WO2022034632A1 - ストラドルドビークル - Google Patents
ストラドルドビークル Download PDFInfo
- Publication number
- WO2022034632A1 WO2022034632A1 PCT/JP2020/030563 JP2020030563W WO2022034632A1 WO 2022034632 A1 WO2022034632 A1 WO 2022034632A1 JP 2020030563 W JP2020030563 W JP 2020030563W WO 2022034632 A1 WO2022034632 A1 WO 2022034632A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dog
- saddle
- shift
- mounted vehicle
- torque
- Prior art date
Links
- 241000282472 Canis lupus familiaris Species 0.000 claims abstract description 481
- 230000005540 biological transmission Effects 0.000 claims abstract description 135
- 238000000034 method Methods 0.000 claims description 29
- 230000013011 mating Effects 0.000 claims description 20
- 238000002485 combustion reaction Methods 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 description 18
- 230000004043 responsiveness Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- KJFBVJALEQWJBS-XUXIUFHCSA-N maribavir Chemical compound CC(C)NC1=NC2=CC(Cl)=C(Cl)C=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O KJFBVJALEQWJBS-XUXIUFHCSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
Definitions
- the present invention relates to a saddle-mounted vehicle.
- Patent Document 1 includes a saddle-mounted vehicle provided with an automatic transmission that executes a shifting operation by an actuator such as a servomotor instead of a shifting operation by human power.
- the shift stage can be switched by a clutch actuator that operates a clutch and a shift actuator (shift drive device) that operates a shift device.
- An object of the present invention is to provide a saddle-type vehicle equipped with an automatic transmission device, which can quickly and smoothly switch gears.
- the present inventor has studied to perform quick and smooth shift gear switching in a saddle-mounted vehicle equipped with an automatic transmission. In this study, the present inventor examined the operation of the transmission and the operation of the clutch.
- the stepped transmission provided in the saddle-mounted vehicle is a dog-type stepped transmission.
- the dog-type stepped transmission has a plurality of types of dogs as power transmission members.
- the first dog is provided on a plurality of drive gears or driven gears that can move in the rotation axis direction.
- a plurality of second dogs are provided so as to be able to be fitted with the first dog.
- the first dogs are arranged side by side in the circumferential direction with a space for the second dog to enter between them.
- the first dog and the second dog are fitted or disengaged from each other by moving relatively in the direction of the axis of rotation.
- the first dog and the second dog are fitted to each other.
- the first dog and the second dog are disengaged from each other.
- the drive gear or the driven gear is rotated integrally with the rotating shaft, and the first dog and the second dog are released from the fitting to be driven.
- the gear or the driven gear and the rotating shaft rotate independently.
- the first dog and the second dog are provided corresponding to the drive gear or the driven gear.
- the rotational force from the engine is transmitted to the drive wheels via the first dog and the second dog corresponding to the selected shift stage.
- the first dog pushes the second dog in the rotational direction with a force corresponding to the rotational force.
- a force in the direction in which the second dog comes out from the first dog that is, a force in the direction of the rotation axis is applied for shifting gears
- the first dog puts the second dog on the contact surface between the first dog and the second dog. A strong frictional force is generated due to the pushing force in the rotational direction.
- the movement of the first dog or the second dog in the direction of the rotation axis may be hindered.
- the first dog and the second dog are tab tail type dogs having a contact surface inclined with respect to the rotation axis direction, the force in the rotation axis direction required for releasing the fitting is further large. ..
- the frictional force generated on the contact surface between the first dog and the second dog is small. Therefore, the first dog and the second dog can move relatively in the direction of the axis of rotation in a short time.
- the first dog and the second dog corresponding to the shift stage to be switched are fitted.
- the second dog enters the space between the first dogs, the first dog and the second dog are fitted to each other.
- the disengaged state and the transmission state of the clutch described above can be switched by moving the plate in the clutch. Therefore, when the clutch actuator is used, it takes a long time to switch the shift stage.
- the present inventors have studied in detail that the shifting operation is performed without setting the clutch in the power non-transmission state in order to smoothly switch the shifting stage.
- a control device that controls the engine reduces the output of the engine during the gear switching operation.
- the control device reduces the output of the engine, for example, by retarding the ignition of the engine or stopping the ignition of the engine.
- the frictional force generated between the first dog and the second dog is reduced. Therefore, the force for moving the first dog and the second dog in the direction of the axis of rotation is reduced.
- the shifting operation can be performed without changing the state of the clutch.
- the present inventor has further studied to perform quick and smooth shift gear switching in a saddle-mounted vehicle equipped with an automatic transmission while keeping the clutch in a power transmission state.
- gear shifting can be performed by using a permanent magnet type electric motor connected to the crank shaft of the engine.
- the control device drives a permanent magnet type electric motor.
- the control device drives the permanent magnet electric motor so as to reduce the transmission torque transmitted between the first dog and the second dog.
- the frictional force generated between the first dog and the second dog is reduced.
- the clutch state is maintained in a state in which the power output from the engine is transmitted to the drive wheels.
- the control device decelerates the dog that transmits the driving force from the engine of the first dog and the second dog with respect to the dog that transmits the driving force. As such, it drives a permanent magnet type electric motor.
- the control device drives a permanent magnet electric motor to brake against the rotation of the engine.
- the control device accelerates the dog that transmits the driving force from the engine among the first dog and the second dog to the dog that is transmitted. As such, it drives a permanent magnet type electric motor.
- the control device drives a permanent magnet electric motor to accelerate the rotation of the engine.
- the first dog and the second dog can move relatively in the direction of the axis of rotation. As a result, the first dog and the second dog are separated from each other in the direction of the axis of rotation, and the mating between the first dog and the second dog is released.
- the first dog and the second dog are mated while the clutch is in the power transmission state.
- the first dog and the second dog are fitted by the second dog entering the space between the two first dogs.
- the crank shaft When the crank shaft is driven by an electric motor connected to the crank shaft of the engine, the rotational force can be controlled in real time, not limited to the timing of once every two rotations of the crank shaft. Therefore, the time resolution of the shift stage switching operation is improved as compared with the case of adjusting the engine output, and the responsiveness to the shift stage switching operation is improved. As a result, in a saddle-mounted vehicle equipped with an automatic transmission, it is possible to quickly and smoothly switch gears.
- the saddle-mounted vehicle has the following configuration.
- the saddle-mounted vehicle is An engine that has a rotating crank shaft and outputs the power generated by combustion from the crank shaft as torque and rotational force of the crank shaft.
- a permanent magnet type electric motor that is connected to the crank shaft so as to rotate at a fixed speed ratio to the crank shaft, receives power, and outputs power.
- Provided in the power transmission path between the crank shaft and the drive wheels, it has an input shaft, an output shaft, a first dog and a second dog, and the first dog and the second dog have a plurality of gears.
- the first dog is provided with a space in the circumferential direction, and the second dog fits into the first dog by entering the space of the first dog as it moves in the rotation axis direction. It is provided so that the fitted state is released by exiting the space of the first dog as it becomes a mated state, and the fitted state of the first dog and the second dog in one selected shift stage causes the said.
- the power transmission in the selected shift stage is effectively set, and the first dog and the second dog transmit power between the input shaft and the output shaft by being in the fitted state.
- a multi-stage transmission that cuts off the transmission of power between the input shaft and the output shaft by releasing the mating state.
- a clutch provided between the crank shaft and the input shaft to transmit power between the crank shaft and the input shaft or to cut off the power transmission between the crank shaft and the input shaft.
- a speed change drive device that moves either the first dog or the second dog in the direction of the axis of rotation, and When the shift execution condition is satisfied, the following processes (A) and (B) are configured to be performed in order.
- the permanent magnet type electric motor is controlled so as to reduce the magnitude of the torque transmitted between the input shaft and the output shaft of the multi-stage transmission.
- the shift drive device includes a control device that controls the shift drive device so as to move either the first dog or the second dog in the direction of the rotation axis to release the fitted state. ..
- the saddle-mounted vehicle of (1) includes an engine, a permanent magnet type electric motor, a drive wheel, a clutch, a multi-stage transmission, a transmission drive, and a control device.
- the engine has a rotating crank shaft, and outputs the power generated by combustion from the crank shaft as torque and rotational force of the crank shaft.
- the permanent magnet type electric motor is connected to the crank shaft so as to rotate at a fixed speed ratio with the crank shaft, receives electric power, and outputs power.
- the drive wheels are driven by the power output from at least one of the engine and the permanent magnet motor.
- the multi-speed transmission is provided in the power transmission path between the crank shaft of the engine and the drive wheels.
- the multi-speed transmission has an input shaft, an output shaft, a first dog and a second dog.
- the first dog and the second dog correspond to each of a plurality of shift stages.
- the first dog is provided with a space in the circumferential direction.
- the second dog is provided so as to enter the space of the first dog as it moves in the direction of the rotation axis so as to be in a fitted state with the first dog. Further, the second dog is provided so that the fitted state is released by exiting the space of the first dog.
- the multi-speed gearbox effectively sets the power transmission at the selected gearbox depending on the fitted state of the first dog and the second dog at the selected gearbox.
- the first dog and the second dog transmit power between the input shaft and the output shaft when they are in the fitted state, and the power between the input shaft and the output shaft is released when the fitted state is released. Block the transmission of.
- the clutch is provided between the crank shaft of the engine and the input shaft of the multi-speed transmission.
- the clutch transfers power between the crank shaft and the input shaft, or cuts off the power transmission between the crank shaft and the input shaft.
- the speed change drive device moves any of the first dog and the second dog in the rotation axis direction of the first dog and the second dog.
- the control device is configured to sequentially perform the following processes (A) and (B) when the shift execution condition is satisfied.
- (A) controls the permanent magnet type electric motor so as to reduce the magnitude of the torque transmitted between the input shaft and the output shaft of the multi-stage transmission.
- (B) controls the shift drive device so that the shift drive device moves either the first dog or the second dog in the direction of the rotation axis to release the fitted state.
- the torque transmitted by the engagement between the first dog and the second dog in the circumferential direction in the multi-speed transmission is reduced.
- the torque in the circumferential direction acting between the first dog and the second dog is reduced.
- the first dog and the second dog are used before the first dog or the second dog moves in the direction of the axis of rotation.
- the frictional force generated in is reduced. Therefore, the first dog and the second dog can move relatively in the direction of the axis of rotation. As a result, the first dog and the second dog are separated from each other in the direction of the axis of rotation, and the mating between the first dog and the second dog is released.
- the mating between the first dog and the second dog can be released without interrupting the transmission of the power output from the engine by the clutch. That is, it is possible to cancel the selection at the shifting stage of the switching source in the transmission without waiting for the operation of the clutch. Further, the first dog and the second dog can be fitted to each other in the selected shift stage without waiting for the operation of the clutch.
- the shift source of the switching source is a shift stage selected in the multi-speed transmission before switching.
- the saddle-mounted vehicle can adopt the following configuration.
- the control device is When the shift execution condition is satisfied while the input shaft receives torque in the same direction as the rotation direction from the crank shaft, in the process (A), the permanent magnet type electric motor uses the crank shaft.
- the permanent magnet type electric motor is controlled so as to output a torque for decelerating.
- the permanent magnet type electric motor cranks In the saddle-mounted vehicle of (2), when the speed change drive device moves either the first dog or the second dog in the direction of the rotation axis to release the fitted state in the acceleration state, the permanent magnet type electric motor cranks. Outputs the torque that decelerates the shaft.
- the acceleration state of the saddle-mounted vehicle is a state in which the input shaft receives torque in the same direction as the rotation direction from the crank shaft. As a result, the frictional force generated between the first dog and the second dog is reduced. Therefore, the time resolution of the shift stage switching operation is improved as compared with the case of adjusting the engine output, and the responsiveness to the shift stage switching operation is improved. Therefore, in a saddle-mounted vehicle equipped with an automatic transmission, it is possible to quickly and smoothly switch gears.
- the saddle-type vehicle of (1) or (2) The control device is When the shift execution condition is satisfied while the input shaft receives torque in the direction opposite to the rotation direction from the output shaft, in the process (A), the permanent magnet type electric motor uses the crank shaft. The permanent magnet type electric motor is controlled so as to output a torque for accelerating.
- the permanent magnet type electric motor is used in the saddle-mounted vehicle of (3). It outputs the torque that accelerates the crank shaft.
- the deceleration state of a saddle-type vehicle is a state in which the input shaft receives torque in the direction opposite to the rotation direction from the output shaft. As a result, the frictional force generated between the first dog and the second dog is reduced. Therefore, the time resolution of the shift stage switching operation is improved as compared with the case of adjusting the engine output, and the responsiveness to the shift stage switching operation is improved. Therefore, in a saddle-mounted vehicle equipped with an automatic transmission, it is possible to quickly and smoothly switch gears.
- the saddle-mounted vehicle can adopt the following configuration.
- the speed change drive device moves either the first dog or the second dog in the rotation axis direction, and the fitting state.
- the control device causes the permanent magnet type electric motor to output a torque for decelerating the crank shaft.
- the first dog of the shift stage to be switched is used in the switching of the shift stage. It is in a fitted state with the second dog. Before the mated state, the difference between the rotation speed of the first dog and the rotation speed of the second dog tends to increase due to the torque output by the engine.
- the control device for the saddle-mounted vehicle according to (4) is a permanent magnet type electric motor when the speed change drive device moves either the first dog or the second dog in the direction of the rotation axis to be in a fitted state in an accelerated state. Outputs the torque that decelerates the crank shaft. By outputting the torque for decelerating the crank shaft by the permanent magnet type electric motor, the increase in the difference between the rotation speed of the first dog and the rotation speed of the second dog is suppressed.
- the saddle-mounted vehicle can adopt the following configuration. (5) A saddle-mounted vehicle according to any one of (1) to (4).
- the speed change drive device moves either the first dog or the second dog in the rotation axis direction, and the fitting state.
- the permanent magnet type electric motor is made to output the torque for accelerating the crank shaft.
- the first dog of the shift stage to be switched is used in the switching of the shift stage. It is in a fitted state with the second dog. Before the mated state, the difference between the rotation speed of the first dog and the rotation speed of the second dog tends to increase due to the torque output by the engine.
- the control device for the saddle-mounted vehicle according to (5) is a permanent magnet type electric motor when the speed change drive device moves either the first dog or the second dog in the direction of the rotation axis to be in a fitted state in a decelerated state. Outputs the torque that accelerates the crank shaft. By outputting the torque for accelerating the crank shaft by the permanent magnet type electric motor, the increase in the difference between the rotation speed of the first dog and the rotation speed of the second dog is suppressed.
- the saddle-mounted vehicle can adopt the following configuration.
- (6) The saddle-mounted vehicle of (2).
- the control device controls the ignition of the engine.
- the permanent magnet type electric motor is controlled so as to output the torque for decelerating the crank shaft, and the ignition of the engine is retarded or ignited. Stop.
- the control device controls the permanent magnet type electric motor so as to output the torque for decelerating the crank shaft, and the ignition of the engine is retarded or stopped.
- the torque caused by the combustion of the engine causes the first dog and the second dog.
- the occurrence of a situation in which the release of the dog's mated state is hindered is suppressed.
- the saddle-mounted vehicle can adopt the following configuration.
- At least one of the first dog and the second dog has a protrusion that protrudes in the direction of the axis of rotation that enters the space between the other dogs, and the protrusion has a shape that is wider in the circumferential direction toward the tip.
- the first dog and the second dog are in a power transmission state in which power is transmitted in the acceleration or deceleration direction by the engagement between the first dog and the second dog in the circumferential direction. It is possible to prevent any of the dogs from easily coming off the space between the other dogs. Therefore, it is easy to maintain the fitted state of the first dog and the second dog. Moreover, when the shift stage is changed, the mating state is likely to be released by reducing the rotational force applied to the first dog and the second dog. Therefore, it is possible to achieve both the ease of maintaining the fitted state in the power transmission state and the ease of releasing the fitted state when the shift gear is changed.
- the saddle-mounted vehicle can adopt the following configuration.
- the speed change drive device rotates at a fixed speed ratio with respect to the shift motor for driving at least one of the first dog and the second dog in the rotation axis direction, and at least one of the shift motors. It has a shift cam formed with a cam groove that regulates the movement of the motor in the direction of the rotation axis.
- a cam groove is formed and the shift cam rotates at a fixed speed ratio with respect to the shift actuator without, for example, interposing a ratchet mechanism. Since the shift cam rotates at a fixed speed ratio with respect to the shift actuator, the positions of the first dog and the second dog in the rotation axis direction are more precisely controlled by the operation of the shift actuator. The timing of controlling the rotation of the first dog and the second dog by the operation of the permanent magnet type electric motor can be more precisely matched with the timing of controlling the position in the rotation axis direction.
- the saddle-mounted vehicle can adopt the following configuration.
- (9) A saddle-mounted vehicle according to any one of (1) to (8).
- the saddle-mounted vehicle includes a throttle grip that receives the operating force of the rider, and a throttle valve that changes the supply amount of fuel supplied to the engine by changing the opening degree according to the operating force received by the throttle grip.
- the permanent magnet type electric motor adjusts the output torque of the engine when the shift stage is switched. Therefore, the opening degree of the throttle valve is not adjusted by electronic control or the like, and the shift stage can be smoothly switched even in a configuration that operates by the operating force of the rider. Therefore, in the saddle-mounted vehicle of (9), the throttle grip and the throttle valve can be created by a simple structure.
- a saddle-type vehicle is a vehicle in which the driver sits across the saddle.
- the saddle-mounted vehicle include a scooter type, a moped type, an off-road type, and an on-road type motorcycle.
- a lean vehicle configured to be able to turn in a lean posture so as to lean inward with respect to a curve is an example of a saddle-mounted vehicle.
- the saddle-mounted vehicle is not limited to the motorcycle, and may be, for example, a motorcycle, an ATV (All-Terrain Vehicle), or the like.
- the tricycle may have two front wheels and one rear wheel, or may have one front wheel and two rear wheels.
- the drive wheels of the saddle-mounted vehicle may be rear wheels or front wheels.
- the lean vehicle is a saddle-mounted vehicle configured to be able to turn in a lean posture so as to lean inward with respect to a curve, for example.
- a saddle-mounted vehicle configured to be able to turn in a lean posture is configured to turn in a posture tilted inward in a curve.
- the saddle-type vehicle configured to be able to turn in a lean posture opposes the centrifugal force applied to the saddle-type vehicle during turning.
- lightness is required, so the responsiveness of progress to the starting operation is important.
- a torque converter utilizing the mechanical action of a fluid is not provided in a power transmission path from a power source to a drive wheel.
- the engine is the power source for saddle-mounted vehicles.
- Engines include, for example, single-cylinder engines and engines with two or more cylinders.
- the engine may be a gasoline engine or a diesel engine.
- the permanent magnet type electric motor is a rotary electric machine that can both start and drive the engine.
- the permanent magnet type electric motor may be a rotary electric machine capable of generating electric power.
- the permanent magnet type electric motor may be an outer rotor type or an inner rotor type. Further, the permanent magnet type electric motor may be an axial gap type instead of the radial gap type.
- the clutch is a power transmission device provided in the power transmission path between the power source and the drive wheels.
- the clutch is, for example, a friction clutch in which a disk provided on an input shaft and a disk provided on an output shaft are crimped and torque is transmitted by the frictional force generated by the crimping.
- Examples of the friction clutch include, but are not limited to, a wet multi-plate clutch and a dry single-plate clutch.
- the clutch does not include a torque converter that transmits power via a fluid.
- the multi-speed transmission is, for example, a dog type transmission.
- the dog-type transmission includes a transmission in which at least one drive gear is always meshed with the driven gear.
- the multi-speed transmission includes a constantly meshing transmission in which all drive gears are meshed with the driven gear.
- the multi-speed transmission outputs a set gear ratio by selectively combining a drive gear provided on the input shaft and a driven gear provided on the output shaft.
- the multi-speed transmission includes, for example, a speed change setting mechanism.
- the shift stage setting mechanism has, for example, a shift cam and a shift fork, and the shift fork is moved in the rotation axis direction by rotating the shift cam.
- the sleeve (power transmission member ring) provided on the rotating shaft (at least one of the input shaft and the output shaft) of the multi-stage transmission is moved in the axial direction of the rotating shaft.
- the mating between the dog of the drive gear or the driven gear of the shift source of the switching source and the dog of the sleeve that rotates the drive gear or the driven gear of the shift source of the switching source together with the rotation shaft is released.
- the dog of the drive gear or the driven gear of the shift stage to be switched is fitted with the dog of the sleeve that rotates the drive gear or the driven gear of the shift stage to be switched together with the rotation shaft.
- the first dog when the second dog is arranged in the circumferential direction at a distance larger than the circumferential length of the first dog, and the first dog is arranged between two second dogs arranged adjacent to each other.
- the gap created between the two second dogs and the first dog is backlash.
- the state of the power source is switched from the deceleration state to the acceleration state
- the first dog between the two adjacent second dogs is separated from the one second dog and then the position in the opposite direction. Re-contact with a different second dog placed in.
- the first dog engages with the second dog.
- the interval at which the first dog moves away from one second dog and then until it engages with a different second dog located in the opposite position is play.
- the first dog member is provided in either the drive gear or the driven gear.
- the second dog which has play in the circumferential direction and hits the first dog, has a shape in which play occurs between the first dog and the first dog when it is located in the gap between the first dogs adjacent to each other in the circumferential direction. It is provided so as to move relative to the first dog in the circumferential direction and hit the first dog in the circumferential direction.
- the second dog may be provided in either the drive gear or the driven gear, or may be provided in the sleeve which is a member different from the drive gear and the driven gear.
- the first dog or the second dog may be a protrusion, or may be a side wall portion defining a hole or groove into which the other dog enters.
- the shift stage setting mechanism of the multi-speed transmission has a first dog and a second dog in each shift stage.
- the shift stage setting mechanism has a first dog and a second dog individually for each shift stage.
- the shift stage setting mechanism may have a first dog and a second dog so as to perform an operation for mechanically and selectively effectively setting the power transmission in each shift stage.
- one dog ring as a second dog may be provided so as to correspond to two shift stages.
- the circumferential direction in which the first dog hits the second dog is a direction along the rotation direction of the drive gear or the driven gear provided with the first dog.
- the input shaft of the multi-speed transmission is connected to the crank shaft of the engine, for example, via a clutch.
- the output shaft of the multi-speed transmission is connected to the drive wheels via a power transmission mechanism such as a chain.
- a power transmission mechanism such as a chain.
- the torque transmitted between the input shaft and the output shaft is the circumferential force acting between the first dog and the second dog.
- the circumferential force acting between the first dog and the second dog is the circumferential force that the first dog applies to the second dog, or the circumferential force that the second dog applies to the first dog. ..
- the torque transmitted between the input shaft and the output shaft is the torque transmitted between the input shaft and the output shaft. This is the torque applied to the output shaft.
- the drive gear is provided with a first dog
- the torque transmitted between the input shaft and the output shaft in the accelerated state of the saddle-type vehicle is applied by the first dog to the second dog.
- the drive gear When the drive gear is provided with the second dog, the torque transmitted between the input shaft and the output shaft in the acceleration state of the saddle-mounted vehicle is the circumferential direction that the second dog applies to the first dog. Is the power of. Further, when the drive wheels are applying a load to the crank shaft, that is, in the deceleration state of the saddle-mounted vehicle, the torque transmitted between the input shaft and the output shaft is the torque applied to the input shaft by the output shaft. .. Specifically, when the drive gear is provided with the first dog, the torque transmitted between the input shaft and the output shaft in the deceleration state of the saddle-type vehicle is received by the first dog from the second dog. It is a force in the circumferential direction. When the drive gear is provided with the second dog, the torque transmitted between the input shaft and the output shaft in the deceleration state of the saddle-type vehicle is the circumferential direction received by the second dog from the first dog. Is the power of.
- the magnitude of torque is the amount of torque excluding the directional component.
- the magnitude of the torque transmitted between the input shaft and the output shaft is the amount of torque transmitted between the input shaft and the output shaft.
- the magnitude of the torque transmitted between the input shaft and the output shaft excludes the magnitude of the circumferential force acting between the first dog and the second dog, that is, the directional component of the force. It is the amount that was done. Reducing the magnitude of the torque transmitted between the input shaft and the output shaft means that the circumference acting between the first dog and the second dog when the first dog and the second dog are in the fitted state. It is to reduce the amount of force in the direction.
- reducing the magnitude of the torque transmitted between the input shaft and the output shaft means that the output shaft is connected to the input shaft via the first dog and the second dog. Is to reduce the amount of torque applied to.
- the drive gear is provided with the first dog, it is said that the magnitude of the torque transmitted between the input shaft and the output shaft is reduced in the acceleration state of the saddle-type vehicle. Is to reduce the amount of circumferential force applied to the second dog.
- the second dog is the second dog to reduce the magnitude of the torque transmitted between the input shaft and the output shaft in the acceleration state of the saddle-type vehicle. It is to reduce the amount of circumferential force applied to one dog.
- reducing the magnitude of the torque transmitted between the input shaft and the output shaft means that the torque transmitted from the input shaft and the output shaft is reduced from the output shaft via the first dog and the second dog. It is to reduce the amount of torque applied to the input shaft.
- the drive gear is provided with the first dog, it is said that the magnitude of the torque transmitted between the input shaft and the output shaft is reduced in the deceleration state of the saddle-type vehicle. Is to reduce the amount of circumferential force received from the second dog.
- the second dog is the second dog to reduce the magnitude of the torque transmitted between the input shaft and the output shaft in the deceleration state of the saddle-type vehicle. It is to reduce the amount of circumferential force received from one dog.
- the shift drive device has a drive device (shift actuator) that drives the shift mechanism of the multi-speed shift device.
- the speed change drive device for example, the shift drum that moves the position of the gear of the multi-stage transmission device rotates.
- the shift actuator is a shift motor.
- the shift actuator is, for example, a servo motor.
- the speed change drive device may have an actuator other than the servomotor.
- a shift cam is driven to move the shift fork in the direction of the rotation axis of the shift cam.
- the shift drive device is configured to drive the shift cam via, for example, a change mechanism (crab claw type mechanism).
- the shift drive device may be configured to drive the shift cam directly, for example, without going through a change mechanism.
- the multi-speed transmission is, for example, an electric multi-speed transmission equipped with a motor.
- the multi-speed transmission is, for example, an automatic multi-speed transmission.
- the automatic multi-speed transmission is configured to automate control of, for example, a clutch operation and a shift change operation.
- the automatic multi-speed transmission is configured, for example, so that the control device executes control related to the clutch operation and the shift change operation when the shift execution condition described later is satisfied.
- the automatic multi-speed transmission may be configured, for example, so that the control device determines the timing of the shift change and also executes the control related to the clutch operation and the shift change operation at the determined timing.
- the automatic multi-speed transmission may include, for example, a shift input device in which a command regarding the timing of shift change is input by the rider.
- the automatic multi-speed transmission may be configured, for example, so that the control device executes control regarding the clutch operation and the shift change operation at the timing of the shift change input by the rider via the shift input device.
- the speed change input device is not particularly limited.
- As the speed change input device for example, a conventionally known type of input device such as a button, a lever, or a pedal can be adopted.
- the shift input device is configured to input, for example, an instruction as to whether to shift up or down.
- the control related to the clutch operation is the control for the clutch actuator.
- the control related to the shift change operation is the control for the shift drive device having the shift actuator.
- the control device may have a processor that executes a program, or may be an electronic circuit.
- the "shift execution condition” is a condition for determining the timing of the shift change, and it is also determined whether to shift up or down from the current gear stage.
- the control related to the clutch operation and the shift change operation is executed.
- the control device determines whether or not the shift execution condition is satisfied based on at least one parameter relating to the running of the saddle-type vehicle. Examples of the parameters include vehicle speed, engine rotation speed, current gear stage, and the like.
- the torque applied in the forward rotation direction of the crank shaft is the acceleration torque
- the torque to stop the rotation of the crank shaft is zero torque, which is applied in the direction opposite to the forward rotation direction of the crank shaft.
- the torque be the deceleration torque
- the forward rotation direction of the crank shaft is the same as the direction of the torque output to the crank shaft by the engine due to the combustion of gas.
- the control device changes the torque transmitted between the input shaft and the output shaft by controlling the permanent magnet type electric motor to output the torque.
- the control of the permanent magnet type electric motor of the control device will be described separately for the case where the saddle-type vehicle is in the acceleration state and the case where the saddle-type vehicle is in the deceleration state.
- FIG. 1 is a diagram showing a configuration of a saddle-mounted vehicle 1 according to the first embodiment of the present invention.
- FIG. 1A is a side view showing the configuration of the saddle-mounted vehicle 1 in a simplified manner.
- FIG. 1B is an enlarged view showing the operation of a part of the engine 20, the clutch 50, and the multi-speed transmission 40 of a saddle-mounted vehicle.
- 1 (c) to 1 (e) are views showing the operation of the permanent magnet type electric motor 30 and the first dog 43 and the second dog 44 of the multi-speed transmission 40.
- a part of the first dog 43 and the second dog 44 is illustrated by a cross-sectional view in the circumferential direction.
- F indicates the front in the saddle-mounted vehicle 1.
- B indicates the rear of the saddle-mounted vehicle 1.
- FB indicates the front-rear direction in the saddle-mounted vehicle 1.
- U indicates the upper side in the saddle-mounted vehicle 1.
- D indicates the lower part in the saddle-mounted vehicle 1.
- UD indicates the vertical direction in the saddle-mounted vehicle 1.
- the saddle-mounted vehicle of FIG. 1 includes an engine 20, a permanent magnet type electric motor 30, a drive wheel 15, a clutch 50, a multi-stage transmission 40, and a transmission drive device 45. And a control device 80.
- the engine 20 has a rotating crank shaft 24.
- the engine 20 outputs the power generated by the combustion of the air-fuel mixture from the crank shaft 24 as the torque and rotational force of the crank shaft 24.
- the permanent magnet type electric motor 30 is connected to the crank shaft 24 so as to rotate at a fixed speed ratio with the crank shaft 24.
- the permanent magnet type electric motor 30 receives electric power and outputs electric power.
- the permanent magnet type electric motor 30 is directly connected to the crank shaft 24.
- the drive wheels 15 are driven by the power output from at least one of the engine 20 and the permanent magnet type electric motor 30.
- the multi-speed transmission 40 is provided in a power transmission path between the crank shaft 24 of the engine 20 and the drive wheels 15.
- the multi-speed transmission 40 has an input shaft 41, an output shaft 42, a first dog 43, and a second dog 44.
- the first dog 43 and the second dog 44 are provided in each of the plurality of shift stages.
- the first dog 43 is provided with a space in the circumferential direction.
- the second dog 44 is provided so as to enter the space of the first dog 43 as it moves in the direction of the rotation axis so as to be in a fitted state with the first dog. Further, the second dog 44 is provided so that the fitted state is released by exiting the space of the first dog 43.
- the multi-speed transmission 40 effectively sets the power transmission in the selected gear according to the fitted state of the first dog 43 and the second dog 44 in the selected gear.
- the first dog 43 and the second dog 44 transmit power between the input shaft 41 and the output shaft 42 when they are in the fitted state, and the input shaft 41 and the output shaft are released when the fitted state is released. Blocks the transmission of power to and from 42.
- the clutch 50 is provided between the crank shaft 24 of the engine 20 and the input shaft 41 of the multi-speed transmission 40.
- the clutch 50 transmits power between the crank shaft 24 and the input shaft 41, or cuts off the power transmission between the crank shaft 24 and the input shaft 41.
- the speed change drive device 45 moves any of the first dog 43 and the second dog 44 in the rotation axis direction of the first dog 43 and the second dog 44.
- the control device 80 controls the permanent magnet type electric motor 30 and the speed change drive device 45. Specifically, as shown in FIGS. 1 (c) to 1 (e), the control device 80 is configured to sequentially perform the following processes (A) and (B) when the shift execution condition is satisfied. .. (A) controls the permanent magnet type electric motor 30 so as to reduce the magnitude of the torque T1 transmitted between the input shaft 41 and the output shaft 42 of the multi-speed transmission 40 (FIG. 1 (c)). ⁇ (D)). (B) controls the shift drive device 45 so that the shift drive device 45 moves either the first dog 43 or the second dog 44 in the direction of the rotation axis to release the fitted state (FIG. 1 (e). )). As a result, the torque transmitted by the engagement between the first dog 43 and the second dog 44 in the circumferential direction in the multi-speed transmission 40 is reduced.
- Torque T is transmitted between the input shaft 41 and the output shaft 42 of the multi-speed transmission 40 of the saddle-mounted vehicle 1.
- the first dog 43 applies a force G in the circumferential direction to the second dog 44, or the second dog 44 applies a force G to the first dog 43 (FIG. 1 (c)).
- the control device 80 controls the permanent magnet type electric motor 30 so as to output the torque T2 in the direction opposite to the torque T1 (FIG. 1 (d)).
- the decrease in the circumferential force G acting between the first dog 43 and the second dog 44 causes the first dog 43 or the second dog 44 to move in the rotation axis direction before the first dog 43 or the second dog 44 moves in the rotation axis direction.
- the frictional force generated between the 43 and the second dog 44 is reduced. Therefore, the first dog 43 and the second dog 44 can move relatively in the direction of the axis of rotation. As a result, the first dog 43 and the second dog 44 are separated from each other in the direction of the axis of rotation, and the mating between the first dog 43 and the second dog 44 is released (FIG. 1 (e)).
- the mating between the first dog 43 and the second dog 44 can be released without interrupting the transmission of the power output from the engine 20 by the clutch 50. That is, without waiting for the operation of the clutch 50, it is possible to deselect the gears of the switching source in the multi-speed gearbox 40. Further, the first dog 43 and the second dog 44 can be fitted in the selected shift stage without waiting for the operation of the clutch 50.
- the first dog 43 and the second dog 44 do not wait for the operation of the clutch 50 or the arrival of the combustion stroke of the engine 20 in the shift stage switching. It is possible to control the release of the mating state in real time. Therefore, the time resolution of the shift gear switching operation is improved, and the responsiveness to the shift gear switching operation is improved. Therefore, in the saddle-mounted vehicle 1 provided with the automatic transmission of the present embodiment, it is possible to quickly and smoothly switch gears.
- FIG. 2 shows the permanent magnet type electric motor 30 of the saddle-mounted vehicle according to the second embodiment of the present invention, and the first dogs 43-1 to 43-2 and the second dogs 44-1 to 44 of the multi-speed transmission 40. It is a figure which shows the operation of -2.
- FIGS. 2 (a-1) to 2 (a-5) show the permanent magnet type electric motor 30 in the accelerated state of the saddle-mounted vehicle 2 and the first dogs 43-1 to 43-2 of the multi-stage transmission 40.
- FIGS. 2 (b-1) to 2 (b-5) show the permanent magnet type electric motor 30 in the deceleration state of the saddle-mounted vehicle 2, and the first dogs 43-1 to 43-2 of the multi-stage transmission 40.
- the operation of the second dogs 44-1 to 44-2 is shown.
- the same configuration as that of the first embodiment is designated by the same reference numerals as the saddle-mounted vehicle 1 shown in FIG. 1, and a part of the description thereof will be omitted.
- the configuration and control of this embodiment may be combined with the first embodiment.
- the acceleration state of the saddle-mounted vehicle 2 is a state in which the input shaft 41 receives the torque T3 from the crank shaft 24 in the same direction as the rotation direction X.
- the first dog 43-1 in the shift stage of the switching source applies a force G1 in the circumferential direction to the second dog 44-1 (FIG. 2 (a-1)).
- the control device 80 (see FIG. 1A) of the saddle-mounted vehicle 2 is after the first dog 43-1 and the second dog 44-1 in the original shift stage of the multi-stage transmission 40 are disengaged from each other.
- the first dog 43-2 and the second dog 44-2 are fitted in the selected shift stage.
- the control device 80 when the shift execution condition is satisfied in the acceleration state (FIG. 2 (a-1)), the control device 80 includes the input shaft 41 and the output shaft 42 of the multi-stage transmission device 40.
- the permanent magnet type electric motor 30 is controlled so as to reduce the magnitude of the torque T3 transmitted between them (process (A)).
- the control device 80 controls the permanent magnet type electric motor 30 so that the permanent magnet type electric motor 30 outputs the torque T4 for decelerating the crank shaft 24 (FIG. 2 (a-2)).
- the speed change drive device 45 moves any one of the first dog 43-1 and the second dog 44-1 (second dog 44-1 in the present embodiment) in the rotation axis direction and fits the control device 80.
- the speed change drive device 45 is controlled so as to release the matching state (FIG. 2 (a-3), process (B)).
- the control device 80 causes the permanent magnet type electric motor 30 to output the torque T5 for decelerating the crank shaft 24 (FIG. 2A-4).
- the control device 80 moves any one of the first dog 43-2 and the second dog 44-2 (the second dog 44-2 in the present embodiment) in the direction of the axis of rotation so as to be in the fitted state.
- the speed change drive device 45 is controlled (FIG. 2 (a-5)).
- the speed change drive device 45 moves either the first dog 43-1 or the second dog 44-1 in the direction of the rotation axis to release the fitted state in the acceleration state, it is a permanent magnet type.
- the electric motor 30 outputs the torque T4 that decelerates the crank shaft 24. As a result, the frictional force generated between the first dog 43-1 and the second dog 44-1 is reduced.
- the gear to be switched is switched.
- the first dog 43-2 and the second dog 44-2 are in a fitted state.
- the torque T3 output by the engine 20 tends to increase the difference between the rotation speed of the first dog 43-2 and the rotation speed of the second dog 44-2.
- the control device 80 of the saddle-mounted vehicle 2 is put into a fitted state.
- the permanent magnet type electric motor 30 is made to output the torque T5 for decelerating the crank shaft 24.
- the deceleration state of the saddle-mounted vehicle 2 is a state in which the crank shaft 24 receives torque T6 in the direction opposite to the rotation direction X from the output shaft 42 via the input shaft 41. That is, the deceleration state of the saddle-mounted vehicle 2 is a state in which the crank shaft 24 applies the torque T6 in the direction opposite to the rotation direction X to the input shaft 41.
- the second dog 44-1 in the shift stage of the switching source applies a force G2 in the circumferential direction to the first dog 43-1 (FIG. 2 (b-1)).
- the control device 80 determines the torque T6 transmitted between the input shaft 41 and the output shaft 42 of the multi-stage transmission device 40.
- the permanent magnet type electric motor 30 is controlled so as to reduce the size (process (A)).
- the control device 80 controls the permanent magnet type electric motor 30 so that the permanent magnet type electric motor 30 outputs the torque T7 for accelerating the crank shaft 24 (FIG. 2 (b-2)).
- the speed change drive device 45 moves any one of the first dog 43-1 and the second dog 44-1 (second dog 44-1 in the present embodiment) in the rotation axis direction and fits the control device 80.
- the speed change drive device 45 is controlled so as to release the matching state (FIG. 2 (b-3), process (B)).
- the control device 80 causes the permanent magnet type electric motor 30 to output the torque T8 for accelerating the crank shaft 24 (FIG. 2 (b-4)).
- the control device 80 moves any one of the first dog 43-2 and the second dog 44-2 (the second dog 44-2 in the present embodiment) in the direction of the axis of rotation so as to be in the fitted state. Controls the shift drive device 45 (FIG. 2 (b-5)).
- the permanent magnet type electric motor is used.
- the motor 30 outputs the torque T7 that accelerates the crank shaft 24.
- the gear to be switched is switched.
- the first dog 43-2 and the second dog 44-2 are in a fitted state.
- the torque T6 transmitted from the drive wheel 15 tends to increase the difference between the rotation speed of the first dog 43-2 and the rotation speed of the second dog 44-2.
- the control device 80 of the saddle-mounted vehicle 2 is put into the fitted state.
- the permanent magnet type electric motor 30 is made to output the torque T8 for accelerating the crank shaft 24.
- the time resolution of the shift stage switching operation is higher than that in the case of adjusting the output of the engine 20, and the responsiveness to the shift stage switching operation is improved. Therefore, in the saddle-mounted vehicle 2 provided with the automatic transmission of the present embodiment, it is possible to quickly and smoothly switch gears.
- FIG. 3 is a diagram showing the operation of the control device 83 of the saddle-mounted vehicle 3 according to the third embodiment of the present invention.
- the same configuration as that of the first embodiment is designated by the same reference numerals as the saddle-mounted vehicle 1 shown in FIG. 1, and a part of the description thereof will be omitted. Further, the configuration and control of the present embodiment may be combined with the first embodiment and the second embodiment.
- the control device 83 of the saddle-mounted vehicle 3 of the present embodiment controls the ignition of the engine 20.
- the control device 83 controls the permanent magnet type electric motor 30 so as to output the torque for decelerating the crank shaft 24 in the process (step S102) of (A).
- the ignition of the engine is retarded (step S103).
- the control device 83 may control the permanent magnet type electric motor 30 so as to output the torque for decelerating the crank shaft 24, and may stop the ignition of the engine (step S103).
- the control device 83 performs the process (B) (step S104).
- FIG. 4 is a diagram showing a part of the multi-speed transmission 40 of the saddle-mounted vehicle 4 according to the fourth embodiment of the present invention.
- the configuration corresponding to the first embodiment is designated by the same reference numerals as the saddle-mounted vehicle 1 shown in FIG. 1, and a part of the description thereof will be omitted. Further, the configuration and control of the present embodiment may be combined with any of the first to third embodiments.
- At least one of the first dog 43-3 or the second dog 44-3 of the multi-speed transmission 40 of the saddle-mounted vehicle 4 of the present embodiment has a protrusion protruding in the direction of the rotation axis that enters the space between the other dogs. ..
- the protrusion has a shape in which the width in the circumferential direction is larger toward the tip.
- the protrusion of the second dog 44-3 in the example shown in FIG. 4 has a shape in which the width in the circumferential direction is larger toward the tip.
- the first dog 43-3 has a shape corresponding to the protrusion of the second dog 44-3.
- the control device 80 disengages the mating between the first dog 43-3 and the second dog 44-3 of the multi-speed transmission 40 by the same method as that of the first embodiment (FIG. 4 (FIG. 4). a)-(c)).
- the first dog is in a power transmission state in which power is transmitted in the acceleration or deceleration direction by the engagement between the first dog 43-3 and the second dog 44-3 in the circumferential direction. It is possible to prevent either 43-3 or the second dog 44-3 from easily coming off the space between the other dogs. Therefore, the fitted state of the first dog 43-3 and the second dog 44-3 is likely to be maintained. Moreover, when the shift stage is changed, the mating state is likely to be released by reducing the rotational force applied to the first dog 43 and the second dog 44. Therefore, in the saddle-mounted vehicle of the present embodiment, it is easy to maintain the fitted state in the power transmission state and to release the fitted state when the shift gear is changed.
- FIG. 5 is a diagram showing a multi-speed transmission 40 of a saddle-mounted vehicle 5 according to a fifth embodiment of the present invention.
- the elements corresponding to the first embodiment are designated by the same reference numerals as those of the saddle-mounted vehicle 1 shown in FIG. 1, and a part of the description thereof will be omitted. Further, the configuration and control of the present embodiment may be combined with any of the first to fourth embodiments.
- the shift drive device 45 of the saddle-mounted vehicle 5 of the present embodiment has a shift motor 46 and a shift cam 47.
- the shift motor 46 drives at least one of the first dog 43 and the second dog 44 in the direction of the axis of rotation.
- the shift cam 47 rotates at a fixed speed ratio with respect to the shift motor 46.
- the shift cam 47 is formed with a cam groove that regulates the movement of at least one of the first dog 43 and the second dog 44 in the rotation axis direction with rotation.
- the cam groove 471 is formed and the shift cam 47 is connected to the shift motor 46 without, for example, interposing a ratchet mechanism.
- the shift cam 47 rotates at a fixed speed ratio with respect to the shift motor 46. Therefore, the positions of the first dog 43 and the second dog 44 in the rotation axis direction can be more precisely controlled by the operation of the shift motor 46. Therefore, the timing of controlling the rotation of the first dog 43 and the second dog 44 by the operation of the permanent magnet type electric motor 30 can be more precisely matched with the timing of controlling the position in the rotation axis direction.
- FIG. 6 is a side view showing a simplified configuration of the saddle-mounted vehicle 6 according to the sixth embodiment of the present invention.
- the same configuration as that of the first embodiment is designated by the same reference numerals as the saddle-mounted vehicle 1 shown in FIG. 1, and a part of the description thereof will be omitted.
- the configuration and control of the present embodiment may be combined with any of the first to fifth embodiments.
- the saddle-mounted vehicle 6 of the present embodiment changes the supply amount of fuel supplied to the engine 20 by changing the opening degree according to the throttle grip 11 that receives the operating force of the rider and the operating force received by the throttle grip 11.
- a throttle valve 12 is provided.
- the permanent magnet type electric motor 30 adjusts the output torque of the engine 20 when the shift stage is switched. Therefore, the opening degree of the throttle valve 12 is not adjusted by electronic control or the like, and the shift stage can be smoothly switched even if the throttle valve 12 is operated by the operating force of the rider transmitted via the mechanical wire 121, for example. Therefore, in the saddle-mounted vehicle 6, the throttle grip 11 and the throttle valve 12 can be created by a simple structure.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of The Air-Fuel Ratio Of Carburetors (AREA)
- Control Of Transmission Device (AREA)
- Structure Of Transmissions (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
Description
例えば、変速段切替時に、クラッチを動力非伝達状態にして、エンジンから駆動輪への動力伝達を切断する手順が考えられる。例えば、切替元の変速段に対応する第1ドグと第2ドグとの嵌合を解除する前に、第1ドグと第2ドグとの摩擦力を低減する。
変速段切替を行う時に、まず、クラッチを動力非伝達状態にし、エンジンから駆動輪への動力伝達を切り離す。そうすると、回転軸方向に力が加わっても、第1ドグと第2ドグとの接触面に生じる摩擦力が小さい。そのため、第1ドグと第2ドグは短時間で回転軸方向に相対的に移動可能となる。
上述したクラッチの切断状態及び伝達状態は、クラッチ内のプレートを移動させることで切替えられる。このため、クラッチアクチュエータを利用する場合、変速段の切替に長い時間を要する。
しかし、エンジンの点火遅角を行う、点火を停止する、又はスロットル開度を小さくすることによりエンジンの出力を制御する場合、回転力の変化は、クランク軸の2回転(720°)に一度のみのタイミングで生じる現象による制御である。従って、変速段切替の動作の時間分解能及び応答性が、制限を受ける。つまり、円滑な変速段切替が行いにくい。
詳細には、変速駆動装置が、第1ドグ及び第2ドグの何れかを回転軸方向に移動させる時に、制御装置は、永久磁石式電動モータを駆動させる。制御装置は、永久磁石式電動モータを、第1ドグと第2ドグの間で伝達される伝達トルクを低減するように駆動させる。これにより、第1ドグと第2ドグとに生じる摩擦力が低減する。なお、この時クラッチの状態は、エンジンから出力されたパワーを駆動輪へ伝達する状態に維持される。
(1) 鞍乗型車両であって、
前記鞍乗型車両は、
回転するクランク軸を有し、燃焼によって生じるパワーを前記クランク軸から前記クランク軸のトルク及び回転力として出力するエンジンと、
前記クランク軸と固定速度比で回転するように前記クランク軸に接続され、電力の供給を受けてパワーを出力する永久磁石式電動モータと、
前記エンジン及び前記永久磁石式電動モータの少なくとも何れかから出力されたパワーによって駆動される駆動輪と、
前記クランク軸と前記駆動輪との間の動力伝達経路に設けられ、入力軸、出力軸、第1ドグ及び第2ドグを有し、前記第1ドグ及び第2ドグは、複数の変速段のそれぞれに対応し、前記第1ドグは周方向に空間を空けて設けられ、前記第2ドグは、回転軸方向での移動に伴い前記第1ドグの前記空間に入り込むことによって第1ドグと嵌合状態になるとともに、前記第1ドグの前記空間から抜けることによって嵌合状態が解除されるように設けられ、選択された一の変速段における第1ドグ及び第2ドグの嵌合状態によって前記選択された変速段でのパワーの伝達を有効に設定し、前記第1ドグ及び第2ドグは、前記嵌合状態になることにより前記入力軸と前記出力軸との間のパワーの伝達を行い、前記嵌合状態が解除されることにより前記入力軸と前記出力軸との間のパワーの伝達を遮断する多段変速装置と、
前記クランク軸と前記入力軸との間に設けられ、前記クランク軸と前記入力軸との間のパワーの伝達を行い又は前記クランク軸と前記入力軸との間のパワーの伝達を遮断するクラッチと、
前記第1ドグ及び第2ドグの何れかを前記回転軸方向に移動させる変速駆動装置と、
変速実行条件が成立した場合に、下記(A)及び(B)の処理を順に行うように構成され、
(A) 前記多段変速装置の前記入力軸と前記出力軸との間で伝達されているトルクの大きさを小さくするように前記永久磁石式電動モータを制御し、
(B) 前記変速駆動装置が前記第1ドグ及び第2ドグの何れかを前記回転軸方向に移動させて前記嵌合状態を解除するように前記変速駆動装置を制御する、制御装置と
を備える。
エンジンは、回転するクランク軸を有し、燃焼によって生じるパワーをクランク軸からクランク軸のトルク及び回転力として出力する。
永久磁石式電動モータは、クランク軸と固定速度比で回転するようにクランク軸に接続され、電力の供給を受けてパワーを出力する。
駆動輪は、エンジン及び永久磁石式電動モータの少なくとも何れかから出力されたパワーによって駆動される。
多段変速装置は、エンジンのクランク軸と駆動輪との間の動力伝達経路に設けられる。多段変速装置は、入力軸、出力軸、第1ドグ及び第2ドグを有する。第1ドグ及び第2ドグは、複数の変速段のそれぞれに対応する。第1ドグは周方向に空間を空けて設けられる。第2ドグは、回転軸方向での移動に伴い第1ドグの空間に入り込むことによって第1ドグと嵌合状態になるように設けられる。また、第2ドグは、第1ドグの空間から抜けることによって嵌合状態が解除されるように設けられる。多段変速装置は、選択された一の変速段における第1ドグ及び第2ドグの嵌合状態によって、選択された変速段での動力伝達を有効に設定する。第1ドグ及び第2ドグは、嵌合状態になることにより入力軸と出力軸との間のパワーの伝達を行い、嵌合状態が解除されることにより入力軸と出力軸との間のパワーの伝達を遮断する。
クラッチは、エンジンのクランク軸と多段変速装置の入力軸との間に設けられる。クラッチは、クランク軸と入力軸との間のパワーの伝達を行い、又はクランク軸と入力軸との間のパワーの伝達を遮断する。
変速駆動装置は、第1ドグ及び第2ドグの何れかを、第1ドグ及び第2ドグの回転軸方向に移動させる。
このため、例えば、クラッチによってエンジンから出力されたパワーの伝達を遮断することなしに、第1ドグと第2ドグとの嵌合を解除することができる。つまり、クラッチの動作を待つことなく、変速装置における切替元の変速段における選択解除ができる。また、クラッチの動作を待つことなく、選択後の変速段における第1ドグと第2ドグとの嵌合ができる。ここで、切替元の変速段とは、切替の前に、多段変速装置において選択されている変速段のことである。
(2) (1)の鞍乗型車両であって、
前記制御装置は、
前記入力軸が前記クランク軸から回転方向と同一方向のトルクを受けている状態で前記変速実行条件が成立した場合に、前記(A)の処理において、前記永久磁石式電動モータが、前記クランク軸を減速させるトルクを出力するように前記永久磁石式電動モータを制御する。
従って、エンジンの出力を調整する場合よりも変速段切替の操作の時間分解能が上がり、また、変速段切替の操作に対する応答性が向上する。従って、自動変速装置を備えた鞍乗型車両において、素早く円滑な変速段切替を行うことができる。
前記制御装置は、
前記入力軸が前記出力軸から回転方向と逆方向のトルクを受けている状態で前記変速実行条件が成立した場合に、前記(A)の処理において、前記永久磁石式電動モータが、前記クランク軸を加速させるトルクを出力するように前記永久磁石式電動モータを制御する。
従って、エンジンの出力を調整する場合よりも変速段切替の操作の時間分解能が上がり、また、変速段切替の操作に対する応答性が向上する。従って、自動変速装置を備えた鞍乗型車両において、素早く円滑な変速段切替を行うことができる。
(4) (1)又は(2)の鞍乗型車両であって、
前記変速実行条件が成立した場合に、前記(A)及び(B)の処理の後に、
前記入力軸が前記クランク軸から回転方向と同一方向のトルクを受けている状態で前記変速駆動装置が前記第1ドグ及び第2ドグの何れかを前記回転軸方向に移動させて前記嵌合状態にする場合、前記制御装置は、前記永久磁石式電動モータに前記クランク軸を減速させるトルクを出力させる。
(5) (1)から(4)の何れか1つの鞍乗型車両であって、
前記変速実行条件が成立した場合に、前記(A)及び(B)の処理の後に、
前記入力軸が前記出力軸から回転方向と逆方向のトルクを受けている状態で前記変速駆動装置が前記第1ドグ及び第2ドグの何れかを前記回転軸方向に移動させて前記嵌合状態にする場合、前記永久磁石式電動モータに前記クランク軸を加速させるトルクを出力させる。
(6) (2)の鞍乗型車両であって、
前記制御装置は、前記エンジンの点火を制御し、
変速実行条件が成立した場合に、前記(A)の処理において、前記クランク軸を減速させるトルクを出力するように前記永久磁石式電動モータを制御するとともにエンジンの点火の遅角を行う又は点火を停止する。
(7) (1)から(6)の何れか1の鞍乗型車両であって、
前記第1ドグ又は前記第2ドグの少なくとも一方は、相手方ドグの間の空間に入り込む前記回転軸方向に突出した突起を有し、前記突起は先端ほど周方向の幅が大きい形状を有する。
(8) (1)から(7)の何れか1の鞍乗型車両であって、
前記変速駆動装置は、前記第1ドグ及び前記第2ドグの少なくとも一方を前記回転軸方向に駆動するためのシフトモータと、前記シフトモータに対し固定速度比で回転し、回転に伴い前記少なくとも一方の前記回転軸方向への移動を規定するカム溝が形成されたシフトカムとを有する。
(9) (1)から(8)の何れか1の鞍乗型車両であって、
前記鞍乗型車両は、ライダの操作力を受けるスロットルグリップと、前記スロットルグリップが受ける操作力によって開度を変えることにより前記エンジンへ供給される燃料の供給量を変えるスロットル弁とを備える。
第1ドグが第2ドグに当たる周方向は、第1ドグが設けられた駆動ギア又は被駆動ギアの回転方向に沿った方向である。
図1は、本発明の第1実施形態に係る鞍乗型車両1の構成を示す図である。ここで、図1(a)は、鞍乗型車両1の構成を簡略化して示す側面図である。図1(b)は、鞍乗型車両のエンジン20、クラッチ50及び多段変速装置40の一部の動作を拡大して示す図である。図1(c)~(e)は、永久磁石式電動モータ30、並びに多段変速装置40の第1ドグ43及び第2ドグ44の動作を示す図である。図1(c)~(e)では、第1ドグ43及び第2ドグ44の一部が、周方向の断面図により図示されている。
本明細書及び図面で、Fは、鞍乗型車両1における前方を示す。Bは、鞍乗型車両1における後方を示す。FBは、鞍乗型車両1における前後方向を示す。Uは、鞍乗型車両1における上方を示す。Dは、鞍乗型車両1における下方を示す。UDは、鞍乗型車両1における上下方向を示す。
エンジン20は、回転するクランク軸24を有する。エンジン20は、混合気の燃焼によって生じるパワーをクランク軸24からクランク軸24のトルク及び回転力として出力する。
永久磁石式電動モータ30は、クランク軸24と固定速度比で回転するようにクランク軸24に接続される。永久磁石式電動モータ30は、電力の供給を受けてパワーを出力する。本実施形態において、永久磁石式電動モータ30は、クランク軸24に直結されている。
駆動輪15は、エンジン20及び永久磁石式電動モータ30の少なくとも何れかから出力されたパワーによって駆動される。
クラッチ50は、エンジン20のクランク軸24と多段変速装置40の入力軸41との間に設けられる。クラッチ50は、クランク軸24と入力軸41との間のパワーの伝達を行い、又はクランク軸24と入力軸41との間のパワーの伝達を遮断する。
変速駆動装置45は、第1ドグ43及び第2ドグ44の何れかを、第1ドグ43及び第2ドグ44の回転軸方向に移動させる。
このため、例えば、クラッチ50によってエンジン20から出力されたパワーの伝達を遮断することなしに、第1ドグ43と第2ドグ44との嵌合を解除することができる。つまり、クラッチ50の動作を待つことなく、多段変速装置40における切替元の変速段における選択解除ができる。また、クラッチ50の動作を待つことなく、選択後の変速段における第1ドグ43と第2ドグ44との嵌合ができる。
本発明の第2実施形態について説明する。本実施形態では、加速状態及び減速状態における、永久磁石式電動モータ、並びに多段変速装置の第1ドグ及び第2ドグが、以下のように動作するように構成される。図2は、本発明の第2実施形態に係る鞍乗型車両の永久磁石式電動モータ30、並びに多段変速装置40の第1ドグ43-1~43-2及び第2ドグ44-1~44-2の動作を示す図である。ここで、図2(a-1)~(a-5)は、鞍乗型車両2の加速状態における永久磁石式電動モータ30、並びに多段変速装置40の第1ドグ43-1~43-2及び第2ドグ44-1~44-2の動作を示す。また、図2(b-1)~(b-5)は、鞍乗型車両2の減速状態における永久磁石式電動モータ30、並びに多段変速装置40の第1ドグ43-1~43-2及び第2ドグ44-1~44-2の動作を示す。本実施形態において、第1実施形態と同一の構成は、図1に示す鞍乗型車両1と同じ符号を付し、一部の説明を省略する。また、本実施形態の構成及び制御は第1実施形態と組み合わせてもよい。
本実施形態の鞍乗型車両2において、加速状態(図2(a-1))で変速実行条件が成立した場合、制御装置80は、多段変速装置40の入力軸41と出力軸42との間で伝達されているトルクT3の大きさを小さくするように永久磁石式電動モータ30を制御する(処理(A))。この時、制御装置80は、永久磁石式電動モータ30がクランク軸24を減速させるトルクT4を出力するように永久磁石式電動モータ30を制御する(図2(a-2))。次に、制御装置80は、変速駆動装置45が第1ドグ43-1及び第2ドグ44-1の何れか(本実施形態では第2ドグ44-1)を回転軸方向に移動させて嵌合状態を解除するように変速駆動装置45を制御する(図2(a-3)、処理(B))。制御装置80は、(A)及び(B)の処理の後に、永久磁石式電動モータ30にクランク軸24を減速させるトルクT5を出力させる(図2(a-4))。次に、制御装置80は、第1ドグ43-2及び第2ドグ44-2の何れか(本実施形態では第2ドグ44-2)を回転軸方向に移動させて嵌合状態にするように変速駆動装置45を制御する(図2(a-5))。
鞍乗型車両2の減速状態とは、クランク軸24が入力軸41を介して出力軸42から回転方向Xと逆方向のトルクT6を受けている状態である。即ち、鞍乗型車両2の減速状態とは、クランク軸24が入力軸41に回転方向Xと逆方向のトルクT6を与えている状態である。この時、切替元の変速段における第2ドグ44-1が、第1ドグ43-1に周方向の力G2を加えている(図2(b-1))。本実施形態の鞍乗型車両2において、減速状態で変速実行条件が成立した場合、制御装置80は、多段変速装置40の入力軸41と出力軸42との間で伝達されているトルクT6の大きさを小さくするように永久磁石式電動モータ30を制御する(処理(A))。この時、制御装置80は、永久磁石式電動モータ30がクランク軸24を加速させるトルクT7を出力するように永久磁石式電動モータ30を制御する(図2(b-2))。次に、制御装置80は、変速駆動装置45が第1ドグ43-1及び第2ドグ44-1の何れか(本実施形態では第2ドグ44-1)を回転軸方向に移動させて嵌合状態を解除するように変速駆動装置45を制御する(図2(b-3)、処理(B))。制御装置80は、(A)及び(B)の処理の後に、永久磁石式電動モータ30にクランク軸24を加速させるトルクT8を出力させる(図2(b-4))。次に、制御装置80は、第1ドグ43-2及び第2ドグ44-2の何れか(本実施形態では第2ドグ44-2)を回転軸方向に移動させて嵌合状態にするように変速駆動装置45を制御する(図2(b-5))。
本発明の第3実施形態について説明する。本実施形態では、第1実施形態に係る鞍乗型車両1の制御装置が、以下のように更に構成される。図3は、本発明の第3実施形態に係る鞍乗型車両3の制御装置83の動作を示す図である。本実施形態において、第1実施形態と同一の構成は、図1に示す鞍乗型車両1と同じ符号を付し、一部の説明を省略する。また、本実施形態の構成及び制御は第1実施形態及び第2実施形態と組み合わせてもよい。
本発明の第4実施形態について説明する。本実施形態の鞍乗型車両4では、多段変速装置40が、以下のように構成される。図4は、本発明の第4実施形態に係る鞍乗型車両4の多段変速装置40の一部を示す図である。本実施形態において、第1実施形態に相応する構成は、図1に示す鞍乗型車両1と同じ符号を付し、一部の説明を省略する。また、本実施形態の構成及び制御は第1実施形態から第3実施形態の何れかと組み合わせてもよい。
本実施形態では、第1実施形態と同一の方法により、制御装置80が、多段変速装置40の第1ドグ43-3と第2ドグ44-3との嵌合の解除を行う(図4(a)~(c))。
本発明の第5実施形態について説明する。本実施形態では、鞍乗型車両の多段変速装置40が、以下のように構成される。図5は、本発明の第5実施形態に係る鞍乗型車両5の多段変速装置40を示す図である。本実施形態において、第1実施形態に対応する要素は、図1に示す鞍乗型車両1と同じ符号を付し、一部の説明を省略する。また、本実施形態の構成及び制御は第1実施形態から第4実施形態の何れかと組み合わせてもよい。
本発明の第6実施形態について説明する。本実施形態では、鞍乗型車両が、以下のように構成される。図6は、本発明の第6実施形態に係る鞍乗型車両6の構成を簡略化して示す側面図である。本実施形態において、第1実施形態と同一の構成は、図1に示す鞍乗型車両1と同じ符号を付し、一部の説明を省略する。また、本実施形態の構成及び制御は第1実施形態から第5実施形態の何れかと組み合わせてもよい。
15 駆動輪
20 エンジン
30 永久磁石式電動モータ
40 多段変速装置
43-1~43-3 第1ドグ
44-1~44-3 第2ドグ
45 変速駆動装置
50 クラッチ
80、83 制御装置
Claims (9)
- 鞍乗型車両であって、
前記鞍乗型車両は、
回転するクランク軸を有し、燃焼によって生じるパワーを前記クランク軸から前記クランク軸のトルク及び回転力として出力するエンジンと、
前記クランク軸と固定速度比で回転するように前記クランク軸に接続され、電力の供給を受けてパワーを出力する永久磁石式電動モータと、
前記エンジン及び前記永久磁石式電動モータの少なくとも何れかから出力されたパワーによって駆動される駆動輪と、
前記クランク軸と前記駆動輪との間の動力伝達経路に設けられ、入力軸、出力軸、第1ドグ及び第2ドグを有し、前記第1ドグ及び第2ドグは、複数の変速段のそれぞれに対応し、前記第1ドグは周方向に空間を空けて設けられ、前記第2ドグは、回転軸方向での移動に伴い前記第1ドグの前記空間に入り込むことによって第1ドグと嵌合状態になるとともに、前記第1ドグの前記空間から抜けることによって嵌合状態が解除されるように設けられ、選択された一の変速段における第1ドグ及び第2ドグの嵌合状態によって前記選択された変速段でのパワーの伝達を有効に設定し、前記第1ドグ及び第2ドグは、前記嵌合状態になることにより前記入力軸と前記出力軸との間のパワーの伝達を行い、前記嵌合状態が解除されることにより前記入力軸と前記出力軸との間のパワーの伝達を遮断する多段変速装置と、
前記クランク軸と前記入力軸との間に設けられ、前記クランク軸と前記入力軸との間のパワーの伝達を行い又は前記クランク軸と前記入力軸との間のパワーの伝達を遮断するクラッチと、
前記第1ドグ及び第2ドグの何れかを前記回転軸方向に移動させる変速駆動装置と、
変速実行条件が成立した場合に、下記(A)及び(B)の処理を順に行うように構成され、
(A) 前記多段変速装置の前記入力軸と前記出力軸との間で伝達されているトルクの大きさを小さくするように前記永久磁石式電動モータを制御し、
(B) 前記変速駆動装置が前記第1ドグ及び第2ドグの何れかを前記回転軸方向に移動させて前記嵌合状態を解除するように前記変速駆動装置を制御する、制御装置と
を備える。 - 請求項1に記載の鞍乗型車両であって、
前記制御装置は、
前記入力軸が前記クランク軸から回転方向と同一方向のトルクを受けている状態で前記変速実行条件が成立した場合に、前記(A)の処理において、前記永久磁石式電動モータが、前記クランク軸を減速させるトルクを出力するように前記永久磁石式電動モータを制御する。 - 請求項1又は2に記載の鞍乗型車両であって、
前記制御装置は、
前記入力軸が前記出力軸から回転方向と逆方向のトルクを受けている状態で前記変速実行条件が成立した場合に、前記(A)の処理において、前記永久磁石式電動モータが、前記クランク軸を加速させるトルクを出力するように前記永久磁石式電動モータを制御する。 - 請求項1又は2に記載の鞍乗型車両であって、
前記変速実行条件が成立した場合に、前記(A)及び(B)の処理の後に、
前記入力軸が前記クランク軸から回転方向と同一方向のトルクを受けている状態で前記変速駆動装置が前記第1ドグ及び第2ドグの何れかを前記回転軸方向に移動させて前記嵌合状態にする場合、前記制御装置は、前記永久磁石式電動モータに前記クランク軸を減速させるトルクを出力させる。 - 請求項1から4の何れか1項に記載の鞍乗型車両であって、
前記変速実行条件が成立した場合に、前記(A)及び(B)の処理の後に、
前記制御装置は、前記入力軸が前記出力軸から回転方向と逆方向のトルクを受けている状態で前記変速駆動装置が前記第1ドグ及び第2ドグの何れかを前記回転軸方向に移動させて前記嵌合状態にする場合、前記永久磁石式電動モータに前記クランク軸を加速させるトルクを出力させる。 - 請求項2に記載の鞍乗型車両であって、
前記制御装置は、前記エンジンの点火を制御し、
変速実行条件が成立した場合に、前記(A)の処理において、前記クランク軸を減速させるトルクを出力するように前記永久磁石式電動モータを制御するとともにエンジンの点火の遅角を行う又は点火を停止する。 - 請求項1から6の何れか1項に記載の鞍乗型車両であって、
前記第1ドグ又は前記第2ドグの少なくとも一方は、相手方ドグの間の空間に入り込む前記回転軸方向に突出した突起を有し、前記突起は先端ほど周方向の幅が大きい形状を有する。 - 請求項1から7の何れか1項に記載の鞍乗型車両であって、
前記変速駆動装置は、前記第1ドグ及び前記第2ドグの少なくとも一方を前記回転軸方向に駆動するためのシフトモータと、前記シフトモータに対し固定速度比で回転し、回転に伴い前記少なくとも一方の前記回転軸方向への移動を規定するカム溝が形成されたシフトカムとを有する。 - 請求項1から8の何れか1項に記載の鞍乗型車両であって、
前記鞍乗型車両は、ライダの操作力を受けるスロットルグリップと、前記スロットルグリップが受ける操作力によって開度を変えることにより前記エンジンへ供給される燃料の供給量を変えるスロットル弁とを備える。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/030563 WO2022034632A1 (ja) | 2020-08-11 | 2020-08-11 | ストラドルドビークル |
JP2022542520A JPWO2022034632A1 (ja) | 2020-08-11 | 2020-08-11 | |
TW110129430A TWI788948B (zh) | 2020-08-11 | 2021-08-10 | 跨坐型車輛 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/030563 WO2022034632A1 (ja) | 2020-08-11 | 2020-08-11 | ストラドルドビークル |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022034632A1 true WO2022034632A1 (ja) | 2022-02-17 |
Family
ID=80247969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/030563 WO2022034632A1 (ja) | 2020-08-11 | 2020-08-11 | ストラドルドビークル |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022034632A1 (ja) |
TW (1) | TWI788948B (ja) |
WO (1) | WO2022034632A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014102869A1 (ja) * | 2012-12-27 | 2014-07-03 | 川崎重工業株式会社 | 電動車両 |
WO2018083988A1 (ja) * | 2016-11-07 | 2018-05-11 | ジヤトコ株式会社 | 自動変速機の制御装置及び自動変速機の制御方法 |
JP2019100304A (ja) * | 2017-12-07 | 2019-06-24 | ヤマハ発動機株式会社 | 鞍乗型車両 |
JP2019100303A (ja) * | 2017-12-07 | 2019-06-24 | ヤマハ発動機株式会社 | 鞍乗型車両 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008144756A (ja) * | 2006-11-16 | 2008-06-26 | Yamaha Motor Co Ltd | 制御システムおよびそれを備えた車両 |
EP3412530A4 (en) * | 2016-02-04 | 2019-02-13 | Yamaha Hatsudoki Kabushiki Kaisha | TILT VEHICLE |
-
2020
- 2020-08-11 WO PCT/JP2020/030563 patent/WO2022034632A1/ja active Application Filing
- 2020-08-11 JP JP2022542520A patent/JPWO2022034632A1/ja active Pending
-
2021
- 2021-08-10 TW TW110129430A patent/TWI788948B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014102869A1 (ja) * | 2012-12-27 | 2014-07-03 | 川崎重工業株式会社 | 電動車両 |
WO2018083988A1 (ja) * | 2016-11-07 | 2018-05-11 | ジヤトコ株式会社 | 自動変速機の制御装置及び自動変速機の制御方法 |
JP2019100304A (ja) * | 2017-12-07 | 2019-06-24 | ヤマハ発動機株式会社 | 鞍乗型車両 |
JP2019100303A (ja) * | 2017-12-07 | 2019-06-24 | ヤマハ発動機株式会社 | 鞍乗型車両 |
Also Published As
Publication number | Publication date |
---|---|
TW202210363A (zh) | 2022-03-16 |
TWI788948B (zh) | 2023-01-01 |
JPWO2022034632A1 (ja) | 2022-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9546697B2 (en) | Vehicle power transmission system | |
US10023203B2 (en) | Vehicle power transmission system | |
JP4972566B2 (ja) | 自動変速機の制御方法及び制御装置 | |
JP2019156016A (ja) | ハイブリッド車両の駆動装置 | |
US9541193B2 (en) | Shift control system | |
JP5422544B2 (ja) | 車両の動力伝達制御装置 | |
KR20180042796A (ko) | 차량을 위한 제어 장치 | |
WO2013038446A1 (ja) | 動力断続装置 | |
WO2013021776A1 (ja) | 手動変速機 | |
JP5409526B2 (ja) | 車両の動力伝達制御装置 | |
WO2012077380A1 (ja) | 車両の動力伝達制御装置 | |
WO2022034632A1 (ja) | ストラドルドビークル | |
WO2018216758A1 (ja) | ビークル | |
JP2006152865A (ja) | 車両のエンジン自動停止及び再始動装置 | |
JP6239451B2 (ja) | 車両の動力伝達制御装置 | |
WO2021054102A1 (ja) | リーン車両 | |
JP7329595B2 (ja) | ストラドルドビークル | |
JP2007022148A (ja) | ハイブリッド車両における変速制御装置 | |
TWI832155B (zh) | 跨坐型車輛 | |
JP5367445B2 (ja) | 車両の動力伝達制御装置 | |
JP5273309B1 (ja) | 車両の制御装置 | |
WO2022118786A1 (ja) | Mt型ストラドルドビークル | |
WO2013121525A1 (ja) | ハイブリッド車両の制御装置 | |
JP2018040374A (ja) | 車両の制御装置 | |
WO2022038740A1 (ja) | Mt型ストラドルドビークル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20949494 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022542520 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317015331 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20949494 Country of ref document: EP Kind code of ref document: A1 |