JP7074466B2 - 鞍乗型車両 - Google Patents

鞍乗型車両 Download PDF

Info

Publication number
JP7074466B2
JP7074466B2 JP2017234947A JP2017234947A JP7074466B2 JP 7074466 B2 JP7074466 B2 JP 7074466B2 JP 2017234947 A JP2017234947 A JP 2017234947A JP 2017234947 A JP2017234947 A JP 2017234947A JP 7074466 B2 JP7074466 B2 JP 7074466B2
Authority
JP
Japan
Prior art keywords
speed
power
transmission
dog
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017234947A
Other languages
English (en)
Other versions
JP2019099074A (ja
Inventor
竜司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2017234947A priority Critical patent/JP7074466B2/ja
Publication of JP2019099074A publication Critical patent/JP2019099074A/ja
Application granted granted Critical
Publication of JP7074466B2 publication Critical patent/JP7074466B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)

Description

本発明は、鞍乗型車両に関する。
鞍乗型車両では、通常、動力源から出力される回転の速度及びトルクが変速機で変えられ、車輪に伝達される。例えば、変速機は、複数の変速段を有している。変速段は、シフトアップ及びシフトダウンによって変更される。
変速機で変速段が変更される際に、動力伝達が途切れると、鞍乗型車両の加速又は減速にかかる時間にロスが生じる。変速段が変更される際の動力伝達の途切れが小さい変速機が望まれていた。
例えば、特許文献1には、多段変速機が開示されている。特許文献1に示された多段変速機では、互いに平行な歯車軸にそれぞれ複数の駆動歯車と被動歯車が変速段毎に常時噛み合い状態で軸支されている。また、多段変速機は、第1の歯車と歯車軸とが同期して回転するように係合する第1の係合手段、及び、第2の歯車と歯車軸とが同期して回転するように係合する第2の係合手段を備えている。第1の歯車及び第2の歯車は、同じ歯車軸に設けられている。歯車軸は、入力軸又は出力軸のいずれかである。歯車軸が入力軸である場合、第1の歯車及び第2の歯車は駆動歯車である。歯車軸が出力軸である場合、第1の歯車及び第2の歯車は被動歯車である。変速駆動手段が、第1の歯車から第2の歯車に係合手段の係合を切替えてシフトアップする際に、第1の係合手段により第1の歯車が歯車軸に係合している状態で、第2の係合手段により第2の歯車を同歯車軸に係合して変速する。
特許文献1に示された多段変速機では、歯車の回転速度差を利用して、第2の係合手段による第2の歯車の歯車軸への係合によって、第1の係合手段による第1の歯車の歯車軸への係合が解除される。このため、変速段の変更が、係合解除に力を要さず滑らかに行われる。従って、動力伝達が切断されることなく変速段の変更が行われる。特許文献1に開示された多段変速機は、動力伝達が切断されることなく変速段を変更するシームレス変速機である。
特許第5386100号公報
ところで、変速機における変速段の変更後では、変更前に動力の伝達を担っていた第1の歯車とは異なる回転速度で回転する第2の歯車が動力の伝達を担う。
歯車及びこの歯車と同期して回転する軸等の部材は、慣性を有している。このため、変速段が変更される際には、変更前の歯車とは異なる回転速度で回転し慣性を有する歯車に係合することにより、出力軸から出力される動力の大きさが不連続に変化する。つまり、動力におけるショックが生じる。変速段が変更される際に、異なる回転速度で回転し慣性を有する歯車との係合によって生じるショックを、イナーシャ相ショックと称する。
このイナーシャ相ショックは、例えば車輪が受ける動力を通じ、車体の挙動の変化として現れる。
特に、変速段が変更される際に動力伝達が切断されないシームレス変速機では、動力伝達の途切れがないため、異なる回転速度で回転し慣性を有する歯車への動力伝達経路の切替えが瞬時に行われる。変速段が変更される際のイナーシャ相ショックの影響が顕著である。鞍乗型車両は、通常、自動車と比べて軽量である。このため、鞍乗型車両の車体が受けるイナーシャ相ショックの影響が自動車の場合と比べて大きい。つまり、変速機での変速の際に動力伝達が切断されないシームレス変速機を搭載する鞍乗型車両では、イナーシャ相ショックの影響が顕著である。
本発明の目的は、変速段が変更される際に動力伝達が切断されないシームレス変速機において、変速段の変更によるショックの影響が抑えられた鞍乗型車両を提供することである。
本発明者らは、変速段が変更される際に動力伝達が切断されないシームレス変速機において、変速段の変更によるショックについて検討した。ショックの影響は、鞍乗型車両において特に大きい。そこで、本発明者らは、シームレス変速機の内部でショックを抑えるのではなく、シームレス変速機を備えた鞍乗型車両全体としてショック又はショックの影響を抑えることを検討した。
この検討の中で、本発明者らは、変速機に動力を供給する動力源を制御することでショックを抑えることを考えた。
例えば、動力源の制御として、ドグを有する多段変速機に関する動力源の制御が考えられる。
具体的には、ドグを有する通常の多段変速機における変速段の変更では、動力を伝達しているドグの係合を解除し、その後、別のドグの係合を行うことが求められる。動力を伝達しているドグは、この動力を形成する強い力で係合している。そこで、係合状態を解除するため、例えば、動力源から変速機に供給される動力を一旦減少させることによって、動力を伝達しているドグの係合状態を解除することが考えられる。
しかし、例えば特許文献1に開示されたようなシームレス変速機は、歯車の回転速度差を利用して、変速先の速段における新たな係合によって変速元の速段における係合を円滑に解除する。従って、シームレス変速機では、新たな係合によって、それまでの係合を解除する場合には、係合を解除するために動力を一旦減少させることは必要とされない。むしろ、シームレス変速機では、変速段が変更される際に動力伝達が切断されないことを特徴の一つとしている。つまり、動力伝達が継続されることを特徴の一つとしている。
これに対し、本発明者らは、変速段が変更される際に動力伝達が切断されず、動力源からの動力の減少無しに係合が解除されるシームレス変速機において、例えばシフトアップ時に、あえて、動力源から変速機に供給される動力を減少させてみた。その結果、変速段が変更される際に動力伝達が切断されないため変速段の変更によるショックの影響が大きいシームレス変速機において、変速段の変更によるショック、即ちイナーシャ相ショックを抑えることができる場合があることが分かった。
本発明者らは、更なる検討の結果、シームレス変速機の入力軸から出力軸への動力伝達が、新たな変速段のギアを介して行われる状態へ切り替えられる前に、動力源の動力の減少を開始することで、変速段の変更によるショックが抑えられることを見出した。
このような動力源の動力の制御によるショックの抑制は、鞍乗型車両の加速時でシームレス変速機がシフトアップ(パワーオンアップシフト)する場合の他に、鞍乗型車両の減速時でシームレス変速機がシフトダウン(パワーオフダウンシフト)する場合に有効である。
以上の知見に基づいて完成した本発明の各観点による鞍乗型車両は、次の構成を備える。
(1)本発明の、ひとつの観点によれば、鞍乗型車両は、
回転可能に配置され、動力が入力される入力軸と、
前記入力軸と平行な軸線上に回転可能に配置される出力軸と、
前記入力軸に設けられ、前記入力軸と常に共に回転するか又は前記入力軸と相対回転可能であるように構成され、それぞれが各変速段に対応する複数の駆動ギアと、
前記出力軸に設けられ、前記出力軸と常に共に回転するか又は前記出力軸と相対回転可能であるように構成され、対応する前記駆動ギアと常時噛み合う複数の被駆動ギアと、
いずれか一つの変速段に係る前記駆動ギア及び前記被駆動ギアを介した前記入力軸から前記出力軸への動力伝達を機械的に且つ選択的に有効に設定するように構成された変速段設定機構と、を有するシームレス変速機であって、
前記変速段設定機構は、第n速に対応する第n速被駆動ギア又は第n+1速に対応する第n+1速被駆動ギアのいずれか一方を介して前記出力軸を通る動力の伝達を機械的に且つ選択的に有効に設定するためのラチェット機構を含み、
前記ラチェット機構は、
起立時に前記入力軸から前記出力軸へ前記第n速に対応する駆動ギア及び被駆動ギアを通る加速する向きの動力を伝達する一方、伏倒時に動力を伝達しないように構成される第n速加速用ポールと、
起立時に前記入力軸から前記出力軸へ前記第n速に対応する駆動ギア及び被駆動ギアを通る減速する向きの動力を伝達する一方、伏倒時に動力を伝達しないように構成される第n速減速用ポールと、
起立時に前記入力軸から前記出力軸へ前記第n+1速に対応する駆動ギア及び段被駆動ギアを通る加速する向きの動力を伝達する一方、伏倒時に動力を伝達しないように構成される第n+1速加速用ポールと、
起立時に前記入力軸から前記出力軸へ前記第n+1速に対応する駆動ギア及び段被駆動ギアを通る減速する向きの動力を伝達する一方、伏倒時に動力を伝達しないように構成される第n+1速減速用ポールと、を含み、
前記変速段設定機構は、さらに、周方向に延びるカム部が外周面に形成され、シフトアップ時の回転方向とシフトダウン時の回転方向とが反対になるようにシフトアップ時及びシフトダウン時に回転するように構成され、回転に伴って、前記第n速加速用ポールと、前記第n速減速用ポールと、前記第n+1速加速用ポールと、前記第n+1速減速用ポールと、を伏倒又は起立させるポール制御用シフトカムとを備えた、シームレス変速機と、
前記出力軸から伝達される動力によって駆動される車輪と、
前記シームレス変速機の前記入力軸に供給される動力を出力する動力源と、
前記動力源の動力を制御する制御装置であって、前記鞍乗型車両の加速中に前記動力源から前記入力軸への動力伝達が切断されることなく前記シームレス変速機の第n速から第n+1速へのシフトアップ操作が行われた場合、前記ポール制御用シフトカムの回転開始後で、前記入力軸から前記出力軸への動力伝達が、第n速に対応する駆動ギア及び被駆動ギアを介して行われる状態から、当該動力伝達が途切れることなく、第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられる前に、前記動力源の動力の減少を開始する処理、及び、前記鞍乗型車両の減速中に前記動力源から前記入力軸への動力伝達が切断されることなく前記シームレス変速機の第n+1速から第n速へのシフトダウン操作が行われた場合、前記ポール制御用シフトカムの回転開始後、前記入力軸から前記出力軸への動力伝達が、第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態から、当該動力伝達が途切れることなく、第n速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられる前に、前記動力源の動力の増加を開始する処理の少なくとも一方を実行する制御装置と、
を備えた鞍乗型車両。
(1)のシームレス変速機では、第n速加速用ポール(pawl)と、第n速減速用ポールとによって、第n速について、加速する向きの動力の伝達、及び減速する向きの動力の伝達が選択される。このことは、第n+1速でも同じである。
このため、例えば、鞍乗型車両の加速中に第n速から第n+1速へのシフトアップ操作が行われる場合、第n速及び第n+1速の双方で加速する向きの動力の伝達が選択されると、ギアに回転速度差が生じる。このため、第n+1速で加速する向きの動力の伝達開始によって、第n速での係合が解除される。従って、変速段が変更される際に動力伝達が切断されない。このことは、鞍乗型車両の減速中に第n+1速から第n速へのシフトダウン操作が行われる場合も同様である。従って、このシームレス変速機では、動力伝達が切断されることなく変速段が変更できる。
鞍乗型車両の加速中にシームレス変速機の第n速から第n+1速へのシフトアップ操作が行われる場合、制御装置は、ポール制御用シフトカムの回転開始後で、入力軸から出力軸への動力伝達が第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられる前に、動力源の動力の減少を開始する処理を実行する。このため、動力伝達が、第n速に対応する駆動ギアを介して行われる状態から、第n速に対応する駆動ギアよりも高い速度で回転する第n+1速に対応する駆動ギアを介して行われる状態へ切り替えられるときのイナーシャ相ショックが抑えられる。動力源の動力の減少を開始する処理は、ポール制御用シフトカムの回転開始後に実行される。このため、ポール制御用シフトカムが回転せずイナーシャ相ショックが生じない状況で動力源の動力を変更する制御が行われる事態の発生が抑制される。
この逆に、鞍乗型車両の減速中にシームレス変速機の第n+1速から第n速へのシフトダウン操作が行われた場合、制御装置は、ポール制御用シフトカムの回転開始後、動力伝達が第n速に対応する駆動ギアを介して行われる状態へ切り替えられる前に、動力源の動力の増加を開始する処理を実行する。このため、動力伝達が、第n+1速に対応する被駆動ギアを介して行われる状態から、第n速に対応する駆動ギアよりも低い速度で回転する第n速に対応する被駆動ギアを介して行われる状態へ切り替えられるときのイナーシャ相ショックが抑えられる。動力源の動力の増加を開始する処理は、ポール制御用シフトカムの回転開始後に実行される。このため、ポール制御用シフトカムが回転せずイナーシャ相ショックも生じない状況で動力源の動力が変更される事態が抑制される。
本発明に係る制御装置は、上記した動力源の動力の減少を開始する処理、及び動力源の動力の増加を開始する処理の少なくとも1つを実施する。これによって変速段が変更される際に動力伝達が切断されないシームレス変速機において、変速段の変更によるショックが抑えられる。
(2)本発明の、別の観点によれば、(1)の鞍乗型車両であって、
前記動力源は、エンジンである。
(2)の鞍乗型車両によれば、エンジンから出力されるトルクの範囲は、回転速度の範囲に応じた制限を有する。変速段が変更する際に動力伝達が切断されないシームレス変速機を介して供給されたエンジンからの動力によって車輪が駆動される。従って、変速段の変更によって、動力伝達が切断されることなく車輪が駆動されるトルクの範囲及び回転速度の範囲が拡げられるとともに、変速段の変更によるショックが抑えられる。
(3)本発明の、別の観点によれば、(2)の鞍乗型車両であって、
前記鞍乗型車両は、更に、前記エンジンと前記入力軸との間に設けられ、前記エンジンと前記入力軸との間での動力の伝達及びその切断を行うクラッチを備える。
(3)の構成によれば、例えば、鞍乗型車両の走行開始時、クラッチによって、エンジンからの動力の伝達切断から伝達への切替えが徐々に行われる。従って、走行開始時にエンジンからの動力の伝達が円滑に行われる。
(4)本発明の、別の観点によれば、(1)から(3)のいずれか1の鞍乗型車両であって、
前記制御装置は、前記動力源の回転速度及び前記ポール制御用シフトカムの回転速度の少なくとも一方に応じて、前記動力源の動力の減少又は増加を開始する時点の前記ポール制御用シフトカムの角度位置を変更するように、前記動力源を制御する。
(4)の構成によれば、動力源の動力の減少又は増加を開始する時点の前記ポール制御用シフトカムの角度位置が、動力源の回転速度及びポール制御用シフトカムの回転速度の少なくとも一方に応じて変更する。このため、変速段の変更で生じるイナーシャ相ショックに対し、動力源の動力の減少又は増加がより精密に制御される。このため、変速段が変更される際に動力伝達が切断されないシームレス変速機において、変速段の変更によるショックが更に抑えられる。
(5)本発明の、別の観点によれば、(1)から(4)のいずれか1の鞍乗型車両であって、
前記制御装置は、前記ポール制御用シフトカムの回転速度が0から増加に転じた時における前記ポール制御用シフトカムの角度と前記ポール制御用シフトカムの回転速度とに基づいて定められる係合タイミングよりも前に、前記動力源の動力の減少又は増加を開始し、
前記係合タイミングは、前記シームレス変速機の変速時において変速先の変速段に係る駆動ギア及び被駆動ギアを介した前記入力軸から前記出力軸への動力の伝達が開始されるタイミングである。
(5)の構成によれば、ポール制御用シフトカムの回転速度が0から増加に転じた時におけるポール制御用シフトカムの角度とポール制御用シフトカムの回転速度とに基づいて、係合タイミングが定められる。動力源の動力の減少又は増加を開始するタイミングが高い精度で得られる。従って、変速段が変更される際に動力伝達が切断されないシームレス変速機において、変速段の変更によるショックがより抑えられる。
(6)本発明の、別の観点によれば、(1)から(3)のいずれか1の鞍乗型車両であって、
前記変速段設定機構は、前記入力軸及び前記出力軸の少なくとも一方の軸に設けられ、前記ポール制御用シフトカムの回転に応じてその軸の軸方向に移動して、前記入力軸と相対回転可能である前記駆動ギア又は前記出力軸と相対回転可能である前記被駆動ギアと周方向にドグ係合することにより、前記入力軸から前記出力軸までの動力伝達を有効にするように構成されたドグリングを備え、
前記ドグリングは、前記ポール制御用シフトカムの回転に応じて前記軸方向に移動している時に、前記駆動ギア若しくは前記被駆動ギアと前記軸方向に接触するドグ当たりが生じた後に前記駆動ギア若しくは前記被駆動ギアと前記周方向にドグ係合するか、又は前記ドグ当たりが生じることなく前記駆動ギア若しくは前記被駆動ギアと前記周方向にドグ係合するように構成され、 前記制御装置は、
前記動力源の動力の減少又は増加を開始する時点の前記ポール制御用シフトカムの角度位置を変更するように、前記動力源を制御し、
前記動力源の動力の減少又は増加を開始することなく、前記ポール制御用シフトカムの角度が、前記ドグ当たりの状態が生じる時の前記ポール制御用シフトカムの角度を超えた時には、前記動力源の動力の減少又は増加を開始する。
(6)の構成によれば、ドグリングが、駆動ギア又は被駆動ギアとドグ係合することにより動力伝達が有効になる。ドグ係合が起きる前に、動力伝達を行うことなく駆動ギア又は前記被駆動ギアと接触するドグ当たりの状態が発生する場合がある。また、(6)の構成では、動力源の動力の減少又は増加を開始する時のポール制御用シフトカムの角度位置を変更するように、動力源を制御する。但し、動力源の動力の減少又は増加を開始することなく、ポール制御用シフトカムの角度が、ドグ当たり角度(ドグ当たりが生じる時のポール制御用シフトカムの角度)を超えた場合には、動力源の動力の減少又は増加を開始する。従って、ドグ当たりの状態が発生してもあるいは発生しなくても、イナーシャ相ショックが抑制されやすいタイミングで、動力源の動力の減少又は増加を開始することができる。従って、変速段が変更される際に動力伝達が切断されないシームレス変速機において、変速段の変更によるショックがより抑えられる。
なお、上述したポール制御用シフトカムの角度位置の変更は、例えば、動力源の回転速度及びポール制御用シフトカムの回転速度の少なくとも一方に応じて変更される。この変更は、(6)の構成の一例である。(6)の構成におけるポール制御用シフトカムの角度位置の変更は、この例に限定されない。
本発明によれば、変速段が変更される際に動力伝達が切断されないシームレス変速機において、変速段の変更によるショックの影響が抑えられた鞍乗型車両が実現する。
シームレス変速機は、多段変速機である。シームレス変速機は、入力軸から出力軸までの動力伝達が切断されることなく変速段を変更する変速機である。即ち、シームレス変速機は、入力軸から出力軸までの動力伝達が切断されることなくシフトアップ動作又はシフトダウン動作を行う。シームレス変速機では、シフトアップ動作又はシフトダウン動作時に、動力伝達が切断されない範囲で伝達される動力の大きさが変化してよい。
シームレス変速機は、ドグ係合により動力を伝達するためのドグを有していてもよい。また、シームレス変速機は、ドグを有していなくてもよい。シームレス変速機は、ドグ係合及び係合の解除ではなく、例えば、ポールの起立又は伏倒のみによって、変速段の切替えが行われるタイプであってもよい。
「第n速」及び「第n+1速」は、変速装置が有する変速段のうち、隣り合う変速段の対を指す。隣り合う変速段の間では、交互に変速が可能である。「第n速」が、低速側の変速段である。「第n+1速」が、高速側の変速段である。「n」は、変速装置が有する変速段の数より小さい正整数を取り得る。「n」に関して、変速装置が有する変速段は、ニュートラルポジションを含まない。例えば、変速装置が有する変速段の数が6である場合、そのような変速段の対は、以下の通りである。nは、1~5のいずれかの値を取り得る。
第1速及び第2速 (n=1)
第2速及び第3速 (n=2)
第3速及び第4速 (n=3)
第4速及び第5速 (n=4)
第5速及び第6速 (n=5)
上記の例において、第2速は、第3速との関係において「第n速」に該当し、第1速との関係において「第n+1速」に該当する。このように、変速装置においては、1つの変速段が、隣り合う一方の変速段との関係において「第n速」に該当するとともに、隣り合う他方の変速段との関係において「第n+1速」に該当してもよい。
「第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられる」時点とは、第n+1速に対応する動力の伝達が開始する時点である。後述する実施形態のように、変速先の速段に対応する動力の伝達が、ドグ係合により開始される場合、上記の時点は、第n+1速に対応するドグ係合が開始される時点である。また、例えば、変速先の速段に対応する動力の伝達が、ポールの係合により開始される場合、上記の時点は、第n+1速に対応するポール係合が開始される時点である。なお、第n速へのシフトダウンについても、同様に解釈される。
動力源として、例えば、エンジン及び電動モータが挙げられる。
鞍乗型車両は、クラッチを備えていてもよく、また、クラッチを備えていなくてもよい。
鞍乗型車両とは、運転者がサドルに跨って着座する形式の車両をいう。鞍乗型車両は、ビークルの一例である。鞍乗型車両は、リーン姿勢で旋回する車両であり、旋回時にカーブ内側にリーンするように構成されている。
鞍乗型車両は例えば自動二輪車である。自動二輪車としては、特に限定されず、例えば、スクータ型、モペット型、オフロード型、オンロード型の自動二輪車が挙げられる。また、鞍乗型車両としては、自動二輪車に限定されず、例えば三輪車であってもよい。また、鞍乗型車両としては、例えば、ATV(All-Terrain Vehicle)等であってもよい。
制御装置は、プログラムを実行するコンピュータでもよく、電子回路でもよい。
本発明の一実施形態に係る鞍乗型車両の概略構成を説明する図である。 図1に示す鞍乗型車両の側面図である。 図1に示す多段変速機の拡大図である。 (A)は、加速用ポール、減速用ポール、ドグリング、及び被駆動ギアを軸方向に見た模式図であり、(B)は、被駆動ギア及びドグリングの周方向部分断面図である。 シフトアップにおける、ドグ及びポールの動作を説明する図である。 図1に示す制御装置の構成を示すブロック図である。 図6に示す制御装置の機能ブロックを示すブロック図である。 シフトアップ時における鞍乗型車両の挙動を概略的に示すタイムチャートである。 シフトダウン時における鞍乗型車両の挙動を概略的に示すタイムチャートである。 制御装置の変速制御の動作を説明するフローチャートである。 図10に示す動力制御開始の処理を説明するフローチャートである。 鞍乗型車両の加速時に多段変速機がシフトアップする場合の挙動を示すタイムチャートである。 比較例の挙動を示すタイムチャートである。 本実施形態の鞍乗型車両に係る第2の測定例を示すタイムチャートである。
以下、本発明を、実施形態に基づいて図面を参照しつつ説明する。
図1は、本発明の一実施形態に係る鞍乗型車両の概略構成を説明する図である。
図1を参照して、本実施形態の鞍乗型車両1の概要を説明する。
図1に示す鞍乗型車両1は、動力源11と、クラッチ12と、多段変速機13と、制御装置8とを備えている。
動力源11は、動力を出力する。本実施形態の動力源11はエンジンである。図1には、動力源11として4気筒エンジンが示されている。図1では、1つの気筒のみ構成が概略的に示され、残りの気筒については構成の図示が省略されている。動力源11は、動力軸90と、シリンダ102と、ピストン103と、点火プラグ107を備えている。動力軸90はクランクシャフトである。
ピストン103は、シリンダ102内に往復移動自在に設けられている。点火プラグ107は、シリンダ102内に形成される燃焼室104に設けられている。燃焼室104に続く吸気通路には、スロットルバルブ105、燃料噴射装置106が設けられている。スロットルバルブ105、燃料噴射装置106、及び点火プラグ107の動作は、制御装置8によって制御される。
スロットルバルブ105は、燃焼室104に供給される空気の量を調整する。また、燃料噴射装置106は、燃焼室104に供給される空気に燃料を噴射する。空気と燃料の混合気が燃焼室104に供給され、点火プラグ107の点火によって燃焼することで、ピストン103を往復動させる。ピストン103の往復動が、動力軸90の回転に変換される。動力源11から、動力軸90の回転として動力が出力される。図中では、1つのスロットルバルブ105のみが示されているが、鞍乗型車両1は、シリンダ102と同数のスロットルバルブ105を備えている。スロットルバルブ105は、シリンダ102ごとに設けられている。
クラッチ12は、動力の伝達経路における動力源11と多段変速機13との間に設けられている。クラッチ12は、動力源と多段変速機13との間で伝達される動力を断続する。クラッチ12は、運転者の操作に応じて動力を断続する。
多段変速機13は、クラッチ12と接続されている。
多段変速機13は、複数の変速段を有する。本実施形態の多段変速機13は、シームレス変速機である。多段変速機13は、動力伝達を切断することなく、変速段を切替えることができる。
多段変速機13は、入力軸20と、出力軸30と、駆動ギア241~246と、被駆動ギア341~346と、変速段設定機構139とを有する。図1では、出力軸30及び出力軸に設けられた部材の断面が示されている。
入力軸20は、回転可能に配置される。入力軸20には、動力が入力される。入力軸20には、動力源11から出力された動力がクラッチ12を介して入力される。多段変速機13は、入力軸20に対し出力軸30の回転速度を段階的に変速する。
出力軸30は、入力軸20と平行な軸線上に回転可能に配置される。複数の駆動ギア241~246は、入力軸20に設けられ、常に入力軸20と共に回転するように構成されている。また、複数の駆動ギア241~246のそれぞれは、各変速段に対応する。複数の被駆動ギア341~346は、出力軸30に設けられ、出力軸30と相対回転可能であるように構成される。複数の被駆動ギア341~346は、対応する駆動ギア241~246と噛み合い可能であるように構成されている。常時、複数の被駆動ギア341~346の少なくとも一つが、駆動ギア241~246と噛み合う。
詳細には、図1に示す多段変速機13に備えられた複数の駆動ギア241~246は、常に入力軸20と共に回転するように構成されている。また、複数の被駆動ギア341~346は、出力軸30と相対回転可能であるように構成される。また、複数の被駆動ギア341~346のそれぞれが、駆動ギア241~246と常時噛み合う。
変速段設定機構139は、いずれか一つの変速段に係る駆動ギア241~246及び被駆動ギア341~346を介した入力軸20から出力軸30への動力伝達を機械的に且つ選択的に有効に設定するように構成されている。変速段設定機構139は、ラチェット機構400及びシフトカム50を有する。また、変速段設定機構139は、ドグ係合機構138を有する。
ラチェット機構400は、第n速に対応する第n速被駆動ギア又は第n+1速に対応する第n+1速被駆動ギアのいずれか一方を介して出力軸30を通る動力の伝達を機械的に且つ選択的に有効に設定する。
本実施形態の多段変速機13は、6速の変速機である。従って、上記nには、1から5までのいずれかが該当する。例えば、n=2の場合、ラチェット機構400は、第2速に対応する第2速被駆動ギア342又は第3速に対応する第3速被駆動ギア343のいずれか一方を介して出力軸30を通る動力の伝達を機械的にかつ選択的に有効に設定する。
本実施形態における変速段設定機構139は、詳細には、ラチェット機構400及びドグ係合機構138によって、第n速に対応する第n速被駆動ギア又は第n+1速に対応する第n+1速被駆動ギアのいずれか一方を介して出力軸30を通る動力の伝達を機械的に且つ選択的に有効に設定する。
ドグ係合機構138は、第1ドグD1、及び第2ドグD2を有する。詳細には、図1に示す多段変速機13の第1ドグD1は、被駆動ギア341~346に設けられている。第1ドグD1は、被駆動ギア341~346に、周方向に間隔を空けて配置された複数の突部である。第1ドグD1は、被駆動ギア341~346から、出力軸30の軸方向に突出している。第2ドグD2は、ドグリング37a~37cに設けられている。第2ドグD2は、円環状のドグリング37a~37cに設けられた穴部を画定する。
ドグリング37a~37cは、出力軸30の軸線上で移動可能なように出力軸30に設けられている。詳細には、ドグリング37a~37cのそれぞれは、ハブ38を介して出力軸30に支持されている。ドグリング37a~37cは、ハブ38と常に共に回転する。ドグリング37a~37cは、ハブ38に対し出力軸30の軸線上で移動可能なようにハブ38に設けられている。第1のドグリング37aは、第1速の被駆動ギア341及び第3速の被駆動ギア343と対応する。第2のドグリング37bは、第5速の被駆動ギア345及び第6速の被駆動ギア346と対応する。第3のドグリング37cは、第2速の被駆動ギア342及び第4速の被駆動ギア344と対応する。
ドグリング37a~37cが、出力軸30の軸線上で移動することによって被駆動ギア341~346のいずれかと係合する。ドグリング37a~37cが、被駆動ギア341~346のいずれかとドグ係合する。このとき、周方向に間隔を空けて配置された第2ドグD2の間隔に第1ドグD1が入り込み、且つ第2ドグD2が第1ドグD1と周方向で当たることによりドグ係合する。周方向は、被駆動ギア341~346及びドグリング37a~37cの回転方向Rを含む方向である。ドグ係合によって、回転方向Rの動力が伝達される。
変速段設定機構139は、動力が伝達される経路を選択的に有効に設定する。変速段設定機構139は、被駆動ギア341~346のいずれかが、対応するドグリング37a~37cと係合するよう、ドグリング37a~37cを移動させる。ドグ係合機構138は、被駆動ギア341~346と、対応するドグリング37a~37cのドグ係合により、動力の伝達の経路を有効にする。
ラチェット機構400は、加速用ポール35a~35c及び減速用ポール36a~36cを含んでいる。
本実施形態において、加速用ポール35a~35c及び減速用ポール36a~36cは、ドグリング37a ~37cに対応して設けられている。ドグリング37a~37cのそれぞれに、加速用ポール35a~35c及び減速用ポール36a~36cが設けられている。加速用ポール35a及び減速用ポール36a の組は、第1速段及び第3速段に対応する。加速用ポール35b及び減速用ポール36bの組は、第5速段及び第6速段に対応する。加速用ポール35c及び減速用ポール36cの組は、第2速 段及び第4速段に対応する。
加速用ポール35a~35c及び減速用ポール36a~36cは、径方向でドグリング37a~37cより中に配置されている。加速用ポール35a~35c及び減速用ポール36a~36cは、出力軸30に揺動可能に設けられている。加速用ポール35a~35c及び減速用ポール36a~36cは、起立又は伏倒の状態を有する。
加速用ポール35a~35cのそれぞれは、起立時に入力軸20から出力軸30へ、対応する速段に対応する駆動ギア241~246及び被駆動ギア341~346を通る加速する向きの動力を伝達する。加速用ポール35a~35cのそれぞれは、この一方、伏倒時に動力を伝達しない。
また、減速用ポール36a~36cのそれぞれは、起立時に入力軸20から出力軸30へ、対応する速段に対応する駆動ギア241~246及び被駆動ギア341~346を通る減速する向きの動力を伝達する。減速用ポール36a~36cのそれぞれは、一方、伏倒時に動力を伝達しない。
詳細には、加速用ポール35a~35c及び減速用ポール36a~36cは、出力軸30とハブ38との間における動力の伝達及び伝達の中断を切り替える。これによって、加速用ポール35a~35c及び減速用ポール36a~36cは、出力軸30と被駆動ギア341~346との間における動力の伝達及び伝達の中断を切り替える。
例として、第2速と第3速について説明する。第2速加速用ポール35cは、起立時に入力軸20から出力軸30へ第2速(第n速)に対応する駆動ギア242及び被駆動ギア342を通る加速する向きの動力を伝達する。一方、第2速加速用ポール35cは、伏倒時に動力を伝達しない。
第2速減速用ポール36cは、起立時に入力軸20から出力軸30へ第2速(第n速)に対応する駆動ギア242及び被駆動ギア342を通る減速する向きの動力を伝達する。一方、第2速減速用ポール36cは、伏倒時に動力を伝達しない。
第3速加速用ポール35aは、起立時に入力軸20から出力軸30へ第3速(第n+1速)に対応する駆動ギア243及び被駆動ギア343を通る加速する向きの動力を伝達する。一方、第3速加速用ポール35aは、伏倒時に動力を伝達しない。
第3速減速用ポール36aは、起立時に入力軸20から出力軸30へ第3速(第n+1速)に対応する駆動ギア243及び被駆動ギア343を通る減速する向きの動力を伝達する。一方、第3速減速用ポール36aは、伏倒時に動力を伝達しない。
シフトカム50は、ドグリング37a~37cの動作を制御する。シフトカム50は、円筒状である。シフトカム50には、ドグリング37a~37cを移動させるためのカム溝52a~52cが設けられている。シフトカム50は、シフトアップ時及びシフトダウン時に回転する。シフトカム50は、シフトアップ時の回転方向とシフトダウン時の回転方向とが反対になるように回転する。シフトカム50は、シフトアップ時及びシフトダウン時に回転することによって、ドグリング37a~37cと被駆動ギア341~346のドグ係合により選択された動力の伝達の経路を有効にする。なお、カム溝52a~52cに受け入れられるシフトフォーク53a~53cについては後述する。
また、シフトカム50は、第n速加速用ポールと、第n速減速用ポールと、第n+1速加速用ポールと、第n+1速減速用ポールと、を伏倒又は起立させる。第n速加速用ポールと、第n速減速用ポールと、第n+1速加速用ポールと、第n+1速減速用ポールとは、シフトカム50の回転に伴って伏倒又は起立する。シフトカム50は、例えばシフトアップ時及びシフトダウン時に、出力軸30の内部に設けられた図示しないカム部材を移動させることにより、ポールを伏倒又は起立させる。また、シフトカム50が、例えば出力軸30の内部に設けられた図示しないカム部材を回転させることにより、ポールを伏倒又は起立させる構成も採用可能である。
シフトカム50は、本発明にいうポール制御用シフトカムの一例に相当する。
例えば、シフトカム50の回転に伴って、第2速加速用ポール35cと、第2速減速用ポール36cと、第3速加速用ポール35aと、第3速減速用ポール36aと、が伏倒又は起立する。これによって、第2速と第3速との間で変速段の切替えが行われる。
本実施形態における多段変速機13は、シフトカム50の回転に伴いドグリング37a~37cを移動させると共に加速用ポール35a~35c及び減速用ポール36a~36cの起立及び伏倒状態を制御する。これによって、変速段の切替え時に、第n速に対応する第1ドグD1及び第2ドグD2がドグ係合する期間と、第n+1速に対応する第1ドグD1及び第2ドグD2がドグ係合する期間とが重なりを有することが可能である。このため、多段変速機13では、出力軸30への動力伝達が、第n速に対応する駆動ギア及び被駆動ギアを介して行われる状態から、当該動力伝達が切断されることなく、第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切替え可能である。また、出力軸30への動力伝達が、第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態から、当該動力伝達が切断されることなく、第n速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切替え可能である。
鞍乗型車両1には、車輪5も備えられている。多段変速機13の入力軸20から出力軸30に伝達された動力は、ドライブスプロケット9とドライブチェーン10と後輪駆動用スプロケット5aとを介して、車輪5に伝達される。これにより、車輪5が駆動され、鞍乗型車両1が走行する。
シフトカム角度検出器55は、シフトカム50の回転角であるシフトカム角度を検出する。また、シフトカム角度検出器55は、変速段設定機構139により動力伝達が有効に設定された変速段を検出する。シフトカム角度検出器55は、変速段及びシフトカム角度を表す信号を制御装置8に供給する。
鞍乗型車両1において、動力源11で生じる動力は、通常、動力軸90、クラッチ12、多段変速機13の入力軸20、駆動ギア241~246、被駆動ギア341~346、被駆動ギア341~346に設けられた第1ドグD1、ドグリング37a~37cに設けられた第2ドグD2、出力軸30、ドライブチェーン10、そして、車輪5へと順に伝達される。以降、各部品の位置を、この動力の伝達の流れの向きを基準として、上流側又は下流側と称する場合もある。
制御装置8は、動力源11を制御する。制御装置8は、詳細には、ECU(Engine Control Unit)である。制御装置8は、スロットルバルブ105の開度、燃料噴射装置106における燃料の供給量、及び、点火プラグ107における点火のタイミングの少なくともいずれかを制御することにより、動力源11から出力される動力の減少及び増加を制御する。制御装置8は、例えば、動力源11としての燃焼サイクルで、点火プラグ107による点火のタイミングを遅らせることによって、動力源11から出力される動力を減少させる。なお、動力源の動力の減少及び増加の制御は、特に限定されず、上述した例に限定されない。例えば、動力源が多気筒エンジンである場合に、気筒ごとに制御が変更されてもよい。動力源が電動モータである場合には、電動モータに供給される電力(電流及び電圧)が変更されてもよく、進角制御又は遅角制御が行われてもよい。
制御装置8は、多段変速機13に対するシフト操作に基づいて、イナーシャ相ショックを低減するための処理を実行する。本実施形態の制御装置8は、詳細には、シフト操作の種類に応じて、動力源11から出力される動力を減少する処理、及び、動力源11から出力される動力を増加する処理を実行することが可能である。
具体的には、制御装置8は、鞍乗型車両1の加速中に動力源11から入力軸20への動力伝達が切断されることなく多段変速機13の第n速から第n+1速へのシフトアップ操作が行われた場合、動力源11の動力を減少する。つまり、制御装置8は、鞍乗型車両1の加速中に、多段変速機13がシフトアップ(パワーオンアップシフト)する場合に動力源11の動力を減少する。
このとき、制御装置8は、シフトカム50の回転開始後に、動力源11の動力の減少を開始する処理を行う。また、制御装置8は、動力伝達が、第n速に対応する駆動ギア及び被駆動ギアを介して行われる状態から、第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられる時刻t14の前の時刻t13に、動力源11の動力の減少を開始する処理を行う。
また、制御装置8は、鞍乗型車両1の減速中に動力源11から入力軸20への動力伝達が切断されることなく多段変速機13の第n+1速から第n速へのシフトダウン操作が行われた場合、動力源11の動力を増加する。つまり、制御装置8は、鞍乗型車両1の減速中に、多段変速機13がシフトダウン(パワーオフダウンシフト)する場合に動力源11の動力を増加する。
このとき、制御装置8は、シフトカム50の回転開始後に、動力源11の動力の増加を開始する処理を行う。また、制御装置8は、動力伝達が、第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態から、当該動力伝達が切断されることなく、第n速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられる前に、動力源11の動力の増加を開始する処理を行う。なお、動力の増加又は減少が行われている時に、動力伝達が切断されることなく、変速元の速段を介した動力伝達が、変速先の速段を介した動力伝達に切り替えられる。これにより、イナーシャ相ショックが低減される。
図2は、図1に示す鞍乗型車両1の側面図である。
図1及び図2に示す鞍乗型車両1は、自動二輪車である。鞍乗型車両1は、リーン姿勢で旋回可能に構成されている。鞍乗型車両1は、エンジンユニット6を備えている。動力源11と、多段変速機13とは、エンジンユニット6に含まれている。動力源11の動力は、制御装置8によって制御される。また、鞍乗型車両1は、シート2と、ハンドル3と、車輪4,5と、クラッチレバー7aと、アクセル操作子7bと、シフトペダル501とを備えている。クラッチレバー7a及びアクセル操作子7bは、運転者の手によって操作されるようにハンドル3に設けられる。シフトペダル501は、運転者の足によって操作されるように設けられている。シフトペダル501に対する運転者の操作が、シフト操作として、多段変速機13に入力される。
動力源11から出力された動力は、多段変速機13へ伝達される。多段変速機13に伝達された動力は、ドライブチェーン10と後輪駆動用スプロケット5aを介して、車輪5に伝達される。動力は、2つの車輪4,5のうち後の車輪5に伝達される。
図3は、図1に示す多段変速機13の拡大図である。図3では、出力軸30及び出力軸に設けられた部材の断面が示されている。
図3を参照して、多段変速機13の詳細を説明する。
入力軸20は、動力源11(図1参照)の動力軸90からの動力が入力されるように構成されている。入力軸20には、クラッチ12が接続状態である場合に、動力軸90の動力が入力される。
入力軸20には、複数の駆動ギア241~246が設けられている。複数の駆動ギア241~246は、図3における入力軸20の右端部から、第1速駆動ギア241、第3速駆動ギア243、第5速駆動ギア245、第6速駆動ギア246、第4速駆動ギア244、第2速駆動ギア242の順に並んでいる。また、出力軸30には、複数の被駆動ギア341~346が設けられている。複数の被駆動ギア341~346は、図1における出力軸30の右端部から、第1速被駆動ギア341、第3速被駆動ギア343、第5速被駆動ギア345、第6速被駆動ギア346、第4速被駆動ギア344、第2速被駆動ギア342の順に並んでいる。駆動ギア241~246と被駆動ギア341~346とが、変速段の組ごとに、入力軸20及び出力軸30の軸方向における同じ位置において、互いに噛み合うように設けられている。
変速段設定機構139は、いずれか1つの変速段の対応する駆動ギア241~246及び被駆動ギア341~346を介した、入力軸20から出力軸30への動力伝達を有効に設定する。
変速段設定機構139は、上述したように、ラチェット機構400、ドグ係合機構138、及びシフトカム50を有する。また、変速段設定機構139は、シフトフォーク53a~53c及びフォークガイド軸60を有する。
シフトカム50の外周面には、カム溝52a~52cが形成されている。カム溝52a~52cには、それぞれシフトフォーク53a~53cの一部が受け入れられる。シフトフォーク53a~53cの一部は、シフトカム50の回転に伴ってシフトフォーク53a~53cがカム溝52a~52cに案内されて軸方向に移動するように、カム溝52a~52cに受け入れられる。
シフトペダル501の操作によってシフトカム50が回転すると、シフトフォーク53a~53cが、カム溝52a~52cに応じて軸方向に移動する。これにより、ドグリング37a~37cが、シフトフォーク53a~53cと共に軸方向に移動する。ドグリング37a~37cが移動して被駆動ギア341~346のいずれかと係合することにより、動力の伝達の経路が選択される。このとき、変速段設定機構139で選択されたドグリング37a~37cに設けられた第2ドグD2と、被駆動ギア341~346の第1ドグD1とが、周方向で当たることによってドグ係合する。
図4(A)は、加速用ポール、減速用ポール、ドグリング、及び被駆動ギアを軸方向に見た模式図であり、(B)は、被駆動ギア及びドグリングの一部を周方向に展開して示す部分断面図である。
図4には、1~6速のうち一例として2速に対応する加速用ポール35c、減速用ポール36c、ドグリング37c、及び被駆動ギア342が示されている。図4に示す基本的な構造は、他の変速段についても同じである。
図4(A)では、動作を把握し易くするため、加速用ポール35c及び減速用ポール36cを周方向に並べて示している。
矢印Rは、鞍乗型車両1の走行時に被駆動ギア342が回転する回転方向を示す。矢印Rは、動力源11(図1参照)から出力された動力が被駆動ギア342から出力軸30に伝達される向きを示す。即ち、矢印Rは、加速方向を示す。
第1ドグD1は、被駆動ギア342に、周方向に間隔を空けて配置された複数の突部である。周方向は、被駆動ギア342及びドグリング37cの回転方向Rに沿った方向である。第1ドグD1は、被駆動ギア342から、出力軸30の軸方向に突出している。図4には、2つの第1ドグD1が示されている。第1ドグD1には、見やすさのためハッチングが付されている。第2ドグD2は、ドグリング37cに、周方向に間隔を空けて配置されている。詳細には、周方向に並んだ第2ドグD2の間隔には、穴が設けられている。即ち、第2ドグD2は、周方向においてドグリング37cに設けられた穴を画定している。
第1ドグD1は、図4(B)に示すように周方向に並んだ第2ドグD2の間隔(穴)に入り込むことによって、第1ドグD1に周方向で当たっている。即ち、第1ドグD1と第2ドグD2とがドグ係合している。これによって、被駆動ギア342からドグリング37cに、加速方向Rの動力が伝達される。即ち、被駆動ギア342とドグリング37cがドグ係合している。
加速用ポール35cが径方向外側に起立しているとき、ドグリング37cから、加速用ポール35cを介して出力軸30に加速方向Rの動力が伝達される。この一方、加速用ポール35cが伏倒しているとき、ドグリング37cから出力軸30への加速方向Rの動力は伝達されない。
鞍乗型車両1の走行中に、動力源11から出力されるトルクが負になる場合、被駆動ギア342からドグリング37cに、加速方向Rとは反対の減速方向の動力が伝達される。
この場合、減速用ポール36cが起立しているとき、ドグリング37cから加速用ポール35cを介して出力軸30に、加速方向Rとは反対の減速方向の動力が伝達される。
このことを車輪(図1参照)からの視点で言い換えると、動力源11から出力されるトルクが負になる場合、出力軸30が車輪5(図1参照)によって駆動される。減速用ポール36cが起立しているとき、出力軸30から減速用ポール36cを介してドグリング37cに加速方向Rの動力が伝達される。
減速用ポール36cが伏倒しているとき、ドグリング37cから出力軸30への減速方向の動力は伝達されない。
ラチェット機構400は、ポール35c,36cの起立及び伏倒を利用して、第2速に対応する被駆動ギア342を介して出力軸30を通る加速方向又は減速方向の動力の伝達を機械的に且つ選択的に有効に設定する。
上述したように、ポール35c,36cは、シフトカム50の回転に応じて起立又は伏倒する。従って、ラチェット機構400は、シフトカム50の回転に応じて、第2速に対応する被駆動ギア342を介して出力軸30を通る動力の伝達を機械的に且つ選択的に有効に設定する。
ラチェット機構400は、第2速以外の変速段についても、第2速の場合と同じく動力の伝達を機械的に且つ選択的に有効に設定する。
ラチェット機構400及びドグ係合機構138を有する変速段設定機構139は、ドグ係合又は係合解除、並びに、加速用ポール35a~35c及び減速用ポール36a~36cによる加速方向又は減速方向の動力伝達の制御によって、出力軸30を通る動力の伝達を機械的に且つ選択的に有効に設定する。
図5は、シフトアップにおける、ドグ及びポールの動作を説明する図である。
図5のパート(a)~(e)のそれぞれには、加速用ポール、減速用ポール、ドグリング、及び被駆動ギアを軸方向に見た模式図が示されている。パート(a)~(e)には、シフトカム50の回転に伴う動作が順に示されている。
図5を参照して、鞍乗型車両の加速時で多段変速機が第2速から第3速にシフトアップ(パワーオンアップシフト)する場合のポールとドグの動作を説明する。図5のパート(a)~(e)のそれぞれには、第2速と第3速に関する動作を対比するため、下半分に第2速に関する部材が示され、上半分に第3速に関する部材が示されている。また、下半分と上半分とで、被駆動ギア342,343は同じ大きさに合わせて示されている。
図5のパート(a)は、シフトアップの前の初期状態を示している。鞍乗型車両1の加速時に、第2速に対応する第2速被駆動ギア342から出力軸30への動力の伝達が有効となっている。第2速被駆動ギア342の第1ドグD1は、ドグリング37cの第2ドグD2とドグ係合している。第2速被駆動ギア342の加速方向Rへの動力は、第1ドグD1から、ドグリング37cの第2ドグD2、及び第2速加速用ポール35cを介して出力軸30へ伝達される。
一方、第3速に対応する第3速被駆動ギア343の第1ドグD1は、ドグリング37aの第2ドグD2とドグ係合していない。このため、第3速被駆動ギア343の動力は、出力軸30へ伝達されない。
次に、運転者の操作に応じて、シフトカム50(図3参照)が回転すると、図5のパート(b)に示すように、減速用ポール36a,36cが伏倒する。
次に、運転者の操作に応じて、シフトカム50(図3参照)がさらに回転すると、図5のパート(c)に示すように、第3速に対応する第3速被駆動ギア343の第1ドグD1が、ドグリング37aの第2ドグD2とドグ係合する。この結果、第3速被駆動ギア343の加速方向Rへの動力が、第3速被駆動ギア343の第1ドグD1から、ドグリング37aの第2ドグD2、及び第3速加速用ポール35aを介して出力軸30へ伝達される。これによって、変速先の変速段(第3速)に対応する被駆動ギア343を介した入力軸20から出力軸30への動力の伝達が開始される。
第3速被駆動ギア343の第1ドグD1が、ドグリング37aの第2ドグD2とドグ係合する結果として、第2速及び第3速の双方でドグ係合の状態が生じる。第3速被駆動ギア343は、第2速被駆動ギア342より大きな回転速度で回転している。従って、第3速被駆動ギア343と係合したドグリング37a、出力軸30、及びドグリング37cの回転速度は、ドグリング37aが第3速被駆動ギア343と係合する前のドグリング37cの回転速度より大きい。減速用ポール36a,36cが伏倒しているので、出力軸30がドグリング37cより大きな回転速度で回転することが許容される。
減速用ポール36a,36cが伏倒することによって、多段変速機13で動力伝達が切断されることなく、且つ、動力源11(図1参照)から出力される動力を減少させることなく、第2速から第3速にシフトアップが行われる。
次に、運転者の操作に応じて、シフトカム50(図3参照)がさらに回転すると、図5のパート(d)に示すように、第2速被駆動ギア342の第1ドグD1と、ドグリング37cの第2ドグD2とのドグ係合が解除される。このため、第2速被駆動ギア342の動力は、ドグリング37cへ伝達されない。
次に、運転者の操作に応じて、シフトカム50(図3参照)がさらに回転すると、図5のパート(e)に示すように、減速用ポール36a,36cが起立する。
このようにして、多段変速機13で動力伝達が切断されることなく、且つ、動力源11(図1参照)から出力される動力を減少させることなく、変速段が変更される。即ち、シームレスシフトが行われる。
多段変速機13が第3速から第2速にシフトダウン(パワーオフダウンシフト)する場合、上述した動作とは逆の動作が行われる。第2速に関する第1ドグD1及び第2ドグD2がドグ係合した後、第3速に関する第1ドグD1及び第2ドグD2のドグ係合が解除される。また、シフトダウンでは、減速用ポール36a,36cの代わりに加速用ポール35a,35cが伏倒及び起立する。
上述した動作は、第2速及び第3速以外の変速段についても同じである。即ち、上述した動作は、第n速及び第n+1速において共通である。
このように、多段変速機13は、動力源11の出力が変更されなくとも、動力伝達の切断無しに加速時のシフトアップ(パワーオンアップシフト)及び減速時のシフトダウン(パワーオフダウンシフト)を行うことが可能である。
しかし、本実施形態では、加速時のシフトアップ(パワーオンアップシフト)及び減速時のシフトダウン(パワーオフダウンシフト)が行われる場合、制御装置8が、動力源11の出力を変更する。
図6は、図1に示す制御装置8の構成を示すブロック図である。
制御装置8は、プログラムを実行するプロセッサ8a、及びプログラム及びデータを記憶する記憶装置8bを備えている。制御装置8では、記憶装置8bに記憶されたプログラムをプロセッサ8aが実行することにより、動力源11を制御する。
制御装置8には、シフトカム角度検出器55、アクセル検出器7c、クラッチ検出器12a、スロットル開度検出器191、燃料噴射装置106、スロットルモータ108、点火プラグ107、及び動力軸速度検出器192が接続されている。アクセル検出器7cは、アクセル操作子7b(図2参照)の操作量を検出する。クラッチ検出器12aは、クラッチ12(図1参照)の操作量を検出する。点火プラグ107は図示しない点火装置を介して制御装置8と接続されている。また、制御装置8には、操作荷重検出器730、入力軸速度検出器27、及び出力軸速度検出器28が接続されている。
制御装置8は、スロットルモータ108、燃料噴射装置106、及び点火プラグ107を制御することにより、動力源11から出力される動力を制御する。
図7は、図6に示す制御装置8の機能ブロックを示すブロック図である。
制御装置8は、変速制御部801及びエンジン制御部802を備えている。変速制御部801及びエンジン制御部802のそれぞれは、図6に示す記憶装置8bに記憶されたプログラムをプロセッサ8aが実行することにより実現される。
変速制御部801には、シフト荷重、シフトカム位相、動力軸回転速度、入力軸回転速度、出力軸回転速度、車両速度、クラッチ操作量、及びスロットル開度が入力される。変速制御部801は、多段変速機13の状態に応じて、動力源11から出力される動力の大きさを変更する。具体的には、変速制御部801は、エンジントルク補正値を出力する。
エンジン制御部802には、エンジントルク目標値が入力される。エンジントルク目標値は、基本エンジントルク目標値がエンジントルク補正値で補正された値である。基本エンジントルク目標値は、アクセル検出器7cで検出されたアクセル操作子7bの操作量に基づく値である。エンジン制御部802は、エンジントルク目標値に応じて、動力源11から出力される動力の大きさを制御する。具体的には、エンジン制御部802は、スロットル開度目標値、点火角度目標値、及び燃料供給量を出力する。スロットル開度目標値はスロットルモータ108の動作に対する目標値である。点火角度目標値は、点火プラグ107についての目標値である。燃料供給量は、燃料噴射装置106についての目標値である。
図8は、シフトアップ時における鞍乗型車両1の挙動を概略的に示すタイムチャートである。
図8には、動力軸回転速度、車輪回転速度、シフトカム角度、係合時間カウンタ、シフトカム速度、出力トルク、点火角度、及びピッチ角速度が示されている。
車輪回転速度は、出力軸30から伝達される動力によって駆動される車輪5の回転速度である。シフトカム角度は、シフトカム50の回転角度である。係合時間カウンタは、ドグ係合までの時間を表す制御装置8内部の値である。エンジントルク目標値は、制御装置8内部の計算の値である。図8には、鞍乗型車両1の加速中に、多段変速機13が第2速から第3速へシフトアップ(パワーオンアップシフト)する場合の各状態が示されている。図3及び図5も参照して、変速段の切替えについて説明する。
図8のチャートの時刻t11で、運転者による変速段切替えの操作が開始される。運転者の操作に応じてシフトカム50が回転する。従って、シフトカム角度が徐々に増大する。シフトカム50の回転開始する時刻t11よりも後で、図5のパート(b)に示すように、減速用ポール36a,36cが伏倒する。
時刻t14で、図5のパート(c)に示すように、第3速に対応する第3速被駆動ギア343の第1ドグD1が、ドグリング37aの第2ドグD2とドグ係合する。この結果、第3速被駆動ギア343の加速方向Rへの動力が、第3速被駆動ギア343の第1ドグD1から、ドグリング37aの第2ドグD2、及び第3速加速用ポール35aを介して出力軸30へ伝達される。
時刻t14におけるドグ係合より前の時点で、第3速被駆動ギア343は、第2速被駆動ギア342より大きな回転速度で回転している。即ち、ドグ係合より前、第3速被駆動ギア343は、第2速被駆動ギア342と係合したドグリング37cより大きな回転速度で回転している。つまり、ドグ係合より前、第3速被駆動ギア343は、ドグリング37c、出力軸30、及びドグリング37aより大きな回転速度で回転している。
ドグリング37aより大きな回転速度で回転している第3速被駆動ギア343が、時刻t14でドグリング37aと係合する。このため、時刻t14で、ドグリング37aの回転速度が上昇する。即ち、出力軸30から出力される動力が増加する。この結果、車輪回転速度が上昇する。
動力の増大及び速度の上昇のためのエネルギーは、第3速被駆動ギア343、及びこの第3速被駆動ギア343と同期して運動する部材の慣性に起因している。ここで、第3速被駆動ギア343と同期して運動する部材は、例えば、第3速駆動ギア243、入力軸20、クラッチ12、動力軸90、及びピストン103である。第3速被駆動ギア343と同期して運動する部材が有する慣性エネルギーが消費されると、車輪回転速度は上昇から戻る。動力の一時的な上昇は、慣性エネルギーに起因する。時刻t14で、出力軸30から出力される動力の急峻な増大が、イナーシャ相ショックとなる。
イナーシャ相ショックの影響は、車両ピッチ角速度の変化として現れやすい。本実施形態の多段変速機13では、変速段が変更される際に動力伝達の途切れがないため、異なる回転速度で回転する歯車への動力伝達経路の切替えが瞬時に行われる。このため、変速段が切替えられる時のイナーシャ相ショックの影響が顕著である。また、鞍乗型車両1は、例えば自動車と比べて軽量であるため、自動車の場合と比べて大きな影響を受ける。
本実施形態では、制御装置8が動力源11の動力の制御を行うことによって、イナーシャ相ショックが抑えられる。
具体的には、制御装置8は、パワーオンアップシフトの場合、動力源11の動力を減少させる。詳細には、制御装置8は、鞍乗型車両1の加速中に動力源11から入力軸20への動力伝達が切断されることなく多段変速機13の第2速から第3速へのシフトアップ操作が行われた場合、動力源11の動力を減少させる。より詳細には、制御装置8は、シフトカム50の回転開始(時刻t12)より後に、動力源11の動力の減少を開始する処理を実行する。そして、制御装置8は、動力伝達が、第2速に対応する駆動ギア242及び被駆動ギア342を介して行われる状態から、当該動力伝達が途切れることなく、第3速に対応する駆動ギア243及び被駆動ギア343を介して行われる状態へ切り替えられるタイミング(時刻t14)より前に、動力源11の動力の減少を開始する処理を実行する。図8の例において制御装置8は、第3速に対応する駆動ギア243及び被駆動ギア343を介して行われる状態へ切り替えられる時刻t14の1サイクル前に動力源11の動力の減少を開始する処理を実行する。減少を開始する処理の実行により点火角度が減少する。動力源11の動力は、減少を開始する処理の実行の後に到来する燃焼工程で減少する。図8の例において、動力源11の動力は減少を開始する処理の実行から1/4サイクル以内に減少を開始する。
図9は、シフトダウン時における鞍乗型車両1の挙動を概略的に示すタイムチャートである。
図9には、図8に示す状態に加え、スロットル開度が示されている。図9には、鞍乗型車両1の減速中に、多段変速機13が第3速から第2速へシフトダウン(パワーオフダウンシフト)する場合の各状態が示されている。
シフトダウンにおいて、制御装置8は、動力源11の動力を増加させる。即ち、制御装置8は、鞍乗型車両1の減速中に動力源11から入力軸20への動力伝達が切断されることなく多段変速機13の第3速から第2速へのシフトダウン操作が行われる場合、動力源11の動力を増加させる。詳細には、制御装置8は、シフトカム50の回転開始(時刻t22)より後に、動力源11の動力の増加を開始する処理を実行する。制御装置8は、動力伝達が、第3速に対応する駆動ギア243及び被駆動ギア343を介して行われる状態から、当該動力伝達が途切れることなく、第2速に対応する駆動ギア242及び被駆動ギア342を介して行われる状態へ切り替えられるタイミング(時刻t24)より前に、動力源11の動力の増加を開始する処理を実行する(時刻t23)。
制御装置8は、シフトダウン操作が行われる場合、前処理として、時刻t22でスロットル開度を増加すると共に、点火角度を遅延させる処理を行う。これによって、点火遅角の状態になる。スロットル開度を増加すると共に点火遅角の状態になることによって、動力源11としてのエンジンの出力トルクは維持される。
制御装置8は、時刻t23で動力源11の動力の増加を開始する時、前処理で開始したエンジンの点火遅角を停止する。これによって、動力源11から出力される動力が増大する。
動力源11の出力は、エンジンの点火角度の変化に対し短時間で変化する。このため、前処理として時刻t22でスロットル開度を増加すると共に点火角度を遅延させる。そして、時刻t23でエンジンの点火遅角を停止することよって、動力源11の出力を急速に増加することができる。
制御装置8は、時刻t23で動力源11の出力を増加した後、時刻t25で動力源11の出力の増加を停止する。
図10は、制御装置8の変速制御の動作を説明するフローチャートである。
図10には、制御装置8の変速制御部801及びエンジン制御部802の処理が示されている。変速制御部801の処理及びエンジン制御部802の処理は、実質的に並行して実行される。また、エンジン制御部802は、変速制御部801が出力するトルク補正値を動力源11の制御に反映させる。そこで、変速制御部801の処理及びエンジン制御部802の処理を、単に、制御装置8の処理として説明する。
変速制御において、制御装置8は、操作の検出を行う(S11)。
制御装置8は、運転者によって、多段変速機13の変速段の変更の操作が行われたか否かを検出する。制御装置8は、例えば、操作荷重検出器730が検出したシフトペダル501への荷重によって、変更の操作が行われたか否かを検出する。なお、制御装置8は、シフトカム角度検出器55で検出されたシフトカム50のシフトカム角度に基づいて、変更の操作が行われたか否かを検出してもよい。
次に、制御装置8は、多段変速機13における動作種類の判別を行う(S12)。
制御装置8は、例えば、操作荷重検出器730で検出されたシフトペダル501への荷重の向きによって、シフトアップ又はシフトダウンを判別する。なお、制御装置8は、シフトカム角度検出器55で検出されたシフトカム角度に基づいて、シフトアップ又はシフトダウンを判別することも可能である。
また、制御装置8は、アクセル検出器7cで検出されたアクセル操作子7b(図2参照)の操作量、又は、スロットル開度検出器191で検出されたスロットルバルブ105の開度に基づいて、鞍乗型車両1が加速中か又は減速中かを判別する。
制御装置8は、ステップS12で、次の4つの動作種類を判別する。
(1)鞍乗型車両1の加速時でシフトアップ(パワーオンアップシフト)
(2)鞍乗型車両1の加速時でシフトダウン(パワーオンダウンシフト)
(3)鞍乗型車両1の減速時でシフトダウン(パワーオフダウンシフト)
(4)鞍乗型車両1の減速時でシフトアップ(パワーオフアップシフト)
また、制御装置8は、ステップS12で、クラッチ検出器12aでクラッチ12(図1参照)の操作が検出された場合、動作種類の判別を行わず、図10に示す変速制御を終了する。従って、以下で説明するステップS13以降の処理は、動力源11と入力軸20との間の動力伝達がクラッチ12によって切断されない場合に実施される。
次に、制御装置8は、前処理を行う(S13)。
動作種類が、上記(3)鞍乗型車両1の減速時でシフトダウンの場合、又は、上記(4)鞍乗型車両1の減速時でシフトアップの場合、制御装置8は、このステップS13の処理よりも後に、設定されたタイミングで、動力源11の出力を増加する。
ステップS13で、制御装置8は、後に実行される動力源11の出力の増加に先立ち、動力源11としてのエンジンの吸気量を増加させる増加処理、並びに、吸気量の増加に伴う動力源11の出力の増加を抑えるようなエンジンの点火遅角を開始する処理を行う。
単に動力源11としてのエンジンの吸気量が増加すると、動力源11の出力は増加する。単に動力源11としてのエンジンの点火遅角が行われると、動力源11の出力は減少する。制御装置8は、吸気量を増加させるとともに、エンジンの点火遅角を行うことによって、処理前の動力源11の出力を維持するよう動力源11を制御する。
動力源11の出力は、エンジンの点火角度の変化に対し短時間で変化する。このため、ステップS13の処理よりも後に、設定されたタイミングで、エンジンの点火遅角を停止することによって、動力源11の出力を急速に増加することができる。
なお、制御装置8は、点火遅角の代わりに、燃料供給量を減少させることも可能である。
次に、制御装置8は、係合解除補助を行う(S14)。
上記(2)鞍乗型車両1の加速時にシフトダウン、又は、上記(4)鞍乗型車両1の減速時にシフトアップする場合、多段変速機13では、変更前の現行の変速段に係る動力伝達を解除するため、動力源11の出力を変化させることが求められる。
例えば、上記(2)鞍乗型車両1の加速時で第n+1段から第n段にシフトダウンの場合、本実施形態の多段変速機13では、変更前の第n+1段に係る加速用ポール35a~35cを伏倒させるため、動力源11の出力を減少することが求められる。
また、上記(4)鞍乗型車両1の減速時で第n段から第n+1段にシフトアップの場合、本実施形態の多段変速機13では、変更前の第n段に係る減速用ポール36a~36cを伏倒させるため、動力源11の出力を増加することが求められる。
動作種類が、上記(2)鞍乗型車両1の加速時にシフトダウンする場合、又は、上記(4)鞍乗型車両1の減速時にシフトアップする場合、制御装置8は、このステップS14において、係合解除補助のため動力源11の出力を変化させる。具体的には、動作種類が、上記(2)鞍乗型車両1の加速時にシフトダウンする場合、制御装置8は、動力源11の出力を減少する。また、動作種類が、上記(4)鞍乗型車両1の減速時にシフトアップする場合、制御装置8は、動力源11の出力を増加する。
このステップS14の処理によって、変更前の現行の変速段に係る動力伝達が解除可能となる。
次に、制御装置8は、動力制御開始の処理を行う(S15)。
制御装置8は、このステップS15で、イナーシャ相ショックの影響を低減するため、動作種類に応じて動力源11の出力を減少又は増加する。制御装置8は、ステップS15で、動力制御開始のタイミングを設定し、設定したタイミングで動力制御を開始する。動力制御開始処理の詳細については、後述する。
次に、制御装置8は、動力制御終了の処理を行う(S16)。
制御装置8は、ステップS15で開始した動力制御を終了する。制御装置8は、ステップS15で、動力制御終了のタイミングを設定し、設定したタイミングで動力制御を終了する。
次に、制御装置8は、後処理を行う(S17)。
制御装置8は、このステップS17よりも前のステップS13で、前処理として、動力源11としてのエンジンの吸気量を増加させる増加処理、並びに、吸気量の増加に伴う動力源11の出力の増加を抑えるようなエンジンの点火遅角を開始している。
制御装置8は、このステップS17で、上記前処理を終了する。即ち、制御装置8は、このステップS17で、後処理として、動力源11としてのエンジンの吸気量の増加を終了させる処理、並びに、吸気量の増加の終了に伴う動力源11の出力の減少を抑えるようなエンジンの点火遅角を終了する処理を行う。
図11は、図10に示す動力制御開始の処理を説明するフローチャートである。
動力制御開始の処理において制御装置8は、クラッチ12が操作されたか否かを判別する(S21)。このステップS21で、制御装置8は、クラッチ検出器12aにクラッチ12(図1参照)の操作を検出する場合、動力制御開始の処理を行わず、図11に示す処理を終了する。
なお、図10に示すステップS12の実行タイミングにおけるクラッチ12の操作の判別のみでクラッチ12についての判別の精度が確保できる場合、ステップS21での判別は省略することも可能である。
クラッチ12が操作されていない場合(S21でNo)、制御装置8は、多段変速機13における動作の種類を判別する(S22)。
制御装置8は、図10に示す動作種類の判別(図10のS12)の結果に基づいて、判別を行う。
動作種類が、パワーオンアップシフト、即ち上記(1)の鞍乗型車両1の加速時にシフトアップする場合(S22でYes)、制御装置8は、動力減少開始のための処理を行う。制御装置8は、ドグ係合のタイミングを計算する(S23)。
制御装置8は、シフトカム50の回転速度に応じて、ドグ係合のタイミングを計算する。第1ドグD1及び第2ドグD2は、シフトカム50の回転に応じて、ドグリング37a~37cが軸方向に移動することによって係合する。制御装置8は、運転者の足の操作力によって回転するシフトカム50の回転速度に応じてドグ係合のタイミングを計算することによって、高い精度で動力減少の処理を開始することができる。
制御装置8は、シフトカム50の回転速度が0から増加に転じた時におけるシフトカム50の角度とシフトカム50の回転速度とに基づいてドグ係合のタイミングを計算する。
制御装置8は、例えば、過去の変速段の変更の際に記憶されたドグ係合時のシフトカム角度の学習値(ドグ係合角度学習値。図8参照)を用いてドグ係合のタイミングを計算する。この場合、制御装置8は、変速段の変更における入力軸20又は出力軸30の回転速度の変化に基づき、変速段の変更における変更後の変速段による動力の伝達が開始するシフトカム角度を記憶装置8bに記憶する(ドグ係合角度学習値)。ステップS23において、制御装置8は、過去の変速段の変更について記憶されたシフトカム角度を記憶装置8bから読み出す。制御装置8は読み出されたシフトカム角度(ドグ係合角度学習値)を用いて、ドグ係合のタイミングを計算する。
次に、制御装置8は、上記ステップS23で計算されたドグ係合タイミングのmサイクル前のタイミングが到来したか否か判別する(S24)。
ここで、サイクルは、動力源11であるエンジンの燃焼サイクルである。動力源11が4ストロークエンジンの場合、サイクルは動力軸90の2回転に相当する。
mは、例えば1である。なお、mは、多段変速機13の性能及び鞍乗型車両1の種類に応じて異なる値に設定されることが可能である。mとして、例えば、1/2、又は1/4といった、0より大きい値が採用可能である。
mサイクルとして、例えばエンジンの1燃焼間隔以上の期間が設定される。ここで、燃焼間隔は、エンジンで生じる燃焼の間隔である。エンジンの1燃焼間隔は、例えばエンジンが単気筒エンジンの場合、エンジンの1サイクルに相当する期間である。エンジンが複数気筒を有する場合、1燃焼間隔は、複数の気筒で順次生じる燃焼の間隔に相当する期間である。例えば、4気筒エンジンの場合の1燃焼間隔は1/4サイクルである。
例えば1燃焼間隔以上の期間が設定される場合、制御装置8は、出力軸30への動力伝達が第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられるタイミングの燃焼間隔分前のタイミングより更に前に動力源の動力の減少を開始する処理を実行することとなる。また、制御装置8は、動力伝達が第n速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられるタイミングの燃焼間隔分前のタイミングより更に前に動力源の動力の増加を開始する処理を実行することとなる。
また、例えばmが1の場合、制御装置8は、出力軸30への動力伝達が第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられるタイミングの1サイクル前のタイミングより更に前に動力源の動力の減少を開始する処理を実行する。また、制御装置8は、動力伝達が第n速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられるタイミングの1サイクル前のタイミングより更に前に動力源の動力の増加を開始する処理を実行する。
mが1の場合、ドグ係合タイミングの1サイクル前のタイミングが到来すると(S24でYes)、動力減少開始処理が行われる(S26)。
制御装置8は、このステップS26で、動力源11から出力される動力の減少を開始する。制御装置8は、動力源11であるエンジンの点火遅角を開始する。
計算されたドグ係合タイミングより前のタイミングで動力源11から出力される動力の減少を開始することにより、ドグ係合によって生じるイナーシャ相ショックを低減するように、動力源11から出力される動力が減少する。従って、イナーシャ相ショックの影響が抑えられる。
計算されたドグ係合タイミングのmサイクル前のタイミングで、動力減少開始処理が行われる。サイクルに相当する時間は、動力軸90の回転速度に応じて異なる。従って、動力減少処理の開始タイミングからドグ係合タイミングまでの時間間隔は、動力軸90の回転速度に応じて異なる。つまり、動力源11の回転速度に応じて、動力源11の動力の減少を開始する時点のシフトカム50の角度位置が変更される。
詳細には、動力軸90の回転速度が大きいほど、動力減少処理の開始タイミングからドグ係合タイミングまでの時間間隔が短い。即ち、動力軸90の回転速度が大きいほど、動力源11の動力の減少を開始する時点のシフトカム50の角度位置が小さい。
例えば動力源11が4つの気筒を有するエンジンであり、mが1/4に設定される場合、mサイクルは、エンジンの1燃焼間隔である。この場合、少なくとも1つの気筒が、ドグ係合タイミングの前に点火遅角を伴う燃焼行程を経る。従って、ドグ係合タイミングにおいて、動力源11から出力される動力が減少する。従って、イナーシャ相ショックの影響が抑えられる。
また、例えば、mが1であり動力源11が複数の気筒を有するエンジンである場合に、すべての気筒が、ドグ係合タイミングの前に点火遅角を伴う燃焼行程を経る。従って、ドグ係合タイミングにおいて、動力源11から出力される動力がより減少する。従って、イナーシャ相ショックの影響が抑えられる。
ドグ係合タイミングに対する1サイクル前のタイミングが到来しない場合(S24でNo)、制御装置8は、シフトカム50の回転角度が、所定の制限値を超えているか否か判別する(S25)。所定の制限値は、ドグ当たり角度である。ドグ当たり角度は、第1ドグと第2ドグが軸方向で接触する場合における、シフトカム50の回転角度である。ドグ当たり角度は、ドグリング37a~37cがドグ当たりする場合における、シフトカム50の角度である。ドグリング37a~37cがドグ当たりする場合、ドグリング37a~37cは、動力伝達を行うことなく被駆動ギア341~346と接触する。具体的には、ドグリング37a~37cがドグ当たりする場合、ドグリング37a~37cに設けられた第2ドグD2と、被駆動ギア341~346に設けられた第1ドグD1とが軸方向で当たる。ドグ当たり角度は、設計値又は測定に基づいて予め設定される。なお、制御装置8は、過去に変速段が切替えられた際にドグ当たりしたシフトカム50の回転角度を学習(記憶)することが可能である。
例えば、運転者による操作の途中で、操作の速度が増大するような場合、計算されたドグ係合タイミングのmサイクル前のタイミングが到来する前に、シフトカム50の回転角度が、想定された角度を超える場合がある。即ち、上記ステップS24のタイミングによる判別では、動力減少処理の開始タイミングからドグ係合タイミングまでの時間間隔が確保できない場合がある。この場合、ステップS25で、シフトカム50の回転角度が制限値を超えると判別される場合に、制御装置8が動力減少処理を開始する。これによって、動力減少処理の開始タイミングからドグ係合タイミングまでの時間間隔が確保される。従って、運転者による操作の途中で、操作の速度が増大するような場合にもイナーシャ相ショックの影響が抑えられる。
ドグ係合タイミングのmサイクル前のタイミングが到来せず(S24でNo)、且つ、シフトカム50の回転角度が、制限値を超えていない場合(S25でNo)、制御装置8は、動力減少処理(S26)を開始しない。
図11の動力制御開始の処理において、動作種類が、パワーオフダウンシフト、即ち上記(3)の鞍乗型車両1の減速時でシフトダウン(S22でNo、S32でYes)である場合、制御装置8は、動力増加開始のための処理を行う(S33~S36)。
動力増加開始のためのステップS33~S36の処理は、上述したステップS23~S26と同じである。但し、ステップS36の動力増加開始の処理が異なる。
ステップS36で、制御装置8は、動力源11から出力される動力の増大を開始する。具体的には、制御装置8は、ステップS13(図10)の前処理で開始したエンジンの点火遅角を停止する。これによって、動力源11から出力される動力が増大する。
これによって、シフトカム50の回転開始後、動力伝達が、第3速に対応する駆動ギア243及び被駆動ギア343を介して行われる状態から、当該動力伝達が途切れることなく、2速に対応する駆動ギア242及び被駆動ギア342を介して行われる状態へ切り替えられる前に、動力源11の動力の増加を開始する処理が行われる。
鞍乗型車両1の減速時でシフトアップの場合に、計算されたドグ係合タイミングより前のタイミングで動力源11から出力される動力の増大を開始することにより、ドグ係合によって生じるイナーシャ相ショックを低減するように、動力源11から出力される動力が増大する。従って、イナーシャ相ショックの影響が抑えられる。
図12は、鞍乗型車両1の加速時に多段変速機13がシフトアップする場合の挙動を示すタイムチャートである。
図12には、多段変速機13が第2速から第3速にシフトアップした場合の測定値が示されている。測定値は、動力軸回転速度、入力軸回転速度、出力軸回転速度、車輪回転速度、シフト荷重、シフトカム角度、動力源の出力トルク、点火角度、スロットル開度、車両のピッチ角速度、前後方向加速度、及び上下方向加速度である。車輪回転速度は、出力軸回転速度に換算され、示されている。シフトカム角度として、60度周期内での位相が示されている。前後方向は、鞍乗型車両1の前後方向である。動力源の出力トルクとして、目標値と、実際の出力トルク(算出値)が示されている。
図12に示す時刻t31で、シフト操作が検出されている。時刻t34で、入力軸20から出力軸30への動力伝達が、第2速に対応するギアから第3速に対応するギアに切り替わっている。詳細には、時刻t34でドグ係合が生じている。
本実施形態において、制御装置8は、ドグ係合が生じる時刻t34より前の、時刻t33で、動力源11の動力を減少する処理を開始している。動力源11の動力を減少する処理は、ドグ係合が生じる時刻t34に対し、1燃焼間隔1.5サイクル前である。動力源11の動力は、最終的に、ドグ係合が生じる時刻t34で、目標値まで低下している。
この結果、イナーシャ相ショックの指標となるピッチ角速度の最大変動幅P1が小さい。
図13は、比較例の挙動を示すタイムチャートである。
図13に示す比較例では、入力軸から出力軸への動力伝達が第2速に対応するギアから第3速に対応するギアに切り替わる時刻t94と同時に、動力源11の動力を減少する処理が開始している。
図13に示す比較例では、動力伝達が第3速に対応するギアを介して入力軸20から出力軸30へ行なわれるt94に対し、動力源11の動力の減少が遅れている。このため、イナーシャ相ショックの指標となるピッチ角速度の最大変動幅P2が大きい。
これに対し、図12の測定例に示されるように、本実施形態によれば、イナーシャ相ショックの指標となるピッチ角速度の最大変動幅P1が、図13に示される最大変動幅P2よりも小さい。つまり、イナーシャ相ショックの影響が抑えられている。
図14は、本実施形態の鞍乗型車両1に係る第2の測定例を示すタイムチャートである。
図14に示す第2の測定例において、制御装置8は、ドグ係合が生じる時刻t44より前の、時刻t43で、動力源11の動力を減少する処理を開始している。動力源11の動力を減少する処理は、ドグ係合が生じる時刻t44より、1/4サイクル前である。つまり、動力源11の動力を減少する処理は、ドグ係合が生じる時刻t44より、1燃焼間隔分前である。
動力源11の動力を減少する処理が、ドグ係合が生じる時刻t44より、1/4サイクル前の場合でも、イナーシャ相ショックの指標となるピッチ角速度の最大変動幅P3が、図13に示される比較例の最大変動幅P2よりも小さい。つまり、イナーシャ相ショックの影響が抑えられている。
1 鞍乗型車両
5 車輪
8 制御装置
11 動力源
12 クラッチ
13 多段変速機
20 入力軸
30 出力軸
35a~35c 加速用ポール
36a~36c 減速用ポール
37a~37c ドグリング
50 シフトカム
90 動力軸
139 変速段設定機構
241~246 駆動ギア
341~346 被駆動ギア
400 ラチェット機構

Claims (6)

  1. 鞍乗型車両であって、
    前記鞍乗型車両は、
    回転可能に配置され、動力が入力される入力軸と、
    前記入力軸と平行な軸線上に回転可能に配置される出力軸と、
    前記入力軸に設けられ、前記入力軸と常に共に回転するか又は前記入力軸と相対回転可能であるように構成され、それぞれが各変速段に対応する複数の駆動ギアと、
    前記出力軸に設けられ、前記出力軸と常に共に回転するか又は前記出力軸と相対回転可能であるように構成され、対応する前記駆動ギアと常時噛み合う複数の被駆動ギアと、
    いずれか一つの変速段に係る前記駆動ギア及び前記被駆動ギアを介した前記入力軸から前記出力軸への動力伝達を機械的に且つ選択的に有効に設定するように構成された変速段設定機構と、を有するシームレス変速機であって、
    前記変速段設定機構は、第n速に対応する第n速被駆動ギア又は第n+1速に対応する第n+1速被駆動ギアのいずれか一方を介して前記出力軸を通る動力の伝達を機械的に且つ選択的に有効に設定するためのラチェット機構を含み、
    前記ラチェット機構は、
    起立時に前記入力軸から前記出力軸へ前記第n速に対応する駆動ギア及び被駆動ギアを通る加速する向きの動力を伝達する一方、伏倒時に動力を伝達しないように構成される第n速加速用ポールと、
    起立時に前記入力軸から前記出力軸へ前記第n速に対応する駆動ギア及び被駆動ギアを通る減速する向きの動力を伝達する一方、伏倒時に動力を伝達しないように構成される第n速減速用ポールと、
    起立時に前記入力軸から前記出力軸へ前記第n+1速に対応する駆動ギア及び段被駆動ギアを通る加速する向きの動力を伝達する一方、伏倒時に動力を伝達しないように構成される第n+1速加速用ポールと、
    起立時に前記入力軸から前記出力軸へ前記第n+1速に対応する駆動ギア及び段被駆動ギアを通る減速する向きの動力を伝達する一方、伏倒時に動力を伝達しないように構成される第n+1速減速用ポールと、を含み、
    前記変速段設定機構は、さらに、周方向に延びるカム部が外周面に形成され、シフトアップ時の回転方向とシフトダウン時の回転方向とが反対になるようにシフトアップ時及びシフトダウン時に回転するように構成され、回転に伴って、前記第n速加速用ポールと、前記第n速減速用ポールと、前記第n+1速加速用ポールと、前記第n+1速減速用ポールと、を伏倒又は起立させるポール制御用シフトカムとを備えた、シームレス変速機と、
    前記出力軸から伝達される動力によって駆動される車輪と、
    前記シームレス変速機の前記入力軸に供給される動力を出力する動力源と、
    前記動力源の動力を制御する制御装置であって、前記鞍乗型車両の加速中に前記動力源から前記入力軸への動力伝達が切断されることなく前記シームレス変速機の第n速から第n+1速へのシフトアップ操作が行われた場合、前記ポール制御用シフトカムの回転開始後で、前記入力軸から前記出力軸への動力伝達が、第n速に対応する駆動ギア及び被駆動ギアを介して行われる状態から、当該動力伝達が途切れることなく、第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられる前に、前記動力源の動力の減少を開始する処理、及び、前記鞍乗型車両の減速中に前記動力源から前記入力軸への動力伝達が切断されることなく前記シームレス変速機の第n+1速から第n速へのシフトダウン操作が行われた場合、前記ポール制御用シフトカムの回転開始後、前記入力軸から前記出力軸への動力伝達が、第n+1速に対応する駆動ギア及び被駆動ギアを介して行われる状態から、当該動力伝達が途切れることなく、第n速に対応する駆動ギア及び被駆動ギアを介して行われる状態へ切り替えられる前に、前記動力源の動力の増加を開始する処理の少なくとも一方を実行する制御装置と、
    を備えた鞍乗型車両。
  2. 請求項1に記載の鞍乗型車両であって、
    前記動力源は、エンジンである。
  3. 請求項2に記載の鞍乗型車両であって、
    前記鞍乗型車両は、更に、前記エンジンと前記入力軸との間に設けられ、前記エンジンと前記入力軸との間での動力の伝達及びその切断を行うクラッチを備える。
  4. 請求項1から3のいずれか1に記載の鞍乗型車両であって、
    前記制御装置は、前記動力源の回転速度及び前記ポール制御用シフトカムの回転速度に応じて、前記動力源の動力の減少又は増加を開始する時点の前記ポール制御用シフトカムの角度位置を変更するように、前記動力源を制御する。

  5. 請求項1から4のいずれか1に記載の鞍乗型車両であって、
    前記制御装置は、前記ポール制御用シフトカムの回転速度が0から増加に転じた時における前記ポール制御用シフトカムの角度と前記ポール制御用シフトカムの回転速度とに基づいて定められる係合タイミングよりも前に、前記動力源の動力の減少又は増加を開始し、
    前記係合タイミングは、前記シームレス変速機の変速時において変速先の変速段に係る駆動ギア及び被駆動ギアを介した前記入力軸から前記出力軸への動力の伝達が開始されるタイミングである。
  6. 請求項1から3のいずれか1に記載の鞍乗型車両であって、
    前記変速段設定機構は、前記入力軸及び前記出力軸の少なくとも一方の軸に設けられ、前記ポール制御用シフトカムの回転に応じてその軸の軸方向に移動して、前記入力軸と相対回転可能である前記駆動ギア又は前記出力軸と相対回転可能である前記被駆動ギアと周方向にドグ係合することにより、前記入力軸から前記出力軸までの動力伝達を有効にするように構成されたドグリングを備え、
    前記ドグリングは、前記ポール制御用シフトカムの回転に応じて前記軸方向に移動している時に、前記駆動ギア若しくは前記被駆動ギアと前記軸方向に接触するドグ当たりが生じた後に前記駆動ギア若しくは前記被駆動ギアと前記周方向にドグ係合するか、又は前記ドグ当たりが生じることなく前記駆動ギア若しくは前記被駆動ギアと前記周方向にドグ係合するように構成され、
    前記制御装置は、前記動力源の動力の減少又は増加を開始することなく、前記ポール制御用シフトカムの角度が、前記ドグ当たりの状態が生じる時の前記ポール制御用シフトカムの角度を超えた場合には、前記動力源の動力の減少又は増加を開始する。
JP2017234947A 2017-12-07 2017-12-07 鞍乗型車両 Active JP7074466B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017234947A JP7074466B2 (ja) 2017-12-07 2017-12-07 鞍乗型車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017234947A JP7074466B2 (ja) 2017-12-07 2017-12-07 鞍乗型車両

Publications (2)

Publication Number Publication Date
JP2019099074A JP2019099074A (ja) 2019-06-24
JP7074466B2 true JP7074466B2 (ja) 2022-05-24

Family

ID=66975577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017234947A Active JP7074466B2 (ja) 2017-12-07 2017-12-07 鞍乗型車両

Country Status (1)

Country Link
JP (1) JP7074466B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144755A (ja) 2006-11-16 2008-06-26 Yamaha Motor Co Ltd 制御システムおよび車両
JP2009243654A (ja) 2008-03-31 2009-10-22 Honda Motor Co Ltd 多段変速機
JP2014206233A (ja) 2013-04-12 2014-10-30 ヤマハ発動機株式会社 自動変速機
JP2014238060A (ja) 2013-06-07 2014-12-18 スズキ株式会社 エンジンの制御装置
JP2015127508A (ja) 2013-12-27 2015-07-09 本田技研工業株式会社 変速制御装置
JP2016098728A (ja) 2014-11-21 2016-05-30 株式会社ケーヒン 駆動力制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019154A (ja) * 2008-07-10 2010-01-28 Yamaha Motor Co Ltd マニュアルトランスミッションを備えたパワーユニットおよびそれを備えた自動二輪車
JP6528468B2 (ja) * 2015-03-04 2019-06-12 スズキ株式会社 多段式変速装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144755A (ja) 2006-11-16 2008-06-26 Yamaha Motor Co Ltd 制御システムおよび車両
JP2009243654A (ja) 2008-03-31 2009-10-22 Honda Motor Co Ltd 多段変速機
JP2014206233A (ja) 2013-04-12 2014-10-30 ヤマハ発動機株式会社 自動変速機
JP2014238060A (ja) 2013-06-07 2014-12-18 スズキ株式会社 エンジンの制御装置
JP2015127508A (ja) 2013-12-27 2015-07-09 本田技研工業株式会社 変速制御装置
JP2016098728A (ja) 2014-11-21 2016-05-30 株式会社ケーヒン 駆動力制御装置

Also Published As

Publication number Publication date
JP2019099074A (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
US8033957B2 (en) Clutch controller, straddle-type vehicle, and method for controlling clutch
US9541193B2 (en) Shift control system
EP2080884A2 (en) Control system and saddle-straddling type vehicle including the same
JP2010019154A (ja) マニュアルトランスミッションを備えたパワーユニットおよびそれを備えた自動二輪車
JP2008106730A (ja) 鞍乗型車両
JP2014159807A (ja) 手動変速機付車両の制御装置
WO2018216758A1 (ja) ビークル
JP7025190B2 (ja) 鞍乗型車両
JP7074466B2 (ja) 鞍乗型車両
JP5985435B2 (ja) 自動変速装置
JP2019100302A (ja) 鞍乗型車両
CA2827939C (en) Twin clutch controlling apparatus
JP6170890B2 (ja) 車両の制御装置
JP2019100303A (ja) 鞍乗型車両
JP2019100304A (ja) 鞍乗型車両
JP2019099075A (ja) 鞍乗型車両
JP2010059802A (ja) 制御システムおよび車両
JP2014094596A (ja) ハイブリッド車両の変速制御装置
JP6641810B2 (ja) 車両用の変速システム
JP2010133380A (ja) 変速制御システムおよび車両
WO2020105326A1 (ja) ビークル
WO2020250487A1 (ja) ストラドルドビークル
JP7485848B2 (ja) ストラドルドビークル
JP7367544B2 (ja) 変速時のエンジン制御方法およびエンジン制御装置
JP2009047174A (ja) 自動二輪車の変速制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R150 Certificate of patent or registration of utility model

Ref document number: 7074466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150