WO2014106306A1 - 高压覆晶led结构及其制造方法 - Google Patents

高压覆晶led结构及其制造方法 Download PDF

Info

Publication number
WO2014106306A1
WO2014106306A1 PCT/CN2013/000008 CN2013000008W WO2014106306A1 WO 2014106306 A1 WO2014106306 A1 WO 2014106306A1 CN 2013000008 W CN2013000008 W CN 2013000008W WO 2014106306 A1 WO2014106306 A1 WO 2014106306A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrical connection
chip
led
led chip
Prior art date
Application number
PCT/CN2013/000008
Other languages
English (en)
French (fr)
Inventor
陈明鸿
许世昌
Original Assignee
海立尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海立尔股份有限公司 filed Critical 海立尔股份有限公司
Priority to PCT/CN2013/000008 priority Critical patent/WO2014106306A1/zh
Publication of WO2014106306A1 publication Critical patent/WO2014106306A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Definitions

  • the present invention relates to an LED structure and a method of fabricating the same, and more particularly to a high voltage flip chip LED structure and a method of fabricating the same. Background technique
  • LEDs light-emitting diodes
  • FIG. 1 shows a conventional flip chip LED structure.
  • a conventional flip chip LED structure 100 includes: an LED substrate 110 , an N pole electrode 150 , a P pole electrode 160 , a solder pad 140 , a barrier layer 180 , a reflective layer 120 , and a patterned insulating layer . 170, conductive layer 190 and epitaxial stack 130.
  • the epitaxial layer stack 130 includes an N-type semiconductor layer 131, a light-emitting layer 132, and a P-type semiconductor layer 133.
  • the conventional flip chip LED structure 100 uses the reflective layer 120 to reflect the light emitted by the light-emitting layer 132 to emit light in the forward direction. However, the height of the reflective layer 120 is different, resulting in an optical path difference between the reflected light.
  • high voltage LED structures can be achieved by connecting a plurality of LED chip epitaxial structures in series on the same substrate. It is known that the high-voltage LED structure can encapsulate the LED packaging process, improve the luminous efficiency, and has great potential for competition in the future lighting market. Therefore, how to use the high-voltage LED structure to design a high-voltage flip-chip LED capable of greatly improving the above optical path difference Structure is an important issue. Summary of the invention
  • the present invention is a high voltage flip chip LED structure and a method of fabricating the same, wherein the manufacturing method comprises the steps of: providing a chip substrate; depositing a first passivation layer; forming a common electrical connection layer; depositing a second passivation layer; depositing a mirror layer; Etching two conductive channels; and providing two bonding metal layers.
  • the present invention is directed to a high voltage flip chip LED structure having fully transparent electrodes and reflective layers on the same plane.
  • the invention provides a method for manufacturing a high-voltage flip-chip LED structure, comprising: providing a chip substrate, wherein the chip substrate comprises: a sapphire substrate; and a plurality of LED chips, which are separately formed on the sapphire substrate, each LED chip is Forming an N-type layer, a quantum well layer, a P-type layer and a transparent conductive oxide layer upward, and the N-type layer exposing an N-type surface, the LED chip comprising a first LED chip and a second LED chip; depositing a first passivation a layer, which deposits a first deuterated layer around the LED chip; forming a co-electrical layer, after removing the first passivation layer on each of the transparent conductive oxide layer and each of the N-type surfaces, respectively Forming a first electrical connection layer and a second electrical connection layer on each of the transparent conductive oxide layer and each of the N-type surfaces, and forming a third electrical connection layer to connect the first electrical connection of the LED chip And a second electrical connection layer of the adjacent
  • the aforementioned manufacturing method further comprising forming a plurality of microstructures on a back side surface of the sapphire substrate.
  • the foregoing manufacturing method further comprising a bonding circuit board electrically connecting the conductive metal layer to the conductive metal on the circuit board.
  • the aforementioned manufacturing method wherein the mirror layer is composed of a distributed Bragg reflector and a metal.
  • the metal is aluminum or silver.
  • the surface of the bonding metal layer is plated with a gold thin film.
  • the invention further provides a high voltage flip chip LED structure, comprising: a chip substrate, wherein the chip substrate comprises: sapphire; and a plurality of LED chips, which are formed separately from each other on the sapphire 1 , and each LED chip forms a bottom from the bottom to the top a layer, a quantum well layer, a P-type layer, and a transparent conductive oxide layer, wherein the N-type layer exposes an N-type surface, the LED chip includes a first LED chip and a second LED chip; and the first passivation layer is disposed on a side of each LED chip; a common electrical layer comprising: a first electrically connected layer on each transparent conductive oxide layer; a second electrically connected layer on each of the N-type surfaces; a third electrical connection layer connecting each adjacent first electrical connection layer and second electrical connection layer and covering a first passivation layer on a side of each LED chip; a second deuterated
  • the high voltage flip chip LED structure described above further comprising a circuit board electrically connected to the bonding metal layer by a conductive metal.
  • the high voltage flip chip LED structure described above wherein the mirror layer is composed of a distributed Bragg reflector and a metal.
  • the aforementioned high voltage flip chip LED structure wherein the metal is aluminum or silver.
  • the high voltage flip chip LED structure described above wherein the surface of the bonding metal layer is plated with a gold film.
  • the high voltage flip chip LED structure described above wherein the back side surface of the sapphire substrate further comprises a plurality of microstructures.
  • a flip-chip LED structure with a fully transparent electrode can be obtained to increase luminous efficiency.
  • Fig. 1 shows a conventional crystal LED structure.
  • FIG. 2 is a flow chart showing a method of manufacturing a high voltage flip chip LED structure according to an embodiment of the present invention.
  • 3 is a cross-sectional view showing a step of providing a chip substrate according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a step of depositing a first passivation layer according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the etching of the first deuterated layer according to an embodiment of the present invention.
  • Figure 6 is a schematic cross-sectional view showing the steps of forming a common electrical layer in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a step of depositing a second passivation layer according to an embodiment of the present invention.
  • Figure 8 is a cross-sectional view showing the steps of depositing a mirror layer in accordance with an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing the steps of etching two conductive channels according to an embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view showing a filled conductive metal according to an embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing a step of disposing two bonding metal layers according to an embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing a step of forming a plurality of microstructures according to an embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing the steps of combining circuit boards according to an embodiment of the present invention.
  • Figure 14 is a cross-sectional view showing the structure of a high voltage flip chip LED according to an embodiment of the present invention.
  • Figure 15 is a cross-sectional view showing the use of a high voltage flip chip LED structure in accordance with an embodiment of the present invention.
  • the first LED chip 12 "second LED chip
  • FIG. 2 is a flow chart of a method for fabricating a high voltage flip chip LED structure according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a step of providing a chip according to an embodiment of the present invention.
  • 4 is a cross-sectional view showing a step of depositing a first milling layer in accordance with an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a first passivation layer etched according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a step of forming a common electrical layer according to an embodiment of the present invention.
  • Figure 7 is a cross-sectional view showing a step of depositing a second passivation layer in accordance with an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a step of depositing a mirror layer according to an embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing a step of etching two conductive channels according to an embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view showing a filled conductive metal according to an embodiment of the present invention.
  • Figure 11 is a cross-sectional view showing the steps of providing two bonding metal layers in accordance with an embodiment of the present invention.
  • Figure 12 is a schematic cross-sectional view showing the steps of forming a plurality of microstructures according to an embodiment of the present invention.
  • Figure 13 is a cross-sectional view showing the steps of combining circuit boards in accordance with an embodiment of the present invention.
  • Figure 14 is a cross-sectional view showing a high voltage flip chip of the embodiment of the present invention.
  • Figure 15 is a cross-sectional view showing the use of a high voltage flip chip LED structure in accordance with an embodiment of the present invention.
  • the embodiment of the present invention is a manufacturing method S100 for a high voltage flip chip LED structure, comprising: providing a chip substrate (step S10); depositing a first passivation layer (step S20); forming a common electrical layer (Step S30); depositing a second passivation layer (Step S40); depositing a mirror layer (Step S50); etching the two conductive vias (Step S60); and providing two bonding metal layers (Step S70).
  • a chip substrate is provided (step S10), wherein the chip substrate 10 includes: a sapphire substrate 11 and a plurality of LED chips 12.
  • the sapphire substrate 11 is used for growing a gallium nitride N-type layer 121 (hereinafter simply referred to as an N-type layer 121), a quantum well layer 123, a gallium nitride P-type layer 124 (hereinafter referred to as a P-type layer 124), and transparent conductive oxidation.
  • the layer 125 after which multiple etchings are performed to obtain a plurality of LEDs Chip 12 (such as 12, 12" and 12" in Figure 3), which are formed separately from each other
  • the first surface 111 of the first surface 111 is the upper surface of the sapphire substrate 11.
  • the material of the transparent conductive oxide layer 125 is a transparent oxide to improve luminous efficiency and to conduct electricity.
  • each of the LED chips 12 forms an N-type layer 121, a quantum well layer 123, a P-type layer 124, and a transparent conductive oxide layer 125 from bottom to top in an epitaxial process.
  • the N-type layer 121 is exposed to the N-type surface 122 because a portion of the transparent conductive oxide layer 125, the P-type layer 124, and the quantum well layer 123 are etched.
  • the LED chips 12 are respectively named as the first LED chip 12, and the second LED chip 12" and the third LED chip 12"' 0 LED
  • the chip 12 is the leftmost LED chip 12 on the sapphire substrate 11, and the second LED chip 12 is the rightmost LED chip 12 on the sapphire substrate 11, and the third LED chip 12, "is in the first Between the LED chip 12 and the second LED chip 12", a plurality of third LED chips 12 may be provided.
  • a first passivation layer is deposited (step S20), which deposits a first passivation layer 20 around the LED chip 12, so that the first passivation layer 20 covers each N-type layer 121, quantum The sidewalls 123, the P-type layer 124, and the side of the transparent conductive oxide layer 125 and the surfaces of the sapphire substrate 11, the N-type surface 122, and the transparent conductive oxide layer 125.
  • the first passivation layer 20 on each of the transparent conductive oxide layers 125 and each of the N-type surfaces 122 is removed by etching prior to forming the common wiring layer (step S30).
  • a common electrical connection layer is formed (step S30), and then a common electrical connection layer 30 is formed in a deposition manner on the first passivation layer 20 and each of the N-type surfaces 122 and each transparent conductive oxide.
  • the common electrical layer 30 is defined as a first electrical connection layer 31, a second electrical connection layer 32, and a third electrical connection layer 33, respectively.
  • a first electrical connection layer 31 is formed on the surface of each of the transparent conductive oxide layers, and a second electrical connection layer 32 is formed on each of the N-type surfaces 122.
  • the third electrical connection layer 33 extends from the first electrical connection layer 31 of the LED chip 12 along the side of the LED chip 12 to the second electrical connection layer 32 of the adjacent other LED chip 12.
  • the third electrical connection layer 33 is used to electrically connect the first electrical connection layer 31 of the LED chip 12 and the second electrical connection layer 32 of the adjacent other LED chip 12.
  • the common electrical layer 30 can connect the plurality of LED chips 12 in series to each other to form a high voltage LED structure.
  • the material forming the common electrical connection layer 30 can be the same as the transparent conductive oxide layer 125.
  • the transparent conductive material can prevent the common electrical layer 30 from blocking the light output of the LED chip 12, and at the same time achieve the purpose of conducting electricity and improving light transmittance.
  • a second passivation layer is deposited (step S40), which deposits a second passivation layer 40 on the first passivation layer 20 and the common electrical layer 30 exposed to the outside, and continuously deposits a second
  • the passivation layer 40 does not cover all of the LED chips I 2 and forms a flat and highly uniform passivation surface 41, thereby providing a subsequent process.
  • the mirror layer is deposited (step S 5 0) 8, which is flat and the same height passivated surface
  • the mirror layer 50 is deposited on the 41, so that the mirror layer 50 deposited thereon is also flat and the light emitted by the LED chip 12 can be reflected by the mirror layer 50 at the same height to obtain reflected light of the same amount of reflection and intensity, while at the same time
  • the reflected light having no optical path difference can be emitted toward the sapphire substrate 11.
  • the mirror layer 50 may be composed of a distributed Bragg mirror (DBR) and a metal, and the metal may be aluminum or 4 turns.
  • DBR distributed Bragg mirror
  • two conductive vias are etched (step S60), which are respectively etched down by the mirror layer 50 through the second passivation layer 40 to the first LED chip 12 at a position near the upper side with respect to the first LED chip 12.
  • the layer 32 is formed to form the conductive via 60 such that the first electrical connection layer 31 of the first LED chip 12, and the second electrical connection layer 32 of the second LED chip 12" can be exposed.
  • step S70 two bonding metal layers are disposed (step S70), and each of the conductive vias 60 etched in step S60 is first filled with a bonding metal 61, and the surface of the bonding metal 61 is the same as the surface of the mirror layer 50. height.
  • the two bonding metal layers 70 are disposed on the mirror layer 50, and the bonding metal layers 70 are respectively bonded to the bonding metal 61 one-to-one for conduction. Therefore, the bonding metal layer 70 can be electrically connected to the first electrical connection layer 31 of the first LED chip 12 and the second electrical connection layer 32 of the second LED chip 12" by the bonding metal 61. To avoid short circuit, The bonding metal layers 70 are separated from each other. The surface of the bonding metal layer 70 may be plated with a gold film to enhance conductivity.
  • the manufacturing method S100 may further include forming a plurality of microstructures (step S80) which form a plurality of microstructures 113 on the second surface 112 of the sapphire substrate 11 to destroy the total reflection.
  • the second surface 112 is a lower surface of the sapphire substrate 11, and the microstructure 113 may be a tapered body, a convex lens or a concave lens.
  • the manufacturing method S100 may further include a bonding circuit board (step S90), which inverts the above structure and is electrically connected, for example, a metal electrode or a solder ball.
  • the bonding metal layer 70 is electrically connected to the conductive metal 81 on the circuit board 80 to form a final high voltage flip chip LED structure.
  • another embodiment of the present invention is a high voltage flip chip LED structure 100 including: a chip substrate, a first passivation layer 20, a common electrical layer 30, and a second passivation layer. 40. Mirror layer 50, two bonding metals 61 and two bonding metal layers 70.
  • the high voltage flip chip LED structure 100 can be fabricated using the above manufacturing method S100.
  • the chip substrate includes: a sapphire substrate 11 and a plurality of LED chips 12.
  • the plurality of LED chips 12 are formed on the first surface 111 of the sapphire substrate 11 separately from each other, and the first surface 111 It is the upper surface of the sapphire substrate 11.
  • the second surface of the sapphire substrate 11 includes a plurality of microstructures 113 to destroy total reflection, and the second surface 112 is a lower surface of the sapphire substrate 11, wherein the microstructures 113 may be configured as a cone, a convex lens or a concave lens.
  • Each of the LED chips 12 forms an N-type layer 121, a quantum well layer 123, a P-type layer 124, and a transparent conductive oxide layer 125 from the bottom to the top.
  • the planar area of the quantum well layer 123, the p-type layer 124, and the transparent conductive oxide layer 125 is smaller than the planar area of the N-type layer 121, so that the lowermost N-type layer 121 is exposed to the N-type surface 122.
  • the material of the transparent conductive oxide layer 125 is a transparent oxide to increase light transmittance and can conduct electricity.
  • the LED chips 12 are respectively named as the first LED chip 12, the second LED chip 12" and the third LED chip 12, .
  • the LED chip 12 is the leftmost LED chip 12 on the sapphire substrate 11, and the second LED chip 12 is the rightmost LED chip 12 on the sapphire substrate 11, and the third LED chip 12 is in the first Between an LED chip 12 and a second LED chip 12", however, a plurality of third LED chips 12" may be provided, for example, in the embodiment of the invention, there are two third LED chips 12".
  • a first passivation layer 20 is disposed on a side of each of the LED chips 12, such as a side of each of the N-type layer 121, the quantum well layer 123, the P-type layer 124, and the transparent conductive oxide layer 125.
  • the common electrical layer 30 includes: a first electrical connection layer 31, a second electrical connection layer 32, and a third electrical connection layer 33.
  • the first electrical connection layer 31 is on the surface of each transparent conductive oxide layer 125
  • the second electrical connection layer 32 is on each of the N-type surfaces 122
  • the third electrical connection layer 33 is connected to each adjacent first An electrical connection layer 31 and a second electrical connection layer 32 cover the first passivation layer 20 on the side of each LED chip 12.
  • the third electrical connection layer 33 extends from the side of the first electrical connection layer 31 of the LED chip 12 along the side of the LED chip 12 to the second electrical connection layer 32 of the adjacent other LED chip 12 to The plurality of LED chips 12 are connected in series to each other to form a high voltage LED structure.
  • the material forming the common electrical connection layer 30 can be the same as the transparent conductive oxide layer 125.
  • the transparent conductive material can prevent the common electrical layer 30 from blocking the light, and at the same time achieve the purpose of conducting electricity and improving luminous efficiency.
  • a second deuterated layer 40 encasing the first passivation layer 20 and the co-electrical layer 30 and covering all of the LED chips 12 to form a planar deuterated surface 41 provides a subsequent process.
  • the mirror layer 50 is disposed on the passivation surface 41. Since the passivation surface 41 is very flat, the mirror layer 50 located thereon also has the same level, and light reflection can be performed at the same height to obtain a uniform reflection amount and intensity. The reflected light, while the reflected light having no optical path difference between each other, can be emitted toward the sapphire substrate 11.
  • the mirror layer 50 may be composed of a distributed Bragg reflector (DBR) and a metal, and the metal may be aluminum or silver.
  • DBR distributed Bragg reflector
  • Two bonding metals 61 respectively passing through the mirror layer 50 and the second blunt from the surface of the mirror layer 50 at a position near the upper side with respect to the first LED chip 12 and at a position near the upper side with respect to the second LED chip 12
  • the layer 40 is respectively connected to the first electrical connection layer 31 and the second LED of the first LED chip I 2
  • the second electrical connection layer 32 of the chip 12" is connected to form an electrical connection.
  • Two bonding metal layers 70 are disposed on the mirror layer 50, respectively, and are joined to the bonding metal 61 one-to-one to form an electrical connection, and the bonding layers 70 are separated from each other to avoid a short circuit.
  • the surface of the bonding metal layer 70 is plated with a gold film to enhance conductivity.
  • the high voltage flip chip LED structure 100 may further include a circuit board 80 electrically connected to the bonding metal layer 70 by a conductive metal 81 on the circuit board 80, and electrically coupled to the circuit board 80.
  • the structure is inverted to form the final high voltage flip chip LED structure 100.
  • the circuit board 80 can also be a ceramic circuit board.

Abstract

提供了一种高压覆晶LED结构及其制造方法。制造方法包括下列步骤:提供芯片基板;沉积第一钝化层(20);形成共电连层(30);沉积第二钝化层(40);沉积镜面层(50);蚀刻两导电通道(60);以及设置两接合金属层(70)。芯片基板包括蓝宝石基板(11)及其上的多个LED芯片(12),在形成第一钝化层(20)后形成全透明的共电连层(30)使LED芯片(12)彼此电性串联。接着,沉积第二钝化层(40)成为平坦的钝化表面,借此让形成于其上的镜面层(50)能具有相同的水平高度,使反射出的光线不具有光程差。最后设置接合金属层(70)以供导电。可得到全透明电极且出光不具光程差的高压覆晶LED结构。

Description

高压覆晶 LED结构及其制造方法 技术领域
本发明涉及一种 LED结构及其制造方法,特别是涉及一种高压覆晶 LED 结构及其制造方法。 背景技术
近几年,发光二极管(LED)已经渐渐成为照明市场的主要产品,其小巧、 高效能及环保等特性受到肯定。 因此, 各大厂商无不致力于开发更高发光 效率、 高良率的 LED结构及其工艺。
图 1为现有习知的一种覆晶 LED结构。如图 1所示,现有习知的一种覆 晶 LED结构 100包括: LED基板 110、 N极电极 150、 P极电极 160、焊垫 140、 阻隔层 180、 反射层 120、 图案化绝缘层 170、 导电层 190及磊晶叠层 130。 其中, 磊晶叠层 130包括: N型半导体层 131、 发光层 132及 P型半导体层 133。 为了增加出光率, 现有习知的覆晶 LED结构 100会使用反射层 120将 发光层 132发出的光线反射, 使其向正向出光。 然而, 反射层 120的高度 不同, 会造成被反射的光线间具有光程差。
目前,高压 LED结构可通过在同一基板上串联多个 LED芯片磊晶结构而 达成。 已知高压 LED结构可以筒化 LED封装工艺、 提升发光效率, 并且在 未来照明市场有极大的竟争潜力, 因此如何利用高压 LED结构, 设计出能 够大幅改良上述光程差的高压覆晶 LED结构是个重要的课题。 发明内容
本发明为一种高压覆晶 LED结构及其制造方法,其中制造方法包括下列 步骤: 提供芯片基板; 沉积第一钝化层; 形成共电连层; 沉积第二钝化层; 沉积镜面层; 蚀刻两导电通道; 以及设置两接合金属层。 本发明要制造出 一种具有全透明电极且反射层在同一平面的高压覆晶 LED结构。
本发明提供一种高压覆晶 LED结构的制造方法,其包括:提供芯片基板, 其中芯片基板包括: 蓝宝石基板; 及多个 LED芯片, 彼此分离地形成于蓝 宝石基板上, 每一 LED芯片由下往上形成 N型层、 量子井层、 P型层及透明 导电氧化物层, 且 N型层露出 N型表面, 所述 LED芯片包括第一 LED芯片 及第二 LED芯片; 沉积第一钝化层, 其在所述 LED芯片周围沉积第一飩化 层; 形成共电连层, 其在除去位在每一透明导电氧化物层及每一 N型表面 上的第一钝化层后, 分别于每一透明导电氧化物层及每一 N型表面上形成 第一电连层及第二电连层, 并形成笫三电连层以连接 LED芯片的第一电连 层及相邻的另一 LED芯片的第二电连层, 第一电连层、 第二电 电连层构成共电连层; 沉积第二钝化层, 其沉积于第一钝化层及共电连层 上并形成平坦的钝化表面; 沉积镜面层, 其在钝化表面上沉积镜面层; 蚀 刻两导电通道, 其分别由镜面层往下蚀刻至第一 LED芯片的第一电连层及 往下蚀刻至第二 LED芯片的第二电连层以形成所述导电通道; 以及设置两 接合金属层, 其分别在每一导电通道填充接合金属, 并设置所述接合金属 层于镜面层上, 以分别与接合金属接合, 且所述接合金属层彼此分离。
较佳的,前述的制造方法,其中其进一步包括形成多个微结构于该蓝宝 石基板的背侧表面。
较佳的, 前述的制造方法, 其中其进一步包括结合电路板, 其以所述接 合金属层与该电路板上的导电金属电性连接。
较佳的,前述的制造方法,其中该镜面层由分布布拉格反射镜及金属组 成。
较佳的, 前述的制造方法, 其中该金属为铝或银。
较佳的, 前述的制造方法, 其中所述接合金属层的表面电镀有金薄膜。 本发明又提供一种高压覆晶 LED结构, 其包括: 芯片基板, 其中芯片基 板包括: 蓝宝石 ; 及多个 LED芯片, 彼此分离地形成于蓝宝石 1 上, 每一 LED芯片由下往上形成 N型层、量子井层、 P型层及透明导电氧化物层, 且 N型层露出 N型表面, 所述 LED芯片包括第一 LED芯片及第二 LED芯片; 第一钝化层, 其设置于每一 LED芯片的侧边; 共电连层, 其包括: 第一电 连层, 其位于每一透明导电氧化物层上; 第二电连层, 其位于每一 N型表 面上; 及第三电连层, 其连接每一相邻的第一电连层及第二电连层并覆盖 于每一 LED芯片侧边的第一钝化层; 第二飩化层, 其包覆第一飩化层及共 电连层以形成平坦的钝化表面; 镜面层, 其设置于钝化表面上; 两接合金 属, 其穿过镜面层及第二铽化层以分别与第一 LED芯片的第一电连层及第 二 LED芯片的第二电连层相接; 以及两接合金属层, 其分别设置于镜面层 上并与所述接合金属接合, 且所述接合金属层彼此分离。
较佳的, 前述的高压覆晶 LED结构, 其中其进一步包括电路板, 其以导 电金属与所述接合金属层电性连接。
较佳的, 前述的高压覆晶 LED结构, 其中该镜面层由分布布拉格反射镜 及金属组成。
较佳的, 前述的高压覆晶 LED结构, 其中该金属为铝或银。
较佳的, 前述的高压覆晶 LED结构, 其中所述接合金属层的表面电镀有 金薄膜。
较佳的, 前述的高压覆晶 LED结构, 其中该蓝宝石基板的背侧表面进一 步包括多个微结构。 借由本发明的实施, 至少可达到下列进步功效:
一、 可以得到全透明电极的覆晶 LED结构, 以增加发光效率。
二、 可以得到反射层位于同一平面的覆晶 LED结构, 以减少光程差。 上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技 术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和其 他目的、特征以及优点能够更明显易懂,以下特举较佳实施例,并配合附图, 详细说明如下。 附图的简要说明
图 1为现有习知的一种 晶 LED结构。
图 2为本发明实施例的- -种高压覆晶 LED结构的制造方法流程图。 图 3为本发明实施例的- -种提供芯片基板步骤的剖面示意图。
图 4为本发明实施例的- -种沉积第一钝化层步骤的剖面示意图。
图 5为本发明实施例的- -种蚀刻第一飩化层的剖面示意图。
图 6为本发明实施例的- -种形成共电连层步骤的剖面示意图。
图 7为本发明实施例的- -种沉积第二钝化层步骤的剖面示意图。
图 8为本发明实施例的- -种沉积镜面层步骤的剖面示意图。
图 9为本发明实施例的- -种蚀刻两导电通道步驟的剖面示意图。
图 10为本发明实施例的一种填充导电金属的剖面示意图。
图 11为本发明实施例的一种设置两接合金属层步骤的剖面示意图 图 12为本发明实施例的一种形成多个微结构步骤的剖面示意图。
图 13为本发明实施例的一种结合电路板步骤的剖面示意图。
图 14为本发明实施例的高压覆晶 LED结构剖视图。
图 15为本发明实施例的高压覆晶 LED结构的使用剖视图。
【主要元件符号说明】
10芯片基板 11 蓝宝石
111 第一表面 112第二表面
113 微结构 12 LED芯片
12, 第一 LED芯片 12 " 第二 LED芯片
12," 第三 LED芯片 121N型层
122 N型表面 123量子井层
124 P型层 125透明导电氧化物层
20第一钝化层 30 共电连层
31第一电连层 32 第二电连层
33第三电连层 40 第二钝化层
41钝化表面 50镜面层 60导电通道 61 接合金属
70接合金属层 80 电路板
81导电金属 100覆晶 LED结构
LED基板 120反射层
晶叠层 131N型半导体层
132 发光层 133P型半导体层
140 焊垫 150N极电极
160 P极电极 170图案化绝缘层
180 阻隔层 190导电层 实现发明的最佳方式
为进一步阐述本发明为达成预定发明目的所釆取的技术手段以及其功 效,以下结合附图及较佳实施例, 对依据本发明提出的高压覆晶 LED结构及 其制造方法的具体实施方式、 结构、 流程、 特征及其功效, 详细说明如后。
图 2为本发明实施例的一种高压覆晶 LED结构的制造方法流程图。图 3 为本发明实施例的一种提供芯片 步骤的剖面示意图。 图 4 为本发明实 施例的一种沉积第一铣化层步骤的剖面示意图。 图 5 为本发明实施例的一 种蚀刻第一钝化层的剖面示意图。 图 6 为本发明实施例的一种形成共电连 层步骤的剖面示意图。 图 7为本发明实施例的一种沉积第二钝化层步驟的 剖面示意图。 图 8为本发明实施例的一种沉积镜面层步骤的剖面示意图。
图 9为本发明实施例的一种蚀刻两导电通道步骤的剖面示意图。 图 10 为本发明实施例的一种填充导电金属的剖面示意图。 图 11为本发明实施例 的一种设置两接合金属层步骤的剖面示意图。 图 12为本发明实施例的一种 形成多个微结构步骤的剖面示意图。 图 13为本发明实施例的一种结合电路 板步骤的剖面示意图。 图 14为^^明实施例的高压覆晶 LED ^剖视图。 图 15为本发明实施例的高压覆晶 LED结构的使用剖视图。
〈高压覆晶 LED结构的制造方法实施例〉
如图 2所示,本发明实施例为一种高压覆晶 LED结构的制造方法 S100, 其包括: 提供芯片基板(步骤 S10) ; 沉积第一钝化层(步骤 S20) ; 形成共电 连层(步骤 S30) ; 沉积第二钝化层(步骤 S40) ; 沉积镜面层(步骤 S50) ; 蚀 刻两导电通道(步骤 S60); 以及设置两接合金属层(步骤 S70)。
如图 3所示, 提供芯片基板(步骤 S10), 其中芯片基板 10包括: 蓝宝 石基板 11及多个 LED芯片 12。 蓝宝石基板 11是用以成长氮化镓 N型层 121 (以下简称为 N型层 121)、 量子井层 123、 氮化镓 P型层 124 (以下筒称 为 P型层 124)及透明导电氧化物层 125, 之后经过多次蚀刻得到多个 LED 芯片 12 (例如图 3中的 12,、 12 "及 12 ",), 其彼此分离地形成于
11的第一表面 111上, 第一表面 111为蓝宝石基板 11的上表面。透明导电 氧化物层 125的材料为透明的氧化物以提高发光效率, 且可以导电。
因此每一 LED芯片 12在磊晶工艺中由下往上形成 N型层 121、 量子井 层 123、 P型层 124及透明导电氧化物层 125。 同时因为蚀刻了一部分的透 明导电氧化物层 125、 P型层 124及量子井层 123而使 N型层 121露出 N型 表面 122。 为了对 LED芯片 12做更详细的说明, 在本实施例中将所述 LED 芯片 12分别命名为第一 LED芯片 12,、 第二 LED芯片 12 "及第三 LED芯片 12"'0 第一 LED芯片 12,为蓝宝石基板 11上的最左侧的 LED芯片 12, 而第 二 LED芯片 12 "为蓝宝石基板 11上的最右侧的 LED芯片 12 , 第三 LED芯 片 12, "则位在第一 LED芯片 12,及第二 LED芯片 12 "之间, 然而也可设置 多个第三 LED芯片 12,,,。
如图 4所示, 沉积第一钝化层(步驟 S20) , 其在所述 LED芯片 12周围 沉积第一钝化层 20,使第一钝化层 20覆盖住每一 N型层 121、量子井层 123、 P型层 124及透明导电氧化物层 125的侧边及蓝宝石基板 11、 N型表面 122 及透明导电氧化物层 125的表面。
如图 5所示,在形成共电连层(步骤 S30)前,先利用蚀刻方式除去位在 每一透明导电氧化物层 125及每一 N型表面 122上的第一钝化层 20。
如图 6所示,形成共电连层(步骤 S30) ,接着分别以沉积方式形成共电 连层 30在第一钝化层 20以及棵露的每一 N型表面 122及每一透明导电氧 化物层 125的表面。为方便叙述,将共电连层 30分别定义为第一电连层 31、 第二电连层 32及第三电连层 33。 第一电连层 31形成在每一透明导电氧化 物层 的表面上, 而第二电连层 32则形成在每一 N型表面 122上。 第三 电连层 33则从 LED芯片 12的第一电连层 31沿着 LED芯片 12的侧边延伸 形成至相邻的另一 LED芯片 12的第二电连层 32。 第三电连层 33用以电性 连接 LED芯片 12的第一电连层 31及相邻的另一 LED芯片 12的第二电连层 32。
其中, 共电连层 30可以使多个 LED芯片 12彼此串联, 形成高压 LED 结构。 形成共电连层 30的材料可以与透明导电氧化物层 125相同, 透明的 导电材料可以避免共电连层 30挡住 LED芯片 12的出光, 而同时达到导电 及提高透光性的目的。
如图 7所示, 沉积第二钝化层(步骤 S40) , 其沉积第二钝化层 40在暴 露于外界的第一钝化层 20及共电连层 30上, 并连续沉积第二钝化层 40直 到将所有 LED芯片 I 2覆盖并形成平坦且高度相同的钝化表面 41,进而提供 后续工艺进行。
如图 8所示,沉积镜面层(步骤 S50) ,其在平坦且高度相同的钝化表面 41上沉积镜面层 50, 因此沉积于其上的镜面层 50亦平坦且高 LED芯片 12发出的光线可以在同样高度被镜面层 50反射,以得到反射量及 强度一致的反射光, 同时彼此之间没有光程差的反射光可以往蓝宝石基板 11方向出光。其中,镜面层 50可以由分布布拉格反射镜(Di s tr ibuted Bragg Ref lector, DBR)及金属组成, 而金属可以为铝或 4艮。
如图 9 所示, 蚀刻两导电通道(步骤 S60), 其分别在相对于第一 LED 芯片 12,上方附近的位置由镜面层 50往下蚀刻通过第二钝化层 40至第一 LED芯片 12,的第一电连层 31, 以及在相对于第二 LED芯片 12,,上方附近的 位置由镜面层 50往下蚀刻通过第二飩化层 40至第二 LED芯片 12"的第二电 连层 32以形成所述导电通道 60, 以使得第一 LED芯片 12,的第一电连层 31 及第二 LED芯片 12"的第二电连层 32可以棵露出来。
如图 10所示, 设置两接合金属层(步骤 S70) , 首先分别在步骤 S60所 蚀刻出的每一导电通道 60中填充接合金属 61 , 并使接合金属 61表面与镜 面层 50表面位在相同高度。
如图 11所示, 接着, 设置所述两接合金属层 70于镜面层 50上, 并且 使接合金属层 70分别与接合金属 61一对一地接合以供导电。 因此, 接合 金属层 70得以借由接合金属 61而分别与第一 LED芯片 12,的第一电连层 31 和第二 LED芯片 12"的第二电连层 32电性连接。 为了避免短路, 所述接合 金属层 70彼此分离。 其中, 所述接合金属层 70的表面可以电镀有金薄膜 以增进导电度。
如图 1及图 12所示,制造方法 S100可以进一步包括形成多个微结构(步 骤 S80) ,其在蓝宝石基板 11的第二表面 112形成多个微结构 113以破坏全 反射。 第二表面 112为蓝宝石基板 11的下表面, 而微结构 113可以为锥状 体、 凸透镜或凹透镜等构造。
如图 1及图 13所示, 制造方法 S100可以进一步包括结合电路板(步骤 S90) , 其将上述结构倒置, 并通过电性连接手段, 例如金属电极或是焊球 (solder ba l 1)以使所述接合金属层 70与电路板 80上的导电金属 81电性 连接, 而形成最终的高压覆晶 LED结构。
〈高压覆晶 LED结构实施例〉
如图 1及图 14所示, 本发明的另一实施例为一种高压覆晶 LED结构 100, 其包括: 芯片基板、 第一钝化层 20、共电连层 30、 第二钝化层 40、 镜 面层 50、 两接合金属 61 以及两接合金属层 70。 高压覆晶 LED结构 100可 以使用上述的制造方法 S100制造。
芯片基板包括: 蓝宝石基板 11及多个 LED芯片 12。 其中, 多个 LED 芯片 12彼此分离地形成于蓝宝石基板 11的第一表面 111上,第一表面 111 为蓝宝石基板 11的上表面。 另外, 蓝宝石基板 11的第二表面 一步包括多个微结构 113以破坏全反射, 而第二表面 112为蓝宝石基板 11 的下表面, 其中微结构 113可以为锥状体、 凸透镜或凹透镜等构造。
每一 LED芯片 12由下往上形成 N型层 121、 量子井层 123、 P型层 124 及透明导电氧化物层 125。 其中, 量子井层 123、 P型层 124及透明导电氧 化物层 125的平面面积小于 N型层 121的平面面积, 因此使最下方的 N型 层 121露出 N型表面 122。透明导电氧化物层 125的材料为透明的氧化物以 提高透光率, 且可以导电。
为了对 LED芯片 12做更详细的说明,在本实施例中将所述 LED芯片 12 分别命名为第一 LED芯片 12,、 第二 LED芯片 12 "及第三 LED芯片 12,,,。 第 一 LED芯片 12,为蓝宝石基板 11上的最左侧的 LED芯片 12, 而第二 LED芯 片 12 "为蓝宝石基板 11上的最右侧的 LED芯片 12, 第三 LED芯片 12",则 位在第一 LED芯片 12,及第二 LED芯片 12 "之间,然而也可以设置多个第三 LED芯片 12",, 例如在本发明实施例中有两个第三 LED芯片 12",。
第一钝化层 20, 其设置于每一 LED芯片 12的侧边, 例如每一 N型层 121、 量子井层 123、 P型层 124及透明导电氧化物层 125的侧边。
共电连层 30, 其包括: 第一电连层 31、 第二电连层 32及第三电连层 33。 第一电连层 31位于每一透明导电氧化物层 125的表面上, 第二电连层 32位于每一 N型表面 122上,而第三电连层 33则是连接每一相邻的第一电 连层 31及第二电连层 32,并¾盖每一 LED芯片 12侧边的第一钝化层 20。换 句话说,第三电连层 33从 LED芯片 12的第一电连层 31端沿着 LED芯片 12 的侧边延伸至相邻的另一 LED芯片 12的第二电连层 32端, 以使多个 LED 芯片 12彼此串联, 形成高压 LED结构。
形成共电连层 30的材料可以与透明导电氧化物层 125相同, 透明的导 电材料可以避免共电连层 30挡住出光, 而同时达到导电及提高发光效率的 目的。
第二飩化层 40,其包覆第一钝化层 20及共电连层 30, 并覆盖所有 LED 芯片 12以形成平坦的飩化表面 41, 进而提供后续工艺进行。
镜面层 50, 其设置于钝化表面 41上, 由于钝化表面 41十分平坦, 故 位于其上的镜面层 50也具有相同的水平高度, 可以在同样高度进行光反射 而得到反射量及强度一致的反射光, 同时彼此之间没有光程差的反射光可 以往蓝宝石基板 11方向出光。 其中, 镜面层 50系可以由分布布拉格反射 镜 (DBR)及金属组成, 而金属可以为铝或银。
两接合金属 61,其分别在相对于第一 LED芯片 12,上方附近的位置及在 相对于第二 LED芯片 12,,上方附近的位置自镜面层 50的表面穿过镜面层 50 及第二钝化层 40, 以分别与第一 LED芯片 I2,的第一电连层 31及第二 LED 芯片 12"的第二电连层 32相接以形成电性连接。
两接合金属层 70,其分别设置于镜面层 50上并一对一的与所述接合金 属 61接合以形成电性连接, 且所述接 ^属层 70彼此分离以避免短路。 其 中, 所述接合金属层 70的表面电镀有金薄膜以增进导电度。
如图 15所示, 高压覆晶 LED结构 100可以进一步包括电路板 80,其以 电路板 80上的导电金属 81与所述接合金属层 70电性连接, 并将电性结合 电路板 80后的结构倒置形成最终的高压覆晶 LED结构 100。 其中, 电路板 80也可以为陶瓷电路板。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭示如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案的内容, 依据本发明的技术实盾对以上实施例 所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围 内。

Claims

权 利 要 求
1、 一种高压覆晶 LED结构的制造方法, 其特征在于包括:
提供芯片基板, 其中该芯片基板包括: 蓝宝石基板; 及多个 LED芯片, 彼 此分离地形成于该蓝宝石基板上, 每一该 LED芯片系由下往上形成 N型层、 量子井层、 P型层及透明导电氧化物层, 且该 N型层露出 N型表面, 所述 LED芯片包括第一 LED芯片及第二 LED芯片;
沉积第一钝化层, 其在所述 LED芯片周围沉积该第一钝化层; 形成共电连层, 其在除去位在每一该透明导电氧化物层及每一该 N型 表面上的该第一钝化层后, 分別于每一该透明导电氧化物层及每一该 N型 表面上形成第一电连层及第二电连层, 并形成第三电连层以连接该 LED芯 片的该第一电连层及相邻的另一该 LED芯片的该第二电连层, 该第一电连 层、 该第二电连层及该第三电连层构成该共电连层;
沉积第二钝化层, 其沉积于该第一钝化层及该共电连层上并形成平坦 的 4屯化表面;
沉积镜面层, 其在该钝化表面上沉积该镜面层;
蚀刻两导电通道, 其分别由该镜面层往下蚀刻至该第一 LED芯片的该 第一电连层及往下蚀刻至该第二 LED芯片的该第二电连层以形成所述导电 通道; 以及
设置两接合金属层, 其分别在每一该导电通道填充接合金属, 并设置 所述接合金属层于该镜面层上, 以分别与该接合金属接合, 且所述接合金 属层彼此分离。
2、 如权利要求 1所述的制造方法, 其特征在于进一步包括形成多个微 结构于该蓝宝石基板的背侧表面。
3、如权利要求 1所述的制造方法,其特征在于进一步包括结合电路板, 其以所述接合金属层与该电路板上的导电金属电性连接。
4、 如权利要求 1所述的制造方法, 其特征在于其中该镜面层由分布布 反射镜及金属组成。
5、 如权利要求 4所述的制造方法, 其特征在于其中该金属为铝或银。
6、 如权利要求 1所述的制造方法, 其特征在于其中所述接合金属层的 表面电镀有金薄膜。
7、 一种高压覆晶 LED结构, 其特征在于包括:
芯片基板, 其中该芯片基板包括: 蓝宝石基板; 及多个 LED芯片, 彼此分 离地形成于该蓝宝石基板上, 每一该 LED芯片由下往上形成 N型层、 量子 井层、 P型层及透明导电氧化物层, 且该 N型层露出 N型表面, 所述 LED芯 片包括第一 LED芯片及第二 LED芯片; 第一钝化层, 其设置于每一该 LED芯片的侧边;
共电连层, 其包括: 第一电连层, 其位于每一该透明导电氧化物层上; 第二电连层, 其位于每一该 N型表面上; 及第三电连层, 其连接每一相邻 的该第一电连层及该第二电连层并覆盖于每一该 LED芯片侧边的该第一钝 化层;
第二钝化层, 其包覆该第一钝化层及该共电连层以形成平坦的钝化表 面;
镜面层, 其设置于该钝化表面上;
两接合金属, 其穿过该镜面层及该第二钝化层以分别与该第一 LED芯 片的该第一电连层及该第二 LED芯片的该第二电连层相接; 以及
两接合金属层, 其分别设置于该镜面层上并与所述接合金属接合, 且 所述接合金属层彼此分离。
8、 如权利要求 7所述的高压覆晶 LED结构, 其特征在于进一步包括电 路板, 其以导电金属与所述接合金属层电性连接。
9、 如权利要求 7所述的高压覆晶 LED结构, 其特征在于其中该镜面层 由分布布 反射镜及金属组成。
10、 如权利要求 9所述的高压覆晶 LED结构, 其特征在于其中该金属 为铝或银。
11、 如权利要求 7所述的高压覆晶 LED结构, 其特征在于其中所述接 合金属层的表面电镀有金薄膜。
12、 如权利要求 7所述的高压覆晶 LED结构, 其特征在于其中该蓝宝 石基板的背侧表面进一步包括多个微结构。
PCT/CN2013/000008 2013-01-05 2013-01-05 高压覆晶led结构及其制造方法 WO2014106306A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/000008 WO2014106306A1 (zh) 2013-01-05 2013-01-05 高压覆晶led结构及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/000008 WO2014106306A1 (zh) 2013-01-05 2013-01-05 高压覆晶led结构及其制造方法

Publications (1)

Publication Number Publication Date
WO2014106306A1 true WO2014106306A1 (zh) 2014-07-10

Family

ID=51062119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000008 WO2014106306A1 (zh) 2013-01-05 2013-01-05 高压覆晶led结构及其制造方法

Country Status (1)

Country Link
WO (1) WO2014106306A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134744A (zh) * 2014-08-08 2014-11-05 映瑞光电科技(上海)有限公司 易封装高压倒装led芯片及其制作方法
CN106206865A (zh) * 2016-07-15 2016-12-07 厦门乾照光电股份有限公司 一种高压发光二极管及其制作方法
WO2021142716A1 (zh) * 2020-01-16 2021-07-22 厦门三安光电有限公司 一种高压倒装半导体发光元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145570A (zh) * 2006-09-13 2008-03-19 海立尔股份有限公司 发光二极管结构
CN101752399A (zh) * 2008-12-17 2010-06-23 首尔半导体株式会社 具有多个发光单元的发光二极管及其制造方法
CN102446948A (zh) * 2010-10-12 2012-05-09 晶元光电股份有限公司 发光元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145570A (zh) * 2006-09-13 2008-03-19 海立尔股份有限公司 发光二极管结构
CN101752399A (zh) * 2008-12-17 2010-06-23 首尔半导体株式会社 具有多个发光单元的发光二极管及其制造方法
CN102446948A (zh) * 2010-10-12 2012-05-09 晶元光电股份有限公司 发光元件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134744A (zh) * 2014-08-08 2014-11-05 映瑞光电科技(上海)有限公司 易封装高压倒装led芯片及其制作方法
CN106206865A (zh) * 2016-07-15 2016-12-07 厦门乾照光电股份有限公司 一种高压发光二极管及其制作方法
WO2021142716A1 (zh) * 2020-01-16 2021-07-22 厦门三安光电有限公司 一种高压倒装半导体发光元件

Similar Documents

Publication Publication Date Title
TWI422044B (zh) 封裝發光裝置之晶片尺度方法及經晶片尺度封裝之發光裝置
US9502627B2 (en) Wafer level photonic devices dies structure and method of making the same
TWI317180B (en) Optoelectronic component, device with several optoelectronic components and method to produce an optoelectronic component
US9397266B2 (en) Lateral semiconductor light emitting diodes having large area contacts
JP4996463B2 (ja) 発光デバイスをパッケージするためのチップスケール方法およびチップスケールにパッケージされた発光デバイス
US8125000B2 (en) Light emitting device package having dual recessed substrate
TW201426969A (zh) 高壓覆晶led結構及其製造方法
CN106537616B (zh) 发光装置
JP5693375B2 (ja) 半導体発光素子
CN105934834B (zh) 半导体器件和用于制造半导体器件的方法
TW200926461A (en) Improved LED structure
CN103855149A (zh) 倒装高压发光二极管及其制作方法
WO2014036803A1 (zh) 一种改善出光率的发光二极管倒装芯片及其制备方法
TW201322437A (zh) 高電壓交流發光二極體結構
TWI397989B (zh) 發光二極體陣列
WO2009097786A1 (zh) 垂直结构的半导体芯片
TWI631596B (zh) 半導體發光元件及其製作方法
CN110021691B (zh) 一种半导体发光器件
TWI398967B (zh) 發光二極體晶片及其製法
CN109155351A (zh) 半导体发光装置
TWI661584B (zh) 發光晶粒、封裝結構及其相關製造方法
WO2014106306A1 (zh) 高压覆晶led结构及其制造方法
CN103915530A (zh) 高压覆晶led结构及其制造方法
TWI483419B (zh) 發光二極體及其製造方法
CN203456494U (zh) 覆晶式led芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870141

Country of ref document: EP

Kind code of ref document: A1