WO2019013330A1 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
WO2019013330A1
WO2019013330A1 PCT/JP2018/026515 JP2018026515W WO2019013330A1 WO 2019013330 A1 WO2019013330 A1 WO 2019013330A1 JP 2018026515 W JP2018026515 W JP 2018026515W WO 2019013330 A1 WO2019013330 A1 WO 2019013330A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive source
power transmission
source torque
suppression control
torque
Prior art date
Application number
PCT/JP2018/026515
Other languages
English (en)
French (fr)
Inventor
雄一郎 深澤
尚嗣 神谷
真生 島崎
孝宏 小澤
誠也 鵜野
岡本 拓也
充敏 小出
佳嗣 小杉
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP18831158.3A priority Critical patent/EP3653861B1/en
Priority to JP2019529805A priority patent/JP6827118B2/ja
Publication of WO2019013330A1 publication Critical patent/WO2019013330A1/ja
Priority to US16/739,604 priority patent/US11117588B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/22Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of main drive shafting, e.g. cardan shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/24Inputs being a function of torque or torque demand dependent on the throttle opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the present invention relates to a vehicle having a plurality of power transmission members in a power transmission path that transmits power between a drive source and drive wheels.
  • a drive source such as an engine and drive wheels.
  • a plurality of power transmission members are disposed in the power transmission path between the drive source and the drive wheel.
  • Examples of two power transmission members that transmit power by contacting each other include gears and gears, dog members, spline members, sprockets and chains, pulleys and belts, and the like.
  • Such two power transmission members are arranged so as to have play (backlash) between them.
  • Patent Document 1 discloses a vehicle provided with a device for suppressing such a shock of the vehicle.
  • the drive source of this vehicle is an engine.
  • the power transmission mechanism of the vehicle includes a transmission.
  • the transmission has an input shaft and an output shaft.
  • the output shaft is located closer to the drive wheel than the input shaft in the power transmission path.
  • the vehicle has means for detecting the relative rotational angle between the input shaft and the output shaft. The relative rotation angle is detected by integrating the relative rotation speed detected using a sensor.
  • the control device of the vehicle determines whether the rider performs an acceleration / deceleration operation.
  • the control device executes acceleration / deceleration control for accelerating / decelerating the input shaft or the output shaft based on the detected relative rotation angle between the input shaft and the output shaft. Specifically, in the acceleration / deceleration control, the ignition timing is controlled such that at least one of the contact speed and the transmission torque between the power transmission members is decreased.
  • the inventor of the present application examined in detail the control in which the input shaft or the output shaft is accelerated or decelerated based on the detected relative rotation angle between the input shaft and the output shaft as described in Patent Document 1. Then, it turned out that a shock may occur in the vehicle.
  • An object of the present invention is, in a vehicle having a plurality of power transmission members in a power transmission path between a drive source and a drive wheel, to more reliably suppress the occurrence of a shock of the vehicle.
  • the inventor of the present application examined in detail the technology for accelerating / decelerating the input shaft or the output shaft based on the relative rotation angle between the detected input shaft and the output shaft as described in Patent Document 1. Then, it was found that when the engine rotational speed is high, a shock may occur to the vehicle. As a result of examining in more detail, it was considered that a shock was generated in the vehicle because control was performed based on the detected relative rotation angle between the input shaft and the output shaft.
  • acceleration / deceleration control of the input shaft or the output shaft is started when the absolute value of the relative rotation angle between the detected input shaft and the output shaft exceeds a predetermined threshold. That is, the acceleration / deceleration control is not performed until the absolute value of the relative rotation angle between the input shaft and the output shaft actually exceeds the threshold.
  • the input shaft is disposed at a position closer to the drive wheel than the crankshaft in the power transmission path. Therefore, the change of the rotational speed of the input shaft occurs behind the change of the rotational speed of the crankshaft (that is, the engine rotational speed).
  • acceleration / deceleration control may not be in time for the suppression of the occurrence of the shock.
  • acceleration / deceleration control is started after detecting that the absolute value of the relative rotational angle between the input and output axes exceeds the threshold value. It may not be in time to control the outbreak.
  • control to suppress the occurrence of shock is started when a sign of a situation where the absolute value of the relative rotation angle of the two shafts in the power transmission path exceeds the threshold is detected. is there. That is, before a relative rotation angle of a predetermined magnitude is detected, a situation in which a shock of the vehicle may occur is detected. As a result, it is possible to start the control to suppress the occurrence of the shock earlier than when the control to suppress the occurrence of the shock is started after detecting the relative rotation angle of the predetermined size.
  • the inventor of the present application has realized that the direction of relative movement of two power transmission members adjacent in the power transmission path can be determined from the drive source torque generated by the drive source. Further, the inventor of the present application can grasp the trend of the relative movement of the power transmission member from the drive source torque to detect the relative rotation angle of the predetermined size of the two shafts in the power transmission path, before detecting the relative rotation angle. I realized that I could detect situations that could cause a shock. From these, the inventor of the present invention detects a situation where a shock of the vehicle may occur based on the drive source torque before detecting the relative rotation angle of the predetermined size of the two axes in the power transmission path. , I thought of starting control to suppress the occurrence of vehicle shock.
  • a vehicle includes a drive source, a drive wheel, a plurality of power transmission members provided in a power transmission path for transmitting power between the drive source and the drive wheel, and the drive source. And a drive source torque control device for controlling the drive source torque.
  • the drive source torque control device can acquire the drive source torque, and when controlling the drive source torque to accelerate the drive wheel, between the plurality of power transmission members in the power transmission path Absolute value of relative speed among the plurality of power transmission members when the play of the vehicle is reduced, and the plurality of powers when the play among the plurality of power transmission members is eliminated in the power transmission path
  • Shock suppression control is performed to control the drive source torque based on the acquired drive source torque so that at least one of the transfer torques transmitted between the transmission members is reduced, and the plurality of powers are transmitted to the power transmission path. It is characterized by suppressing the shock of the vehicle which occurs when the play between the transmission members disappears.
  • the vehicle has the drive source and the drive wheel.
  • the vehicle also has a plurality of power transmission members provided in a power transmission path for transmitting power between the drive source and the drive wheels.
  • a play is provided between the plurality of power transmission members. Therefore, when the drive wheel is to be accelerated, the play between the plurality of power transmission members is gradually reduced in the power transmission path for acceleration. After this play is eliminated, torque is transmitted between the plurality of power transmission members, and the drive wheel starts to accelerate.
  • the vehicle has a drive source torque control device that controls the drive source torque generated by the drive source.
  • the drive source torque control device acquires the drive source torque.
  • the drive source torque control device may acquire the drive source torque by estimating it or may detect the drive source torque by a sensor.
  • the drive source torque control device controls the drive source torque to accelerate the drive wheels, the drive source torque control device is configured to reduce the play among the plurality of power transfer members in the power transfer path. Such that the absolute value of the relative velocity between them and at least one of the transmission torques transmitted between the plurality of power transmission members when the play between the plurality of power transmission members in the power transmission path disappears, Shock suppression control is performed to control the drive source torque based on the acquired drive source torque.
  • the shock suppression control suppresses the shock of the vehicle that occurs when the play between the plurality of power transmission members disappears in the power transmission path.
  • the drive source torque control device performs shock suppression control for suppressing the occurrence of shock based on the drive source torque.
  • the directions of relative movement of the plurality of power transmission members can be determined. Therefore, by grasping the trend of the relative movement of the plurality of power transmission members from the drive source torque, it is possible to detect a situation where a shock of the vehicle can occur without detecting the relative rotation angle or the relative rotation speed. Further, by grasping the trend of the relative movement of the plurality of power transmission members from the drive source torque, it is possible to detect a situation where a shock of the vehicle may occur before detecting the relative rotation angle and the relative rotation speed.
  • the drive source torque control device detects the relative rotation angle and the relative rotation speed, and then suppresses the occurrence of the shock earlier than when the control for suppressing the occurrence of the shock of the vehicle is started. Control can be started. As a result, the occurrence of a shock of the vehicle can be suppressed more reliably.
  • the vehicle of the present invention preferably has the following configuration.
  • the drive source torque control device determines the timing to start the shock suppression control based on the acquired drive source torque.
  • the vehicle of the present invention preferably has the following configuration.
  • the drive source torque control device acquires the drive source torque by estimating the drive source torque.
  • the vehicle of the present invention preferably has the following configuration in addition to the configuration of ⁇ 3> described above.
  • the drive source is an engine unit having a combustion chamber.
  • the vehicle has an engine rotational speed sensor that detects an engine rotational speed, a throttle valve that adjusts the amount of air supplied to the combustion chamber, and a throttle sensor that detects an opening degree of the throttle valve.
  • the drive source torque control device estimates the drive source torque based on the signal of the throttle sensor and the signal of the engine rotational speed sensor.
  • the drive source torque control device estimates the drive source torque based on the signal of the throttle sensor and the signal of the engine rotational speed sensor. Therefore, the drive source torque can be estimated relatively accurately. Therefore, the occurrence of a shock of the vehicle can be suppressed more reliably.
  • a common vehicle has a throttle sensor and an engine rotational speed sensor. Therefore, the drive source torque can be estimated using a sensor that the vehicle generally has. That is, there is no need to provide a new sensor for shock suppression control.
  • the vehicle of the present invention preferably has the following configuration in addition to the configuration of ⁇ 3> described above.
  • the drive source is an engine unit having a combustion chamber.
  • the vehicle includes an engine rotational speed sensor for detecting an engine rotational speed, a throttle valve for adjusting the amount of air supplied to the combustion chamber, and an accelerator operated by a driver to change the opening degree of the throttle valve. It has an operator and the accelerator sensor which detects the operating quantity of the said accelerator operator.
  • the drive source torque control device estimates the drive source torque based on the signal of the accelerator sensor and the signal of the engine rotational speed sensor.
  • the drive source torque control device estimates the drive source torque based on the signal of the accelerator sensor and the signal of the engine rotational speed sensor.
  • the opening degree of the throttle valve is changed based on the operation amount of the accelerator operating element detected by the accelerator sensor. Therefore, by estimating the drive source torque based on the signal of the accelerator sensor, it is possible to grasp the change before the actual drive source torque changes. Therefore, the situation where a shock of the vehicle may occur can be detected more quickly. Therefore, the occurrence of a shock of the vehicle can be suppressed more reliably.
  • a common vehicle may have an accelerator sensor. In that case, the drive source torque can be estimated using a sensor that the vehicle generally has. That is, there is no need to provide a new sensor for shock suppression control.
  • the vehicle of the present invention preferably has the following configuration in addition to the configuration of ⁇ 4> or ⁇ 5> described above.
  • the engine unit has an igniter for igniting a mixture of fuel and air in the combustion chamber.
  • the drive source torque control device estimates the drive source torque based on the signal of the throttle sensor or the accelerator sensor, the signal of the engine rotational speed sensor, and the ignition timing of the ignition device.
  • the drive source torque control device estimates the drive source torque based on the signal of the throttle sensor or the accelerator sensor, the signal of the engine rotational speed sensor, and the ignition timing of the ignition device. Therefore, the drive source torque can be estimated more accurately than in the case where the ignition timing is not used by using the signal of the throttle sensor or the accelerator sensor and the signal of the engine rotational speed sensor to estimate the drive source torque. Thus, the occurrence of a shock of the vehicle can be suppressed more reliably.
  • the vehicle of the present invention preferably has the following configuration.
  • the drive source torque control device controls the drive source torque in order to accelerate the drive wheel in the shock suppression control, the play between the plurality of power transmission members in the power transmission path is reduced.
  • Absolute value of the relative speed among the plurality of power transmission members when the power transmission member is running, and when there is no play between the plurality of power transmission members in the power transmission path The drive source torque is decreased and then increased such that at least one of the transfer torques transmitted between is decreased.
  • the vehicle of the present invention preferably has the following configuration.
  • the drive source torque control device starts the shock suppression control when the acquired drive source torque becomes equal to or greater than a first determination torque.
  • the drive source torque control device determines whether the acquired drive source torque has become equal to or greater than the first determination torque. As a result, it is possible to accurately detect that the vehicle may be shocked. Then, the drive source torque control device performs shock suppression control when the drive source torque becomes equal to or greater than the first determination torque. Therefore, it is possible to more reliably prevent the shock suppression control from being performed regardless of the situation in which no shock of the vehicle occurs.
  • the vehicle of the present invention preferably has the following configuration.
  • the drive source torque control device integrates the acquired drive source torque for a time from the time when the drive source torque becomes equal to or greater than a second determination torque, and the integrated value becomes equal to or greater than a determination value.
  • the shock suppression control is started.
  • a point in time when the drive source torque acquired by the drive source torque control device becomes equal to or greater than the second determination torque is set as a reference time.
  • the drive source torque control device integrates the acquired drive source torque with respect to the time from the reference time. Then, the drive source torque control device determines whether or not the integral value is equal to or greater than the determination value. As a result, it is possible to more accurately detect that the vehicle may be shocked. And a drive source torque control apparatus performs shock suppression control, when this integral becomes more than a judgment value. Therefore, it is possible to more reliably prevent the shock suppression control from being performed regardless of the situation in which no shock of the vehicle occurs.
  • the vehicle of the present invention preferably has the following configuration.
  • the drive source torque control device determines the timing to end the shock suppression control based on the elapsed time.
  • the drive source torque control device determines the timing to end the shock suppression control based on the elapsed time. Specifically, for example, the timing to end the shock suppression control may be determined based on the elapsed time since the start of the shock suppression control. Further, for example, after the start of the shock suppression control, the timing to end the shock suppression control may be determined based on the elapsed time from the time when the acquired drive source torque becomes equal to or more than the predetermined value. If a certain amount of time passes after the start of the shock suppression control, it can be estimated that power is being transmitted between the plurality of power transmission members.
  • the vehicle of the present invention preferably has the following configuration.
  • the vehicle has a drive source rotational speed sensor that detects the rotational speed of the drive source.
  • the drive source torque control device after starting the shock suppression control, determines the timing to end the shock suppression control based on the signal of the drive source rotational speed sensor.
  • the drive source torque control device determines the timing of ending the shock suppression control based on the signal of the drive source rotational speed sensor that detects the rotational speed of the drive source.
  • the rotational speed of the drive source may increase until the power transmission path for acceleration loses play of the plurality of power transmission members. After play of the plurality of power transmission members disappears in the power transmission path for acceleration, the rotational speed of the drive source may temporarily decrease.
  • the vehicle of the present invention preferably has the following configuration.
  • the vehicle includes an input shaft provided in the power transmission path, and an output shaft provided in the power transmission path between the input shaft and the drive wheel.
  • the drive source torque control device can detect the relative rotational angle between the input shaft and the output shaft, and after starting the shock suppression control, the relative rotational angle between the detected input shaft and the output shaft The timing to end the shock suppression control is determined based on the above.
  • the drive source torque control device detects the relative rotation angle of the input shaft and the output shaft of the power transmission mechanism.
  • the drive source torque control device determines the timing of ending the shock suppression control based on the detected relative rotation angle of the input shaft and the output shaft.
  • the relative rotation angle of the input shaft and the output shaft changes. Whether power is being transmitted between the plurality of power transmission members can be estimated from the relative rotation angle of the input shaft and the output shaft. Therefore, by determining the timing to end the shock suppression control based on the relative rotation angle of the input shaft and the output shaft, it is possible to reliably perform the shock suppression control when the power transmission members are in contact with each other. In addition, it is possible to prevent the shock suppression control from being unnecessarily long.
  • the vehicle of the present invention preferably has the following configuration.
  • the drive source torque control device can detect a state in which power can not be transmitted between the drive source and the drive wheel, and after starting the shock suppression control, between the drive source and the drive wheel When a state in which power can not be transmitted is detected, the shock suppression control is ended.
  • the drive source torque control device can detect a state in which power can not be transmitted between the drive source and the drive wheel.
  • the situation where power can not be transmitted between the drive source and the drive wheels is, for example, when the clutch is disengaged in order to change the gear position of the transmission.
  • shock suppression control is not necessary.
  • the drive source torque control device ends the shock suppression control when it is detected that the power can not be transmitted between the drive source and the drive wheel. Therefore, it is possible to prevent the shock suppression control from being unnecessarily long.
  • the vehicle of the present invention preferably has the following configuration.
  • the drive source is an engine unit having a combustion chamber.
  • the vehicle includes a transmission having a plurality of gear positions selectable.
  • the drive source torque control device can obtain the current gear position of the transmission, and when there is a request to change the gear position of the transmission, or change the gear position of the transmission Is detected, the shock suppression control is ended.
  • the power transmission path and the power transmission member in the power transmission path may be changed. Therefore, even if the shock suppression control performed before the gear position is changed, it may not be possible to suppress the shock due to the contact between the power transmission members in the power transmission path after the change. Alternatively, even if the shock suppression control is not performed, a shock may not occur due to the contact between the power transmission members in the power transmission path after the change.
  • the drive source torque control device ends the shock suppression control when there is a request for changing the gear position of the transmission or when a change of the gear position of the transmission is detected. Therefore, it is possible to prevent the shock suppression control from being wasted.
  • the vehicle of the present invention preferably has the following configuration.
  • the drive source is an engine unit having a combustion chamber.
  • the vehicle includes an input shaft provided in the power transmission path, and an output shaft provided between the input shaft and the drive wheel in the power transmission path, and the input for the rotational speed of the output shaft It includes a transmission having a plurality of gear positions in which ratios of rotational speeds of shafts are different from each other.
  • the driving source torque control device is configured to temporarily increase the driving source torque when the gear position is changed such that the ratio of the rotation speed of the input shaft to the rotation speed of the output shaft becomes large.
  • the shock suppression control is not performed when it is determined whether or not the blipping operation has been performed.
  • the blipping operation is an operation to temporarily increase the drive source torque during downshifting in order to smoothly shift down. If shock suppression control is performed during the blipping operation, the drive source torque that should be increased by the blipping operation does not increase. Therefore, there is a possibility that the smooth downshifting by the blipping operation can not be obtained.
  • the drive source torque control device does not perform shock suppression control when it is determined that the blipping operation has been performed. Therefore, a smooth downshift by the blipping operation can be obtained.
  • the vehicle of the present invention preferably has the following configuration.
  • the drive source torque control device includes a drive source torque sensor that detects the drive source torque.
  • the drive source torque control device can obtain torque more accurately than when estimating the drive source torque.
  • shock means physically single vibration. In other words, it means vibration that is not continuous. Also, the "shock” level is a level at which the occupant feels uncomfortable.
  • “when the drive source torque is controlled to accelerate the drive wheel”, “the play between the plurality of power transmission members in the power transmission path is reduced” means that the drive wheel is accelerated. In the power transmission path for driving the motor, the play between the plurality of power transmission members is reduced.
  • “when controlling the drive source torque to accelerate the drive wheel” “when there is no play between the plurality of power transmission members in the power transmission path” means to accelerate the drive wheel. In the power transmission path, it refers to a state where there is no play between the plurality of power transmission members.
  • the "relative speed of the plurality of power transmission members” is the relative speed between the two power transmission members. It may be the relative speed of the other power transmission member to the power transmission member closer to the drive source in the power transmission path among the two power transmission members, and vice versa. In any case, “the absolute value of the relative velocity of the plurality of power transmission members” is the same value.
  • “transmission between the plurality of power transmission members is performed when there is no play between the plurality of power transmission members in the power transmission path.
  • “Transmitted torque” is always positive torque. More specifically, a positive transmission torque is transmitted from the power transmission member closer to the drive source in the power transmission path of the two power transmission members to the other power transmission member.
  • the absolute value of the relative speed between the plurality of power transmission members is decreased when the play between the plurality of power transmission members in the power transmission path is reduced means shock suppression control. This means that the absolute value of the relative velocity between the plurality of power transmission members is reduced when the play between the plurality of power transmission members in the power transmission path is reduced as compared with the case where it is not performed.
  • the phrase "the transmission torque transmitted between the plurality of power transmission members decreases when the play between the plurality of power transmission members disappears in the power transmission path” means that shock suppression control is not performed. As compared with the above, it means that the transmission torque transmitted between the plurality of power transmission members is reduced when the play between the plurality of power transmission members is eliminated in the power transmission path.
  • a state in which power can not be transmitted between the drive source and the drive wheel refers to, for example, the case where the transmission is in the neutral state or the case where the clutch is in the disconnected state.
  • the drive source torque becomes equal to or higher than the first determination torque indicates that the drive source torque rises from a state less than the first determination torque to become equal to or higher than the first determination torque. This definition is also applied to the expression "when the drive source torque exceeds the second determination torque”.
  • the end of a part means a part of the end of the part and the vicinity thereof.
  • being rotatable means being able to rotate 360 ° or more unless specifically limited.
  • To be able to swing means to be rotatable less than 360 ° unless otherwise specified.
  • To rotate includes both 360 ° rotation and less than 360 ° rotation.
  • a and B aligned in the X direction indicates the following state. No matter when looking at A and B from any direction orthogonal to the X direction, any straight line or curve indicating the X direction will pass both A and B. Further, the fact that the entire A aligns in the B and X directions means that the entire A faces in the B and X directions. That is, when viewed in the X direction, the entire A overlaps with B. The whole may be paraphrased in part. A and B may be in contact with each other. Also, A and B may be separated. C may be present between A and B.
  • a is in front of B means the following state.
  • A is in front of a plane that passes through the front end of B and is orthogonal to the front-rear direction.
  • a and B may or may not be aligned in the front-rear direction.
  • the same definition applies to the expression that A is behind B, A is above or below B, and A is to the right or left of B.
  • At least one (one) of the plurality of options includes all combinations conceivable from the plurality of options. At least one (one) of the plurality of options may be any one of the plurality of options, or may be all of the plurality of options. For example, at least one of A, B and C may be A only, B only, C only or A and B, and A and C It may be, B and C may be present, and A, B and C may be present.
  • the present invention may have a plurality of the components.
  • the invention may also have only one such component.
  • the terms mounted, connected, coupled and supported are used broadly. Specifically, it includes not only direct attachment, connection, coupling and support but also indirect attachment, connection, coupling and support. Furthermore, connected and coupled are not limited to physical or mechanical connection / coupling. They also include direct or indirect electrical connections / couplings.
  • the term “preferred” is non-exclusive. “Preferred” means “preferably but not limited to”. In the present specification, the configuration described as “preferred” exhibits at least the above-described effect obtained by the configuration of claim 1. Also, as used herein, the term “may” is non-exclusive. “You may” means “may be, but not limited to”. In the present specification, the configuration described as “may” has at least the above-described effect obtained by the configuration of claim 1.
  • the present invention does not limit the combination of the preferred configurations described above.
  • the present invention is not limited to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings.
  • the present invention is also possible in embodiments other than the embodiments described later.
  • the present invention is also possible in an embodiment in which various modifications are made to the embodiments described later. Further, the present invention can be implemented by appropriately combining the modifications described later.
  • FIG. 1 is a right side view of a motorcycle according to a specific example of an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of an engine unit and a power transmission mechanism of the motorcycle shown in FIG. 2;
  • FIG. 3 is a control block diagram of the motorcycle shown in FIG. 2; It is the VV sectional view taken on the line of FIG. It is a figure explaining the contact state of the dog convex part and dog recessed part which are shown in FIG.
  • It is a graph explaining the shock suppression control of the two-wheeled motor vehicle shown in FIG. 2, (a) shows throttle opening degree and accelerator operating quantity, (b) shows drive source torque, (c) shows engine rotational speed. (D) shows the relative rotation angle of an input shaft and an output shaft, (e) shows the rotational speed of a driving wheel.
  • the vehicle 1 has a drive source 20A and a drive wheel 3.
  • the vehicle 1 also has a plurality of power transmission members 61 and 62 provided on a power transmission path 60 p for transmitting power between the drive source 20 A and the drive wheels 3.
  • Power transmission members other than the power transmission members 61 and 62 are also disposed in the power transmission path 60p.
  • a play is provided between the plurality of power transmission members 61 and 62. Therefore, when the drive wheel 3 is to be accelerated, the play G1 between the plurality of power transmission members 61 and 62 gradually decreases in the power transmission path 60p for acceleration. After the play G1 disappears, torque is transmitted between the plurality of power transmission members 61 and 62, and the drive wheel 3 starts to accelerate.
  • the vehicle 1 has a drive source torque control device 91 that controls the drive source torque generated by the drive source 20A.
  • the drive source torque control device 91 acquires drive source torque.
  • the drive source torque control device 91 may acquire the drive source torque by estimation, or may detect the drive source torque by a sensor.
  • the plurality of power transmission members 61 when the absolute value of the relative speed between the plurality of power transmission members 61, 62 and the play G1 between the plurality of power transmission members 61, 62 in the power transmission path 60p are eliminated.
  • a shock suppression control is performed to control the drive source torque based on the acquired drive source torque so that at least one of the transfer torques transmitted between 62 is reduced. Due to the small absolute value of the relative speed between the plurality of power transmission members 61, 62 when the play between the plurality of power transmission members 61, 62 is reduced, the plurality of power transmission members in the power transmission path 60p The shock of the vehicle 1 which occurs when there is no play between 61 and 62 is suppressed.
  • the shock suppression control suppresses the shock of the vehicle 1 that occurs when the play G1 between the plurality of power transmission members 61 and 62 disappears in the power transmission path 60p.
  • the drive source torque control device 91 performs shock suppression control that suppresses the occurrence of shock based on the drive source torque.
  • the direction of relative movement of the plurality of power transmission members 61 and 62 can be determined by using the drive source torque. Therefore, by grasping the trend of the relative movement of the plurality of power transmission members 61 and 62 from the drive source torque, it is possible to detect a situation where a shock of the vehicle 1 can occur without detecting the relative rotation angle or the relative rotation speed. it can. Also, by grasping the trend of the relative movement of the plurality of power transmission members 61 and 62 from the drive source torque, it is possible to detect a situation in which a shock of the vehicle 1 may occur before detecting the relative rotation angle or relative rotation speed. it can.
  • the drive source torque control device 91 detects the relative rotation angle and the relative rotation speed, and suppresses the occurrence of the shock earlier than when performing the control to suppress the occurrence of the shock of the vehicle 1. Control can be started. As a result, the occurrence of a shock of the vehicle 1 can be suppressed more reliably.
  • the front-rear direction in the following description is the vehicle front-rear direction unless particularly limited.
  • the left-right direction in the following description is the vehicle left-right direction unless specifically limited.
  • the vertical direction in the following description is the vertical direction of the vehicle unless specifically limited.
  • the vehicle longitudinal direction is the vertical direction in a state where the vehicle is erected on a horizontal road surface.
  • the vehicle left-right direction and the vehicle front-rear direction are directions as viewed from the driver riding on the vehicle in the above-described state.
  • the vehicle left-right direction is also the vehicle width direction.
  • symbol F and Re shown to FIG. 2 and FIG. 3 each represent a vehicle front direction and a vehicle rear direction.
  • the code U and the code D shown in FIG. 2 represent the vehicle upper direction and the vehicle lower direction, respectively.
  • the symbol L and the symbol Ri shown in FIG. 3 indicate the vehicle left direction and the vehicle right direction, respectively.
  • the following description basically assumes that the vehicle is disposed on a level road surface.
  • the motorcycle 1 has a front wheel 2, a rear wheel 3, and a vehicle body frame 4.
  • the body frame 4 has a head pipe 4a at its front.
  • a steering shaft (not shown) is rotatably inserted into the head pipe 4a.
  • the upper end of the steering shaft is connected to the steering wheel unit 5.
  • the handle unit 5 is fixed to the upper end of the pair of front forks 6.
  • Lower end portions of the pair of front forks 6 support the front wheel 2.
  • the front wheel 2 includes a tire and a wheel.
  • the body frame 4 swingably supports the front end portions of the pair of swing arms 7.
  • the rear ends of the pair of swing arms 7 support the rear wheel 3.
  • the rear wheel 3 includes a tire and a wheel.
  • the swing arm 7 is connected to the vehicle body frame 4 via the rear suspension 8 at a position behind the swinging center.
  • the vehicle body frame 4 supports the seat 9 and the fuel tank 10.
  • the seat 9 is a part on which the rider (driver) sits and does not include the part on which the rider's waist or back leans. Further, the seat 9 does not include a portion where the tandem rider (passenger) sits.
  • the body frame 4 supports the engine unit 20.
  • the engine unit 20 is disposed below the upper end 9 a of the seat 9. At least a portion of the engine unit 20 is vertically aligned with at least a portion of the seat 9. When viewed leftward or rightward, the engine unit 20 is disposed rearward of the front wheel 2 and forward of the rear wheel 3.
  • the vehicle body frame 4 supports a battery (not shown). The battery supplies power to electronic devices such as an ECU 90 described later and various sensors.
  • the motorcycle 1 has footrests 11 at the lower portions on the left and right sides.
  • the footrest 11 is for carrying a rider's foot.
  • a brake pedal 12 is provided almost directly in front of the right footrest 11.
  • the rear brake device (not shown) is actuated to brake the rear wheel 3.
  • a shift pedal is provided almost right in front of the left footrest 11. The shift pedal is operated to switch the gear position of the transmission 50 (see FIG. 3) described later.
  • a shift switch may be provided on the handle unit 5 instead of the shift pedal.
  • the handle unit 5 has various switches operated by the rider.
  • the handle unit 5 has an accelerator grip 13, a brake lever (not shown), and a clutch lever (not shown). These are operated by the rider's hand.
  • the accelerator grip 13 is operated to adjust the drive source torque generated by the engine unit 20.
  • the accelerator grip 13 is rotated. Basically, the larger the operation amount (rotation amount) of the accelerator grip 13, the larger the drive source torque.
  • the accelerator grip 13 corresponds to an accelerator operator of the present invention.
  • the front brake device (not shown) is actuated to brake the front wheel 2.
  • the motorcycle 1 has an accelerator sensor 72 that detects the amount of operation of the accelerator grip 13.
  • the clutch lever is operated to switch a clutch 42 (see FIG. 3) described later between the connected state and the disconnected state.
  • the motorcycle 1 has a clutch sensor 73 that detects the amount of operation of the clutch lever.
  • the motorcycle 1 has a wheel speed sensor (not shown) that detects the rotational speed of the rear wheel 3 or the front wheel 2.
  • the motorcycle 1 may have both a wheel speed sensor that detects the rotational speed of the rear wheel 3 and a wheel speed sensor that detects the rotational speed of the front wheel 2.
  • the ECU 90 described later detects the vehicle speed of the motorcycle 1 based on the signal of the wheel speed sensor.
  • the engine unit 20 has an engine unit 20A and a power transmission unit 20B.
  • the engine unit 20A (drive source) generates drive source torque.
  • the drive source torque generated by the engine unit 20A is transmitted to the power transmission unit 20B.
  • the engine unit 20 has a crankcase 21, a cylinder body 22, a cylinder head 23, and a head cover 24.
  • the cylinder body 22 is attached to the upper end of the crankcase 21.
  • the cylinder head 23 is attached to the upper end of the cylinder body 22.
  • the head cover 24 is attached to the upper end of the cylinder head 23.
  • the crankcase 21 is composed of a combination of a plurality of parts.
  • the cylinder body 22, the cylinder head 23, and the head cover 24 are separate bodies. However, any two or three of the cylinder body 22, the cylinder head 23, and the head cover 24 may be integrally molded.
  • the engine unit 20A is a gasoline engine.
  • the engine unit 20 is a four-stroke engine.
  • the engine unit 20A is a single cylinder engine.
  • the four-stroke engine repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke in this order for each cylinder.
  • the timings of the combustion strokes of the three cylinders are different from each other.
  • the engine unit 20 ⁇ / b> A has a crankshaft 25.
  • the crankshaft 25 is accommodated in the crankcase 21.
  • the motorcycle 1 has an engine rotational speed sensor 81.
  • the engine rotational speed sensor 81 detects the rotational speed of the crankshaft 25, that is, the engine rotational speed. More specifically, the engine rotational speed sensor 81 detects the number of revolutions of the crankshaft 25 per unit time.
  • the engine rotational speed sensor 81 corresponds to the drive source rotational speed sensor of the present invention.
  • crankshaft 25 is connected to a starter motor and a generator.
  • the starter motor and the generator are accommodated in the crankcase 21.
  • the starter motor operates with power from the battery.
  • the starter motor rotates the crankshaft 25 when the engine unit 20A is started.
  • the generator generates electric power by the power (rotational force) of the crankshaft 25.
  • the battery is charged by the power generated by the generator.
  • the starter motor and the generator may be integrated.
  • the cylinder body 22 has a cylinder hole 22 a.
  • a piston 26 is slidably provided in the cylinder hole 22a.
  • the piston 26 is connected to the crankshaft 25 via a connecting rod 27 (see FIG. 3).
  • the engine unit 20A has a combustion chamber 28.
  • the combustion chamber 28 is formed by the lower surface of the cylinder head 23, the cylinder hole 22 a and the piston 26.
  • the engine unit 20A has a spark plug 29.
  • the tip of the spark plug 29 is disposed in the combustion chamber 28.
  • the spark plug 29 ignites a mixture of fuel and air in the combustion chamber 28.
  • the spark plug 29 corresponds to the ignition device of the present invention.
  • the spark plug 29 is connected to the ignition coil 30 shown in FIG.
  • the ignition coil 30 stores electric power for causing spark discharge of the ignition plug 29.
  • the ignition coil 30 controls the ignition timing of the spark plug 29.
  • the mixture in the combustion chamber 28 is ignited and burned to reciprocate the piston 26. As a result, drive source torque is generated in the crankshaft 25.
  • the combustion chamber 28 is connected to an intake passage 31 and an exhaust passage 32 formed in the cylinder head 23.
  • the intake passage 31 and the exhaust passage 32 are spaces.
  • the intake passage 31 is opened and closed by an intake valve 33.
  • the exhaust passage 32 is opened and closed by an exhaust valve 34.
  • the intake valve 33 and the exhaust valve 34 are driven by a valve gear (not shown).
  • the valve gear is accommodated in the cylinder head 23.
  • the valve gear operates in conjunction with the crankshaft 25.
  • the intake passage 31 is connected to the intake pipe 15. Air in the atmosphere is supplied to the combustion chamber 28 through the intake pipe 15 and the intake passage 31.
  • the tip of the injector 35 is disposed in the intake passage 31 or in the intake pipe 15.
  • the injector 35 injects fuel in the intake passage 31 or in the intake pipe 15.
  • the injector 35 is a fuel supply device that supplies fuel to the combustion chamber 28.
  • the injector 35 is connected to a fuel pump 36 shown in FIG. 4 via a fuel hose.
  • the fuel pump 36 is disposed in the fuel tank 10.
  • the fuel in the fuel tank 10 is pressure-fed to the injector 35 by the fuel pump 36.
  • the injector 35 may be disposed to inject fuel in the combustion chamber 28.
  • a carburetor may be used instead of the injector 35 as the fuel supply device.
  • the carburetor is configured to supply fuel into the combustion chamber 28 using the negative pressure of the combustion chamber 28.
  • a throttle valve 37 is disposed in the intake pipe 15.
  • the throttle valve 37 regulates the amount of air supplied to the combustion chamber 28.
  • the opening degree of the throttle valve 37 is changed.
  • the control method of the throttle valve 37 is electronically controlled. That is, the ECU 90 described later controls the opening degree of the throttle valve 37 based on the signal of the accelerator sensor 72.
  • the motorcycle 1 has a throttle opening sensor 82 (throttle sensor).
  • the throttle opening degree sensor 82 detects the position of the throttle valve 37 to detect the opening degree of the throttle valve 37.
  • the opening degree of the throttle valve 37 is hereinafter referred to as the throttle opening degree.
  • the exhaust passage 32 is connected to the exhaust pipe 16. As shown in FIGS. 2 and 3, the exhaust pipe 16 is connected to the muffler 17. In the muffler 17, a catalyst (not shown) for purifying the exhaust gas is disposed. The combustion gas (exhaust gas) generated in the combustion chamber 28 in the combustion stroke is discharged to the exhaust passage 32. Thereafter, the exhaust gas is exhausted to the atmosphere through the exhaust pipe 16 and the muffler 17.
  • the motorcycle 1 has a power transmission mechanism 2.
  • the power transmission mechanism 60 includes a power transmission portion 20B of the engine unit 20, a chain 65, and a driven sprocket 64.
  • the power transmission mechanism 60 can transmit the drive source torque generated by the engine unit 20A (specifically, the crankshaft 25) to the rear wheel 3.
  • the rear wheel 3 may be referred to as a drive wheel 3.
  • the power transmission mechanism 60 transmits power between the engine unit 20 A and the drive wheel 3.
  • the power transmission mechanism 60 has a power transmission path 60 p from the engine unit 20 A to the drive wheel 3. That is, the power transmission path 60 p transmits power between the engine unit 20 A and the drive wheel 3.
  • the power transmission unit 20B includes a drive gear 40, a driven gear 41, a clutch 42, a transmission 50, and a drive sprocket 43.
  • the drive gear 40, the driven gear 41, the clutch 42, and the transmission 50 are accommodated in the crankcase 21.
  • the drive sprocket 43 is disposed on the outer side (left side) of the crankcase 21.
  • FIG. 3 is not a cross-sectional view cut by a single plane.
  • FIG. 3 shows a cross section cut through the crankshaft 25, the input shaft 51 and the output shaft 52.
  • the display of the crankshaft 25 in FIG. 3 represents not a cross section but a side surface.
  • the drive gear 40 is provided on the crankshaft 25 so as to be integrally rotatable.
  • the transmission 50 has an input shaft 51 and an output shaft 52.
  • the input shaft 51 and the output shaft 52 are provided in the power transmission path 60p.
  • the input shaft 51 and the output shaft 52 are provided in the power transmission path 60p.
  • the output shaft 52 is provided between the input shaft 51 and the drive wheel 3 in the power transmission path 60p.
  • the driven gear 41 is provided on the input shaft 51 so as to be capable of relative rotation.
  • the driven gear 41 meshes with the drive gear 40.
  • the clutch 42 is provided at an end of the input shaft 51.
  • the clutch 42 is coupled to the driven gear 41, and power is transmitted from the driven gear 41.
  • the clutch 42 is configured to be switchable between a connected state and a disconnected state. In the connected state, the power transmitted from the driven gear 41 can be transmitted to the input shaft 51. That is, in the connection state, the power of the crankshaft 25 can be transmitted to the input shaft 51. In the disconnected state, the power transmitted from the driven gear 41 can not be transmitted to the input shaft 51. That is, in the disconnected state, the power of the crankshaft 25 can not be transmitted to the input shaft 51.
  • the clutch 42 is controlled between the connected state and the disconnected state based on the amount of operation of a clutch lever (not shown).
  • the clutch 42 is controlled by the ECU 90 based on the signal of the clutch sensor 73.
  • the clutch 42 may be connected to the clutch lever via a wire without providing the clutch sensor 73.
  • the clutch 42 is in the half clutch state.
  • part of the power of the crankshaft 25 is transmitted to the input shaft 51.
  • the clutch 42 is, for example, a general clutch such as a friction clutch. The description of the specific configuration of the clutch 42 is omitted.
  • the transmission 50 is configured to be able to transmit the power of the input shaft 51 to the output shaft 52.
  • the ratio of the rotational speed of the input shaft 51 to the rotational speed of the output shaft 52 is referred to as a transmission ratio.
  • the transmission 50 is configured to be able to change the transmission ratio.
  • the transmission 50 has a plurality of gear positions with different gear ratios selectable.
  • the transmission 50 is a sequential shift type transmission. In the sequential shift type transmission, when changing the gear position, it is possible to change only to the adjacent gear positions in the order of the size of the transmission ratio. Changing the gear position so as to increase the transmission ratio is called downshifting.
  • the transmission 50 can be in a neutral state. In the neutral state, the power of the input shaft 51 can not be transmitted to the output shaft 52.
  • the power transmission mechanism 60 has a different power transmission path 60p for each gear position. When the gear position of the transmission 50 is changed, the power transmission path 60p for transmitting power is also changed.
  • the drive sprocket 43 is provided on the output shaft 52.
  • the drive sprocket 43 rotates integrally with the output shaft 52.
  • a driven sprocket 64 is provided on the axle of the drive wheel 3.
  • a chain 65 is wound around the drive sprocket 43 and the driven sprocket 64.
  • the power of the output shaft 52 is transmitted to the drive wheel 3 via the chain 65. Thereby, the drive wheel 3 rotates.
  • a pulley and a belt may be used in place of the sprockets 43 and 64 and the chain 65.
  • the drive wheel 3 When the drive source torque is a positive value, power is transmitted from the engine unit 20A to the drive wheel 3.
  • the drive wheel 3 accelerates or rotates at a constant speed.
  • the drive source torque has a negative value, the drive wheel 3 decelerates. Even if the drive source torque is a positive value, the drive wheel 3 may decelerate if the front brake device or the rear brake device is operating. Further, even if the drive source torque is a positive value, when the clutch 42 is in the disconnected state, the drive wheel 3 may decelerate. Even when the drive source torque is a positive value, the drive wheel 3 may decelerate when traveling on a large slope with a large slope. Even when the drive source torque is a negative value, the drive wheel 3 may accelerate when traveling down a large slope.
  • the transmission 50 is a transmission of a constant mesh type (constant mesh type).
  • the transmission 50 has six gear positions.
  • Gears 53a, 53b, 53c, 53d, 53e, 53f are provided on the input shaft 51.
  • the gears 53a, 53b, 53c, 53d, 53e, 53f are collectively referred to as a gear 53 (see FIG. 5).
  • the numbers of teeth of the six gears 53 are different from one another.
  • Gears 54p, 54q, 54r, 54s, 54t, 54u are provided on the output shaft 52.
  • gears 54p, 54q, 54r, 54s, 54t, 54u are collectively referred to as a gear 54 (see FIG. 5).
  • the numbers of teeth of the six gears 54 are different from one another.
  • the six gears 53a to 53f of the input shaft 51 mesh with the six gears 54p to 54u of the output shaft 52, respectively.
  • the gears 53 b and 53 e are provided on the input shaft 51 so as to be relatively rotatable.
  • the gears 54 q and 54 t meshing with the gears 53 b and 53 e rotate integrally with the output shaft 52.
  • the gears 54p, 54r, 54s, 54u are provided on the output shaft 52 so as to be relatively rotatable.
  • the gears 53a, 53c, 53d, 53f meshing with the gears 54p, 54r, 54s, 54u respectively rotate integrally with the input shaft 51.
  • the gears 53 c and 53 d are provided on the input shaft 51 so as to be movable in the axial direction.
  • the gears 53c, 53d are connected to each other and move integrally in the axial direction.
  • the gears 54 q and 54 t are provided on the output shaft 52 so as to be axially movable.
  • the gears 53c, 53d, 54q, 54t are hereinafter referred to as movable gears 53c, 53d, 54q, 54t.
  • the movable gears 53c, 53d, 54q, 54t are axially driven by a shift actuator not shown.
  • a known shift cam and shift fork (both not shown) are used as a mechanism for driving the movable gears 53c, 53d, 54q, 54t by the shift actuator.
  • a gear position change request When the rider operates a shift pedal (not shown), a request to change the gear position of the transmission 50 is input to the ECU 90 described later. Hereinafter, this request is referred to as a gear position change request.
  • the ECU 90 controls the shift actuator. Thereby, the rotation angle (rotational position) of the shift cam is controlled.
  • the movable gears 53c and 53d respectively have a plurality of dog convex portions 55c and 55d on one side surface.
  • the gear 53b has a plurality of dog recesses 56b on the surface facing the movable gear 53c.
  • the gear 53e has a plurality of dog recesses 56e on the surface facing the movable gear 53d.
  • a plurality of dog convex portions 55q1 are provided on one side surface of the movable gear 54q, and a plurality of dog convex portions 55q2 are provided on the other side surface of the movable gear 54q.
  • the gear 54p has a plurality of dog recesses 56p on the surface facing the movable gear 54q.
  • the gear 54r has a plurality of dog recesses 56r on the surface facing the movable gear 54q.
  • a plurality of dog convex portions 55t1 are provided on one side surface of the movable gear 54t, and a plurality of dog convex portions 55t2 are provided on the other side surface of the movable gear 54t.
  • the gear 54s has a plurality of dog recesses 56s on the surface facing the movable gear 54t.
  • the gear 54u has a plurality of dog recesses 56u on the surface facing the movable gear 54t.
  • the dog member is a member having a dog portion (dog convex portion or dog concave portion).
  • the dog convex portions 55c, 55d, 55q1, 55q2, 55t1 and 55t2 are collectively referred to as dog convex portions 55 (see FIGS. 5 and 6).
  • the dog recesses 56b, 56e, 56p, 56r, 56s, 56u are collectively referred to as dog recesses 56 (see FIGS. 5 and 6).
  • the dog convex portion 55 protrudes from the side surface of the gear 53 or the gear 54.
  • the dog recess 56 is formed in a concave shape.
  • the dog convex portion 55 and the dog concave portion 56 provided in the two axially facing gears (53 or 54) are configured to be meshable.
  • the plurality of dog recesses 56 provided in one gear (53 or 54) are arranged in the circumferential direction.
  • the plurality of dog convex portions 55 provided in one gear (53 or 54) are arranged in the circumferential direction.
  • the number of dog protrusions 55 provided in one gear (53 or 54) is smaller than the number of dog recesses 56 provided in the gear (53 or 54) facing the dog protrusions 55.
  • the number of dog convex portions 55 may be the same as the number of dog concave portions 56.
  • the circumferential length of the dog recess 56 is longer than the circumferential length of the dog protrusion 55 provided on the gear (53 or 54) facing the dog recess 56.
  • the dog convex portion 55 When the movable gear (53 or 54) having the dog convex portion 55 moves axially toward the gear (53 or 54) having the dog concave portion 56, the dog convex portion 55 is disposed inside the dog concave portion 56. Ru. When the movable gear (53 or 54) having the dog concave portion 56 axially moves toward the gear (53 or 54) having the dog convex portion 55, the dog convex portion 55 is moved to the inside of the dog concave portion 56. It may be arranged. When the dog convex portion 55 is disposed inside the dog concave portion 56, the dog convex portion 55 and the dog concave portion 56 are in contact with each other. Specifically, the circumferential end of the dog convex portion 55 contacts the circumferential end of the dog concave portion 56. In this state, the dog convex portion 55 and the dog concave portion 56 mesh with each other.
  • FIGS. 3 and 5 show a state in which the dog convex portion 55t2 of the gear 54t is in contact with the dog concave portion 56u of the gear 54u.
  • the gear 54t and the gear 54u integrally rotate.
  • the power of the input shaft 51 is transmitted to the output shaft 52 in the order of the gear 53 f, the gear 54 u, and the gear 54 t.
  • the gear 53f, the gear 54u, and the gear 54t are arranged in this order.
  • the three gears are two gears 53 and one gear 54 or one gear 53 and two gears 54.
  • the gear position of the transmission 50 differs depending on which of the six dog convex portions 55c, 55d, 55q1, 55q2, 55t1 and 55t2 contacts the dog recess 56. That is, the state in which the six dog convex portions 55c, 55d, 55q1, 55q2, 55t1 and 55t2 are in contact with the dog concave portion 56 corresponds to the six gear positions of the transmission 50.
  • the neutral state of the transmission 50 is a state in which no dog convex portion 55 is inserted inside the dog concave portion 56.
  • the circumferential length of the dog recess 56 is longer than the circumferential length of the dog protrusion 55 provided on the gear (53 or 54) facing the dog recess 56. That is, the two opposing gears (53 or 54) are formed so as to always have a play (backlash) between the engageable dog recess 56 and the dog protrusion 55.
  • the power transmission path 60p for transmitting the power is different depending on whether the drive wheel 3 is accelerating or decelerating.
  • the power transmission path 60p for transmitting power during acceleration of the drive wheel 3 is referred to as a power transmission path 60pa for acceleration (see FIGS. 6 and 7).
  • the power transmission path 60p for transmitting power during deceleration of the drive wheel 3 is referred to as a power transmission path 60pd for deceleration.
  • the power transmission path 60pd for reduction is not shown.
  • the acceleration contact position 55A of the dog convex portion 55 and the acceleration contact position 56A of the dog recess 56 are in contact with each other.
  • the acceleration contact positions 55A, 56A constitute a part of a power transmission path 60pa for acceleration.
  • the decelerating contact position 55D of the dog convex portion 55 and the decelerating contact position 56D of the dog concave portion 56 are in contact with each other.
  • the decelerating contact positions 55D, 56D constitute a part of the power transmission path 60pd for decelerating.
  • the acceleration contact position 55A and the decelerating contact position 55D are one end and the other end of the dog convex portion 55 in the circumferential direction.
  • the acceleration contact position 56A and the decelerating contact position 56D are one end and the other end of the dog recess 56 in the circumferential direction.
  • a clearance Ga is present between the decelerating contact position 55D of the dog convex portion 55 and the decelerating contact position 56D of the dog concave portion 56.
  • a gap Gd exists between the accelerated contact position 55A of the dog convex portion 55 and the accelerated contact position 56A of the dog concave portion 56.
  • the tooth portions of the six gears 53 are collectively referred to as a tooth portion 57.
  • the teeth of the six gears 54 are collectively referred to as the teeth 58.
  • the gears 53 and 54 meshing with each other are formed to have play between the teeth 57 and the teeth 58.
  • the acceleration contact position 57A of the tooth portion 57 of the gear 53 and the acceleration contact position 58A of the tooth portion 58 of the gear 54 are in contact.
  • the driving wheel 3 is decelerating
  • the decelerating contact position 57D of the tooth portion 57 of the gear 53 and the decelerating contact position 58D of the tooth portion 58 of the gear 54 are in contact with each other.
  • a gap Gta exists between the decelerating contact position 57D of the tooth 57 of the gear 53 and the decelerating contact position 58D of the tooth 58 of the gear 54.
  • a gap Gtd exists between the accelerated contact position 57A of the tooth 57 of the gear 53 and the accelerated contact position 58A of the tooth 58 of the gear 54.
  • the gear (53 or 54) having the dog convex portion 55 and the gear (53 or 54) having the dog concave portion 56 facing the gear correspond to a plurality of power transmission members of the present invention.
  • the gears 53 and 54 meshing with each other also correspond to the plurality of power transmission members of the present invention.
  • the power transmission mechanism 60 has a play between the dog portion of the gear 53 and a dog portion of the gear 54, a play between the tooth portion 57 of the gear 53 and the tooth portion 57 of the gear 53, the tooth portion 58 of the gear 54 and the gear In addition to the play between the tooth portion 58 of 54, there is also a play between the power transmission members. For example, a play is also provided between the drive gear 40 and the driven gear 41.
  • the drive gear 40 and the driven gear 41 correspond to a plurality of power transmission members of the present invention.
  • play is also provided between the drive sprocket 43 and the chain 65 and between the chain 65 and the driven sprocket 64. That is, the drive sprocket 43 and the chain 65 correspond to a plurality of power transmission members of the present invention.
  • the chain 65 and the driven sprocket 64 also correspond to the plurality of power transmission members of the present invention. In the following description, these members corresponding to a plurality of power transmission members of the present invention may be referred to as a plurality of power transmission members.
  • the drive wheel 3 changes from the decelerating state to the accelerating state, the play between the power transmission members in the power transmission path 60pa for acceleration is eliminated sequentially from the power transmission member closer to the engine unit 20A.
  • the power transmission path 60pa for acceleration the drive wheel 3 starts to accelerate after the play between all the power transmission members disappears.
  • the play between the power transmission members in the power transmission path 60pd for deceleration is eliminated in order from the power transmission member closer to the drive wheel 3.
  • the power transmission path 60pd for reduction after the play between all the power transmission members disappears, the drive wheel 3 starts to decelerate.
  • the motorcycle 1 has an input shaft sensor 83, an output shaft sensor 84, a gear position sensor 85, and a neutral sensor 86.
  • the input shaft sensor 83 calculates the rotational angular velocity of the input shaft 51.
  • the output shaft sensor 84 calculates the rotational angular velocity of the output shaft 52.
  • the gear position sensor 85 detects the gear position of the transmission 50.
  • the gear position sensor 85 detects the rotation angle of the shift cam (not shown).
  • the neutral sensor 86 detects whether the transmission 50 is in a neutral state.
  • the neutral sensor 86 outputs an electrical signal only when the rotation angle of the shift cam (not shown) corresponds to the neutral state.
  • the motorcycle 1 has an electronic control unit (ECU) 90 that controls the operation of each part of the motorcycle 1.
  • the ECU 90 may be one device disposed at one place, or may be configured by a plurality of devices disposed at different positions.
  • the ECU 90 includes an accelerator sensor 72, a clutch sensor 73, a throttle opening degree sensor 82, an engine rotational speed sensor 81, a gear position sensor 85, a neutral sensor 86, an input shaft sensor 83, an output shaft sensor 84 and the like. It is connected with various sensors.
  • the ECU 90 is connected to the ignition coil 30, the injector 35, the fuel pump 36, the throttle valve 37, and the like.
  • the ECU 90 has a processor and a storage device.
  • the processor is, for example, a central processing unit (CPU), a graphics processing unit (GPU), a microcontroller, a microprocessor, an application specific integrated circuit (ASIC), a programmable logic circuit (PLC), a field programmable gate array (FPGA) Etc.
  • the processor may incorporate a register.
  • the storage device stores information necessary for processing executed by the processor.
  • the storage device includes, for example, a read only memory (ROM) and a random access memory (RAM).
  • the RAM temporarily stores various data when the processor executes a program.
  • the ROM stores a program to be executed by the processor.
  • Various functional processing units are realized by the processor executing information processing based on programs and various data stored in the storage device.
  • the ECU 90 transmits an operation command signal to the ignition coil 30, the injector 35, the fuel pump 36, the throttle valve 37, and the like. By controlling the ignition coil 30, the injector 35, the fuel pump 36, and the throttle valve 37, the drive source torque is controlled.
  • the ECU 90 is included in the drive source torque control device 91 of the above-described embodiment.
  • the ECU 90 is included in the drive source torque control device of the present invention. Hereinafter, the process performed by the ECU 90 will be specifically described.
  • the ECU 90 estimates the drive source torque.
  • the ECU 90 estimates the drive source torque based on at least a signal of the throttle opening degree sensor 82 and a signal of the engine rotational speed sensor 81. More specifically, for example, the ECU 90 estimates the drive source torque using a map stored in advance in the storage unit of the ECU 90.
  • the ECU 90 preferably estimates the drive source torque based on the ignition timing of the spark plug 29, the signal of the throttle opening sensor 82, and the signal of the engine rotational speed sensor 81.
  • the estimated value of the drive source torque calculated by the ECU 90 will be referred to as estimated drive source torque.
  • the ECU 90 calculates the relative rotation angle between the input shaft 51 and the output shaft 52 based on the signal of the input shaft sensor 83 and the signal of the output shaft sensor 84. Specifically, first, the ECU 90 outputs the input shaft 51 and the output from the difference between the rotational angular velocity of the input shaft 51 detected by the input shaft sensor 83 and the rotational angular velocity of the output shaft 52 detected by the output shaft sensor 84 The relative rotational angular velocity of the shaft 52 is calculated. Then, the calculated relative rotational angular velocity is integrated with time to calculate the relative rotational angle between the input shaft 51 and the output shaft 52.
  • the relative rotational angle between the input shaft 51 and the output shaft 52 makes the limit value at the time of deceleration of the drive wheel 3 zero.
  • the case where the gear 53f, the gear 54u, and the gear 54t are lined up in the power transmission path 60p will be described as an example.
  • the decelerating contact position 57D of the tooth portion 57 of the gear 53f is in contact with the decelerating contact position 58D of the tooth portion 58 of the gear 54u, and the decelerating contact position 56D of the dog recess 56 of the gear 54u and the deceleration of the dog convex portion 55 of the gear 54t.
  • the relative rotation angle between the input shaft 51 and the output shaft 52 is a limit value at the time of deceleration of the drive wheel 3.
  • the relative rotation angle between the input shaft 51 and the output shaft 52 may have a limit value at the time of acceleration of the drive wheel 3 as zero.
  • the ECU 90 controls the fuel supply amount by the injector 35. Specifically, the ECU 90 controls the fuel injection time by the injector 35. The ECU 90 controls the fuel supply amount based on the signals from the sensors 71 to 73, 81 to 86, and the like. The ECU 90 transmits an operation command signal based on the determined fuel supply amount to the fuel pump 36 and the injector 35. Thus, the injector 35 injects the amount of fuel determined by the ECU 90.
  • the ECU 90 controls the ignition timing of the spark plug 29.
  • the ignition timing is the timing of discharge of the spark plug 29.
  • the ignition timing is represented by the rotation angle of the crankshaft 25 based on the compression top dead center.
  • the compression top dead center is the top dead center of the piston 26 between the compression stroke and the combustion stroke.
  • the ECU 90 controls the ignition timing based on the signals of the sensors 71 to 73, 81 to 86, and the like. For example, based on the signal of the throttle opening degree sensor 82 and the signal of the engine rotational speed sensor 81, the ignition timing is controlled.
  • the ECU 90 transmits an operation command signal based on the determined ignition timing to the ignition coil 30.
  • spark discharge of the spark plug 29 is performed at a predetermined timing.
  • the ECU 90 performs shock suppression control as control of the drive source torque when changing the drive wheel 3 from the deceleration state to the acceleration state. In other words, when controlling the drive source torque in order to accelerate the drive wheel 3, the ECU 90 performs shock suppression control.
  • the shock suppression control is control for suppressing the shock of the motorcycle 1 that occurs when the power transmission path 60pa for acceleration loses play between the plurality of power transmission members.
  • the shock suppression control is control for suppressing the shock of the motorcycle 1 generated when the power transmission members in the power transmission path 60pa for acceleration change from a non-contact state to a contact state.
  • the deceleration state of the drive wheel 3 before starting the shock suppression control is not particularly limited as long as the drive wheel 3 is decelerating.
  • the drive source torque may be a negative value.
  • the drive source torque may be a positive value, and the clutch 42 may be in the disconnected state.
  • the drive source torque may have a positive value, and it may be in a state of traveling on an upward slope having a large slope.
  • the drive source torque may have a positive or negative value, and at least one of the front brake device and the rear brake device may be operating.
  • the shock suppression control may not necessarily be performed when the drive wheel 3 is changed from the decelerating state to the accelerating state.
  • the shock suppression control may be performed whenever the drive wheel 3 is changed from the deceleration state to the acceleration state.
  • the motorcycle 1 is preferably configured to allow the rider to select whether or not to perform shock suppression control. For example, by operating the switch of the handle unit 5, it may be possible to select whether or not to perform shock suppression control. Further, the motorcycle 1 may have a traveling mode in which shock suppression control is performed and a traveling mode in which the shock suppression control is not performed. Then, the rider may select the traveling mode. Also, the shock suppression control may be different for each traveling mode.
  • FIGS. 7 (a) to 7 (e) are graphs showing an example when shock suppression control is performed.
  • the horizontal axes in FIGS. 7 (a) to 7 (e) indicate common times.
  • the vertical axis in FIG. 7A indicates the throttle opening degree detected by the throttle opening degree sensor 82 and the accelerator operation amount detected by the accelerator sensor 72.
  • the vertical axis in FIG. 7 (b) indicates the actual drive source torque.
  • the estimated drive source torque is hardly delayed with respect to the actual drive source torque.
  • the curve of the dashed-two dotted line in FIG.7 (b) has shown drive source torque when not performing shock suppression control.
  • the vertical axis in FIG. 7C indicates the engine rotational speed.
  • the vertical axis in FIG. 7D indicates the relative rotation angle between the input shaft 51 and the output shaft 52 detected by the ECU 90.
  • the vertical axis in FIG. 7E indicates the rotational speed of the drive wheel (rear wheel) detected by the wheel speed sensor provided on the rear wheel 3.
  • the clutch 42 is in the connected state and the front brake device and the rear brake device are not in operation over the entire period of the graph. Also, the road surface is substantially horizontal over the entire period of the graph.
  • the accelerator operation amount is zero and the drive source torque is a negative value. In other words, the engine brake is working. Thereby, the driving wheel 3 is decelerating.
  • the accelerator operation amount is increasing.
  • the ECU 90 starts control for changing the decelerating state to the accelerating state.
  • the ECU 90 increases the opening degree of the throttle valve 37 as shown in FIG. 7 (a).
  • the drive torque is increasing.
  • the drive torque becomes a positive value
  • the power transmission members in the power transmission path 60 separate from the adjacent power transmission members in order from the power transmission member closer to the engine unit 20A.
  • the ECU 90 determines whether at least one of the following shock suppression control start conditions A1 and A2 is satisfied.
  • the ECU 90 may be programmed to perform only one determination process of the shock suppression control start conditions A1 and A2. Further, the ECU 90 may be programmed to perform determination processing of both of the start conditions A1 and A2 of the shock suppression control.
  • the shock suppression control start condition A1 is that the estimated drive source torque becomes equal to or greater than a predetermined determination torque TrA1 (first determination torque).
  • a predetermined determination torque TrA1 first determination torque
  • An example of the determination torque TrA1 is displayed on the graph of FIG. 7 (b).
  • the determination torque TrA1 may not be a single value.
  • the ECU 90 may change the determination torque TrA1 based on, for example, a signal of the gear position sensor 85.
  • the ECU 90 may change the determination torque TrA1 based on the signal of the gear position sensor 85 and the signal of the engine rotational speed sensor 81.
  • the ECU 90 may change the determination torque TrA1 based on the estimated drive source torque.
  • the determination torque TrA1 may not be changed.
  • a point in time when the estimated drive source torque reaches a predetermined determination torque TrA0 is taken as a reference time t0.
  • the determination torque TrA0 is zero, but may be a positive value or a negative value.
  • the ECU 90 integrates the estimated drive source torque with respect to the time from the reference time t0.
  • the shock suppression control start condition A2 is that this integral value becomes equal to or greater than a predetermined determination value.
  • the determination torque TrA0 may not be a single value.
  • the determination value may not be one value.
  • the ECU 90 may change the determination torque TrA0 or the determination value based on, for example, a signal of the gear position sensor 85.
  • the ECU 90 may change the determination torque TrA0 or the determination value based on the signal of the gear position sensor 85 and the signal of the engine rotational speed sensor 81.
  • the ECU 90 may change the determination torque TrA0 or the determination value based on the estimated drive source torque. Determination torque TrA0 may not be changed. The determination value may not be changed.
  • the ECU 90 determines whether any one of shock suppression control non-start conditions B1 to B3 described later is satisfied.
  • the start conditions A1 and A2 are conditions for starting the shock suppression control. That is, start conditions A1 and A2 are conditions which determine the timing which starts shock suppression control.
  • the non-start conditions B1 to B3 are conditions under which the shock suppression control is not started.
  • the ECU 90 may be programmed to perform only the determination processing of some of the non-start conditions B1 to B3 of the shock suppression control.
  • the ECU 90 may be programmed to perform determination processing of all the non-start conditions B1 to B3 of the shock suppression control.
  • the ECU 90 starts the shock suppression control when the shock suppression control start condition A1 or A2 is satisfied, and none of the non-start conditions subjected to the determination process among the shock suppression control non-start conditions B1 to B3 does not hold. Decide to do.
  • the start conditions A1 and A2 are conditions using estimated drive source torque. Therefore, the ECU 90 determines the timing to start the shock suppression control based on the estimated drive source torque.
  • the non-start condition B1 of the shock suppression control is that a state in which power can not be transmitted between the crankshaft 25 and the drive wheel 3 is detected.
  • the clutch sensor 73 or the neutral sensor 86 is used for this detection. When the clutch sensor 73 detects that the clutch 42 is in the disconnected state, or when the neutral sensor 86 detects the neutral state of the transmission 50, power is transmitted between the crankshaft 25 and the drive wheel 3 It is judged that it is impossible.
  • the shock suppression control non-start condition B2 is that there is a gear position change request or that a change in the gear position of the transmission 50 is detected.
  • the non-start condition B2 is a condition for not starting the shock suppression control in such a case.
  • the gear position change request is input to the ECU 90 by operating the shift pedal (or shift switch). Whether or not the gear position of the transmission 50 has been changed may be determined based on the signal of the gear position sensor 85. In this case, the gear position sensor 85 is included in the drive source torque control device of the present invention.
  • whether or not the gear position of the transmission 50 has been changed may be determined based on the gear position estimated by the ECU 90. For example, a signal of the engine rotational speed sensor 81 and a signal of the output shaft sensor 84 may be used to estimate the gear position. When the motorcycle 1 has a wheel speed sensor, a signal of the wheel speed sensor may be used instead of the output shaft sensor 84 for estimating the gear position.
  • the ECU 90 determines whether a blipping operation has been performed.
  • the blipping is an operation to temporarily increase the drive source torque during downshifting in order to smoothly downshift the transmission 50.
  • the ECU 90 determines that the gear position of the transmission 50 is other than the gear position having the largest gear ratio, and the accelerator operation amount is within a predetermined first gripping determination region, and the change amount of the accelerator operation amount is a predetermined first. If it is within the 2 clipping determination area, it is determined that the blipping operation has been performed.
  • the first gripping determination area and the second gripping determination area may be different depending on the gear position.
  • the shock suppression control non-start condition B3 is that it is determined that the blipping operation has been performed.
  • the ECU 90 executes the shock suppression control.
  • the drive source torque is controlled such that one of the following two situations is established.
  • the first situation is a situation in which the absolute value of the relative velocity between the plurality of power transmission members decreases when the play between the plurality of power transmission members in the power transmission path 60pa for acceleration is reduced.
  • the second situation is a situation where the transmission torque transmitted between the plurality of power transmission members is reduced when the play between the plurality of power transmission members is reduced and eliminated in the power transmission path 60pa for acceleration. .
  • the drive source torque may be controlled such that both the first and second situations are satisfied, or the drive source torque may be controlled such that only the first condition is satisfied.
  • the drive source torque may be controlled such that only the second situation holds.
  • the control of the drive source torque in the shock suppression control is, for example, control for decreasing and then increasing the drive source torque as shown in FIG. 7B.
  • the rate of increase is smaller than the rate of decrease.
  • the increase in drive source torque is relatively slow.
  • controlling the drive source torque may be controlling the ignition timing.
  • the throttle opening may be controlled.
  • the throttle opening degree and the fuel injection amount may be controlled. It may be to control both the ignition timing and the throttle opening. It may be other than that. In the case of controlling the ignition timing, the ignition timing is retarded more than in the case where the shock suppression control is not performed.
  • the ECU 90 terminates the shock suppression control when any of the following shock suppression control termination conditions C1 to C4 is satisfied.
  • the termination conditions C1 to C4 are conditions for terminating the shock suppression control.
  • the ECU 90 may be programmed to perform determination processing only for a part of the termination conditions C1 to C4 of the shock suppression control.
  • the ECU 90 may be programmed to perform all the determination processes of the termination conditions C1 to C4 of the shock suppression control.
  • priority order for performing the determination process of the end conditions C1 to C4 may be set. For example, when the termination condition C4 is not satisfied, any one of the termination conditions C1 to C3 may be determined.
  • the termination condition C1 of the shock suppression control is that the elapsed time from the predetermined termination determination reference time is equal to or more than the predetermined termination determination time. That is, the ECU 90 determines the timing to end the shock suppression control based on the elapsed time.
  • the end determination time differs depending on the end determination reference time.
  • the termination determination reference time may be, for example, the time when shock suppression control is started. Further, the end determination reference time may be a time when the estimated drive source torque becomes equal to or more than a predetermined value. This predetermined value may be the same as or different from determination torque TrA1 or determination torque TrA0 described above.
  • the end determination time for each end determination reference time may be changed by the ECU 90. The end determination time for each end determination reference time may not be changed.
  • End conditions C2 and C3 of shock suppression control are conditions which determine the timing which complete
  • FIG. As shown in FIGS. 7 (c) and 7 (e), when the drive wheel 3 changes from the decelerating state to the accelerating state, the engine rotational speed increases and then decreases. Specifically, when control for changing the drive wheel 3 from the decelerating state to the accelerating state is started, the crankshaft 25 is temporarily unloaded, and the engine rotational speed increases. In the example of FIG. 7, after the drive torque changes from a negative value to a positive value, the crankshaft 25 is temporarily unloaded.
  • the termination condition C2 is to detect this increase in engine rotational speed.
  • the termination condition C3 is to detect a decrease after the increase of the engine rotational speed.
  • the termination condition C2 of the shock suppression control is that the engine rotation speed detected by the engine rotation speed sensor 81 becomes equal to or higher than the predetermined termination judgment speed after the shock suppression control is started. Alternatively, after the start of the shock suppression control, the increase rate of the engine rotational speed detected by the engine rotational speed sensor 81 becomes equal to or higher than a predetermined termination determination value. The end determination value may be zero.
  • the termination condition C2 of the shock suppression control may be a condition other than the above using the signal of the engine rotational speed sensor 81.
  • the termination condition C3 of the shock suppression control is that after the start of the shock suppression control, the engine rotational speed detected by the engine rotational speed sensor 81 changes to increase after being increased. Alternatively, after the start of the shock suppression control, the engine rotational speed detected by the engine rotational speed sensor 81 increases and then decreases to a predetermined value or less.
  • the termination condition C3 of the shock suppression control may be a condition other than the above using the signal of the engine rotational speed sensor 81.
  • the termination condition C4 of the shock suppression control is a condition for determining the timing to terminate the shock suppression control based on the relative rotation angle between the input shaft 51 and the output shaft 52 detected by the ECU 90. As described above, the relative rotation angle between the input shaft 51 and the output shaft 52 makes the limit value at the time of deceleration of the drive wheel 3 zero. Therefore, as shown in FIG. 7D, when the drive wheel 3 changes from the decelerating state to the accelerating state, the relative rotation angle between the input shaft 51 and the output shaft 52 increases from zero.
  • the termination condition C4 utilizes this increase in relative rotation angle. Specifically, the termination condition C4 of the shock suppression control is that the relative rotation angle between the input shaft 51 and the output shaft 52 is equal to or greater than a predetermined termination determination angle.
  • the end determination angle is preferably set to a value larger than an intermediate value between the minimum value (zero) and the maximum value.
  • the end determination angle may be equal to or less than an intermediate value between the minimum value (zero) and the maximum value.
  • the ECU 90 ends the shock suppression control when one of the shock suppression control end conditions D1 and D2 is satisfied. End conditions D1 and D2 of shock suppression control are conditions ended in the middle of shock suppression control.
  • the ECU 90 may be programmed to perform only one determination process of the shock suppression control termination conditions D1 and D2.
  • the ECU 90 may be programmed to perform determination processing of both of the termination conditions D1 and D2 of the shock suppression control. Further, the ECU 90 may not perform the determination processing of both of the termination conditions D1 and D2 of the shock suppression control.
  • the termination condition D1 of the shock suppression control is that a state in which power can not be transmitted between the crankshaft 25 and the drive wheel 3 is detected after the start of the shock suppression control.
  • the clutch sensor 73 or the neutral sensor 86 is used for this detection. When the clutch sensor 73 detects that the clutch 42 is in the disconnected state, or when the neutral sensor 86 detects the neutral state of the transmission 50, power is transmitted between the crankshaft 25 and the drive wheel 3 It is judged that it is impossible.
  • the clutch sensor 73 and the neutral sensor 86 are included in the drive source torque control device of the present invention.
  • the termination condition D2 of the shock suppression control is that there is a gear position change request or that a change in gear position of the transmission 50 is detected after the start of the shock suppression control.
  • the termination condition D1 is satisfied if the clutch 42 is disengaged.
  • the clutch 42 may not be disengaged.
  • the termination condition D2 is a condition for terminating the shock suppression control in such a case.
  • the gear position change request is input to the ECU 90 by operating the shift pedal (or shift switch). Whether or not the gear position of the transmission 50 has been changed may be determined based on the signal of the gear position sensor 85. In this case, the gear position sensor 85 is included in the drive source torque control device of the present invention.
  • whether or not the gear position of the transmission 50 has been changed may be determined based on the gear position estimated by the ECU 90.
  • the ECU 90 estimates the gear position based on, for example, the signal of the engine rotational speed sensor 81 and the signal of the output shaft sensor 84.
  • a signal of the wheel speed sensor may be used instead of the output shaft sensor 84.
  • the ECU 90 estimates the drive source torque based on the signal of the throttle opening degree sensor 82 and the signal of the engine rotational speed sensor 81, the following effects can be obtained.
  • the drive source torque can be estimated relatively accurately.
  • the occurrence of a shock of the motorcycle 1 can be suppressed more reliably.
  • a typical motorcycle has a throttle opening sensor and an engine rotational speed sensor. Therefore, the drive source torque can be estimated using a sensor that a motorcycle generally has. That is, there is no need to provide a new sensor for shock suppression control.
  • the ECU 90 estimates the drive source torque based on the signal of the throttle opening sensor 82, the signal of the engine rotational speed sensor 81, and the ignition timing of the spark plug 29, the following effects can be obtained.
  • the drive source torque can be estimated more accurately than in the case where the ignition timing is not used by using the signal of the throttle opening degree sensor 82 and the signal of the engine rotational speed sensor 81 to estimate the drive source torque.
  • the occurrence of shocks of the motorcycle 1 can be further reliably suppressed.
  • the start condition A1 of the shock suppression control is that the estimated drive source torque becomes equal to or higher than the determination torque TrA1.
  • the ECU 90 determines whether the estimated drive source torque has become equal to or greater than the determination torque TrA1. As a result, it is possible to accurately detect that a shock of the motorcycle 1 may occur. And ECU90 performs shock suppression control, when presumed drive source torque becomes more than judgment torque TrA1. Therefore, it is possible to more reliably prevent the shock suppression control from being performed regardless of the situation where the shock of the motorcycle 1 does not occur.
  • the shock suppression control start condition A2 is that the integral value of the estimated drive source torque for the time from the time when the estimated drive source torque becomes the second determination torque or more becomes the determination value or more. By determining whether or not the integral value of the estimated drive source torque has become equal to or greater than the determination value, it is possible to more accurately detect that the shock of the motorcycle 1 may occur. And ECU90 performs shock suppression control, when this integral value becomes more than a judgment value. Therefore, it is possible to more reliably prevent the shock suppression control from being performed regardless of the situation where the shock of the motorcycle 1 does not occur.
  • the termination condition C1 of the shock suppression control is that the elapsed time from the predetermined termination determination reference time is equal to or more than the predetermined termination determination time. If a certain amount of time passes after the start of the shock suppression control, it can be estimated that power is being transmitted between the plurality of power transmission members. Therefore, by determining the timing at which the shock suppression control ends based on the elapsed time, it is possible to reliably perform the shock suppression control when the power transmission members are in contact with each other. In addition, it is possible to prevent the shock suppression control from being unnecessarily long.
  • the termination conditions C2 and C3 of the shock suppression control are conditions based on the signal of the engine rotational speed sensor 81.
  • the engine rotational speed may increase until the power transmission path 60pa for acceleration loses the play of the plurality of power transmission members. After the power transmission path 60pa for acceleration loses play of the plurality of power transmission members, the engine rotational speed may temporarily decrease.
  • the termination condition C4 of the shock suppression control is a condition based on the relative rotation angle between the input shaft 51 and the output shaft 52 detected by the ECU 90.
  • the relative rotation angle between the input shaft 51 and the output shaft 52 changes. From the relative rotational angle between the input shaft 51 and the output shaft 52, it can be estimated whether power is being transmitted between the plurality of power transmission members. Therefore, by determining the timing to end the shock suppression control based on the relative rotational angle between the input shaft 51 and the output shaft 52, it is possible to reliably perform the shock suppression control when the power transmission members are in contact with each other. In addition, it is possible to prevent the shock suppression control from being unnecessarily long.
  • the following effects can be obtained by terminating the shock suppression control when the termination condition D1 of the shock suppression control is satisfied.
  • the termination condition D1 of the shock suppression control is that a state where power can not be transmitted between the engine unit 20A and the drive wheel 3 is detected by the clutch sensor 73 or the neutral sensor 86. In a situation where power can not be transmitted between the engine unit 20A and the drive wheel 3, a large shock is unlikely to occur even if the power transmission members are in contact with each other. Therefore, shock suppression control is not necessary.
  • the ECU 90 ends the shock suppression control when a state in which power can not be transmitted between the engine unit 20A and the drive wheel 3 is detected. Therefore, it is possible to prevent the shock suppression control from being unnecessarily long.
  • the termination condition D2 of the shock suppression control is that there is a gear position change request or that a change in gear position is detected.
  • the gear position of the transmission 50 is changed, the power transmission path 60pa for acceleration and the power transmission member in the power transmission path 60pa for acceleration may be changed. Therefore, even if the shock suppression control performed before the gear position is changed, it may not be possible to suppress the shock due to the contact between the power transmission members in the power transmission path after the change. Alternatively, even if the shock suppression control is not performed, a shock may not occur due to the contact between the power transmission members in the power transmission path after the change.
  • the ECU 90 ends the shock suppression control when there is a request to change the gear position of the transmission 50 or when a change of the gear position of the transmission 50 is detected. Therefore, it is possible to prevent the shock suppression control from being wasted.
  • the shock suppression control non-start condition B3 is that it is determined that the blipping operation has been performed. If shock suppression control is performed during the blipping operation, the drive source torque that should be increased by the blipping operation does not increase. Therefore, there is a possibility that the smooth downshifting by the blipping operation can not be obtained.
  • the ECU 90 does not perform shock suppression control when it is determined that the blipping operation has been performed. Therefore, a smooth downshift by the blipping operation can be obtained.
  • the rear wheel 3 is a drive wheel.
  • the drive wheels of the vehicle may be front wheels.
  • the drive wheels may be both front and rear wheels.
  • the control system of the throttle valve 37 is an electronic control system.
  • the control method of the throttle valve may be machine control. That is, the throttle valve may be connected to the accelerator operating element via the throttle wire.
  • the engine unit 20A (drive source) is a gasoline engine.
  • the engine unit of the present invention may be a diesel engine.
  • the engine unit of the present invention may be a hydrogen rotary engine.
  • the engine unit 20A (drive source) is a four-stroke engine.
  • the engine unit may be a two-stroke engine.
  • the engine unit 20A is a single cylinder engine.
  • the engine unit may be a multi-cylinder engine.
  • the number of cylinders is not particularly limited.
  • the configuration of the intake system is preferably an independent throttle type.
  • the independent throttle type has a throttle valve for each combustion chamber.
  • the engine unit of the present invention may be a supercharged engine having a supercharger.
  • a supercharger is a device that compresses air supplied to the combustion chamber.
  • the supercharger may be a mechanical supercharger (supercharger) or an exhaust turbine supercharger (so-called turbocharger).
  • the drive source is the engine unit 20A.
  • the drive source may be an electric motor.
  • the drive source may be both an engine unit and an electric motor.
  • the vehicle has an accelerator operator operated by the rider to adjust the drive source torque.
  • the drive source torque may be detected based on the amount of operation of the accelerator operator.
  • a drive source rotational speed sensor that detects the rotational speed of the drive source may be provided.
  • the drive source torque control device may determine the timing for ending the shock suppression control based on the signal of the drive source rotational speed sensor, as in the above-described termination conditions C2 and C3.
  • the plurality of power transmission members of the present invention may be mutually meshing gears.
  • the gear here is not limited to a spur gear, and includes, for example, all known types of gears such as bevel gears and bevel gears.
  • the plurality of power transmission members of the present invention may be a dog member having a dog convex portion and a dog member having a dog concave portion in which the dog convex portion can be fitted.
  • the plurality of power transmission members of the present invention may be a spline member having a spline hole and a sp-spline member (spline shaft) that can be fitted into the spline hole.
  • the plurality of power transmission members of the present invention may be a sprocket and a chain.
  • the plurality of power transmission members of the present invention may be a pulley and a belt.
  • the belt is a meshing transmission belt.
  • the meshing transmission belt is, for example, a toothed belt.
  • the belt may be made of metal or rubber.
  • the transmission system of the transmission 50 is a manual transmission system.
  • the transmission transmission system may be a full automatic transmission system.
  • the transmission system of the transmission may be a semi-automatic transmission system.
  • gear switching is performed by the rider operating the clutch lever and the shift pedal.
  • the full-automatic transmission system the shift actuator is automatically driven according to the vehicle speed, the engine rotation speed, etc., and gear switching is performed.
  • the semi-automatic transmission system only the operation of the clutch is automated, and gear switching is performed when the rider operates the shift pedal.
  • the transmission 50 is a constant mesh (constant mesh) transmission that does not have a synchronous meshing mechanism (synchromesh mechanism).
  • the transmission may be a continuously meshed transmission having a synchronous meshing mechanism (synchromesh mechanism).
  • the synchronous meshing mechanism is a mechanism that synchronizes the speeds of two gears that are disposed axially side by side and have meshable dog recesses and dog protrusions.
  • the transmission may be a selective sliding (sliding mesh) transmission. In a selective sliding transmission, the gears slide axially to mesh with other gears.
  • the transmission of the present invention may have an auxiliary transmission.
  • the transmission of the present invention may not be a sequential shift transmission.
  • the power transmission mechanism 60 includes the transmission 50 having a plurality of gear positions with different transmission ratios selectable.
  • the power transmission mechanism may have a continuously variable transmission that continuously changes the transmission ratio.
  • the power transmission mechanism 60 has a transmission 50.
  • the power transmission mechanism may not have a transmission (including a continuously variable transmission).
  • the ECU 90 estimates the drive source torque based on the signal of the throttle opening degree sensor 82 and the signal of the engine rotational speed sensor 81.
  • the drive source torque control device may estimate the drive source torque by other methods.
  • the drive source torque may be estimated based on the signal of the accelerator sensor (72) and the signal of the engine rotational speed sensor (81).
  • the opening degree of the throttle valve (37) is changed based on the operation amount of the accelerator operating element detected by the accelerator sensor (72). Therefore, by estimating the drive source torque based on the signal of the accelerator sensor (72), the change can be grasped before the actual drive source torque changes.
  • a common vehicle may have an accelerator sensor.
  • the drive source torque can be estimated using a sensor that the vehicle generally has. That is, there is no need to provide a new sensor for shock suppression control.
  • the drive source torque control device estimates the drive source torque based on the signal of the throttle opening sensor (82), the signal of the engine rotational speed sensor (81), and the ignition timing of the ignition device (29). Good. In that case, the drive source torque can be more accurately calculated than when the ignition timing is not used by using the signal of the throttle opening sensor (82) and the signal of the engine rotational speed sensor (81) to estimate the drive source torque. It can be estimated. Thus, the occurrence of a shock of the vehicle can be suppressed more reliably.
  • the drive source torque control device of the present invention may include a drive source torque sensor that detects the drive source torque. That is, in the specific example of the above embodiment, the drive source torque detected by the drive source torque sensor may be used instead of the estimated drive source torque. Thus, the drive source torque control device can obtain torque more accurately than when estimating the drive source torque. In terms of eliminating the need for providing a drive source torque sensor, it is preferable to acquire the drive torque by estimating the drive torque.
  • the drive source torque controller of the present invention may use both the estimated drive source torque and the drive source torque detected by the drive source torque sensor. The drive source torque detected by the drive source torque sensor, like the estimated drive source torque, is hardly delayed with respect to the actual drive source torque.
  • the conditions for starting the shock suppression control are not limited to the above-mentioned conditions A1, A2, and B1 to B3.
  • Conditions for ending the shock suppression control are not limited to the conditions C1 to C4, D1 and D2 described above.
  • the shock suppression control of the present invention may be performed, for example, when performing driving support control such as adaptive cruise control (ACC).
  • driving support control such as adaptive cruise control (ACC).
  • ACC adaptive cruise control
  • an accelerator request generated by the drive source torque control device is used instead of the detection signal of the accelerator sensor.
  • a clutch request generated by the drive source torque control device is used instead of the detection signal of the clutch sensor 73.
  • the gear position change request is not based on the operation of the shift pedal or the shift switch, but is generated by the drive source torque control device.
  • Adaptive cruise control is also called auto cruise control or active cruise control.
  • the ACC is control for causing the preceding vehicle to follow while maintaining the distance to the preceding vehicle.
  • the drive source torque control device controls the drive source torque in order to decelerate the drive wheel, and generates a vehicle when there is no play between the plurality of power transmission members in the power transmission path for deceleration.
  • the drive source torque control device is configured to calculate an absolute value of relative speed among the plurality of power transmission members when the play between the plurality of power transmission members in the power transmission path for reduction is reduced. And the acquired drive source torque such that at least one of the transmission torques transmitted between the plurality of power transmission members when the play among the plurality of power transmission members is eliminated in the power transmission path for reduction is reduced. Control the drive source torque based on
  • the vehicle of the present invention has a front wheel and a rear wheel.
  • the number of front wheels may be one or more.
  • the number of rear wheels may be one or more.
  • the vehicle of the present invention is not limited to a motorcycle.
  • the vehicle of the present invention may be a car.
  • the vehicle of the present invention has at least one front wheel and at least one rear wheel.
  • the vehicle according to the present invention is preferably a vehicle having no torque converter in the power transmission path.
  • the vehicle of the present invention may be a straddle-type vehicle other than a motorcycle.
  • a straddle-type vehicle generally refers to a vehicle on which a rider straddles a heel.
  • the straddle-type vehicles include motorcycles, three-wheeled motor vehicles, four-wheeled buggies (ATV: All Terrain Vehicle), and the like.
  • motorcycles also include scooters, motorbikes, mopeds and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

駆動源トルク制御装置(91)は、駆動輪(3)を加速させるために駆動源トルクを制御する場合に、動力伝達経路(60p)にある複数の動力伝達部材(61、62)の間の遊び(G1)が減少しているときの複数の動力伝達部材(61、62)の間の相対速度の絶対値、および、動力伝達経路(60p)に複数の動力伝達部材(61、62)の間の遊び(G1)が無くなったときに複数の動力伝達部材(61、62)の間で伝達される伝達トルクの少なくとも一方が減少するように、取得した駆動源トルクに基づいて駆動源トルクを制御する。

Description

車両
 本発明は、駆動源と駆動輪との間で動力を伝達する動力伝達経路に複数の動力伝達部材を有する車両に関する。
 自動二輪車などの車両は、エンジンなどの駆動源と駆動輪との間で動力が伝達される。駆動源と駆動輪との間の動力伝達経路には、複数の動力伝達部材が配置される。互いに接触して動力を伝達する2つの動力伝達部材の例としては、ギヤとギヤ、ドグ部材同士、スプライン部材同士、スプロケットとチェーン、プーリとベルトなどがある。このような2つの動力伝達部材は、両者の間に遊び(play、backlash)を有するように配置される。
 エンジン回転速度の増減やエンジンブレーキなどによって、これらの2つの動力伝達部材の回転速度に差が生じる場合がある。このとき、これらの2つの動力伝達部材が一時的に離れる。つまり、これら2つの動力伝達部材の間において、遊びが生じる位置が変わる。その後、これら2つの動力伝達部材は再接触する。この接触によるショックが、自動二輪車などの車両全体に伝わる。
 例えば特許文献1には、このような車両のショックを抑制する工夫を施した車両が開示されている。この車両の駆動源は、エンジンである。この車両の動力伝達機構は、変速装置を含む。変速装置は、入力軸と出力軸を有する。出力軸は、動力伝達経路において入力軸よりも駆動輪に近い位置にある。この車両は、入力軸と出力軸との相対回転角度を検出する手段を有する。この相対回転角度は、センサを使って検出された相対回転速度を積分することで検出される。この車両の制御装置は、ライダーにより加減速操作がなされたか否かを判定する。ライダーにより加減速操作がなされたと判定された場合、制御装置は、検出された入力軸と出力軸との相対回転角度に基づいて、入力軸または出力軸を加減速させる加減速制御を実行する。加減速制御は、具体的には、動力伝達部材間の接触速度および伝達トルクの少なくとも一方が減少するように、点火時期が制御される。
特開2011-111133号公報
 本願発明者は、特許文献1のように、検出された入力軸と出力軸との相対回転角度に基づいて、入力軸または出力軸が加減速される制御について詳細に検討してみた。すると、車両にショックが発生する場合があることがわかった。
 本発明は、駆動源と駆動輪との間の動力伝達経路中に複数の動力伝達部材を有する車両において、車両のショックの発生をより確実に抑制することを目的とする。
 本願発明者は、特許文献1のように、検出された入力軸と出力軸との相対回転角度に基づいて、入力軸または出力軸を加減速させる技術を詳細に検討してみた。すると、エンジン回転速度が速いときに、車両にショックが発生する場合があることがわかった。より詳細に検討した結果、検出された入力軸と出力軸との相対回転角度に基づいて制御しているため、車両にショックが発生していると考えた。
 特許文献1では、検出された入力軸と出力軸との相対回転角度の絶対値が所定の閾値を超えたときに、入力軸または出力軸の加減速制御が開始される。つまり、実際に入力軸と出力軸との相対回転角度の絶対値が閾値を超える状況になるまで、加減速制御が実行されない。また、入力軸は、動力伝達経路においてクランク軸より駆動輪に近い位置に配置される。よって、入力軸の回転速度の変化は、クランク軸の回転速度(つまり、エンジン回転速度)の変化に対して遅れて生じる。そのため、実際に入力軸と出力軸との相対回転角度の絶対値が閾値を超える状況になってから加減速制御を行っても、加減速制御がショックの発生の抑制に間に合わない場合がある。
 加減速制御をより早く実行するには、閾値を小さくすることが考えられる。しかし、制御の精度を確保するためには、閾値を小さくすることには限界がある。また、たとえ閾値を小さくしても、入力軸と出力軸との相対回転角度の絶対値が閾値を超えたことを検出してから加減速制御を開始するため、加減速制御が車両のショックの発生の抑制に間に合わない場合がある。
 そこで、本願発明者は、動力伝達経路中の2つの軸の相対回転角度の絶対値が閾値を超えたことを検出してから、車両のショックの発生を抑制する制御を開始するのではなく、以下の技術的思想を思いついた。その技術的思想とは、動力伝達経路中の2つの軸の相対回転角度の絶対値が閾値を超えるような状況の予兆を検出した場合に、ショックの発生を抑制する制御を開始するというものである。つまり、所定の大きさの相対回転角度を検出するより前に、車両のショックが発生しうる状況を検出する。それにより、所定の大きさの相対回転角度を検出してからショックの発生を抑制する制御を開始する場合よりも早くショックの発生を抑制する制御を開始できる。
 また、本願発明者は、駆動源で発生する駆動源トルクから、動力伝達経路において隣り合う2つの動力伝達部材の相対移動の方向を判別できることに気付いた。また、本願発明者は、駆動源トルクから動力伝達部材の相対移動の動向を把握することで、動力伝達経路中の2つの軸の所定の大きさの相対回転角度を検出するより前に、車両のショックが発生しうる状況を検出できることに気付いた。
 これらから、本願発明者は、動力伝達経路中の2つの軸の所定の大きさの相対回転角度を検出するより前に、駆動源トルクに基づいて車両のショックが発生しうる状況を検出して、車両のショックの発生を抑制する制御を開始することを思いついた。
 <1>本発明の車両は、駆動源と、駆動輪と、前記駆動源と前記駆動輪との間で動力を伝達する動力伝達経路に設けられる複数の動力伝達部材と、前記駆動源で発生する駆動源トルクを制御する駆動源トルク制御装置とを含む車両である。前記駆動源トルク制御装置は、前記駆動源トルクを取得可能であり、前記駆動輪を加速させるために前記駆動源トルクを制御する場合に、前記動力伝達経路にある前記複数の動力伝達部材の間の遊びが減少しているときの前記複数の動力伝達部材の間の相対速度の絶対値、および、前記動力伝達経路に前記複数の動力伝達部材の間の遊びが無くなったときに前記複数の動力伝達部材の間で伝達される伝達トルクの少なくとも一方が減少するように、取得した前記駆動源トルクに基づいて前記駆動源トルクを制御するショック抑制制御を行い、前記動力伝達経路に前記複数の動力伝達部材の間の遊びが無くなったときに生じる車両のショックを抑制することを特徴とする。
 この構成によると、車両は、駆動源と、駆動輪を有する。また、車両は、駆動源と駆動輪との間で動力を伝達する動力伝達経路に設けられた複数の動力伝達部材を有する。複数の動力伝達部材の間には遊びが設けられる。そのため、駆動輪を加速させようとする場合、加速用の動力伝達経路において、複数の動力伝達部材の間の遊びが徐々に減少する。この遊びが無くなってから、複数の動力伝達部材の間でトルクが伝達されて、駆動輪が加速し始める。
 車両は、駆動源で発生する駆動源トルクを制御する駆動源トルク制御装置を有する。駆動源トルク制御装置は、駆動源トルクを取得する。駆動源トルク制御装置は、駆動源トルクを推定することで取得してもよく、センサによって駆動源トルクを検出してもよい。駆動源トルク制御装置は、駆動輪を加速させるために駆動源トルクを制御する場合に、動力伝達経路にある複数の動力伝達部材の間の遊びが減少しているときの複数の動力伝達部材の間の相対速度の絶対値、および、動力伝達経路に複数の動力伝達部材の間の遊びが無くなったときに複数の動力伝達部材の間で伝達される伝達トルクの少なくとも一方が減少するように、取得した駆動源トルクに基づいて駆動源トルクを制御するショック抑制制御を行う。複数の動力伝達部材の間の遊びが減少しているときの複数の動力伝達部材の間の相対速度の絶対値が小さいことにより、動力伝達経路に複数の動力伝達部材の間の遊びが無くなったときに生じる車両のショックが抑制される。複数の動力伝達部材の間の遊びが無くなったときに複数の動力伝達部材の間で伝達される伝達トルクが小さいことにより、動力伝達経路に複数の動力伝達部材の間の遊びが無くなったときに生じる車両のショックが抑制される。このように、ショック抑制制御により、動力伝達経路に複数の動力伝達部材の間の遊びが無くなったときに生じる車両のショックが抑制される。
 このように、駆動源トルク制御装置は、駆動源トルクに基づいて、ショックの発生を抑制するショック抑制制御を行う。駆動源トルクを使うことで、複数の動力伝達部材の相対移動の方向を判別できる。よって、駆動源トルクから複数の動力伝達部材の相対移動の動向を把握することで、相対回転角度や相対回転速度を検出しなくても、車両のショックが発生しうる状況を検出できる。また、駆動源トルクから複数の動力伝達部材の相対移動の動向を把握することで、相対回転角度や相対回転速度を検出するより前に、車両のショックが発生しうる状況を検出できる。よって、本発明の駆動源トルク制御装置は、相対回転角度や相対回転速度を検出してから、車両のショックの発生を抑制する制御を開始する場合に比べて、より早くショックの発生を抑制する制御を開始することができる。その結果、車両のショックの発生をより確実に抑制できる。
 <2>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 前記駆動源トルク制御装置は、取得した前記駆動源トルクに基づいて、前記ショック抑制制御を開始するタイミングを決定する。
 この構成により、相対回転角度や相対回転速度を検出してから、車両のショックの発生を抑制する制御を開始する場合に比べて、より早くショックの発生を抑制する制御を開始することができる。
 <3>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 前記駆動源トルク制御装置は、前記駆動源トルクを推定することによって前記駆動源トルクを取得する。
 この構成によると、駆動源トルクを取得するために駆動源トルクを検出するセンサを設ける必要がない。
 <4>本発明の1つの観点によると、本発明の車両は、上述の<3>の構成に加えて、以下の構成を有することが好ましい。
 前記駆動源が、燃焼室を有するエンジン部である。車両は、エンジン回転速度を検出するエンジン回転速度センサと、前記燃焼室に供給される空気の量を調整するスロットル弁と、前記スロットル弁の開度を検出するスロットルセンサと、を有する。前記駆動源トルク制御装置は、前記スロットルセンサの信号と前記エンジン回転速度センサの信号に基づいて、前記駆動源トルクを推定する。
 この構成によると、駆動源トルク制御装置は、スロットルセンサの信号とエンジン回転速度センサの信号に基づいて、駆動源トルクを推定する。そのため、駆動源トルクを比較的精度良く推定することができる。よって、車両のショックの発生をより確実に抑制できる。また、一般的な車両は、スロットルセンサとエンジン回転速度センサを有する。そのため、車両が一般的に有するセンサを使って、駆動源トルクを推定できる。つまり、ショック抑制制御のために新たなセンサを設ける必要がない。
 <5>本発明の1つの観点によると、本発明の車両は、上述の<3>の構成に加えて、以下の構成を有することが好ましい。
 前記駆動源が、燃焼室を有するエンジン部である。車両は、エンジン回転速度を検出するエンジン回転速度センサと、前記燃焼室に供給される空気の量を調整するスロットル弁と、前記スロットル弁の開度を変更するために運転者によって操作されるアクセル操作子と、前記アクセル操作子の操作量を検出するアクセルセンサと、を有する。前記駆動源トルク制御装置は、前記アクセルセンサの信号と前記エンジン回転速度センサの信号に基づいて、前記駆動源トルクを推定する。
 この構成によると、駆動源トルク制御装置は、アクセルセンサの信号とエンジン回転速度センサの信号に基づいて、駆動源トルクを推定する。スロットル弁の開度は、アクセルセンサが検出したアクセル操作子の操作量に基づいて変更される。したがって、アクセルセンサの信号に基づいて駆動源トルクを推定することにより、実際の駆動源トルクが変化するより前にその変化を把握できる。よって、車両のショックが発生しうる状況をより早く検出できる。よって、車両のショックの発生をより確実に抑制できる。また、一般的な車両は、アクセルセンサを有する場合がある。その場合、車両が一般的に有するセンサを使って、駆動源トルクを推定できる。つまり、ショック抑制制御のために新たなセンサを設ける必要がない。
 <6>本発明の1つの観点によると、本発明の車両は、上述の<4>または<5>の構成に加えて、以下の構成を有することが好ましい。
 前記エンジン部は、前記燃焼室内の燃料と空気との混合気に点火する点火装置を有する。前記駆動源トルク制御装置は、前記スロットルセンサまたは前記アクセルセンサの信号と前記エンジン回転速度センサの信号と前記点火装置の点火時期とに基づいて、前記駆動源トルクを推定する。
 この構成によると、駆動源トルク制御装置は、スロットルセンサまたはアクセルセンサの信号とエンジン回転速度センサの信号と点火装置の点火時期に基づいて、駆動源トルクを推定する。そのため、駆動源トルクの推定に、スロットルセンサまたはアクセルセンサの信号とエンジン回転速度センサの信号を使用して点火時期を使用しない場合に比べて、駆動源トルクをより精度良く推定することができる。よって、車両のショックの発生をより一層確実に抑制できる。
 <7>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 前記駆動源トルク制御装置は、前記ショック抑制制御において、前記駆動輪を加速させるために前記駆動源トルクを制御する場合に、前記動力伝達経路にある前記複数の動力伝達部材の間の遊びが減少しているときの前記複数の動力伝達部材の間の前記相対速度の絶対値、および、前記動力伝達経路に前記複数の動力伝達部材の間の遊びが無くなったときに前記複数の動力伝達部材の間で伝達される前記伝達トルクの少なくとも一方が減少するように、前記駆動源トルクを減少させてから増大させる。
 この構成によると、駆動源トルクを一旦減少させてから増大させることで、ショック抑制制御を行わない場合に比べて、駆動源トルクを増加させつつ、駆動トルクを抑えることができる。それにより、動力伝達経路にある複数の動力伝達部材の間の遊びが減少するときの複数の動力伝達部材の間の相対速度の絶対値、および、動力伝達経路に複数の動力伝達部材の間の遊びが無くなったときに複数の動力伝達部材の間で伝達される伝達トルクの少なくとも一方が小さくなる。それにより、複数の動力伝達部材の間の遊びが無くなったときのショックが抑制される。
 <8>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 前記駆動源トルク制御装置は、取得した前記駆動源トルクが第1判定トルク以上となった場合に、前記ショック抑制制御を開始する。
 駆動輪を減速状態から加速状態に変化するとき、駆動源トルクは増加する。駆動源トルクが増加中であってもその値が小さければ、動力伝達部材同士の接触によるショックが発生しない場合がある。駆動源トルク制御装置は、取得した駆動源トルクが第1判定トルク以上となったか否か判断する。これにより、車両のショックが発生しうる状況であることを精度良く検出できる。そして、駆動源トルク制御装置は、駆動源トルクが第1判定トルク以上となった場合に、ショック抑制制御を行う。そのため、車両のショックが発生しない状況にも関わらずショック抑制制御を行うことをより確実に防止できる。
 <9>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 前記駆動源トルク制御装置は、取得した前記駆動源トルクを、前記駆動源トルクが第2判定トルク以上となった時点からの時間について積分し、その積分値が判定値以上となった場合に、前記ショック抑制制御を開始する。
 駆動源トルク制御装置が取得した駆動源トルクが第2判定トルク以上となった時点を、基準時とする。駆動源トルク制御装置は、取得した駆動源トルクを、基準時からの時間について積分する。そして、駆動源トルク制御装置は、その積分値が判定値以上となったか否か判定する。これにより、車両のショックが発生しうる状況であることをより精度良く検出できる。そして、駆動源トルク制御装置は、この積分値が判定値以上となった場合に、ショック抑制制御を行う。そのため、車両のショックが発生しない状況にも関わらずショック抑制制御を行うことをより確実に防止できる。
 <10>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 前記駆動源トルク制御装置は、経過時間に基づいて、前記ショック抑制制御を終了するタイミングを決定する。
 この構成によると、駆動源トルク制御装置は、経過時間に基づいてショック抑制制御を終了するタイミングを決定する。具体的には、例えば、ショック抑制制御を開始してからの経過時間に基づいて、ショック抑制制御を終了するタイミングを決定してもよい。また、例えば、ショック抑制制御の開始後、取得した駆動源トルクが所定値以上となった時点からの経過時間に基づいて、ショック抑制制御を終了するタイミングを決定してもよい。ショック抑制制御の開始後、ある程度の時間が経過すれば、複数の動力伝達部材の間で動力が伝達されていると推定できる。そのため、経過時間に基づいてショック抑制制御を終了するタイミングを決定することで、動力伝達部材同士が接触するときに確実にショック抑制制御を行うことができる。また、ショック抑制制御が無駄に長くなるのを防止できる。
 <11>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 車両は、前記駆動源の回転速度を検出する駆動源回転速度センサを有する。前記駆動源トルク制御装置は、前記ショック抑制制御を開始後、前記駆動源回転速度センサの信号に基づいて、前記ショック抑制制御を終了するタイミングを決定する。
 この構成によると、駆動源トルク制御装置は、駆動源の回転速度を検出する駆動源回転速度センサの信号に基づいてショック抑制制御を終了するタイミングを決定する。加速用の動力伝達経路に複数の動力伝達部材の遊びが無くなるまでは、駆動源の回転速度が増加する場合がある。加速用の動力伝達経路に複数の動力伝達部材の遊びが無くなった後、駆動源の回転速度が一時的に減少する場合がある。
 これらの現象を利用することで、ショック抑制制御を終了するタイミングを決定できる。よって、駆動源の回転速度に基づいてショック抑制制御を終了するタイミングを決定することで、動力伝達部材同士が接触するときに確実にショック抑制制御を行うことができる。また、ショック抑制制御が無駄に長くなるのを防止できる。
 <12>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 車両は、前記動力伝達経路に設けられた入力軸と、前記動力伝達経路において前記入力軸と前記駆動輪との間に設けられた出力軸とを含む。前記駆動源トルク制御装置は、前記入力軸と前記出力軸との相対回転角度を検出可能であって、前記ショック抑制制御を開始後、検出した前記入力軸と前記出力軸との相対回転角度に基づいて前記ショック抑制制御を終了するタイミングを決定する。
 この構成によると、駆動源トルク制御装置は、動力伝達機構の入力軸と出力軸の相対回転角度を検出する。駆動源トルク制御装置は、検出した入力軸と出力軸の相対回転角度に基づいて、ショック抑制制御を終了するタイミングを決定する。駆動輪が減速状態から加速状態に変化するとき、入力軸と出力軸の相対回転角度が変化する。入力軸と出力軸の相対回転角度から、複数の動力伝達部材の間で動力が伝達されている状態か否かを推定できる。そのため、入力軸と出力軸の相対回転角度に基づいてショック抑制制御を終了するタイミングを決定することで、動力伝達部材同士が接触するときに確実にショック抑制制御を行うことができる。また、ショック抑制制御が無駄に長くなるのを防止できる。
 <13>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 前記駆動源トルク制御装置は、前記駆動源と前記駆動輪との間で動力を伝達できない状態を検出可能であって、前記ショック抑制制御を開始後、前記駆動源と前記駆動輪との間で動力を伝達できない状態が検出された場合に、前記ショック抑制制御を終了する。
 この構成によると、駆動源トルク制御装置は、駆動源と駆動輪との間で動力を伝達できない状態を検出可能である。駆動源と駆動輪との間で動力を伝達できない状況とは、例えば、変速機のギヤ位置を変更するためにクラッチを切断状態にした場合等である。駆動源と駆動輪との間で動力を伝達できない状況では、動力伝達部材同士が接触しても大きなショックが起こりにくい。そのため、ショック抑制制御が必要でない。駆動源トルク制御装置は、駆動源と駆動輪との間で動力を伝達できない状態が検出された場合にショック抑制制御を終了する。そのため、ショック抑制制御が無駄に長くなるのを防止できる。
 <14>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 前記駆動源が、燃焼室を有するエンジン部である。車両は、複数のギヤ位置を選択可能に有する変速機を含む。前記駆動源トルク制御装置は、前記変速機の現在のギヤ位置を取得可能であって、前記変速機の前記ギヤ位置を変更する要求があった場合、または、前記変速機の前記ギヤ位置の変更が検出された場合、前記ショック抑制制御を終了する。
 変速機のギヤ位置が変更されると、動力伝達経路、および、動力伝達経路中の動力伝達部材が変更される場合がある。そのため、ギヤ位置が変更される前に行っていたショック抑制制御を継続しても、変更後の動力伝達経路中の動力伝達部材同士の接触によるショックを抑制できない場合がある。もしくは、ショック抑制制御を行わなくても、変更後の動力伝達経路中の動力伝達部材同士の接触によるショックが起こらない場合がある。駆動源トルク制御装置は、変速機のギヤ位置を変更する要求があった場合、または、変速機のギヤ位置の変更が検出された場合、ショック抑制制御を終了する。そのため、ショック抑制制御が無駄になるのを防止できる。
 <15>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 前記駆動源が、燃焼室を有するエンジン部である。車両は、前記動力伝達経路に設けられた入力軸、および、前記動力伝達経路において前記入力軸と前記駆動輪との間に設けられた出力軸を含むと共に、前記出力軸の回転速度に対する前記入力軸の回転速度の比が互いに異なる複数のギヤ位置を選択可能に有する変速機を含む。前記駆動源トルク制御装置は、前記出力軸の回転速度に対する前記入力軸の回転速度の比が大きくなるように前記ギヤ位置を変更した場合に前記駆動源トルクを一時的に増加させるブリッピング操作が実行されたか否か判定し、前記ブリッピング操作が実行されたと判定した場合に、前記ショック抑制制御を行わない。
 出力軸の回転速度に対する入力軸の回転速度の比が大きくなるようにギヤ位置を変更することを、シフトダウンという。ブリッピング操作は、シフトダウンをスムーズに行うために、シフトダウン中に駆動源トルクを一時的に増加させる操作である。ブリッピング操作の際にショック抑制制御を行うと、ブリッピング操作によって増加するはずの駆動源トルクが増加しなくなる。そのため、ブリッピング操作によるスムーズなシフトダウンが得られなくなる恐れがある。駆動源トルク制御装置は、ブリッピング操作が実行されたと判定された場合に、ショック抑制制御を行わない。そのため、ブリッピング操作によるスムーズなシフトダウンが得られる。
 <16>本発明の1つの観点によると、本発明の車両は、以下の構成を有することが好ましい。
 前記駆動源トルク制御装置は、前記駆動源トルクを検出する駆動源トルクセンサを含む。
 この構成によると、駆動源トルク制御装置は、駆動源トルクを推定する場合に比べて、より精度良くトルクを取得できる。
 <用語の定義>
 本発明において「ショック」とは、物理的な単発的な振動を意味する。言い換えると、連続的ではない振動を意味する。また、「ショック」レベルは、乗員が不快に感じるレベルである。
 本発明において、「駆動輪を加速させるために駆動源トルクを制御する場合」に、「動力伝達経路にある複数の動力伝達部材の間の遊びが減少している」とは、駆動輪を加速させるための動力伝達経路において、複数の動力伝達部材の間の遊びが減少している状態をいう。本発明において、「駆動輪を加速させるために駆動源トルクを制御する場合に」「動力伝達経路に複数の動力伝達部材の間の遊びが無くなったとき」とは、駆動輪を加速させるための動力伝達経路において、複数の動力伝達部材の間の遊びが無くなった状態をいう。
 本発明において、「複数の動力伝達部材の相対速度」とは、2つの動力伝達部材の間の相対速度である。2つの動力伝達部材のうち動力伝達経路において駆動源に近い方の動力伝達部材に対する他方の動力伝達部材の相対速度であってもよく、その逆であってもよい。いずれの場合でも、「複数の動力伝達部材の相対速度の絶対値」は同じ値である。
 本発明において、「駆動輪を加速させるために駆動源トルクを制御する場合」に、「動力伝達経路に複数の動力伝達部材の間の遊びが無くなったときに複数の動力伝達部材の間で伝達される伝達トルク」は、常に正のトルクである。より詳細には、2つの動力伝達部材のうち動力伝達経路において駆動源に近い方の動力伝達部材から他方の動力伝達部材に正の伝達トルクが伝達される。
 本発明において、「動力伝達経路にある複数の動力伝達部材の間の遊びが減少しているときの複数の動力伝達部材の間の相対速度の絶対値が減少する」とは、ショック抑制制御を行わない場合に比べて、動力伝達経路にある複数の動力伝達部材の間の遊びが減少しているときの複数の動力伝達部材の間の相対速度の絶対値が減少することを意味する。本発明において、「動力伝達経路に複数の動力伝達部材の間の遊びが無くなったときに複数の動力伝達部材の間で伝達される伝達トルクが減少する」とは、ショック抑制制御を行わない場合に比べて、動力伝達経路に複数の動力伝達部材の間の遊びが無くなったときに複数の動力伝達部材の間で伝達される伝達トルクが減少することを意味する。
 本発明において、「駆動源と駆動輪との間で動力を伝達できない状態」とは、例えば、変速機がニュートラル状態の場合やクラッチが切断状態の場合などを指す。
 本発明において、「駆動源トルクが第1判定トルク以上となる」とは、駆動源トルクが第1判定トルク未満の状態から上昇して第1判定トルク以上になることを指す。この定義は、「駆動源トルクが第2判定トルク以上となった時点」という表現にも適用される。
 本明細書において、「Aに基づいて」、何かを行う(例えば制御する)とは、Aだけを使用してもよく、AとA以外を使用してもよい。
 本明細書において、ある部品の端部とは、部品の端とその近傍部とを合わせた部分を意味する。
 本明細書において、回転可能であるとは、特に限定しない限り360°以上回転可能なことを意味する。揺動可能であるとは、特に限定しない限り360°未満回転可能なことを意味する。回転するとは、360°回転する場合と360°未満しか回転しない場合の両方を含む。
 本明細書において、AとBがX方向に並ぶとは、以下の状態を指す。X方向と直交するいずれの方向からAとBを見た場合であっても、X方向を示す任意の直線または曲線がAとBの両方を通る。また、A全体がBとX方向に並ぶとは、A全体がBとX方向に向かい合っていることを指す。つまり、X方向に見て、A全体がBと重なる状態を指す。全体を一部に言い換えてもよい。なお、AとBは、接触していてもよい。また、AとBは、離れていてもよい。AとBの間に、Cが存在していてもよい。
 本明細書において、AがBより前方にあるとは、以下の状態を指す。Aが、Bの最前端を通り前後方向に直交する平面の前方にある。AとBは、前後方向に並んでいてもよく、並んでいなくてもよい。なお、AがBより後方にある、AがBより上方または下方にある、AがBより右方または左方にあるという表現にも、同様の定義が適用される。
 本明細書において、複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢から考えられる全ての組み合わせを含む。複数の選択肢のうちの少なくとも1つ(一方)とは、複数の選択肢のいずれか1つであってもよく、複数の選択肢の全てであってもよい。例えば、AとBとCの少なくとも1つとは、Aのみであってもよく、Bのみであってもよく、Cのみであってもよく、AとBであってもよく、AとCであってもよく、BとCであってもよく、AとBとCであってもよい。
 特許請求の範囲において、ある構成要素の数を明確に特定しておらず、英語に翻訳された場合に単数で表示される場合、本発明は、この構成要素を、複数有してもよい。また本発明は、この構成要素を1つだけ有してもよい。
 本発明において、含む(including)、有する(comprising)、備える(having)およびこれらの派生語は、列挙されたアイテム及びその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。
 本発明において、取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合および支持も含む。さらに、接続された(connected)および結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。
 本明細書において、「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限定されるものではない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。また、本明細書において、「してもよい」という用語は非排他的なものである。「してもよい」は、「してもよいがこれに限定されるものではない」という意味である。本明細書において、「してもよい」と記載された構成は、少なくとも、請求項1の構成により得られる上記効果を奏する。
 本発明では、上述した好ましい構成を互いに組み合わせることを制限しない。本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。また、本発明は、後述する変更例を適宜組み合わせて実施することができる。
 以上のように、本発明によると、駆動源と駆動輪との間の動力伝達経路中に複数の動力伝達部材を有する車両において、車両のショックの発生をより確実に抑制できる。
本発明の実施形態の車両の構成を説明する図である。 本発明の実施形態の具体例の自動二輪車の右側面図である。 図2に示す自動二輪車のエンジンユニットおよび動力伝達機構の模式断面図である。 図2に示す自動二輪車の制御ブロック図である。 図3のV‐V線断面図である。 図5に示すドグ凸部とドグ凹部の接触状態を説明する図である。 図2に示す自動二輪車のショック抑制制御を説明するグラフであって、(a)はスロットル開度とアクセル操作量を示し、(b)は駆動源トルクを示し、(c)はエンジン回転速度を示し、(d)は入力軸と出力軸の相対回転角度を示し、(e)は、駆動輪の回転速度を示す。
 <本発明の実施形態>
 以下、本発明の実施形態の車両1について図1を参照しつつ説明する。
 車両1は、駆動源20Aと、駆動輪3を有する。また、車両1は、駆動源20Aと駆動輪3との間で動力を伝達する動力伝達経路60pに設けられた複数の動力伝達部材61、62を有する。動力伝達経路60pには、動力伝達部材61、62以外の動力伝達部材も配置される。複数の動力伝達部材61、62の間には遊びが設けられる。そのため、駆動輪3を加速させようとする場合、加速用の動力伝達経路60pにおいて、複数の動力伝達部材61、62の間の遊びG1が徐々に減少する。この遊びG1が無くなってから、複数の動力伝達部材61、62の間でトルクが伝達されて、駆動輪3が加速し始める。
 車両1は、駆動源20Aで発生する駆動源トルクを制御する駆動源トルク制御装置91を有する。駆動源トルク制御装置91は、駆動源トルクを取得する。駆動源トルク制御装置91は、駆動源トルクを推定することで取得してもよく、センサによって駆動源トルクを検出してもよい。駆動源トルク制御装置91は、駆動輪3を加速させるために駆動源トルクを制御する場合に、動力伝達経路60pにある複数の動力伝達部材61、62の間の遊びG1が減少しているときの複数の動力伝達部材61、62の間の相対速度の絶対値、および、動力伝達経路60pに複数の動力伝達部材61、62の間の遊びG1が無くなったときに複数の動力伝達部材61、62の間で伝達される伝達トルクの少なくとも一方が減少するように、取得した駆動源トルクに基づいて駆動源トルクを制御するショック抑制制御を行う。複数の動力伝達部材61、62の間の遊びが減少しているときの複数の動力伝達部材61、62の間の相対速度の絶対値が小さいことにより、動力伝達経路60pに複数の動力伝達部材61、62の間の遊びが無くなったときに生じる車両1のショックが抑制される。複数の動力伝達部材61、62の間の遊びが無くなったときに複数の動力伝達部材61、62の間で伝達される伝達トルクが小さいことにより、動力伝達経路60pに複数の動力伝達部材61、62の間の遊びが無くなったときに生じる車両1のショックが抑制される。このように、ショック抑制制御により、動力伝達経路60pに複数の動力伝達部材61、62の間の遊びG1が無くなったときに生じる車両1のショックが抑制される。
 このように、駆動源トルク制御装置91は、駆動源トルクに基づいて、ショックの発生を抑制するショック抑制制御を行う。駆動源トルクを使うことで、複数の動力伝達部材61、62の相対移動の方向を判別できる。よって、駆動源トルクから複数の動力伝達部材61、62の相対移動の動向を把握することで、相対回転角度や相対回転速度を検出しなくても、車両1のショックが発生しうる状況を検出できる。また、駆動源トルクから複数の動力伝達部材61、62の相対移動の動向を把握することで、相対回転角度や相対回転速度を検出するより前に、車両1のショックが発生しうる状況を検出できる。よって、本発明の駆動源トルク制御装置91は、相対回転角度や相対回転速度を検出してから、車両1のショックの発生を抑制する制御を行う場合に比べて、より早くショックの発生を抑制する制御を開始することができる。その結果、車両1のショックの発生をより確実に抑制できる。
 <本発明の実施形態の具体例>
 次に、上述した本発明の実施形態の具体例について、図2~図7を用いて説明する。基本的に、実施形態の具体例は、上述した本発明の実施形態の特徴を全て有している。上述した本発明の実施形態と同じ部位についての説明は省略する。実施形態の具体例は、本発明の車両を自動二輪車に適用した一例である。
以下の説明における前後方向は、特に限定しない限り、車両前後方向である。以下の説明における左右方向は、特に限定しない限り、車両左右方向である。以下の説明における上下方向は、特に限定しない限り、車両上下方向である。車両前後方向とは、車両を水平な路面に直立させた状態における上下方向である。車両左右方向および車両前後方向とは、上記の状態において、車両に乗車する運転者から見た方向である。車両左右方向は、車幅方向でもある。なお、図2および図3に示す符号FおよびReは、車両前方向と車両後方向をそれぞれ表す。図2に示す符号Uと符号Dは、車両上方向と車両下方向をそれぞれ表す。図3に示す符号Lと符号Riは、車両左方向と車両右方向をそれぞれ表す。以下の説明は、基本的に、車両が、水平な路面に配置されていることを前提とする。
 <1> 自動二輪車の全体構成
 図2に示すように、自動二輪車1は、前輪2と、後輪3と、車体フレーム4とを有する。車体フレーム4は、その前部にヘッドパイプ4aを有する。ヘッドパイプ4aには、ステアリングシャフト(図示せず)が回転可能に挿入されている。ステアリングシャフトの上端部は、ハンドルユニット5に連結されている。ハンドルユニット5は、一対のフロントフォーク6の上端部に固定されている。一対のフロントフォーク6の下端部は、前輪2を支持する。前輪2は、タイヤとホイールを含む。
 車体フレーム4は、一対のスイングアーム7の前端部を揺動可能に支持する。一対のスイングアーム7の後端部は、後輪3を支持する。後輪3は、タイヤとホイールを含む。また、スイングアーム7は、揺動中心より後方の位置において、リアサスペンション8を介して車体フレーム4に接続されている。
 図2に示すように、車体フレーム4は、シート9と燃料タンク10を支持する。なお、シート9は、ライダー(運転者)が座る部位であって、ライダーの腰または背中がもたれかかる部位は含まない。また、シート9は、タンデムライダー(乗員)が座る部位は含まない。
 車体フレーム4は、エンジンユニット20を支持する。エンジンユニット20は、シート9の上端9aより下方に配置される。エンジンユニット20の少なくとも一部は、シート9の少なくとも一部と上下方向に並んでいる。左方向または右方向に見て、エンジンユニット20は、前輪2より後方で、且つ、後輪3より前方に配置される。また、車体フレーム4は、バッテリー(図示せず)を支持する。バッテリーは、後述するECU90や各種センサなどの電子機器に電力を供給する。
 自動二輪車1は、左右両側の下部にフットレスト11を有する。フットレスト11は、ライダーの足を載せるためのものである。右のフットレスト11のほぼ真ん前に、ブレーキペダル12が設けられている。ライダーの足でブレーキペダル12が操作されることで、後ブレーキ装置(図示せず)が作動して後輪3が制動される。また、図示は省略するが、左のフットレスト11のほぼ真ん前には、シフトペダルが設けられている。シフトペダルは、後述する変速機50(図3参照)のギヤ位置を切り換えるために操作される。なお、シフトペダルの代わりに、ハンドルユニット5にシフトスイッチが設けられてもよい。
 ハンドルユニット5には、ライダーによって操作される各種スイッチを有する。ハンドルユニット5は、アクセルグリップ13と、ブレーキレバー(図示せず)と、クラッチレバー(図示せず)を有する。これらは、ライダーの手で操作される。
 アクセルグリップ13は、エンジンユニット20で発生する駆動源トルクを調整するために操作される。アクセルグリップ13は、回転操作される。基本的に、アクセルグリップ13の操作量(回転量)が大きいほど、駆動源トルクは大きくなる。アクセルグリップ13は、本発明のアクセル操作子に相当する。ブレーキレバーが操作されることで、前ブレーキ装置(図示せず)が作動して前輪2が制動される。図4に示すように、自動二輪車1は、アクセルグリップ13の操作量を検出するアクセルセンサ72を有する。クラッチレバーは、後述するクラッチ42(図3参照)を接続状態と切断状態とを切り換えるために操作される。図4に示すように、自動二輪車1は、クラッチレバーの操作量を検出するクラッチセンサ73を有する。
 自動二輪車1は、後輪3または前輪2の回転速度を検出する車輪速度センサ(図示せず)を有する。自動二輪車1は、後輪3の回転速度を検出する車輪速度センサと、前輪2の回転速度を検出する車輪速度センサの両方を有していてもよい。後述するECU90は、車輪速度センサの信号に基づいて自動二輪車1の車速を検出する。
 <2> エンジンユニットの構成
 図3に示すように、エンジンユニット20は、エンジン部20Aと動力伝達部20Bを有する。エンジン部20A(駆動源)は、駆動源トルクを発生させる。エンジン部20Aで発生した駆動源トルクは、動力伝達部20Bに伝達される。
 図2に示すように、エンジンユニット20は、クランクケース21、シリンダボディ22、シリンダヘッド23、およびヘッドカバー24を有する。シリンダボディ22は、クランクケース21の上端部に取り付けられる。シリンダヘッド23は、シリンダボディ22の上端部に取り付けられる。ヘッドカバー24は、シリンダヘッド23の上端部に取り付けられる。クランクケース21は、複数の部品の組み合わせで構成されている。シリンダボディ22とシリンダヘッド23とヘッドカバー24とは、別体である。しかし、シリンダボディ22とシリンダヘッド23とヘッドカバー24のいずれか2つまたは3つが一体成型されていてもよい。
 <2-1> エンジン部の構成
 エンジン部20Aは、ガソリンエンジンである。エンジンユニット20は、4ストロークエンジンである。エンジン部20Aは、単気筒エンジンである。4ストロークエンジンは、気筒ごとに、吸気行程、圧縮行程、燃焼行程(膨張行程)、および排気行程をこの順で繰り返す。3気筒の燃焼行程のタイミングは互いに異なっている。
 図2および図3に示すように、エンジン部20Aは、クランク軸25を有する。図2に示すように、クランク軸25は、クランクケース21に収容される。図4に示すように、自動二輪車1は、エンジン回転速度センサ81を有する。エンジン回転速度センサ81は、クランク軸25の回転速度、即ち、エンジン回転速度を検出する。より詳細には、エンジン回転速度センサ81は、単位時間当たりのクランク軸25の回転数を検出する。エンジン回転速度センサ81は、本発明の駆動源回転速度センサに相当する。
 図示は省略するが、クランク軸25は、スターターモータおよび発電機に連結されている。スターターモータおよび発電機は、クランクケース21に収容される。スターターモータは、バッテリーからの電力により作動する。スターターモータは、エンジン部20Aの始動時にクランク軸25を回転させる。発電機は、クランク軸25の動力(回転力)によって電力を生成する。バッテリーは、発電機で生成された電力によって充電される。なお、スターターモータと発電機は一体化されていてもよい。
 図3に示すように、シリンダボディ22は、シリンダ孔22aを有する。シリンダ孔22a内に、ピストン26が摺動自在に設けられる。ピストン26は、コネクティングロッド27を介してクランク軸25に連結されている(図3参照)。エンジン部20Aは、燃焼室28を有する。燃焼室28は、シリンダヘッド23の下面とシリンダ孔22aとピストン26によって形成される。エンジン部20Aは、点火プラグ29を有する。点火プラグ29の先端部は、燃焼室28内に配置されている。点火プラグ29は、燃焼室28内で燃料と空気との混合気に点火する。点火プラグ29は、本発明の点火装置に相当する。点火プラグ29は、図4に示す点火コイル30に接続されている。点火コイル30は、点火プラグ29の火花放電を生じさせるための電力を蓄える。点火コイル30は、点火プラグ29の点火時期を制御する。燃焼室28内の混合気が点火されて燃焼することによって、ピストン26が往復動する。それにより、クランク軸25に駆動源トルクが発生する。
 図3に示すように、燃焼室28は、シリンダヘッド23内に形成された吸気通路31および排気通路32に接続されている。吸気通路31および排気通路32は、空間である。吸気通路31は、吸気弁33によって開閉される。排気通路32は、排気弁34によって開閉される。吸気弁33および排気弁34は、動弁装置(図示せず)によって駆動される。動弁装置は、シリンダヘッド23に収容される。動弁装置は、クランク軸25と連動して作動する。
 図3に示すように、吸気通路31は、吸気管15に接続されている。大気中の空気は、吸気管15と吸気通路31を通って、燃焼室28に供給される。吸気通路31内または吸気管15内には、インジェクタ35の先端部が配置されている。インジェクタ35は、吸気通路31内または吸気管15内において燃料を噴射する。インジェクタ35は、燃焼室28に燃料を供給する燃料供給装置である。インジェクタ35は、燃料ホースを介して図4に示す燃料ポンプ36に接続されている。燃料ポンプ36は、燃料タンク10内に配置されている。燃料ポンプ36によって、燃料タンク10内の燃料がインジェクタ35に圧送される。なお、インジェクタ35は、燃焼室28において燃料を噴射するように配置されていてもよい。また、燃料供給装置として、インジェクタ35の代わりに、キャブレターを用いてもよい。キャブレターは、燃焼室28の負圧を利用して、燃焼室28内に燃料を供給するように構成される。
 吸気管15内には、スロットル弁37が配置されている。スロットル弁37は、燃焼室28に供給される空気の量を調整する。ライダーがアクセルグリップ13を操作することによって、スロットル弁37の開度が変更される。スロットル弁37の制御方式は、電子制御式である。つまり、後述するECU90が、アクセルセンサ72の信号に基づいて、スロットル弁37の開度を制御する。図4に示すように、自動二輪車1は、スロットル開度センサ82(スロットルセンサ)を有する。スロットル開度センサ82は、スロットル弁37の位置を検出することで、スロットル弁37の開度を検出する。スロットル弁37の開度を以下、スロットル開度という。
 図3に示すように、排気通路32は、排気管16に接続されている。図2および図3に示すように、排気管16は、マフラー17に接続されている。マフラー17内には、排ガスを浄化する触媒(図示せず)が配置されている。燃焼行程において燃焼室28で発生した燃焼ガス(排ガス)は、排気通路32に排出される。その後、排ガスは、排気管16およびマフラー17を通って大気に排出される。
 <3> 動力伝達機構の構成
 図2および図3に示すように、自動二輪車1は、動力伝達機構2を有する。動力伝達機構60は、エンジンユニット20の動力伝達部20Bと、チェーン65と、ドリブンスプロケット64を含む。動力伝達機構60は、エンジン部20A(詳細にはクランク軸25)で発生した駆動源トルクを後輪3に伝達可能である。以下の説明において、後輪3を駆動輪3という場合がある。動力伝達機構60は、エンジン部20Aと駆動輪3との間で動力を伝達する。動力伝達機構60は、エンジン部20Aから駆動輪3に至る動力伝達経路60pを有する。つまり、動力伝達経路60pは、エンジン部20Aと駆動輪3との間で動力を伝達する。
 図3に示すように、動力伝達部20Bは、ドライブギヤ40と、ドリブンギヤ41と、クラッチ42と、変速機50と、ドライブスプロケット43とを含む。ドライブギヤ40、ドリブンギヤ41、クラッチ42、および、変速機50は、クランクケース21に収容される。ドライブスプロケット43は、クランクケース21の外側(左側)に配置される。なお、図3は、単一の平面で切断した断面図ではない。図3は、クランク軸25、入力軸51および出力軸52を通るように切断した断面を示している。但し、図3中のクランク軸25の表示は、断面でなく、側面を表している。
 ドライブギヤ40は、クランク軸25に一体回転可能に設けられている。変速機50は、入力軸51および出力軸52を有する。入力軸51および出力軸52は、動力伝達経路60pに設けられる。入力軸51および出力軸52は、動力伝達経路60pに設けられる。出力軸52は、動力伝達経路60pにおいて入力軸51と駆動輪3との間に設けられる。ドリブンギヤ41は、入力軸51に相対回転可能に設けられている。ドリブンギヤ41は、ドライブギヤ40と噛み合う。
 クラッチ42は、入力軸51の端部に設けられている。クラッチ42は、ドリブンギヤ41に連結されており、ドリブンギヤ41から動力が伝達される。クラッチ42は、接続状態と切断状態に切り換え可能に構成されている。接続状態は、ドリブンギヤ41から伝達された動力を入力軸51に伝達できる状態である。つまり、接続状態は、クランク軸25の動力を入力軸51に伝達できる状態である。切断状態は、ドリブンギヤ41から伝達された動力を入力軸51に伝達できない状態である。つまり、切断状態は、クランク軸25の動力を入力軸51に伝達できない状態である。クラッチ42は、クラッチレバー(図示せず)の操作量に基づいて、接続状態と切断状態との間で制御される。クラッチ42は、クラッチセンサ73の信号に基づいてECU90によって制御される。クラッチセンサ73を設けずに、クラッチ42がワイヤーを介してクラッチレバーに接続されていてもよい。クラッチレバーの操作量が、ゼロより大きく操作量の最大値より小さい所定の範囲内のとき、クラッチ42は半クラッチ状態である。クラッチ42が半クラッチ状態のとき、クランク軸25の動力の一部が入力軸51に伝達される。クラッチ42は、例えば、摩擦クラッチなどの一般的なクラッチが用いられている。クラッチ42の具体的な構成の説明は省略する。
 変速機50は、入力軸51の動力を出力軸52に伝達可能に構成されている。出力軸52の回転速度に対する入力軸51の回転速度の比を、変速比という。変速機50は、変速比を変更可能に構成されている。変速機50は、変速比の異なる複数のギヤ位置を選択可能に有する。変速機50は、シーケンシャルシフト式の変速機である。シーケンシャルシフト式の変速機では、ギヤ位置を変更する際、変速比の大きさの順に隣り合うギヤ位置にしか変更できない。変速比が大きくなるようにギヤ位置を変更することを、シフトダウンという。また、変速機50は、ニュートラル状態となることができる。ニュートラル状態は、入力軸51の動力を出力軸52に伝達できない状態である。動力伝達機構60は、ギヤ位置ごとに異なる動力伝達経路60pを有する。変速機50のギヤ位置が変更されると、動力を伝達する動力伝達経路60pも変更される。
 ドライブスプロケット43は、出力軸52に設けられている。ドライブスプロケット43は、出力軸52と一体的に回転する。図2に示すように、駆動輪3の車軸には、ドリブンスプロケット64が設けられる。ドライブスプロケット43とドリブンスプロケット64に、チェーン65が巻き掛けられている。出力軸52の動力はチェーン65を介して駆動輪3に伝達される。それにより、駆動輪3は回転する。なお、スプロケット43、64とチェーン65の代わりに、プーリとベルトを用いてもよい。
 駆動源トルクが正の値の場合、エンジン部20Aから駆動輪3に動力が伝達される。駆動源トルクが正の値の場合、基本的に、駆動輪3は、加速するか一定速度で回転する。駆動源トルクが負の値の場合、駆動輪3は減速する。駆動源トルクが正の値であっても、前ブレーキ装置または後ブレーキ装置が作動している場合、駆動輪3は減速する場合がある。また、駆動源トルクが正の値であっても、クラッチ42が切断状態の場合、駆動輪3は減速する場合がある。駆動源トルクが正の値であっても、勾配の大きい上り坂を走行する場合、駆動輪3は減速する場合がある。駆動源トルクが負の値であっても、勾配の大きい下り坂を走行する場合、駆動輪3は加速する場合がある。
 以下、変速機50の詳細について説明する。
 図3に示すように、変速機50は、常時噛合式(コンスタントメッシュ式)の変速機である。変速機50は、6つのギヤ位置を有する。入力軸51には、ギヤ53a、53b、53c、53d、53e、53fが設けられている。以下、ギヤ53a、53b、53c、53d、53e、53fを、ギヤ53(図5参照)と総称する。6つのギヤ53の歯数は、互いに異なる。出力軸52には、ギヤ54p、54q、54r、54s、54t、54uが設けられている。以下、ギヤ54p、54q、54r、54s、54t、54uを、ギヤ54(図5参照)と総称する。6つのギヤ54の歯数は、互いに異なる。入力軸51の6つのギヤ53a~53fは、出力軸52の6つのギヤ54p~54uとそれぞれ噛み合う。
 ギヤ53b、53eは、入力軸51に相対回転可能に設けられている。ギヤ53b、53eとそれぞれ噛み合うギヤ54q、54tは、出力軸52と一体的に回転する。ギヤ54p、54r、54s、54uは、出力軸52に相対回転可能に設けられている。ギヤ54p、54r、54s、54uとそれぞれ噛み合うギヤ53a、53c、53d、53fは、入力軸51と一体的に回転する。
 ギヤ53c、53dは、入力軸51に軸方向に移動可能に設けられている。ギヤ53c、53dは、互いに連結されており、一体的に軸方向に移動する。ギヤ54q、54tは、出力軸52に軸方向に移動可能に設けられている。以下、ギヤ53c、53d、54q、54tを、可動ギヤ53c、53d、54q、54tと称する。
 可動ギヤ53c、53d、54q、54tは、図示しないシフトアクチュエータによって軸方向に駆動される。可動ギヤ53c、53d、54q、54tをシフトアクチュエータによって駆動するための機構として、公知のシフトカムとシフトフォーク(共に図示せず)が用いられる。ライダーがシフトペダル(図示せず)を操作することで、変速機50のギヤ位置を変更する要求が後述するECU90に入力される。以下、この要求を、ギヤ位置変更要求と称する。ギヤ位置変更要求があると、ECU90はシフトアクチュエータを制御する。それにより、シフトカムの回転角度(回転位置)が制御される。
 可動ギヤ53c、53dは、それぞれ、片方の側面に、複数のドグ凸部55c、55dを有する。ギヤ53bは、可動ギヤ53cと向かい合う面に、複数のドグ凹部56bを有する。ギヤ53eは、可動ギヤ53dと向かい合う面に、複数のドグ凹部56eを有する。可動ギヤ54qの一方の側面には、複数のドグ凸部55q1が設けられ、可動ギヤ54qの他方の側面には、複数のドグ凸部55q2が設けられている。ギヤ54pは、可動ギヤ54qと向かい合う面に、複数のドグ凹部56pを有する。ギヤ54rは、可動ギヤ54qと向かい合う面に、複数のドグ凹部56rを有する。可動ギヤ54tの一方の側面には、複数のドグ凸部55t1が設けられ、可動ギヤ54tの他方の側面には、複数のドグ凸部55t2が設けられている。ギヤ54sは、可動ギヤ54tと向かい合う面に、複数のドグ凹部56sを有する。ギヤ54uは、可動ギヤ54tと向かい合う面に、複数のドグ凹部56uを有する。
 このように、ギヤ53b、53c、53d、53eおよび6つのギヤ54は、ドグ部材を兼ねている。ドグ部材とは、ドグ部(ドグ凸部またはドグ凹部)を有する部材である。以下、ドグ凸部55c、55d、55q1、55q2、55t1、55t2を、ドグ凸部55(図5および図6参照)と総称する。ドグ凹部56b、56e、56p、56r、56s、56uを、ドグ凹部56(図5および図6参照)と総称する。
 図3に示すように、ドグ凸部55は、ギヤ53またはギヤ54の側面から突出している。ドグ凹部56は、凹状に形成されている。軸方向に向かい合う2つのギヤ(53または54)に設けられたドグ凸部55とドグ凹部56は、噛み合い可能に構成されている。図5に示すように、1つのギヤ(53または54)に設けられる複数のドグ凹部56は、周方向に並んでいる。1つのギヤ(53または54)に設けられる複数のドグ凸部55は、周方向に並んでいる。1つのギヤ(53または54)に設けられるドグ凸部55の数は、このドグ凸部55と向かい合うギヤ(53または54)に設けられたドグ凹部56の数より少ない。なお、ドグ凸部55の数は、ドグ凹部56の数と同じであってもよい。ドグ凹部56の周方向長さは、このドグ凹部56と向かい合うギヤ(53または54)に設けられたドグ凸部55の周方向長さより長い。
 ドグ凸部55を有する可動ギヤ(53または54)が、ドグ凹部56を有するギヤ(53または54)に向かって軸方向に移動することで、ドグ凸部55がドグ凹部56の内側に配置される。なお、ドグ凹部56を有する可動ギヤ(53または54)が、ドグ凸部55を有するギヤ(53または54)に向かって軸方向に移動することで、ドグ凸部55がドグ凹部56の内側に配置されてもよい。ドグ凸部55がドグ凹部56の内側に配置されると、ドグ凸部55とドグ凹部56が接触する。詳細には、ドグ凸部55の周方向端部がドグ凹部56の周方向端部に接触する。この状態を、ドグ凸部55とドグ凹部56が噛み合うという。
 図3および図5は、ギヤ54tのドグ凸部55t2が、ギヤ54uのドグ凹部56uと接触した状態を示している。クラッチ42が接続状態のとき、ドグ凸部55t2とドグ凹部56uが接触すると、ギヤ54tとギヤ54uが一体的に回転する。それにより、入力軸51の動力が、ギヤ53f、ギヤ54u、ギヤ54tの順で、出力軸52に伝達される。この場合の動力伝達経路60pには、ギヤ53f、ギヤ54u、ギヤ54tがこの順で並んでいる。ドグ凸部55t2以外のドグ凸部55がドグ凹部56と接触した場合も、入力軸51の回転力が、3つのギヤを介して出力軸52に伝達される。ここでの3つのギヤとは、2つのギヤ53と1つのギヤ54、または、1つのギヤ53と2つのギヤ54である。
 6つのドグ凸部55c、55d、55q1、55q2、55t1、55t2のいずれがドグ凹部56に接触するかによって、変速機50のギヤ位置は異なる。つまり、6つのドグ凸部55c、55d、55q1、55q2、55t1、55t2がドグ凹部56に接触した状態が、変速機50の6つのギヤ位置に相当する。変速機50のニュートラル状態は、どのドグ凸部55もドグ凹部56の内側に挿入されてない状態である。
 上述したように、ドグ凹部56の周方向長さは、このドグ凹部56と向かい合うギヤ(53または54)に設けられたドグ凸部55の周方向長さより長い。つまり、向かい合う2つのギヤ(53または54)は、噛み合い可能なドグ凹部56とドグ凸部55の間に常に遊び(play、backlash)を有するように形成されている。
 ドグ凸部55の周方向両端部のうち、どちらの端部がドグ凹部56に接触するかは、自動二輪車1が加速中か減速中かによって異なる。つまり、ドグ凸部55とドグ凹部56の接触位置は、駆動輪3が加速中か減速中かによって異なる。したがって、接触するドグ凸部55とドグ凹部56の組み合わせが同じ場合であっても、駆動輪3が加速中か減速中かによって、動力を伝達する動力伝達経路60pが異なる。駆動輪3の加速中に動力を伝達する動力伝達経路60pを、加速用の動力伝達経路60pa(図6および図7参照)という。駆動輪3の減速中に動力を伝達する動力伝達経路60pを、減速用の動力伝達経路60pdという。なお、減速用の動力伝達経路60pdは、図示していない。
 図5および図6に示すように、駆動輪3の加速中、ドグ凸部55の加速接触位置55Aと、ドグ凹部56の加速接触位置56Aが接触する。加速接触位置55A、56Aは、加速用の動力伝達経路60paの一部を構成する。図6に示すように、駆動輪3の減速中、ドグ凸部55の減速接触位置55Dと、ドグ凹部56の減速接触位置56Dが接触する。減速接触位置55D、56Dは、減速用の動力伝達経路60pdの一部を構成する。加速接触位置55Aおよび減速接触位置55Dは、ドグ凸部55の周方向一端部と他端部である。加速接触位置56Aおよび減速接触位置56Dは、ドグ凹部56の周方向一端部と他端部である。
 図5および図6に示すように、駆動輪3の加速中、ドグ凸部55の減速接触位置55Dとドグ凹部56の減速接触位置56Dとの間に、遊びGaが存在する。図6に示すように、駆動輪3の減速中、ドグ凸部55の加速接触位置55Aと、ドグ凹部56の加速接触位置56Aとの間に、遊びGdが存在する。
 駆動輪3が減速状態から加速状態に変化する場合、まず、減速接触位置55D、56Dが離れていく。その一方、加速接触位置55A、56Aの間の遊びGdが減少していく。つまり、ドグ凸部55とドグ凹部56が接触していない状況に一時的になる。加速接触位置55A、56Aの間の遊びGdが無くなってから、ドグ凸部55とドグ凹部56との間でトルクが伝達される。その後、駆動輪3が加速し始める。言い換えると、加速用の動力伝達経路60paにおいて遊びGaがある間は、ドグ凸部55とドグ凹部56の間でトルクが伝達されず、駆動輪3は加速しない。また、駆動輪3が加速状態から減速状態に変化する場合には、加速接触位置55A、56Aが離れていく。その一方で、減速接触位置55D、56Dの間の遊びGaが減少していく。減速接触位置55D、56Dの間の遊びGaが無くなってから、ドグ凸部55とドグ凹部56との間でトルクが伝達される。その後、駆動輪3が減速し始める。
 6つのギヤ53の歯部を、歯部57と総称する。6つのギヤ54の歯部を、歯部58と総称する。互いに噛み合うギヤ53とギヤ54は、歯部57と歯部58の間に遊びを有するように形成されている。図5に示すように、駆動輪3の加速中、ギヤ53の歯部57の加速接触位置57Aと、ギヤ54の歯部58の加速接触位置58Aが接触する。駆動輪3の減速中、ギヤ53の歯部57の減速接触位置57Dと、ギヤ54の歯部58の減速接触位置58Dが接触する。駆動輪3の加速中、ギヤ53の歯部57の減速接触位置57Dと、ギヤ54の歯部58の減速接触位置58Dとの間に、遊びGtaが存在する。駆動輪3の減速中、ギヤ53の歯部57の加速接触位置57Aと、ギヤ54の歯部58の加速接触位置58Aとの間に、遊びGtdが存在する。
 駆動輪3が減速状態から加速状態に変化する場合、減速接触位置57D、58Dが離れていくと同時に、加速接触位置57A、57Aの間の遊びGtdが減少していく。加速接触位置57A、58Aの間の遊びGtdが無くなってから、駆動輪3は加速し始める。厳密には、加速接触位置57A、58Aの間の遊びGtdが無くなってから、加速接触位置55Aと加速接触位置56Aとの接触面の面積がゼロから増加する。加速接触位置55Aと加速接触位置56Aとの接触面の面積が最大の状態になってから、駆動輪3は加速し始める。駆動輪3が加速状態から減速状態に変化する場合、加速接触位置57A、58Aが離れていくと同時に、減速接触位置57D、58Dの間の遊びGtaが減少していく。減速接触位置57D、58Dの間の遊びGtaが無くなってから、駆動輪3は減速し始める。
 ドグ凸部55を有するギヤ(53または54)と、このギヤと向かい合いドグ凹部56を有するギヤ(53または54)は、本発明の複数の動力伝達部材に相当する。互いに噛み合うギヤ53とギヤ54も、本発明の複数の動力伝達部材に相当する。動力伝達機構60は、ギヤ53のドグ部とギヤ54のドグ部との間の遊び、ギヤ53の歯部57とギヤ53の歯部57との間の遊び、ギヤ54の歯部58とギヤ54の歯部58と間の遊び以外にも、動力伝達部材の間の遊びを有する。例えば、ドライブギヤ40とドリブンギヤ41の間にも、遊びが設けられる。つまり、ドライブギヤ40およびドリブンギヤ41は、本発明の複数の動力伝達部材に相当する。また、ドライブスプロケット43とチェーン65との間、および、チェーン65とドリブンスプロケット64との間にも、遊びが設けられる。つまり、ドライブスプロケット43およびチェーン65は、本発明の複数の動力伝達部材に相当する。チェーン65およびドリブンスプロケット64も、本発明の複数の動力伝達部材に相当する。以下の説明において、本発明の複数の動力伝達部材に相当するこれらの部材を、複数の動力伝達部材と称する場合がある。
 駆動輪3が減速状態から加速状態に変化する場合、エンジン部20Aに近い動力伝達部材から順に、加速用の動力伝達経路60paにおける動力伝達部材の間の遊びが無くなっていく。加速用の動力伝達経路60paにおいて、全ての動力伝達部材の間の遊びが無くなってから、駆動輪3が加速し始める。駆動輪3を加速状態から減速状態に変化する場合、駆動輪3に近い動力伝達部材から順に、減速用の動力伝達経路60pdにおける動力伝達部材の間の遊びが無くなっていく。減速用の動力伝達経路60pdにおいて、全ての動力伝達部材の間の遊びが無くなってから、駆動輪3が減速し始める。
 図4に示すように、自動二輪車1は、入力軸センサ83、出力軸センサ84、ギヤ位置センサ85、および、ニュートラルセンサ86を有する。入力軸センサ83は、入力軸51の回転角速度を算出する。出力軸センサ84は、出力軸52の回転角速度を算出する。ギヤ位置センサ85は、変速機50のギヤ位置を検出する。詳細には、ギヤ位置センサ85は、シフトカム(図示せず)の回転角度を検出する。ニュートラルセンサ86は、変速機50がニュートラル状態であるか否かを検出する。ニュートラルセンサ86は、シフトカム(図示せず)の回転角度がニュートラル状態に対応した角度の場合にのみ、電気信号を出力する。
 <5> ECU90の構成
 <5-1> ECU90の全体構成
 自動二輪車1は、自動二輪車1の各部の動作を制御するECU(Electronic Control Unit)90を有する。ECU90は、1箇所に配置された1つの装置であってもよく、異なる位置に配置された複数の装置で構成されていてもよい。図4に示すように、ECU90は、アクセルセンサ72、クラッチセンサ73、スロットル開度センサ82、エンジン回転速度センサ81、ギヤ位置センサ85、ニュートラルセンサ86、入力軸センサ83、出力軸センサ84等の各種センサと接続されている。さらに、ECU90は、点火コイル30、インジェクタ35、燃料ポンプ36、スロットル弁37等に接続されている。
 ECU90は、プロセッサと、記憶装置を有する。プロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロコントローラ、マイクロプロセッサ、特定用途向け集積回路(ASIC)、プログラム可能な論理回路(PLC)、フィールドプログラマブルゲートアレイ(FPGA)などである。プロセッサは、レジスタを内蔵していてもよい。記憶装置は、プロセッサで実行される処理に必要な情報を記憶する。記憶装置は、例えば、ROM(Read Only Memory)およびRAM(Random Access Memory)を含む。RAMは、プロセッサがプログラムを実行するときに各種データを一時的に記憶する。ROMは、プロセッサに実行させるプログラムを記憶する。プロセッサが、記憶装置に記憶されたプログラムや各種データに基づいて情報処理を実行することで、各種の機能処理部が実現される。
 ECU90は、点火コイル30、インジェクタ35、および燃料ポンプ36、スロットル弁37等に対して動作指令信号を送信する。点火コイル30、インジェクタ35、燃料ポンプ36、およびスロットル弁37が制御されることで、駆動源トルクが制御される。ECU90は、上述の実施形態の駆動源トルク制御装置91に含まれる。ECU90は、本発明の駆動源トルク制御装置に含まれる。以下、ECU90が行う処理について具体的に説明する。
 <5-2> 駆動源トルクの推定
 ECU90は、駆動源トルクを推定する。ECU90は、少なくとも、スロットル開度センサ82の信号とエンジン回転速度センサ81の信号に基づいて、駆動源トルクを推定する。より具体的には、例えば、ECU90は、予めECU90の記憶部に記憶されたマップを使って、駆動源トルクを推定する。ECU90は、点火プラグ29の点火時期とスロットル開度センサ82の信号とエンジン回転速度センサ81の信号に基づいて、駆動源トルクを推定することが好ましい。以下、ECU90によって算出された駆動源トルクの推定値を、推定駆動源トルクと称する。
 <5-5> 動力伝達状態の検出
 ECU90は、入力軸センサ83の信号と出力軸センサ84の信号に基づいて、入力軸51と出力軸52との相対回転角度を算出する。具体的には、まず、ECU90は、入力軸センサ83により検出された入力軸51の回転角速度と、出力軸センサ84により検出された出力軸52の回転角速度との差から、入力軸51と出力軸52の相対回転角速度を算出する。そして、算出された相対回転角速度を時間で積分して、入力軸51と出力軸52との相対回転角度を算出する。
 入力軸51と出力軸52との相対回転角度は、駆動輪3の減速時における限界値をゼロとする。図5に示すように、動力伝達経路60pに、ギヤ53f、ギヤ54u、ギヤ54tが並んでいる場合を例に挙げる。ギヤ53fの歯部57の減速接触位置57Dとギヤ54uの歯部58の減速接触位置58Dが接触し、且つ、ギヤ54uのドグ凹部56の減速接触位置56Dとギヤ54tのドグ凸部55の減速接触位置55Dが接触しているとき、入力軸51と出力軸52との相対回転角度は、駆動輪3の減速時における限界値となる。なお、入力軸51と出力軸52との相対回転角度は、駆動輪3の加速時における限界値をゼロとしてもよい。
 <5-4> 燃料供給量の制御
 ECU90は、インジェクタ35による燃料供給量を制御する。具体的には、ECU90は、インジェクタ35による燃料噴射時間を制御する。ECU90は、センサ71~73、81~86等の信号に基づいて、燃料供給量を制御する。ECU90は、決定した燃料供給量に基づいた動作指令信号を、燃料ポンプ36およびインジェクタ35に送信する。それにより、インジェクタ35は、ECU90により決定された量の燃料を噴射する。
 <5-5> 点火時期の制御
 ECU90は、点火プラグ29の点火時期を制御する。点火時期とは、点火プラグ29の放電のタイミングのことである。点火時期は、圧縮上死点を基準としたクランク軸25の回転角度で表される。圧縮上死点とは、圧縮行程と燃焼行程の間のピストン26の上死点のことである。ECU90は、センサ71~73、81~86等の信号に基づいて点火時期を制御する。例えば、スロットル開度センサ82の信号とエンジン回転速度センサ81の信号に基づいて、点火時期を制御する。ECU90は、決定した点火時期に基づいた動作指令信号を、点火コイル30に送信する。それにより、所定のタイミングで、点火プラグ29の火花放電が行われる。
 <5-6> ショック抑制制御
 ECU90は、駆動輪3を減速状態から加速状態に変更する場合に、駆動源トルクの制御として、ショック抑制制御を行う。言い換えると、ECU90は、駆動輪3を加速させるために駆動源トルクを制御する場合に、ショック抑制制御を行う。ショック抑制制御は、加速用の動力伝達経路60paに複数の動力伝達部材の間の遊びが無くなったときに生じる自動二輪車1のショックを抑制する制御である。言い換えると、ショック抑制制御は、加速用の動力伝達経路60pa中の動力伝達部材同士が接触していない状態から接触する状態に変化したときに生じる自動二輪車1のショックを抑制する制御である。
 ショック抑制制御を開始する前の駆動輪3の減速状態は、駆動輪3が減速している状況であれば、特に限定されない。駆動源トルクが負の値であってもよい。駆動源トルクが正の値で、クラッチ42が切断状態であってもよい。駆動源トルクが正の値で、勾配の大きい上り坂を走行している状態でもよい。駆動源トルクが正または負の値で、前ブレーキ装置および後ブレーキ装置の少なくとも一方が作動していてもよい。
 ショック抑制制御は、駆動輪3を減速状態から加速状態に変更する場合に、必ず実行されなくてもよい。ショック抑制制御は、駆動輪3を減速状態から加速状態に変更する場合に、必ず実行されてもよい。自動二輪車1は、ショック抑制制御を行うか否かを、ライダーが選択できるように構成されていることが好ましい。例えば、ハンドルユニット5のスイッチの操作によって、ショック抑制制御を行うか否かを選択できてもよい。また、自動二輪車1は、ショック抑制制御を行う走行モードと行わない走行モードを有していてもよい。そして、走行モードをライダーが選択できるようになっていてもよい。また、ショック抑制制御が、走行モードごとに異なっていてもよい。
 図7(a)~図7(e)は、ショック抑制制御を行った場合の一例を示すグラフである。図7(a)~図7(e)の横軸は、共通の時間を示す。図7(a)の縦軸は、スロットル開度センサ82により検出されたスロットル開度と、アクセルセンサ72により検出されたアクセル操作量を示す。図7(b)の縦軸は、実際の駆動源トルクを示す。なお、推定駆動源トルクは、実際の駆動源トルクに対してほとんど遅れはない。図7(b)中の二点鎖線の曲線は、ショック抑制制御を行わない場合の駆動源トルクを示している。図7(c)の縦軸は、エンジン回転速度を示す。図7(d)の縦軸は、ECU90によって検出された入力軸51と出力軸52との相対回転角度を示す。図7(e)の縦軸は、後輪3に設けた車輪速度センサによって検出された駆動輪(後輪)の回転速度を示す。
 図7(a)~図7(e)の例では、グラフの全期間にわたって、クラッチ42は接続状態であり、前ブレーキ装置および後ブレーキ装置は作動していない。また、グラフの全期間にわたって、路面はほぼ水平である。図7(a)および図7(b)に示すように、横軸の左端の時点では、アクセル操作量はゼロであって、駆動源トルクが負の値である。つまり、エンジンブレーキが働いている。それにより、駆動輪3は減速している。横軸の左端の時点の直後に、アクセル操作量が増加している。これにより、ECU90は、減速状態から加速状態に変化させるための制御を開始する。まず、ECU90は、図7(a)に示すように、スロットル弁37の開度を増大させる。それに伴って、駆動トルクが増加している。駆動トルクが正の値になると、エンジン部20Aに近い動力伝達部材から順に、動力伝達経路60中の動力伝達部材が隣り合う動力伝達部材から離れる。
 ECU90は、以下のショック抑制制御の開始条件A1およびA2の少なくとも一方が成立するか否かを判定する。ECU90は、ショック抑制制御の開始条件A1およびA2のいずれか一方の判定処理しか行わないようにプログラムされていてもよい。また、ECU90は、ショック抑制制御の開始条件A1およびA2の両方の判定処理を行えるようにプログラムされていてもよい。
 ショック抑制制御の開始条件A1は、推定駆動源トルクが所定の判定トルクTrA1(第1判定トルク)以上となることである。図7(b)のグラフに、判定トルクTrA1の一例を表示した。判定トルクTrA1は、1つの値でなくてもよい。ECU90は、例えばギヤ位置センサ85の信号に基づいて判定トルクTrA1を変更してもよい。ECU90は、ギヤ位置センサ85の信号とエンジン回転速度センサ81の信号に基づいて判定トルクTrA1を変更してもよい。ECU90は、推定駆動源トルクに基づいて判定トルクTrA1を変更してもよい。判定トルクTrA1は、変更されなくてもよい。
 例えば図7(b)に示すように、推定駆動源トルクが所定の判定トルクTrA0(第2判定トルク)となった時点を、基準時t0とする。図7(b)では、判定トルクTrA0は、ゼロであるが、正の値であっても負の値であってもよい。ECU90は、推定駆動源トルクを基準時t0からの時間について積分する。ショック抑制制御の開始条件A2は、この積分値が所定の判定値以上となることである。判定トルクTrA0は1つの値でなくてもよい。判定値は1つの値でなくてもよい。ECU90は、例えばギヤ位置センサ85の信号に基づいて判定トルクTrA0または判定値を変更してもよい。ECU90は、ギヤ位置センサ85の信号とエンジン回転速度センサ81の信号に基づいて判定トルクTrA0または判定値を変更してもよい。ECU90は、推定駆動源トルクに基づいて判定トルクTrA0または判定値を変更してもよい。判定トルクTrA0は、変更されてなくてもよい。判定値は、変更されなくてもよい。
 ECU90は、ショック抑制制御の開始条件A1またはA2が成立した場合、後述するショック抑制制御の非開始条件B1~B3のいずれかが成立するか否かを判定する。開始条件A1およびA2は、ショック抑制制御を開始する条件である。つまり、開始条件A1およびA2は、ショック抑制制御を開始するタイミングを決定する条件である。非開始条件B1~B3は、ショック抑制制御を開始しない条件である。ECU90は、ショック抑制制御の非開始条件B1~B3の一部の条件の判定処理しか行わないようにプログラムされていてもよい。ECU90は、ショック抑制制御の非開始条件B1~B3の全ての条件の判定処理を行えるようにプログラムされていてもよい。
 ECU90は、ショック抑制制御の開始条件A1またはA2が成立し、且つ、ショック抑制制御の非開始条件B1~B3のうち判定処理を行った非開始条件がいずれも成立しない場合、ショック抑制制御を開始することを決定する。開始条件A1およびA2は、推定駆動源トルクを用いた条件である。よって、ECU90は、推定駆動源トルクに基づいて、ショック抑制制御を開始するタイミングを決定する。
 ショック抑制制御の非開始条件B1は、クランク軸25と駆動輪3との間で動力を伝達できない状態が検出されることである。この検出には、クラッチセンサ73またはニュートラルセンサ86が用いられる。クラッチセンサ73によりクラッチ42が切断状態であることが検出された場合、または、ニュートラルセンサ86により変速機50のニュートラル状態が検出された場合、クランク軸25と駆動輪3との間で動力を伝達できないと判定される。
 ショック抑制制御の非開始条件B2は、ギヤ位置変更要求があること、または、変速機50のギヤ位置の変更が検出されることである。変速機50のギヤ位置を変更する際、クラッチ42を切断状態にすれば、非開始条件B1が成立する。しかし、ギヤ位置を変更する際、クラッチ42を切断状態にしないことがある。非開始条件B2は、このような場合にショック抑制制御を開始しないための条件である。ギヤ位置変更要求は、シフトペダル(またはシフトスイッチ)が操作されることで、ECU90に入力される。変速機50のギヤ位置が変更されたか否かは、ギヤ位置センサ85の信号に基づいて判定してもよい。この場合、ギヤ位置センサ85は、本発明の駆動源トルク制御装置に含まれる。また、変速機50のギヤ位置が変更されたか否かは、ECU90によって推定されたギヤ位置に基づいて判定してもよい。ギヤ位置の推定には、例えば、エンジン回転速度センサ81の信号と、出力軸センサ84の信号を用いてもよい。自動二輪車1が車輪速度センサを有する場合、ギヤ位置の推定に、出力軸センサ84の代わりに車輪速度センサの信号を用いてもよい。
 ECU90は、ブリッピング操作が実行されたか否かの判定を行う。ブリッピングとは、変速機50のシフトダウンをスムーズに行うために、シフトダウン中に駆動源トルクを一時的に増加させる操作である。
 ECU90は、変速機50のギヤ位置が最も変速比が大きいギヤ位置以外であり、且つ、アクセル操作量が所定の第1グリッピング判定領域内であり、且つ、アクセル操作量の変化量が所定の第2グリッピング判定領域内である場合に、ブリッピング操作が実行されたと判定する。第1グリッピング判定領域と、第2グリッピング判定領域は、それぞれ、ギヤ位置によって異なってもよい。ショック抑制制御の非開始条件B3は、ブリッピング操作が実行されたと判定されることである。
 ECU90は、推定駆動源トルク等に基づいて、ショック抑制制御を開始することを決定した場合、ショック抑制制御を実行する。ショック抑制制御においては、以下の2つの状況のいずれか一方が成立するように、駆動源トルクが制御される。第1の状況は、加速用の動力伝達経路60paにある複数の動力伝達部材の間の遊びが減少しているときの複数の動力伝達部材の間の相対速度の絶対値が減少する状況である。第2の状況は、加速用の動力伝達経路60paに複数の動力伝達部材の間の遊びが減少して無くなったときに複数の動力伝達部材の間で伝達される伝達トルクが減少する状況である。ショック抑制制御において、第1の状況と第2の状況の両方が成立するように駆動源トルクが制御されてもよく、第1の状況だけが成立するように駆動源トルクが制御されてもよく、第2の状況だけが成立するように駆動源トルクが制御されてもよい。このようなショック抑制制御によって、加速用の動力伝達経路60paに複数の動力伝達部材の間の遊びが無くなったときに生じる自動二輪車1のショックが抑制される。
 加速用の動力伝達経路60paにある複数の動力伝達部材の間の遊びが減少しているときの複数の動力伝達部材の間の相対速度の絶対値が減少するとは、ショック抑制制御を行わない場合に比べて、加速用の動力伝達経路60paにある複数の動力伝達部材の間の遊びが減少しているときの複数の動力伝達部材の間の相対速度の絶対値が減少することを意味する。加速用の動力伝達経路60paにある複数の動力伝達部材の間の遊びが減少しているときに、複数の動力伝達部材の間の相対速度の絶対値が徐々に減少するように制御されてもよい。加速用の動力伝達経路60paに複数の動力伝達部材の間の遊びが無くなったときに複数の動力伝達部材の間で伝達される伝達トルクが減少するとは、ショック抑制制御を行わない場合に比べて、加速用の動力伝達経路60paに複数の動力伝達部材の間の遊びが無くなったときに複数の動力伝達部材の間で伝達される伝達トルクが減少することを意味する。
 ショック抑制制御における駆動源トルクの制御とは、具体的には、例えば図7(b)に示すように、駆動源トルクを減少させた後、増加させる制御である。増加率は減少率に比べて小さい。駆動源トルクの増加は比較的緩やかである。駆動源トルクを一旦減少させてから増大させることで、ショック抑制制御を行わない場合に比べて、駆動源トルクを増加させつつ、駆動トルクを抑えることができる。それにより、加速用の動力伝達経路60paにある複数の動力伝達部材の間の遊び(例えばGd)が減少するときの複数の動力伝達部材の間の相対速度が小さくなる。それにより、複数の動力伝達部材の間の遊びが無くなったときのショックが抑制される。
 駆動源トルクを制御するとは、具体的には、点火時期を制御することであってもよい。また、スロットル開度を制御することであってもよい。また、スロットル開度と燃料噴射量を制御することであってもよい。点火時期とスロットル開度の両方を制御することであってもよい。それ以外であってもよい。点火時期を制御する場合には、ショック抑制制御を行わない場合よりも点火時期を遅角させる。
 ECU90は、以下のショック抑制制御の終了条件C1~C4のいずれかが成立したときに、ショック抑制制御を終了する。終了条件C1~C4は、ショック抑制制御を終了する条件である。ECU90は、ショック抑制制御の終了条件C1~C4の一部の条件の判定処理しか行わないようにプログラムされていてもよい。ECU90は、ショック抑制制御の終了条件C1~C4の全ての判定処理を行えるようにプログラムされていてもよい。また、終了条件C1~C4の判定処理を実施する優先順位が設定されていてもよい。例えば、終了条件C4が成立しなかった場合に、終了条件C1~C3のいずれかの判定処理を行ってもよい。
 ショック抑制制御の終了条件C1は、所定の終了判定基準時からの経過時間が、所定の終了判定時間以上となることである。つまり、ECU90は、経過時間に基づいて、ショック抑制制御を終了するタイミングを決める。終了判定時間は、終了判定基準時によって異なる。終了判定基準時は、例えば、ショック抑制制御を開始した時点であってもよい。また、終了判定基準時は、推定駆動源トルクが所定値以上となった時点であってもよい。この所定値は、上述した判定トルクTrA1または判定トルクTrA0と同じであってもよく、異なっていてもよい。終了判定基準時ごとの終了判定時間は、ECU90によって変更されてもよい。終了判定基準時ごとの終了判定時間は、変更されなくてもよい。
 ショック抑制制御の終了条件C2およびC3は、エンジン回転速度センサ81の信号に基づいて、ショック抑制制御を終了するタイミングを決定する条件である。図7(c)および図7(e)に示すように、駆動輪3が減速状態から加速状態に変化する場合、エンジン回転速度が増加して、その後、減少する。詳細には、駆動輪3を減速状態から加速状態に変化させるための制御を開始すると、一時的にクランク軸25が無負荷の状態となり、エンジン回転速度が増加する。図7の例では、駆動トルクが負の値から正の値に変化した後、一時的にクランク軸25が無負荷の状態となる。その後、第1動力伝達部材と第2動力伝達部材の加速接触位置(例えば55Aと56A)が接触することで、エンジン回転速度が下降する。終了条件C2は、このエンジン回転速度の増加を検出することである。終了条件C3は、このエンジン回転速度の増加後の減少を検出することである。
 具体的には、ショック抑制制御の終了条件C2は、ショック抑制制御を開始後、エンジン回転速度センサ81により検出されたエンジン回転速度が所定の終了判定速度以上となることである。または、ショック抑制制御を開始後、エンジン回転速度センサ81により検出されたエンジン回転速度の増加率が、所定の終了判定値以上となることである。終了判定値はゼロであってもよい。ショック抑制制御の終了条件C2は、エンジン回転速度センサ81の信号を用いた上記以外の条件であってもよい。
 ショック抑制制御の終了条件C3は、ショック抑制制御を開始後、エンジン回転速度センサ81により検出されたエンジン回転速度が上昇後、減少に変化することである。または、ショック抑制制御を開始後、エンジン回転速度センサ81により検出されたエンジン回転速度が上昇後、所定の値以下に減少に変化することである。ショック抑制制御の終了条件C3は、エンジン回転速度センサ81の信号を用いた上記以外の条件であってもよい。
 ショック抑制制御の終了条件C4は、ECU90により検出された入力軸51と出力軸52との相対回転角度に基づいて、ショック抑制制御を終了するタイミングを決定する条件である。上述したように、入力軸51と出力軸52との相対回転角度は、駆動輪3の減速時における限界値をゼロとする。そのため、図7(d)に示すように、駆動輪3が減速状態から加速状態に変化すると、入力軸51と出力軸52との相対回転角度は、ゼロから増加する。終了条件C4はこの相対回転角度の増加を利用したものである。具体的には、ショック抑制制御の終了条件C4は、入力軸51と出力軸52との相対回転角度が、所定の終了判定角度以上となることである。終了判定角度は、最小値(ゼロ)と最大値の中間の値より大きい値とすることが好ましい。終了判定角度は、最小値(ゼロ)と最大値の中間の値以下の値であってもよい。なお、入力軸51と出力軸52との相対回転角度が、駆動輪3の加速時における限界値をゼロとする場合には、ショック抑制制御の終了条件C4は、例えば、入力軸51と出力軸52との相対回転角度が、所定の終了判定角度以下となることであってもよい。
 ECU90は、ショック抑制制御の終了条件D1およびD2のいずれかが成立したときに、ショック抑制制御を終了する。ショック抑制制御の終了条件D1およびD2は、ショック抑制制御の途中で終了する条件である。ECU90は、ショック抑制制御の終了条件D1およびD2のいずれか一方の判定処理しか行わないようにプログラムされていてもよい。ECU90は、ショック抑制制御の終了条件D1およびD2の両方の判定処理を行えるようにプログラムされていてもよい。また、ECU90は、ショック抑制制御の終了条件D1およびD2の両方の判定処理を行わなくてもよい。
 ショック抑制制御の終了条件D1は、ショック抑制制御の開始後、クランク軸25と駆動輪3との間で動力を伝達できない状態が検出されることである。この検出には、クラッチセンサ73またはニュートラルセンサ86が用いられる。クラッチセンサ73によりクラッチ42が切断状態であることが検出された場合、または、ニュートラルセンサ86により変速機50のニュートラル状態が検出された場合、クランク軸25と駆動輪3との間で動力を伝達できないと判定される。クラッチセンサ73およびニュートラルセンサ86は、本発明の駆動源トルク制御装置に含まれる。
 ショック抑制制御の終了条件D2は、ショック抑制制御の開始後、ギヤ位置変更要求があること、または、変速機50のギヤ位置の変更が検出されることである。変速機50のギヤ位置を変更する際、クラッチ42を切断状態にすれば、終了条件D1が成立する。しかし、ギヤ位置を変更する際、クラッチ42を切断状態にしないことがある。終了条件D2は、このような場合にショック抑制制御を終了するための条件である。ギヤ位置変更要求は、シフトペダル(またはシフトスイッチ)が操作されることで、ECU90に入力される。変速機50のギヤ位置が変更されたか否かは、ギヤ位置センサ85の信号に基づいて判定してもよい。この場合、ギヤ位置センサ85は、本発明の駆動源トルク制御装置に含まれる。また、変速機50のギヤ位置が変更されたか否かは、ECU90によって推定されたギヤ位置に基づいて判定してもよい。ECU90は、例えば、エンジン回転速度センサ81の信号と、出力軸センサ84の信号に基づいて、ギヤ位置を推定する。なお、自動二輪車1が車輪速度センサを有する場合、出力軸センサ84の代わりに車輪速度センサの信号を用いてもよい。
 実施形態の具体例は、上述した本発明の実施形態の効果に加えて、以下の効果を奏する。
 ECU90が、スロットル開度センサ82の信号とエンジン回転速度センサ81の信号に基づいて、駆動源トルクを推定した場合、以下の効果が得られる。駆動源トルクを比較的精度良く推定することができる。よって、自動二輪車1のショックの発生をより確実に抑制できる。また、一般的な自動二輪車は、スロットル開度センサとエンジン回転速度センサを有する。そのため、自動二輪車が一般的に有するセンサを使って、駆動源トルクを推定できる。つまり、ショック抑制制御のために新たなセンサを設ける必要がない。
 ECU90が、スロットル開度センサ82の信号とエンジン回転速度センサ81の信号と点火プラグ29の点火時期に基づいて、駆動源トルクを推定した場合、以下の効果が得られる。駆動源トルクの推定に、スロットル開度センサ82の信号とエンジン回転速度センサ81の信号を使用して点火時期を使用しない場合に比べて、駆動源トルクをより精度良く推定することができる。よって、自動二輪車1のショックの発生をより一層確実に抑制できる。
 ショック抑制制御の開始条件A1が成立した場合に、ショック抑制制御を開始することで、以下の効果が得られる。ショック抑制制御の開始条件A1は、推定駆動源トルクが判定トルクTrA1以上となることである。駆動輪3が減速状態から加速状態に変化するとき、駆動源トルクは増加する。駆動源トルクが増加中であってもその値が小さければ、動力伝達部材同士の接触によるショックが発生しない場合がある。ECU90は、推定駆動源トルクが判定トルクTrA1以上となったか否か判断する。これにより、自動二輪車1のショックが発生しうる状況であることを精度良く検出できる。そして、ECU90は、推定駆動源トルクが判定トルクTrA1以上となった場合に、ショック抑制制御を行う。そのため、自動二輪車1のショックが発生しない状況にも関わらずショック抑制制御を行うことをより確実に防止できる。
 ショック抑制制御の開始条件A2が成立した場合に、ショック抑制制御を開始することで、以下の効果が得られる。ショック抑制制御の開始条件A2は、推定駆動源トルクが第2判定トルク以上となった時点からの時間についての推定駆動源トルクの積分値が、判定値以上となることである。推定駆動源トルクの積分値が判定値以上となったか否か判定することで、自動二輪車1のショックが発生しうる状況であることをより精度良く検出できる。そして、ECU90は、この積分値が判定値以上となった場合に、ショック抑制制御を行う。そのため、自動二輪車1のショックが発生しない状況にも関わらずショック抑制制御を行うことをより確実に防止できる。
 ショック抑制制御の終了条件C1が成立した場合に、ショック抑制制御を終了することで、以下の効果が得られる。ショック抑制制御の終了条件C1は、所定の終了判定基準時からの経過時間が、所定の終了判定時間以上となることである。ショック抑制制御の開始後、ある程度の時間が経過すれば、複数の動力伝達部材の間で動力が伝達されていると推定できる。そのため、経過時間に基づいてショック抑制制御を終了するタイミングを決定することで、動力伝達部材同士が接触するときに確実にショック抑制制御を行うことができる。また、ショック抑制制御が無駄に長くなるのを防止できる。
 ショック抑制制御の終了条件C2またはC3が成立した場合に、ショック抑制制御を終了することで、以下の効果が得られる。ショック抑制制御の終了条件C2およびC3は、エンジン回転速度センサ81の信号に基づいた条件である。加速用の動力伝達経路60paに複数の動力伝達部材の遊びが無くなるまでは、エンジン回転速度が増加する場合がある。加速用の動力伝達経路60paに複数の動力伝達部材の遊びが無くなった後、エンジン回転速度が一時的に減少する場合がある。これらの現象を利用することで、ショック抑制制御を終了するタイミングを終了するタイミングを決定できる。よって、エンジン回転速度に基づいてショック抑制制御を終了するタイミングを決定することで、動力伝達部材同士が接触するときに確実にショック抑制制御を行うことができる。また、ショック抑制制御が無駄に長くなるのを防止できる。
 ショック抑制制御の終了条件C4が成立した場合に、ショック抑制制御を終了することで、以下の効果が得られる。ショック抑制制御の終了条件C4は、ECU90で検出された入力軸51と出力軸52との相対回転角度に基づいた条件である。駆動輪3が減速状態から加速状態に変化するとき、入力軸51と出力軸52との相対回転角度が変化する。入力軸51と出力軸52との相対回転角度から、複数の動力伝達部材の間で動力が伝達されている状態か否かを推定できる。そのため、入力軸51と出力軸52との相対回転角度に基づいてショック抑制制御を終了するタイミングを決定することで、動力伝達部材同士が接触するときに確実にショック抑制制御を行うことができる。また、ショック抑制制御が無駄に長くなるのを防止できる。
 ショック抑制制御の終了条件D1が成立した場合に、ショック抑制制御を終了することで、以下の効果が得られる。ショック抑制制御の終了条件D1は、クラッチセンサ73またはニュートラルセンサ86によりエンジン部20Aと駆動輪3との間で動力を伝達できない状態が検出されることである。エンジン部20Aと駆動輪3との間で動力を伝達できない状況では、動力伝達部材同士が接触しても大きなショックが起こりにくい。そのため、ショック抑制制御が必要でない。ECU90は、エンジン部20Aと駆動輪3との間で動力を伝達できない状態が検出された場合にショック抑制制御を終了する。そのため、ショック抑制制御が無駄に長くなるのを防止できる。
 ショック抑制制御の終了条件D2が成立した場合に、ショック抑制制御を終了することで、以下の効果が得られる。ショック抑制制御の終了条件D2は、ギヤ位置変更要求があること、または、ギヤ位置の変更が検出されることである。変速機50のギヤ位置が変更されると、加速用の動力伝達経路60pa、および、加速用の動力伝達経路60pa中の動力伝達部材が変更される場合がある。そのため、ギヤ位置が変更される前に行っていたショック抑制制御を継続しても、変更後の動力伝達経路中の動力伝達部材同士の接触によるショックを抑制できない場合がある。もしくは、ショック抑制制御を行わなくても、変更後の動力伝達経路中の動力伝達部材同士の接触によるショックが起こらない場合がある。ECU90は、変速機50のギヤ位置を変更する要求があった場合、または、変速機50のギヤ位置の変更が検出された場合、ショック抑制制御を終了する。そのため、ショック抑制制御が無駄になるのを防止できる。
 ショック抑制制御の非開始条件B3が成立した場合に、ショック抑制制御を行わないことで、以下の効果が得られる。ショック抑制制御の非開始条件B3は、ブリッピング操作が実行されたと判定されることである。ブリッピング操作の際にショック抑制制御を行うと、ブリッピング操作によって増加するはずの駆動源トルクが増加しなくなる。そのため、ブリッピング操作によるスムーズなシフトダウンが得られなくなる恐れがある。ECU90は、ブリッピング操作が実行されたと判定された場合に、ショック抑制制御を行わない。そのため、ブリッピング操作によるスムーズなシフトダウンが得られる。
 以上、本発明の好適な実施の形態について説明したが、本発明は上述した実施形態および実施形態の具体例に限られるものではなく、請求の範囲に記載した限りにおいて様々な変更が可能である。以下、本発明の実施形態の変更例について説明する。
 <駆動輪の変更例>
 上記実施形態の具体例において、後輪3が、駆動輪である。しかし、本発明において、車両の駆動輪は、前輪であってもよい。駆動輪は、前輪と後輪の両方であってもよい。
 <スロットル弁の制御方式の変更例>
 上記実施形態の具体例において、スロットル弁37の制御方式は、電子制御式である。しかし、本発明において、スロットル弁の制御方式は、機械制御式であってもよい。つまり、スロットル弁が、スロットルワイヤを介してアクセル操作子に接続されていてもよい。
 <エンジン部の変更例>
 上記実施形態およびその具体例において、エンジン部20A(駆動源)は、ガソリンエンジンである。本発明のエンジン部は、ディーゼルエンジンであってもよい。本発明のエンジン部は、水素ロータリーエンジンでもよい。
 上記実施形態およびその具体例において、エンジン部20A(駆動源)は、4ストロークエンジンである。しかし、本発明において、エンジン部は、2ストロークエンジンであってもよい。
 上記実施形態の具体例において、エンジン部20Aは、単気筒エンジンである。しかし、本発明において、エンジン部は、多気筒エンジンであってもよい。気筒数は特に限定されない。本発明のエンジン部が多気筒エンジンの場合、吸気系の構成は、独立スロットル式であることが好ましい。独立スロットル式は、燃焼室ごとにスロットル弁を有する。
 本発明のエンジン部は、過給機を有する過給エンジンであってもよい。過給機は、燃焼室に供給される空気を圧縮する装置である。過給機は、機械式過給機(スーパーチャージャ)であってもよく、排気タービン式過給機(いわゆるターボチャージャ)であってもよい。
 <駆動源の変更例>
 上記実施形態およびその具体例において、駆動源はエンジン部20Aである。しかし、本発明において、駆動源は、電動モータであってもよい。駆動源は、エンジン部と電動モータの両方であってもよい。駆動源が電動モータの場合、車両は、駆動源トルクを調整するためにライダーによって操作されるアクセル操作子を有する。駆動源トルクは、アクセル操作子の操作量に基づいて検出してもよい。駆動源が電動モータを含む場合、駆動源の回転速度を検出する駆動源回転速度センサが設けられてもよい。駆動源トルク制御装置は、上述の終了条件C2およびC3と同様に、駆動源回転速度センサの信号に基づいてショック抑制制御を終了するタイミングを決定してもよい。
 <複数の動力伝達部材の変更例>
 本発明の複数の動力伝達部材は、互いに噛み合うギヤ同士であってもよい。ここでのギヤは、平歯車に限らず、例えば、傘歯車(ベルルギヤ)や、斜歯車などの公知の全ての種類のギヤを含む。本発明の複数の動力伝達部材は、ドグ凸部を有するドグ部材と、このドグ凸部が嵌め込み可能なドグ凹部を有するドグ部材であってもよい。本発明の複数の動力伝達部材は、スプライン穴を有するスプライン部材と、スプライン穴に嵌め込み可能なスプスプライン部材(スプライン軸)であってもよい。本発明の複数の動力伝達部材は、スプロケットとチェーンであってもよい。本発明の複数の動力伝達部材は、プーリと、ベルトであってもよい。ベルトは、噛み合い伝動ベルトである。噛み合い伝動ベルトは、例えば歯付ベルトである。ベルトは、金属製であっても、ゴム製であってもよい。
 <変速機の変更例>
 上記実施形態の具体例において、変速機50の変速方式は、マニュアルトランスミッション方式である。しかし、本発明において、変速機の変速方式は、フルオートマチックトランスミッション方式であってもよい。また、変速機の変速方式は、セミオートマチックトランスミッション方式であってもよい。マニュアルトランスミッション方式では、ライダーがクラッチレバーとシフトペダルを操作することでギヤの切り換えが行われる。フルオートマチックトランスミッション方式では、車速やエンジン回転速度等に応じて自動的にシフトアクチュエータが駆動されて、ギヤの切り換えが行われる。セミオートマチックトランスミッション方式は、クラッチの操作のみ自動化され、ライダーがシフトペダルを操作することでギヤの切り換えが行われる。
 上記実施形態の具体例において、変速機50は、同期噛合機構(シンクロメッシュ機構)を有さない常時噛合式(コンスタントメッシュ式)の変速機である。しかし、本発明において、変速機は、同期噛合機構(シンクロメッシュ機構)を有する常時噛合式の変速機であってもよい。同期噛合機構は、軸方向に並んで配置され、噛み合い可能なドグ凹部とドグ凸部を有する2つのギヤの速度を同調させる機構である。また、変速機は、選択摺動式(スライディングメッシュ式)の変速機であってもよい。選択摺動式の変速機では、ギヤが軸方向に摺動して、他のギヤと噛み合う。本発明の変速機は、副変速機を有していてもよい。本発明の変速機は、シーケンシャルシフト式の変速機でなくてもよい。
 上記実施形態の具体例において、動力伝達機構60は、変速比の異なる複数のギヤ位置を選択可能に有する変速機50を含む。しかし、本発明において、動力伝達機構は、変速比を連続的に変化させる無段変速機を有していてもよい。
 上記実施形態およびその具体例において、動力伝達機構60は、変速機50を有する。しかし、本発明において、動力伝達機構は、変速機(無段変速機を含む)を有しなくてもよい。
 <駆動源トルクの推定の変更例>
 上記実施形態の具体例において、ECU90(駆動源トルク制御装置)は、スロットル開度センサ82の信号とエンジン回転速度センサ81の信号に基づいて、駆動源トルクを推定する。しかし、本発明において、駆動源トルク制御装置は、これ以外の方法で、駆動源トルクを推定してもよい。例えば、アクセルセンサ(72)の信号とエンジン回転速度センサ(81)の信号に基づいて、駆動源トルクが推定されてもよい。スロットル弁(37)の開度は、アクセルセンサ(72)が検出したアクセル操作子の操作量に基づいて変更される。したがって、アクセルセンサ(72)の信号に基づいて駆動源トルクを推定することにより、実際の駆動源トルクが変化するより前にその変化を把握できる。よって、車両のショックが発生しうる状況をより早く検出できる。よって、車両のショックの発生をより確実に抑制できる。また、一般的な車両は、アクセルセンサを有する場合がある。その場合、車両が一般的に有するセンサを使って、駆動源トルクを推定できる。つまり、ショック抑制制御のために新たなセンサを設ける必要がない。
 本発明の駆動源トルク制御装置は、スロットル開度センサ(82)の信号とエンジン回転速度センサ(81)の信号と点火装置(29)の点火時期に基づいて、駆動源トルクを推定してもよい。その場合、駆動源トルクの推定に、スロットル開度センサ(82)の信号とエンジン回転速度センサ(81)の信号を使用して点火時期を使用しない場合に比べて、駆動源トルクをより精度良く推定することができる。よって、車両のショックの発生をより一層確実に抑制できる。
 <駆動源トルクの取得の変更例>
 本発明の駆動源トルク制御装置は、駆動源トルクを検出する駆動源トルクセンサを含んでいてもよい。つまり、上記実施形態の具体例において、推定駆動源トルクの代わりに、駆動源トルクセンサにより検出された駆動源トルクを使ってもよい。それにより、駆動源トルク制御装置は、駆動源トルクを推定する場合に比べて、より精度良くトルクを取得できる。駆動源トルクセンサを設ける必要がないという点では、駆動トルクを推定することで駆動トルクを取得することが好ましい。本発明の駆動源トルク制御装置は、推定駆動源トルクと、駆動源トルクセンサにより検出された駆動源トルクの両方を使用してもよい。なお、駆動源トルクセンサにより検出される駆動源トルクは、推定駆動源トルクと同様に、実際の駆動源トルクに対してほとんど遅れはない。
 <ショック抑制制御の変更例>
 本発明において、ショック抑制制御を開始する条件は、上述の条件A1、A2、B1~B3に限らない。ショック抑制制御を終了する条件は、上述の条件C1~C4、D1、D2に限らない。
 本発明のショック抑制制御は、例えば、アダプティブクルーズコントロール(ACC)等の運転支援制御を実施しているときに行われてもよい。運転支援制御中にショック抑制制御を行う場合、アクセルセンサの検出信号の代わりに、駆動源トルク制御装置が生成するアクセル要求が使用される。運転支援制御中にショック抑制制御を行う場合、クラッチセンサ73の検出信号の代わりに、駆動源トルク制御装置が生成するクラッチ要求が使用される。運転支援制御中にショック抑制制御を行う場合、ギヤ位置変更要求は、シフトペダルまたはシフトスイッチの操作に基づくものではなく、駆動源トルク制御装置が生成する。アダプティブクルーズコントロールは、オートクルーズコントロール、または、アクティブクルーズコントロールとも呼ばれる。ACCは、前方車両との距離を維持しつつ、前方車両に追従させる制御である。
 本発明の駆動源トルク制御装置は、駆動輪を減速させるために駆動源トルクを制御する場合に、減速用の記動力伝達経路に複数の動力伝達部材の間の遊びが無くなったときに生じる車両のショックを抑制するショック抑制制御を行ってもよい。つまり、駆動輪を減速状態から加速状態に変更する場合に、ショック抑制制御を行ってもよい。具体的には、駆動源トルク制御装置は、減速用の動力伝達経路にある複数の動力伝達部材の間の遊びが減少しているときの複数の動力伝達部材の間の相対速度の絶対値、および、減速用の動力伝達経路に複数の動力伝達部材の間の遊びが無くなったときの複数の動力伝達部材の間で伝達される伝達トルクの少なくとも一方が減少するように、取得した駆動源トルクに基づいて駆動源トルクを制御する。
 <車両の変更例>
 本発明の車両は、前輪と後輪を有する。前輪の数は1つであっても、複数であってもよい。後輪の数は、1つであっても、複数であってもよい。本発明の車両は、自動二輪車に限定されない。本発明の車両は、自動車であってもよい。本発明の車両は、少なくとも1つの前輪と、少なくとも1つの後輪を有する。本発明の車両は、動力伝達経路にトルクコンバータがない車両であることが好ましい。本発明の車両は、自動二輪車以外の鞍乗型車両であってもよい。鞍乗型車両とは、ライダーが鞍にまたがるような状態で乗車する車両全般を指す。鞍乗型車両は、自動二輪車、自動三輪車、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))等を含む。また、自動二輪車は、スクータ、原動機付き自転車、モペット等を含む。
 本願の基礎出願である特願2017-137667の駆動源トルク取得部、ショック抑制制御部、動力伝達状態検出部、動力伝達不可検出部、ギヤ位置取得部、およびブリッピング操作判定部は、本願の駆動源トルク制御装置に含まれる。
 1 車両、自動二輪車
 2 前輪
 3 駆動輪、後輪
 20 エンジンユニット
 20A エンジン部
 20B 動力伝達部
 25 クランク軸
 28 燃焼室
 29 点火プラグ(点火装置)
 30 点火コイル
 35 インジェクタ
 36 燃料ポンプ
 37 スロットル弁
 40 ドライブギヤ(動力伝達部材)
 41 ドリブンギヤ(動力伝達部材)
 43 ドライブスプロケット(動力伝達部材)
 50 変速機
 51 入力軸
 52 出力軸
 53(53a、53b、53c、53d、53e、53f) ギヤ(動力伝達部材)
 54(54p、54q、54r、54s、54t、54u) ギヤ(動力伝達部材)
 55(55c、55d、55q1、55q2、55t1、55t2) ドグ凸部
 56(56b、56e、56p、56r、56s、56u) ドグ凹部
 57、58 歯部
 60 動力伝達機構
 60p 動力伝達経路
 60pa 加速用の動力伝達経路
 61、62 動力伝達部材
 64 ドリブンスプロケット(動力伝達部材)
 65 チェーン(動力伝達部材)
 72 アクセルセンサ
 73 クラッチセンサ
 81 エンジン回転速度センサ(駆動源回転速度センサ)
 82 スロットル開度センサ
 83 入力軸センサ
 84 出力軸センサ
 85 ギヤ位置センサ
 86 ニュートラルセンサ
 91 駆動源トルク制御装置
 90 ECU(駆動源トルク制御装置)
 G1、Gd、Gtd 遊び

Claims (15)

  1.  駆動源と、
     駆動輪と、
     前記駆動源と前記駆動輪との間で動力を伝達する動力伝達経路に設けられる複数の動力伝達部材と、
     前記駆動源で発生する駆動源トルクを制御する駆動源トルク制御装置とを含む車両であって、
     前記駆動源トルク制御装置は、
      前記駆動源トルクを取得可能であり、
      前記駆動輪を加速させるために前記駆動源トルクを制御する場合に、前記動力伝達経路にある前記複数の動力伝達部材の間の遊びが減少しているときの前記複数の動力伝達部材の間の相対速度の絶対値、および、前記動力伝達経路に前記複数の動力伝達部材の間の遊びが無くなったときに前記複数の動力伝達部材の間で伝達される伝達トルクの少なくとも一方が減少するように、取得した前記駆動源トルクに基づいて前記駆動源トルクを制御するショック抑制制御を行い、前記動力伝達経路に前記複数の動力伝達部材の間の遊びが無くなったときに生じる車両のショックを抑制することを特徴とする車両。
  2.  前記駆動源トルク制御装置は、
     取得した前記駆動源トルクに基づいて、前記ショック抑制制御を開始するタイミングを決定することを特徴とする請求項1に記載の車両。
  3.  前記駆動源トルク制御装置は、前記駆動源トルクを推定することによって、前記駆動源トルクを取得することを特徴とする請求項1または2に記載の車両。
  4.  前記駆動源が、燃焼室を有するエンジン部であって、
     エンジン回転速度を検出するエンジン回転速度センサと、
     前記燃焼室に供給される空気の量を調整するスロットル弁と、
     前記スロットル弁の開度を検出するスロットルセンサと、を有し、
     前記駆動源トルク制御装置は、前記スロットルセンサの信号と前記エンジン回転速度センサの信号に基づいて、前記駆動源トルクを推定することを特徴とする請求項3に記載の車両。
  5.  前記駆動源が、燃焼室を有するエンジン部であって、
     エンジン回転速度を検出するエンジン回転速度センサと、
     前記燃焼室に供給される空気の量を調整するスロットル弁と、
     前記スロットル弁の開度を変更するために運転者によって操作されるアクセル操作子と、
     前記アクセル操作子の操作量を検出するアクセルセンサと、を有し、
     前記駆動源トルク制御装置は、前記アクセルセンサの信号と前記エンジン回転速度センサの信号に基づいて、前記駆動源トルクを推定することを特徴とする請求項3に記載の車両。
  6.  前記エンジン部は、前記燃焼室内の燃料と空気との混合気に点火する点火装置を有し、
     前記駆動源トルク制御装置は、前記スロットルセンサまたは前記アクセルセンサの信号と前記エンジン回転速度センサの信号と前記点火装置の点火時期とに基づいて、前記駆動源トルクを推定することを特徴とする請求項4または5に記載の車両。
  7.  前記駆動源トルク制御装置は、前記ショック抑制制御において、前記駆動輪を加速させるために前記駆動源トルクを制御する場合に、前記動力伝達経路にある前記複数の動力伝達部材の間の遊びが減少しているときの前記複数の動力伝達部材の間の前記相対速度の絶対値、および、前記動力伝達経路に前記複数の動力伝達部材の間の遊びが無くなったときに前記複数の動力伝達部材の間で伝達される前記伝達トルクの少なくとも一方が減少するように、前記駆動源トルクを減少させてから増大させることを特徴とする請求項1~6のいずれかに記載の車両。
  8.  前記駆動源トルク制御装置は、取得した前記駆動源トルクが第1判定トルク以上となった場合に、前記ショック抑制制御を開始することを特徴とする請求項1~7のいずれかに記載の車両。
  9.  前記駆動源トルク制御装置は、取得した前記駆動源トルクを、前記駆動源トルクが第2判定トルク以上となった時点からの時間について積分し、その積分値が判定値以上となった場合に、前記ショック抑制制御を開始することを特徴とする請求項1~7のいずれかに記載の車両。
  10.  前記駆動源トルク制御装置は、経過時間に基づいて、前記ショック抑制制御を終了するタイミングを決定することを特徴とする請求項1~8のいずれかに記載の車両。
  11.  前記駆動源の回転速度を検出する駆動源回転速度センサを有し、
     前記駆動源トルク制御装置は、前記ショック抑制制御を開始後、前記駆動源回転速度センサの信号に基づいて、前記ショック抑制制御を終了するタイミングを決定することを特徴とする請求項1~8のいずれかに記載の車両。
  12.  前記動力伝達経路に設けられた入力軸と、
     前記動力伝達経路において前記入力軸と前記駆動輪との間に設けられた出力軸とを含み、
     前記駆動源トルク制御装置は、前記入力軸と前記出力軸との相対回転角度を検出可能であって、前記ショック抑制制御を開始後、検出した前記入力軸と前記出力軸との相対回転角度に基づいて前記ショック抑制制御を終了するタイミングを決定することを特徴とする請求項1~8のいずれかに記載の車両。
  13.  前記駆動源トルク制御装置は、前記駆動源と前記駆動輪との間で動力を伝達できない状態を検出可能であって、前記ショック抑制制御を開始後、前記駆動源と前記駆動輪との間で動力を伝達できない状態が検出された場合に、前記ショック抑制制御を終了することを特徴とする請求項1~8のいずれかに記載の車両。
  14.  前記駆動源が、燃焼室を有するエンジン部であって、
     複数のギヤ位置を選択可能に有する変速機を含み、
     前記駆動源トルク制御装置は、前記変速機の現在のギヤ位置を取得可能であって、前記変速機の前記ギヤ位置を変更する要求があった場合、または、前記変速機の前記ギヤ位置の変更が検出された場合、前記ショック抑制制御を終了することを特徴とする請求項1~13のいずれかに記載の車両。
  15.  前記駆動源が、燃焼室を有するエンジン部であって、
     前記動力伝達経路に設けられた入力軸、および、前記動力伝達経路において前記入力軸と前記駆動輪との間に設けられた出力軸を含むと共に、前記出力軸の回転速度に対する前記入力軸の回転速度の比が互いに異なる複数のギヤ位置を選択可能に有する変速機を含み、
     前記駆動源トルク制御装置は、前記出力軸の回転速度に対する前記入力軸の回転速度の比が大きくなるように前記ギヤ位置を変更した場合に前記駆動源トルクを一時的に増加させるブリッピング操作が実行されたか否か判定し、前記ブリッピング操作が実行されたと判定した場合に、前記ショック抑制制御を行わないことを特徴とする請求項1~14のいずれかに記載の車両。
PCT/JP2018/026515 2017-07-14 2018-07-13 車両 WO2019013330A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18831158.3A EP3653861B1 (en) 2017-07-14 2018-07-13 Vehicle
JP2019529805A JP6827118B2 (ja) 2017-07-14 2018-07-13 車両
US16/739,604 US11117588B2 (en) 2017-07-14 2020-01-10 Vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-137667 2017-07-14
JP2017137667 2017-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/739,604 Continuation-In-Part US11117588B2 (en) 2017-07-14 2020-01-10 Vehicle

Publications (1)

Publication Number Publication Date
WO2019013330A1 true WO2019013330A1 (ja) 2019-01-17

Family

ID=65001393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026515 WO2019013330A1 (ja) 2017-07-14 2018-07-13 車両

Country Status (4)

Country Link
US (1) US11117588B2 (ja)
EP (1) EP3653861B1 (ja)
JP (1) JP6827118B2 (ja)
WO (1) WO2019013330A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020241127A1 (ja) * 2019-05-24 2020-12-03
WO2020250487A1 (ja) * 2019-06-12 2020-12-17 ヤマハ発動機株式会社 ストラドルドビークル

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086132B2 (ja) * 2020-04-30 2022-06-17 本田技研工業株式会社 制御装置
US11807301B2 (en) * 2020-11-05 2023-11-07 Polaris Industries Inc. Vehicle
CN112590757B (zh) * 2020-12-15 2022-01-25 潍柴动力股份有限公司 一种制动系统的制动功率控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296475A (ja) * 1995-04-27 1996-11-12 Toyota Motor Corp ディーゼル機関の燃料噴射制御装置
JP2000229526A (ja) * 1999-02-12 2000-08-22 Toyota Motor Corp 動力源と無段変速機を備えた車両の制御装置
JP2005321088A (ja) * 2004-04-09 2005-11-17 Kawasaki Heavy Ind Ltd 車両の加減速時制御方法及び装置、並びに車両
JP2007292031A (ja) * 2006-04-27 2007-11-08 Hitachi Ltd エンジンの制御装置
JP2011111133A (ja) 2009-11-30 2011-06-09 Kawasaki Heavy Ind Ltd 車両制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574535B1 (en) * 2000-05-31 2003-06-03 General Motors Corporation Apparatus and method for active driveline damping with clunk control
US6678605B2 (en) * 2001-05-25 2004-01-13 Mazda Motor Corporation Control system for internal combustion engine
JP5516259B2 (ja) * 2010-09-13 2014-06-11 トヨタ自動車株式会社 車載内燃機関の制御装置
US9052006B1 (en) * 2013-12-13 2015-06-09 Hyundai Motor Company Controlling method and system for reducing tip-in shock
US9963141B2 (en) * 2014-03-20 2018-05-08 Nissan Motor Co., Ltd. Hybrid vehicle control device with transmission control for a level difference of a road surface
FR3028292B1 (fr) * 2014-11-07 2018-01-26 Psa Automobiles Sa. Procede de commande de couple d’un groupe motopropulseur
JP6213502B2 (ja) * 2015-02-27 2017-10-18 トヨタ自動車株式会社 車両の制御装置
US10106145B2 (en) * 2016-06-14 2018-10-23 Ford Global Technologies, Llc Adaptive control of backlash in a vehicle powertrain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296475A (ja) * 1995-04-27 1996-11-12 Toyota Motor Corp ディーゼル機関の燃料噴射制御装置
JP2000229526A (ja) * 1999-02-12 2000-08-22 Toyota Motor Corp 動力源と無段変速機を備えた車両の制御装置
JP2005321088A (ja) * 2004-04-09 2005-11-17 Kawasaki Heavy Ind Ltd 車両の加減速時制御方法及び装置、並びに車両
JP2007292031A (ja) * 2006-04-27 2007-11-08 Hitachi Ltd エンジンの制御装置
JP2011111133A (ja) 2009-11-30 2011-06-09 Kawasaki Heavy Ind Ltd 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3653861A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020241127A1 (ja) * 2019-05-24 2020-12-03
WO2020241127A1 (ja) * 2019-05-24 2020-12-03 ヤマハ発動機株式会社 ストラドルドビークル
EP3978742A4 (en) * 2019-05-24 2022-08-17 Yamaha Hatsudoki Kabushiki Kaisha STRAIGHT SEAT VEHICLE
JP7223845B2 (ja) 2019-05-24 2023-02-16 ヤマハ発動機株式会社 ストラドルドビークル
WO2020250487A1 (ja) * 2019-06-12 2020-12-17 ヤマハ発動機株式会社 ストラドルドビークル
JPWO2020250487A1 (ja) * 2019-06-12 2020-12-17
JP7329595B2 (ja) 2019-06-12 2023-08-18 ヤマハ発動機株式会社 ストラドルドビークル

Also Published As

Publication number Publication date
EP3653861A4 (en) 2020-07-29
US11117588B2 (en) 2021-09-14
JP6827118B2 (ja) 2021-02-10
US20200148207A1 (en) 2020-05-14
JPWO2019013330A1 (ja) 2019-11-21
EP3653861B1 (en) 2022-02-23
EP3653861A1 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6827118B2 (ja) 車両
US8510021B2 (en) Vehicle control system
JP6232915B2 (ja) ハイブリッド二輪車
US9126586B2 (en) Antiskid apparatus, vehicle, and motorcycle
US7513849B2 (en) Automated transmission controller and vehicle including the automated transmission controller
JP5075021B2 (ja) 乗物
JP5727729B2 (ja) 車両の制御装置
US11097609B2 (en) Hybrid vehicle
JP2007137186A (ja) 鞍乗り型車両の定速走行制御装置
US8744732B2 (en) Vehicle and engine controlling method
WO2012128021A1 (ja) エンジン制御装置及びエンジン制御方法
JP2008144755A (ja) 制御システムおよび車両
JP2008144756A (ja) 制御システムおよびそれを備えた車両
US8260527B2 (en) Control system for a motorcycle
JP6224845B2 (ja) 鞍乗型乗り物
JP4592543B2 (ja) 自動二輪車
WO2020040183A1 (ja) リーン車両
JP5011246B2 (ja) 車両及び燃料カット制御方法
US20130081596A1 (en) Ignition timing controlling apparatus for engine, and vehicle incorporating the same
US10975781B2 (en) Rotation speed control device
WO2019146774A1 (ja) リーン車両
EP2299093B1 (en) Saddle-riding-vehicle
JP5364571B2 (ja) 乗り物及びエンジン制御方法
WO2023119349A1 (ja) 車両
JP6699373B2 (ja) エンジンの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018831158

Country of ref document: EP

Effective date: 20200214