while the mesa width W 1 of the straight portion A unrelated to the control of the full width at half maximum of FFP. Is narrowing.
  • the electrode area S on the mesa can be narrowed as compared with the conventional structure, so that the parasitic capacitance can be reduced.
  • a semiconductor laser that has both a narrow width FFP and a reduction in parasitic capacitance.
  • Such a laser has the advantages of facilitating alignment to an optical fiber and enabling modulation using a high speed signal.
  • FIG. 10 shows a schematic yz cross section of a semiconductor laser as a semiconductor optical element according to the second embodiment, that is, a schematic cross section of a side surface parallel to the optical axis
  • FIG. 11 shows a schematic cross section of xy of the straight portion A
  • FIG. The schematic cross-sectional view of xy of the converter part B is shown.
  • the thickness d 1 of the active layer 3 of the straight-ahead portion A and the thickness d 2 of the active layer 3 of the spot size converter portion B are set to different thicknesses, that is, d 1 > d 2 .
  • d 1 > d 2 As shown in FIG.
  • the active layer thickness d 2 of the spot size converter portion B may include a tapered structure in which the film thickness becomes thinner toward the exit end.
  • the width of the active layer 3 may be the same in the straight portion A and the spot size converter portion B.
  • the other mesa width and layer structure are the same as those in the first embodiment.
  • Such structures having different film thicknesses of the active layer 3 in the optical axis direction can be produced, for example, as follows. After growing the n-type InP clad layer on the n-type InP substrate 1, a pair of masks having a width in the spot size converter portion B narrower than the width a in the straight portion A are formed as shown in the plan view of FIG. It is formed using an insulating film such as SiO 2, and then the active layer 3 is selectively grown. As a result, the active layer grown in the region sandwiched between the pair of masks has a thicker film thickness because a large amount of material gas collects between the pair of masks in a place where the width of the mask is wide, and conversely, the width of the mask. The film thickness becomes thin in narrow places.
  • the semiconductor optical device operates as follows. In the straight section A, light is strongly confined in the vicinity of the active layer 3, but in the spot size converter section B, the film thickness of the active layer 3 is thinner than that of the straight section A, so that the light is trapped weaker than that of the straight section A.
  • the spot size is expanding. Similar to the first embodiment, the parasitic capacitance can be reduced by narrowing the mesa width W 1 of the straight traveling portion so as to satisfy the relationship of W 1 ⁇ W 2 while keeping the mesa width W 2 of the spot size converter portion B wide. At the same time, the spot size at the emission end can be increased, and as a result, an emission beam having a narrow FFP width can be obtained.
  • Embodiment 3. 14 to 16 show the configuration of the semiconductor laser as the semiconductor optical element according to the third embodiment.
  • FIG. 14 shows a schematic xy cross-sectional view of the surface including the active layer
  • FIG. 15 shows a schematic xy cross-sectional view of the straight portion A
  • FIG. 16 shows a schematic xy cross-sectional view of the spot size converter portion B.
  • n 1 > n 2 between the refractive index n 1 of the active layer 3a of the straight portion A and the refractive index n 2 of the active layer 3 b of the spot size converter portion B.
  • the other mesa width and layer structure are the same as those in the first embodiment.
  • the refractive index n 2 of the spot size converter unit B may have a graded structure in which the refractive index gradually decreases toward the emission end face.
  • the semiconductor optical device operates as follows.
  • the straight portion A since the refractive index n 1 of the active layer 3a is high, light is strongly confined around the active layer 3a.
  • the spot size converter section B the refractive index n 2 of the active layer 3b is lower than n 1 , and the difference in the refractive index from the embedded layer is smaller than that of the straight-moving section A, so that light confinement is weak. Therefore, light exudes to the outside of the active layer 3a, and the spot size is widened. Therefore, in order to narrow the emission beam width, the mesa width W 2 of the spot size converter unit B must be left wide so that the spot size increases at the emission end.
  • the parasitic capacitance can be reduced by narrowing the mesa width W 1 so that the relationship of W 1 ⁇ W 2 holds. ..
  • the electrode area S on the mesa can be made smaller than that of the conventional structure, so that the parasitic capacitance can be reduced and the emitted beam width can be narrowed.
  • FIG. 17 is a schematic cross-sectional view showing the configuration of the semiconductor laser as the semiconductor optical element according to the fourth embodiment in the cross section of the xz plane including the active layer 3.
  • the mesa width W 3 in the region of the spot size converter portion B near the straight portion A is narrower than the mesa width W 2 in the vicinity of the exit end.
  • the mesa width W 2 extends from a position Z 1 away from the boundary between the straight-ahead portion A and the spot size converter portion B on the emission end side, and satisfies the relationship of W 1 ⁇ W 3 ⁇ W 2 .
  • the mesa width W 2 of the spot size converter unit B may expand stepwise toward the emission end as shown in FIG. 17, or includes a tapered structure gradually expanding toward the emission end as shown in FIG. You may be.
  • the semiconductor optical device operates as follows.
  • the spot size converter section B in the vicinity of the boundary with the straight section A, the spot size has not yet expanded sufficiently as compared with the emission end. Therefore, if the hem of the light intensity distribution does not cover the outside of the mesa, the mesa width W3 near the boundary with the straight portion A can be narrowed.
  • FIG. 20A shows the horizontal FFP beam shape FFPx of the emitted beam at this time
  • FIG. 20B shows the vertical FFP beam shape FFPy together with the shape of the first embodiment. In each case, there is almost no difference from the first embodiment, and it can be seen that an emitted beam having a narrow FFP width is obtained.
  • the relationship between the width of the mesa structure in the straight portion A and the spot size converter portion B is the width of the mesa structure 7 in the straight portion A on the same plane parallel to the layer surface of the active layer 3 in any of the embodiments. Is characterized in that the average value of is smaller than the value of the width of the mesa structure 7 at the light emitting end of the spot size converter unit B.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

活性層が埋め込まれたメサ構造(7)を備えた半導体光素子において、活性層(3)の幅が均一の直進部(A)と、この直進部(A)よりも光の出射側に位置し、活性層(3)における光の閉じ込めが直進部(A)よりも弱く、光の出射端における光のスポットサイズが直進部の光のスポットサイズよりも大きくなるスポットサイズコンバータ部(B)とで構成され、活性層(3)の層面に平行な同一の平面において、直進部(A)のメサ構造(7)の幅の平均値が、スポットサイズコンバータ部(B)の出射端におけるメサ構造(7)の幅の値よりも小さい値である。

Description

半導体光素子
 本願は、半導体光素子に関する。
 半導体層内に活性層が埋め込まれた埋め込み型半導体レーザにおいて、出射端側に向かって活性層幅が徐々に狭くなるテーパー導波路を設けることによって、レーザの直進部にスポットサイズコンバータ部を集積する構造が知られている(たとえば、特許文献1)。
 活性層内では半導体層の上下にある電極からそれぞれ注入された電子とホールが再結合し、発光および利得を得ることができる。活性層で生じた光はレーザの直進部およびスポットサイズコンバータ部を伝搬し、利得を得ながら増幅される。増幅した光は半導体レーザ前後のヘキカイ端面ミラーにより構成された共振器内を伝搬し、端面ミラーでの反射を繰り返す。伝搬損失およびミラー損失の和と活性層を伝搬しながら得た利得が等しくなった時、レーザ発振し、出射端面からレーザ光が出射する。この際、スポットサイズコンバータ部において、活性層幅が出射端面に向かって徐々に狭くなることにより活性層への光閉じ込めが徐々に弱まって、活性層を埋め込む半導体層への光の染み出しが大きくなり、出射端面でのスポットサイズを拡げることができる。出射端面近傍における近接視野像(NFP:Near Field Pattern)のスポットサイズが大きいと、出射光の回折が小さくなるため、スポットサイズコンバータを集積しない場合よりも遠視野像(FFP:Far Field Pattern)におけるビーム幅を狭めることができる。このようなビーム幅が狭い光はファイバのコアに対する位置合わせが容易になる、ファイバに対する光のケラレを抑制し、高い結合効率が得られるといった長所がある。
 特許文献2では活性層と光導波路のバットジョイント構造を含む埋め込み型半導体レーザにおいて、活性層を埋め込むメサ構造の幅よりも導波路部分を埋め込むメサ構造の幅を狭める構造が提案されている。この構造により、バットジョイント構造で生じた散乱光が導波路を埋め込むメサ内を伝搬することを抑制できるため、モード乱れが改善できる。
特開2000-36638号公報 特開2013-115161号公報
 従来のスポットサイズコンバータを集積した埋め込み型半導体レーザは以上のように構成されており、出射端において十分にスポットサイズを広げるために、活性層を埋め込むメサ構造の幅を広くしている。しかし、活性層を埋め込むメサ構造の幅を拡げると、活性層に電流注入するためにメサ上に設けられた電極面積が増加するため、半導体レーザの寄生容量が増加する。寄生容量が大きい素子は高速電気信号に追従できず、出射光の光出力信号波形がなまってしまう。したがって、レーザと同じ活性層を用いてスポットサイズコンバータを形成し、レーザに集積する手法は、光強度変調が不要な高出力レーザ、あるいは1.5Gbps以下の比較的低速で変調されるレーザには広く使用されているものの、高速変調用途には不向きであるという問題点がある。
 また、高速変調用途のレーザ(たとえば電解吸収型変調器集積レーザ)にスポットサイズコンバータを集積する場合であっても、レーザ部を構成する活性層とは異なる半導体導波路を用いてスポットサイズコンバータ部を形成することが多い。この場合、スポットサイズコンバータ部への電流注入は不要であるため、メサ上に電極を設ける必要がない。したがって、寄生容量を気にせずにメサ幅を広げることができるので、高速変調と狭い出射ビーム幅を両立することができる。しかし、スポットサイズコンバータ部用に結晶成長回数が増える、レーザ部とスポットサイズコンバータ部の接合部分における形状あるいは屈折率の不整合によって導波モードの乱れが生じて出射ビーム形状が乱れるといった欠点がある。
 本願は、上記のような課題を解決するための技術を開示するものであり、寄生容量が小さく高速変調が可能な、スポットサイズコンバータ部を備えた半導体光素子を提供することを目的とする。
 本願に開示される半導体光素子は、活性層が埋め込まれたメサ構造を備えた半導体光素子において、活性層の幅が均一の直進部と、この直進部よりも光の出射側に位置し、活性層における光の閉じ込めが直進部よりも弱く、光の出射端における光のスポットサイズが直進部の光のスポットサイズよりも大きくなるスポットサイズコンバータ部とで構成され、活性層の層面に平行な同一の平面において、直進部のメサ構造の幅の平均値を、スポットサイズコンバータ部の出射端におけるメサ構造の幅の値よりも小さい値としたものである。
 本願に開示される半導体光素子によれば、寄生容量が小さく高速変調が可能な、スポットサイズコンバータを備えた半導体光素子が得られる。
実施の形態1による半導体光素子の構成を示す、活性層を含む面における断面模式図である。 実施の形態1による半導体光素子の直進部の構成を示す、光軸に垂直な断面模式図である。 実施の形態1による半導体光素子のスポットサイズコンバータ部の構成を示す光軸に垂直な断面模式図である。 実施の形態1による半導体光素子の別の構成を示す、活性層を含む面における断面模式図である。 実施の形態1による半導体光素子のさらに別の構成を示す、活性層を含む面における断面模式図である。 実施の形態1による半導体光素子と比較例の半導体光素子のx方向のFFPの特性を比較して示す図である。 実施の形態1による半導体光素子と比較例の半導体光素子のy方向のFFPの特性を比較して示す図である。 実施の形態1による半導体光素子の内部光強度分布の一例を示す図である。 比較例による半導体光素子の内部光強度分布の一例を示す図である。 実施の形態2による半導体光素子の構成を示す光軸に平行な側面断面模式図である。 実施の形態2による半導体光素子の直進部の構成を示す光軸に垂直な断面模式図である。 実施の形態2による半導体光素子のスポットサイズコンバータ部の構成を示す光軸に垂直な断面模式図である。 実施の形態2による半導体光素子の製造工程の一部を示す上面図である。 実施の形態3による半導体光素子の構成を示す、活性層を含む面における断面模式図である。 実施の形態3による半導体光素子の直進部の構成を示す、光軸に垂直な断面模式図である。 実施の形態3による半導体光素子のスポットサイズコンバータ部の構成を示す、光軸に垂直な断面模式図である。 実施の形態4による半導体光素子の構成を示す、活性層を含む面における断面模式図である。 実施の形態4による半導体光素子の別の構成を示す、活性層を含む面における断面模式図である。 実施の形態4による半導体光素子の内部光強度分布の一例を示す図である。 図20Aおよび図20Bは、実施の形態4による半導体光素子のFFPの一例を実施の形態1による半導体光素子と比較して示す図である。
実施の形態1.
 図1は、実施の形態1における半導体光素子である半導体レーザの構成を示す、活性層を含む面における模式的なxz断面図である。ここでは半導体レーザの共振器の光軸に対して垂直に交わる水平方向をx、半導体層の積層方向をy、光の伝搬方向をzとする。半導体レーザは後端面側の直進部Aと光の出射側である前端面側のスポットサイズコンバータ部Bから構成される。直進部Aとスポットサイズコンバータ部Bを合わせた半導体レーザの全長は150umから400umの範囲とすることが多いが、この範囲に限定するものではない。図2は直進部Aのxy断面すなわち光軸に垂直な模式的な断面図、図3はスポットサイズコンバータ部Bのxy断面、すなわち光軸に垂直な模式的な断面図である。
 実施の形態1の半導体光素子は例えば次のように作製できる。まず(001)面を主面とするSiをドーピングしたキャリア濃度4x1018/cmのn型InP基板1の上に、キャリア濃度4x1018/cm、厚さ0.5umのn型InPクラッド層2、厚さ0.2umのAlGaInAs系もしくはInGaAsP系半導体材料からなる活性層3をMOCVDあるいはMBEのような半導体膜成長装置を用いて成長する。ここではn型InP基板の例を挙げたが、p型InP基板あるいはFeドープInP基板を用いてもよい。また、InP系に限らずGaAs系、GaN系などの半導体材料を用いてもよい。活性層は多重量子井戸構造を含んでいてもよい。
 次に、SiOなどの絶縁膜を用いてz方向に延びるストライプ状のマスクを形成した後、n型InP基板1もしくはn型InPクラッド層2に達する深さまでエッチングを行い、活性層3を含むリッジ構造30を形成する。このとき、直進部Aにおける活性層3を含むリッジ構造30の幅、すなわち活性層幅wrおよびスポットサイズコンバータ部Bの活性層幅wrにはwr>wrの関係が存在する。直進部Aにおける活性層幅wrは均一であり、0.8~1.6um程度であることが多いが、シングルモード条件を満たすのであれば、この範囲に限定するものではない。スポットサイズコンバータ部Bの光の出射端での活性層幅wrがwr>wrを満たすのであれば、出射端に向かって徐々に幅が狭まるテーパー構造を含んでいてもよい。
 次に、リッジの外側をZnをドーピングしたキャリア濃度5x1017/cmのp型InP埋め込み層4、キャリア濃度1x1019/cmのn型InPブロック層5の順に埋め込む。埋め込み層はRuあるいはFeをドーピングしたInPなどの半絶縁性材料を用いてもよく、またキャリア濃度あるいは極性が異なる層、それら複数の半導体積層膜を組み合わせたものでもよい。
 次にn型InPブロック層5およびリッジ構造30の活性層3の上に、キャリア濃度1x1019/cmのp型クラッド層6を形成した後に、n型InP基板1もしくはn型InPクラッド層2に達するまでエッチングを行い、活性層3が内部に埋め込まれたメサ構造7を形成する。このとき、直進部Aにおけるメサ構造の幅、すなわちメサ幅Wおよびスポットサイズコンバータ部Bのメサ幅WにはW<Wの関係が存在する。W、Wは、図1に示すように、それぞれ直進部A内とスポットサイズコンバータ部B内で均一幅であってもよく、また、図4に示すように、スポットサイズコンバータ部Bにおいて、あるいは図5に示すように直進部Aにおいて、出射端に向かうにつれてメサ幅が漸次広がるテーパー構造を含んでもよい。メサ幅としては、直進部Aにおけるメサ幅の平均値が、スポットサイズコンバータ部Bの出射端におけるメサ幅の値よりも小さい値であればよい。なお、メサ幅はy方向の位置によって異なるが、同一xz面において、例えば活性層3の層面に平行な同一の平面におけるメサ幅について上述の関係を満足しているものである。
 また、n型InP基板1の裏面にはn電極8、p型クラッド層6の表面にはp電極9が設けられている。n電極8およびp電極9はAu、Pt、Zn、Ge、Ni、Ti等を含む金属単体、もしくはこれらの金属の組み合わせで構成されている。一般に、半導体レーザはn電極8とp電極9との間に半導体積層膜を挟み込むコンデンサ構造となっているため、寄生容量が存在している。
 実施の形態1の半導体光素子は次のように作用する。まず、p電極9とn電極8間に電流注入を行うと、p型クラッド層6から供給されたホールは、n型InPブロック層5により狭窄され、効率よく活性層3に注入される。同様にn型基板1およびn型InPクラッド層2からは電子が供給され、活性層3に注入される。活性層3内で注入された電子とホールが再結合すると、発光および利得を得ることができる。一般に活性層3の屈折率は周りの埋め込み層およびブロック層よりも高いため、再結合により生じた発光は活性層3内に閉じ込められる。直進部Aの後端面ミラーおよびスポットサイズコンバータ部Bの光の出射側である前端面ミラーはファブリペロー共振器を構成しており、活性層3で生じた発光は利得を得ながら共振器内を伝搬し共振する。光の伝搬損失とミラー損失の和が光利得と等しくなった時にレーザ発振し、端面からレーザ光が出射する。このとき、直進部Aではリッジ幅wrが広いために活性層3に光が強く閉じ込められる。一方で、スポットサイズコンバータ部Bではリッジ幅wrが狭いために光の閉じ込めが弱く、活性層3の外側に染み出す光が多くなり、スポットサイズが大きくなる。このように、スポットサイズコンバータ部Bでは、光の出射端における光のスポットサイズが直進部Aの光のスポットサイズよりも大きくなるようにスポットサイズを変換する。出射端においてNFPのスポットサイズが大きいと光の回折が小さくなるため、出射光のFFPビーム幅は狭くなる。
 メサ幅と出射ビームのx方向およびy方向のFFP幅の関係についてビーム伝搬法(BPM)によりシミュレーションを行った結果を図6および図7に示す。図6および図7は、スポットサイズコンバータ部のメサ幅Wを18μmに固定した実施の形態1による半導体レーザ、およびWを直進部のメサ幅Wと同じとした比較例の半導体レーザについて、直進部のメサ幅Wを変えてシミュレーションした結果を示している。このとき、発振波長は1270nm、活性層3の屈折率は3.355、InP層の屈折率は3.207、リッジ幅wr=1.5um、wr=0.6umと仮定した。実施の形態1の半導体レーザでは、直進部Aとしてシミュレーションに用いる長さを10umとし、スポットサイズコンバータ部Bの長さを90umとして、直進部Aと接するスポットサイズコンバータ部Bのリッジ構造30は長さ25umのテーパー構造を含んだ構成とした。
 図6に示すx方向、すなわち水平方向のFFP半値全幅であるFFPx、図7に示すy方向、すなわち垂直方向のFFP半値全幅であるFFPyともに、実施の形態1のFFP半値全幅はメサ幅WによらずFFP幅が一定であるのに対し、比較例ではメサ幅Wを14umより狭くするとFFP幅が変化し始める。特にW≦6umの範囲ではメサ幅Wを狭めるほど水平方向のFFP半値全幅FFPxが広がっており、スポットサイズコンバータ部Bが機能していない。
 この原因を説明するために、図8に実施の形態1および図9に比較例における相対光強度分布のxz平面図を示す。図8の実施の形態1ではW=6um、W=18um、図9の比較例ではW=W=6umとした。また、図8および図9中にメサ構造7の境界77を白線で図示している。図9の比較例では、スポットサイズコンバータ部Bにおいて、出射端に向かうにつれて光が水平方向に広がっていく一方で、メサ幅Wが狭いために、出射端近傍では光が十分に広がることができていない。したがって、図9の比較例においてメサ幅Wを6umより狭めると、水平方向FFP半値全幅を狭めることができない。また、図9の比較例のz=50um付近では、広がった光分布の裾がメサと空気の界面にかかって、モードの乱れが生じている。
 図6に示すように、W=6~14umにおいて、比較例の水平方向FFP幅FFPxが実施の形態1よりも狭くなっているのは、このモード乱れが原因である。このようなモードの乱れは例えばウェハ面内で生じたメサ幅Wのばらつきによって出射ビーム幅のばらつきが大きくなったり、出射ビーム形状が乱れて光ファイバへの結合効率が落ちたりする原因となり、好ましくない。図8に示す実施の形態1の相対光強度分布においては、スポットサイズコンバータ部Bのメサ幅Wが十分に広いため、直進部Aのメサ幅Wに関わらず、出射端におけるスポットサイズを広げることができ、その結果狭いFFP半値全幅が得られていることがわかる。また、スポットサイズコンバータ部Bのメサ幅Wがばらついても、広がった光分布の裾がメサと空気の界面にかからなければ出射ビーム幅のばらつき、および図9で見られたようなモード乱れは防ぐことができる。
 次に寄生容量について考察する。半導体レーザはメサ構造7上のp電極9とn型InP基板1裏面のn電極8とで半導体層を挟んだコンデンサ構造となっている。コンデンサの容量Cは一般に(1)式であらわされる。ここでεは半導体層の誘電率、Sは電極の面積、dは電極間の距離である。
   C=εS/d   (1)
 メサ幅が均一の従来構造の半導体レーザでは、出射ビームのFFP半値全幅を狭めるためには、半導体レーザの全長にわたってメサ幅を広げる必要がある。その結果メサ上の電極面積Sが広がり、レーザの素子容量C、すなわち寄生容量は増加する。実施の形態1では狭いFFP半値全幅を得るために必要なスポットサイズコンバータ部のメサ幅Wを広いままにしておく一方で、FFP半値全幅の制御には無関係な直進部Aのメサ幅Wを狭めている。その結果、実施の形態1では従来構造よりもメサ上の電極面積Sを狭められるので、寄生容量を低減することができる。
 以上のような効果から、実施の形態1では狭い幅のFFPと寄生容量の低減を両立した半導体レーザを得ることができる。このようなレーザは光ファイバへの位置合わせを容易にし、かつ高速信号を用いた変調が可能になるという利点が得られる。
実施の形態2.
 図10に実施の形態2による半導体光素子としての半導体レーザの模式的なyz断面、すなわち光軸に平行な側面断面模式図、図11に直進部Aのxy断面模式図、図12にスポットサイズコンバータ部Bのxy断面模式図を示す。実施の形態2では、直進部Aの活性層3の厚さdとスポットサイズコンバータ部Bの活性層3の厚さdを異なる厚さ、すなわちd>dとした。図10に示すように、スポットサイズコンバータ部Bの活性層厚さdは出射端に向かうにつれて膜厚が薄くなるテーパー構造を含んでいてもよい。活性層3の幅は直進部Aとスポットサイズコンバータ部Bとで同一であってもよい。そのほかのメサ幅および層構成は実施の形態1と同様の構造となっている。
 このような、光軸方向で活性層3の膜厚の異なる構造は、例えば次のように作製できる。n型InP基板1上にn型InPクラッド層を成長した後、図13の平面図に示すように、スポットサイズコンバータ部Bにおける幅が、直進部Aの幅aよりも狭い1対のマスクをSiOなどの絶縁膜を用いて形成し、そのあと活性層3の選択成長を行う。これにより、一対のマスクで挟まれた領域に成長される活性層は、マスクの幅が広い個所では、一対のマスクの間に材料ガスが多く集まるので膜厚が厚くなり、逆にマスクの幅が狭い個所では膜厚が薄くなる。
 実施の形態2による半導体光素子は次のように作用する。直進部Aでは活性層3近傍に強く光が閉じ込められているが、スポットサイズコンバータ部Bでは活性層3の膜厚が直進部Aよりも薄いために直進部Aよりも光の閉じ込めが弱く、スポットサイズが広がっている。実施の形態1と同様に、スポットサイズコンバータ部Bのメサ幅Wは広いままで、直進部のメサ幅WをW<Wの関係をみたすように狭めることにより寄生容量を低減できるとともに、出射端におけるスポットサイズを広げることができ、その結果、FFPの幅が狭い出射ビームを得ることができる。
実施の形態3.
 図14から図16に実施の形態3による半導体光素子としての半導体レーザの構成を示す。図14は活性層を含む面における模式的なxz断面図、図15は直進部Aの模式的なxy断面図、図16はスポットサイズコンバータ部Bの模式的なxy断面図を示す。実施の形態3では直進部Aの活性層3aの屈折率nとスポットサイズコンバータ部Bの活性層3bの屈折率nの間にはn>nの関係が存在する。そのほかのメサ幅および層構成は実施の形態1と同様の構造となっている。スポットサイズコンバータ部Bの屈折率nは出射端面に向かうにつれて徐々に屈折率が低下するグレーデッド構造になっていてもよい。
 実施の形態3による半導体光素子は次のように作用する。直進部Aでは活性層3aの屈折率nが高いために、活性層3aを中心にして強く光が閉じ込められている。一方、スポットサイズコンバータ部Bでは活性層3bの屈折率nがnよりも低く、埋め込み層との屈折率差が直進部Aよりも小さいために光の閉じ込めが弱い。このため、活性層3aの外側にも光が染み出し、スポットサイズが広がっている。したがって、出射ビーム幅を狭めるためには、出射端でスポットサイズが広がるようにスポットサイズコンバータ部Bのメサ幅Wを広いままにしておかなければならない。一方で、直進部Aは出射ビームのFFP半値全幅の制御には無関係であるため、W<Wの関係が成り立つようにメサ幅Wを狭めることにより、寄生容量を低減することができる。その結果、実施の形態1と同様に、従来構造よりもメサ上の電極面積Sを小さくできるので、寄生容量を低減することができるとともに、出射ビーム幅も狭めることができる。
実施の形態4.
 図17は実施の形態4による半導体光素子としての半導体レーザの構成を、活性層3を含むxz面の断面で示す断面模式図である。実施の形態4ではスポットサイズコンバータ部Bのうち、直進部Aに近い領域のメサ幅Wは出射端近傍のメサ幅Wよりも狭められている。さらに直進部Aとスポットサイズコンバータ部Bとの境界から出射端側にZ離れた個所からメサ幅Wは広がっており、W≦W<Wの関係を満たす。スポットサイズコンバータ部Bのメサ幅Wは、図17に示すように出射端に向かって階段状に広がってもよく、あるいは図18に示すように出射端に向かって徐々に広がるテーパー構造を含んでいてもよい。
 実施の形態4による半導体光素子は次のように作用する。スポットサイズコンバータ部Bにおいて直進部Aとの境界付近では、出射端と比較してまだ十分にスポットサイズが広がっていない。したがって、光強度分布の裾がメサの外側にかからない範囲であれば、直進部Aとの境界付近のメサ幅W3を狭めることができる。例えば、W=W=6um、W=18um、Z=20um、としてBPMを用いてシミュレーションを行った。その時のxz平面における光強度分布図を図19に示す。実施の形態1(W=6um、W=18um)の図8と比較しても光強度分布にはほとんど差がみられない。また、図20Aにこの時の出射ビームの水平方向FFPビーム形状FFPxを、図20Bには垂直方向FFPビーム形状FFPyを、実施の形態1の形状と合わせて示す。いずれも実施の形態1とほとんど差がなく、FFP幅が狭い出射ビームが得られていることがわかる。
 以上、直進部Aとスポットサイズコンバータ部Bにおけるメサ構造の幅の関係は、いずれの実施の形態においても、活性層3の層面に平行な同一の平面において、直進部Aのメサ構造7の幅の平均値が、スポットサイズコンバータ部Bの光の出射端におけるメサ構造7の幅の値よりも小さい値であることを特徴としている。この特徴により、寄生容量が小さく高速変調が可能な、スポットサイズコンバータを備えた半導体光素子を提供できる。
 本願には、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 InP基板、2 クラッド層、3、3a、3b 活性層、4 埋め込み層、7 メサ構造、8 n電極、9 p電極、30 リッジ構造、A 直進部、B スポットサイズコンバータ部

Claims (7)

  1.  活性層が埋め込まれたメサ構造を備えた半導体光素子において、
    前記活性層の幅が均一の直進部と、この直進部よりも光の出射側に位置し、前記活性層における光の閉じ込めが前記直進部よりも弱く、光の出射端における光のスポットサイズが前記直進部の光のスポットサイズよりも大きくなるスポットサイズコンバータ部とで構成され、
    前記活性層の層面に平行な同一の平面において、前記直進部の前記メサ構造の幅の平均値が、前記スポットサイズコンバータ部の前記出射端における前記メサ構造の幅の値よりも小さい値であることを特徴とする半導体光素子。
  2.  前記スポットサイズコンバータ部における出射端の前記活性層の幅は、前記直進部における前記活性層の幅よりも狭いことを特徴とする請求項1に記載の半導体光素子。
  3.  前記直進部における前記活性層の厚さは均一であり、前記スポットサイズコンバータ部における出射端の前記活性層の厚さは、前記直進部における前記活性層の厚さよりも薄いことを特徴とする請求項1に記載の半導体光素子。
  4.  前記直進部における前記活性層の屈折率は均一であり、前記スポットサイズコンバータ部における出射端の前記活性層の屈折率は、前記直進部における前記活性層の屈折率よりも低いことを特徴とする請求項1に記載の半導体光素子。
  5.  前記スポットサイズコンバータ部において、前記メサ構造の幅が前記出射端に向けて階段状に広くなっていることを特徴とする請求項1から4のいずれか1項に記載の半導体光素子。
  6.  前記スポットサイズコンバータ部において、前記メサ構造の幅が前記出射端に向けて漸次広くなる部分を含むことを特徴とする請求項1から4のいずれか1項に記載の半導体光素子。
  7.  前記直進部において、前記メサ構造の幅が前記スポットサイズコンバータ部に向けて漸次広くなる部分を含むことを特徴とする請求項1から4のいずれか1項に記載の半導体光素子。
PCT/JP2019/024206 2019-06-19 2019-06-19 半導体光素子 WO2020255281A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/024206 WO2020255281A1 (ja) 2019-06-19 2019-06-19 半導体光素子
JP2020544546A JP6925540B2 (ja) 2019-06-19 2020-04-27 半導体光素子
US17/600,491 US20220173573A1 (en) 2019-06-19 2020-04-27 Semiconductor optical element
CN202080043299.2A CN114008879A (zh) 2019-06-19 2020-04-27 半导体光元件
PCT/JP2020/017985 WO2020255565A1 (ja) 2019-06-19 2020-04-27 半導体光素子
TW109119864A TWI740538B (zh) 2019-06-19 2020-06-12 半導體光學元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024206 WO2020255281A1 (ja) 2019-06-19 2019-06-19 半導体光素子

Publications (1)

Publication Number Publication Date
WO2020255281A1 true WO2020255281A1 (ja) 2020-12-24

Family

ID=74036989

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/024206 WO2020255281A1 (ja) 2019-06-19 2019-06-19 半導体光素子
PCT/JP2020/017985 WO2020255565A1 (ja) 2019-06-19 2020-04-27 半導体光素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017985 WO2020255565A1 (ja) 2019-06-19 2020-04-27 半導体光素子

Country Status (5)

Country Link
US (1) US20220173573A1 (ja)
JP (1) JP6925540B2 (ja)
CN (1) CN114008879A (ja)
TW (1) TWI740538B (ja)
WO (2) WO2020255281A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4311042A1 (en) * 2022-07-21 2024-01-24 Nokia Solutions and Networks Oy Opto-electronic device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102651A (ja) * 1995-10-09 1997-04-15 Hitachi Ltd 導波路型半導体光素子および光モジュール
JPH09129964A (ja) * 1995-10-30 1997-05-16 Fujitsu Ltd 光半導体装置
JPH1022577A (ja) * 1996-07-01 1998-01-23 Fujitsu Ltd 発光半導体装置
JPH10270791A (ja) * 1997-03-27 1998-10-09 Hitachi Ltd 光情報処理装置およびこれに適した半導体発光装置
JP2000036638A (ja) * 1998-07-21 2000-02-02 Fujitsu Ltd 半導体発光装置
JP2000244059A (ja) * 1999-02-23 2000-09-08 Matsushita Electric Ind Co Ltd 半導体レーザ装置
WO2001095446A1 (fr) * 2000-06-08 2001-12-13 Nichia Corporation Dispositif de laser a semi-conducteur et son procede de fabrication
JP2002026449A (ja) * 2000-07-06 2002-01-25 Oki Electric Ind Co Ltd スポットサイズ変換器付き半導体レーザ装置,及び半導体レーザアレイ装置
US20070153858A1 (en) * 2006-01-03 2007-07-05 Samsung Electronics Co.; Ltd Optical spot size converter integrated laser device and method for manufacturing the same
JP2009152605A (ja) * 2007-12-18 2009-07-09 Korea Electronics Telecommun 光増幅器が集積されたスーパーミネッセンスダイオード及びこれを利用した外部共振レーザー
US20150115219A1 (en) * 2013-10-24 2015-04-30 Electronics And Telecommunications Research Institute Superluminescent diode and method for implementing the same
CN105826815A (zh) * 2016-05-30 2016-08-03 中国科学院半导体研究所 980nm半导体激光器结构及制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667043A (ja) * 1992-08-24 1994-03-11 Nippon Telegr & Teleph Corp <Ntt> スポット変換素子およびその製造方法
JP3548986B2 (ja) * 1994-02-15 2004-08-04 富士通株式会社 光半導体装置及びその製造方法
JPH0923036A (ja) * 1995-07-05 1997-01-21 Nippon Telegr & Teleph Corp <Ntt> 半導体レーザ
JP2924811B2 (ja) * 1996-09-20 1999-07-26 日本電気株式会社 半導体光集積素子とその製造方法
JPH11112081A (ja) * 1997-10-01 1999-04-23 Mitsubishi Electric Corp 半導体レーザ,及びその製造方法
JP2950302B2 (ja) * 1997-11-25 1999-09-20 日本電気株式会社 半導体レーザ
JP2000353859A (ja) * 1999-06-10 2000-12-19 Sharp Corp 光導波路及び半導体レーザ素子
JP3339486B2 (ja) * 2000-01-24 2002-10-28 日本電気株式会社 半導体レーザとその製造方法及び半導体レーザを用いた光モジュール及び光通信システム
JP3838355B2 (ja) * 2001-05-17 2006-10-25 松下電器産業株式会社 半導体レーザ
KR101208030B1 (ko) * 2009-03-23 2012-12-04 한국전자통신연구원 외부 공진 레이저 광원
JP5783011B2 (ja) * 2011-11-28 2015-09-24 三菱電機株式会社 光半導体装置
KR102227282B1 (ko) * 2015-08-11 2021-03-15 한국전자통신연구원 발광소자, 발광소자 제작방법 및 발광소자를 이용한 파장 가변 외부 공진 레이저

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102651A (ja) * 1995-10-09 1997-04-15 Hitachi Ltd 導波路型半導体光素子および光モジュール
JPH09129964A (ja) * 1995-10-30 1997-05-16 Fujitsu Ltd 光半導体装置
JPH1022577A (ja) * 1996-07-01 1998-01-23 Fujitsu Ltd 発光半導体装置
JPH10270791A (ja) * 1997-03-27 1998-10-09 Hitachi Ltd 光情報処理装置およびこれに適した半導体発光装置
JP2000036638A (ja) * 1998-07-21 2000-02-02 Fujitsu Ltd 半導体発光装置
JP2000244059A (ja) * 1999-02-23 2000-09-08 Matsushita Electric Ind Co Ltd 半導体レーザ装置
WO2001095446A1 (fr) * 2000-06-08 2001-12-13 Nichia Corporation Dispositif de laser a semi-conducteur et son procede de fabrication
JP2002026449A (ja) * 2000-07-06 2002-01-25 Oki Electric Ind Co Ltd スポットサイズ変換器付き半導体レーザ装置,及び半導体レーザアレイ装置
US20070153858A1 (en) * 2006-01-03 2007-07-05 Samsung Electronics Co.; Ltd Optical spot size converter integrated laser device and method for manufacturing the same
JP2009152605A (ja) * 2007-12-18 2009-07-09 Korea Electronics Telecommun 光増幅器が集積されたスーパーミネッセンスダイオード及びこれを利用した外部共振レーザー
US20150115219A1 (en) * 2013-10-24 2015-04-30 Electronics And Telecommunications Research Institute Superluminescent diode and method for implementing the same
CN105826815A (zh) * 2016-05-30 2016-08-03 中国科学院半导体研究所 980nm半导体激光器结构及制备方法

Also Published As

Publication number Publication date
TW202101846A (zh) 2021-01-01
WO2020255565A1 (ja) 2020-12-24
JP6925540B2 (ja) 2021-08-25
JPWO2020255565A1 (ja) 2021-09-13
US20220173573A1 (en) 2022-06-02
CN114008879A (zh) 2022-02-01
TWI740538B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
US5457569A (en) Semiconductor amplifier or laser having integrated lens
JP2009295680A (ja) 半導体レーザ装置
JPH1168241A (ja) 半導体レーザー
JPH05243669A (ja) 半導体レーザ素子
KR20080006470A (ko) 저 광 피드백 노이즈 자기-맥동 반도체 레이저
KR19990072352A (ko) 자기발진형반도체레이저
JP2007311522A (ja) 半導体レーザ
JP6925540B2 (ja) 半導体光素子
JP2723045B2 (ja) フレア構造半導体レーザ
JP2005268298A (ja) 半導体レーザ
US4961196A (en) Semiconductor laser
WO2009119131A1 (ja) 半導体発光素子及びその製造方法
US6822990B2 (en) Semiconductor laser device
US11189991B2 (en) Semiconductor optical element and semiconductor optical device comprising the same
JPH0983070A (ja) 半導体レーザ素子
JPH07283490A (ja) 光半導体装置
JPH1022577A (ja) 発光半導体装置
JP6747521B2 (ja) 半導体レーザ素子、半導体レーザ素子の製造方法
JP5163355B2 (ja) 半導体レーザ装置
JPH0923036A (ja) 半導体レーザ
JP2010123726A (ja) 半導体レーザおよびその製造方法
CN115280609A (zh) 光学器件
JPWO2019193679A1 (ja) 半導体レーザおよびその製造方法
JPH06283801A (ja) 半導体レーザ
CN116897480A (zh) 半导体激光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP