WO2020246217A1 - 半導体発光素子及び半導体発光装置 - Google Patents

半導体発光素子及び半導体発光装置 Download PDF

Info

Publication number
WO2020246217A1
WO2020246217A1 PCT/JP2020/019362 JP2020019362W WO2020246217A1 WO 2020246217 A1 WO2020246217 A1 WO 2020246217A1 JP 2020019362 W JP2020019362 W JP 2020019362W WO 2020246217 A1 WO2020246217 A1 WO 2020246217A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
wiring electrode
semiconductor light
emitting device
layer
Prior art date
Application number
PCT/JP2020/019362
Other languages
English (en)
French (fr)
Inventor
靖智 光井
康光 久納
均典 廣木
林 茂生
粂 雅博
能米 雅信
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to EP20819545.3A priority Critical patent/EP3872872B1/en
Priority to EP22200829.4A priority patent/EP4138148A1/en
Priority to CN202211136232.0A priority patent/CN115360279A/zh
Priority to JP2020559572A priority patent/JP6829797B1/ja
Priority to CN202080003367.2A priority patent/CN112470297B/zh
Publication of WO2020246217A1 publication Critical patent/WO2020246217A1/ja
Priority to US17/133,583 priority patent/US11258001B2/en
Priority to US17/570,203 priority patent/US20220131060A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • the present disclosure relates to semiconductor light emitting devices and semiconductor light emitting devices.
  • Patent Document 1 a semiconductor light emitting device that is flip-chip mounted on a wiring pattern formed on a mounting board via bumps is known (see, for example, Patent Document 1).
  • the semiconductor light emitting device described in Patent Document 1 has a structure in which a first semiconductor layer, a light emitting layer, and a second semiconductor layer are laminated in this order on a substrate, and the first semiconductor layer is exposed from the second semiconductor layer. An exposed portion is formed. Further, in the semiconductor light emitting device described in Patent Document 1, the second electrode and the insulating film are laminated in this order on the second semiconductor layer, and the first electrode is laminated on the exposed portion and the insulating film. As described above, the semiconductor light emitting device described in Patent Document 1 has a so-called two-layer wiring structure.
  • the heat generated in the vicinity of the light emitting layer of the semiconductor light emitting device described in Patent Document 1 is dissipated to the mounting substrate via the bumps.
  • the heat generated in the vicinity of the light emitting layer is conducted to the bumps through the insulating film having low thermal conductivity, so that the heat dissipation is low. Therefore, the reliability of the semiconductor light emitting device described in Patent Document 1 can be lowered, particularly when a large current is supplied to the semiconductor light emitting device.
  • the present disclosure is to solve such a problem, and an object of the present disclosure is to provide a semiconductor light emitting device and a semiconductor light emitting device having high heat dissipation.
  • one aspect of the semiconductor light emitting device is an n-type layer, a light-emitting layer arranged above the n-type layer, and a p-type light-emitting layer arranged above the light-emitting layer.
  • a semiconductor laminate having a layer, a semiconductor laminate having one or more n-exposed portions which are recesses where the n-type layer is exposed, a p-wiring electrode layer arranged on the p-type layer, and the above. Insulation having an opening that continuously covers the inner surface of one or more n-exposed portions and a part above the p-wiring electrode layer and exposes the n-type layer on the bottom surface of the one or more n-exposed portions.
  • the n-wiring electrode layer which is in contact with the n-type layer at the opening and is arranged above the p-type layer and the p-wiring electrode layer via the insulating layer, and the outside. It has one or more first n-connecting members that are conductive members, and the one or more first n-connecting members are connected to the n-wiring electrode layer in one or more first n-terminal regions, respectively.
  • the one or more first n-terminal regions include at least a part of the region above the opening, and the one or more first n-terminal regions have a cross section parallel to the lamination direction of the semiconductor laminate.
  • the n wiring electrode layer and the p-type layer are arranged below the n terminal region of the above.
  • the heat dissipation of the semiconductor light emitting device can be improved as compared with the case where the first n connection member is arranged above the insulating layer.
  • the amount of heat generated is large near the inner side surface of the n-exposed portion of the semiconductor light emitting element, the heat generated near the inner side surface of the n-exposed portion is generated by arranging the first n-connecting member above the inner side surface. It can be dissipated through the first n-connecting member. Therefore, the heat dissipation of the semiconductor light emitting device can be further improved.
  • one or more second n-connection members which are conductive members for electrical connection with the outside are further provided, and the one or more second n-connection members are further provided.
  • Each member may be connected to the n-wiring electrode layer in one or more second n-terminal regions of the n-wiring electrode layer arranged other than the n-exposed portion.
  • the one or more first n-connecting members and the one or more second n-connecting members may be separated from each other.
  • the mounting load in the vertical direction can be dispersed and cracking of the insulating layer can be suppressed.
  • the particle size of the first or more first n-connecting members may be larger than the particle size of the n-wiring electrode layer.
  • the hardness of one or more first n-connecting members can be reduced from the hardness of the n-wiring electrode layer. Therefore, when the semiconductor light emitting element is mounted on the mounting substrate, the force applied to the semiconductor light emitting element can be absorbed by one or more first n-connecting members. Therefore, in the semiconductor light emitting device according to the present disclosure, the force applied to the insulating layer near the inner side surface of the n exposed portion at the time of mounting is higher than when the particle size of one or more first n connecting members is the same as that of the n wiring electrode layer. Therefore, cracking of the insulating layer can be reduced.
  • one aspect of the semiconductor light emitting element according to the present disclosure is a p-connecting member arranged in a region exposed from the n-wiring electrode layer and the insulating layer among the p-wiring electrode layers, and the first or more first.
  • a seed metal layer which is arranged between the n-connection member and the n-wiring electrode layer and between the p-connection member and the p-wiring electrode layer and whose surface on the side far from the semiconductor laminate is Au.
  • the first n-connecting member having one or more and the p-connecting member may be made of Au.
  • one aspect of the semiconductor light emitting device is a p-connection member arranged in a region exposed from the n-wiring electrode layer and the insulating layer among the p-wiring electrode layers, and the first or more of the above-mentioned first. There may be a hollow portion formed between the n connection member of the above and the n wiring electrode layer.
  • one state of the semiconductor light emitting device includes the p-connecting member arranged in the region exposed from the n-wiring electrode layer and the insulating layer in the p-wiring electrode layer, and has one or more of the above.
  • Each of the first n-connection members includes a set of element-side n-connection members and a mounting board-side n-connection member
  • the p-connection member includes a set of element-side p-connection members and a mounting board-side p-connection member.
  • the element-side n-connecting member is arranged at a position closer to the semiconductor laminate than the mounting board-side n-connecting member, and the element-side p-connecting member is the semiconductor laminate from the mounting substrate-side p-connecting member. It may be placed close to the body.
  • one aspect of the semiconductor light emitting device includes the semiconductor light emitting element and a mounting substrate having a first wiring electrode and a second wiring electrode.
  • the above first n-connection member is joined to the first wiring electrode of the mounting substrate, and the p-wiring electrode layer is a conductive member in a region exposed from the n-wiring electrode layer and the insulating layer. It is joined to the second wiring electrode of the mounting substrate via a certain p-connecting member.
  • the first n-connecting member is arranged above the opening in which the insulating layer having low thermal conductivity is not formed, and the first n-connecting member is attached to the mounting substrate via the first wiring electrode.
  • a heat dissipation path from the n-type layer to the mounting substrate can be formed without going through the insulating layer. Therefore, the heat dissipation of the semiconductor light emitting device can be improved as compared with the case where the first n-connecting member is arranged above the insulating layer.
  • the heat generated near the inner side surface of the n-exposed portion is generated by arranging the first n-connecting member above the inner side surface. It can be dissipated to the mounting substrate via the first n-connecting member. Therefore, the heat dissipation of the semiconductor light emitting device can be further improved.
  • the end portion of the one or more first n-connecting members at the joint surface with the first wiring electrode is the first wiring electrode of the mounting substrate. It may be arranged apart from the end portion inside the first wiring electrode.
  • the first n-connecting member is not arranged at the end of the first wiring electrode, so that the first n-connecting member is short-circuited with the adjacent second wiring electrode and p-connecting member. Can be suppressed.
  • the particle size of the first or more first n-connecting members on the opening is on the p-type layer. It may be larger than the particle size.
  • Such a particle size distribution of the first n-connecting member is formed, for example, when the semiconductor light emitting element is mounted on the mounting substrate.
  • FCB mounting is used.
  • the FCB mounting is composed of a load step and a step of applying ultrasonic waves after the load step. Since the opening is lower (that is, recessed) than the surrounding p-type layer when compressed in the load step, compression of the first n-connecting member on the peripheral p-type layer rather than on the opening. The rate is high. Along with this, the first n-connecting member on the surrounding p-shaped layer becomes harder than on the opening.
  • the cured peripheral first n-connection member serves as a barrier, and the first n-connection portion is laminated. It becomes difficult to spread in the direction parallel to the surface. Therefore, it is possible to prevent the first n-connecting member from being short-circuited with the adjacent p-connecting member.
  • the one or more first n-connecting members approach the n-wiring electrode layer on the n-wiring electrode layer side.
  • the side wall may extend outward.
  • the area of the first n-terminal region can be expanded as compared with the case where the side wall does not expand. Therefore, the first n-connecting member can dissipate heat in a wider area. Therefore, the heat dissipation of the semiconductor light emitting device can be improved.
  • one aspect of the semiconductor light emitting device is an n-type layer, a light emitting layer arranged above the n-type layer, and a light emitting layer arranged above the light emitting layer.
  • An opening that continuously covers the inner surface of the one or more n-exposed portions and a part above the p-wiring electrode layer and exposes the n-type layer on the bottom surface of the one or more n-exposed portions.
  • the electrode layer has an insulating layer and an n-wiring electrode layer that is in contact with the n-type layer at the opening and is arranged above the p-type layer and the p-wiring electrode layer via the insulating layer.
  • the electrode layer is set with one or more first n-terminal regions, which is a region in which a conductive member for electrical connection with the outside is arranged, and the one or more first n-terminal regions are set in a plan view. In a cross section parallel to the stacking direction of the semiconductor laminate, including at least a part of the region above the opening, below the one or more first n terminal regions, the n wiring electrode layer and the p.
  • the mold layer is placed.
  • the conductive member is arranged in the first n-terminal region.
  • a heat dissipation path that does not pass through the insulating layer can be formed. Therefore, the heat dissipation of the semiconductor light emitting device can be improved as compared with the case where the conductive member is arranged above the insulating layer.
  • the amount of heat generated is large near the inner side surface of the n-exposed portion of the semiconductor light emitting element, when the conductive member is arranged in the first n-terminal region by providing the first n-terminal region above the inner side surface.
  • the heat generated in the vicinity of the inner surface of the n-exposed portion can be dissipated through the conductive member. Therefore, the heat dissipation of the semiconductor light emitting device can be further improved.
  • the total area of the one or more first n terminal regions is arranged other than the one or more n exposed portions. It may be larger than the total area of the n wiring electrode layer.
  • the area of each of the one or more first n terminal regions is closer to the end of the semiconductor light emitting device. May be wide.
  • the heat dissipation path can be increased by expanding the area of the first n terminal region near the end portion, so that the heat dissipation property of the peripheral portion can be improved. ..
  • the area of the opening may be wider near the end of the semiconductor light emitting device in the plan view of the n wiring electrode layer.
  • heat dissipation may deteriorate in the peripheral portion of the semiconductor light emitting element.
  • the semiconductor light emitting device according to the present disclosure by expanding the area of the opening near the end portion, heat generation can be dispersed and the heat dissipation path can be increased, so that the heat dissipation property of the peripheral portion can be improved. it can.
  • the center of the one or more first n terminal regions may be within the region of the opening.
  • the center of the first n-terminal region in the region of the opening in this way, the central portion of the conductive member such as the first n-connecting member arranged in the first n-terminal region. Is placed in the opening. Therefore, most of the force applied to the conductive member at the time of mounting is applied to the opening where the insulating layer is not arranged. Therefore, since the force applied to the insulating layer at the time of mounting can be reduced, cracking of the insulating layer can be suppressed.
  • the center of the one or more first n terminal regions may coincide with the center of the opening in the plan view of the n wiring electrode layer. ..
  • the central portion of the conductive member such as the first n-connecting member arranged in the first n-terminal region can be formed. It is placed in the center of the opening. Therefore, most of the force applied to the conductive member at the time of mounting is applied to the opening where the insulating layer is not arranged. Therefore, since the force applied to the insulating layer at the time of mounting can be reduced, cracking of the insulating layer can be suppressed.
  • a region in which a conductive member for electrical connection with the outside is arranged on the n wiring electrode layer arranged other than the one or more n exposed portions.
  • a second n-terminal region of 1 or more may be set.
  • the total area of the one or more first n terminal regions and the one or more second n terminal regions in the plan view of the n wiring electrode layer is , It may be larger than the total area of the n wiring electrode layers arranged other than the one or more n exposed portions.
  • the heat dissipation path Can be increased, so that the heat dissipation of the semiconductor light emitting element can be improved.
  • FIG. 1 is a schematic plan view showing the overall configuration of the semiconductor light emitting device according to the first embodiment.
  • FIG. 2A is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device according to the first embodiment.
  • FIG. 2B is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device according to the modified example of the first embodiment.
  • FIG. 3 is a schematic plan view showing the configuration of the semiconductor light emitting device according to the first embodiment.
  • FIG. 4 is a plan view showing an n-wiring electrode layer arranged other than the n-exposed portion according to the first embodiment.
  • FIG. 5 is a plan view showing a first n-terminal region according to the first embodiment.
  • FIG. 6A is a schematic cross-sectional view showing the first step of the method for manufacturing the semiconductor light emitting device according to the first embodiment.
  • FIG. 6B is a schematic cross-sectional view showing a second step of the method for manufacturing the semiconductor light emitting device according to the first embodiment.
  • FIG. 6C is a schematic cross-sectional view showing a third step of the method for manufacturing the semiconductor light emitting device according to the first embodiment.
  • FIG. 6D is a schematic cross-sectional view showing a fourth step of the method for manufacturing the semiconductor light emitting device according to the first embodiment.
  • FIG. 6E is a schematic cross-sectional view showing a fifth step of the method for manufacturing the semiconductor light emitting device according to the first embodiment.
  • FIG. 6F is a schematic cross-sectional view showing a sixth step of the method for manufacturing the semiconductor light emitting device according to the first embodiment.
  • FIG. 6G is a schematic cross-sectional view showing a seventh step of the method for manufacturing the semiconductor light emitting device according to the first embodiment.
  • FIG. 6H is a schematic cross-sectional view showing the eighth step of the method for manufacturing the semiconductor light emitting device according to the first embodiment.
  • FIG. 7 is a graph showing the relationship between the average particle size of Au and the hardness.
  • FIG. 8 is a diagram for explaining a method for measuring the particle size.
  • FIG. 9 is a graph showing the relationship between the particle size and the thickness when the first n-connecting member according to the first embodiment is crushed.
  • FIG. 9 is a graph showing the relationship between the particle size and the thickness when the first n-connecting member according to the first embodiment is crushed.
  • FIG. 10 is a schematic cross-sectional view showing the structure of the first n-connecting member of the semiconductor light emitting device according to the first embodiment.
  • FIG. 11A is a plan view showing a first positional relationship between the first n-terminal region and the opening according to the first embodiment.
  • FIG. 11B is a plan view showing a second positional relationship between the first n-terminal region and the opening according to the first embodiment.
  • FIG. 12 is a plan view showing the configuration of the semiconductor light emitting device according to the first modification of the first embodiment.
  • FIG. 13 is a cross-sectional view showing the configuration of the semiconductor light emitting device according to the first modification of the first embodiment.
  • FIG. 14 is a plan view showing the configuration of the semiconductor light emitting device according to the second modification of the first embodiment.
  • FIG. 15 is a cross-sectional view showing the configuration of the semiconductor light emitting device according to the second modification of the first embodiment.
  • FIG. 16 is a schematic plan view showing the overall configuration of the semiconductor light emitting device according to the second embodiment.
  • FIG. 17 is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device according to the second embodiment.
  • FIG. 18 is a plan view showing an n wiring electrode layer arranged other than the n exposed portion according to the second embodiment.
  • FIG. 19 is a plan view showing a first n-terminal region and a second n-terminal region according to the second embodiment.
  • FIG. 20A is a schematic plan view showing the configuration of the semiconductor light emitting device according to the second embodiment used in the simulation.
  • FIG. 20A is a schematic plan view showing the configuration of the semiconductor light emitting device according to the second embodiment used in the simulation.
  • FIG. 20B is a schematic plan view showing the configuration of the semiconductor light emitting device according to the comparative example used in the simulation.
  • FIG. 21 is a diagram showing simulation results of the heat generation distribution of each semiconductor light emitting device and the temperature distribution of the temperature Tj of the light emitting layer according to the second embodiment and the comparative example.
  • FIG. 22 is a graph showing a simulation result of the relationship between the maximum value of the temperature Tj of the light emitting layer of each semiconductor light emitting device and the amount of current according to the second embodiment and the comparative example.
  • FIG. 23A is a schematic cross-sectional view showing a first step of the method for manufacturing a semiconductor light emitting device according to the second embodiment.
  • FIG. 23B is a schematic cross-sectional view showing a second step of the method for manufacturing a semiconductor light emitting device according to the second embodiment.
  • FIG. 23C is a schematic cross-sectional view showing a third step of the method for manufacturing a semiconductor light emitting device according to the second embodiment.
  • FIG. 24 is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device according to the third embodiment.
  • FIG. 25A is a schematic cross-sectional view showing the first step of the method for manufacturing the semiconductor light emitting device according to the third embodiment.
  • FIG. 25B is a schematic cross-sectional view showing a second step of the method for manufacturing the semiconductor light emitting device according to the third embodiment.
  • FIG. 25C is a schematic cross-sectional view showing a third step of the method for manufacturing the semiconductor light emitting device according to the third embodiment.
  • FIG. 26A is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device according to the modified example of the third embodiment.
  • FIG. 26B is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device according to another modification of the third embodiment.
  • FIG. 27 is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device according to the fourth embodiment.
  • FIG. 28A is a schematic cross-sectional view showing the first step of the method for manufacturing the semiconductor light emitting device according to the fourth embodiment.
  • FIG. 28B is a schematic cross-sectional view showing a second step of the method for manufacturing the semiconductor light emitting device according to the fourth embodiment.
  • FIG. 28C is a schematic cross-sectional view showing a third step of the method for manufacturing the semiconductor light emitting device according to the fourth embodiment.
  • each figure is a schematic view and is not necessarily exactly illustrated. Therefore, the scales and the like do not always match in each figure.
  • substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition, but are based on the stacking order in the laminated structure. It is used as a term defined by the relative positional relationship with. Also, the terms “upper” and “lower” are used not only when the two components are spaced apart from each other and another component exists between the two components, but also when the two components It also applies when they are placed in contact with each other.
  • FIGS. 1 to 3 are a schematic plan view and a cross-sectional view showing the overall configuration of the semiconductor light emitting device 10 according to the present embodiment, respectively.
  • FIG. 1 shows a plan view of the semiconductor light emitting element 20 and the mounting substrate 11 in a plan view.
  • FIG. 2A shows a part of the cross section of the semiconductor light emitting device 10 on the line II-II of FIG. In FIGS.
  • the direction perpendicular to the main surface of the mounting substrate 11 is the Z-axis direction
  • the two directions perpendicular to the Z-axis direction and perpendicular to each other are the X-axis direction and It is in the Y-axis direction.
  • the semiconductor light emitting device 10 is a light emitting device including the semiconductor light emitting element 20, and has a mounting substrate 11 and a semiconductor light emitting element 20 as shown in FIGS. 1 and 2A.
  • the mounting substrate 11 is a substrate on which the semiconductor light emitting element 20 is mounted, and has a substrate 12, a first wiring electrode 15, and a second wiring electrode 16 as shown in FIG. 2A.
  • the substrate 12 is a substrate for a mounting substrate, for example, a ceramic substrate made of an AlN sintered body.
  • the first wiring electrode 15 and the second wiring electrode 16 are conductive layers formed on the substrate 12, and are formed of, for example, Au.
  • the first wiring electrode 15 and the second wiring electrode 16 are insulated from each other.
  • the semiconductor light emitting element 20 is a light emitting element using a semiconductor layer, and has a growth substrate 22, a semiconductor laminate 30, a p-wiring electrode layer 42, an insulating layer 44, and an n-wiring electrode layer 46.
  • the semiconductor light emitting device 20 further includes a plurality of seed metal layers 56, one or more first n-connecting members 51, and a p-connecting member 60.
  • the growth substrate 22 is a substrate on which the semiconductor laminate 30 is laminated.
  • the growth substrate 22 uses a sapphire substrate or a GaN substrate as the translucent substrate.
  • the semiconductor laminate 30 has an n-type layer 32, a light emitting layer 34, and a p-type layer 36.
  • the semiconductor laminate 30 has one or more n-exposed portions 30e, which are recesses where the n-type layer 32 is exposed.
  • the n-exposed portion 30e has a bottom surface 30b which is the bottom portion of the n-exposed portion 30e and an inner side surface 30s which is a surface extending from the bottom surface 30b in the stacking direction.
  • the stacking direction is a direction perpendicular to the main surface of the growth substrate 22 (that is, the Z-axis direction in each figure).
  • the n-exposed portion 30e is a circular recess having a diameter of about 70 ⁇ m.
  • the shape of the n-exposed portion 30e is not limited to a circular shape, and may be a rectangular shape or the like. Further, the number of n-exposed portions 30e is not particularly limited as long as it is 1 or more. For example, the number of n-exposed portions 30e may be plural.
  • the n-type layer 32 is a layer including an n-type semiconductor layer arranged above the growth substrate 22.
  • the n-type layer 32 uses an n-type GaN-based layer as the n-type semiconductor layer.
  • the n-type layer 32 may include a plurality of layers such as an n-type clad layer.
  • the light emitting layer 34 is an active layer arranged above the n-type layer 32.
  • an InGaN-based layer is used as the light emitting layer 34.
  • the p-type layer 36 is a layer including a p-type semiconductor layer arranged above the light emitting layer 34.
  • the p-type layer 36 uses a p-type GaN-based layer as the p-type semiconductor layer.
  • the p-type layer 36 may include a plurality of layers such as a p-type clad layer.
  • the p-wiring electrode layer 42 is a conductive layer arranged on the p-type layer 36.
  • the p-wiring electrode layer 42 includes an Ag layer having a thickness of 0.2 ⁇ m, a Ti layer having a thickness of 0.7 ⁇ m, and Au having a thickness of 0.3 ⁇ m, which are sequentially laminated on the p-type layer 36. It is a laminated body having a layer.
  • the p-wiring electrode layer 42 is joined to the second wiring electrode 16 of the mounting substrate 11 via the p-connection member 60, which is a conductive member, in the region exposed from the n-wiring electrode layer 46 and the insulating layer 44.
  • the insulating layer 44 continuously covers the inner side surface 30s of one or more n-exposed portions 30e and a part above the p-wiring electrode layer 42, and forms an n-type layer 32 on the bottom surface of one or more n-exposed portions 30e.
  • the insulating layer 44 is a layer made of SiO 2 having a thickness of 1.0 ⁇ m.
  • the opening 44a is a circular opening having a diameter of about 60 ⁇ m.
  • the shape of the opening 44a is not limited to a circular shape, and may be a rectangular shape or the like.
  • the n-wiring electrode layer 46 is a conductive layer that is in contact with the n-type layer 32 at the opening 44a and is arranged above the p-type layer 36 and the p-wiring electrode layer 42 via the insulating layer 44.
  • the n-wiring electrode layer 46 includes an Al layer having a thickness of 0.3 ⁇ m, a Ti layer having a thickness of 0.3 ⁇ m, and Au having a thickness of 1.0 ⁇ m, which are laminated in order from the semiconductor laminate 30 side. It is a laminated body having a layer.
  • the seed metal layer 56 is a conductive layer that serves as a base for the first n-connecting member 51 and the p-connecting member 60, and is between the first n-connecting member 51 and the n-wiring electrode layer 46 and the p-connecting member 60. Is arranged between the p-wiring electrode layer 42 and the p-wiring electrode layer 42.
  • the surface of the seed metal layer 56 on the side far from the semiconductor laminate 30 is made of Au. More specifically, the seed metal layer 56 is a laminate in which a Ti layer having a thickness of 0.1 ⁇ m and an Au layer having a thickness of 0.3 ⁇ m are laminated in this order from the semiconductor laminate 30 side.
  • Each of the one or more first n-connecting members 51 is a conductive member for electrical connection with the outside.
  • one or more first n-connecting members 51 are joined to the first wiring electrode 15 of the mounting substrate 11.
  • the one or more first n-connecting members 51 are connected to the n-wiring electrode layer 46 in each of the one or more first n-terminal regions 51r.
  • the n-wiring electrode layer 46 is set with one or more first n-terminal regions 51r, which are regions in which a conductive member for electrical connection with the outside is arranged.
  • the first n-connecting member 51 of 1 or more may be a metal having a thermal conductivity of 100 W / m ⁇ K or more.
  • a bump made of Au having a thermal conductivity of 300 W / m ⁇ K or more is used as one or more first n-connecting members 51.
  • the first n-connecting member having a thermal conductivity of 100 W / m ⁇ K or more an alloy composed of any one of Au, Ag, Al, Cu, or a combination thereof may be used.
  • the number of the first n connection member 51 and the first n terminal region 51r is not particularly limited as long as it is 1 or more.
  • the number of the first n-connecting member 51 and the first n-terminal region 51r may be plural.
  • Each of the one or more first n terminal regions 51r includes at least a part of the region above the opening 44a. Further, as shown in FIG. 2A, in a cross section parallel to the stacking direction of the semiconductor laminate 30, the n wiring electrode layer 46 and the p-type layer 36 are arranged below one or more first n terminal regions 51r. To.
  • the p-connecting member 60 is a conductive member for electrical connection with the outside.
  • the p-connecting member 60 is joined to the second wiring electrode 16 of the mounting substrate 11.
  • the p connection member 60 is connected to the p wiring electrode layer 42 in the p terminal region 60r.
  • the p-wiring electrode layer 42 is set with a p-terminal region 60r, which is a region in which a conductive member for electrical connection with the outside is arranged.
  • the p-connecting member 60 is a bump made of Au.
  • the first n connection member 51 which is a conductive member for electrical connection with the outside, is arranged in the region where the first n connection member 51, which is a conductive member for electrical connection with the outside.
  • a certain one or more first n terminal regions 51r are set.
  • Each of the one or more first n-terminal regions 51r includes at least a portion of the region above the opening 44a.
  • FIG. 2A there is a case where the first n terminal region 51r exists in the entire region above the opening 44a, and a case where the first n terminal region 51r exists only in a part of the region above the opening 44a. Including some cases.
  • FIG. 2B is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device 10b according to the modified example of the present embodiment.
  • the semiconductor light emitting device 10b is different from the semiconductor light emitting device 10 in the configuration of the first n terminal region 51r and the first n connecting member 51, and is consistent in other configurations.
  • the semiconductor light emitting device 10b there is a first n terminal region 51r only in a part of the region above the opening 44a.
  • the first n-connecting member 51 is arranged only in a part of the area above the opening 44a.
  • the first n-terminal region 51r is conductive.
  • a heat dissipation path can be formed without passing through the insulating layer 44. Therefore, the heat dissipation of the semiconductor light emitting element 20 can be improved as compared with the case where the conductive member is arranged above the insulating layer 44.
  • the inner surface of the n exposed portion 30e (in FIG. 2B, the right side of the n exposed portion 30e). Since the heat generated in the vicinity of the surface) can be dissipated through the first n-connecting member 51, the heat dissipation of the semiconductor light emitting device 20 can be improved.
  • the n wiring electrode layer 46 and the p-type layer 36 are arranged below one or more first n terminal regions 51r in a cross section parallel to the stacking direction of the semiconductor laminate 30.
  • the amount of heat generated is large in the vicinity of the inner side surface 30s of the n-exposed portion 30e of the semiconductor light emitting element 20, but by providing the first n-terminal region 51r above the inner side surface 30s, the first n-terminal region is conductive.
  • the first n-connecting member 51 is arranged as the sex member, the heat generated in the vicinity of the inner side surface 30s of the n-exposed portion 30e can be dissipated through the first n-connecting member 51. Therefore, the heat dissipation of the semiconductor light emitting device 20 can be further improved.
  • FIG. 3 is a schematic plan view showing the configuration of the semiconductor light emitting device 20 according to the present embodiment.
  • FIG. 3 shows a plan view of the n wiring electrode layer 46 of the semiconductor light emitting device 20 in a plan view.
  • FIG. 4 is a plan view showing an n-wiring electrode layer 46 arranged other than the n-exposed portion 30e according to the present embodiment.
  • FIG. 5 is a plan view showing a first n-terminal region 51r according to the present embodiment.
  • the total area of one or more first n terminal regions 51r shown in FIG. 5 is arranged other than the n exposed portion 30e shown in FIG. n It is larger than the total area of the wiring electrode layer 46.
  • FIGS. 6A to 6H are schematic cross-sectional views showing each step of the manufacturing method of the semiconductor light emitting device 10 according to the present embodiment.
  • the growth substrate 22 is prepared, and the semiconductor laminate 30 is laminated on one main surface of the growth substrate 22.
  • an n-type layer 32 including an n-type GaN-based layer and InGaN are used on one main surface of a growth substrate 22 made of a sapphire substrate or a GaN substrate by an epitaxial growth technique based on a MOCVD (metal organic chemical vapor departure) method.
  • MOCVD metal organic chemical vapor departure
  • n-exposed portions 30e which are recesses where the n-type layer 32 is exposed are formed.
  • dry etching is used to remove a part of the p-type layer 36, the light emitting layer 34, and the n-type layer 32.
  • a p-wiring electrode layer 42 having a predetermined shape is formed on the p-type layer 36.
  • a resist pattern having an opening is formed in the region where the p-type layer 36 is arranged by the photolithography technique.
  • an Ag film having a thickness of 0.2 ⁇ m is formed by a sputtering method, and the resist and Ag on the resist are removed by a lift-off method to form an Ag layer as a reflective metal patterned in a predetermined shape.
  • a laminated film composed of a Ti film having a thickness of 0.7 ⁇ m and an Au film having a thickness of 0.3 ⁇ m covering the Ag layer is formed by a sputtering method.
  • a resist pattern covering the p-type layer 36 is formed by photolithography technology, an excess laminated film formed in a region other than the p-type layer 36 is removed by wet etching, and the resist is removed by organic cleaning. .. In this way, the p-wiring electrode layer 42 composed of the Ag layer, the Ti layer and the Au layer is formed.
  • the insulating layer 44 is formed.
  • an oxide film made of SiO 2 having a thickness of 1.0 ⁇ m is formed on the entire surface of the semiconductor laminate 30 and the p-wiring electrode layer 42.
  • a resist pattern in which a part of the n-type layer 32 and the p-type layer 36 is opened is formed, and the oxide film in the portion where the resist pattern is not formed is removed by wet etching, and then the resist is removed.
  • the insulating layer 44 is formed with the opening 44a where the n-type layer 32 is exposed and the opening where the p wiring electrode layer 42 is exposed.
  • an n wiring electrode layer 46 having a predetermined shape is formed on the insulating layer 44 and the opening 44a.
  • a resist pattern covering the exposed region of the p-wiring electrode layer 42 is formed, and an EB (electron beam) vapor deposition method is used to form an Al film having a thickness of 0.3 ⁇ m and a Ti having a thickness of 0.3 ⁇ m.
  • an EB (electron beam) vapor deposition method is used to form an Al film having a thickness of 0.3 ⁇ m and a Ti having a thickness of 0.3 ⁇ m.
  • the resist and the laminated film on the resist are removed by a lift-off method, whereby the n wiring electrode layer 46 composed of an Al layer, a Ti layer and an Au layer. To form.
  • first n terminal regions which are regions in which one or more first n connection members 51, which are conductive members for electrical connection with the outside, are arranged. 51r is set. Further, in the region where the p-wiring electrode layer 42 is exposed, a p-terminal region 60r, which is a region in which the p-connection member 60, which is a conductive member for electrical connection with the outside, is arranged, is set.
  • a seed metal film 56M covering one or more first n-terminal regions 51r and p-terminal regions 60r is formed.
  • a Ti film and an Au film are sequentially formed on the entire upper surface of the semiconductor laminate 30 including one or more first n-terminal regions 51r and p-terminal regions 60r by using an EB method or a sputtering method. As a result, the seed metal film 56M is formed.
  • one or more first n connection members 51 are formed in each of one or more first n terminal regions 51r. Further, the p connection member 60 is formed in the p terminal region 60r.
  • a resist pattern in which one or more first n-terminal regions 51r and p-terminal regions 60r are opened is formed by using a photolithography technique, and Au plating is performed on the openings of the resist pattern by a DC electrolytic plating method. After forming, the resist is removed.
  • the seed metal layer 56 is formed by removing the region where the first n-connecting member 51 and the p-connecting member 60 of the seed metal film 56M are not arranged.
  • the seed metal film 56M is removed by selectively etching the Au film and the Ti film forming the seed metal film 56M, respectively. In this way, the seed metal layer 56 is formed.
  • the mounting board 11 is prepared, and the semiconductor light emitting element 20 is flip-chip bonded to the mounting board 11.
  • the mounting substrate 11 is prepared by forming the first wiring electrode 15 and the second wiring electrode 16 made of an Au layer on the substrate 12.
  • one or more first n-connecting members 51 and p-connecting members 60 which are Au bumps of the semiconductor light emitting element 20, are joined to the first wiring electrode 15 and the second wiring electrode 16 of the mounting substrate 11, respectively. ..
  • the semiconductor light emitting element 20 is pressed against the mounting substrate 11 to apply a load to heat the semiconductor light emitting element to about 150 ° C., and ultrasonic vibration is applied.
  • one or more first n-connecting members 51 and p-connecting members 60, and the first wiring electrode 15 and the second wiring electrode 16 are solid-phase bonded and integrated.
  • the semiconductor light emitting device 10 according to the present embodiment is manufactured.
  • FIG. 7 is a graph showing the relationship between the average particle size of Au and the hardness.
  • FIG. 8 is a diagram for explaining a method for measuring the particle size.
  • FIG. 9 is a graph showing the relationship between the particle size and the thickness when the first n-connecting member 51 according to the present embodiment is crushed.
  • the hardness of the first n-connecting member 51 decreases as the average particle size increases. Generally, there is a negative correlation between metal particle size and hardness.
  • the hardness of the metal is determined by the amount of plastic deformation of the metal when a load is applied.
  • the amount of plastic deformation is affected by obstacles, the length of the slip surface, and the direction of the metal crystal with respect to the movement, proliferation, and movement of dislocations.
  • a metal crystal with a large particle size has a long slip line, and when stress is applied, the stress concentrates on the crystal boundary, and plastic deformation is likely to occur in the vicinity. That is, a metal crystal having a large particle size is soft.
  • the method for measuring the particle size of the first n-connecting member 51 used in the present embodiment is shown below.
  • the intercept method is applied to the observation region observed by the scanning ion microscope image (SIM image) by the scanning electron microscope to apply the particle size.
  • SIM image scanning ion microscope image
  • the thickness is 5 ⁇ m when the load is 10 N.
  • the particle size is about 1.6 ⁇ m.
  • the thickness is about 3.8 ⁇ m and the particle size is about 0.9 ⁇ m. In this way, the particle size of the first n-connecting member 51 decreases as the load increases. According to the graph shown in FIG. 7, when the particle size of the first n-connecting member 51 is reduced, the hardness increases.
  • the height of one or more first n-connecting members 51 on the opening 44a is the p-type layer before mounting. It is lower than the height above 36. That is, one or more first n-connecting members 51 are recessed on the opening 44a. Therefore, when the semiconductor light emitting element 20 is mounted on the mounting substrate 11, the particle size in the region on the p-type layer 36 of one or more first n-connecting members 51 is the same as that of the one or more first n-connecting members 51.
  • the particle size of one or more first n-connecting members 51 on the opening 44a in the cross section parallel to the stacking direction is on the p-type layer 36. Larger than the particle size.
  • the particle size of one or more first n-connecting members 51 is the n wiring electrode layer 46 composed of the Au layer formed by the EB vapor deposition method. Is larger than the particle size of.
  • the particle size of one or more first n-connection members 51 can be made larger than that of the n-wiring electrode layer 46. It can be further reduced. Therefore, when the semiconductor light emitting element 20 is mounted on the mounting substrate 11, the force applied to the semiconductor light emitting element 20 can be absorbed by one or more first n-connecting members 51. Therefore, in the semiconductor light emitting device 20 according to the present embodiment, the particle size of one or more first n connecting members 51 is the same as that of the n wiring electrode layer 46, and the vicinity of the inner side surface of the n exposed portion 30e at the time of mounting. Since the force applied to the insulating layer 44 can be reduced, cracking of the insulating layer 44 can be suppressed.
  • FIG. 10 is a schematic cross-sectional view showing the structure of the first n-connecting member 51 of the semiconductor light emitting device 10 according to the present embodiment.
  • the end portion 51e of the first n-connecting member 51 at the joint surface with the first wiring electrode 15 is relative to the end portion 15e of the first wiring electrode 15 of the mounting substrate 11. It is arranged at a distance inside the first wiring electrode 15. In other words, the end portion 51e of the first n-connecting member 51 at the joint surface with the first wiring electrode 15 does not extend to the end portion 15e of the first wiring electrode 15.
  • the first n-connecting member 51 is not arranged at the end portion 15e of the first wiring electrode 15, the first n-connecting member 51 is adjacent to the second wiring electrode 16 and the p-connecting member. It is possible to suppress a short circuit with 60.
  • Such a structure of the first n-connecting member 51 can be realized by crushing the first n-connecting member 51 and joining it to the first wiring electrode 15 as described above.
  • the first n-connecting member 51 is melted to be joined to the first wiring electrode 15, the melted first n-connecting member 51 is joined.
  • the connecting member 51 extends to the end portion 15e of the first wiring electrode 15. Therefore, the first n-connecting member 51 is likely to be short-circuited with the second wiring electrode 16 and the p-connecting member 60.
  • one or more first n-connecting members 51 have a side wall 51w on the n-wiring electrode layer 46 side as the side wall 51w approaches the n-wiring electrode layer 46. It may spread to. That is, one or more first n-connecting members 51 may have fillets formed on the n-wiring electrode layer 46 side.
  • the side wall 51w of the first n-connecting member 51 By expanding the side wall 51w of the first n-connecting member 51 in this way, the area of the first n-terminal region 51r can be expanded as compared with the case where the side wall 51w does not expand. Therefore, the first n-connecting member 51 can dissipate heat in a wider area. Therefore, the heat dissipation of the semiconductor light emitting device 10 can be improved.
  • the shape of the side wall 51w of the first n-connecting member 51 as shown in FIG. 10 can be formed by, for example, the following manufacturing method.
  • the semiconductor light emitting device is heat-treated at 150 ° C. for 1 hour in an atmospheric atmosphere.
  • the first n-connecting member 51 and the n-wiring electrode layer 46 are recrystallized, respectively, and the particle size is increased.
  • the region having a larger particle size on the n-wiring electrode layer 46 side of the first n-connecting member 51 is mounted. Since the hardness is smaller than the region on the substrate 11 side, it is crushed more.
  • the side wall 51w in the region on the n wiring electrode layer 46 side of the first n connection member 51 spreads more outward than the side wall 51w in the region on the mounting substrate 11 side. In this way, the shape of the side wall 51w of the first n-connecting member 51 as shown in FIG. 10 can be realized.
  • FIGS. 11A and 11B are used for one or more first n terminal regions 51r which are regions in which one or more first n connection members 51 are arranged in the n wiring electrode layer 46 according to the present embodiment. Will be explained.
  • 11A and 11B are plan views showing the positional relationship between the first n-terminal region 51r and the opening 44a according to the present embodiment. In FIGS. 11A and 11B, a plan view of the first n terminal region 51r and the opening 44a in the plan view of the n wiring electrode layer 46 is shown.
  • the center 51rc of the first n terminal region 51r is within the region of the opening 44a.
  • the center 51rc of the first n terminal region 51r is the center of the circle when the shape of the first n-terminal region 51r is circular.
  • the center of gravity of the first n-terminal region 51r may be defined as the center 51rc of the first n-terminal region 51r.
  • the center 51rc of the first n terminal region 51r may coincide with the center 44ac of the opening 44a.
  • the conductivity of the first n-connecting member 51 or the like arranged in the first n-terminal region 51r is conductive.
  • the central portion of the sex member is located at the center 44ac of the opening 44a. Therefore, most of the force applied to the conductive member at the time of mounting is applied to the opening 44a in which the insulating layer 44 is not arranged. Therefore, since the force applied to the insulating layer 44 at the time of mounting can be reduced, cracking of the insulating layer 44 can be suppressed.
  • the center 44ac of the opening 44a similarly to the center 51rc of the first n terminal region 51r, when the shape of the opening 44a is not circular, the center of gravity of the opening 44a is defined as the center 44ac. You may. Further, the state defined by the description that the center 51rc coincides with the center 44ac includes not only a state in which the center 51rc completely coincides with the center 44ac but also a state in which the center 51rc substantially coincides. For example, the state defined by the description that the center 51rc coincides with the center 44ac includes a state in which the distance between the center 51rc and the center 44ac is about 5% or less of the maximum dimension of the opening 44a.
  • FIGS. 12 and 13 are a plan view and a cross-sectional view showing the configuration of the semiconductor light emitting device 20a according to the present modification.
  • FIG. 12 shows a plan view of the n wiring electrode layer 46 of the semiconductor light emitting device 20a in a plan view.
  • FIG. 13 shows a part of the cross section taken along the line XIII-XIII of FIG.
  • the semiconductor light emitting device 20a has the first n connecting members 51b and 51s having different sizes. Is different from.
  • the corresponding first n terminal regions 51rb and 51rs are set in the first n connection members 51b and 51s, respectively.
  • the area of each of the one or more first n terminal regions is wider when it is closer to the end portion 20ae of the semiconductor light emitting element 20a.
  • the area of the first n-terminal region 51rb closer to the end portion 20ae of the semiconductor light emitting device 20a is the first n-terminal region farther from the end portion 20ae than the first n-terminal region 51rb. It is wider than the area of 51rs.
  • the heat dissipation path can be increased by expanding the area of the first n terminal region 51rb near the end portion 20ae, so that the heat dissipation property of the peripheral portion can be improved. Can be enhanced.
  • FIGS. 14 and 15 are a plan view and a cross-sectional view showing the configuration of the semiconductor light emitting device 20b according to the present modification.
  • FIG. 14 shows a plan view of the n wiring electrode layer 46 of the semiconductor light emitting device 20b in a plan view.
  • FIG. 15 shows a part of the cross section taken along the line XV-XV of FIG.
  • the semiconductor light emitting device 20b according to the present modification is different from the semiconductor light emitting device 20 according to the first embodiment in that it has openings 44ab and 44as having different sizes.
  • the area of the opening is wider when it is closer to the end portion 20be of the semiconductor light emitting element 20b.
  • the area of the opening 44ab near the end 20be of the semiconductor light emitting device 20b is wider than the opening 44as farther from the end 20be than the opening 44ab.
  • the area of the n-exposed portion 30eb near the end 20be of the semiconductor light emitting device 20b is wider than the n-exposed portion 30es farther from the end 20be than the n-exposed portion 30eb.
  • the heat dissipation property may be deteriorated in the peripheral portion of the semiconductor light emitting device 20b.
  • the semiconductor light emitting device 20b according to the present modification by expanding the area of the opening 44ab near the end portion 20be, the heat generation source can be dispersed and the heat dissipation path can be increased, so that the heat radiation in the peripheral portion can be increased. You can improve your sex.
  • the semiconductor light emitting device and the semiconductor light emitting device according to the second embodiment will be described.
  • the semiconductor light emitting device and the semiconductor light emitting device according to the present embodiment have a second n terminal region in which a second n connection member is arranged in addition to the first n terminal region. It is different from the semiconductor light emitting device and the semiconductor light emitting device according to the above.
  • the semiconductor light emitting device and the semiconductor light emitting device according to the present embodiment will be described focusing on the differences from the semiconductor light emitting device and the semiconductor light emitting device according to the first embodiment.
  • FIGS. 16 and 17 are schematic plan views and cross-sectional views showing the overall configuration of the semiconductor light emitting device 120 according to the present embodiment, respectively.
  • FIG. 16 shows a plan view of the n wiring electrode layer 46 of the semiconductor light emitting element 120 in a plan view.
  • FIG. 17 shows a part of the cross section of the semiconductor light emitting device 120 in the XVII-XVII line of FIG.
  • the semiconductor light emitting device 120 includes a growth substrate 22, a semiconductor laminate 30, a p-wiring electrode layer 42, an insulating layer 44, and an n-wiring electrode layer 46.
  • the semiconductor light emitting device 120 comprises a plurality of seed metal layers 56, one or more first n-connecting members 51, one or more second n-connecting members 152, and a p-connecting member 60. Have more.
  • the first or more second n-connecting member 152 is a conductive member for electrical connection with the outside.
  • the one or more second n-connecting members 152 are connected to the n-wiring electrode layer 46 in one or more second n-terminal regions 152r of the n-wiring electrode layer 46 arranged other than the n-exposed portion 30e, respectively. ..
  • one or more second n terminal regions 152r which are regions in which the conductive member for electrical connection with the outside is arranged, are set on the n wiring electrode layer 46 arranged other than the n exposed portion 30e.
  • the seed metal layer 56 is also arranged between the second n connection member 152 and the n wiring electrode layer 46.
  • the number of the second n-connecting members 152 is not particularly limited as long as it is 1 or more.
  • the number of the second n-connecting members 152 may be plural.
  • the semiconductor light emitting device can be formed by mounting the semiconductor light emitting element 120 according to the present embodiment on the mounting substrate 11 according to the first embodiment.
  • a certain one or more second n terminal regions 152r are set.
  • the number of the second n terminal regions 152r is not particularly limited as long as it is 1 or more.
  • the number of the second n terminal regions 152r may be plural.
  • the first embodiment Since a further heat dissipation path can be formed in addition to the heat dissipation path of the semiconductor light emitting device 20, the heat dissipation property of the semiconductor light emitting device 120 can be further improved as compared with the semiconductor light emitting device 20 according to the first embodiment.
  • FIG. 18 is a plan view showing an n-wiring electrode layer 46 arranged other than the n-exposed portion 30e according to the present embodiment.
  • FIG. 19 is a plan view showing a first n-terminal region 51r and a second n-terminal region 152r according to the present embodiment.
  • the total area of one or more first n terminal regions 51r and one or more second n terminal regions 152r shown in FIG. 19 is FIG. It is larger than the total area of the n wiring electrode layers 46 arranged other than the n exposed portion 30e shown in 1.
  • the conductive members are arranged in the first n terminal region 51r and the second n terminal region 152r by increasing the areas of the first n terminal region 51r and the second n terminal region 152r in this way.
  • the heat dissipation path can be increased, the heat dissipation property of the semiconductor light emitting element 120 can be improved.
  • one or more first n-connecting members 51 and one or more second n-connecting members 152 are separated from each other.
  • the mounting load can be dispersed at the time of mounting, and cracking of the insulating layer 44 can be suppressed.
  • FIG. 20A and 20B are schematic plan views showing the configurations of the semiconductor light emitting device according to the present embodiment and the comparative example used in the simulation, respectively.
  • the semiconductor light emitting device 120 used in this simulation includes 42 first n-connecting members 51, 36 second n-connecting members 152, and eight p-connecting members 60. And have.
  • a simulation was also performed on the semiconductor light emitting device according to the comparative example.
  • the semiconductor light emitting device 1120 according to the comparative example is different from the semiconductor light emitting device 120 according to the present embodiment in that it does not have the first n-connecting member 51, and is consistent in other respects. To do.
  • FIG. 21 is a diagram showing simulation results of heat generation distribution and temperature distribution of each semiconductor light emitting device according to the present embodiment and the comparative example.
  • FIG. 21 also shows the maximum value of the calorific value and the maximum value and the average value of the temperature.
  • FIG. 22 is a graph showing a simulation result of the relationship between the maximum value of the temperature Tj of the light emitting layer 34 of each semiconductor light emitting device and the amount of current according to the present embodiment and the comparative example.
  • each semiconductor light emitting device according to the present embodiment and the comparative example is a sapphire substrate having a thickness of 100 ⁇ m and a thermal conductivity of 50 W / m / K, and the semiconductor laminate 30 has a thickness of 12 ⁇ m and a thermal conductivity of 120 W / m.
  • the GaN was set to / K, and the first n-connecting member 51, the second n-connecting member 152, and the p-connecting member 60 were set to Au having a thickness of 15 ⁇ m and a thermal conductivity of 300 W / m / K.
  • the substrate 12 of the mounting substrate 11 on which each semiconductor light emitting element is mounted is made of AlN having a thickness of 300 ⁇ m and a thermal conductivity of 170 W / m / K. Further, simulation is performed under the condition that a heat radiation plate having a thickness of 2 mm and a thermal conductivity of 400 W / m / K and a temperature Tc of 105 ° C.
  • the temperature of the semiconductor light emitting device 120 according to the present embodiment is suppressed more than that of the semiconductor light emitting device 1120 according to the comparative example.
  • the temperature Tj of the light emitting layer is high in the vicinity of the n-exposed portion 30e and is 150 ° C. to 165 ° C. At the peripheral edge of the element 1120, the temperature exceeds 170 ° C.
  • the temperature Tj near the n-exposed portion 30e is 115 ° C., and the temperature of the peripheral portion is also suppressed to 135 ° C. or lower.
  • the temperature of the semiconductor light emitting device 120 according to the present embodiment is suppressed by the n-exposed portion 30e via the first n-connecting member 51 arranged in the n-exposed portion 30e having a large calorific value. This is because the heat is efficiently dissipated to the mounting board 11 and the heat radiating plate.
  • the temperature Tj of the light emitting layer at the time of supplying each current can be suppressed as compared with the semiconductor light emitting device according to the comparative example.
  • the reliability of a semiconductor light emitting device is significantly impaired when the temperature Tj of the light emitting layer 34 exceeds 150 ° C.
  • the temperature Tj of the light emitting layer 34 exceeds 150 ° C., so that the reliability may be impaired.
  • the temperature Tj of the light emitting layer is suppressed to 150 ° C. or lower when the amount of current supplied is any of 0A to 6A.
  • the temperature rise of the light emitting layer 34 can be suppressed by providing one or more first n-connecting members 51.
  • FIGS. 23A to 23C are schematic cross-sectional views showing each step of the method for manufacturing the semiconductor light emitting device 120 according to the present embodiment.
  • the semiconductor laminate 30, the p wiring electrode layer 42, the insulating layer 44, and n are sequentially placed on the growth substrate 22.
  • the wiring electrode layer 46 and the seed metal film 56M are formed.
  • one or more first n-terminal regions 51r and one or more second n-terminal regions, which are regions in which a conductive member for electrical connection with the outside is arranged, are arranged.
  • 152r is set.
  • a p terminal region 60r which is a region in which a conductive member for electrical connection with the outside is arranged, is set on the p wiring electrode layer 42.
  • one or more first n-terminal regions 51 are formed in one or more first n-terminal regions 51r, respectively, and one or more second n-terminal regions 152r are formed.
  • the p connection member 60 is formed in the p terminal region 60r.
  • a resist pattern in which one or more first n-terminal regions 51r and one or more second n-terminal regions 152r and p-terminal regions 60r are opened is formed by using a photolithography technique, and DC electroplating is performed. After forming Au plating on the opening of the resist pattern by the method, the resist is removed.
  • the seed metal layer is removed by removing the region where the first n-connecting member 51, the second n-connecting member 152, and the p-connecting member 60 of the seed metal film 56M are not arranged. 56 is formed.
  • the seed metal film 56M is removed by selectively etching the Au film and the Ti film forming the seed metal film 56M, respectively. In this way, the seed metal layer 56 is formed.
  • the semiconductor light emitting device 120 according to the present embodiment is manufactured. By mounting the semiconductor light emitting element 120 on the mounting substrate 11, the semiconductor light emitting device according to the present embodiment can be manufactured.
  • one or more second n-connecting members 152 are also joined to the first wiring electrode 15 of the mounting substrate 11.
  • the semiconductor light emitting device and the semiconductor light emitting device according to the third embodiment will be described.
  • the semiconductor light emitting device according to the present embodiment is mainly a semiconductor according to the first embodiment in that the first n-connecting member and the p-connecting member are joined to the semiconductor light-emitting element after being arranged on the mounting substrate. It is different from the light emitting device.
  • the semiconductor light emitting device and the semiconductor light emitting device according to the present embodiment will be described focusing on the differences from the semiconductor light emitting device and the semiconductor light emitting device according to the first embodiment.
  • FIG. 24 is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device 210 according to the present embodiment.
  • FIG. 24 shows a cross section similar to that of FIG. 2A of the semiconductor light emitting device 210.
  • the semiconductor light emitting device includes a mounting substrate 11 and a semiconductor light emitting element 220.
  • the semiconductor light emitting device 220 has a growth substrate 22, a semiconductor laminate 30, a p-wiring electrode layer 42, an insulating layer 44, and an n-wiring electrode layer 46.
  • the semiconductor light emitting device 220 further includes one or more first n-connecting members 251 and a p-connecting member 260.
  • one or more first n-connecting members 251 and p-connecting members 260 are formed on the mounting substrate 11 and then joined to the semiconductor light emitting element 220, they do not have the seed metal layer 56. ..
  • Each of the one or more first n-connecting members 251 is a conductive member for electrical connection with the outside.
  • Each of the one or more first n connection members 251 is connected to the n wiring electrode layer 46 in the one or more first n terminal regions 251r.
  • the n-wiring electrode layer 46 is set with one or more first n-terminal regions 251r, which are regions in which a conductive member for electrical connection with the outside is arranged.
  • the number of the first n-connecting member 251 and the first n-terminal region 251r is not particularly limited as long as it is 1 or more.
  • the number of the first n-connecting member 251 and the first n-terminal region 251r may be plural.
  • the p-connecting member 260 is a conductive member for electrical connection with the outside.
  • the p-connecting member 260 is connected to the p-wiring electrode layer 42 in the p-terminal region 260r.
  • the p-wiring electrode layer 42 is set with a p-terminal region 260r, which is a region in which a conductive member for electrical connection with the outside is arranged.
  • the semiconductor light emitting device 210 according to the present embodiment also has the same effect as the semiconductor light emitting device 10 according to the first embodiment.
  • FIGS. 25A to 25C are schematic cross-sectional views showing each step of the manufacturing method of the semiconductor light emitting device 210 according to the present embodiment.
  • the semiconductor laminate 30, the p wiring electrode layer 42, the insulating layer 44, and n are sequentially placed on the growth substrate 22.
  • the wiring electrode layer 46 is formed.
  • one or more first n terminal regions 251r which are regions in which conductive members for electrical connection with the outside are arranged, are set on the n wiring electrode layer 46.
  • a p-terminal region 260r which is a region in which a conductive member for electrical connection with the outside is arranged, is set.
  • the mounting board 11 is prepared.
  • one or more first n-connecting members 251 and p-connecting members 260 are formed on the first wiring electrode 15 and the second wiring electrode 16 of the mounting substrate 11, respectively.
  • one or more first n-connecting members 251 and p-connecting members 260 formed on the mounting substrate 11 are respectively attached to one or more first n of the n-wiring electrode layer 46. It is joined to the terminal region 251r and the p terminal region 260r of the p wiring electrode layer 42.
  • the semiconductor light emitting element 220 and the semiconductor light emitting device 210 according to the present embodiment are manufactured.
  • FIG. 26A is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device 210a according to the present modification.
  • the semiconductor light emitting device 210a includes a mounting substrate 11 and a semiconductor light emitting element 220a.
  • the semiconductor light emitting device 220a has a growth substrate 22, a semiconductor laminate 30, a p-wiring electrode layer 42, an insulating layer 44, and an n-wiring electrode layer 46.
  • the semiconductor light emitting device 220a further includes one or more first n-connecting members 251a and a p-connecting member 260.
  • Each of the one or more first n-connecting members 251a is a conductive member for electrical connection with the outside.
  • One or more first n-connecting members 251a are connected to the n-wiring electrode layer 46 in one or more first n-terminal regions 251ar, respectively.
  • the n-wiring electrode layer 46 is set with one or more first n-terminal regions 251ar, which are regions in which conductive members for electrical connection with the outside are arranged.
  • the number of the first n-connecting member 251a and the first n-terminal region 251ar is not particularly limited as long as it is 1 or more.
  • the number of the first n-connecting member 251a and the first n-terminal region 251ar may be plural.
  • a cavity portion 251av is formed between one or more first n-connecting members 251a according to the present modification and the n-wiring electrode layer 46.
  • a cavity portion 251av can be formed when the first n-connecting member 251a is formed on the mounting substrate 11 and then the first n-connecting member 251a is joined to the n-wiring electrode layer 46.
  • the mounting load is lower than when joining the first n-connecting member 251 of the semiconductor light emitting device 210 according to the third embodiment.
  • the cavity portion 251av is formed.
  • the one or more first n terminal regions 251ar of the semiconductor light emitting element 220a there may be a region in which one or more first n connection members 251a are not connected.
  • FIG. 26B is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device 210b according to another modification of the present embodiment.
  • the semiconductor light emitting element 220b included in the semiconductor light emitting device 210b has one or more first n-connecting members 251b.
  • the one or more first n-connecting members 251b are connected to the n-wiring electrode layer 46 in each of the one or more first n-terminal regions 251br.
  • a cavity portion 251bv is formed between one or more first n connection members 251b and the n wiring electrode layer 46.
  • the semiconductor light emitting device 210b is different from the semiconductor light emitting device 210a in the configuration of one or more first n connection members 251b and the cavity portion 251bv, and is the same in other configurations.
  • the cavity portion 251bv is formed in the entire region above the opening 44a. Such a cavity portion 251bv can be formed when the first n-connecting member 251b is formed on the mounting substrate 11 and then the first n-connecting member 251b is joined to the n-wiring electrode layer 46.
  • the mounting load is lower than when joining the first n-connecting member 251 of the semiconductor light emitting device 210 according to the third embodiment.
  • the cavity portion 251bv is formed in the entire region above the opening 44a.
  • the heat dissipation of the semiconductor light emitting element can be improved.
  • the semiconductor light emitting devices 210a and 210b according to this modification also have the same effects as the semiconductor light emitting device 10 according to the first embodiment.
  • the semiconductor light emitting device and the semiconductor light emitting device according to the fourth embodiment will be described.
  • the semiconductor light emitting device according to the present embodiment is mainly in that the first n-connecting member and the p-connecting member are arranged on both the semiconductor light-emitting element and the mounting substrate and then joined to each other. It is different from the semiconductor light emitting device according to the above.
  • the semiconductor light emitting device and the semiconductor light emitting device according to the present embodiment will be described focusing on the differences from the semiconductor light emitting device and the semiconductor light emitting device according to the first embodiment.
  • FIG. 27 is a schematic cross-sectional view showing the overall configuration of the semiconductor light emitting device 310 according to the present embodiment.
  • FIG. 27 shows a cross section similar to that of the semiconductor light emitting device 10 of FIG. 2A.
  • the semiconductor light emitting device includes a mounting substrate 11 and a semiconductor light emitting element 320.
  • the semiconductor light emitting device 320 has a growth substrate 22, a semiconductor laminate 30, a p-wiring electrode layer 42, an insulating layer 44, and an n-wiring electrode layer 46.
  • the semiconductor light emitting device 320 further includes a seed metal layer 56, one or more first n-connecting members 351 and a p-connecting member 360.
  • Each of the one or more first n-connecting members 351 is a conductive member for electrical connection with the outside.
  • One or more first n-connecting members 351 are connected to the n-wiring electrode layer 46 in one or more first n-terminal regions 351r, respectively.
  • the n-wiring electrode layer 46 is set with one or more first n-terminal regions 351r, which are regions in which a conductive member for electrical connection with the outside is arranged.
  • the number of the first n-connecting member 351 and the first n-terminal region 351r is not particularly limited as long as it is 1 or more.
  • the number of the first n connection member 351 and the first n terminal region 351r may be plural.
  • the first n-connecting member 351 includes a set of element-side n-connecting member 51n and a mounting board-side n-connecting member 251n.
  • the element-side n-connecting member 51n has the same configuration as the first n-connecting member 51 according to the first embodiment.
  • the mounting board side n-connecting member 251n has the same configuration as the first n-connecting member 251 according to the third embodiment.
  • the element-side n-connecting member 51n is arranged at a position closer to the semiconductor laminate 30 than the mounting substrate-side n-connecting member 251n.
  • the p-connecting member 360 is a conductive member for electrical connection with the outside.
  • the p-connecting member 360 is connected to the p-wiring electrode layer 42 in the p-terminal region 360r.
  • the p-wiring electrode layer 42 is set with a p-terminal region 360r, which is a region in which a conductive member for electrical connection with the outside is arranged.
  • the p-connecting member 360 includes a set of element-side p-connecting member 60p and a mounting board-side p-connecting member 260p.
  • the element-side p-connecting member 60p has the same configuration as the p-connecting member 60 according to the first embodiment.
  • the mounting board side p-connecting member 260p has the same configuration as the p-connecting member 260 according to the third embodiment.
  • the element-side p-connecting member 60p is arranged at a position closer to the semiconductor laminate 30 than the mounting substrate-side p-connecting member 260p.
  • the semiconductor light emitting device 310 according to the present embodiment also has the same effect as the semiconductor light emitting device 10 according to the first embodiment.
  • FIGS. 28A to 28C are schematic cross-sectional views showing each step of the manufacturing method of the semiconductor light emitting device 310 according to the present embodiment.
  • the semiconductor laminate 30, the p wiring electrode layer 42, the insulating layer 44, and n are sequentially placed on the growth substrate 22.
  • the wiring electrode layer 46, the seed metal layer 56, one or more element-side n-connecting members 51n, and the element-side p-connecting member 60p are formed.
  • one or more first n terminal regions 351r, which are regions in which a conductive member for electrical connection with the outside is arranged, are set on the n wiring electrode layer 46.
  • a p-terminal region 360r which is a region in which a conductive member for electrical connection with the outside is arranged, is set. Subsequently, one or more element-side n-connection members 51n and one or more element-side p-connection members 60p are connected to one or more first n-terminal regions 351r of the n-wiring electrode layer 46 and p-terminals of the p-wiring electrode layer 42, respectively. It is formed in the region 360r.
  • the mounting board 11 is prepared.
  • one or more mounting substrate sides are attached to the first wiring electrode 15 and the second wiring electrode 16 of the mounting substrate 11, respectively.
  • the n-connecting member 251n and the mounting board-side p-connecting member 260p are formed.
  • one or more mounting board side n-connecting members 251n and mounting board-side p-connecting members 260p formed on the mounting board 11 are provided with one or more element-side n-connecting members 51n and element-side p-connecting members 60p, respectively. Join to.
  • one or more first n-connecting members 351 and p-connecting members 360 are formed.
  • each of the one or more first n-connecting members 351 includes a set of element-side n-connecting members 51n and a mounting board-side n-connecting member 251n
  • the p-connecting member 360 is a set of element-side p.
  • the connection member 60p and the mounting board side p connection member 260p are included.
  • the semiconductor light emitting element 320 and the semiconductor light emitting device 310 according to the present embodiment are manufactured.
  • the first n-terminal region set on the n-wiring electrode layer 46 coincides with the region in which the first n-connecting member is arranged on the n-wiring electrode layer 46.
  • these do not necessarily have to match.
  • the first n-connecting member may not be arranged in the entire first n-terminal region, or a part of the first n-connecting member may be arranged in a region other than the first n-terminal region. Good.
  • the set first n-terminal region and second n-terminal region are set.
  • the p-terminal region may be marked on the n-wiring electrode layer and the p-wiring electrode layer of the semiconductor light-emitting device, or may be indicated in the specifications of the semiconductor light-emitting device.
  • the semiconductor light emitting device and the semiconductor light emitting device of the present disclosure can be applied to a projector or the like as a high output and high efficiency light source, for example.

Abstract

半導体発光素子(20)は、n型層(32)と、p型層(36)とを有する半導体積層体(30)であって、n型層(32)が露出する凹部である1以上のn露出部(30e)を有する半導体積層体(30)と、p型層(36)上に配置されたp配線電極層(42)と、1以上のn露出部(30e)の内側面(30s)と、p配線電極層(42)の上方の一部とを連続的に覆い、n型層(32)を露出する開口部(44a)を有する絶縁層(44)と、開口部(44a)においてn型層(32)に接し、p型層(36)及びp配線電極層(42)の上方に配置されたn配線電極層(46)と、1以上の第1のn接続部材(51)とを有し、1以上の第1のn接続部材(51)は、それぞれ、1以上の第1のn端子領域(51r)においてn配線電極層(46)と接続され、1以上の第1のn端子領域(51r)の下方に、n配線電極層(46)及びp型層(36)が配置される。

Description

半導体発光素子及び半導体発光装置
 本開示は、半導体発光素子及び半導体発光装置に関する。
 従来、実装基板に形成された配線パターンにバンプを介してフリップチップ実装される半導体発光素子が知られている(例えば、特許文献1など参照)。特許文献1に記載された半導体発光素子は、基板上に、第1半導体層、発光層及び第2半導体層が順に積層された構造を有し、第2半導体層から第1半導体層が露出された露出部が形成されている。さらに、特許文献1に記載された半導体発光素子は、第2半導体層上に第2電極及び絶縁膜が順に積層され、露出部及び絶縁膜上に第1電極が積層されている。このように、特許文献1に記載された半導体発光素子は、いわゆる2層配線構造を有する。さらに、特許文献1に記載された半導体発光素子では、バンプを発光素子の直下に高密度に配置することにより熱をバンプを介して逃がすとともに、露出部とバンプとをオーバーラップさせないことによりフリップチップ実装時の絶縁膜の割れを発生させないようにしている。
特開2018-107371号公報
 特許文献1に記載された半導体発光素子の発光層付近で発生した熱はバンプを介して実装基板に放散される。特許文献1に記載された半導体発光素子では、発光層近傍で発生した熱は、熱伝導率が低い絶縁膜を介してバンプに伝導されるため、放熱性が低い。したがって、特許文献1に記載された半導体発光素子では、特に半導体発光素子に大電流を供給する場合に、信頼性が低下し得る。
 本開示は、このような課題を解決するものであり、放熱性が高い半導体発光素子及び半導体発光装置を提供することを目的とする。
 上記課題を解決するために、本開示に係る半導体発光素子の一態様は、n型層と、前記n型層の上方に配置された発光層と、前記発光層の上方に配置されたp型層とを有する半導体積層体であって、前記n型層が露出する凹部である1以上のn露出部を有する半導体積層体と、前記p型層上に配置されたp配線電極層と、前記1以上のn露出部の内側面と、前記p配線電極層の上方の一部とを連続的に覆い、前記1以上のn露出部の底面において前記n型層を露出する開口部を有する絶縁層と、前記開口部において前記n型層に接し、前記絶縁層を介して前記p型層及び前記p配線電極層の上方に配置されたn配線電極層と、外部との電気的接続用の導電性部材である1以上の第1のn接続部材とを有し、前記1以上の第1のn接続部材は、それぞれ、1以上の第1のn端子領域において前記n配線電極層と接続され、平面視において前記1以上の第1のn端子領域は、前記開口部の上方の領域の少なくとも一部を含み、前記半導体積層体の積層方向に平行な断面において、前記1以上の第1のn端子領域の下方に、前記n配線電極層及び前記p型層が配置される。
 このように、熱伝導率が低い絶縁層が形成されていない開口部の上方に第1のn接続部材が配置されることにより、絶縁層を介さない放熱経路を形成できる。したがって、第1のn接続部材が絶縁層の上方に配置される場合より、半導体発光素子の放熱性を高めることができる。また、半導体発光素子のn露出部の内側面近傍において発熱量が大きいが、内側面の上方に第1のn接続部材が配置されることにより、n露出部の内側面近傍で発生した熱を第1のn接続部材を介して放散することができる。したがって、半導体発光素子の放熱性をさらに高めることができる。
 また、本開示に係る半導体発光素子の一態様において、外部との電気的接続用の導電性部材である1以上の第2のn接続部材をさらに有し、前記1以上の第2のn接続部材は、それぞれ、前記n露出部以外に配置された前記n配線電極層の1以上の第2のn端子領域において、前記n配線電極層と接続されてもよい。
 このように、第2のn接続部材を有することにより、さらなる放熱経路を形成できるため、半導体発光素子の放熱性をさらに高めることができる。
 また、本開示に係る半導体発光素子の一態様において、前記1以上の第1のn接続部材と前記1以上の第2のn接続部材とは離間していてもよい。
 このように、第1のn接続部材と第2のn接続部材とが離間されることで、縦方向の実装荷重を分散し、絶縁層の割れを抑制することができる。
 また、本開示に係る半導体発光素子の一態様において、前記1以上の第1のn接続部材の粒径は、前記n配線電極層の粒径よりも大きくてもよい。
 このように、1以上の第1のn接続部材の粒径をn配線電極層より大きくすることで、1以上の第1のn接続部材の硬度を、n配線電極層の硬度より低減できる。このため、半導体発光素子を実装基板に実装する際に、半導体発光素子に加わる力を1以上の第1のn接続部材によって吸収できる。したがって、本開示に係る半導体発光素子では、1以上の第1のn接続部材の粒径がn配線電極層と同等である場合より、実装時にn露出部の内側面近傍の絶縁層へ加わる力を軽減できるため、絶縁層の割れを低減できる。
 また、本開示に係る半導体発光素子の一態様は、前記p配線電極層のうち、前記n配線電極層及び前記絶縁層から露出した領域に配置されるp接続部材と、前記1以上の第1のn接続部材と前記n配線電極層との間、及び、前記p接続部材とp配線電極層との間に配置され、前記半導体積層体から遠い側の表面がAuからなるシードメタル層とを有し、前記1以上の第1のn接続部材と前記p接続部材とは、Auからなってもよい。
 また、本開示に係る半導体発光素子の一態様は、前記p配線電極層のうち、前記n配線電極層及び前記絶縁層から露出した領域に配置されるp接続部材と、前記1以上の第1のn接続部材と、前記n配線電極層との間に形成される空洞部とを有してもよい。
 また、本開示に係る半導体発光素子の一態は、前記p配線電極層のうち、前記n配線電極層及び前記絶縁層から露出した領域に配置されるp接続部材を有し、前記1以上の第1のn接続部材の各々は、1組の素子側n接続部材と実装基板側n接続部材とを含み、前記p接続部材は、1組の素子側p接続部材と実装基板側p接続部材とを含み、前記素子側n接続部材は、前記実装基板側n接続部材より前記半導体積層体に近い位置に配置され、前記素子側p接続部材は、前記実装基板側p接続部材より前記半導体積層体に近い位置に配置されてもよい。
 また、上記課題を解決するために、本開示に係る半導体発光装置の一態様は、上記半導体発光素子と、第1の配線電極及び第2の配線電極を有する実装基板とを有し、前記1以上の第1のn接続部材は、前記実装基板の前記第1の配線電極と接合され、前記p配線電極層は、前記n配線電極層及び前記絶縁層から露出した領域において、導電性部材であるp接続部材を介して前記実装基板の第2の配線電極と接合される。
 このように、熱伝導率が低い絶縁層が形成されていない開口部の上方に第1のn接続部材が配置され、第1のn接続部材が、第1の配線電極を介して実装基板に接続されることにより、絶縁層を介さずにn型層から実装基板までの放熱経路を形成できる。したがって、第1のn接続部材が絶縁層の上方に配置される場合より、半導体発光装置の放熱性を高めることができる。また、半導体発光素子のn露出部の内側面近傍において発熱量が大きいが、内側面の上方に第1のn接続部材が配置されることにより、n露出部の内側面近傍で発生した熱を第1のn接続部材を介して実装基板へ放散することができる。したがって、半導体発光装置の放熱性をさらに高めることができる。
 また、本開示に係る半導体発光装置の一態様において、前記1以上の第1のn接続部材の第1の配線電極との接合面における端部は、前記実装基板の前記第1の配線電極の端部に対して、前記第1の配線電極の内側に離間して配置されていてもよい。
 このように、第1のn接続部材が、第1の配線電極の端部に配置されないことで、第1のn接続部材が、隣り合う第2の配線電極及びp接続部材と短絡することを抑制できる。
 また、本開示に係る半導体発光装置の一態様において、前記積層方向に平行な断面において、前記1以上の第1のn接続部材の、前記開口部上における粒径が、前記p型層上における粒径よりも大きくてもよい。
 第1のn接続部材のこのような粒径分布は、例えば、半導体発光素子を実装基板に実装する際に形成される。本開示の半導体発光素子の実装においては、例えばFCB実装を用いる。FCB実装は荷重ステップと、荷重ステップののちに超音波を印加するステップとで構成されている。荷重ステップで圧縮された際に開口部が周辺のp型層よりも低くなっている(つまり凹んでいる)ため、開口部上よりも周辺のp型層上の第1のn接続部材の圧縮率が高くなる。これに伴い、開口部上よりも周辺のp型層上の第1のn接続部材の方が硬くなる。このため、超音波を印加するステップで第1のn接続部が実装基板に接合される際に、硬化した周辺の第1のn接続部材が障壁となって、第1のn接続部が積層面に平行な方向に広がりにくくなる。よって、第1のn接続部材が隣り合うp接続部材と短絡することを抑制できる。
 また、本開示に係る半導体発光装置の一態様において、前記積層方向に平行な断面において、前記1以上の第1のn接続部材は、前記n配線電極層側において、前記n配線電極層に近付くほど側壁が外側に広がっていてもよい。
 このように、第1のn接続部材の側壁が広がることで、側壁が広がらない場合より、第1のn端子領域の面積を拡大できる。このため、第1のn接続部材によって、より広い領域の放熱を行うことができる。したがって、半導体発光装置の放熱性を高めることができる。
 また、上記課題を解決するために、本開示に係る半導体発光素子の一態様は、n型層と、前記n型層の上方に配置された発光層と、前記発光層の上方に配置されたp型層とを有する半導体積層体であって、前記n型層が露出する凹部である1以上のn露出部を有する半導体積層体と、前記p型層上に配置されたp配線電極層と、前記1以上のn露出部の内側面と、前記p配線電極層の上方の一部とを連続的に覆い、前記1以上のn露出部の底面において前記n型層を露出する開口部を有する絶縁層と、前記開口部において前記n型層に接し、前記絶縁層を介して前記p型層及び前記p配線電極層の上方に配置されたn配線電極層とを有し、前記n配線電極層には、外部との電気的接続用の導電性部材が配置される領域である1以上の第1のn端子領域が設定され、平面視において前記1以上の第1のn端子領域は、前記開口部の上方の領域の少なくとも一部を含み、前記半導体積層体の積層方向に平行な断面において、前記1以上の第1のn端子領域の下方に、前記n配線電極層及び前記p型層が配置される。
 このように、熱伝導率が低い絶縁層が形成されていない開口部の上方に導電性部材を配置する第1のn端子領域を設けることで、第1のn端子領域に導電性部材を配置する場合に、絶縁層を介さない放熱経路を形成できる。したがって、導電性部材が絶縁層の上方に配置される場合より、半導体発光素子の放熱性を高めることができる。また、半導体発光素子のn露出部の内側面近傍において発熱量が大きいが、内側面の上方に第1のn端子領域を設けることで、第1のn端子領域に導電性部材を配置する場合に、n露出部の内側面近傍で発生した熱を導電性部材を介して放散することができる。したがって、半導体発光素子の放熱性をさらに高めることができる。
 また、本開示に係る半導体発光素子の一態様において、前記n配線電極層の平面視において、前記1以上の第1のn端子領域の総面積は、前記1以上のn露出部以外に配置された前記n配線電極層の総面積より大きくてもよい。
 このように、第1のn端子領域の総面積を大きくすることで、第1のn端子領域に導電性部材を配置した場合に、放熱経路を増大させることができるため、半導体発光素子の放熱性を高めることができる。
 また、本開示に係る半導体発光素子の一態様において、前記n配線電極層の平面視において、前記1以上の第1のn端子領域の各々の面積は、前記半導体発光素子の端部に近い方が広くてもよい。
 半導体発光素子の中央部には、放熱経路になり得る接続部材が全方向に存在するのに対して、半導体発光素子の周縁部には、放熱経路になり得る接続部材が内側方向だけにしか存在しないため、半導体発光素子の周縁部において放熱性が悪くなり得る。しかしながら、本開示に係る半導体発光素子においては、端部に近い第1のn端子領域の面積を拡大することで、放熱経路を増大させることができるため、周縁部の放熱性を高めることができる。
 また、本開示に係る半導体発光素子の一態様において、前記n配線電極層の平面視において、前記開口部の面積は、前記半導体発光素子の端部に近い方が広くてもよい。
 上述のとおり、半導体発光素子の周縁部においては、放熱性が悪くなり得る。しかしながら、本開示に係る半導体発光素子においては、端部に近い開口部の面積を拡大することで、発熱を分散させるとともに放熱経路を増大させることができるため、周縁部の放熱性を高めることができる。
 また、本開示に係る半導体発光素子の一態様において、前記n配線電極層の平面視において、前記1以上の第1のn端子領域の中心は、前記開口部の領域内にあってもよい。
 このように、第1のn端子領域の中心を開口部の領域内に配置することで、第1のn端子領域に配置される第1のn接続部材などのような導電性部材の中央部が開口部に配置される。このため、実装時に導電性部材に加わる力の多くが絶縁層が配置されていない開口部に加わる。したがって、実装時に絶縁層に加わる力を低減できるため、絶縁層の割れを抑制できる。
 また、本開示に係る半導体発光素子の一態様において、前記n配線電極層の平面視において、前記1以上の第1のn端子領域の中心は、前記開口部の中心と一致していてもよい。
 このように、第1のn端子領域の中心を開口部の中心と一致させることで、第1のn端子領域に配置される第1のn接続部材などのような導電性部材の中央部が開口部の中心に配置される。このため、実装時に導電性部材に加わる力の多くが絶縁層が配置されていない開口部に加わる。したがって、実装時に絶縁層に加わる力を低減できるため、絶縁層の割れを抑制できる。
 また、本開示に係る半導体発光素子の一態様において、前記1以上のn露出部以外に配置された前記n配線電極層上に、外部との電気的接続用の導電性部材が配置される領域である1以上の第2のn端子領域が設定されていてもよい。
 このように、第2のn端子領域を設定することで、第2のn端子領域上に導電性部材を配置する場合に、さらなる放熱経路を形成できるため、半導体発光素子の放熱性をさらに高めることができる。
 また、本開示に係る半導体発光素子の一態様において、前記n配線電極層の平面視において、前記1以上の第1のn端子領域及び前記1以上の第2のn端子領域の面積の総和が、前記1以上のn露出部以外に配置された前記n配線電極層の面積の総和より大きくてもよい。
 このように、第1のn端子領域及び第2のn端子領域の面積を大きくすることで、第1のn端子領域及び第2のn端子領域に導電性部材を配置した場合に、放熱経路を増大させることができるため、半導体発光素子の放熱性を高めることができる。
 本開示によれば、放熱性が高い半導体発光素子及び半導体発光装置を提供できる。
図1は、実施の形態1に係る半導体発光装置の全体構成を示す模式的な平面図である。 図2Aは、実施の形態1に係る半導体発光装置の全体構成を示す模式的な断面図である。 図2Bは、実施の形態1の変形例に係る半導体発光装置の全体構成を示す模式的な断面図である。 図3は、実施の形態1に係る半導体発光素子の構成を示す模式的な平面図である。 図4は、実施の形態1に係るn露出部以外に配置されたn配線電極層を示す平面図である。 図5は、実施の形態1に係る第1のn端子領域を示す平面図である。 図6Aは、実施の形態1に係る半導体発光装置の製造方法の第1工程を示す模式的な断面図である。 図6Bは、実施の形態1に係る半導体発光装置の製造方法の第2工程を示す模式的な断面図である。 図6Cは、実施の形態1に係る半導体発光装置の製造方法の第3工程を示す模式的な断面図である。 図6Dは、実施の形態1に係る半導体発光装置の製造方法の第4工程を示す模式的な断面図である。 図6Eは、実施の形態1に係る半導体発光装置の製造方法の第5工程を示す模式的な断面図である。 図6Fは、実施の形態1に係る半導体発光装置の製造方法の第6工程を示す模式的な断面図である。 図6Gは、実施の形態1に係る半導体発光装置の製造方法の第7工程を示す模式的な断面図である。 図6Hは、実施の形態1に係る半導体発光装置の製造方法の第8工程を示す模式的な断面図である。 図7は、Auの平均粒径と硬度との関係を示すグラフである。 図8は、粒径の測定方法を説明するための図である。 図9は、実施の形態1に係る第1のn接続部材を押し潰した場合の粒径と厚さとの関係を示すグラフである。 図10は、実施の形態1に係る半導体発光装置の第1のn接続部材の構造を示す模式的な断面図である。 図11Aは、実施の形態1に係る第1のn端子領域と開口部との第1の位置関係を示す平面図である。 図11Bは、実施の形態1に係る第1のn端子領域と開口部との第2の位置関係を示す平面図である。 図12は、実施の形態1の変形例1に係る半導体発光素子の構成を示す平面図である。 図13は、実施の形態1の変形例1に係る半導体発光素子の構成を示す断面図である。 図14は、実施の形態1の変形例2に係る半導体発光素子の構成を示す平面図である。 図15は、実施の形態1の変形例2に係る半導体発光素子の構成を示す断面図である。 図16は、実施の形態2に係る半導体発光素子の全体構成を示す模式的な平面図である。 図17は、実施の形態2に係る半導体発光素子の全体構成を示す模式的な断面図である。 図18は、実施の形態2に係るn露出部以外に配置されたn配線電極層を示す平面図である。 図19は、実施の形態2に係る第1のn端子領域及び第2のn端子領域を示す平面図である。 図20Aは、シミュレーションにおいて用いた実施の形態2に係る半導体発光素子の構成を示す模式的な平面図である。 図20Bは、シミュレーションにおいて用いた比較例に係る半導体発光素子の構成を示す模式的な平面図である。 図21は、実施の形態2及び比較例に係る各半導体発光素子の発熱分布及び発光層の温度Tjの温度分布のシミュレーション結果を示す図である。 図22は、実施の形態2及び比較例に係る各半導体発光素子の発光層の温度Tjの最大値と電流量との関係のシミュレーション結果を示すグラフである。 図23Aは、実施の形態2に係る半導体発光素子の製造方法の第1工程を示す模式的な断面図である。 図23Bは、実施の形態2に係る半導体発光素子の製造方法の第2工程を示す模式的な断面図である。 図23Cは、実施の形態2に係る半導体発光素子の製造方法の第3工程を示す模式的な断面図である。 図24は、実施の形態3に係る半導体発光装置の全体構成を示す模式的な断面図である。 図25Aは、実施の形態3に係る半導体発光装置の製造方法の第1工程を示す模式的な断面図である。 図25Bは、実施の形態3に係る半導体発光装置の製造方法の第2工程を示す模式的な断面図である。 図25Cは、実施の形態3に係る半導体発光装置の製造方法の第3工程を示す模式的な断面図である。 図26Aは、実施の形態3の変形例に係る半導体発光装置の全体構成を示す模式的な断面図である。 図26Bは、実施の形態3の他の変形例に係る半導体発光装置の全体構成を示す模式的な断面図である。 図27は、実施の形態4に係る半導体発光装置の全体構成を示す模式的な断面図である。 図28Aは、実施の形態4に係る半導体発光装置の製造方法の第1工程を示す模式的な断面図である。 図28Bは、実施の形態4に係る半導体発光装置の製造方法の第2工程を示す模式的な断面図である。 図28Cは、実施の形態4に係る半導体発光装置の製造方法の第3工程を示す模式的な断面図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本開示を限定する主旨ではない。
 また、各図は模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔をあけて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに接する状態で配置される場合にも適用される。
 (実施の形態1)
 実施の形態1に係る半導体発光素子及び半導体発光装置について説明する。
 [1-1.全体構成]
 まず、本実施の形態に係る半導体発光素子及び半導体発光装置の全体構成について図1~図3を用いて説明する。図1及び図2Aは、それぞれ、本実施の形態に係る半導体発光装置10の全体構成を示す模式的な平面図及び断面図である。図1には、半導体発光素子20と実装基板11の平面視における平面図が示されている。図2Aには、図1のII-II線における半導体発光装置10の断面の一部が示されている。なお、図1、図2A及び以下の各図において、実装基板11の主面に垂直な方向をZ軸方向とし、Z軸方向に垂直であって、互いに垂直な二つの方向をX軸方向及びY軸方向としている。
 半導体発光装置10は、半導体発光素子20を備える発光装置であり、図1及び図2Aに示されるように、実装基板11と、半導体発光素子20とを有する。
 実装基板11は、半導体発光素子20が実装される基体であり、図2Aに示されるように、基板12と、第1の配線電極15と、第2の配線電極16とを有する。
 基板12は、実装基板の基体であり、例えば、AlNの焼結体からなるセラミック基板である。第1の配線電極15及び第2の配線電極16は、基板12上に形成される導電層であり、例えば、Auで形成される。第1の配線電極15と第2の配線電極16とは互いに絶縁されている。
 半導体発光素子20は、半導体層を用いた発光素子であり、成長基板22と、半導体積層体30と、p配線電極層42と、絶縁層44と、n配線電極層46とを有する。本実施の形態では、半導体発光素子20は、複数のシードメタル層56と、1以上の第1のn接続部材51と、p接続部材60とをさらに有する。
 成長基板22は、半導体積層体30が積層される基板である。本実施の形態では、成長基板22には、透光性基板として、サファイア基板やGaN基板を用いている。
 半導体積層体30は、図2Aに示されるように、n型層32と、発光層34と、p型層36とを有する。半導体積層体30は、n型層32が露出する凹部である1以上のn露出部30eを有する。n露出部30eは、n露出部30eの底部である底面30bと、底面30bから積層方向に延びる面である内側面30sとを有する。ここで、積層方向とは、成長基板22の主面に垂直な方向(つまり、各図のZ軸方向)である。本実施の形態では、n露出部30eは、直径70μm程度の円形状の凹部である。なお、n露出部30eの形状は、円形状に限定されず、矩形状などであってもよい。また、n露出部30eの個数は、1以上であれば特に限定されない。例えば、n露出部30eの個数は、複数であってもよい。
 n型層32は、成長基板22の上方に配置されたn型半導体層を含む層である。本実施の形態では、n型層32には、n型半導体層として、n型GaN系層を用いている。n型層32には、n型クラッド層などの複数の層が含まれてもよい。
 発光層34は、n型層32の上方に配置された活性層である。本実施の形態では、発光層34には、InGaN系層を用いている。
 p型層36は、発光層34の上方に配置されたp型半導体層を含む層である。本実施の形態では、p型層36には、p型半導体層として、p型GaN系層を用いている。p型層36には、p型クラッド層などの複数の層が含まれてもよい。
 p配線電極層42は、p型層36上に配置された導電層である。本実施の形態では、p配線電極層42は、p型層36上に順に積層された厚さ0.2μmのAg層と、厚さ0.7μmのTi層と、厚さ0.3μmのAu層とを有する積層体である。p配線電極層42は、n配線電極層46及び絶縁層44から露出した領域において、導電性部材であるp接続部材60を介して実装基板11の第2の配線電極16と接合される。
 絶縁層44は、1以上のn露出部30eの内側面30sと、p配線電極層42の上方の一部とを連続的に覆い、1以上のn露出部30eの底面においてn型層32を露出する開口部44aを有する絶縁材料からなる層である。本実施の形態では、絶縁層44は、厚さ1.0μmのSiOからなる層である。また、開口部44aは、直径60μm程度の円形状の開口である。なお、開口部44aの形状は、円形状に限定されず、矩形状などであってもよい。
 n配線電極層46は、開口部44aにおいてn型層32に接し、絶縁層44を介してp型層36及びp配線電極層42の上方に配置された導電層である。本実施の形態では、n配線電極層46は、半導体積層体30側から順に積層された厚さ0.3μmのAl層と、厚さ0.3μmのTi層と、厚さ1.0μmのAu層とを有する積層体である。
 シードメタル層56は、第1のn接続部材51及びp接続部材60の下地となる導電層であり、第1のn接続部材51とn配線電極層46との間、及び、p接続部材60とp配線電極層42との間に配置される。本実施の形態では、シードメタル層56の半導体積層体30から遠い側の表面がAuからなる。より具体的には、シードメタル層56は、半導体積層体30側から順に0.1μm厚のTi層及び0.3μm厚のAu層が積層された積層体である。
 1以上の第1のn接続部材51の各々は、外部との電気的接続用の導電性部材である。本実施の形態では、1以上の第1のn接続部材51は、実装基板11の第1の配線電極15と接合される。1以上の第1のn接続部材51は、それぞれ、1以上の第1のn端子領域51rにおいてn配線電極層46と接続される。言い換えると、n配線電極層46には、外部との電気的接続用の導電性部材が配置される領域である1以上の第1のn端子領域51rが設定されている。1以上の第1のn接続部材51は、熱伝導率100W/m・K以上の金属であってもよい。本実施の形態では、1以上の第1のn接続部材51として、熱伝導率が300W/m・K以上のAuからなるバンプを用いた。なお、熱伝導率が100W/m・K以上の第1のn接続部材として、Au、Ag、Al、Cuのいずれか、もしくはその組み合わせからなる合金を用いてもよい。また、第1のn接続部材51及び第1のn端子領域51rの個数は、1以上であれば特に限定されない。例えば、第1のn接続部材51及び第1のn端子領域51rの個数は、それぞれ複数であってもよい。
 1以上の第1のn端子領域51rの各々は、開口部44aの上方の領域の少なくとも一部を含む。また、図2Aに示されるように、半導体積層体30の積層方向に平行な断面において、1以上の第1のn端子領域51rの下方に、n配線電極層46及びp型層36が配置される。
 p接続部材60は、外部との電気的接続用の導電性部材である。本実施の形態では、p接続部材60は、実装基板11の第2の配線電極16と接合される。p接続部材60は、p端子領域60rにおいてp配線電極層42と接続される。言い換えると、p配線電極層42には、外部との電気的接続用の導電性部材が配置される領域であるp端子領域60rが設定されている。本実施の形態では、p接続部材60は、Auからなるバンプである。
 [1-2.作用及び効果]
 次に、本実施の形態に係る半導体発光素子20及び半導体発光装置10の作用及び効果を説明する。
 上述したように、本実施の形態に係る半導体発光素子20のn配線電極層46には、外部との電気的接続用の導電性部材である第1のn接続部材51が配置される領域である1以上の第1のn端子領域51rが設定される。1以上の第1のn端子領域51rの各々は、開口部44aの上方の領域の少なくとも一部を含む。
 言い換えると、図2Aに示すように開口部44aの上方の全領域に第1のn端子領域51rがある場合と、開口部44aの上方の一部の領域だけに第1のn端子領域51rがある場合とを含む。ここで、開口部44aの上方の一部の領域だけに第1のn端子領域51rがある場合について、図2Bを用いて説明する。図2Bは、本実施の形態の変形例に係る半導体発光装置10bの全体構成を示す模式的な断面図である。
 図2Bに示されるように、半導体発光装置10bは、第1のn端子領域51r及び第1のn接続部材51の構成において、半導体発光装置10と相違し、その他の構成において一致する。半導体発光装置10bにおいては、開口部44aの上方の一部の領域だけに第1のn端子領域51rがある。言い換えると、第1のn接続部材51は、開口部44aの上方の領域のうち一部の領域だけに配置される。
 このように、熱伝導率が低い絶縁層44が形成されていない開口部44aの上方に導電性部材を配置する第1のn端子領域51rを設けることで、第1のn端子領域51rに導電性部材を配置する場合に、絶縁層44を介さない放熱経路を形成できる。したがって、導電性部材が絶縁層44の上方に配置される場合より、半導体発光素子20の放熱性を高めることができる。
 また、半導体発光素子20の1以上の第1のn端子領域51rにおいて、開口部44aの一部が露出している場合でも、n露出部30eの内側面(図2Bではn露出部30eの右側面)近傍で発生した熱を第1のn接続部材51を介して放散することができるので、半導体発光素子20の放熱性を高めることができる。
 また、本実施の形態では、半導体積層体30の積層方向に平行な断面において、1以上の第1のn端子領域51rの下方に、n配線電極層46及びp型層36が配置される。ここで、半導体発光素子20のn露出部30eの内側面30s近傍において発熱量が大きいが、内側面30sの上方に第1のn端子領域51rを設けることで、第1のn端子領域に導電性部材として第1のn接続部材51を配置する場合に、n露出部30eの内側面30s近傍で発生した熱を第1のn接続部材51を介して放散することができる。したがって、半導体発光素子20の放熱性をさらに高めることができる。
 続いて、本実施の形態に係る半導体発光素子20の1以上の第1のn端子領域51rの構成について、図3~図5を用いて詳細に説明する。図3は、本実施の形態に係る半導体発光素子20の構成を示す模式的な平面図である。図3においては、半導体発光素子20のn配線電極層46の平面視における平面図が示されている。図4は、本実施の形態に係るn露出部30e以外に配置されたn配線電極層46を示す平面図である。図5は、本実施の形態に係る第1のn端子領域51rを示す平面図である。
 本実施の形態では、n配線電極層46の平面視において、図5に示される1以上の第1のn端子領域51rの総面積は、図4に示されるn露出部30e以外に配置されたn配線電極層46の総面積より大きい。
 このように、第1のn端子領域51rの総面積を大きくすることで、第1のn端子領域51rに第1のn接続部材51を配置した場合に、放熱経路を増大させることができるため、半導体発光素子20の放熱性を高めることができる。
 [1-3.製造方法]
 次に、本実施の形態に係る半導体発光装置10の製造方法について、図6A~図6Hを用いて説明する。図6A~図6Hは、本実施の形態に係る半導体発光装置10の製造方法の各工程を示す模式的な断面図である。
 まず、図6Aに示されるように、成長基板22を準備し、成長基板22の一方の主面に半導体積層体30を積層する。本実施の形態では、MOCVD(metal organic chemical vapor deposition)法によるエピタキシャル成長技術により、サファイア基板やGaN基板からなる成長基板22の一方の主面に、n型GaN系層を含むn型層32、InGaN系層を含む発光層34及びp型GaN系層を含むp型層36の順に積層する。続いて、p型層36、発光層34及びn型層32の一部を除去することで、n型層32が露出する凹部である1以上のn露出部30eを形成する。本実施の形態では、ドライエッチングを用いて、p型層36、発光層34及びn型層32の一部を除去する。
 続いて、図6Bに示されるように、p型層36上に所定形状のp配線電極層42を形成する。本実施の形態では、フォトリソグラフィ技術により、p型層36が配置された領域に開口が設けられたレジストパターンを形成する。続いて、スパッタ法により、厚さ0.2μmのAg膜を成膜し、リフトオフ法によりレジスト及びレジスト上のAgを除去することで所定形状にパターニングされた反射メタルとしてのAg層を形成する。続いて、スパッタ法により、Ag層を覆う厚さ0.7μmのTi膜及び厚さ0.3μmのAu膜からならる積層膜を成膜する。続いて、フォトリソグラフィ技術によりp型層36を覆うレジストパターンを形成し、ウェットエッチングによってp型層36上以外の領域に形成された余分な積層膜を除去し、有機洗浄にてレジストを除去する。このように、Ag層、Ti層及びAu層からなるp配線電極層42を形成する。
 続いて、図6Cに示されるように、絶縁層44を形成する。本実施の形態では、半導体積層体30及びp配線電極層42の上の全面に厚さ1.0μmのSiOからなる酸化膜を成膜する。続いて、n型層32及びp型層36の一部が開口するレジストパターンを形成し、ウェットエッチングによりレジストパターンが形成されていない部分の酸化膜を除去した後、レジストを除去する。このように、n型層32が露出する開口部44a、及び、p配線電極層42が露出する開口が形成された絶縁層44を形成する。
 続いて、図6Dに示されるように、絶縁層44及び開口部44a上に所定形状のn配線電極層46を形成する。本実施の形態では、p配線電極層42が露出した領域を覆うレジストパターンを形成し、EB(electron beam)蒸着法を用いて、厚さ0.3μmのAl膜、厚さ0.3μmのTi膜及び厚さ1.0μmのAu膜からなる積層膜を形成した後、リフトオフ法によりレジスト及びレジスト上の積層膜を除去することで、Al層、Ti層及びAu層からなるn配線電極層46を形成する。ここで、n配線電極層46には、外部との電気的接続用の導電性部材である1以上の第1のn接続部材51が配置される領域である1以上の第1のn端子領域51rが設定される。また、p配線電極層42が露出した領域には、外部との電気的接続用の導電性部材であるp接続部材60が配置される領域であるp端子領域60rとが設定される。
 続いて、図6Eに示されるように、1以上の第1のn端子領域51r及びp端子領域60rを覆うシードメタル膜56Mを形成する。本実施の形態では、1以上の第1のn端子領域51r及びp端子領域60rを含む半導体積層体30の上方全面に、EB法又はスパッタ法を用いてTi膜及びAu膜を順に成膜することで、シードメタル膜56Mを形成する。
 続いて、図6Fに示されるように、1以上の第1のn端子領域51rに、それぞれ、1以上の第1のn接続部材51を形成する。また、p端子領域60rにp接続部材60を形成する。本実施の形態では、フォトリソグラフィ技術を用いて1以上の第1のn端子領域51r及びp端子領域60rが開口するレジストパターンを形成し、DC電解めっき法によりレジストパターンの開口部にAuめっきを形成した後、レジストを除去する。
 続いて、図6Gに示されるように、シードメタル膜56Mの第1のn接続部材51及びp接続部材60が配置されていない領域を除去することでシードメタル層56を形成する。本実施の形態では、シードメタル膜56Mを形成するAu膜及びTi膜をそれぞれ選択的にエッチングすることで、シードメタル膜56Mを除去する。このように、シードメタル層56が形成される。
 続いて、図6Hに示されるように、実装基板11を準備し、実装基板11に半導体発光素子20をフリップチップボンディングする。本実施の形態では、基板12上にAu層からなる第1の配線電極15及び第2の配線電極16を形成することで、実装基板11を準備する。そして、半導体発光素子20のAuバンプである1以上の第1のn接続部材51及びp接続部材60を、それぞれ、実装基板11の第1の配線電極15及び第2の配線電極16に接合する。より具体的には、実装基板11に半導体発光素子20を押し当てて荷重をかけつつ半導体発光素子を150℃程度まで加熱し、超音波振動を作用させる。これにより、1以上の第1のn接続部材51及びp接続部材60と、第1の配線電極15及び第2の配線電極16とがそれぞれ固相接合して一体化する。
 以上のように、本実施の形態に係る半導体発光装置10が製造される。
 [1-4.第1のn接続部材及び第1のn端子領域の構成]
 次に、上述した製造方法によって製造された半導体発光装置10の第1のn接続部材51及び第1のn端子領域51rの構成について説明する。まず、第1のn接続部材51の粒径及び硬度について、図7~図9を用いて説明する。図7は、Auの平均粒径と硬度との関係を示すグラフである。図8は、粒径の測定方法を説明するための図である。図9は、本実施の形態に係る第1のn接続部材51を押し潰した場合の粒径と厚さとの関係を示すグラフである。
 図7に示されるように、第1のn接続部材51の硬度は、平均粒径が大きくなるにしたがって低下する。一般的に金属の粒径と硬度とには負の相関がある。
 これは、金属の硬度が、荷重をかけた時の金属の塑性変形量で決まるものであることに起因する。また、塑性変形量は、転位の移動、増殖及び移動に対する、障害物、すべり面の長さ及び金属結晶の方向に影響を受ける。
 粒径が大きい金属結晶体は、すべり線の長さが長く、応力がかかると結晶境界に応力が集中し、その近傍で塑性変形しやすい。つまり、粒径が大きい金属結晶体は、軟らかい。
 ここで、本実施の形態で用いた第1のn接続部材51の粒径の測定方法を以下に示す。本実施の形態では、第1のn接続部材51の断面を形成した後、走査型電子顕微鏡によるScanning Ion Microscopy像(SIM像)にて観察した観察領域に対してインターセプト法を適用して粒径を測定した。
 このとき、図8に示されるように、一辺がLの正方形の中に平均粒径dを持つ結晶が一辺当りn個存在した場合、正方形の面積はLで、1つの結晶粒の面積はπ(d/2)となる。そして、結晶粒に対して観察領域が相対的に大きい場合、結晶粒は正方形の中にn個あるため結晶粒全部が占める面積はn×π(d/2)となり、正方形の面積=結晶粒全部が占める面積となるので、L=n×π(d/2)となる。これをdで表すと、d=2L/n/(π)1/2の関係式で表される。この関係式を用いて観察領域L×Lに直線(図8の一点鎖線)をひき、この直線に交わる粒界の数を結晶の数nとして第1のn接続部材51の平均粒径dを求めた。なお、図8では、一点鎖線の直線が6つの粒界と交わっているので、n=6である。
 図9に示されるように、第1のn接続部材51に対する荷重が0Nの状態で厚さが8μm程度、粒径が2.6μm程度である場合、荷重が10Nの状態では、厚さは5μm程度、粒径は1.6μm程度となる。さらに、第1のn接続部材51に対する荷重が35Nの状態では、厚さは3.8μm程度、粒径は、0.9μm程度となる。このように、第1のn接続部材51は、荷重が増大するにしたがって、粒径が縮小する。図7に示されるグラフによれば、第1のn接続部材51の粒径が縮小される場合、硬度が上昇する。このように、第1のn接続部材51を実装時に押し潰すことで、第1のn接続部材51の粒径が縮小し、硬度が上昇する。本実施の形態では、図6Fに示されるように、積層方向に平行な断面において、実装前には、1以上の第1のn接続部材51の開口部44a上における高さが、p型層36上における高さより低い。つまり、1以上の第1のn接続部材51は、開口部44a上において凹んでいる。このため、半導体発光素子20を実装基板11に実装する際、1以上の第1のn接続部材51のp型層36上の領域における粒径は、1以上の第1のn接続部材51の開口部44a上の領域における粒径より小さくなる。したがって、本実施の形態に係る半導体発光素子20においては、積層方向に平行な断面において、1以上の第1のn接続部材51の、開口部44a上における粒径が、p型層36上における粒径よりも大きい。
 また、本実施の形態に係る半導体発光素子20において、Auめっき層である1以上の第1のn接続部材51の粒径は、EB蒸着法で形成されたAu層からなるn配線電極層46の粒径よりも大きい。
 このように、1以上の第1のn接続部材51の粒径をn配線電極層46より大きくすることで、1以上の第1のn接続部材51の硬度を、n配線電極層46の硬度より低減できる。このため、半導体発光素子20を実装基板11に実装する際に、半導体発光素子20に加わる力を1以上の第1のn接続部材51によって吸収できる。したがって、本実施の形態に係る半導体発光素子20では、1以上の第1のn接続部材51の粒径がn配線電極層46と同等である場合より、実装時にn露出部30eの内側面近傍の絶縁層44へ加わる力を軽減できるため、絶縁層44の割れを抑制できる。
 次に、本実施の形態に係る1以上の第1のn接続部材51の構造について、図10を用いて説明する。図10は、本実施の形態に係る半導体発光装置10の第1のn接続部材51の構造を示す模式的な断面図である。
 図10に示されるように、第1のn接続部材51の第1の配線電極15との接合面における端部51eは、実装基板11の第1の配線電極15の端部15eに対して、第1の配線電極15の内側に離間して配置されている。言い換えると、第1のn接続部材51の第1の配線電極15との接合面における端部51eは、第1の配線電極15の端部15eまで延びていない。
 このように、第1のn接続部材51が、第1の配線電極15の端部15eに配置されないことで、第1のn接続部材51が、隣り合う第2の配線電極16及びp接続部材60と短絡することを抑制できる。
 第1のn接続部材51のこのような構造は、上述したように第1のn接続部材51を押し潰して第1の配線電極15に接合することによって実現できる。一方、例えば、第1のn接続部材51として融点の低い半田を用い、第1のn接続部材51を溶融することで第1の配線電極15に接合する場合には、溶融した第1のn接続部材51が第1の配線電極15の端部15eまで広がる。このため、第1のn接続部材51が、第2の配線電極16及びp接続部材60と短絡しやすくなる。
 また、図10に示されるように、積層方向に平行な断面において、1以上の第1のn接続部材51は、n配線電極層46側において、n配線電極層46に近付くほど側壁51wが外側に広がっていてもよい。つまり、1以上の第1のn接続部材51は、n配線電極層46側において、フィレットが形成されていてもよい。
 このように、第1のn接続部材51の側壁51wが広がることで、側壁51wが広がらない場合より、第1のn端子領域51rの面積を拡大できる。このため、第1のn接続部材51によって、より広い領域の放熱を行うことができる。したがって、半導体発光装置10の放熱性を高めることができる。
 ここで、図10に示されるような第1のn接続部材51の側壁51wの形状は、例えば以下のような製造方法により形成できる。
 まず、図6Gに示されるような半導体発光素子を形成した後、半導体発光素子を大気雰囲気中において150℃で1時間の熱処理を行う。これにより、第1のn接続部材51とn配線電極層46とがそれぞれ再結晶化することにより粒径が拡大する。このような熱処理を施した第1のn接続部材51を実装基板11に押し当てて接合する場合、第1のn接続部材51のn配線電極層46側の粒径の大きい領域の方が実装基板11側の領域より硬度が小さいため、より大きく押し潰される。したがって、第1のn接続部材51のn配線電極層46側の領域の側壁51wの方が、実装基板11側の領域の側壁51wより外側に大きく広がる。このように、図10に示されるような第1のn接続部材51の側壁51wの形状を実現できる。
 次に、本実施の形態に係るn配線電極層46における1以上の第1のn接続部材51が配置される領域である1以上の第1のn端子領域51rについて図11A及び図11Bを用いて説明する。図11A及び図11Bは、本実施の形態に係る第1のn端子領域51rと開口部44aとの各位置関係を示す平面図である。図11A及び図11Bにおいては、n配線電極層46の平面視における第1のn端子領域51r及び開口部44aの平面図が示されている。
 図11Aに示されるように、n配線電極層46の平面視において、第1のn端子領域51rの中心51rcは、開口部44aの領域内にある。
 このように、第1のn端子領域51rの中心51rcを開口部44aの領域内に配置することで、第1のn端子領域51rに配置される第1のn接続部材51などのような導電性部材の中央部が開口部44aに配置される。このため、実装時に導電性部材に加わる力の多くが絶縁層44が配置されていない開口部44aに加わる。したがって、実装時に絶縁層44に加わる力を低減できるため、絶縁層44の割れを抑制できる。なお、ここで、第1のn端子領域51rの中心51rcとは、第1のn端子領域51rの形状が円形の場合には、当該円の中心である。また、第1のn端子領域51rの形状が円形でない場合には、例えば、第1のn端子領域51rの重心を第1のn端子領域51rの中心51rcと定めてもよい。
 また、図11Bに示されるように、n配線電極層46の平面視において、第1のn端子領域51rの中心51rcは、開口部44aの中心44acと一致していてもよい。
 このように、第1のn端子領域51rの中心51rcを開口部44aの中心44acと一致させることで、第1のn端子領域51rに配置される第1のn接続部材51などのような導電性部材の中央部が開口部44aの中心44acに配置される。このため、実装時に導電性部材に加わる力の多くが絶縁層44が配置されていない開口部44aに加わる。したがって、実装時に絶縁層44に加わる力を低減できるため、絶縁層44の割れを抑制できる。
 なお、ここで、開口部44aの中心44acについても、第1のn端子領域51rの中心51rcと同様に、開口部44aの形状が円形でない場合には、開口部44aの重心を中心44acと定めてもよい。また、中心51rcが中心44acと一致するとの記載によって規定される状態には、中心51rcが中心44acと完全に一致する状態だけでなく、実質的に一致する状態も含まれる。例えば、中心51rcが中心44acと一致するとの記載によって規定される状態には、中心51rcと中心44acとの間の距離が開口部44aの最大寸法の5%以下程度である状態が含まれる。
 [1-5.変形例1]
 次に、本実施の形態の変形例1に係る半導体発光素子について図12及び図13を用いて説明する。図12及び図13は、本変形例に係る半導体発光素子20aの構成を示す平面図及び断面図である。図12には、半導体発光素子20aのn配線電極層46の平面視における平面図が示されている。図13には、図12のXIII-XIII線における断面の一部が示されている。
 図12及び図13に示されるように、本変形例に係る半導体発光素子20aは、大きさの異なる第1のn接続部材51b及び51sを有する点において、実施の形態1に係る半導体発光素子20と相違する。半導体発光素子20aにおいては、第1のn接続部材51b及び51sに、それぞれ対応する第1のn端子領域51rb及び51rsが設定されている。半導体発光素子20aでは、n配線電極層46の平面視において、1以上の第1のn端子領域の各々の面積は、半導体発光素子20aの端部20aeに近い方が広い。図12及び図13においては、半導体発光素子20aの端部20aeに近い第1のn端子領域51rbの面積の方が、第1のn端子領域51rbより端部20aeから遠い第1のn端子領域51rsの面積より広い。
 半導体発光素子20aの中央部には、放熱経路になり得る接続部材が全方向に存在するのに対して、半導体発光素子20aの周縁部には、放熱経路になり得る接続部材が内側方向だけにしか存在しないため、半導体発光素子20aの周縁部において放熱性が悪くなり得る。しかしながら、本変形例に係る半導体発光素子20aにおいては、端部20aeに近い第1のn端子領域51rbの面積を拡大することで、放熱経路を増大させることができるため、周縁部の放熱性を高めることができる。
 [1-6.変形例2]
 次に、本実施の形態の変形例2に係る半導体発光素子について図14及び図15を用いて説明する。図14及び図15は、本変形例に係る半導体発光素子20bの構成を示す平面図及び断面図である。図14には、半導体発光素子20bのn配線電極層46の平面視における平面図が示されている。図15には、図14のXV-XV線における断面の一部が示されている。
 図14及び図15に示されるように、本変形例に係る半導体発光素子20bは、大きさの異なる開口部44ab及び44asを有する点において、実施の形態1に係る半導体発光素子20と相違する。
 半導体発光素子20bでは、n配線電極層46の平面視において、開口部の面積は、半導体発光素子20bの端部20beに近い方が広い。図14及び図15においては、半導体発光素子20bの端部20beに近い開口部44abの面積の方が、開口部44abより端部20beから遠い開口部44asより広い。これに伴い、本変形例では、半導体発光素子20bの端部20beに近いn露出部30ebの面積の方が、n露出部30ebより端部20beから遠いn露出部30esより広い。
 本実施の形態の変形例1の説明で述べたとおり、半導体発光素子20bの周縁部においては、放熱性が悪くなり得る。しかしながら、本変形例に係る半導体発光素子20bにおいては、端部20beに近い開口部44abの面積を拡大することで、発熱源を分散させるとともに放熱経路を増大させることができるため、周縁部の放熱性を高めることができる。
 (実施の形態2)
 実施の形態2に係る半導体発光素子及び半導体発光装置について説明する。本実施の形態に係る半導体発光素子及び半導体発光装置は、第1のn端子領域に加えて、第2のn接続部材が配置される第2のn端子領域を有する点において、実施の形態1に係る半導体発光素子及び半導体発光装置と相違する。以下本実施の形態に係る半導体発光素子及び半導体発光装置について実施の形態1に係る半導体発光素子及び半導体発光装置との相違点を中心に説明する。
 [2-1.全体構成]
 まず、本実施の形態に係る半導体発光素子の構成について図16及び図17を用いて説明する。図16及び図17は、それぞれ、本実施の形態に係る半導体発光素子120の全体構成を示す模式的な平面図及び断面図である。図16には、半導体発光素子120のn配線電極層46の平面視における平面図が示されている。図17には、図16のXVII-XVII線における半導体発光素子120の断面の一部が示されている。
 本実施の形態に係る半導体発光素子120は、図17に示されるように、成長基板22と、半導体積層体30と、p配線電極層42と、絶縁層44と、n配線電極層46とを有する。本実施の形態では、半導体発光素子120は、複数のシードメタル層56と、1以上の第1のn接続部材51と、1以上の第2のn接続部材152と、p接続部材60とをさらに有する。
 1以上の第2のn接続部材152は、外部との電気的接続用の導電性部材である。1以上の第2のn接続部材152は、それぞれ、n露出部30e以外に配置されたn配線電極層46の1以上の第2のn端子領域152rにおいて、n配線電極層46と接続される。言い換えると、n露出部30e以外に配置されたn配線電極層46上に、外部との電気的接続用の導電性部材が配置される領域である1以上の第2のn端子領域152rが設定されている。なお、本実施の形態では、第2のn接続部材152とn配線電極層46との間にも、シードメタル層56が配置される。また、第2のn接続部材152の個数は、1以上であれば特に限定されない。例えば、第2のn接続部材152の個数は、複数であってもよい。
 なお、図示しないが、本実施の形態に係る半導体発光素子120を実施の形態1に係る実装基板11に実装することで半導体発光装置を形成できる。
 [2-2.作用及び効果]
 次に、本実施の形態に係る半導体発光素子120の作用及び効果を説明する。
 上述したように、本実施の形態に係る半導体発光素子120のn露出部30e以外に配置されたn配線電極層46上に、外部との電気的接続用の導電性部材が配置される領域である1以上の第2のn端子領域152rが設定されている。なお、第2のn端子領域152rの個数は、1以上であれば特に限定されない。例えば、第2のn端子領域152rの個数は、複数であってもよい。
 このように、第2のn端子領域152rを設定することで、第2のn端子領域152r上に第2のn接続部材152のような導電性部材を配置する場合に、実施の形態1に係る半導体発光素子20の放熱経路の他にさらなる放熱経路を形成できるため、半導体発光素子120の放熱性を実施の形態1に係る半導体発光素子20よりさらに高めることができる。
 続いて、本実施の形態に係る半導体発光素子120の1以上の第1のn端子領域51r及び1以上の第2のn端子領域152rの構成について、図18及び図19を用いて詳細に説明する。図18は、本実施の形態に係るn露出部30e以外に配置されたn配線電極層46を示す平面図である。図19は、本実施の形態に係る第1のn端子領域51r及び第2のn端子領域152rを示す平面図である。
 本実施の形態では、n配線電極層46の平面視において、図19に示される1以上の第1のn端子領域51r及び1以上の第2のn端子領域152rの面積の総和が、図18に示されるn露出部30e以外に配置されたn配線電極層46の面積の総和より大きい。
 このように、第1のn端子領域51r及び第2のn端子領域152rの面積を大きくすることで、第1のn端子領域51r及び第2のn端子領域152rに導電性部材を配置した場合に、放熱経路を増大させることができるため、半導体発光素子120の放熱性を高めることができる。
 また、本実施の形態では、図16及び図17に示されるように、1以上の第1のn接続部材51と1以上の第2のn接続部材152とは離間している。このように、第1のn接続部材51と第2のn接続部材152とが離間されることで、実装時に実装荷重を分散することができ、絶縁層44の割れを抑制することができる。
 [2-3.シミュレーション結果]
 次に、本実施の形態に係る半導体発光素子120の放熱性について、シミュレーション結果を用いて説明する。図20A及び図20Bは、それぞれ、シミュレーションにおいて用いた本実施の形態及び比較例に係る半導体発光素子の構成を示す模式的な平面図である。図20Aに示されるように、本シミュレーションで用いた半導体発光素子120は、42個の第1のn接続部材51と、36個の第2のn接続部材152と、8個のp接続部材60とを有する。なお、本実施の形態に係る半導体発光素子120の効果を説明するために、比較例に係る半導体発光素子についても併せてシミュレーションを行った。比較例に係る半導体発光素子1120は、図20Bに示すように、第1のn接続部材51を有さない点において、本実施の形態に係る半導体発光素子120と相違し、その他の点において一致する。
 図20A及び図20Bに示される各半導体発光素子のシミュレーション結果について図21及び図22を用いて説明する。図21は、本実施の形態及び比較例に係る各半導体発光素子の発熱分布及び温度分布のシミュレーション結果を示す図である。図21には、発熱量の最大値、並びに、温度の最大値及び平均値も併せて示されている。図22は、本実施の形態及び比較例に係る各半導体発光素子の発光層34の温度Tjの最大値と電流量との関係のシミュレーション結果を示すグラフである。
 本シミュレーションは、半導体層における1次元バンド構造と、3次元の電流分布及び温度分布を計算できるソフトウェアを用いて、GaN系LEDの発光出力、電圧、及び温度分布の計算を行った。本実施の形態及び比較例に係る各半導体発光素子の成長基板22を厚さ100μm、熱伝導率50W/m/Kのサファイア基板とし、半導体積層体30を厚さ12μm、熱伝導率120W/m/KのGaNとし、第1のn接続部材51、第2のn接続部材152及びp接続部材60を厚さ15μm、熱伝導率300W/m/KのAuとした。また、各半導体発光素子が実装される実装基板11の基板12を厚さ300μm、熱伝導率170W/m/KのAlNとした。さらに、実装基板11の各半導体発光素子が実装されない側の主面の全面に厚さ2mm、熱伝導率400W/m/KのCuで温度Tcが105℃の放熱板を接触させるという条件でシミュレーションを行った。また、各半導体発光素子の半導体積層体30の発光層34に電圧を印加し、1Aから6Aまでの電流を供給した場合の発光層34の温度Tjを求めた。
 図21の上段に示されるように、本実施の形態及び比較例に係る各半導体素子では、いずれの場合も発熱はn露出部30eに集中する。単位時間当たりの発熱量の平均値は、比較例で7、7×10W/cm、本実施の形態で7、9×10W/cmであり同等であった。また、単位時間当たりの発熱量の最大値も、比較例で3、9×10W/cm、本実施の形態で4、0×10W/cmであり同等であった。
 しかしながら、本実施の形態に係る半導体発光素子120の方が、比較例に係る半導体発光素子1120より温度が抑制されている。
 具体的には、図21の下段で示されるように比較例に係る半導体発光素子1120では、発光層の温度Tjはn露出部30e近傍が高く、150℃~165℃になっており、半導体発光素子1120の周縁部においては、170℃を越えている。
 一方、本実施の形態に係る半導体発光素子120では、n露出部30e近傍の温度Tjは115℃で周縁部の温度も135℃以下に抑制されている。このように本実施の形態に係る半導体発光素子120において温度が抑制されているのは、発熱量が大きいn露出部30eに配置された第1のn接続部材51を介して、n露出部30eから実装基板11及び放熱板に効率よく放熱されているからである。
 また、図22に示されるように、本実施の形態に係る半導体発光素子120では、比較例に係る半導体発光素子より、各電流供給時における発光層の温度Tjを抑制できている。ここで、半導体発光素子では、発光層34の温度Tjが150℃を超えると著しく信頼性が損なわれることが知られている。比較例に係る半導体発光素子では、供給される電流量が4A程度以上となると発光層34の温度Tjが150℃を超えるため信頼性が損なわれ得る。一方、本実施の形態に係る半導体発光素子120では、供給される電流量が0A~6Aのいずれの場合も発光層の温度Tjが150℃以下に抑制されている。このように、本実施の形態に係る半導体発光素子120によれば、1以上の第1のn接続部材51を備えることにより、発光層34の温度上昇を抑制できる。
 [2-4.製造方法]
 次に、本実施の形態に係る半導体発光素子120の製造方法について、図23A~図23Cを用いて説明する。図23A~図23Cは、本実施の形態に係る半導体発光素子120の製造方法の各工程を示す模式的な断面図である。
 まず、実施の形態1に係る半導体発光素子20の製造方法と同様に、図23Aに示されるように、成長基板22上に、順に半導体積層体30、p配線電極層42、絶縁層44、n配線電極層46及びシードメタル膜56Mを形成する。ここで、n配線電極層46上には、外部との電気的接続用の導電性部材が配置される領域である1以上の第1のn端子領域51r及び1以上の第2のn端子領域152rが設定される。また、p配線電極層42上には、外部との電気的接続用の導電性部材が配置される領域であるp端子領域60rが設定される。
 続いて、図23Bに示されるように、1以上の第1のn端子領域51rに、それぞれ、1以上の第1のn接続部材51を形成し、1以上の第2のn端子領域152rに、それぞれ、1以上の第2のn接続部材152を形成する。また、p端子領域60rにp接続部材60を形成する。本実施の形態では、フォトリソグラフィ技術を用いて1以上の第1のn端子領域51r、1以上の第2のn端子領域152r及びp端子領域60rが開口するレジストパターンを形成し、DC電解めっき法によりレジストパターンの開口部にAuめっきを形成した後、レジストを除去する。
 続いて、図23Cに示されるように、シードメタル膜56Mの第1のn接続部材51、第2のn接続部材152及びp接続部材60が配置されていない領域を除去することでシードメタル層56を形成する。本実施の形態では、シードメタル膜56Mを形成するAu膜及びTi膜をそれぞれ選択的にエッチングすることで、シードメタル膜56Mを除去する。このように、シードメタル層56が形成される。
 以上のように、本実施の形態に係る半導体発光素子120が製造される。なお、半導体発光素子120を実装基板11に実装することにより、本実施の形態に係る半導体発光装置を製造できる。なお、本実施の形態では、1以上の第1のn接続部材51に加えて、1以上の第2のn接続部材152も、実装基板11の第1の配線電極15と接合される。
 (実施の形態3)
 実施の形態3に係る半導体発光素子及び半導体発光装置について説明する。本実施の形態に係る半導体発光装置は、主に、第1のn接続部材及びp接続部材が、実装基板に配置された後で半導体発光素子に接合される点において実施の形態1に係る半導体発光装置と相違する。以下、本実施の形態に係る半導体発光素子及び半導体発光装置について、実施の形態1に係る半導体発光素子及び半導体発光装置との相違点を中心に説明する。
 [3-1.全体構成]
 まず、本実施の形態に係る半導体発光素子及び半導体発光装置の構成について図24を用いて説明する。図24は、本実施の形態に係る半導体発光装置210の全体構成を示す模式的な断面図である。図24には、半導体発光装置210の図2Aと同様の断面が示されている。
 図24に示されるように、本実施の形態に係る半導体発光装置は、実装基板11と、半導体発光素子220とを備える。
 半導体発光素子220は、成長基板22と、半導体積層体30と、p配線電極層42と、絶縁層44と、n配線電極層46とを有する。本実施の形態では、半導体発光素子220は、1以上の第1のn接続部材251と、p接続部材260とをさらに有する。本実施の形態では、1以上の第1のn接続部材251及びp接続部材260が、実装基板11に形成された後に、半導体発光素子220に接合されるため、シードメタル層56を有さない。
 1以上の第1のn接続部材251の各々は、外部との電気的接続用の導電性部材である。1以上の第1のn接続部材251は、それぞれ、1以上の第1のn端子領域251rにおいてn配線電極層46と接続される。言い換えると、n配線電極層46には、外部との電気的接続用の導電性部材が配置される領域である1以上の第1のn端子領域251rが設定されている。なお、第1のn接続部材251及び第1のn端子領域251rの個数は、1以上であれば特に限定されない。例えば、第1のn接続部材251及び第1のn端子領域251rの個数は、それぞれ複数であってもよい。
 p接続部材260は、外部との電気的接続用の導電性部材である。p接続部材260は、p端子領域260rにおいてp配線電極層42と接続される。言い換えると、p配線電極層42には、外部との電気的接続用の導電性部材が配置される領域であるp端子領域260rが設定されている。
 本実施の形態に係る半導体発光装置210においても、実施の形態1に係る半導体発光装置10と同様の効果が奏される。
 [3-2.製造方法]
 次に、本実施の形態に係る半導体発光装置210の製造方法について、図25A~図25Cを用いて説明する。図25A~図25Cは、本実施の形態に係る半導体発光装置210の製造方法の各工程を示す模式的な断面図である。
 まず、実施の形態1に係る半導体発光装置10の製造方法と同様に、図25Aに示されるように、成長基板22上に、順に半導体積層体30、p配線電極層42、絶縁層44及びn配線電極層46を形成する。ここで、n配線電極層46上には、外部との電気的接続用の導電性部材が配置される領域である1以上の第1のn端子領域251rが設定される。また、p配線電極層42上には、外部との電気的接続用の導電性部材が配置される領域であるp端子領域260rが設定される。
 続いて、図25Bに示されるように、実装基板11を準備する。本実施の形態では、実装基板11の第1の配線電極15及び第2の配線電極16に、それぞれ、1以上の第1のn接続部材251及びp接続部材260を形成する。
 続いて、図25Cに示されるように、実装基板11に形成された1以上の第1のn接続部材251及びp接続部材260を、それぞれ、n配線電極層46の1以上の第1のn端子領域251r、及び、p配線電極層42のp端子領域260rに接合する。
 以上のように、本実施の形態に係る半導体発光素子220及び半導体発光装置210が製造される。
 [3-3.変形例]
 次に、本実施の形態に係る半導体発光素子及び半導体発光装置の変形例について図26A及び図26Bを用いて説明する。図26Aは、本変形例に係る半導体発光装置210aの全体構成を示す模式的な断面図である。
 図26Aに示されるように、本変形例に係る半導体発光装置210aは、実装基板11と、半導体発光素子220aとを有する。
 半導体発光素子220aは、成長基板22と、半導体積層体30と、p配線電極層42と、絶縁層44と、n配線電極層46とを有する。本変形例では、半導体発光素子220aは、1以上の第1のn接続部材251aと、p接続部材260とをさらに有する。
 1以上の第1のn接続部材251aの各々は、外部との電気的接続用の導電性部材である。1以上の第1のn接続部材251aは、それぞれ、1以上の第1のn端子領域251arにおいてn配線電極層46と接続される。言い換えると、n配線電極層46には、外部との電気的接続用の導電性部材が配置される領域である1以上の第1のn端子領域251arが設定されている。なお、第1のn接続部材251a及び第1のn端子領域251arの個数は、1以上であれば特に限定されない。例えば、第1のn接続部材251a及び第1のn端子領域251arの個数は、それぞれ複数であってもよい。
 本変形例に係る1以上の第1のn接続部材251aと、n配線電極層46との間には、図26Aに示されるように、空洞部251avが形成される。このような空洞部251avは、実装基板11に第1のn接続部材251aを形成した後に、第1のn接続部材251aをn配線電極層46に接合する場合に形成され得る。例えば、第1のn接続部材251aをn配線電極層46に接合する際に実装荷重を、実施の形態の3に係る半導体発光装置210の第1のn接続部材251を接合する際よりも低く設定することで、空洞部251avは形成される。
 以上のように、半導体発光素子220aの1以上の第1のn端子領域251arにおいて、1以上の第1のn接続部材251aが接続されていない領域があってもよい。
 また、本変形例に係る1以上の第1のn接続部材251aと、n配線電極層46との間に形成される空洞の形状は、図26Aに示される例に限定されない。例えば、空洞は、開口部44aの上方の全領域に形成されてもよい。このような空洞の例について図26Bを用いて説明する。図26Bは、本実施の形態の他の変形例に係る半導体発光装置210bの全体構成を示す模式的な断面図である。
 図26Bに示されるように、半導体発光装置210bが備える半導体発光素子220bは、1以上の第1のn接続部材251bを有する。1以上の第1のn接続部材251bは、それぞれ、1以上の第1のn端子領域251brにおいてn配線電極層46と接続される。
 半導体発光素子220bにおいては、1以上の第1のn接続部材251bと、n配線電極層46との間には、空洞部251bvが形成される。半導体発光装置210bは、1以上の第1のn接続部材251b及び空洞部251bvの構成において、半導体発光装置210aと相違し、その他の構成において一致する。半導体発光装置210bにおいては、開口部44aの上方の全領域に空洞部251bvが形成される。このような空洞部251bvは、実装基板11に第1のn接続部材251bを形成した後に、第1のn接続部材251bをn配線電極層46に接合する場合に形成され得る。例えば、第1のn接続部材251bをn配線電極層46に接合する際に実装荷重を、実施の形態の3に係る半導体発光装置210の第1のn接続部材251を接合する際よりも低く設定することで、開口部44aの上方の全領域に空洞部251bvが形成される。
 以上のように、半導体発光素子220bの1以上の第1のn端子領域251brにおいて、1以上の第1のn接続部材251bがn配線電極層46に接続されていない領域があっても、n露出部の内側面近傍で発生した熱を1以上の第1のn接続部材251bを介して放散することができるので、半導体発光素子の放熱性を高めることができる。
 本変形例に係る半導体発光装置210a及び210bにおいても、実施の形態1に係る半導体発光装置10と同様の効果が奏される。
 (実施の形態4)
 実施の形態4に係る半導体発光素子及び半導体発光装置について説明する。本実施の形態に係る半導体発光装置は、主に、第1のn接続部材及びp接続部材が、半導体発光素子及び実装基板の両方に配置された後で互いに接合される点において実施の形態1に係る半導体発光装置と相違する。以下、本実施の形態に係る半導体発光素子及び半導体発光装置について、実施の形態1に係る半導体発光素子及び半導体発光装置との相違点を中心に説明する。
 [4-1.全体構成]
 まず、本実施の形態に係る半導体発光素子及び半導体発光装置の構成について図27を用いて説明する。図27は、本実施の形態に係る半導体発光装置310の全体構成を示す模式的な断面図である。図27には、図2Aの半導体発光装置10と同様の断面が示されている。
 図27に示されるように、本実施の形態に係る半導体発光装置は、実装基板11と、半導体発光素子320とを備える。
 半導体発光素子320は、成長基板22と、半導体積層体30と、p配線電極層42と、絶縁層44と、n配線電極層46とを有する。本実施の形態では、半導体発光素子320は、シードメタル層56と、1以上の第1のn接続部材351と、p接続部材360とをさらに有する。
 1以上の第1のn接続部材351の各々は、外部との電気的接続用の導電性部材である。1以上の第1のn接続部材351は、それぞれ、1以上の第1のn端子領域351rにおいてn配線電極層46と接続される。言い換えると、n配線電極層46には、外部との電気的接続用の導電性部材が配置される領域である1以上の第1のn端子領域351rが設定されている。なお、第1のn接続部材351及び第1のn端子領域351rの個数は、1以上であれば特に限定されない。例えば、第1のn接続部材351及び第1のn端子領域351rの個数は、それぞれ複数であってもよい。
 本実施の形態では、第1のn接続部材351は、1組の素子側n接続部材51nと実装基板側n接続部材251nとを含む。
 素子側n接続部材51nは、実施の形態1に係る第1のn接続部材51と同様の構成を有する。実装基板側n接続部材251nは、実施の形態3に係る第1のn接続部材251と同様の構成を有する。素子側n接続部材51nは、実装基板側n接続部材251nより半導体積層体30に近い位置に配置される。
 p接続部材360は、外部との電気的接続用の導電性部材である。p接続部材360は、p端子領域360rにおいてp配線電極層42と接続される。言い換えると、p配線電極層42には、外部との電気的接続用の導電性部材が配置される領域であるp端子領域360rが設定されている。
 本実施の形態では、p接続部材360は、1組の素子側p接続部材60pと実装基板側p接続部材260pとを含む。
 素子側p接続部材60pは、実施の形態1に係るp接続部材60と同様の構成を有する。実装基板側p接続部材260pは、実施の形態3に係るp接続部材260と同様の構成を有する。素子側p接続部材60pは、実装基板側p接続部材260pより半導体積層体30に近い位置に配置される。
 本実施の形態に係る半導体発光装置310においても、実施の形態1に係る半導体発光装置10と同様の効果が奏される。
 [4-2.製造方法]
 次に、本実施の形態に係る半導体発光装置310の製造方法について、図28A~図28Cを用いて説明する。図28A~図28Cは、本実施の形態に係る半導体発光装置310の製造方法の各工程を示す模式的な断面図である。
 まず、実施の形態1に係る半導体発光装置10の製造方法と同様に、図28Aに示されるように、成長基板22上に、順に半導体積層体30、p配線電極層42、絶縁層44、n配線電極層46、シードメタル層56、1以上の素子側n接続部材51n及び素子側p接続部材60pを形成する。ここで、n配線電極層46上には、外部との電気的接続用の導電性部材が配置される領域である1以上の第1のn端子領域351rが設定される。また、p配線電極層42上には、外部との電気的接続用の導電性部材が配置される領域であるp端子領域360rが設定される。続いて、1以上の素子側n接続部材51n及び素子側p接続部材60pを、それぞれ、n配線電極層46の1以上の第1のn端子領域351r、及び、p配線電極層42のp端子領域360rに形成する。
 続いて、図28Bに示されるように、実装基板11を準備する。本実施の形態では、実施の形態3に係る半導体発光装置210の製造方法と同様に、実装基板11の第1の配線電極15及び第2の配線電極16に、それぞれ、1以上の実装基板側n接続部材251n及び実装基板側p接続部材260pを形成する。
 続いて、実装基板11に形成された1以上の実装基板側n接続部材251n及び実装基板側p接続部材260pを、それぞれ、1以上の素子側n接続部材51n、及び、素子側p接続部材60pに接合する。これにより、図28Cに示されるように、1以上の第1のn接続部材351及びp接続部材360を形成する。ここで、1以上の第1のn接続部材351の各々は、1組の素子側n接続部材51nと実装基板側n接続部材251nとを含み、p接続部材360は、1組の素子側p接続部材60pと実装基板側p接続部材260pとを含む。
 以上のように、本実施の形態に係る半導体発光素子320及び半導体発光装置310が製造される。
 (変形例など)
 以上、本開示に係る半導体発光素子及び半導体発光装置について、各実施の形態に基づいて説明したが、本開示は、上記各実施の形態に限定されるものではない。
 例えば、上記各実施の形態では、n配線電極層46上に設定された第1のn端子領域が、n配線電極層46上に第1のn接続部材が配置される領域と一致しているが、これらは、必ずしも一致しなくてもよい。例えば、第1のn端子領域の全体に第1のn接続部材が配置されなくてもよいし、第1のn端子領域以外の領域に第1のn接続部材の一部が配置されてもよい。
 また、半導体発光素子が、第1のn接続部材、第2のn接続部材及びp接続部材が配置される前の状態においては、設定された第1のn端子領域、第2のn端子領域及びp端子領域は、例えば、半導体発光素子のn配線電極層及びp配線電極層にマーキングされていてもよいし、半導体発光素子の仕様書などに示されていてもよい。
 また、上記各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で上記各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示の半導体発光素子及び半導体発光装置は、例えば、高出力かつ高効率な光源としてプロジェクタなどに適用できる。
 10、10b、210、210a、210b、310 半導体発光装置
 11 実装基板
 12 基板
 15 第1の配線電極
 15e、20ae、20be、51e 端部
 16 第2の配線電極
 20、20a、20b、120、220、220a、220b、320、1120 半導体発光素子
 22 成長基板
 30 半導体積層体
 30b 底面
 30e、30eb、30es n露出部
 30s 内側面
 32 n型層
 34 発光層
 36 p型層
 42 p配線電極層
 44 絶縁層
 44a、44ab、44as 開口部
 44ac、51rc 中心
 46 n配線電極層
 51、51b、51s、251、251a、251b、351 第1のn接続部材
 51n 素子側n接続部材
 51r、51rb、51rs、251ar、251br、251r、351r 第1のn端子領域
 51w 側壁
 56 シードメタル層
 56M シードメタル膜
 60、260、360 p接続部材
 60p 素子側p接続部材
 60r、260r、360r p端子領域
 152 第2のn接続部材
 152r 第2のn端子領域
 251av、251bv 空洞部 
 251n 実装基板側n接続部材
 260p 実装基板側p接続部材

Claims (19)

  1.  n型層と、前記n型層の上方に配置された発光層と、前記発光層の上方に配置されたp型層とを有する半導体積層体であって、前記n型層が露出する凹部である1以上のn露出部を有する半導体積層体と、
     前記p型層上に配置されたp配線電極層と、
     前記1以上のn露出部の内側面と、前記p配線電極層の上方の一部とを連続的に覆い、前記1以上のn露出部の底面において前記n型層を露出する開口部を有する絶縁層と、
     前記開口部において前記n型層に接し、前記絶縁層を介して前記p型層及び前記p配線電極層の上方に配置されたn配線電極層と、
     外部との電気的接続用の導電性部材である1以上の第1のn接続部材とを有し、
     前記1以上の第1のn接続部材は、それぞれ、1以上の第1のn端子領域において前記n配線電極層と接続され、
     平面視において前記1以上の第1のn端子領域は、前記開口部の上方の領域の少なくとも一部を含み、
     前記半導体積層体の積層方向に平行な断面において、前記1以上の第1のn端子領域の下方に、前記n配線電極層及び前記p型層が配置される
     半導体発光素子。
  2.  外部との電気的接続用の導電性部材である1以上の第2のn接続部材をさらに有し、
     前記1以上の第2のn接続部材は、それぞれ、前記1以上のn露出部以外に配置された前記n配線電極層の1以上の第2のn端子領域において、前記n配線電極層と接続される
     請求項1に記載の半導体発光素子。
  3.  前記1以上の第1のn接続部材と前記1以上の第2のn接続部材とは離間している
     請求項2に記載の半導体発光素子。
  4.  前記1以上の第1のn接続部材の粒径は、前記n配線電極層の粒径よりも大きい
     請求項1~3のいずれか1項に記載の半導体発光素子。
  5.  前記p配線電極層のうち、前記n配線電極層及び前記絶縁層から露出した領域に配置されるp接続部材と、
     前記1以上の第1のn接続部材と前記n配線電極層との間、及び、前記p接続部材とp配線電極層との間に配置され、前記半導体積層体から遠い側の表面がAuからなるシードメタル層とを有し、
     前記1以上の第1のn接続部材と前記p接続部材とは、Auからなる
     請求項1~4のいずれか1項に記載の半導体発光素子。
  6.  前記p配線電極層のうち、前記n配線電極層及び前記絶縁層から露出した領域に配置されるp接続部材と、
     前記1以上の第1のn接続部材と、前記n配線電極層との間に形成される空洞部とを有する
     請求項1~4のいずれか1項に記載の半導体発光素子。
  7.  前記p配線電極層のうち、前記n配線電極層及び前記絶縁層から露出した領域に配置されるp接続部材を有し、
     前記1以上の第1のn接続部材の各々は、1組の素子側n接続部材と実装基板側n接続部材とを含み、
     前記p接続部材は、1組の素子側p接続部材と実装基板側p接続部材とを含み、
     前記素子側n接続部材は、前記実装基板側n接続部材より前記半導体積層体に近い位置に配置され、
     前記素子側p接続部材は、前記実装基板側p接続部材より前記半導体積層体に近い位置に配置される
     請求項1~6のいずれか1項に記載の半導体発光素子。
  8.  請求項1~7のいずれか1項に記載の半導体発光素子と、
     第1の配線電極及び第2の配線電極を有する実装基板とを有し、
     前記1以上の第1のn接続部材は、前記実装基板の前記第1の配線電極と接合され、
     前記p配線電極層は、前記n配線電極層及び前記絶縁層から露出した領域において、導電性部材であるp接続部材を介して前記実装基板の第2の配線電極と接合される
     半導体発光装置。
  9.  前記1以上の第1のn接続部材の前記第1の配線電極との接合面における端部は、前記実装基板の前記第1の配線電極の端部に対して、前記第1の配線電極の内側に離間して配置されている
     請求項8に記載の半導体発光装置。
  10.  前記積層方向に平行な断面において、前記1以上の第1のn接続部材の、前記開口部上における粒径が、前記p型層上における粒径よりも大きい
     請求項8又は9に記載の半導体発光装置。
  11.  前記積層方向に平行な断面において、前記1以上の第1のn接続部材は、前記n配線電極層側において、前記n配線電極層に近付くほど側壁が外側に広がっている
     請求項8~10のいずれか1項に記載の半導体発光装置。
  12.  n型層と、前記n型層の上方に配置された発光層と、前記発光層の上方に配置されたp型層とを有する半導体積層体であって、前記n型層が露出する凹部である1以上のn露出部を有する半導体積層体と、
     前記p型層上に配置されたp配線電極層と、
     前記1以上のn露出部の内側面と、前記p配線電極層の上方の一部とを連続的に覆い、前記1以上のn露出部の底面において前記n型層を露出する開口部を有する絶縁層と、
     前記開口部において前記n型層に接し、前記絶縁層を介して前記p型層及び前記p配線電極層の上方に配置されたn配線電極層とを有し、
     前記n配線電極層には、外部との電気的接続用の導電性部材が配置される領域である1以上の第1のn端子領域が設定され、
     平面視において前記1以上の第1のn端子領域は、前記開口部の上方の領域の少なくとも一部を含み、
     前記半導体積層体の積層方向に平行な断面において、前記1以上の第1のn端子領域の下方に、前記n配線電極層及び前記p型層が配置される
     半導体発光素子。
  13.  前記n配線電極層の平面視において、前記1以上の第1のn端子領域の総面積は、前記1以上のn露出部以外に配置された前記n配線電極層の総面積より大きい
     請求項1~7、12のいずれか1項に記載の半導体発光素子。
  14.  前記n配線電極層の平面視において、前記1以上の第1のn端子領域の各々の面積は、前記半導体発光素子の端部に近い方が広い
     請求項1~7、12、13のいずれか1項に記載の半導体発光素子。
  15.  前記n配線電極層の平面視において、前記開口部の面積は、前記半導体発光素子の端部に近い方が広い
     請求項1~7、12、13のいずれか1項に記載の半導体発光素子。
  16.  前記n配線電極層の平面視において、前記1以上の第1のn端子領域の中心は、前記開口部の領域内にある
     請求項1~7、12~15のいずれか1項に記載の半導体発光素子。
  17.  前記n配線電極層の平面視において、前記1以上の第1のn端子領域の中心は、前記開口部の中心と一致している
     請求項1~7、12~16のいずれか1項に記載の半導体発光素子。
  18.  前記1以上のn露出部以外に配置された前記n配線電極層上に、外部との電気的接続用の導電性部材が配置される領域である1以上の第2のn端子領域が設定されている
     請求項12~17のいずれか1項に記載の半導体発光素子。
  19.  前記n配線電極層の平面視において、前記1以上の第1のn端子領域及び前記1以上の第2のn端子領域の面積の総和が、前記1以上のn露出部以外に配置された前記n配線電極層の面積の総和より大きい
     請求項2、3、18のいずれか1項に記載の半導体発光素子。
PCT/JP2020/019362 2019-06-06 2020-05-14 半導体発光素子及び半導体発光装置 WO2020246217A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20819545.3A EP3872872B1 (en) 2019-06-06 2020-05-14 Semiconductor light emitting element and semiconductor light emitting device
EP22200829.4A EP4138148A1 (en) 2019-06-06 2020-05-14 Semiconductor light-emitting element and semiconductor light-emitting device
CN202211136232.0A CN115360279A (zh) 2019-06-06 2020-05-14 半导体发光元件以及半导体发光装置
JP2020559572A JP6829797B1 (ja) 2019-06-06 2020-05-14 半導体発光素子及び半導体発光装置
CN202080003367.2A CN112470297B (zh) 2019-06-06 2020-05-14 半导体发光元件以及半导体发光装置
US17/133,583 US11258001B2 (en) 2019-06-06 2020-12-23 Semiconductor light-emitting element and semiconductor light-emitting device
US17/570,203 US20220131060A1 (en) 2019-06-06 2022-01-06 Semiconductor light-emitting element and semiconductor light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019106170 2019-06-06
JP2019-106170 2019-06-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/133,583 Continuation US11258001B2 (en) 2019-06-06 2020-12-23 Semiconductor light-emitting element and semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
WO2020246217A1 true WO2020246217A1 (ja) 2020-12-10

Family

ID=73652804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019362 WO2020246217A1 (ja) 2019-06-06 2020-05-14 半導体発光素子及び半導体発光装置

Country Status (5)

Country Link
US (2) US11258001B2 (ja)
EP (2) EP3872872B1 (ja)
JP (2) JP6829797B1 (ja)
CN (2) CN112470297B (ja)
WO (1) WO2020246217A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713228B (zh) * 2021-03-23 2021-07-06 北京芯海视界三维科技有限公司 发光单元、发光器件及显示器件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243849A (ja) * 2011-05-17 2012-12-10 Toshiba Corp 半導体発光装置
WO2014064871A1 (ja) * 2012-10-25 2014-05-01 パナソニック株式会社 発光装置およびその製造方法ならびに発光装置実装体
JP2016009749A (ja) * 2014-06-24 2016-01-18 日亜化学工業株式会社 発光装置及び発光装置の製造方法
JP2016208012A (ja) * 2015-04-27 2016-12-08 日亜化学工業株式会社 発光装置
JP2017139203A (ja) * 2016-02-06 2017-08-10 交和電気産業株式会社 照明装置モジュール
JP2017535052A (ja) * 2014-08-28 2017-11-24 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 発光素子
JP2018107371A (ja) 2016-12-28 2018-07-05 日亜化学工業株式会社 発光装置及びその製造方法
JP2018160683A (ja) * 2009-05-11 2018-10-11 クリー インコーポレイテッドCree Inc. 反射構造を有する半導体発光ダイオードおよびその製造方法
US20180323346A1 (en) * 2015-09-03 2018-11-08 Seoul Viosys Co., Ltd. Light-emitting element having zno transparent electrode and method for manufacturing same
JP2019503087A (ja) * 2015-12-28 2019-01-31 エルジー イノテック カンパニー リミテッド 発光素子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3346458B2 (ja) * 1997-09-18 2002-11-18 日立電線株式会社 半導体チップ接合用リードを有する配線基板および半導体装置
JP2004128253A (ja) 2002-10-03 2004-04-22 Nikon Corp マーク位置検出装置およびその組み立て方法
JP2004356129A (ja) 2003-05-27 2004-12-16 Nichia Chem Ind Ltd 半導体装置及びその製造方法
EP1716597B1 (de) 2004-02-20 2018-04-04 OSRAM Opto Semiconductors GmbH Optoelektronisches bauelement, vorrichtung mit einer mehrzahl optoelektronischer bauelemente und verfahren zur herstellung eines optoelektronischen bauelements
US8174025B2 (en) * 2006-06-09 2012-05-08 Philips Lumileds Lighting Company, Llc Semiconductor light emitting device including porous layer
JP4895827B2 (ja) 2007-01-04 2012-03-14 トヨタ自動車株式会社 めっき部材およびその製造方法
JP2008169408A (ja) 2007-01-09 2008-07-24 Auto Network Gijutsu Kenkyusho:Kk コネクタ用銀めっき端子
US9634191B2 (en) 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
US9461201B2 (en) 2007-11-14 2016-10-04 Cree, Inc. Light emitting diode dielectric mirror
JPWO2009130737A1 (ja) * 2008-04-21 2011-08-04 富士通株式会社 検査用基板、検査用基板の製造方法、及びその検査用基板を用いた検査方法
JP2011003565A (ja) 2009-06-16 2011-01-06 Hitachi Automotive Systems Ltd 電子ユニット
JP5568451B2 (ja) 2010-11-26 2014-08-06 株式会社フジクラ 半導体パッケージ
JP5983125B2 (ja) * 2012-07-18 2016-08-31 日亜化学工業株式会社 半導体発光素子の製造方法
KR102137682B1 (ko) 2012-11-07 2020-07-27 루미리즈 홀딩 비.브이. 파장 변환 발광 다이오드
US9385279B2 (en) * 2014-05-30 2016-07-05 Nichia Corporation Light-emitting device and method for manufacturing the same
US9419195B2 (en) * 2014-07-27 2016-08-16 SemiLEDs Optoelectronics Co., Ltd. Light emitting diode (LED) die having strap layer and method of fabrication
US9614126B2 (en) * 2015-04-27 2017-04-04 Nichia Corporation Light emitting device
US10615308B2 (en) * 2015-06-01 2020-04-07 Nichia Corporation Light emitting device
WO2020054592A1 (ja) 2018-09-13 2020-03-19 パナソニックIpマネジメント株式会社 半導体発光素子及び半導体発光装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160683A (ja) * 2009-05-11 2018-10-11 クリー インコーポレイテッドCree Inc. 反射構造を有する半導体発光ダイオードおよびその製造方法
JP2012243849A (ja) * 2011-05-17 2012-12-10 Toshiba Corp 半導体発光装置
WO2014064871A1 (ja) * 2012-10-25 2014-05-01 パナソニック株式会社 発光装置およびその製造方法ならびに発光装置実装体
JP2016009749A (ja) * 2014-06-24 2016-01-18 日亜化学工業株式会社 発光装置及び発光装置の製造方法
JP2017535052A (ja) * 2014-08-28 2017-11-24 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 発光素子
JP2016208012A (ja) * 2015-04-27 2016-12-08 日亜化学工業株式会社 発光装置
US20180323346A1 (en) * 2015-09-03 2018-11-08 Seoul Viosys Co., Ltd. Light-emitting element having zno transparent electrode and method for manufacturing same
JP2019503087A (ja) * 2015-12-28 2019-01-31 エルジー イノテック カンパニー リミテッド 発光素子
JP2017139203A (ja) * 2016-02-06 2017-08-10 交和電気産業株式会社 照明装置モジュール
JP2018107371A (ja) 2016-12-28 2018-07-05 日亜化学工業株式会社 発光装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872872A4

Also Published As

Publication number Publication date
JPWO2020246217A1 (ja) 2021-09-13
JP2021036625A (ja) 2021-03-04
JP6990288B2 (ja) 2022-01-12
JP6829797B1 (ja) 2021-02-10
US20220131060A1 (en) 2022-04-28
EP3872872A4 (en) 2022-01-26
CN112470297A (zh) 2021-03-09
CN112470297B (zh) 2022-09-06
US11258001B2 (en) 2022-02-22
US20210135074A1 (en) 2021-05-06
EP3872872B1 (en) 2022-11-30
EP4138148A1 (en) 2023-02-22
CN115360279A (zh) 2022-11-18
EP3872872A1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
JP5513707B2 (ja) 半導体発光デバイスの相互接続
RU2466480C2 (ru) Удаление подложки в ходе формирования сид
KR101488379B1 (ko) 발광 다이오드
US9445503B2 (en) Carrier device, electrical device having a carrier device and method for producing same
TW201543971A (zh) 三維空間封裝結構及其製造方法
WO2006035664A1 (ja) 半導体発光素子、その製造方法及びその実装方法、並びに発光装置
TWI429114B (zh) 半導體發光元件之安裝方法
TW201106509A (en) Light emitting diode
TW201832297A (zh) 封裝堆疊構造及其製造方法
US11107945B2 (en) Component with end-side mounted light emitting semiconductor chip
JP6990288B2 (ja) 半導体発光装置
US20210280503A1 (en) Module
TWI546931B (zh) 半導體器件的製作方法
JP5912471B2 (ja) 半導体デバイス
JP7336451B2 (ja) 半導体発光装置
WO2014106306A1 (zh) 高压覆晶led结构及其制造方法
JP5995579B2 (ja) 半導体発光装置及びその製造方法
JP7044653B2 (ja) 半導体装置および半導体装置の製造方法
JP2004266016A (ja) 半導体装置、半導体装置の製造方法、及び半導体基板
TWI613729B (zh) 基板結構及其製法
JP2015153830A (ja) 紫外線発光装置及びそれに用いるインタポーザ
JP2004228142A (ja) 半導体素子およびマルチチップパッケージ
JP2004363319A (ja) 実装基板及び半導体装置
JP5091846B2 (ja) 光半導体装置及び光半導体装置の製造方法
JP2014179380A (ja) Led素子の実装構造

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020559572

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020819545

Country of ref document: EP

Effective date: 20210527

NENP Non-entry into the national phase

Ref country code: DE