WO2020242035A1 - 열 폭주 현상 발생 시 내부로 투입된 냉각수가 흐를 수 있는 경로를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 ess - Google Patents
열 폭주 현상 발생 시 내부로 투입된 냉각수가 흐를 수 있는 경로를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 ess Download PDFInfo
- Publication number
- WO2020242035A1 WO2020242035A1 PCT/KR2020/004477 KR2020004477W WO2020242035A1 WO 2020242035 A1 WO2020242035 A1 WO 2020242035A1 KR 2020004477 W KR2020004477 W KR 2020004477W WO 2020242035 A1 WO2020242035 A1 WO 2020242035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- module
- battery module
- cooling water
- unit
- Prior art date
Links
- 239000002826 coolant Substances 0.000 title claims abstract description 30
- 230000008961 swelling Effects 0.000 claims abstract description 31
- 238000010521 absorption reaction Methods 0.000 claims abstract description 26
- 239000000498 cooling water Substances 0.000 claims description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 11
- 238000003780 insertion Methods 0.000 claims description 7
- 230000037431 insertion Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims 15
- 238000010586 diagram Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000004146 energy storage Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/627—Stationary installations, e.g. power plant buffering or backup power supplies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
- H01M10/6555—Rods or plates arranged between the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
- H01M10/6557—Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6563—Gases with forced flow, e.g. by blowers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/24—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/233—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
- H01M50/242—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C2/00—Fire prevention or containment
- A62C2/06—Physical fire-barriers
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C3/00—Fire prevention, containment or extinguishing specially adapted for particular objects or places
- A62C3/16—Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2200/00—Safety devices for primary or secondary batteries
- H01M2200/10—Temperature sensitive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/10—Batteries in stationary systems, e.g. emergency power source in plant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery module having a path through which coolant injected into the inside of a thermal runaway phenomenon can flow, a battery pack including the same, and an energy storage system (ESS), and more specifically, a thermal runaway phenomenon occurs.
- ESS energy storage system
- an abnormality such as a short circuit occurs in some battery cells, and the temperature continuously increases, resulting in a thermal runaway phenomenon when the temperature of the battery cells exceeds the critical temperature. .
- a thermal runaway phenomenon occurs in some battery cells, a safety issue may arise.
- the cell stack accommodated inside the battery module has a structure in which a pad is interposed between a certain number of battery cells as one unit module to secure a space capable of absorbing swelling between adjacent unit modules. .
- the present invention is to prevent the flame from spreading larger by quickly lowering the temperature inside the battery module when a flame due to thermal runaway occurs in some battery cells inside the battery module. It is for work purposes.
- a battery module according to an embodiment of the present invention for solving the above-described problems includes a unit module stack formed by stacking a plurality of unit modules stacked with a plurality of battery cells; A swelling absorption pad interposed between the unit modules adjacent to each other; And a module housing accommodating the unit module stack and the swelling absorbing pad. Including, the swelling absorption pad includes a cooling water flow path extending along the longitudinal direction.
- the cooling water flow path may include an inlet part provided on one side of the swelling absorption pad in the length direction; An outlet portion provided on the other side of the swelling absorption pad in the longitudinal direction; And a cooling unit that connects between the inlet and the outlet and has a larger cross-sectional area compared to the inlet and the outlet. It may include.
- the cooling water flow path may have an open shape such that the cooling water flowing through the cooling water flow path directly contacts a pair of battery cells in contact with the swelling absorption pad.
- the inlet may be positioned higher than the outlet.
- the battery module may include an air inlet formed through the module housing at one side in the stacking direction of the unit module stack; And an air outlet formed through the module housing at the other side in the stacking direction of the unit module stack. It may include.
- the battery module may include an expansion pad disposed inside the air inlet and the air outlet, and expands according to contact with the coolant introduced into the battery module to close the air inlet and the air outlet.
- the battery module may include a pair of busbar frames respectively coupled to one side and the other side in the width direction of the unit module stack.
- the air inlet and air outlet may be formed at positions corresponding to an empty space formed between the busbar frame and the module housing.
- the battery module may include a cooling water pipe insertion hole passing through the module housing from one side or the other side in the stacking direction of the unit module stack and communicating with an empty space formed between the busbar frame and the module housing. .
- a battery pack according to an embodiment of the present invention for solving the above-described problem includes a plurality of battery modules according to an embodiment of the present invention as described above.
- the ESS according to an embodiment of the present invention for solving the above-described problem includes a plurality of battery modules according to an embodiment of the present invention as described above.
- the temperature inside the battery module can be quickly lowered to prevent the flame from spreading further.
- cooling water is injected into the battery module, which has a structure in which a pad for absorbing swelling is interposed between adjacent unit modules, the battery can not flow smoothly through the adjacent unit modules due to the pad.
- the temperature inside the module can be quickly reduced.
- a structure that can block the air flow path for the thermal runaway phenomenon can be effectively prevented the propagation.
- FIG. 1 is a diagram illustrating an energy storage system (ESS) according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating a connection structure between a water tank and a battery module and a relationship between the water tank and a controller in the battery pack according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating a relationship between a sensor, a controller, and a water tank in a battery pack according to an embodiment of the present invention.
- FIGS. 4 and 5 are perspective views illustrating a battery module applied to a battery pack according to an embodiment of the present invention.
- FIGS. 6 and 7 are diagrams illustrating an internal structure of a battery module applied to a battery pack according to an embodiment of the present invention.
- FIG 8 and 9 are views showing a specific structure of a swelling absorption pad applied to a battery module according to an embodiment of the present invention.
- FIG. 10 is a diagram illustrating an expansion pad applied to a battery pack according to an embodiment of the present invention.
- FIG. 11 is a diagram illustrating a connection structure between a water tank and a battery module, and a relationship between a valve, a controller, and a water tank in a battery pack according to another embodiment of the present invention.
- an energy storage system includes a plurality of battery packs 100 according to an embodiment of the present invention.
- a battery pack 100 includes a pack housing 110, a battery module 120, a water tank 130, a controller 140, It includes a cooling water pipe 150 and a sensor 160.
- the pack housing 110 is a frame having a substantially rectangular shape that defines the appearance of the battery pack 100, and has a plurality of battery modules 120, a water tank 130, a controller 140, and a cooling water pipe ( 150) and a space in which the sensor 160 can be installed is formed.
- the plurality of battery modules 120 are provided, and the plurality of battery modules 120 are stacked up and down in the pack housing 110 to form one module stack. A detailed structure of the battery module 120 will be described later in detail with reference to FIGS. 4 to 10.
- the water tank 130 is provided in the pack housing 110 and stores coolant to be supplied to the battery module 120 when a thermal runaway phenomenon of the battery module 120 occurs.
- the water tank 130 may be disposed on the upper part of the module stack for fast and smooth supply of cooling water. In this case, even if a separate coolant pump is not used, coolant may be quickly supplied into the battery module 120 due to free fall and water pressure of the coolant. Of course, a separate cooling water pump may be applied to the water tank 130 in order to supply the cooling water more quickly and smoothly.
- the controller 140 may be connected to the sensor 160 and the water tank 130 to output a control signal for opening the water tank 130 according to a sensing signal from the sensor 160. In addition to these functions, the controller 140 may additionally perform a function as a battery management system (BMS) that is connected to each of the battery modules 120 to manage charge/discharge.
- BMS battery management system
- the controller 140 when a gas is detected inside the battery pack 100 due to a thermal runaway phenomenon generated in at least one of the plurality of battery modules 120 or a temperature rise above a reference value is detected, the water tank 130 A control signal for opening) is output, and accordingly, coolant can be supplied into the battery module 120.
- the coolant is sequentially supplied from the battery module 120 located at the top to the battery module 120 located at the relatively bottom. Accordingly, the flame of the battery module 120 is extinguished and the battery module 120 is cooled, so that the thermal runaway phenomenon can be prevented from spreading to the entire battery pack 100.
- the cooling water pipe 150 connects between the water tank 130 and the battery module 120 and functions as a passage for transferring the cooling water supplied from the water tank 130 to the battery module 120.
- one end of the cooling water pipe 150 is connected to a water tank, and the other end is branched by the number of battery modules 120 and connected to each of the plurality of battery modules 120.
- the sensor 160 senses an increase in temperature and/or gas ejection and transmits a detection signal to the controller 140 Sent to.
- the sensor 160 may be a temperature sensor or a gas detection sensor, and may have a combination of a temperature sensor and a gas detection sensor.
- the sensor 160 is installed inside the pack housing 110 to detect an increase in temperature or gas generation inside the battery pack 100.
- the sensor 160 may be attached inside or outside each of the plurality of battery modules 120 in order to quickly sense the temperature of the battery module 120 and/or the gas generated from the battery module 120.
- the battery module 120 includes a plurality of battery cells 121, a bus bar frame 122, a module housing 123, an air inlet 124, and an air outlet. It may be implemented in a form including the 125 and the expansion pad 127. In addition, the battery module 120 may further include a swelling absorption pad 126 in addition to the above-described components.
- the plurality of battery cells 121 are provided, and the plurality of battery cells 121 are stacked to form one unit module 121A, and a plurality of such unit modules 121A are stacked to form one unit module stack. Achieve.
- a pouch type battery cell may be applied as the battery cell 121.
- the battery cell 121 includes a pair of electrode leads 121a which are respectively drawn out to both sides in the length direction.
- the bus bar frame 122 is provided with a pair, and each bus bar frame 122 covers the other side below one side in the width direction of the unit module stack.
- the electrode lead 121a of the battery cell 121 is drawn out through a slit formed in the bus bar frame 122, is bent, and fixed on the bus bar frame 122 by welding or the like. That is, the plurality of battery cells 121 may be electrically connected by the bus bar frame 122.
- the module housing 123 has a substantially rectangular parallelepiped shape, and accommodates a unit module stack therein. Air inlets 124 and air outlets 125 are formed on one side and the other side of the module housing 123 in the length direction.
- the air inlet 124 is formed on one side in the stacking direction of the module stack, that is, on one side in the length direction of the battery module 120, and is formed in a hole shape through the module housing 123.
- the air outlet 125 is formed on the other side in the stacking direction of the module stack, that is, the other side in the length direction of the battery module 120, and is formed in the shape of a hole passing through the module housing 123.
- the air inlet 124 and the air outlet 125 are located on opposite sides across diagonally along the length direction of the mutual battery module 120.
- an empty space is formed between the busbar frame 122 and the module housing 123. That is, air for cooling the battery cell 121 is between the busbar frame 122 and one of the six surfaces of the module housing 123 that faces one side and the other side in the length direction of the battery cell 121 An empty space to flow is formed.
- the empty spaces are respectively formed on both sides of the battery module 120 in the width direction.
- the air inlet 124 is formed at a position corresponding to an empty space formed on one side of the battery module 120 in the width direction, and the air outlet 125 is formed on the other side of the battery module 120 in the width direction. It is formed in a position corresponding to the empty space.
- the air introduced into the interior through the air inlet 124 is formed on the other side in the width direction of the battery module 120 from an empty space formed on one side of the battery module 120 in the width direction. After cooling the battery cell 121 while moving to the space, it is discharged to the outside of the battery module 120 through the air outlet 125. That is, the battery module 120 corresponds to an air-cooled battery module.
- the cooling water pipe 150 passes through the module housing 123 from one side or the other side in the stacking direction of the module stack and communicates with the empty space formed between the bus bar frame 122 and the module housing 123. .
- a cooling water pipe insertion hole 123a into which the cooling water pipe 150 can be inserted is formed on the surface of the module housing 123 on which the air inlet 124 is formed or the air outlet 125 is formed.
- the cooling water pipe insertion hole 123a communicates with the empty space, and the cooling water pipe 150 is inserted into the battery module 120 through the cooling water pipe insertion hole 123a.
- the cooling water pipe insertion hole 123a may be formed on the opposite side of the air inlet 124 or on the opposite side of the air outlet 125 along the width direction of the battery module 120.
- the cooling water introduced into the battery module 120 through the cooling water pipe 150 is from an empty space formed on one side of the battery module 120 in the width direction as shown in FIGS. 4 and 5. ) Flows into the empty space formed on the other side in the width direction and fills the inside of the battery module 120.
- the battery module 120 may include a swelling absorption pad 126 interposed between unit modules 121A forming a module stack.
- the swelling absorption pad 126 may include, for example, a material such as silicon, graphite, expanded polypropylene (EPP), expanded polystylene (EPS), and the like, and the swell of the battery cell 121 It has elasticity to absorb the volume expansion along the ring.
- the swelling absorption pad 126 defines a path through which the coolant can flow to cool the battery cell 121 while the coolant passes between the unit modules 121A adjacent to each other. It includes a cooling water flow path P to be provided.
- the cooling water flow path P includes an inlet 126a formed on one side of the swelling absorption pad 126 in the longitudinal direction, an outlet 126b formed on the other side of the swelling absorption pad 126 in the longitudinal direction, and an inflow. It includes a cooling part 126c connecting between the part 126a and the outlet part 126b.
- the cooling water flow path P has an open shape such that the cooling water flowing through the cooling water flow path P directly contacts a pair of battery cells 121 in contact with the swelling absorption pad 126.
- the coolant introduced into the empty space formed on one side of the battery module 120 in the width direction passes through the inlet 126a, the cooling part 126c, and the outlet 126b in sequence, and then the width direction of the battery module 120 While moving to the empty space formed on the side, it comes into contact with the battery cell 121, and through this, the battery cell 121 is cooled.
- the cooling unit 126c has a larger cross-sectional area compared to the inlet unit 126a and the outlet unit 126b in order to stay as long as possible the coolant introduced between the battery cells 121 adjacent to each other through the inlet unit 126a. Have.
- the flow rate of the coolant introduced through the inlet 126a is slowed in the cooling unit 126c, and has sufficient time to contact the battery cell 121. In this way, the coolant that has completed heat exchange with the battery cell 121 is discharged through the outlet portion 126b.
- the inlet portion 126a may be formed to be positioned higher than the outlet portion 126b.
- the cooling water flow path P has a structure in which the inlet 126a is located above the outlet 126b, the flow of the cooling water may be more smooth, thereby improving cooling efficiency. have.
- the expansion pad 127 is disposed inside the air inlet 124 and the air outlet 125, and has a size smaller than the open area of the air inlet 124 and the air outlet 125.
- the expansion pad 127 includes an air inlet 124 and an air outlet in order to facilitate the flow of air through the air inlet 124 and the air outlet 125 in a normal use state of the battery module 120. It is preferable to have a size of less than 30% of the open area of 125).
- the expansion pad 127 is expanded by contacting the cooling water introduced into the battery module 120 to close the air inlet 124 and the air outlet 125.
- the expansion pad 126 contains a resin exhibiting a very large expansion rate when absorbing moisture, and when a sufficient amount of moisture is provided, the expansion pad 126 contains a resin whose volume increases by at least twice the initial volume.
- the resin used for the expansion pad 127 may be, for example, polyester staple fiber.
- the battery pack according to another embodiment of the present invention differs only in that the valve 170 is installed in the cooling water pipe 150 compared to the battery pack 100 according to the embodiment of the present invention described above. , The other components are substantially the same.
- the valve 170 is provided with as many as the number of battery modules 120, and each of the valves 170 is installed adjacent to the plurality of battery modules 120 to prevent cooling water flowing into the plurality of battery modules 120. Allow or block the flow individually.
- At least one sensor 160 is provided for each battery module 120.
- the sensor 160 is provided for each battery module 120, it is possible to supply coolant only to some battery modules 120 in which a thermal runaway phenomenon has occurred.
- the controller 140 receives a detection signal from some of the sensors 160, it is determined that a thermal runaway phenomenon has occurred in the battery module 120 to which the sensor 160 transmitting the detection signal is attached, and a plurality of Among the valves 170 of, the valve 170 installed adjacent to the battery module 120 in which the thermal runaway phenomenon has occurred is opened so that the coolant can be injected.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
Claims (18)
- 복수의 배터리 셀이 적층된 단위 모듈이 복수개 적층되어 형성된 단위 모듈 적층체;서로 인접한 상기 단위 모듈 사이에 개재되는 스웰링 흡수 패드; 및상기 단위 모듈 적층체 및 스웰링 흡수 패드를 수용하는 모듈 하우징;을 포함하며,상기 스웰링 흡수 패드는,길이 방향을 따라 연장 형성된 냉각수 유로를 구비하는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 냉각수 유로는,상기 스웰링 흡수 패드의 길이 방향 일 측에 구비되는 유입부;상기 스웰링 흡수 패드의 길이 방향 타 측에 구비되는 유출부; 및상기 유입부와 유출부 사이를 연결하며 상기 유입부 및 유출부와 비교하여 더 넓은 단면적을 갖는 냉각부;를 포함하는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 냉각수 유로는 상기 냉각수 유로를 통해 흐르는 냉각수가 상기 스웰링 흡수 패드와 접하는 한 쌍의 배터리 셀과 직접 접촉되도록 개방된 형태를 갖는 것을 특징으로 하는 배터리 모듈.
- 제2항에 있어서,상기 유입부는 상기 유출부와 비교하여 더 상부에 위치하는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 배터리 모듈은,상기 단위 모듈 적층체의 적층 방향 일 측에서 상기 모듈 하우징을 관통하여 형성되는 에어 인렛; 및상기 단위 모듈 적층체의 적층 방향 타 측에서 상기 모듈 하우징을 관통하여 형성되는 에어 아웃렛;을 포함하는 것을 특징으로 하는 배터리 모듈.
- 제5항에 있어서,상기 배터리 모듈은,상기 에어 인렛 및 에어 아웃렛의 내측에 배치되며, 상기 배터리 모듈 내로 유입된 냉각수와의 접촉에 따라 팽창하여 상기 에어 인렛 및 에어 아웃렛을 폐쇄하는 팽창 패드를 포함하는 것을 특징으로 하는 배터리 모듈.
- 제6항에 있어서,상기 배터리 모듈은,상기 단위 모듈 적층체의 폭 방향 일 측 및 타 측에 각각 결합되는 한 쌍의 버스바 프레임을 포함하는 것을 특징으로 하는 배터리 모듈.
- 제7항에 있어서,상기 에어 인렛 및 에어 아웃렛은,상기 버스바 프레임과 모듈 하우징 사이에 형성되는 빈 공간과 대응되는 위치에 형성되는 것을 특징으로 하는 배터리 모듈.
- 제7항에 있어서,상기 배터리 모듈은,상기 단위 모듈 적층체의 적층 방향 일 측 또는 타 측으로부터 상기 모듈 하우징을 관통하여 상기 버스바 프레임과 모듈 하우징 사이에 형성되는 빈 공간과 연통하는 냉각수 관 삽입 홀을 구비하는 것을 특징으로 하는 배터리 모듈.
- 팩 하우징;상기 팩 하우징 내에 적층된 복수의 배터리 모듈;상기 복수의 배터리 모듈을 포함하는 모듈 적층체의 상부에 배치되며 냉각수를 저장하는 물탱크;상기 물탱크와 배터리 모듈 사이를 연결하는 냉각수 관;상기 팩 하우징 내에 설치되어 복수의 배터리 모듈 중 적어도 일부에서 발생된 열 폭주 현상을 감지하는 적어도 하나의 센서; 및상기 센서에 의해 열 폭주 현상이 감지되면 상기 냉각수 관을 통해 냉각수가 상기 배터리 모듈의 내부로 유입되도록 제어신호를 출력하는 컨트롤러;를 포함하는 배터리 팩.
- 제10항에 있어서,상기 배터리 팩은, 상기 냉각수 관 내에 설치되는 복수의 밸브를 포함하며,상기 복수의 밸브 각각은 상기 모듈 적층체를 이루는 복수의 배터리 모듈과 인접 설치되어 상기 복수의 배터리 모듈로 유입되는 냉각수의 흐름을 개별적으로 허용 또는 차단하는 것을 특징으로 하는 배터리 팩.
- 제11항에 있어서,상기 센서는, 상기 복수의 배터리 모듈 각각에 설치되는 것을 특징으로 하는 배터리 팩.
- 제12항에 있어서,상기 컨트롤러는, 상기 복수의 밸브 중 상기 센서에 의해 열 폭주 현상이 감지된 배터리 모듈과 인접 설치된 밸브를 개방하도록 하는 제어신호를 출력하는 것을 특징으로 하는 배터리 팩.
- 제10항에 있어서,상기 배터리 모듈은,복수의 배터리 셀이 적층된 단위 모듈이 복수개 적층되어 형성된 단위 모듈 적층체;서로 인접한 상기 단위 모듈 사이에 개재되는 스웰링 흡수 패드; 및상기 단위 모듈 적층체 및 스웰링 흡수 패드를 수용하는 모듈 하우징;을 포함하며,상기 스웰링 흡수 패드는,그 길이 방향을 따라 연장 형성된 냉각수 유로를 구비하는 것을 특징으로 하는 배터리 팩.
- 제14항에 있어서,상기 냉각수 유로는,상기 스웰링 흡수 패드의 길이 방향 일 측에 구비되는 유입부;상기 스웰링 흡수 패드의 길이 방향 타 측에 구비되는 유출부; 및상기 유입부와 유출부 사이를 연결하며 상기 유입부 및 유출부와 비교하여 더 넓은 단면적을 갖는 냉각부;를 포함하는 것을 특징으로 하는 배터리 팩.
- 제14항에 있어서,상기 냉각수 유로는 상기 냉각수 유로를 통해 흐르는 냉각수가 상기 스웰링 흡수 패드와 접하는 한 쌍의 배터리 셀과 직접 접촉되도록 개방된 형태를 갖는 것을 특징으로 하는 배터리 팩.
- 제16항에 있어서,상기 유입부는 상기 유출부와 비교하여 더 상부에 위치하는 것을 특징으로 하는 배터리 팩.
- 제1항 내지 제9항 중 어느 한 항에 따른 배터리 모듈을 복수 개 포함하는 ESS.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23206723.1A EP4292674A3 (en) | 2019-05-30 | 2020-04-01 | Battery module having path through which internally supplied coolant can flow when thermal runaway occurs, and battery pack and ess including same |
EP24194326.5A EP4438135A2 (en) | 2019-05-30 | 2020-04-01 | Battery module having path through which internally supplied coolant can flow when thermal runaway occurs, and battery pack and ess including same |
JP2021500621A JP7179150B2 (ja) | 2019-05-30 | 2020-04-01 | 熱暴走現象の発生時、内部に投入された冷却水が流れ得る経路を有するバッテリーモジュール、それを含むバッテリーパック及びess |
US16/972,839 US11450908B2 (en) | 2019-05-30 | 2020-04-01 | Battery module having path through which coolant introduced therein flows when thermal runaway occurs, and battery pack and ESS comprising the same |
EP20815309.8A EP3840109B1 (en) | 2019-05-30 | 2020-04-01 | Battery module having path through which internally supplied coolant can flow when thermal runaway occurs, and battery pack and ess including same |
AU2020282883A AU2020282883A1 (en) | 2019-05-30 | 2020-04-01 | Battery module having path through which internally supplied coolant can flow when thermal runaway occurs, and battery pack and ESS including same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0063999 | 2019-05-30 | ||
KR1020190063999A KR102380444B1 (ko) | 2019-05-30 | 2019-05-30 | 열 폭주 현상 발생 시 내부로 투입된 냉각수가 흐를 수 있는 경로를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 ess |
KR1020190068053A KR102380446B1 (ko) | 2019-06-10 | 2019-06-10 | 열 폭주 현상 발생 시 냉각수가 배터리 모듈의 내부로 투입될 수 있는 구조를 갖는 배터리 팩 및 이를 포함하는 ess |
KR10-2019-0068053 | 2019-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020242035A1 true WO2020242035A1 (ko) | 2020-12-03 |
Family
ID=73506659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/004477 WO2020242035A1 (ko) | 2019-05-30 | 2020-04-01 | 열 폭주 현상 발생 시 내부로 투입된 냉각수가 흐를 수 있는 경로를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 ess |
Country Status (7)
Country | Link |
---|---|
US (1) | US11450908B2 (ko) |
EP (3) | EP4292674A3 (ko) |
JP (1) | JP7179150B2 (ko) |
CN (2) | CN112018287B (ko) |
AU (1) | AU2020282883A1 (ko) |
DE (1) | DE202020006013U1 (ko) |
WO (1) | WO2020242035A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202020006013U1 (de) * | 2019-05-30 | 2024-03-19 | Lg Energy Solution, Ltd. | Batteriepack mit einem Pfad, durch den intern zugeführtes Kühlmittel fließen kann, wenn ein thermisches Durchgehen auftritt, und Batterie-Rack und ESS mit diesem |
KR20210006570A (ko) * | 2019-07-08 | 2021-01-19 | 주식회사 엘지화학 | 열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치 |
KR20210109714A (ko) * | 2020-02-27 | 2021-09-07 | 주식회사 엘지에너지솔루션 | 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess |
EP3998673A1 (en) * | 2021-02-19 | 2022-05-18 | Lilium eAircraft GmbH | Battery module |
CN115692911B (zh) * | 2021-07-30 | 2023-10-20 | 宁德时代新能源科技股份有限公司 | 电池和用电装置 |
WO2024133146A2 (en) * | 2022-12-22 | 2024-06-27 | Polarium Energy Solutions Ab | Energy storage system comprising a cooling system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000048867A (ja) * | 1998-07-31 | 2000-02-18 | Toyota Motor Corp | 組電池 |
JP2011096465A (ja) * | 2009-10-28 | 2011-05-12 | Tokyo R & D Co Ltd | 冷却板及びバッテリーシステム |
KR20170084606A (ko) * | 2016-01-12 | 2017-07-20 | 삼성전자주식회사 | 모듈의 균일한 냉각을 위한 배터리 팩 및 이의 냉각 방법 |
KR20180068259A (ko) * | 2016-12-13 | 2018-06-21 | 현대자동차주식회사 | 배터리 구조 |
JP2018113097A (ja) * | 2015-05-21 | 2018-07-19 | パナソニックIpマネジメント株式会社 | 組電池 |
KR20190063999A (ko) | 2017-11-30 | 2019-06-10 | 코멧테크놀로지스코리아 주식회사 | Rf전력분배장치 및 rf전력분배방법 |
KR20190068053A (ko) | 2017-12-08 | 2019-06-18 | 주식회사 피코그램 | Ro필터용 정수 량 확인 및 농축수 배출량 조절밸브 |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950015887A (ko) | 1993-11-08 | 1995-06-17 | 조백제 | 관로 관구마개 |
JP3451142B2 (ja) | 1994-11-18 | 2003-09-29 | 本田技研工業株式会社 | 温度制御機構を備えたバッテリ組立体 |
JPH10208781A (ja) | 1997-01-20 | 1998-08-07 | Mitsubishi Motors Corp | バッテリ冷却装置 |
KR100369068B1 (ko) * | 1999-04-16 | 2003-01-24 | 삼성에스디아이 주식회사 | 원통형 2차 전지 |
DE59910468D1 (de) * | 1999-12-21 | 2004-10-14 | Ford Global Tech Inc | Thermostateinheit für einen Kühlkreislauf |
JP2003346922A (ja) | 2002-05-28 | 2003-12-05 | Mitsubishi Heavy Ind Ltd | 蓄電装置の温度調整装置及びその方法並びに蓄電装置 |
JP5632402B2 (ja) | 2004-11-30 | 2014-11-26 | 日本電気株式会社 | フィルム外装電気デバイス集合体 |
JP4661895B2 (ja) | 2008-04-02 | 2011-03-30 | 株式会社デンソー | 電池冷却装置 |
KR20110024954A (ko) | 2009-09-03 | 2011-03-09 | 삼성전자주식회사 | 냉각용 유로를 갖는 이차 전지 모듈 |
EP2369657B1 (en) * | 2010-03-23 | 2014-12-24 | Jones, William E. M. | Battery watering system |
JP2012104225A (ja) | 2010-11-05 | 2012-05-31 | Kawasaki Heavy Ind Ltd | 電池モジュール、電池モジュールの製造方法および電池用スペーサ |
JP2013048082A (ja) | 2011-07-25 | 2013-03-07 | Gs Yuasa Corp | 鉛蓄電池 |
JP5182444B2 (ja) * | 2011-07-28 | 2013-04-17 | 株式会社豊田自動織機 | 電池用温調機構 |
JP5772428B2 (ja) | 2011-09-15 | 2015-09-02 | 日産自動車株式会社 | 二次電池の冷却装置 |
KR20130033597A (ko) | 2011-09-27 | 2013-04-04 | 에스케이이노베이션 주식회사 | 이차 전지 모듈 |
JP5856472B2 (ja) * | 2011-12-22 | 2016-02-09 | 積水化学工業株式会社 | 蓄電池の設置構造 |
JP2013161635A (ja) * | 2012-02-03 | 2013-08-19 | Toyota Industries Corp | 端子接続部材、端子接続部材の製造方法及び蓄電装置並びに移動体 |
KR101255250B1 (ko) * | 2012-03-23 | 2013-04-16 | 삼성에스디아이 주식회사 | 전지 모듈 |
JP2014060012A (ja) * | 2012-09-14 | 2014-04-03 | Nissan Motor Co Ltd | 積層構造電池 |
JP2014127403A (ja) * | 2012-12-27 | 2014-07-07 | Mitsubishi Heavy Ind Ltd | 電池モジュール |
JP2014216248A (ja) * | 2013-04-26 | 2014-11-17 | 三菱自動車工業株式会社 | バッテリケース |
TWI489674B (zh) * | 2014-01-13 | 2015-06-21 | 新普科技股份有限公司 | 散熱件及其組成之電池模組 |
US9322328B2 (en) | 2014-03-14 | 2016-04-26 | Chung-Shan Institute Of Science And Technology, Armaments Bureau, M.N.D | Internal cooling passage structure for rotary engine |
JP2015220177A (ja) * | 2014-05-20 | 2015-12-07 | 株式会社Gsユアサ | 蓄電装置 |
JP2016002419A (ja) * | 2014-06-19 | 2016-01-12 | Necエンジニアリング株式会社 | 蓄電装置の消火システム、及び蓄電装置の消火方法 |
KR20160069807A (ko) * | 2014-12-09 | 2016-06-17 | 삼성에스디아이 주식회사 | 전지 모듈 |
US10326171B2 (en) * | 2016-03-24 | 2019-06-18 | Flow-Rite Controls, Ltd. | Intelligent monitoring systems for liquid electrolyte batteries |
KR102256604B1 (ko) | 2016-05-31 | 2021-05-26 | 주식회사 엘지에너지솔루션 | 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차 |
JP6540628B2 (ja) * | 2016-07-29 | 2019-07-10 | 株式会社デンソー | 電池パック |
JP6779079B2 (ja) | 2016-09-26 | 2020-11-04 | 日本ドライケミカル株式会社 | 二次電池の熱暴走抑止システム |
DE102016219284A1 (de) | 2016-10-05 | 2018-04-05 | Bayerische Motoren Werke Aktiengesellschaft | Elektrischer Energiespeicher mit einer Notkühleinrichtung |
EP3316344B1 (en) | 2016-11-01 | 2018-09-26 | Samsung SDI Co., Ltd. | Battery module |
KR20180056219A (ko) | 2016-11-18 | 2018-05-28 | 삼성전자주식회사 | 스페이서 및 이를 포함하는 배터리 어셈블리 |
KR102155330B1 (ko) | 2016-11-29 | 2020-09-11 | 주식회사 엘지화학 | 공냉식 배터리 모듈 |
JP2018133134A (ja) * | 2017-02-13 | 2018-08-23 | 三菱自動車工業株式会社 | 二次電池冷却機構 |
SE540767C2 (en) * | 2017-03-06 | 2018-11-06 | Scania Cv Ab | A thermostat device for a cooling system |
KR101780775B1 (ko) * | 2017-03-17 | 2017-10-10 | 주식회사 광운기술 | 점검 및 유지보수가 용이한 케이블 트레이용 차열 차염 부재 |
KR102437707B1 (ko) | 2017-04-07 | 2022-08-29 | 현대자동차주식회사 | 차량용 배터리 화재 진화 시스템 및 제어방법 |
DE202020006013U1 (de) | 2019-05-30 | 2024-03-19 | Lg Energy Solution, Ltd. | Batteriepack mit einem Pfad, durch den intern zugeführtes Kühlmittel fließen kann, wenn ein thermisches Durchgehen auftritt, und Batterie-Rack und ESS mit diesem |
-
2020
- 2020-04-01 DE DE202020006013.5U patent/DE202020006013U1/de active Active
- 2020-04-01 JP JP2021500621A patent/JP7179150B2/ja active Active
- 2020-04-01 EP EP23206723.1A patent/EP4292674A3/en not_active Withdrawn
- 2020-04-01 EP EP20815309.8A patent/EP3840109B1/en active Active
- 2020-04-01 WO PCT/KR2020/004477 patent/WO2020242035A1/ko unknown
- 2020-04-01 US US16/972,839 patent/US11450908B2/en active Active
- 2020-04-01 EP EP24194326.5A patent/EP4438135A2/en active Pending
- 2020-04-01 AU AU2020282883A patent/AU2020282883A1/en active Pending
- 2020-05-29 CN CN202010474828.6A patent/CN112018287B/zh active Active
- 2020-05-29 CN CN202020961677.2U patent/CN212967883U/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000048867A (ja) * | 1998-07-31 | 2000-02-18 | Toyota Motor Corp | 組電池 |
JP2011096465A (ja) * | 2009-10-28 | 2011-05-12 | Tokyo R & D Co Ltd | 冷却板及びバッテリーシステム |
JP2018113097A (ja) * | 2015-05-21 | 2018-07-19 | パナソニックIpマネジメント株式会社 | 組電池 |
KR20170084606A (ko) * | 2016-01-12 | 2017-07-20 | 삼성전자주식회사 | 모듈의 균일한 냉각을 위한 배터리 팩 및 이의 냉각 방법 |
KR20180068259A (ko) * | 2016-12-13 | 2018-06-21 | 현대자동차주식회사 | 배터리 구조 |
KR20190063999A (ko) | 2017-11-30 | 2019-06-10 | 코멧테크놀로지스코리아 주식회사 | Rf전력분배장치 및 rf전력분배방법 |
KR20190068053A (ko) | 2017-12-08 | 2019-06-18 | 주식회사 피코그램 | Ro필터용 정수 량 확인 및 농축수 배출량 조절밸브 |
Also Published As
Publication number | Publication date |
---|---|
JP2021530090A (ja) | 2021-11-04 |
CN112018287B (zh) | 2023-12-15 |
US20210249712A1 (en) | 2021-08-12 |
EP4438135A2 (en) | 2024-10-02 |
EP3840109A1 (en) | 2021-06-23 |
US11450908B2 (en) | 2022-09-20 |
CN112018287A (zh) | 2020-12-01 |
DE202020006013U1 (de) | 2024-03-19 |
AU2020282883A1 (en) | 2021-04-29 |
JP7179150B2 (ja) | 2022-11-28 |
EP3840109A4 (en) | 2022-03-16 |
EP3840109B1 (en) | 2024-08-14 |
CN212967883U (zh) | 2021-04-13 |
EP4292674A2 (en) | 2023-12-20 |
EP4292674A3 (en) | 2024-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020242035A1 (ko) | 열 폭주 현상 발생 시 내부로 투입된 냉각수가 흐를 수 있는 경로를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 ess | |
WO2021006560A1 (ko) | 열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치 | |
WO2021177585A1 (ko) | 열 폭주 현상 발생 시 냉각수가 배터리 모듈의 내부로 투입될 수 있는 구조를 갖는 배터리 팩 및 이를 포함하는 ess | |
WO2021167270A1 (ko) | 화재 발생시 내부에 주수된 소화용수의 외부 유출을 지연시킬 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 랙과 에너지 저장장치 | |
WO2020179994A1 (ko) | 화염의 외부 노출을 방지할 수 있는 구조를 갖는 ess 모듈 및 이를 포함하는 배터리 팩 | |
WO2021025539A1 (ko) | 소화 유닛을 포함한 배터리 팩 | |
WO2021221370A1 (ko) | 개선된 고정 구조 및 가스 배출 구조를 갖는 배터리 팩, 그리고 이를 포함하는 전자 디바이스 및 자동차 | |
WO2019235724A1 (ko) | 개선된 냉각 구조를 갖는 배터리 모듈 | |
WO2021172697A1 (ko) | 초 흡수성 시트를 구비하는 ess | |
WO2020075962A1 (ko) | 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 랙 및 이러한 배터리 랙을 포함하는 전력 저장 장치 | |
WO2020166940A1 (ko) | 냉각제가 배터리 모듈 내로 투입될 수 있는 구조를 갖는 에너지 저장 시스템 | |
WO2022203278A1 (ko) | 냉각수를 활용한 배터리 셀의 열확산 방지 구조를 갖춘 배터리 모듈 및 이를 포함하는 배터리 팩 | |
WO2020189965A1 (ko) | 전지 모듈 및 이를 포함하는 전지팩 | |
WO2021201421A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
KR20200141570A (ko) | 열 폭주 현상 발생 시 냉각수가 배터리 모듈의 내부로 투입될 수 있는 구조를 갖는 배터리 팩 및 이를 포함하는 ess | |
WO2022149961A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩 | |
WO2022158782A1 (ko) | 화재 전이 방지 구조가 구비된 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2022270746A1 (ko) | 가스 배출 경로를 개선한 배터리 팩 | |
WO2021201409A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2021085911A1 (ko) | 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 랙 및 전력 저장 장치 | |
WO2021015469A1 (ko) | 전력 저장 장치 | |
WO2022250311A1 (ko) | 벤팅 가스의 온도 저감 및 스파크의 외부 배출 차단 구조를 적용한 배터리 팩 | |
WO2021172758A1 (ko) | 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess | |
WO2021177760A1 (ko) | 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess | |
WO2022158783A1 (ko) | 배터리 팩 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021500621 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20815309 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020815309 Country of ref document: EP Effective date: 20210315 |
|
ENP | Entry into the national phase |
Ref document number: 2020282883 Country of ref document: AU Date of ref document: 20200401 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |