WO2020250487A1 - ストラドルドビークル - Google Patents

ストラドルドビークル Download PDF

Info

Publication number
WO2020250487A1
WO2020250487A1 PCT/JP2020/006040 JP2020006040W WO2020250487A1 WO 2020250487 A1 WO2020250487 A1 WO 2020250487A1 JP 2020006040 W JP2020006040 W JP 2020006040W WO 2020250487 A1 WO2020250487 A1 WO 2020250487A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
saddle
transmission member
torque
power source
Prior art date
Application number
PCT/JP2020/006040
Other languages
English (en)
French (fr)
Inventor
大介 神津
信也 飯塚
洋平 岩城
和哉 原野
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP20821582.2A priority Critical patent/EP3967903B1/en
Priority to JP2021525907A priority patent/JP7329595B2/ja
Publication of WO2020250487A1 publication Critical patent/WO2020250487A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/54Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on signals from the brakes, e.g. parking brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/682Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings with interruption of drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H2059/144Inputs being a function of torque or torque demand characterised by change between positive and negative drive line torque, e.g. torque changes when switching between coasting and acceleration

Definitions

  • the present invention relates to a saddle-mounted vehicle.
  • Saddle-mounted vehicles that run on the power of a power source include vehicles that are provided with play and have a plurality of power transmission members that transmit power by engaging with each other.
  • a vehicle for example, a saddle-type vehicle having a dog-type clutch is known.
  • the dog type clutch includes a plurality of types of dogs as power transmission members.
  • the first dog and the second dog are provided so as to be matable.
  • the first dog and the second dog are fitted or disengaged from each other by moving relative to each other in the direction of the rotation axis. Power transmission and disconnection are switched.
  • a play is provided in the circumferential direction between the first dog and the second dog in the fitted state.
  • the play in the circumferential direction between the second dog and the first dog is set to a certain size for smooth power transmission and switching of cutting.
  • a shock may occur due to play between the dogs.
  • the state of the power source is switched from the deceleration state (for example, the engine braking operation state) to the acceleration state
  • the first dog between the two adjacent second dogs rotates when viewed from the first dog. It separates from one second dog arranged in the direction opposite to the direction (non-transmission state), moves by play while accelerating, and then recontacts with the second dog arranged in the rotational direction (due to dog engagement). Transmission state).
  • the angular momentum accumulated in the first dog in the non-transmission state increases due to the acceleration from the transmission state in which the power is transmitted through the non-transmission state in which the power is not transmitted to the transmission state again.
  • Increased angular momentum is transmitted by recontact, which switches the non-transmission state to the transmission state.
  • the amount of fluctuation in the torque output in the case of recontact increases. Fluctuations in torque are transmitted to the drive wheels, eventually causing a shock to the vehicle.
  • Patent Document 1 discloses an acceleration / deceleration control device that reduces at least one of the contact speed and the transmission torque between the power transmission members when the play between the power transmission members disappears during acceleration or deceleration. ing.
  • This acceleration / deceleration control device detects information on the rotation speed of the input shaft of a specific target portion in the power transmission path, and calculates the relative rotation position of the input shaft and the output shaft based on the information on the rotation speed. Then, the acceleration / deceleration control device accelerates or decelerates at least one of the input shaft and the output shaft so that at least one of the contact speed and the transmission torque becomes smaller based on the calculated relative rotation position. As a result, the shock caused by play can be suppressed.
  • the saddle-mounted vehicle has a braking device that applies braking force to the wheels.
  • the state of the saddle-type vehicle may change from a decelerating state to an accelerating state as the state of the braking device changes.
  • the posture during turning is controlled by increasing or decreasing the torque of the power source. It is desired that the saddle-mounted vehicle reduces the shock generated in the vehicle due to the play of the power transmission member when the state of the braking device changes from the decelerating state to the accelerating state. ing.
  • An object of the present invention is that it is possible to reduce the shock generated in the vehicle due to the play of the power transmission member when the state of the braking device changes from the decelerating state to the accelerating state. It is to provide a saddle-type vehicle.
  • the saddle-mounted vehicle is With wheels The vehicle body that supports the wheels and A power source that outputs torque to drive the wheels, A power transmission path for transmitting torque output from the power source to the wheels, including a first power transmission member and a second power transmission member that transmit power when engaged with each other.
  • the power transmission member and the second power transmission member are engaged at an acceleration position when the saddle-type vehicle is accelerating, and are engaged at a deceleration position different from the acceleration position when the saddle-type vehicle is decelerating.
  • a power transmission path configured to have a play of relatively moving from the acceleration position to the deceleration position.
  • a braking device that applies braking force to the wheels and Before the timing of switching from the state in which the saddle-type vehicle is decelerating due to the operation of the braking device to the state in which the saddle-type vehicle is accelerated by the output torque of the power source when the operation of the braking device is released.
  • a control device that controls at least the power source so that the first power transmission member and the second power transmission member are not located at the deceleration position from the time to the lapse of the timing. To be equipped.
  • the saddle-mounted vehicle having the above configuration includes wheels, a vehicle body, a power source, a power transmission path, a braking device, and a control device.
  • the car body supports the wheels.
  • the power source outputs torque for driving the wheels.
  • the power transmission path transmits the torque output from the power source to the wheels.
  • the power transmission path includes a first power transmission member and a second power transmission member that transmit power when engaged with each other.
  • the first power transmission member and the second power transmission member are engaged at the acceleration position when the saddle-type vehicle is accelerating, and are engaged at a deceleration position different from the acceleration position when the saddle-type vehicle is decelerating. It has a play of relatively moving from the acceleration position to the deceleration position.
  • the braking device applies braking force to the wheels.
  • the control device starts before the timing when the saddle-type vehicle is decelerated by the operation of the braking device and the saddle-type vehicle is accelerated by the output torque of the power source when the operation of the braking device is released. Until after the timing has elapsed, at least the power source is controlled so that the first power transmission member and the second power transmission member are not located at the deceleration position.
  • the saddle-type vehicle is decelerated by the operation of the braking device, and the saddle-type vehicle is accelerated by the output torque of the power source when the operation of the braking device is released.
  • the first power transmission member and the second power transmission member are not located at the deceleration position from before the timing of this switching to after the timing has elapsed. Therefore, the first power transmission member and the second power transmission member are not located at the deceleration position at the timing when the saddle-mounted vehicle is accelerated by the output torque of the power source when the operation of the braking device is released. Therefore, when the saddle-type vehicle switches to the accelerated state, the shock generated in the saddle-type vehicle due to the play of the power transmission member can be reduced.
  • the torque increases in the power source, so that the first power transmission member and the second power transmission member move away from the deceleration position in a short time. Therefore, it is possible to reduce the shock generated in the vehicle due to the play of the power transmission member while improving the responsiveness of switching from the decelerating state to the accelerating state of the saddle-type vehicle.
  • the saddle-type vehicle of (1) or (2) The vehicle body tilts to the left of the vehicle during a left turn, and turns in a lean posture of tilting to the right of the vehicle during a right turn.
  • the control device when the vehicle body is turning in a lean posture, the power source is released from the state in which the saddle-mounted vehicle is decelerated by the operation of the braking device when the operation of the braking device is released. At least the power so that the first power transmission member and the second power transmission member are not located at the deceleration position from before the timing when the saddle-mounted vehicle is switched to the acceleration state by the output torque of Control the source.
  • the posture during turning is controlled by increasing or decreasing the torque of the power source. According to the above configuration, it is possible to reduce the shock generated in the vehicle due to the play of the power transmission member when turning in a lean posture. According to the above configuration, the reduction of the shock generated in the vehicle can be adapted to the turning state of the saddle-type vehicle.
  • the saddle-type vehicle of (2) or (3) is An output indicator that indicates a torque instruction value output from the power source based on the operation of the rider of the saddle-type vehicle, and an output indicator.
  • a braking operation unit that operates the braking device based on the operation of the rider is further provided. When the operation of the braking operation unit is released during deceleration of the saddle-mounted vehicle, the control device increases torque to the power source while applying braking force to the braking device.
  • the braking device when the operation of the braking operation unit is released, the braking device applies braking force and the power source increases the torque. Therefore, even when the operation of the braking operation unit is released, the shock generated in the vehicle due to the play of the power transmission member can be reduced.
  • the braking device when the operation of the braking operation unit is released, the braking device reduces the braking force and the power source increases the torque.
  • the amount of increase in torque by the power source can be reduced according to the amount of decrease in braking force by the braking device. Therefore, it is possible to reduce the shock generated in the vehicle due to the play of the power transmission member while suppressing the output torque due to the power source.
  • the terminology used herein is for the purpose of defining only specific embodiments and is not intended to limit the invention.
  • the term “and / or” includes any or all combinations of one or more related enumerated components.
  • the use of the terms “include, include”, “include, comprising” or “having” and variations thereof is described in the features, processes, operations, described. It identifies the presence of elements, components and / or their equivalents, but can include one or more of steps, actions, elements, components, and / or groups thereof.
  • the terms “attached”, “connected”, “combined” and / or their equivalents are widely used, direct and indirect attachment, connection and Includes both bonds.
  • connection and “coupled” are not limited to physical or mechanical connections or connections, but can include direct or indirect electrical connections or connections.
  • all terms used herein, including technical and scientific terms, have the same meaning as commonly understood by those skilled in the art to which the present invention belongs. Terms such as those defined in commonly used dictionaries should be construed to have meaning consistent with the relevant technology and in the context of the present disclosure and are expressly defined herein. Unless it is, it will not be interpreted in an ideal or overly formal sense. It is understood that the description of the present invention discloses a number of techniques and steps. Each of these has its own benefit and each can be used in conjunction with one or more of the other disclosed techniques, or in some cases all.
  • a saddle-mounted vehicle is a vehicle in which the driver sits across the saddle.
  • Examples of the saddle-mounted vehicle include a lean vehicle.
  • the vehicle is, for example, a motorcycle.
  • the motorcycle is not particularly limited, and examples thereof include a scooter type, a moped type, an off-road type, and an on-road type motorcycle.
  • the saddle-mounted vehicle is not limited to a motorcycle, and may be, for example, an ATV (All-Terrain Vehicle) or the like.
  • the vehicle is not limited to a saddle-mounted vehicle, and may be a four-wheeled vehicle having a passenger compartment or the like.
  • the vehicle provided with the transmission member provided with play is configured to be able to turn in a lean posture.
  • the vehicle configured to be able to turn in a lean posture is configured to turn in a posture tilted toward the center of the curve in order to oppose the centrifugal force applied to the vehicle during turning.
  • the driver's operation eg weight transfer
  • the vehicle is preferably shock-suppressed and highly responsive to acceleration or deceleration.
  • the mounted equipment and devices are also made smaller and lighter. From such a viewpoint, it is preferable that the stepped transmission has a high degree of freedom in design. For example, when the above-mentioned structure that may reduce the mechanical strength is adopted, it may be necessary to increase the size or reinforce the mechanical strength.
  • the degree of freedom in design is restricted by the structure of the stepped transmission, and the restriction in the degree of freedom in design may affect miniaturization and weight reduction.
  • the present invention can increase the degree of freedom in design and can be suitably applied to a vehicle configured to be able to turn in a lean posture.
  • a vehicle provided with a transmission member provided with play acceleration or deceleration can be performed while suppressing a shock generated in the vehicle due to a change in the state of the power source due to the play of the transmission member.
  • the responsiveness is further improved.
  • the driver controls the posture of the vehicle, so that the driver can easily feel the behavior of the vehicle.
  • the vehicle configured to be able to turn in a lean posture suppresses shock and has high responsiveness to acceleration or deceleration.
  • the present invention is suitable for a vehicle configured to be able to turn in a lean posture.
  • the vehicle configured to be able to turn in the lean posture include a saddle-type vehicle (for example, a motorcycle and a three-wheeled vehicle) configured to be able to turn in the lean posture.
  • a plurality of second power transmission members are arranged in the circumferential direction at a distance larger than the circumferential length of the first power transmission member, and are placed between two second power transmission members arranged adjacent to each other.
  • the gap generated between the two second power transmission members arranged adjacent to each other and the first power transmission member is play (Backlash of the transmission member).
  • the first power transmission member between the two adjacent second power transmission members is separated from one second power transmission member. After that, it re-contacts with a different second power transmission member arranged in the opposite direction.
  • the first power transmission member engages with the second power transmission member.
  • the interval at which the first power transmission member moves after being separated from one second power transmission member until it engages with a different second power transmission member arranged in the opposite direction is play.
  • the power transmission path including the first power transmission member and the second power transmission member is, for example, a transmission, a clutch, a chain and a sprocket.
  • the first power transmission member and the second power transmission member are used in a stepped transmission
  • the first power transmission member is provided in either a drive gear or a driven gear.
  • the second power transmission member that hits the first power transmission member with play in the circumferential direction is between the first power transmission member and the first power transmission member when it is located in the gap between the first power transmission members adjacent to each other in the circumferential direction. It has a shape in which play occurs, and is provided so as to move relative to the first power transmission member in the circumferential direction and hit the first power transmission member in the circumferential direction.
  • the second power transmission member may be provided in either the drive gear or the driven gear, or may be provided in the power transmission member ring which is a member different from the drive gear and the driven gear. ..
  • the first power transmission member or the second power transmission member may be a protrusion, or may be a side wall portion that defines a hole or groove into which the other power transmission member enters.
  • the shift stage setting mechanism of the stepped transmission has a first power transmission member and a second power transmission member at each shift stage. However, this does not necessarily mean that the shift stage setting mechanism has a first power transmission member and a second power transmission member individually for each shift stage.
  • the shift stage setting mechanism may have a first power transmission member and a second power transmission member so as to perform an operation for mechanically and selectively effectively setting the power transmission in each shift stage.
  • one power transmission member ring as a second power transmission member may be provided so as to correspond to two shift stages.
  • the circumferential direction in which the first power transmission member hits the second power transmission member is a direction along the rotation direction of the drive gear or the driven gear provided with the first power transmission member.
  • Examples of the power source include an engine and an electric motor. That is, examples of the saddle-mounted vehicle include an engine vehicle, an electric vehicle, and an engine-motor hybrid vehicle.
  • the power of the power source can be increased, for example, by increasing the amount of air supplied to the engine. Further, the power of the power source can be increased by increasing the fuel supplied to the engine. For example, the power of the power source can be increased by increasing the fuel supplied to the engine as compared to the fuel in the stoichiometric state.
  • Controlling the power source so that the first power transmission member and the second power transmission member are not located in the deceleration position is, for example, a power source so that the first power transmission member and the second power transmission member are located in the acceleration position. Is to control. However, controlling the power source so that the first power transmission member and the second power transmission member are not located at the deceleration position also includes controlling so that they are not located at either the deceleration position or the acceleration position. When it is not located at either the deceleration position or the acceleration position, the first power transmission member and the second power transmission member are separated from each other. By controlling the power source so that the first power transmission member and the second power transmission member are located at the acceleration position, the shock generated in the saddle-type vehicle is further reduced.
  • the control device After the first power transmission member and the second power transmission member move to the acceleration position, the control device increases the torque of the power source so that the first power transmission member and the second power transmission member maintain the acceleration position.
  • the control device may, for example, keep the torque of the power source constant.
  • the control device is not limited to this, and for example, the torque of the power source may be varied.
  • the torque of the power source may increase with the passage of time.
  • the braking device is used. The braking force can be released.
  • the braking device does not have to release the braking force.
  • the braking force is released when the torque of the power source is increased so as to maintain the acceleration position, the responsiveness of the torque increase by the power source is improved.
  • the braking device is, for example, a friction braking device that applies braking force to wheels by frictional force.
  • the braking device is not particularly limited, and may be, for example, a motor or a generator that applies a braking force to the wheels by an electromagnetic force regardless of a frictional force.
  • the braking device does not have to be directly mounted or in contact with the wheel.
  • the braking device is provided, for example, in the transmission path for transmitting torque to the wheels, downstream of the transmission of the first power transmission member and the second power transmission member.
  • the braking device applies braking force by, for example, operating a brake operator.
  • the braking device is not particularly limited, and for example, a braking force may be applied by an automatic control device of a saddle-type vehicle. This is the same for power sources. From “a state in which the saddle-type vehicle is decelerating due to the operation of the braking device" (state A) to "a state in which the saddle-type vehicle is accelerated by the output torque of the power source when the operation of the braking device is released" (state B). ), Another state may intervene between the state A and the state B. In this case, the switching timing refers to the period from the end of the state A to the start of the state B.
  • the switching timing does not necessarily have to be one time point, but may be one period.
  • the other state is not particularly limited, and examples thereof include a state in which the operation of the braking device is not released and the saddle-type vehicle is accelerated by the output torque of the power source.
  • the state A may be a state in which the braking device operates based on an operation on the braking device by the rider (state A1), or a state in which the braking device operates without any operation on the braking device by the rider (state A2). It may be present, and may include both states A1 and A2.
  • the braking device is controlled by a control device (automatic control device), for example, as described above. At least at the end of state A, it is preferably state A2.
  • the state A is configured to start in the state A1, transition from the state A1 to the state A2, and end in the state A2, for example.
  • the state A is started.
  • the state A is started in the state A1.
  • the state A2 is started. That is, the state A is transitioning from the state A1 to the state A2.
  • the acceleration instruction is input (step S31: YES)
  • the braking force addition is completed (step S32).
  • the state A ends in the state A2 and the state B starts. It is preferable that the torque output by the power source is performed in at least a part of the period of the state A2 (the period including the end time of the state A2).
  • the torque output of the power source is performed based on the acceleration operation by the rider. Before that, in the state A2, it is preferable that the torque output of the power source is performed regardless of the acceleration operation by the rider.
  • the torque output of this power source is controlled by a control device (automatic control device), for example, as described above.
  • the braking device may operate and the power source may output torque without performing any braking operation or acceleration operation by the rider.
  • the braking device applies braking force to at least one of the wheels of the vehicle.
  • the braking device may, for example, apply a braking force to a wheel different from the wheel to which the torque of the power source is supplied. Further, the braking device may apply a braking force to all the wheels, for example.
  • the saddle-type vehicle accelerates due to the output torque of the power source as the braking device operation is released. If you want to. However, even if there is a time lag between the release of the braking device operation and the acceleration of the saddle-type vehicle due to the output torque of the power source, the saddle-type vehicle accelerates due to the output torque of the power source as the braking device operation is released. If you want to.
  • Keeping the braking device in the braking force applied state includes maintaining the magnitude of the braking force by the braking device. However, having the braking device maintain the braking force applied state also includes maintaining the braking force while changing the magnitude of the braking force to a non-zero magnitude.
  • the amount of decrease in braking force and the amount of increase in torque may be equal. However, the amount of decrease in braking force and the amount of increase in torque do not have to be equal.
  • the control device may have a processor that executes a program, or may be an electronic circuit.
  • FIG. 1 It is a figure explaining the saddle type vehicle which concerns on one Embodiment of this invention. It is an external view of the saddle-mounted vehicle shown in FIG. It is a figure explaining the schematic structure about the driving and braking of the saddle type vehicle shown in FIG.
  • A is a figure which shows the driven gear and dogling in a non-transmission state.
  • B is a figure which shows the driven gear and the dog ring in the transmission state.
  • C) is a circumferential partial cross-sectional view of the driven gear and the dog ring in the transmission state.
  • FIG. 1 is a diagram illustrating a saddle-mounted vehicle according to an embodiment of the present invention.
  • Part (A) of FIG. 1 is a block diagram showing a configuration of a saddle-mounted vehicle.
  • Part (B) of FIG. 1 is a flowchart showing the operation of the control device.
  • Part (C) of FIG. 1 is a time chart showing changes in the state and torque of each part.
  • the saddle-mounted vehicle 1 shown in FIG. 1 includes a power source 11, a power transmission path 9, wheels 5, a braking device 70, and a control device 8. Further, the saddle-mounted vehicle 1 includes an output indicating unit 7b and a braking operation unit 7f.
  • the power source 11 outputs torque for driving the wheels 5. More specifically, the power source 11 outputs power composed of torque and rotational speed.
  • the wheels 5 of the saddle-mounted vehicle 1 receive the power output from the power source 11 and are driven by the power.
  • the saddle-mounted vehicle 1 is driven by the wheels 5 and travels.
  • the power transmission path 9 transmits the torque output from the power source 11 to the wheels 5.
  • the power transmission path 9 has a first power transmission member D1 and a second power transmission member D2.
  • Each of the first power transmission member D1 and the second power transmission member D2 is, for example, a dog that dog-engages with each other.
  • the first power transmission member D1 and the second power transmission member D2 are provided so as to have play between them and to move relative to each other.
  • a play angle Acc is provided between the first power transmission member D1 and the second power transmission member D2 shown in the part (A) of FIG.
  • the first power transmission member D1 and the second power transmission member D2 rotate in the rotation direction R when the saddle-mounted vehicle 1 travels.
  • the first power transmission member D1 and the second power transmission member D2 move relatively between the acceleration position Pd and the deceleration position Ps.
  • the acceleration position Pd and the deceleration position Ps are relative positions of the first power transmission member D1 with respect to the second power transmission member D2.
  • the first power transmission member D1 and the second power transmission member D2 are engaged at the acceleration position Pd and the deceleration position Ps.
  • the first power transmission member D1 and the second power transmission member D2 are engaged at the acceleration position Pd when the saddle-mounted vehicle 1 is accelerating.
  • the first power transmission member D1 and the second power transmission member D2 are engaged at the deceleration position Ps when the saddle-mounted vehicle 1 is decelerating.
  • the first power transmission member D1 and the second power transmission member D2 have a transmission state and a non-transmission state.
  • the transmission state is a state in which the first power transmission member D1 and the second power transmission member D2 are engaged with each other. That is, the transmission state is a state in which the first power transmission member D1 and the second power transmission member D2 are engaged at the acceleration position Pd or the deceleration position Ps.
  • the first power transmission member D1 and the second power transmission member D2 transmit power in a transmission state.
  • the non-transmission state is a state in which the first power transmission member D1 is separated from the second power transmission member D2.
  • the first power transmission member D1 and the second power transmission member D2 do not transmit power in the non-transmission state.
  • the braking device 70 applies a braking force to the wheels 5.
  • the braking device 70 operates based on the rider's operation on the braking operation unit 7f. For example, the braking device 70 increases the braking force based on the increase in the amount of operation with respect to the braking operation unit 7f. Further, the braking device 70 reduces the braking force based on the decrease in the amount of operation with respect to the braking operation unit 7f.
  • the braking device 70 can be operated independently of the operation of the braking operation unit 7f by the control of the control device 8.
  • the control device 8 controls the braking device 70.
  • the braking device 70 operates, for example, by the pressure of the hydraulic fluid output from the braking operation unit 7f in response to the operation of the rider.
  • the braking device 70 maintains a certain pressure after the operation of the braking operation unit 7f is completed, for example. As a result, the braking device 70 can increase the braking force more than the target value corresponding to the operation of the braking operation unit 7f. That is, the braking device 70 can add the braking force to the target value corresponding to the operation. When the braking device 70 includes, for example, a pump of hydraulic fluid, the braking device 70 can more positively increase the braking force with respect to the target value corresponding to the operation.
  • the control device 8 controls the power source 11.
  • the control device 8 controls the power source torque.
  • the power source torque is the torque output from the power source 11.
  • the control device 8 controls the output torque of the power source 11 based on the torque instruction value output from the output instruction unit 7b operated by the rider. For example, the control device 8 increases the torque output from the power source 11 based on the acceleration operation of the output indicator 7b.
  • the control device 8 reduces the torque output from the power source 11 in response to the deceleration operation of the output indicator 7b.
  • the power source 11 can operate independently of the operation of the output indicating unit 7b under the control of the control device 8.
  • the control device 8 can increase the output torque of the power source 11 more than the target value of the torque corresponding to the torque instruction value from the output instruction unit 7b. That is, the control device 8 can add the output torque of the power source 11 to the target value corresponding to the operation.
  • the braking instruction value Cb1, the braking force B1 of the control device 8, the torque instruction value Ct1, the power source torque T1 output from the power source 11, and the driving force generated by the wheels 5 are shown.
  • An example of the change of Pd1 and the relative rotation angle Ag of the gear is shown.
  • the gear relative rotation angle Ag is a relative angle between the first power transmission member D1 and the second power transmission member D2.
  • the torque indicated value Ct1 is reduced by the operation of the rider in the vicinity of the timing t11.
  • the power source torque T1 decreases as the torque indicated value Ct1 decreases.
  • the driving force Pd1 is reduced.
  • the driving force Pd1 has a negative value.
  • the power source 11 outputs a negative torque T1 as the power source torque T1.
  • the negative torque is a deceleration torque in a direction that hinders the rotation of the power shaft of the power source 11.
  • the negative torque is, for example, when the power source 11 is an engine, the torque generated by the combustion operation of the power source 11 is the force of the rotational resistance that the power source 11 receives from the power source 11 itself and the configuration located downstream thereof.
  • Negative torque and negative power mean that the power source 11 is driven as a load. That is, the power source 11 that outputs a negative torque is driven by the power from the wheels 5.
  • the deceleration state is, for example, a state in which the so-called engine brake is operating.
  • the power source 11 applies torque in the direction opposite to the rotation direction R to the first power transmission member D1 and the second power transmission member D2.
  • the saddle-mounted vehicle 1 changes to a decelerating state.
  • the driving force Pd1 becomes a negative value
  • the first power transmission member D1 and the second power transmission member D2 move from the acceleration position Pd to the deceleration position Ps. That is, the gear relative rotation angle Ag shown in the part (C) of FIG. 1 changes from the acceleration position Pd to the deceleration position Ps at the timing t11.
  • the braking instruction value Cb1 is increased by the operation of the rider.
  • the braking force B1 of the control device 8 increases according to the braking instruction value Cb1.
  • the state in which the saddle-mounted vehicle 1 is decelerating due to the operation of the braking device 70 is caused by the power source torque T1 when the operation of the braking device 70 is released. It switches to the state where 1 accelerates.
  • the timing t14 is referred to as a switching timing.
  • the control device 8 in the present embodiment sets the power source 11 so that the first power transmission member D1 and the second power transmission member D2 are not located at the deceleration position Ps from before the switching timing t14 to after the switching timing t14 has elapsed. Control.
  • the control device 8 controls the power source 11 so that the first power transmission member D1 and the second power transmission member D2 are located at the acceleration position Pd.
  • the control device 8 determines whether or not there is deceleration due to the operation of the braking device 70 (S10). When there is a deceleration due to the operation of the braking device 70 (Yes in S10), the control device 8 controls the power source 11 so as to add the power source torque T1 (S20). In the example of the part (C) of FIG. 1, after the deceleration by the operation of the braking device 70, the control device 8 controls to add the power source torque T1 at the timing t13 when the deceleration operation is completed. As a result, at the timing t13 of the part (C) of FIG. 1, the power source torque T1 increases regardless of the torque indicated value Ct1. As a result, the first power transmission member D1 and the second power transmission member D2 are located at the acceleration position Pd.
  • the control device 8 determines whether or not the saddle-mounted vehicle 1 is accelerated by the power source torque T1 as the operation of the braking device 70 is released (S30).
  • the control device 8 ends the increase in the power source torque regardless of the torque indicated value Ct1 (S40).
  • the torque indicated value Ct1 increases according to the operation at the timing t14. Therefore, the power source torque T1 increases as the torque indicated value Ct1 increases.
  • the first power transmission member D1 and the second power transmission member D2 are located at the acceleration position Pd from before the switching timing t14 to after the switching timing t14 has elapsed. That is, at the timing t14 when the saddle-mounted vehicle 1 is decelerated to the state in which the saddle-mounted vehicle 1 is accelerated by the power source torque T1, the first power transmission member D1 and the second power transmission member D2 It is located at the acceleration position Pd. Therefore, when the state is switched to the acceleration state by the power source torque T1, the occurrence of a situation in which the first power transmission member D1 and the second power transmission member D2 move from the deceleration position Ps to the acceleration position Pd is suppressed. As a result, it is possible to reduce the shock generated in the saddle-mounted vehicle 1 due to the play of the power transmission members D1 and D2.
  • FIG. 2 is an external view showing an application example of the embodiment of the saddle-mounted vehicle 1.
  • the saddle-mounted vehicle 1 shown in FIG. 2 is a lean vehicle.
  • the saddle-mounted vehicle 1 turns in a lean posture in which the vehicle tilts to the left during a left turn and tilts to the right of the vehicle during a right turn.
  • the saddle-mounted vehicle 1 is a motorcycle.
  • the saddle-mounted vehicle 1 includes a vehicle body 2, a power source 11, wheels 4 and 5, a control device 8, and a power transmission path 9.
  • the vehicle body 2 supports the wheels 4 and 5.
  • the control device 8 controls the torque output from the power source 11.
  • the saddle-mounted vehicle 1 includes a handle 3 and an output indicating unit 7b.
  • the output indicator 7b is provided on the handle 3 so as to be operated by the driver's hand.
  • the rear wheel 5 is a driving wheel.
  • the power source 11 outputs torque for driving the wheels 5.
  • the power transmission path 9 has a stepped transmission 13.
  • the power transmission path 9 also has a drive chain 10 and a rear wheel drive sprocket 5a.
  • the power output from the power source 11 is transmitted to the stepped transmission 13.
  • the power transmitted to the stepped transmission 13 is transmitted to the wheels 5 via the drive chain 10 and the rear wheel drive sprocket 5a.
  • FIG. 3 is a diagram illustrating a schematic configuration relating to driving and braking of the saddle-mounted vehicle 1 shown in FIG.
  • the power source 11 in this application example is an engine.
  • FIG. 1 shows a 4-cylinder engine as the power source 11.
  • the engine as the power source 11 is a 4-stroke engine. In FIG. 1, the configuration of only one cylinder is schematically shown, and the configuration of the remaining cylinders is not shown.
  • the power source 11 includes a power shaft 90, a cylinder 102, a piston 103, and a spark plug 107.
  • the power shaft 90 is a crankshaft.
  • the piston 103 is provided in the cylinder 102 so as to be reciprocally movable.
  • the spark plug 107 is provided in the combustion chamber 104 formed in the cylinder 102.
  • a throttle valve 105 and a fuel injection device 106 are provided in the intake passage leading to the combustion chamber 104.
  • the operations of the throttle valve 105, the fuel injection device 106, and the spark plug 107 are controlled by the control device 8.
  • the throttle valve 105 adjusts the amount of air supplied to the combustion chamber 104.
  • the fuel injection device 106 supplies fuel to the combustion chamber 104.
  • the air-fuel mixture supplied to the combustion chamber 104 is burned by the ignition of the spark plug 107 to reciprocate the piston 103.
  • the reciprocating movement of the piston 103 is converted into the rotation of the power shaft 90.
  • the torque of the power shaft 90 is output from the power source 11.
  • the saddle-mounted vehicle 1 is also provided with a clutch 12, a stepped transmission 13, a torque detector 19, and a speed change detector 55.
  • the clutch 12 is provided between the power source 11 and the stepped transmission 13 in the torque transmission path.
  • the clutch 12 interrupts the power transmitted between the power source and the stepped transmission 13.
  • the clutch 12 interrupts and disengages power according to the operation of the driver.
  • the torque detector 19 detects the output torque of the power source 11.
  • the torque detector 19 includes a power shaft speed detector 192.
  • the power generated by the power source 11 is usually the power shaft 90, the clutch 12, the input shaft 20 of the stepped transmission 13, the drive gear (21 to 26), and the driven gear (31 to 36). , Dogling (37a-37c), output shaft 30, drive chain 10, and wheels 5 in that order.
  • the position of each component may be referred to as upstream or downstream with reference to the direction of the flow of power transmission.
  • the saddle-mounted vehicle 1 includes a braking operation unit 7f and a braking device 70.
  • the braking device 70 operates based on the rider's operation on the braking operation unit 7f.
  • the braking device 70 has, for example, a brake caliper 71 and a brake solenoid valve 72.
  • the braking operation unit 7f supplies the pressure of the operating liquid to the brake caliper 71 according to the operation of the rider. Further, the braking operation unit 7f outputs a signal indicating the rider's operation to the control device 8.
  • the brake caliper 71 exerts a frictional force on the rotation of the wheel 5 according to the pressure of the operating liquid. As a result, the braking device 70 applies a braking force to the wheels 5.
  • the brake solenoid valve 72 is controlled by the control device 8.
  • the brake solenoid valve 72 can continue the state in which the brake caliper 71 applies the braking force to the wheels 5 under the control of the control device 8, for example, even after the operation on the braking operation unit 7f is completed.
  • the brake solenoid valve 72 holds the pressure output from the braking operation unit 7f for a certain period of time even after the operation of the braking operation unit 7f is completed.
  • the brake solenoid valve 72 can end the state of applying the braking force by the control of the control device 8. In this way, the control device 8 can control the braking device 70.
  • the stepped transmission 13 is connected to the clutch 12.
  • the stepped transmission 13 has a plurality of gears.
  • the stepped transmission 13 includes an input shaft 20, an output shaft 30, drive gears (21 to 26), driven gears (31 to 36), and a speed change setting mechanism 139.
  • the input shaft 20 is rotatably arranged and power is input.
  • the power output from the power source 11 is input to the input shaft 20 via the clutch 12.
  • the stepped transmission 13 gradually shifts the rotation speed of the output shaft 30 with respect to the input shaft 20.
  • the output shaft 30 is rotatably arranged on an axis parallel to the input shaft 20.
  • a plurality of drive gears (21 to 26) are provided on the input shaft 20 and are configured to always rotate with the input shaft 20.
  • each of the plurality of drive gears (21 to 26) corresponds to each shift stage.
  • the plurality of driven gears (31 to 36) are provided on the output shaft 30 and are configured to be rotatable relative to the output shaft 30.
  • the plurality of driven gears (31 to 36) are configured to be able to mesh with the corresponding drive gears (21 to 26).
  • the shift stage setting mechanism 139 mechanically and mechanically transmits power from the input shaft 20 to the output shaft 30 via the drive gear (21 to 26) and the driven gear (31 to 36) related to any one shift stage. It is configured to be selectively enabled.
  • the shift stage setting mechanism 139 has a dog engagement mechanism 138 with play.
  • the play dog engaging mechanism 138 has a first dog D1 as a first power transmission member and a second dog D2 as a second power transmission member. That is, the saddle-mounted vehicle 1 has a first dog D1 and a second dog D2.
  • the first dog D1 is an example of the first power transmission member D1.
  • the second dog D2 is an example of the second power transmission member D2.
  • the first power transmission member D1 will also be referred to as a first dog D1.
  • the second power transmission member D2 is also referred to as a second dog D2.
  • the play dog engagement mechanism 138 mechanically and mechanically delivers either power to the drive gears (21 to 26) via the input shaft 20 or power from the driven gears (31 to 36) to the output shaft 30. Selectively enable it.
  • the first dog D1 (see FIG. 4) of the stepped transmission 13 is provided in the driven gears (31 to 36).
  • the first dog D1 is a plurality of protrusions arranged on the driven gears (31 to 36) at intervals in the circumferential direction.
  • the first dog D1 projects from the driven gear (31 to 36) in the axial direction of the output shaft 30.
  • the dog engaging mechanism 138 with play has a plurality of dog rings (37a to 37c).
  • the second dog D2 is provided on the dog rings (37a to 37c).
  • the second dog D2 is a plurality of protrusions arranged on an annular dog ring (37a to 37c) at intervals in the circumferential direction.
  • Doglings (37a to 37c) are provided on the output shaft 30 so as to be movable on the axis of the output shaft 30.
  • the dog rings (37a to 37c) are configured to always rotate together with the output shaft 30. Any of the doglings (37a-37c) engages with any of the driven gears (31-36) by moving on the axis of the output shaft 30. That is, when the first dog D1 enters the space between the second dogs D2 arranged at intervals and the second dog D2 hits the first dog D1 in the circumferential direction, the dog engagement in which power is transmitted is generated.
  • the circumferential direction is a direction including the rotation direction R of the driven gear (31 to 36) and the dog ring (37a to 37c). The power in the rotation direction R is transmitted by the dog engagement.
  • FIG. 4A is a diagram showing a driven gear 32 and a dog ring 37c in a non-transmission state.
  • FIG. 4B is a diagram showing a driven gear 32 and a dog ring 37c in a transmission state.
  • FIG. 4C is a circumferential partial cross-sectional view of the driven gear 32 and the dog ring 37c in the transmission state.
  • 4 (A) to 4 (C) show a dog engaging mechanism 138 with play having a first dog D1 and a second dog D2.
  • the driven gear 32 and the dogling 37c corresponding to the second speed are shown as examples of the driven gear (31 to 36) and the dog ring (37a to 37c).
  • the first dog D1 is a plurality of convex portions arranged on the driven gear 32 at intervals in the circumferential direction.
  • the circumferential direction is a direction along the rotation direction R of the driven gear 32 and the dog ring 37c.
  • the first dog D1 projects from the driven gear 32 in the axial direction of the output shaft 30.
  • the second dog D2 is a plurality of convex portions protruding toward the center.
  • the second dog D2 forms a plurality of recesses arranged at intervals in the circumferential direction in the dog ring 37c.
  • the first dog D1 shown in the figure is inserted in the interval of the second dogs D2 arranged in the circumferential direction.
  • the length of the circumferential interval between the second dogs D2 arranged in the circumferential direction is larger than the length of the first dog D1 in the circumferential direction.
  • the first dog D1 enters with play in the interval of the second dog D2 arranged in the circumferential direction.
  • the first dog D1 and the second dog D2 are provided so as to have play between them and to rotate relative to each other.
  • the dog ring 37c moves axially toward the driven gear 32.
  • the 1 dog D1 easily gets in between the 2nd dog D2. Further, when the dog ring 37c moves in the axial direction so as to be separated from the driven gear 32, the first dog D1 is likely to come out from between the second dog D2. Therefore, the engagement and disengagement of the first dog D1 and the second dog D2 in the upshift and the downshift are smooth.
  • the rotation direction R shown in FIGS. 4A to 4C indicates a direction in which the driven gear 32 and the dog ring 37c rotate when the saddle-mounted vehicle 1 is traveling. Therefore, the rotation direction R indicates the direction of the torque generated in the driven gear 32 in the accelerated state.
  • the rotation direction R is also referred to as an acceleration direction R.
  • torque is transmitted from the first dog D1 to the second dog D2 in the acceleration direction R by the dog engagement in which the first dog D1 hits the second dog D2 in the circumferential direction. ..
  • the first dog D1 and the second dog D2 are configured so that torque can be transmitted by engaging with each other.
  • the first dog D1 and the second dog D2 engage at the acceleration position Pd and the deceleration position Ps.
  • the first dog D1 and the second dog D2 are engaged at the acceleration position Pd when the saddle-mounted vehicle 1 is accelerating.
  • the first dog D1 and the second dog D2 are engaged at the deceleration position Ps when the saddle-mounted vehicle 1 is decelerating.
  • the first dog D1 and the second dog D2 engage with each other at the acceleration position Pd when the saddle-mounted vehicle 1 is accelerating.
  • the first dog D1 and the second dog D2 engage with each other at the deceleration position Ps when the saddle-mounted vehicle 1 is decelerating.
  • acceleration torque is output from the power source 11 from a transmission state in which the power source 11 is driven by power from the wheels 5.
  • the driven gear 32 rotates in the acceleration direction R.
  • the driven gear 32 rotates with respect to the dog ring 37c to the position shown in FIG. 4 (B) by a play angle of Acc.
  • the first dog D1 and the second dog D2 go through the engaged state of the deceleration position Ps (broken line in (B) of FIG. 4), the disengaged state of (A) in FIG. Engage at the acceleration position Pd shown in (B).
  • the first dog D1 is in a dog-engaged state in which the first dog D1 hits the second dog D2 in the circumferential direction.
  • Power is transmitted in the acceleration direction R by the dog engagement in which the second dog D2 hits the first dog D1 in the circumferential direction.
  • the power of acceleration is transmitted from the input shaft 20 (see FIG. 3) of the stepped transmission 13 to the output shaft 30.
  • the rotational speed of the driven gear 32 is increased by the acceleration power from the power source 11.
  • the driven gear 32 is not engaged with the dog ring 37c to be driven, and therefore does not receive rotational resistance from the dog ring 37c. Therefore, the amount of increase in the rotational speed of the driven gear 32 is large.
  • the driven gear 32 rotating at the increased rotational speed engages with the dog ring 37c, the angular momentum of rotation related to the driven gear 32 is transmitted to the dog ring 37c in addition to the output torque of the power source 11.
  • the angular momentum transmitted from the driven gear 32 also includes the angular momentum of rotation of the member arranged upstream of the power transmission path from the driven gear 32.
  • the angular momentum of rotation of the member arranged upstream of the power transmission path from the driven gear 32 includes the angular momentum of rotation of the drive gear 22, the input shaft 20, the clutch 12, the power shaft 90, etc. ( (See FIG. 3). Therefore, when the states of the first dog D1 and the second dog D2 are switched from the non-transmission state (FIG. 4 (A)) to the transmission state (FIG.
  • FIG. 5 is a diagram showing the configuration of the control device 8 shown in FIG.
  • the control device 8 includes a processor 8a for executing a program and a storage device 8b for storing the program and data.
  • the processor 8a executes the program stored in the storage device 8b to control the power source 11 and the braking device 70.
  • An output indicating unit 7b, a braking operation unit 7f, a vehicle attitude detector 7d, a fuel injection device 106, a throttle motor 108, a spark plug 107, and a braking device 70 are connected to the control device 8.
  • the output instruction unit 7b (see FIG. 2) outputs an acceleration instruction value according to the rider's operation.
  • the braking operation unit 7f outputs a braking state according to the rider's operation.
  • the vehicle posture detector 7d detects and outputs the posture of the saddle-mounted vehicle 1.
  • the spark plug 107 is connected to the control device 8 via an ignition device (not shown). Further, a power shaft speed detector 192 and an input shaft speed detector 27 are connected to the control device 8.
  • the input shaft speed detector 27 detects information regarding the rotational speed of the input shaft 20.
  • a vehicle attitude detector 7d is also connected to the control device 8.
  • FIG. 6 is a flowchart showing the operation of the control device 8 shown in FIG.
  • FIG. 7 is a time chart showing an example of changes in the state and torque of each part of the saddle-mounted vehicle 1.
  • the flowchart of FIG. 6 shows an application example of the operation described with reference to the part (B) of FIG.
  • the time chart of FIG. 7 is different from the case of the part (C) of FIG. 1 in that the roll angle A1 is also shown.
  • the acceleration operation of the output instruction unit 7b of the saddle-mounted vehicle 1 in motion is released before the timing t11.
  • the torque indicated value Ct1 decreases.
  • the braking operation unit 7f is operated at the timing t12.
  • the braking instruction value Cb1 increases. After this, the saddle-mounted vehicle 1 turns while leaning.
  • the roll angle A1 increases.
  • the operation of the braking operation unit 7f is released.
  • the braking operation unit 7f is operated at the timing t12.
  • the acceleration operation of the output indicator 7b is restarted. After this, leaning and turning are completed.
  • the control device 8 determines whether or not the saddle-mounted vehicle 1 is turning in a lean posture (S1). The control device 8 determines, for example, whether or not the lean angle detected by the vehicle attitude detector 7d is larger than a predetermined reference. When the saddle-mounted vehicle 1 is turning in a lean posture (Yes in S1), the control device 8 executes each operation after step S11.
  • the roll angle A1 increases with the lean of the saddle-mounted vehicle 1 before the timing t13.
  • the control device 8 determines that the saddle-mounted vehicle 1 is turning in a lean posture.
  • the control device 8 determines whether or not the saddle-mounted vehicle 1 is decelerating (S11).
  • the control device 8 determines the presence or absence of deceleration based on, for example, the detection result of the power shaft speed detector 192.
  • a configuration for determining whether or not deceleration is in progress for example, a configuration using the rotation speed of the wheel 5 or the indicated value output from the output indicating unit 7b can be adopted.
  • the torque instruction value Ct1 indicates a state in which the output instruction unit 7b is not accelerated.
  • the deceleration of the control device 8 is started before the timing t13.
  • the first dog D1 and the second dog D2 move from the acceleration position Pd to the deceleration position Ps.
  • a torque impact is transmitted from the first dog D1 to the second dog D2. Therefore, a negative shock occurs in the driving force Pd1.
  • the saddle-mounted vehicle 1 is often not lean as shown in FIG.
  • the change in posture of the saddle-mounted vehicle 1 due to the shock is small.
  • the driving force Pd1 maintains a negative value at least until the timing t14. That is, during this period, the saddle-mounted vehicle 1 is decelerating.
  • the control device 8 determines whether or not the braking operation is in progress (S12).
  • the control device 8 determines, for example, whether or not the braking operation is in progress based on the output of the braking operation unit 7f.
  • a configuration for determining whether or not the braking operation is in progress for example, a configuration based on the pressure received by the brake solenoid valve 72 can be adopted.
  • the braking instruction value Cb1 indicates that the braking operation is in progress based on the operation of the rider. In this case, the control device 8 determines that the braking operation is in progress.
  • steps S11 and S12 that is, step S10, it is detected whether or not deceleration is performed by the operation of the braking device 70.
  • the control device 8 controls to additionally increase the power source torque T1 (S20).
  • T1 power source torque
  • the control device 8 determines whether or not the braking operation on the braking operation unit 7f has been released (S21).
  • the control device 8 When it is determined that the braking operation has been released (Yes in S21), the control device 8 performs the first dog D1 and the second dog D1 and the second dog before the timing when the saddle-mounted vehicle 1 switches from the decelerating state to the accelerating state.
  • the power source 11 is controlled so that the dog D2 moves to the acceleration position Pd.
  • the control device 8 increases the torque on the power source 11 while applying the braking force to the braking device 70. More specifically, the control device 8 additionally increases the braking force applied by the braking device 70 (S22).
  • the control device 8 controls the braking device 70 so that the braking device 70 applies a braking force larger than the target value corresponding to the operation amount of the braking operation unit 7f.
  • the control device 8 operates the brake solenoid valve 72 so that the pressure of the operating liquid supplied to the brake caliper 71 maintains the additional reference value even after the operation of the braking operation unit 7f is released. This is a state in which the braking device 70 operates without the rider operating the braking device 70.
  • the control device 8 increases the power source torque T1 (S23).
  • the control device 8 controls the throttle motor 108 so that a torque larger than the target value corresponding to the indicated value of the output indicating unit 7b is output. In the example shown in FIG.
  • the power source torque T2 is added so as to have a positive value. More specifically, the control device 8 gradually reduces the braking force in the braking device 70 and gradually increases the torque in the power source 11 with the passage of time. In the example shown in FIG. 7, when the power source torque T1 is additionally increased after the timing t13, the first dog D1 and the second dog D2 move from the deceleration position Ps to the acceleration position Pd. The control device 8 increases the torque on the power source 11 while reducing the braking force on the braking device 70. More specifically, the control device 8 gradually increases the torque to the power source 11 while gradually reducing the braking force to the braking device 70 to an additional amount.
  • the control device 8 increases the torque on the power source 11 in response to reducing the braking force on the braking device 70.
  • the speed change of the saddle-mounted vehicle 1 changes according to the operation release. Approximates the speed change when is extinguished.
  • the torque of the power source 11 starts to increase from the timing t13.
  • the torque increase of the power source 11 is performed at a timing substantially common to the decrease of the braking instruction value Cb1. Therefore, the behavior of the saddle-mounted vehicle 1 reflects the operation of the rider.
  • the control device 8 increases the torque on the power source 11 while reducing the braking force on the braking device 70, so that the first dog D1 and the second dog D2 can easily move to the acceleration position Pd.
  • the control device 8 releases the braking force while increasing the torque of the power source 11 so that the first dog D1 and the second dog D2 maintain the acceleration position Pd.
  • the control device 8 determines whether or not the saddle-mounted vehicle 1 is accelerated by the power source torque T1 (S30). The control device 8 determines, for example, whether or not the output instruction unit 7b outputs an acceleration instruction value (S31). When the saddle-mounted vehicle 1 is accelerating (Yes in S31), the control device 8 ends the additional processing of the braking force. When the addition of the braking force is completed, the saddle-mounted vehicle 1 can be accelerated in a short time by the power source torque T1. In the example shown in FIG. 7, at the timing t14, the indicated value of the output indicating unit 7b represents acceleration. In this case, the control device 8 determines that the saddle-mounted vehicle 1 is in an accelerating state. The control device 8 ends the addition of the braking force.
  • the saddle-mounted vehicle 1 accelerates in response to the operation of the output indicating unit 7b. Therefore, the situation where the first dog D1 and the second dog D2 return to the deceleration position Ps is suppressed.
  • the control device 8 ends the addition of the power source torque. That is, the control device 8 ends the increase in the power source torque regardless of the torque indicated value Ct1 (S40).
  • the state in which the saddle-mounted vehicle 1 is decelerated by the operation of the braking device 8 ends in the state in which the braking device 8 operates without the rider operating the braking device 8.
  • a state in which the saddle-mounted vehicle 1 is accelerated by the output torque of the power source is started as the operation of the braking device 8 is released.
  • the torque indicated value Ct1 is increased according to the operation even if the increase in the power source torque not related to the torque indicated value Ct1 is finished. .. Therefore, the power source torque T1 increases as the torque indicated value Ct1 increases.
  • the first dog D1 and the second dog D2 are located at the acceleration position Pd from before the switching timing t14 to after the switching timing t14 has elapsed. That is, at the timing t14 when the saddle-mounted vehicle 1 is decelerated to the state in which the saddle-mounted vehicle 1 is accelerated by the power source torque T1, the first power transmission member D1 and the second power transmission member D2 It is located at the acceleration position Pd. Therefore, at the time of switching to the acceleration state by the power source torque T1, the occurrence of the situation where the first dog D1 and the second dog D2 move from the deceleration position Ps to the acceleration position Pd is suppressed.
  • FIG. 8 is a time chart showing an example of changes in the state and torque of each part in the comparative example in which the shock suppression process shown in FIG. 7 is not performed.
  • the power source torque T1 is controlled according to the torque indicated value Ct1.
  • the power source torque T1 is not additionally increased. Therefore, during the deceleration of the saddle-mounted vehicle 1, the first dog D1 and the second dog D2 stay at the deceleration position Ps. Specifically, the first dog D1 and the second dog D2 are located at the deceleration position Ps until the timing t14. At the timing t14, the power source torque T1'increases as the torque indicated value Ct1 increases.
  • the first dog D1 and the second dog D2 move from the deceleration position Ps to the acceleration position Pd.
  • the first dog D1 and the second dog D2 move at a speed corresponding to an increase in the torque indicated value Ct1.
  • a shock due to play of the power transmission members D1 and D2 occurs in the driving force Pd1'.
  • the roll angle A1'of the saddle-mounted vehicle 1 also changes due to the shock generated in the driving force Pd1'at the timing t15 of FIG. That is, the posture of the saddle-mounted vehicle 1 changes.
  • the shock generated in the driving force Pd1 and the shock generated in the saddle-mounted vehicle 1 can be reduced.
  • FIG. 9 is a time chart showing an example of changes in the state and torque of each part in the second application example.
  • the amount of the power source torque T2 at the timing t13 when the braking instruction value Cb2 decreases according to the rider's operation is added to the amount corresponding to the braking instruction value Cb2. It is smaller than the application example of 7.
  • the added power source torque T2 is a negative value.
  • the amount added to the amount corresponding to the torque instruction value Ct2 in the braking force B2 is also shown in FIG. Is smaller than the application example of.
  • the other states shown in FIG. 9 are the same as the application examples shown in FIG. 7.
  • the first dog D1 and the second dog D2 move from the deceleration position Ps to the acceleration position Pd. Therefore, it is possible to reduce the shock generated in the driving force Pd1 and the shock generated in the saddle-mounted vehicle 1.
  • the power source torque T2 is preferably larger than the value obtained by converting the added braking force B2 into the torque at the power source after the timing t13 in which the braking instruction value Cb2 decreases according to the rider's operation. ..
  • the first dog D1 and the second dog D2 easily move from the deceleration position Ps to the acceleration position Pd.
  • the power source torque T2 uses the braking force B2 as a result of the addition and the running resistance of the saddle-mounted vehicle 1 as the power source 11 after the timing t13 in which the braking instruction value Cb2 decreases according to the rider's operation. It is preferable that the value is larger than the value converted into the torque in. In this case, the first dog D1 and the second dog D2 are more likely to move from the deceleration position Ps to the acceleration position Pd.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

制動装置の状態の変化を伴って減速している状態から加速する状態へ変化する場合に、動力伝達部材の遊びに起因してビークルに生じるショックを低減することが可能なストラドルドビークルを提供する。ストラドルドビークルは、車輪と、車体と、動力源と、動力伝達経路と、制動装置と、を備える。動力伝達経路は、互いに係合している場合に動力を伝達する第1動力伝達部材及び第2動力伝達部材を含む。制御装置は、前記制動装置の動作によって前記ストラドルドビークルが減速している状態から、前記制動装置の動作の解除に伴って前記動力源の出力トルクによって前記ストラドルドビークルが加速する状態に切り替わるタイミングの前から前記タイミング経過後まで、前記第1動力伝達部材及び前記第2動力伝達部材が前記減速位置に位置しないように少なくとも前記動力源を制御する。

Description

ストラドルドビークル
 本発明は、鞍乗型車両に関する。
 動力源の動力で走行する鞍乗型車両には、互いに遊びを有して設けられ互いに係合することにより動力を伝達する複数の動力伝達部材を有するタイプの車両がある。このような車両として、例えばドグタイプのクラッチを有する鞍乗型車両が知られている。ドグタイプのクラッチは、動力伝達部材としての複数種類のドグを備えている。例えば、複数種類のドグのうち第1ドグと第2ドグは嵌合可能であるように設けられている。第1ドグ及び第2ドグは、回転軸方向に相対的に移動することにより、互いに嵌合又は嵌合解除する。動力の伝達及び切断が切替えられる。嵌合状態の第1ドグと第2ドグとの間には周方向で遊びが設けられている。第2ドグと第1ドグとの間の周方向の遊びには、円滑な動力の伝達及び切断の切替えのため、ある程度の大きさが設定されている。
 鞍乗型車両の加減速に伴い動力源の駆動状態が変化する場合に、ドグの間の遊びに起因してショックが生じる場合がある。例えば、動力源の状態が減速状態(例えばエンジンブレーキ動作状態)から加速状態に切り替わる場合、隣り合って配置された2つの第2ドグの間にある第1ドグが、第1ドグから見て回転方向とは逆方向に配置されている1つの第2ドグから離れ(非伝達状態)、加速しながら遊び分移動した後、回転方向に配置された第2ドグと再接触する(ドグ係合による伝達状態)。つまり、動力が伝達される伝達状態から動力が伝達されない非伝達状態を経て再び伝達状態へ至るまでの間に、第1ドグに非伝達状態で蓄積される角運動量が加速によって増大する。非伝達状態が伝達状態に切り替わる再接触によって、増大した角運動量が伝達される。
 この結果、再接触の場合に出力されるトルクの変動量が増大する。トルクの変動は駆動輪に伝達され、最終的にビークルにショックが生じる。
 例えば、特許文献1には、動力伝達部材間の遊びが加速又は減速の際に無くなるときの、動力伝達部材間の接触速度及び伝達トルクのうち少なくともいずれかを低減する加減速制御装置が示されている。この加減速制御装置は、動力伝達経路のうち特定の対象部位の入力軸の回転速度に関する情報を検出し、回転速度に関する情報に基づいて入力軸及び出力軸の相対回転位置を演算する。そして加減速制御装置は、演算した相対回転位置に基づいて、接触速度及び伝達トルクのうちの少なくともいずれかが小さくなるように、入力軸及び出力軸の少なくともいずれかを加速又は減速する。これにより、遊びに起因するショックを抑えることができる。
特許4722470号公報
 鞍乗型車両は、車輪に制動力を付与する制動装置を有している。鞍乗型車両では、制動装置の状態の変化を伴って、鞍乗型車両が減速している状態から加速する状態へ変化する場合がある。鞍乗型車両は、動力源のトルクの増減及によって旋回中の姿勢が制御される。
 鞍乗型車両は、制動装置の状態の変化を伴って減速している状態から加速する状態へ変化する場合に、動力伝達部材の遊びに起因してビークルに生じるショックを低減することが望まれている。
 本発明の目的は、制動装置の状態の変化を伴って減速している状態から加速する状態へ変化する場合に、動力伝達部材の遊びに起因してビークルに生じるショックを低減することが可能な鞍乗型車両を提供することである。
 (1) 鞍乗型車両であって、
 前記鞍乗型車両は、
 車輪と、
 前記車輪を支持する車体と、
 前記車輪を駆動するためのトルクを出力する動力源と、
 前記動力源から出力されるトルクを前記車輪へ伝達する動力伝達経路であって、互いに係合している場合に動力を伝達する第1動力伝達部材及び第2動力伝達部材を含み、前記第1動力伝達部材及び前記第2動力伝達部材は、前記鞍乗型車両が加速中の場合に加速位置で係合し鞍乗型車両が減速中の場合に前記加速位置とは異なる減速位置で係合し、前記加速位置から前記減速位置まで相対的に移動する遊びを有するように構成された、動力伝達経路と、
 前記車輪に制動力を付与する制動装置と、
 前記制動装置の動作によって前記鞍乗型車両が減速している状態から、前記制動装置の動作の解除に伴って前記動力源の出力トルクによって前記鞍乗型車両が加速する状態に切り替わるタイミングの前から前記タイミング経過後まで、前記第1動力伝達部材及び前記第2動力伝達部材が前記減速位置に位置しないように少なくとも前記動力源を制御する、制御装置と、
を備える。
 上記構成の前記鞍乗型車両は、車輪と、車体と、動力源と、動力伝達経路と、制動装置と、制御装置とを備える。車体は、車輪を支持する。動力源は、車輪を駆動するためのトルクを出力する。
 動力伝達経路は、動力源から出力されるトルクを車輪へ伝達する。動力伝達経路は、互いに係合している場合に動力を伝達する第1動力伝達部材及び第2動力伝達部材を含んでいる。第1動力伝達部材及び第2動力伝達部材は、鞍乗型車両が加速中の場合に加速位置で係合し鞍乗型車両が減速中の場合に前記加速位置とは異なる減速位置で係合し、前記加速位置から前記減速位置まで相対的に移動する遊びを有する。制動装置は、車輪に制動力を付与する。
 制御装置は、制動装置の動作によって鞍乗型車両が減速している状態から、制動装置の動作の解除に伴って動力源の出力トルクによって鞍乗型車両が加速する状態に切り替わるタイミングの前から前記タイミング経過後まで、第1動力伝達部材及び第2動力伝達部材が減速位置に位置しないように少なくとも動力源を制御する。
 上記構成によれば、制動装置の動作によって鞍乗型車両が減速している状態から、制動装置の動作の解除に伴って動力源の出力トルクによって鞍乗型車両が加速する状態に切り替わる。この切り替わりのタイミングの前から前記タイミング経過後まで、第1動力伝達部材及び第2動力伝達部材が減速位置に位置しない。このため、制動装置の動作の解除に伴って動力源の出力トルクによって鞍乗型車両が加速する状態に切り替わるタイミングでは、第1動力伝達部材及び第2動力伝達部材が減速位置に位置しない。従って、鞍乗型車両が加速する状態に切り替わる場合に、動力伝達部材の遊びに起因して鞍乗型車両に生じるショックを低減することができる。
 (2) (1)の鞍乗型車両であって、
 前記制御装置は、制動装置の動作による前記鞍乗型車両の減速中に、前記制動装置による制動力の減少に伴い、前記第1動力伝達部材及び前記第2動力伝達部材が前記加速位置へ移動するよう前記制動装置に制動力を発生させつつ前記動力源にトルクを増加させ、
前記第1動力伝達部材及び前記第2動力伝達部材が前記加速位置に移動した後、前記第1動力伝達部材及び前記第2動力伝達部材が前記加速位置を維持するよう前記動力源のトルクを増加させる。
 上記構成によれば、動力源にトルクが増加するので、第1動力伝達部材及び第2動力伝達部材が短時間で減速位置から離れる。従って、鞍乗型車両が減速している状態から、加速する状態への切り替わりの応答性を向上させつつ、動力伝達部材の遊びに起因してビークルに生じるショックを低減することができる。
 (3) (1)又は(2)の鞍乗型車両であって、
 前記車体は、左旋回中に車両左方向に傾斜し、右旋回中に車両右方向に傾斜するリーン姿勢で旋回し、
 前記制御装置は、前記車体がリーン姿勢で旋回している場合に、前記制動装置の動作によって前記鞍乗型車両が減速している状態から、前記制動装置の動作の解除に伴って前記動力源の出力トルクによって前記鞍乗型車両が加速する状態に切り替わるタイミングの前から前記タイミング経過後まで、前記第1動力伝達部材及び前記第2動力伝達部材が前記減速位置に位置しないように少なくとも前記動力源を制御する。
 上記構成の鞍乗型車両は、動力源のトルクの増減によって旋回中の姿勢が制御される。上記構成によれば、リーン姿勢で旋回している場合に、動力伝達部材の遊びに起因してビークルに生じるショックを低減することができる。上記構成によれば、ビークルに生じるショックの低減を、鞍乗型車両の旋回の状態に適合させることができる。
 (4) (2)又は(3)の鞍乗型車両であって、
 前記鞍乗型車両は、
 前記鞍乗型車両のライダーの操作に基づいて前記動力源から出力されるトルク指示値を指示する出力指示部と、
 ライダーの操作に基づいて前記制動装置を作動させる制動操作部と、を更に備え、
 前記制御装置は、前記鞍乗型車両の減速中に前記制動操作部の操作が解除された場合に、前記制動装置に制動力を付与させつつ、前記動力源にトルクを増加させる。
 上記構成によれば、制動操作部の操作が解除された場合に、制動装置は制動力を付与しつつ、動力源がトルクを増加させる。従って、制動操作部の操作が解除される場合でも、動力伝達部材の遊びに起因してビークルに生じるショックを低減することができる。
 (5) (4)の鞍乗型車両であって、
 前記制御装置は、前記鞍乗型車両の減速中に前記制動操作部の操作が解除された場合に、前記制動装置に制動力を減少させつつ、前記動力源にトルクを増加させる。
 上記構成によれば、制動操作部の操作が解除された場合に、制動装置が制動力を減少しつつ、動力源がトルクを増加する。動力源によるトルクの増加量は、制動装置による制動力の減少量に応じて少なくすることができる。従って、動力源による出力トルクを抑えつつ、動力伝達部材の遊びに起因してビークルに生じるショックを低減することができる。
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。本明細書中で使用される場合、用語「取り付けられた」、「接続された」、「結合された」および/またはそれらの等価物は広く使用され、直接的および間接的な取り付け、接続および結合の両方を包含する。さらに、「接続された」および「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な電気的接続または結合を含むことができる。他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。本発明の説明においては、技術および工程の数が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。したがって、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。
 本明細書では、新しい鞍乗型車両装置について説明する。以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
 鞍乗型車両とは、運転者がサドルに跨って着座する形式の車両をいう。鞍乗型車両としては、例えばリーン車両が挙げられる。ビークルは例えば自動二輪車である。自動二輪車としては、特に限定されず、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば、ATV(All-Terrain Vehicle)等であってもよい。また、ビークルは、鞍乗型車両に限定されず、車室を有する4輪車両等であってもよい。また、遊びを有して設けられる伝達部材を備えたビークルは、リーン姿勢で旋回可能に構成されていることが好ましい。リーン姿勢で旋回可能に構成されたビークルは、旋回時にビークルに加わる遠心力に対向するために、カーブの中心方向に傾いた姿勢で旋回するように構成される。運転者の操作(例えば体重移動)によって、ビークルはカーブの中心方向に傾く。運転者によってビークルの姿勢が制御されるという性質上、ビークルは、ショックが抑制され、加速又は減速の応答性が高いことが好ましい。搭載される機器や装置も、小型化及び軽量化されることが好ましい。そのような観点から見て、有段変速機の設計自由度は高いことが好ましい。例えば、上述したような機械的強度が低下するおそれがある構造が採用される場合には、機械的強度を保持するためのサイズアップや補強が必要になる可能性がある。これは、有段変速機の構造によって設計自由度が制約を受ける一例であり、設計自由度が制約を受けることにより、小型化及び軽量化に影響が及ぶおそれがある。これに対して、本発明は、設計自由度を高めることができ、リーン姿勢で旋回可能に構成されたビークルに好適に適用され得る。特に、後述するように、遊びを有して設けられる伝達部材を備えたビークルにおいて、伝達部材の遊びに起因して動力源の状態変化に伴いビークルに生じるショックを抑制しつつ、加速又は減速の応答性がさらに向上する。リーン姿勢で旋回可能に構成されたビークルでは、運転者がビークルの姿勢を制御するので、運転者はビークルの挙動を感じ易い。そのため、リーン姿勢で旋回可能に構成されたビークルでは、ショックが抑制され、加速又は減速の応答性が高いことが好ましい。そのような観点から見ても、本発明は、リーン姿勢で旋回可能に構成されたビークルにとって好適である。リーン姿勢で旋回可能に構成されたビークルとしては、例えば、リーン姿勢で旋回可能に構成された鞍乗型車両(例えば、自動二輪車、自動三輪車)が挙げられる。
 例えば、複数の第2動力伝達部材が周方向に第1動力伝達部材の周方向長さよりも大きな間隔を空けて配置され、互いに隣合って配置された2つの第2動力伝達部材の間に第1動力伝達部材が配置される場合、互いに隣合って配置された2つの第2動力伝達部材と第1動力伝達部材の間に生じる隙間は遊び(伝達部材のBacklash)である。例えば、動力源の状態が減速状態から加速状態に切り替わる場合、隣り合って配置された2つの第2動力伝達部材の間にある第1動力伝達部材が、一つの第2動力伝達部材から離れた後、逆方向の位置に配置された異なる第2動力伝達部材と再接触する。これにより、第1動力伝達部材が第2動力伝達部材と係合する。第1動力伝達部材が、一つの第2動力伝達部材から離れた後、逆方向の位置に配置された異なる第2動力伝達部材と係合するまで移動する間隔は、遊びである。
 第1動力伝達部材及び第2動力伝達部材を含む動力伝達経路は、例えば、変速機、クラッチ、チェーン及びスプロケットである。
 例えば、第1動力伝達部材及び第2動力伝達部材が有段変速機に用いられる場合、第1動力伝達部材は、駆動ギア及び被駆動ギアのいずれかに設けられている。第1動力伝達部材と周方向に遊びを有して当たる第2動力伝達部材は、周方向に隣り合う第1動力伝達部材の間の空隙内に位置する場合に第1動力伝達部材との間に遊びが生じる形状を有しており、且つ第1動力伝達部材に対して周方向に相対移動して第1動力伝達部材と周方向に当たるように設けられている。第2動力伝達部材は、駆動ギア及び被駆動ギアのいずれかに設けられていてもよく、また、駆動ギア及び被駆動ギアとは別の部材である動力伝達部材リングに設けられていてもよい。第1動力伝達部材又は第2動力伝達部材は、突部であってもよく、また、他方の動力伝達部材が入る穴又は溝を画定する側壁部分であってもよい。有段変速機の変速段設定機構は、各変速段において第1動力伝達部材及び第2動力伝達部材を有する。しかしこれは、必ずしも、変速段設定機構が、変速段ごとに第1動力伝達部材及び第2動力伝達部材を個別に有することを意味するものではない。変速段設定機構は、各変速段における動力伝達を機械的に且つ選択的に有効に設定するための動作を行うように第1動力伝達部材及び第2動力伝達部材を有していればよい。例えば、第2動力伝達部材としての1つの動力伝達部材リングが、2つの変速段に対応するように設けられていてもよい。
 第1動力伝達部材が第2動力伝達部材に当たる周方向は、第1動力伝達部材が設けられた駆動ギア又は被駆動ギアの回転方向に沿った方向である。
 動力源として、例えば、エンジン及び電動モータが挙げられる。即ち、鞍乗型車両としては、例えば、エンジン車、電動車両、又は、エンジン-モータのハイブリッド車両が挙げられる。
 動力源がエンジンの場合、例えば、エンジンに供給される空気量を増大することによって、動力源の動力を増大することができる。また、エンジンに供給される燃料を増大することによっても、動力源の動力を増大することができる。例えば、エンジンに供給される燃料を、ストイキオメトリー状態の燃料と比べて増大することによって、動力源の動力を増大することができる。
 第1動力伝達部材及び第2動力伝達部材が減速位置に位置しないように動力源を制御することは、例えば、第1動力伝達部材及び第2動力伝達部材が加速位置に位置するように動力源を制御することである。ただし、第1動力伝達部材及び第2動力伝達部材が減速位置に位置しないように動力源を制御することは、減速位置及び加速位置のいずれにも位置しないように制御することも含む。減速位置及び加速位置のいずれにも位置しない場合は、第1動力伝達部材及び第2動力伝達部材が互いに離れた状態である。
 1動力伝達部材及び第2動力伝達部材が加速位置に位置するように動力源が制御されることによって、鞍乗型車両に生じるショックがより低減される。
 制御装置が、第1動力伝達部材及び第2動力伝達部材が加速位置に移動した後、第1動力伝達部材及び前記第2動力伝達部材が前記加速位置を維持するよう動力源のトルクを増加させる場合、制御装置は、例えば、動力源のトルクを一定に維持してもよい。ただし、制御装置はこれに限られず、例えば、動力源のトルクを変動させてもよい。例えば、第1動力伝達部材及び第2動力伝達部材が加速位置に移動した後、動力源のトルクが時間の経過とともに増大してもよい。
 第1動力伝達部材及び第2動力伝達部材が加速位置に移動した後、第1動力伝達部材及び前記第2動力伝達部材が加速位置を維持するよう動力源のトルクを増加させる場合、制動装置は制動力の付与を解除することができる。しかし、第1動力伝達部材及び前記第2動力伝達部材が加速位置を維持するよう動力源のトルクを増加させる場合、制動装置は制動力の付与を解除しなくともよい。ただし、加速位置を維持するよう動力源のトルクを増加させる場合に制動力の付与を解除する場合には、動力源によるトルク増加の応答性が向上する。
 制動装置は、例えば、摩擦力によって車輪に制動力を付与する摩擦ブレーキ装置である。制動装置は、特に限られず、例えば、摩擦力によらず電磁力によって車輪に制動力を付与するモータ又は発電機であってもよい。制動装置は、車輪に直接取付け又は接触しなくともよい。制動装置は、例えば、車輪にトルクを伝達する伝達経路のうち、第1動力伝達部材及び第2動力伝達部材よりも伝達の下流に設けられる。
 制動装置は、例えば、ブレーキ操作子の操作によって制動力を付与する。制動装置は、特に限られず、例えば、鞍乗型車両の自動制御装置によって制動力を付与してもよい。このことは、動力源について同じである。「制動装置の動作によって鞍乗型車両が減速している状態」(状態A)から「制動装置の動作の解除に伴って動力源の出力トルクによって鞍乗型車両が加速する状態」(状態B)への切り替えタイミングに関して、状態Aと状態Bとの間に、他の状態が介在していてもよい。この場合、切り替えタイミングは、状態Aが終了してから状態Bが開始されるまでの期間を指す。即ち、切り替えタイミングは、必ずしも、1つの時点である必要はなく、1つの期間であってもよい。当該他の状態としては、特に限定されず、例えば、制動装置の動作が解除されておらず動力源の出力トルクによって鞍乗型車両が加速する状態が挙げられる。また、状態Aは、ライダーによる制動装置に対する操作に基づいて制動装置が動作する状態(状態A1)であってもよく、ライダーによる制動装置に対する操作無しで制動装置が動作する状態(状態A2)であってもよく、状態A1及び状態A2の両方を含んでいてもよい。状態A2において、制動装置は、例えば、上述したように、制御装置(自動制御装置)によって制御される。少なくとも状態Aの終了時点は、状態A2であることが好ましい。状態Aは、例えば、状態A1で開始され、状態A1から状態A2に遷移し、状態A2で終了するように構成されていることが好ましい。後述する実施形態を参照すると、ステップS12において制動動作中であると判断された場合、状態Aが開始されている。このとき、制動操作が行われているので、状態Aは、状態A1で開始されている。その後、ステップS21において制動操作が解除されたと判断され、制動力が追加された場合、状態A2が開始されている。即ち、状態Aは、状態A1から状態A2に遷移している。その後に、加速指示が入力されると(ステップS31:YES)、制動力追加が終了する(ステップS32)。この時、状態Aが状態A2で終了すると共に、状態Bが開始されている。状態A2の期間の少なくとも一部(状態A2の終了時点を含む期間)においては、動力源によるトルク出力が行われていることが好ましい。状態A2から状態Bに切り替わる時には、ライダーによる加速操作に基づいて動力源のトルク出力が行われる。その前に、状態A2において、ライダーによる加速操作によらない動力源のトルク出力が行われることが好ましい。この動力源のトルク出力は、例えば、上述したように、制御装置(自動制御装置)によって制御される。このように、状態A2の期間の少なくとも一部においては、ライダーによって制動操作又は加速操作のいずれも行われずに制動装置が動作するとともに動力源がトルクを出力してもよい。制動装置は、車両が有する少なくともいずれかの車輪に制動力を付与する。制動装置は、例えば、動力源のトルクが供給される車輪とは異なる車輪に制動力を付与してもよい。また、制動装置は、例えば全ての車輪に制動力を付与してもよい。
 制動装置の動作の解除と動力源の出力トルクによる鞍乗型車両の加速とが実質的に同時に生じる場合は、制動装置の動作の解除に伴って動力源の出力トルクによって鞍乗型車両が加速する場合である。但し、制動装置の動作の解除と動力源の出力トルクによる鞍乗型車両の加速とに時間差がある場合も、制動装置の動作の解除に伴って動力源の出力トルクによって鞍乗型車両が加速する場合である。
 制動装置に制動力の付与状態を保持させることは、制動装置による制動力の大きさを維持することを含む。但し、制動装置に制動力の付与状態を保持させることは、制動力の大きさをゼロでない大きさに変更しつつ制動力を保持することも含まれる。
 制動力を減少させつつ動力源にトルクを増加させる場合、制動力減少量とトルクの増加量は等しくてもよい。但し、制動力減少量とトルクの増加量は、等しくなくてもよい。
 制御装置は、プログラムを実行するプロセッサを有していてもよく、また、電子回路でもよい。
 本発明によれば、制動装置の状態の変化を伴って減速している状態から加速する状態へ変化する場合に、動力伝達部材の遊びに起因してビークルに生じるショックを低減することが可能な鞍乗型車両が実現する。
本発明の一実施形態に係る鞍乗型車両を説明する図である。 図1に示す鞍乗型車両の外観図である。 図2に示す鞍乗型車両の駆動及び制動に関する概略構成を説明する図である。 (A)は、非伝達状態における被駆動ギア及びドグリングを示す図である。(B)は、伝達状態における被駆動ギア及びドグリングを示す図である。(C)は、伝達状態における被駆動ギア及びドグリングの周方向部分断面図である。 図3に示す制御装置の構成を示す図である。 図5に示す制御装置の動作を示すフローチャートである。 鞍乗型車両の各部の状態及びトルクの変化の例を示すタイムチャートである。 図7に示すショック抑制の処理を実施しない比較例における、各部の状態及びトルクの変化の例を示すタイムチャートである。 第2の適用例における各部の状態及びトルクの変化の例を示すタイムチャートである。
 以下、本発明を、実施形態に基づいて図面を参照しつつ説明する。
 図1は、本発明の一実施形態に係る鞍乗型車両を説明する図である。図1のパート(A)は、鞍乗型車両の構成を示すブロック図である。図1のパート(B)は、制御装置の動作を示すフローチャートである。図1のパート(C)は、各部の状態及びトルクの変化を示すタイムチャートである。
 図1に示す鞍乗型車両1は、動力源11と、動力伝達経路9と、車輪5と、制動装置70と、制御装置8とを備えている。また、鞍乗型車両1は、出力指示部7bと、制動操作部7fとを備えている。
 動力源11は、車輪5を駆動するためのトルクを出力する。より詳細には、動力源11は、トルクと回転速度で構成される動力を出力する。鞍乗型車両1の車輪5は、動力源11から出力される動力の供給を受け、動力により駆動される。鞍乗型車両1は、車輪5によって駆動され、走行する。
 動力伝達経路9は、動力源11から出力されるトルクを車輪5へ伝達する。動力伝達経路9は、第1動力伝達部材D1及び第2動力伝達部材D2を有する。第1動力伝達部材D1、及び第2動力伝達部材D2のそれぞれは、例えば互いにドグ係合するドグである。
 第1動力伝達部材D1及び第2動力伝達部材D2は、互いの間に遊びを有し且つ互いに相対移動可能であるように設けられている。図1のパート(A)に示す第1動力伝達部材D1及び第2動力伝達部材D2の間には、遊び角Aclが設けられている。
 第1動力伝達部材D1及び第2動力伝達部材D2は、鞍乗型車両1が走行する場合、回転方向Rに回転する。
 第1動力伝達部材D1及び第2動力伝達部材D2は、加速位置Pdと減速位置Psとの間で相対的に移動する。加速位置Pdと減速位置Psは、第2動力伝達部材D2に対する第1動力伝達部材D1の相対位置である。第1動力伝達部材D1及び第2動力伝達部材D2は、加速位置Pdと減速位置Psとで係合する。第1動力伝達部材D1及び第2動力伝達部材D2は、鞍乗型車両1が加速中の場合に加速位置Pdで係合する。第1動力伝達部材D1及び第2動力伝達部材D2は、鞍乗型車両1が減速中の場合に減速位置Psで係合する。
 第1動力伝達部材D1及び第2動力伝達部材D2は、伝達状態と非伝達状態とを有する。伝達状態は、第1動力伝達部材D1及び第2動力伝達部材D2が互いに係合している状態である。即ち、伝達状態は、第1動力伝達部材D1及び第2動力伝達部材D2が、加速位置Pd又は減速位置Psで係合している状態である。第1動力伝達部材D1及び第2動力伝達部材D2は、伝達状態で動力を伝達する。非伝達状態は、第1動力伝達部材D1が第2動力伝達部材D2から離れている状態である。第1動力伝達部材D1及び第2動力伝達部材D2は、非伝達状態では動力を伝達しない。
 制動装置70は、車輪5に制動力を付与する。制動装置70は、制動操作部7fに対するライダーの操作に基づいて動作する。例えば、制動装置70は、制動操作部7fに対する操作量の増大に基づいて、制動力を増加する。また、制動装置70は、制動操作部7fに対する操作量の減少に基づいて、制動力を減少する。
 但し、制動装置70は、制御装置8の制御によって、制動操作部7fの操作から独立して動作することが可能である。制御装置8は、制動装置70を制御する。
 制動装置70は、例えば、ライダーの操作に応じて制動操作部7fから出力される作動液の圧力によって動作する。制動装置70は、例えば、制動操作部7fの操作が終了した後、ある程度の圧力を維持する。これによって、制動装置70は、制動操作部7fの操作に対応する目標値よりも制動力を増大することができる。即ち、制動装置70は、操作に対応する目標値に対し制動力を追加することができる。なお、制動装置70が、例えば、作動液のポンプを備える場合、制動装置70は、操作に対応する目標値に対し更に積極的に制動力を増大することができる。
 制御装置8は、動力源11を制御する。制御装置8は、動力源トルクを制御する。動力源トルクは、動力源11から出力されるトルクである。制御装置8は、ライダーに操作される出力指示部7bから出力されるトルク指示値に基づいて動力源11の出力トルクを制御する。例えば、制御装置8は、出力指示部7bの加速操作に基づいて、動力源11から出力されるトルクを増加する。制御装置8は、出力指示部7bの減速操作に応じて、動力源11から出力されるトルクを減少する。
 但し、動力源11は、制御装置8の制御によって、出力指示部7bの操作から独立して動作することが可能である。
 制御装置8は、出力指示部7bからのトルク指示値に応じたトルクの目標値よりも、動力源11の出力トルクを増大することができる。即ち、制御装置8は、操作に対応する目標値に対し動力源11の出力トルクを追加することができる。
 図1のパート(C)のタイムチャートには、制動指示値Cb1、制御装置8の制動力B1、トルク指示値Ct1、動力源11から出力される動力源トルクT1、車輪5が発生する駆動力Pd1、及びギア相対回転角Agの変化の一例が示されている。ギア相対回転角Agは、第1動力伝達部材D1及び第2動力伝達部材D2の相対角度である。
 図1のパート(C)の例では、先ず、タイミングt11の前後付近でライダーの操作によりトルク指示値Ct1が減少する。トルク指示値Ct1の減少に応じて動力源トルクT1が減少する。この結果、駆動力Pd1が減少する。駆動力Pd1は、負の値になる。
 動力源11は、動力源トルクT1として負のトルクT1を出力する。負のトルクは、動力源11の動力軸の回転を妨げる向きの減速トルクである。負のトルクは、例えば、動力源11がエンジンである場合に、動力源11の燃焼動作により発生するトルクが、動力源11自体及びその下流に位置する構成から動力源11が受ける回転抵抗の力よりも小さい場合に生じるトルクである。負のトルク及び負の動力は、動力源11が負荷として駆動されていることを意味する。つまり、負のトルクを出力する動力源11は、車輪5からの動力によって駆動されている。減速状態は、例えば、いわゆるエンジンブレーキが作動している状態である。減速状態で、第1動力伝達部材D1及び第2動力伝達部材D2には、動力源11によって、回転方向Rとは逆向きのトルクが加えられる。
 タイミングt11において、鞍乗型車両1は減速する状態に変化する。駆動力Pd1が負の値になることで、第1動力伝達部材D1及び第2動力伝達部材D2が、加速位置Pdから減速位置Psに移動する。即ち、図1のパート(C)に示すギア相対回転角Agが、タイミングt11で加速位置Pdから減速位置Psに変化する。
 タイミングt12で、ライダーの操作により制動指示値Cb1が増加する。制動指示値Cb1に応じて、制御装置8の制動力B1が増加する。
 鞍乗型車両1は、タイミングt12以降、制動装置70の動作によって減速する状態になる。
 図1のパート(C)のタイミングt14で、制動装置70の動作によって鞍乗型車両1が減速している状態が、制動装置70の動作の解除に伴って動力源トルクT1によって鞍乗型車両1が加速する状態に切り替わる。タイミングt14を切替わりタイミングと称する。
 本実施形態における制御装置8は、切替わりタイミングt14の前から切替わりタイミングt14経過後まで、第1動力伝達部材D1及び第2動力伝達部材D2が減速位置Psに位置しないように動力源11を制御する。例えば、制御装置8は、1動力伝達部材D1及び第2動力伝達部材D2が加速位置Pdに位置するように動力源11を制御する。
 上述した動作を図1のパート(B)のフローチャートも参照して説明すると、制御装置8は、制動装置70の動作による減速の有無を判別する(S10)。
 制動装置70の動作による減速があった場合(S10でYes)、制御装置8は、動力源トルクT1を追加するよう動力源11を制御する(S20)。なお、図1のパート(C)の例では、制動装置70の動作による減速後、減速の操作が終了したタイミングt13で制御装置8が動力源トルクT1を追加するように制御する。
 これによって、図1のパート(C)のタイミングt13で、トルク指示値Ct1に関わらず、動力源トルクT1が増加する。
 この結果、第1動力伝達部材D1及び第2動力伝達部材D2が加速位置Pdに位置する。
 この後、制御装置8は、制動装置70の動作の解除に伴って動力源トルクT1によって鞍乗型車両1が加速する状態か否か判別する(S30)。鞍乗型車両1が加速する状態になったと判別された場合(S30でYes)、制御装置8は、トルク指示値Ct1に関わらない動力源トルクの増加を終了する(S40)。但し、図1のパート(C)に示すように、タイミングt14で、操作に応じてトルク指示値Ct1が増加している。このため、動力源トルクT1は、トルク指示値Ct1は増加に応じて増加する。
 本実施形態によれば、切替わりタイミングt14の前から切替わりタイミングt14経過後まで、第1動力伝達部材D1及び第2動力伝達部材D2が加速位置Pdに位置する。つまり、鞍乗型車両1が減速している状態から、動力源トルクT1によって鞍乗型車両1が加速する状態に切替わるタイミングt14で、第1動力伝達部材D1及び第2動力伝達部材D2が加速位置Pdに位置している。
 このため、動力源トルクT1によって加速する状態に切替わる時に、第1動力伝達部材D1及び第2動力伝達部材D2が減速位置Psから加速位置Pdに移動する事態の発生が抑制される。この結果、動力伝達部材D1,D2の遊びに起因して鞍乗型車両1に生じるショックを低減することができる。
 続いて、上記実施形態が適用される適用例を説明する。
[第1の適用例]
 図2は、鞍乗型車両1の実施形態の適用例を示す外観図である。
 図2に示す鞍乗型車両1は、リーン車両である。鞍乗型車両1は、左旋回中に車両の左方向に傾斜し、右旋回中に車両の右方向に傾斜するリーン姿勢で旋回する。鞍乗型車両1は、自動二輪車である。
 鞍乗型車両1は、車体2と、動力源11と、車輪4,5と、制御装置8と、動力伝達経路9とを備えている。
 車体2は、車輪4,5を支持する。制御装置8は、動力源11から出力されるトルクを制御する。
 また、鞍乗型車両1は、ハンドル3と、出力指示部7bとを備えている。出力指示部7bは、運転者の手によって操作されるようにハンドル3に設けられる。
 図に示す車輪4,5のうち、後ろの車輪5は、駆動輪である。動力源11は、車輪5を駆動するためのトルクを出力する。動力伝達経路9は、有段変速機13を有している。動力伝達経路9は、ドライブチェーン10と、後輪駆動用スプロケット5aも有している。
 動力源11から出力された動力は、有段変速機13へ伝達される。有段変速機13に伝達された動力は、ドライブチェーン10と、後輪駆動用スプロケット5aとを介して、車輪5に伝達される。
 図3は、図2に示す鞍乗型車両1の駆動及び制動に関する概略構成を説明する図である。
 本適用例における動力源11はエンジンである。図1には、動力源11として4気筒エンジンが示されている。動力源11としてのエンジンは、4ストロークエンジンである。図1では、1つの気筒のみ構成が概略的に示され、残りの気筒については構成の図示が省略されている。動力源11は、動力軸90と、シリンダ102と、ピストン103と、点火プラグ107を備えている。動力軸90はクランクシャフトである。
 ピストン103は、シリンダ102内に往復移動自在に設けられている。点火プラグ107は、シリンダ102内に形成される燃焼室104に設けられている。燃焼室104に続く吸気通路には、スロットルバルブ105、燃料噴射装置106が設けられている。スロットルバルブ105、燃料噴射装置106、及び点火プラグ107の動作は、制御装置8によって制御される。
 スロットルバルブ105は、燃焼室104に供給される空気の量を調整する。また、燃料噴射装置106は、燃焼室104に燃料を供給する。燃焼室104に供給された空気と燃料の混合気が、点火プラグ107の点火によって燃焼することで、ピストン103を往復動させる。ピストン103の往復動が、動力軸90の回転に変換される。動力源11から、動力軸90のトルクが出力される。
 鞍乗型車両1には、クラッチ12と、有段変速機13と、トルク検出器19と、変速段検出器55も備えられている。クラッチ12は、トルクの伝達経路における動力源11と有段変速機13との間に設けられている。クラッチ12は、動力源と有段変速機13との間で伝達される動力を断続する。クラッチ12は、運転者の操作に応じて動力を断続する。
 トルク検出器19は、動力源11の出力トルクを検出する。本適用例において、トルク検出器19は、動力軸速度検出器192を含んでいる。
 鞍乗型車両1において、動力源11で生じる動力は、通常、動力軸90、クラッチ12、有段変速機13の入力軸20、駆動ギア(21~26)、被駆動ギア(31~36)、ドグリング(37a~37c)、出力軸30、ドライブチェーン10、そして車輪5へと順に伝達される。以降、各部品の位置を、この動力の伝達の流れの向きを基準として、上流又は下流と称する場合もある。
 鞍乗型車両1は、制動操作部7f及び制動装置70を備えている。制動装置70は、制動操作部7fに対するライダーの操作に基づいて動作する。
 制動装置70は、例えば、ブレーキキャリパー71及びブレーキ電磁弁72を有する。制動操作部7fは、ライダーの操作に応じて動作液の圧力をブレーキキャリパー71に供給する。また、制動操作部7fは、ライダーの操作を表す信号を制御装置8に出力する。ブレーキキャリパー71は、動作液の圧力に応じて車輪5の回転に対し摩擦力を作用させる。これによって、制動装置70は、車輪5に制動力を付与する。
 ブレーキ電磁弁72は、制御装置8によって制御される。ブレーキ電磁弁72は、例えば、制動操作部7fに対する操作が終了した後も、制御装置8の制御によってブレーキキャリパー71が車輪5に制動力を付与する状態を継続することができる。例えば、ブレーキ電磁弁72は、制動操作部7fから出力された圧力を、制動操作部7fの操作が終了した後も一定時間保持する。ブレーキ電磁弁72は、制動力を付与する状態を、制御装置8の制御によって終了することができる。このようにして、制御装置8は、制動装置70を制御することができる。
 有段変速機13は、クラッチ12と接続されている。有段変速機13は、複数の変速段を有する。有段変速機13は、入力軸20と、出力軸30と、駆動ギア(21~26)と、被駆動ギア(31~36)と、変速段設定機構139とを有する。
 入力軸20は、回転可能に配置され、動力が入力される。入力軸20には、動力源11から出力された動力がクラッチ12を介して入力される。有段変速機13は、入力軸20に対し出力軸30の回転速度を段階的に変速する。
 出力軸30は、入力軸20と平行な軸線上に回転可能に配置される。複数の駆動ギア(21~26)は、入力軸20に設けられ、常に入力軸20と共に回転するように構成されている。また、複数の駆動ギア(21~26)のそれぞれは、各変速段に対応する。複数の被駆動ギア(31~36)は、出力軸30に設けられ、出力軸30と相対回転可能であるように構成される。複数の被駆動ギア(31~36)は、対応する駆動ギア(21~26)と噛み合い可能であるように構成されている。
 変速段設定機構139は、いずれか一つの変速段に係る駆動ギア(21~26)及び被駆動ギア(31~36)を介した入力軸20から出力軸30への動力伝達を機械的に且つ選択的に有効に設定するように構成されている。
 変速段設定機構139は、遊び付きドグ係合機構138を有する。遊び付きドグ係合機構138は、第1動力伝達部材としての第1ドグD1、及び第2動力伝達部材としての第2ドグD2を有する。即ち、鞍乗型車両1は、第1ドグD1、及び第2ドグD2を有する。
 第1ドグD1は、第1動力伝達部材D1の一例である。また、第2ドグD2は、第2動力伝達部材D2の一例である。以降、第1動力伝達部材D1を第1ドグD1とも称する。また、第2動力伝達部材D2を第2ドグD2とも称する。
 遊び付きドグ係合機構138は、入力軸20を介して駆動ギア(21~26)に至る動力又は被駆動ギア(31~36)から出力軸30へ向かう動力のいずれかを、機械的に且つ選択的に有効に設定する。
 有段変速機13の第1ドグD1(図4参照)は、被駆動ギア(31~36)に設けられている。第1ドグD1は、被駆動ギア(31~36)に、周方向に間隔を空けて配置された複数の突部である。第1ドグD1は、被駆動ギア(31~36)から、出力軸30の軸方向に突出している。また、遊び付きドグ係合機構138は、複数のドグリング(37a~37c)を有している。第2ドグD2は、ドグリング(37a~37c)に設けられている。第2ドグD2は、円環状のドグリング(37a~37c)に、周方向に間隔を空けて配置された複数の突起である。
 ドグリング(37a~37c)は、出力軸30の軸線上で移動可能なように出力軸30に設けられている。ドグリング(37a~37c)は、出力軸30と常に共に回転するように構成されている。ドグリング(37a~37c)のいずれかが、出力軸30の軸線上で移動することによって被駆動ギア(31~36)のいずれかと係合する。即ち、間隔を空けて配置された第2ドグD2の間隔に第1ドグD1が入り込み、且つ第2ドグD2が第1ドグD1と周方向で当たることにより、動力が伝達されるドグ係合が成立する。周方向は、被駆動ギア(31~36)及びドグリング(37a~37c)の回転方向Rを含む方向である。ドグ係合によって、回転方向Rの動力が伝達される。
 図4の(A)は、非伝達状態における被駆動ギア32及びドグリング37cを示す図である。図4の(B)は、伝達状態における被駆動ギア32及びドグリング37cを示す図である。図4の(C)は、伝達状態における被駆動ギア32及びドグリング37cの周方向部分断面図である。図4(A)~(C)は、第1ドグD1及び第2ドグD2を有する遊び付きドグ係合機構138を示している。
 図4(A)~(C)には、被駆動ギア(31~36)及びドグリング(37a~37c)の例として、第2速に対応する被駆動ギア32及びドグリング37cが示されている。但し、被駆動ギア32及びドグリング37cの基本的な構造は、他の変速段でも同じである。
 第1ドグD1は、被駆動ギア32に、周方向に間隔を空けて配置された複数の凸部である。周方向は、被駆動ギア32及びドグリング37cの回転方向Rに沿った方向である。第1ドグD1は、被駆動ギア32から、出力軸30の軸方向に突出している。これに対し、第2ドグD2は、中心に向かって突出した複数の凸部である。第2ドグD2は、ドグリング37cに、周方向に間隔を空けて配置された複数の凹部を形成している。図に示す第1ドグD1は、周方向に並んだ第2ドグD2の間隔に入り込んでいる。周方向に並んだ第2ドグD2の間の周方向の間隔の長さは、第1ドグD1の周方向での長さよりも大きい。第1ドグD1は、周方向に並んだ第2ドグD2の間隔に遊びを有して入り込んでいる。第1ドグD1と第2ドグD2は、互いの間に遊びを有し且つ互いに相対回転可能であるように設けられている。
 第2ドグD2の間の周方向での間隔の長さが第1ドグD1の周方向での長さよりも大きいため、ドグリング37cが被駆動ギア32に向かって軸方向に移動する場合に、第1ドグD1が、第2ドグD2の間に入り込みやすい。また、ドグリング37cが被駆動ギア32から離れるように軸方向に移動する場合に、第1ドグD1は、第2ドグD2の間から抜けやすい。従って、シフトアップ及びシフトダウンにおける、第1ドグD1と第2ドグD2の係合及び離脱が円滑である。
 図4(A)~(C)に示す回転方向Rは、鞍乗型車両1の走行時に被駆動ギア32及びドグリング37cが回転する方向を示す。従って、回転方向Rは、加速状態で被駆動ギア32に生じているトルクの向きを示す。回転方向Rを加速方向Rとも称する。
 図4の(B)の伝達状態では、第1ドグD1が第2ドグD2と周方向で当ったドグ係合により、第1ドグD1から第2ドグD2へ加速方向Rにトルクが伝達される。第1ドグD1と第2ドグD2は、互いに係合することによりトルクを伝達することが可能であるように構成されている。
 第1ドグD1及び第2ドグD2は、加速位置Pdと減速位置Psとで係合する。第1ドグD1及び第2ドグD2は、鞍乗型車両1が加速中の場合に加速位置Pdで係合する。第1ドグD1及び第2ドグD2は、鞍乗型車両1が減速中の場合に減速位置Psで係合する。
 第1ドグD1及び第2ドグD2は、鞍乗型車両1の加速中の場合に加速位置Pdで互いに係合する。第1ドグD1及び第2ドグD2は、鞍乗型車両1の減速中の場合に減速位置Psで互いに係合する。
 第1ドグD1及び第2ドグD2は、例えば鞍乗型車両1の減速中、動力源11が車輪5からの動力で駆動されている伝達状態から、動力源11から加速のトルクが出力される加速状態に変化するとき、被駆動ギア32が、加速方向Rに回転する。被駆動ギア32は、ドグリング37cに対し、図4の(B)に示す位置まで遊び角Acl分回転する。
 この時、第1ドグD1と第2ドグD2とは、減速位置Ps(図4の(B)の破線)の係合状態から、図4の(A)の非係合状態を経て、図4の(B)に示すに示す加速位置Pdで係合する。最終的に、図4の(B)に示す被駆動ギア32の位置で第1ドグD1が第2ドグD2と周方向で当たるドグ係合状態となる。
 第2ドグD2が第1ドグD1と周方向で当ったドグ係合により、加速方向Rに動力が伝達される。この結果、有段変速機13の入力軸20(図3参照)から、出力軸30に加速の動力が伝達される。
 図4(A)に示す状態が、図4(B)に示す状態に切り替わるまでの期間、被駆動ギア32の回転速度は、動力源11からの加速の動力によって増大する。この期間、被駆動ギア32は、駆動対象であるドグリング37cと係合していないため、ドグリング37cから回転の抵抗を受けない。従って、被駆動ギア32の回転速度の増大量は大きい。
 増大した回転速度で回転する被駆動ギア32がドグリング37cと係合すると、動力源11の出力トルクに加え、被駆動ギア32に係る回転の角運動量がドグリング37cに伝達される。つまり、動力源11の出力トルクに加え、被駆動ギア32からのイナーシャによる力が第1ドグD1から第2ドグD2に伝達される。被駆動ギア32から伝達される角運動量には、被駆動ギア32よりも動力伝達経路の上流に配置された部材の回転の角運動量も含まれている。被駆動ギア32よりも動力伝達経路の上流に配置された部材の回転の角運動量には、駆動ギア22、入力軸20、クラッチ12、動力軸90等の回転の角運動量も含まれている(図3参照)。従って、第1ドグD1及び第2ドグD2の状態が非伝達状態(図4(A))から伝達状態(図4(B))に切り替わる時、例えば被駆動ギア32単体の回転による角運動量よりも大きな角運動量が短い期間で伝達される。つまり、被駆動ギア32からドグリング37cに大きな角運動量が短い期間で伝達される。
 ドグリング37cに短い期間で伝達される角運動量は、有段変速機13の出力軸30(図3参照)から車輪5(図2参照)に伝達される。この場合、車輪5の動力に衝撃が生じる。車輪5の動力の衝撃は、鞍乗型車両1のショックとなる。
 本適用例では、制御装置8の制御により上記のショックが抑制される。
 図5は、図3に示す制御装置8の構成を示す図である。
 制御装置8は、プログラムを実行するプロセッサ8a、及びプログラム及びデータを記憶する記憶装置8bを備えている。制御装置8では、記憶装置8bに記憶されたプログラムをプロセッサ8aが実行することにより、動力源11及び制動装置70を制御する。
 制御装置8には、出力指示部7b、制動操作部7f、車両姿勢検出器7d、燃料噴射装置106、スロットルモータ108、及び点火プラグ107、制動装置70が接続されている。
 出力指示部7b(図2参照)は、ライダーの操作に応じた加速の指示値を出力する。制動操作部7fは、ライダーの操作に応じた制動の状態を出力する。車両姿勢検出器7dは、鞍乗型車両1の姿勢を検出及び出力する。点火プラグ107は、図示しない点火装置を介して制御装置8と接続されている。
 また、制御装置8には、動力軸速度検出器192、及び入力軸速度検出器27が接続されている。入力軸速度検出器27は、入力軸20の回転速度に関する情報を検出する。また、制御装置8には、車両姿勢検出器7dも接続されている。
 図6は、図5に示す制御装置8の動作を示すフローチャートである。
 図7は、鞍乗型車両1の各部の状態及びトルクの変化の例を示すタイムチャートである。
 図6のフローチャートは、図1のパート(B)を参照して説明した動作の適用例を示す。
 図7のタイムチャートは、図1のパート(C)の場合に比べて、ロール角A1も示されている点が異なる。図7の例では、タイミングt11の前に、走行中の鞍乗型車両1の出力指示部7bの加速操作が解除される。トルク指示値Ct1が減少する。
 また、タイミングt12で制動操作部7fが操作される。制動指示値Cb1が増加する。
 この後、鞍乗型車両1は、リーンしながら旋回する。ロール角A1が増加する。
 タイミングt13で、制動操作部7fの操作が解除される。タイミングt12で制動操作部7fが操作される。その後、鞍乗型車両1は、リーンしながら旋回する。タイミングt14で、出力指示部7bの加速操作が再開される。
 この後、リーン及び旋回が終了する。
 図6のフローチャート及び図7の例を参照して、制御装置8及び鞍乗型車両1の各部の動作を説明する。
 制御装置8は、鞍乗型車両1がリーン姿勢で旋回しているか否か判別する(S1)。
 制御装置8は、例えば、車両姿勢検出器7dで検出されるリーン角が所定の基準より大きいか否かを判別する。制御装置8は、鞍乗型車両1がリーン姿勢で旋回している場合に(S1でYes)、ステップS11以降の各動作を実行する。
 図7の例では、タイミングt13の前に、鞍乗型車両1のリーンに伴い、ロール角A1が増大する。ロール角A1が判定基準値よりも大きい場合、制御装置8は、鞍乗型車両1がリーン姿勢で旋回していると判別する。
 制御装置8は、鞍乗型車両1が減速中か否かを判別する(S11)。制御装置8は、例えば動力軸速度検出器192の検出結果に基づいて減速の有無を判別する。減速中か否かを判別する構成としては、例えば車輪5の回転速度、又は出力指示部7bから出力される指示値を用いる構成も採用可能である。
 図7のタイミングt13において、トルク指示値Ct1は、出力指示部7bが加速操作されていない状態を示している。
 なお、図7の例では、制御装置8の減速は、タイミングt13よりも前に開始している。図7の例では、タイミングt11で動力源トルクT1が0より小さくなると、第1ドグD1及び第2ドグD2は、加速位置Pdから減速位置Psへ移動する。
 第1ドグD1及び第2ドグD2が減速位置Psと係合する瞬間、第1ドグD1から第2ドグD2にトルク衝撃が伝達される。このため、駆動力Pd1に負のショックが生じる。ただし、鞍乗型車両1の減速中(例えばタイミングt11)は、図7に示すように鞍乗型車両1がリーンしていない場合が多い。このため、ショックによる鞍乗型車両1の姿勢の変化は小さい。
 第1ドグD1及び第2ドグD2が減速位置Psで係合した後、少なくともタイミングt14まで、駆動力Pd1は、負の値を維持している。つまり、この間、鞍乗型車両1は減速中である。
 制御装置8は、制動動作中か否かを判別する(S12)。制御装置8は、例えば、制動操作部7fの出力に基づいて制動動作中か否かを判別する。制動動作中か否かを判別する構成として、例えば、ブレーキ電磁弁72が受ける圧力に基づく構成も採用可能である。
 図7のタイミングt13において、制動指示値Cb1は、ライダーの操作に基づき制動動作中であることを示している。この場合、制御装置8は、制動動作中であると判別する。
 上記ステップS11及びS12、即ちステップS10によって、制動装置70の動作による減速が行われているか否かが検出される。
 制動装置70の動作による減速があった場合(S11及びS12でYes)、制御装置8は、動力源トルクT1を追加で増加するよう制御する(S20)。制動装置70の動作による減速があった場合、制動装置の動作によって鞍乗型車両が減速している状態である。
 制御装置8は、制動操作部7fに対する制動操作が解除されたか否かを判別する(S21)。
 制動操作が解除されたと判別された場合(S21でYes)、制御装置8は、鞍乗型車両1が減速している状態から加速する状態に切り替わるタイミングの前に、第1ドグD1及び第2ドグD2が加速位置Pdへ移動するように動力源11を制御する。制御装置8は、鞍乗型車両の減速中に制動操作部7fの操作が解除された場合に、制動装置70に制動力を付与させつつ、動力源11にトルクを増加させる。
 より詳細には、制御装置8は、制動装置70が付与する制動力を追加して増大する(S22)。即ち、制御装置8は、制動操作部7fの操作量に対応する目標値よりも大きな制動力を制動装置70が付与するよう、制動装置70を制御する。例えば、制御装置8は、制動操作部7fの操作が解除された後も、ブレーキキャリパー71に供給される動作液の圧力が追加基準値を維持するようにブレーキ電磁弁72を動作させる。これは、ライダーによる制動装置70に対する操作無しで制動装置70が動作する状態である。
 また、制御装置8は、動力源トルクT1を増加する(S23)。例えば、制御装置8は、出力指示部7bの指示値に対応する目標値よりも大きなトルクが出力されるようスロットルモータ108を制御する。図7に示す例では、動力源トルクT2が、正の値になるよう追加される。
 より詳細には、制御装置8は、時間の経過に伴い制動装置70に制動力を徐々に減少させるとともに、動力源11にトルクを徐々に増加させる。
 図7に示す例では、タイミングt13の後、動力源トルクT1が追加により増加すると、第1ドグD1及び第2ドグD2は、減速位置Psから加速位置Pdへ移動する。
 制御装置8は、制動装置70に制動力を減少させつつ、動力源11にトルクを増加させる。より詳細には、制御装置8は、制動装置70に制動力を追加量まで徐々に減少させつつ、動力源11にトルクを徐々に増加させる。例えば、制御装置8は、制動装置70に制動力を減少させるのに応じて動力源11にトルクを増加させる。これによって、制動操作が解除された場合に、制動装置70に制動力が消滅せず上記追加の制動力が残存するときでも、鞍乗型車両1の速度変化は、操作解除に応じて制動力が消滅した場合の速度変化に近似する。図7の例では、タイミングt13から動力源11のトルクの増加が開始する。但し、動力源11のトルクの増加は、制動指示値Cb1の減少と実質的に共通のタイミングで行われる。このため、鞍乗型車両1の挙動が、ライダーの操作を反映する。
 また、制御装置8が、制動装置70に制動力を減少させつつ動力源11にトルクを増加させることによって、第1ドグD1及び第2ドグD2が加速位置Pdへ移動しやすくなる。
 制御装置8は、第1ドグD1及び第2ドグD2が加速位置Pdを維持するよう、動力源11のトルクを増加させつつ制動力の付与を解除させる。
 制御装置8は、動力源トルクT1によって鞍乗型車両1が加速する状態か否か判別する(S30)。制御装置8は、例えば、出力指示部7bが加速の指示値を出力するか否かを判別する(S31)。
 鞍乗型車両1が加速する状態の場合(S31でYes)、制御装置8は、制動力の追加処理を終了する。制動力の追加が終了することによって、動力源トルクT1により鞍乗型車両1が短時間で加速できる。
 図7に示す例では、タイミングt14で、出力指示部7bの指示値は、加速を表している。この場合、制御装置8は、鞍乗型車両1が加速する状態であると判別する。制御装置8は、制動力の追加を終了する。
 また、制動力の追加処理は終了するが、今度は出力指示部7bに対する操作に応じて鞍乗型車両1が加速する。このため、第1ドグD1及び第2ドグD2が減速位置Psに戻る事態が抑制される。
 制御装置8は、鞍乗型車両1が加速する状態の場合(S31でYes)、動力源トルクの追加を終了する。即ち、制御装置8は、トルク指示値Ct1に関わらない動力源トルクの増加を終了する(S40)。制動装置8の動作によって鞍乗型車両1が減速している状態が、ライダーによる制動装置8に対する操作無しで制動装置8が動作する状態で終了する。制動装置8の動作の解除に伴って動力源の出力トルクによって鞍乗型車両1が加速する状態が開始されている。
 但し、トルク指示値Ct1に関わらない動力源トルクの増加が終了するが、トルク指示値Ct1に関わらない動力源トルクの増加を終了しても、操作に応じてトルク指示値Ct1が増加している。このため、動力源トルクT1は、トルク指示値Ct1は増加に応じて増加する。
 図7に示す例では、切替わりタイミングt14の前から切替わりタイミングt14経過後まで、第1ドグD1及び第2ドグD2が加速位置Pdに位置する。つまり、鞍乗型車両1が減速している状態から、動力源トルクT1によって鞍乗型車両1が加速する状態に切替わるタイミングt14で、第1動力伝達部材D1及び第2動力伝達部材D2が加速位置Pdに位置している。
 このため、動力源トルクT1によって加速する状態に切替わる時点で、第1ドグD1及び第2ドグD2が減速位置Psから加速位置Pdに移動するという事態の発生が抑制される。このため、動力伝達部材D1,D2の遊びに起因して駆動力Pd1に生じるショックを低減することができる。この結果、動力伝達部材D1,D2の遊びに起因して鞍乗型車両1に生じるショックを低減することができる。
 図8は、図7に示すショック抑制の処理を実施しない比較例における、各部の状態及びトルクの変化の例を示すタイムチャートである。
 図8に示す比較例の場合、動力源トルクT1は、トルク指示値Ct1に応じて制御される。鞍乗型車両1の減速中は、動力源トルクT1が追加で増加されない。このため、鞍乗型車両1の減速中は、第1ドグD1及び第2ドグD2が減速位置Psに留まる。詳細には、タイミングt14まで、第1ドグD1及び第2ドグD2が減速位置Psに位置する。
 タイミングt14で、トルク指示値Ct1の増加に応じて、動力源トルクT1’が増加する。タイミングt14で動力源トルクT1’の増加によって、第1ドグD1及び第2ドグD2が減速位置Psから加速位置Pdに移動する。第1ドグD1及び第2ドグD2は、トルク指示値Ct1の増加に応じた速度で移動する。
 この結果、第1ドグD1及び第2ドグD2が加速位置Pdで係合する時に(図8のタイミングt15)、駆動力Pd1’において動力伝達部材D1,D2の遊びに起因したショックが生じる。
 鞍乗型車両1のロール角A1’も、図8のタイミングt15における駆動力Pd1’に生じたショックによって、変化する。つまり、鞍乗型車両1の姿勢が変化する。
 これに対し、ショック抑制の処理を実施した例では、図7に示すように、駆動力Pd1に生じるショック及び鞍乗型車両1に生じるショックを低減することができる。
[第2の適用例]
 図7を参照して説明した適用例では、タイミングt13で制御装置8が動力源トルクT1を追加で増加する場合に、動力源トルクT1を正の値に増加する例を説明した。
 続いて、動力源トルクT1を負の範囲で増加する第2の適用例について説明する。
 図9は、第2の適用例における各部の状態及びトルクの変化の例を示すタイムチャートである。
 図9に示す第2の適用例では、ライダーの操作に応じて制動指示値Cb2が減少するタイミングt13における動力源トルクT2について、制動指示値Cb2に応じた量に対し追加される量が、図7の適用例よりも小さい。追加がされた動力源トルクT2は、負の値である。
 また、図9に示す適用例では、ライダーの操作に応じて制動指示値Cb2が減少するタイミングt13で、制動力B2において、トルク指示値Ct2に応じた量に対し追加される量も、図7の適用例よりも小さい。図9に示すこの他の状態は、図7に示す適用例と同じである。
 図9に示す第2の適用例でも、第1ドグD1及び第2ドグD2が減速位置Psから、加速位置Pdに移動する。従って、駆動力Pd1に生じるショック及び鞍乗型車両1に生じるショックを低減することができる。
 動力源トルクT2は、ライダーの操作に応じて制動指示値Cb2が減少するタイミングt13よりも後で、追加された結果の制動力B2を動力源でのトルクに換算した値よりも大きいことが好ましい。この場合、第1ドグD1及び第2ドグD2が減速位置Psから、加速位置Pdに移動しやすい。
 またさらに、動力源トルクT2は、ライダーの操作に応じて制動指示値Cb2が減少するタイミングt13よりも後で、追加された結果の制動力B2及び鞍乗型車両1の走行抵抗を動力源11でのトルクに換算した値よりも大きいことが好ましい。この場合、第1ドグD1及び第2ドグD2が減速位置Psから、加速位置Pdに更に移動しやすい。
 1  鞍乗型車両
 5  車輪
 7b 出力指示部
 7f 制動操作部
 11 動力源
 70 制動装置
 8  制御装置
 9  動力伝達経路
 11  動力源
 D1  第1ドグ(第1動力伝達部材)
 D2  第2ドグ(第2動力伝達部材)

Claims (5)

  1. 鞍乗型車両であって、
     前記鞍乗型車両は、
     車輪と、
     前記車輪を支持する車体と、
     前記車輪を駆動するためのトルクを出力する動力源と、
     前記動力源から出力されるトルクを前記車輪へ伝達する動力伝達経路であって、互いに係合している場合に動力を伝達する第1動力伝達部材及び第2動力伝達部材を含み、前記第1動力伝達部材及び前記第2動力伝達部材は、前記鞍乗型車両が加速中の場合に加速位置で係合し鞍乗型車両が減速中の場合に前記加速位置とは異なる減速位置で係合し、前記加速位置から前記減速位置まで相対的に移動する遊びを有するように構成された、動力伝達経路と、
     前記車輪に制動力を付与する制動装置と、
     前記制動装置の動作によって前記鞍乗型車両が減速している状態から、前記制動装置の動作の解除に伴って前記動力源の出力トルクによって前記鞍乗型車両が加速する状態に切り替わるタイミングの前から前記タイミング経過後まで、前記第1動力伝達部材及び前記第2動力伝達部材が前記減速位置に位置しないように少なくとも前記動力源を制御する、制御装置と、
    を備える。
  2.  請求項1記載の鞍乗型車両であって、
     前記制御装置は、制動装置の動作による前記鞍乗型車両の減速中に、前記制動装置による制動力の減少に伴い、前記第1動力伝達部材及び前記第2動力伝達部材が前記加速位置へ移動するよう前記制動装置に制動力を発生させつつ前記動力源にトルクを増加させ、
    前記第1動力伝達部材及び前記第2動力伝達部材が前記加速位置に移動した後、前記第1動力伝達部材及び前記第2動力伝達部材が前記加速位置を維持するよう前記動力源のトルクを増加させる。
  3.  請求項1又は2記載の鞍乗型車両であって、
     前記車体は、左旋回中に車両左方向に傾斜し、右旋回中に車両右方向に傾斜するリーン姿勢で旋回し、
     前記制御装置は、前記車体がリーン姿勢で旋回している場合に、前記制動装置の動作によって前記鞍乗型車両が減速している状態から、前記制動装置の動作の解除に伴って前記動力源の出力トルクによって前記鞍乗型車両が加速する状態に切り替わるタイミングの前から前記タイミング経過後まで、前記第1動力伝達部材及び前記第2動力伝達部材が前記減速位置に位置しないように少なくとも前記動力源を制御する。
  4.  請求項2又は3に記載の鞍乗型車両であって、
     前記鞍乗型車両は、
     前記鞍乗型車両のライダーの操作に基づいて前記動力源から出力されるトルク指示値を指示する出力指示部と、
     ライダーの操作に基づいて前記制動装置を作動させる制動操作部と、を更に備え、
     前記制御装置は、前記鞍乗型車両の減速中に前記制動操作部の操作が解除された場合に、前記制動装置に制動力を付与させつつ、前記動力源にトルクを増加させる。
  5.  請求項4に記載の鞍乗型車両であって、
     前記制御装置は、前記鞍乗型車両の減速中に前記制動操作部の操作が解除された場合に、前記制動装置に制動力を減少させつつ、前記動力源にトルクを増加させる。
PCT/JP2020/006040 2019-06-12 2020-02-17 ストラドルドビークル WO2020250487A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20821582.2A EP3967903B1 (en) 2019-06-12 2020-02-17 Straddled vehicle
JP2021525907A JP7329595B2 (ja) 2019-06-12 2020-02-17 ストラドルドビークル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-109279 2019-06-12
JP2019109279 2019-06-12

Publications (1)

Publication Number Publication Date
WO2020250487A1 true WO2020250487A1 (ja) 2020-12-17

Family

ID=73780984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006040 WO2020250487A1 (ja) 2019-06-12 2020-02-17 ストラドルドビークル

Country Status (3)

Country Link
EP (1) EP3967903B1 (ja)
JP (1) JP7329595B2 (ja)
WO (1) WO2020250487A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016886A (ja) * 2005-07-07 2007-01-25 Kawasaki Heavy Ind Ltd 減速比推定方法および装置
JP4722470B2 (ja) 2004-04-09 2011-07-13 川崎重工業株式会社 車両の加減速時制御方法及び装置、並びに車両
WO2018216758A1 (ja) * 2017-05-24 2018-11-29 ヤマハ発動機株式会社 ビークル
WO2019013330A1 (ja) * 2017-07-14 2019-01-17 ヤマハ発動機株式会社 車両

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012726A (ja) * 2007-07-09 2009-01-22 Toyota Motor Corp ハイブリッド車両用の制御装置
WO2020040183A1 (ja) * 2018-08-22 2020-02-27 ヤマハ発動機株式会社 リーン車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722470B2 (ja) 2004-04-09 2011-07-13 川崎重工業株式会社 車両の加減速時制御方法及び装置、並びに車両
JP2007016886A (ja) * 2005-07-07 2007-01-25 Kawasaki Heavy Ind Ltd 減速比推定方法および装置
WO2018216758A1 (ja) * 2017-05-24 2018-11-29 ヤマハ発動機株式会社 ビークル
WO2019013330A1 (ja) * 2017-07-14 2019-01-17 ヤマハ発動機株式会社 車両

Also Published As

Publication number Publication date
JPWO2020250487A1 (ja) 2020-12-17
JP7329595B2 (ja) 2023-08-18
EP3967903A4 (en) 2022-06-15
EP3967903B1 (en) 2023-09-06
EP3967903A1 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
JP5041974B2 (ja) 制御システムおよび車両
WO2012164717A1 (ja) 車両の制御装置
EP1923290B1 (en) Control system and vehicle including the same
JP2004211605A (ja) ハイブリッド車輌の制御装置
WO2019013330A1 (ja) 車両
EP2159400B1 (en) Control system and vehicle
JP2008106730A (ja) 鞍乗型車両
WO2018216758A1 (ja) ビークル
US7651438B2 (en) Vehicle with engine control system
JP2014034964A (ja) 車両
WO2020250487A1 (ja) ストラドルドビークル
JP2014035069A (ja) 車両
JP5708185B2 (ja) 車両制御装置
JP2010059802A (ja) 制御システムおよび車両
JP2014034380A (ja) 車両
WO2012140777A1 (ja) 手動変速機のシフト判定装置
JP2014035063A (ja) 自動変速装置およびそれを備えた鞍乗型車両
JP2013053727A (ja) 車両の動力伝達制御装置
JP7025190B2 (ja) 鞍乗型車両
JP2007187280A (ja) 内燃機関のフライホイール装置
JP2017067205A (ja) 車両用制御装置
WO2020105326A1 (ja) ビークル
JP7485848B2 (ja) ストラドルドビークル
WO2022034632A1 (ja) ストラドルドビークル
JP7074466B2 (ja) 鞍乗型車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20821582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020821582

Country of ref document: EP

Effective date: 20211210