WO2021006560A1 - 열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치 - Google Patents

열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치 Download PDF

Info

Publication number
WO2021006560A1
WO2021006560A1 PCT/KR2020/008737 KR2020008737W WO2021006560A1 WO 2021006560 A1 WO2021006560 A1 WO 2021006560A1 KR 2020008737 W KR2020008737 W KR 2020008737W WO 2021006560 A1 WO2021006560 A1 WO 2021006560A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
module
battery module
housing
thermal runaway
Prior art date
Application number
PCT/KR2020/008737
Other languages
English (en)
French (fr)
Inventor
권민호
유재욱
유정빈
공진학
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2022500978A priority Critical patent/JP7358609B2/ja
Priority to EP20837142.7A priority patent/EP3989336A4/en
Priority to US17/625,561 priority patent/US20220294052A1/en
Publication of WO2021006560A1 publication Critical patent/WO2021006560A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/06Physical fire-barriers
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/06Physical fire-barriers
    • A62C2/065Physical fire-barriers having as the main closure device materials, whose characteristics undergo an irreversible change under high temperatures, e.g. intumescent
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/14Fire prevention, containment or extinguishing specially adapted for particular objects or places in connection with doors, windows, ventilators, partitions, or shutters, e.g. automatic closing
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module having a structure in which coolant can be injected into the interior when a thermal runaway phenomenon occurs, a battery pack including the same, and an energy storage system, and more specifically, a battery pack.
  • a structure capable of preventing the thermal runaway phenomenon from propagating to adjacent battery modules is provided by introducing coolant into the inside of the battery module in which the problem occurs. It relates to a battery module having, a battery pack and an energy storage device including the same.
  • an abnormality such as a short circuit occurs in some battery cells, and the temperature continuously increases, resulting in a thermal runaway phenomenon when the temperature of the battery cells exceeds the critical temperature. .
  • a thermal runaway phenomenon occurs in some battery cells, a safety issue may arise.
  • the present invention is to prevent the flame from spreading larger by quickly lowering the temperature inside the battery module when a flame due to thermal runaway occurs in some battery cells inside the battery module. It is for work purposes.
  • a battery module for solving the above-described problem includes a plurality of battery cells; A module housing accommodating a cell stack formed by stacking the plurality of battery cells; An air inlet formed through the module housing at one side in the stacking direction of the cell stack; An air outlet formed through the module housing on the other side in the stacking direction of the cell stack; And an expansion pad disposed inside the air inlet and the air outlet and expanding according to contact with the coolant introduced into the module housing to close the air inlet and the air outlet.
  • the expansion pad may be attached on the inner surface of the module housing.
  • a pair of the expansion pads may be provided, and each of the pair of expansion pads may be attached to an upper and lower part of an inner surface of the module housing.
  • At least a portion of the expansion pad may be inserted into a receiving groove formed on an inner surface of the module housing.
  • the battery module may include mesh plates disposed on both sides of the expansion pad to guide movement of the expansion pad to expand.
  • the battery module may include a pair of busbar frames respectively coupled to one side and the other side in the width direction of the cell stack.
  • the air inlet and air outlet may be formed at positions corresponding to an empty space formed between the busbar frame and the module housing.
  • a battery pack includes: a pack housing; A plurality of the battery modules stacked in the pack housing; A water tank disposed on the module stack including the plurality of battery modules and storing cooling water; A coolant pipe connecting the water tank and the battery module; At least one sensor installed in the pack housing to detect a thermal runaway phenomenon generated in at least some of the plurality of battery modules; And a controller for outputting a control signal for allowing coolant to flow into the battery module through the coolant pipe when a thermal runaway phenomenon is detected by the sensor.
  • the battery pack includes a plurality of valves installed in the cooling water pipe, and each of the plurality of valves is installed adjacent to the plurality of battery modules to individually allow or block the flow of cooling water flowing into the plurality of battery modules. have.
  • the sensor may be installed on each of the plurality of battery modules.
  • the controller may output a control signal to open a valve installed adjacent to a battery module in which a thermal runaway phenomenon is detected by the sensor among the plurality of valves.
  • An energy storage device includes a plurality of battery packs according to an embodiment of the present invention.
  • the temperature inside the battery module can be quickly lowered to prevent the flame from spreading further.
  • a structure that can block the air flow path for the thermal runaway phenomenon can be effectively prevented the propagation.
  • FIG. 1 is a view showing an energy storage device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a connection structure between a water tank and a battery module and a relationship between the water tank and a controller in the battery pack according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a relationship between a sensor, a controller, and a water tank in a battery pack according to an embodiment of the present invention.
  • FIGS. 4 and 5 are perspective views illustrating a battery module applied to a battery pack according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an internal structure of a battery module applied to a battery pack according to an embodiment of the present invention.
  • FIG. 7 is a view showing a part of a front side of a battery module applied to a battery pack according to an embodiment of the present invention, and is a view showing an expansion pad disposed in the battery module.
  • FIG 8 to 10 are views illustrating a part of a cross section of a battery module applied to a battery pack according to an embodiment of the present invention as viewed from a side, and are views illustrating an expansion pad disposed in the battery module.
  • FIG. 11 is a diagram illustrating a connection structure between a water tank and a battery module, and a relationship between a valve, a controller, and a water tank in a battery pack according to another embodiment of the present invention.
  • an energy storage device includes a plurality of battery packs 100 according to an embodiment of the present invention.
  • a battery pack 100 includes a pack housing 110, a battery module 120, a water tank 130, a controller 140, It includes a cooling water pipe 150 and a sensor 160.
  • the pack housing 110 is a frame having a substantially rectangular shape that defines the appearance of the battery pack 100, and has a plurality of battery modules 120, a water tank 130, a controller 140, and a cooling water pipe ( 150) and a space in which the sensor 160 can be installed is formed.
  • the plurality of battery modules 120 are provided, and the plurality of battery modules 120 are stacked up and down in the pack housing 110 to form one module stack. A detailed structure of the battery module 120 will be described later in detail with reference to FIGS. 4 to 7.
  • the water tank 130 is provided in the pack housing 110 and stores coolant to be supplied to the battery module 120 when a thermal runaway phenomenon of the battery module 120 occurs.
  • the water tank 130 may be disposed on the upper part of the module stack for fast and smooth supply of cooling water. In this case, even if a separate coolant pump is not used, coolant can be quickly supplied to the battery module 120 by free fall and water pressure of the coolant. Of course, a separate cooling water pump may be applied to the water tank 130 in order to supply the cooling water more quickly and smoothly.
  • the controller 140 may be connected to the sensor 160 and the water tank 130 to output a control signal for opening the water tank 130 according to a sensing signal from the sensor 160. In addition to these functions, the controller 140 may additionally perform a function as a battery management system (BMS) that is connected to each of the battery modules 120 to manage charge/discharge.
  • BMS battery management system
  • the controller 140 when a gas is detected inside the battery pack 100 due to a thermal runaway phenomenon generated in at least one of the plurality of battery modules 120 or a temperature rise above a reference value is detected, the water tank 130 A control signal for opening) is output, and accordingly, coolant can be supplied to the battery module 120.
  • the coolant is sequentially supplied from the battery module 120 located at the top to the battery module 120 located at the bottom. Accordingly, the flame inside the battery module 120 is extinguished and the battery module 120 is cooled, thereby preventing the thermal runaway from spreading to the entire battery pack 100.
  • the cooling water pipe 150 connects between the water tank 130 and the battery module 120 and functions as a passage for transferring the cooling water supplied from the water tank 130 to the battery module 120.
  • one end of the cooling water pipe 150 is connected to a water tank, and the other end is branched by the number of battery modules 120 and connected to each of the plurality of battery modules 120.
  • the sensor 160 senses an increase in temperature and/or gas ejection and transmits a detection signal to the controller 140 Sent to.
  • the sensor 160 may be a temperature sensor or a gas detection sensor, and may have a combination of a temperature sensor and a gas detection sensor.
  • the sensor 160 is installed inside the pack housing 110 to detect an increase in temperature or gas generation inside the battery pack 100.
  • the sensor 160 may be attached inside or outside each of the plurality of battery modules 120 in order to quickly sense the temperature of the battery module 120 and/or the gas generated from the battery module 120.
  • the battery module 120 includes a plurality of battery cells 121, a bus bar frame 122, a module housing 123, an air inlet 124, and an air outlet. It may be implemented in a form including the (air outlet) 125 and the expansion pad 126.
  • the plurality of battery cells 121 are provided, and the plurality of battery cells 121 are stacked to form one cell stack.
  • a pouch type battery cell may be applied.
  • the battery cell 121 includes a pair of electrode leads 121a which are respectively drawn out to both sides in the length direction.
  • the bus bar frame 122 is provided with a pair, and each bus bar frame 122 covers one side and the other side of the cell stack in the width direction (direction in which electrode leads are formed).
  • the electrode lead 121a of the battery cell 121 is drawn out through a slit formed in the bus bar frame 122, is bent, and fixed on the bus bar frame 122 by welding or the like. That is, the plurality of battery cells 121 may be electrically connected by the bus bar frame 122.
  • the module housing 123 has a substantially rectangular parallelepiped shape, and accommodates the cell stack therein. Air inlets 124 and air outlets 125 are formed on one side and the other side of the module housing 123 in the length direction.
  • the air inlet 124 is on one side in the stacking direction of the cell stack (front side), that is, on one side in the length direction of the battery module 120. It is formed and is formed in the form of a hole penetrating the module housing 123.
  • the air outlet 125 is formed on the other side (rear side) in the stacking direction of the cell stack, that is, the other side of the battery module 120 in the longitudinal direction, and is formed in the form of a hole passing through the module housing 123.
  • the air inlet 124 and the air outlet 125 are located on opposite sides across diagonally along the longitudinal direction of the battery module 120 (the stacking direction of the cell stack).
  • an empty space is formed between the busbar frame 122 and the module housing 123. That is, air for cooling the battery cell 121 between the busbar frame 122 and one of the six outer surfaces of the module housing 123 that faces one and the other side in the length direction of the battery cell 121
  • An empty space is formed through which can flow.
  • the empty spaces are respectively formed on both sides of the battery module 120 in the width direction.
  • the air inlet 124 is formed at a position corresponding to an empty space formed on one side of the battery module 120 in the width direction, and the air outlet 125 is formed on the other side of the battery module 120 in the width direction. It is formed in a position corresponding to the empty space.
  • the air introduced into the interior through the air inlet 124 is formed on the other side in the width direction of the battery module 120 from an empty space formed on one side in the width direction of the battery module 120
  • the battery cell 121 is cooled while moving to an empty space, and then the air outlet 125 is exited. That is, the battery module 120 corresponds to an air-cooled battery module.
  • the cooling water pipe 150 passes through the module housing 123 from one side or the other side in the stacking direction of the cell stack and communicates with the empty space formed between the bus bar frame 122 and the module housing 123. . That is, the cooling water pipe 150 may be inserted through the same surface as the surface on which the air inlet 124 is formed or the surface on which the air outlet 125 is formed among six surfaces of the module housing 123.
  • the cooling water flowing into the battery module 120 through the cooling water pipe 150 is from an empty space formed on one side of the battery module 120 in the width direction as shown in FIGS. 4 and 5. It flows into the empty space formed on the other side in the width direction of 120 and fills the inside of the battery module 120.
  • the expansion pad 126 is disposed inside the air inlet 124 and the air outlet 125.
  • the expansion pad 126 is attached to the inner surface of the module housing 123, and the air inlet 124 and the air outlet 125 have a size smaller than the open area.
  • the expansion pad 126 is provided with an air inlet 124 and an air outlet in order to facilitate the flow of air through the air inlet 124 and the air outlet 125 in a normal use state of the battery module 120. It is desirable to have a size of less than about 30% of the open area of 125).
  • FIG. 6 since the expansion pad 126 is attached to the inner surface of the module housing 123, only the case where the expansion pad 126 is attached to the bottom surface is shown. It can also be attached to the side.
  • the expansion pad 126 is expanded by contacting the cooling water introduced into the battery module 120 to close the air inlet 124 and the air outlet 125.
  • the expansion pad 126 contains a resin that exhibits a very large expansion rate when absorbing moisture, and when a sufficient amount of moisture is provided, the expansion pad 126 contains a resin whose volume increases by at least about two times or more compared to the initial volume.
  • the resin used for the expansion pad 126 may include, for example, a nonwoven fabric in which a super absorbent fiber (SAF) and a polyester staple fiber are mixed.
  • SAF super absorbent fiber
  • the SAF is made of SAP (super absorbent polymer) in a fiber form.
  • the closing of the air inlet 124 and the air outlet 125 due to the expansion of the expansion pad 126 does not necessarily mean a complete closure at a level in which cooling water cannot be leaked.
  • the case of reducing the open area of the inlet 124 and the air outlet 125 is also included.
  • the air inlet 124 and the air outlet 125 Closed. In this way, when the air inlet 124 and the air outlet 125 are closed, the coolant that has flowed into the battery module 120 does not escape to the outside and is collected inside the battery module 120, whereby the battery module 120 ), it is possible to quickly resolve the thermal runaway phenomenon.
  • a pair of the expansion pads 126 may be provided.
  • a pair of expansion pads 126 are attached to the upper and lower inner surfaces of the module housing 123, respectively.
  • the pair of expansion pads 126 are attached at positions corresponding to each other and contact each other during expansion to close the air inlet 124 and the air outlet 125.
  • At least a portion of the expansion pad 126 may be inserted and fixed in the receiving groove G formed at a predetermined depth in the inner surface of the module housing 123.
  • a movement for expansion may be guided by a pair of mesh plates 127 disposed at both sides thereof.
  • the mesh plate 127 is a mesh type plate and has a structure in which air and cooling water can pass when the expansion pad 126 is not expanded.
  • the battery pack according to another embodiment of the present invention differs only in that the valve 170 is installed in the cooling water pipe 150 compared to the battery pack 100 according to the embodiment of the present invention described above. , The other components are substantially the same.
  • the valve 170 is provided with as many as the number of battery modules 120, and each of the valves 170 is installed adjacent to the plurality of battery modules 120 to prevent cooling water flowing into the plurality of battery modules 120. Allow or block the flow individually.
  • At least one sensor 160 is provided for each battery module 120.
  • the sensor 160 is provided for each battery module 120, it is possible to supply coolant only to some battery modules 120 in which a thermal runaway phenomenon has occurred.
  • the controller 140 receives a detection signal from some of the sensors 160, it is determined that a thermal runaway phenomenon has occurred in the battery module 120 to which the sensor 160 transmitting the detection signal is attached, and a plurality of Among the valves 170 of, the valve 170 installed adjacent to the battery module 120 in which the thermal runaway phenomenon has occurred is opened so that the coolant can be injected.
  • the battery pack according to the present invention when a thermal runaway phenomenon occurs in the battery module 120, coolant is injected into the battery module 120 so that the thermal runaway phenomenon is spread to the adjacent battery module 120. Can be prevented.
  • the battery pack according to the present invention has a structure in which the air inlet 124 and the air outlet 125 can be closed so that the coolant can be filled inside when coolant is injected into the air-cooled battery module 120. It is possible to prevent the spread of thermal runaway phenomenon.

Abstract

본 발명의 일 실시예에 따른 배터리 모듈은, 복수의 배터리 셀; 상기 복수의 배터리 셀이 적층되어 형성된 셀 적층체를 수용하는 모듈 하우징; 상기 셀 적층체의 적층 방향 일 측에서 상기 모듈 하우징을 관통하여 형성되는 에어 인렛; 상기 셀 적층체의 적층 방향 타 측에서 상기 모듈 하우징을 관통하여 형성되는 에어 아웃렛; 및 상기 에어 인렛 및 에어 아웃렛의 내측에 배치되며, 상기 배터리 모듈 내로 유입된 냉각수와의 접촉에 따라 팽창하여 상기 에어 인렛 및 에어 아웃렛을 폐쇄하는 팽창 패드;를 포함한다.

Description

열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치
본 발명은 열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치(Energy storage system)에 관한 것으로서, 좀 더 구체적으로는, 배터리 팩을 구성하는 복수의 배터리 모듈들 중 적어도 일부에서 열 폭주 현상의 발생 위험이 감지되는 경우 문제가 발생된 배터리 모듈의 내부로 냉각수를 투입함으로써 열 폭주 현상이 인접한 배터리 모듈로 전파되는 것을 방지할 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치에 관한 것이다.
본 출원은 2019년 7월 8일 자로 출원된 한국 특허출원번호 제 10-2019-0082288호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
복수의 배터리 셀을 포함하는 형태의 배터리 모듈에 있어서, 일부 배터리 셀에 단락 발생 등의 이상이 생겨 지속적으로 온도가 상승하고 이로 인해 배터리 셀의 온도가 임계 온도를 넘어서게 되면 열 폭주 현상이 발생하게 된다. 이와 같이 일부 배터리 셀에 있어서 열 폭주 현상이 발생하게 되면, 안전성 이슈가 발생할 수 있다.
일부 배터리 셀에서 일어난 열 폭주 현상에 따라 화염 등이 발생하게 되면 이는 인접한 배터리 셀들의 온도를 급격히 상승시키게 되고, 이로 인해 짧은 시간 내에 인접한 셀들로 열 폭주 현상이 전파될 수 있다.
결국, 일부 배터리 셀에서 발생된 열 폭주 현상에 신속히 대처하지 못하는 경우, 배터리 셀보다 더 큰 용량의 전지 단위인 배터리 모듈이나 배터리 팩의 발화 및 폭발 등의 재해로 이어질 수 있으며, 이는 재산적 피해뿐만 아니라 안전성의 문제까지도 야기할 수 있다.
따라서, 배터리 모듈 내부에 있는 일부 배터리 셀에서 열 폭주 현상에 따른 화염이 발생하는 경우 배터리 모듈 내부의 온도를 신속히 낮추어 화염이 더 크게 번지는 것을 막는 것이 중요하다.
아울러, 공냉식 구조를 채택하고 있는 배터리 모듈의 경우, 배터리 모듈 내부의 온도를 낮추고 화염을 진화하기 위해 냉각수를 투입하더라도 냉각수가 내부에 머무르지 않고 새어 나올 수 있는 공기 유로가 존재한다. 따라서, 열 폭주 현상이 발생된 배터리 모듈의 내부로 냉각수를 투입하였을 때, 이러한 공기 유로가 차단될 수 있는 구조를 갖는 배터리 팩 구조의 개발이 요구되는 실정이다.
본 발명은, 상술한 문제점을 고려하여 창안된 것으로서, 배터리 모듈 내부에 있는 일부 배터리 셀에서 열 폭주 현상에 따른 화염이 발생하는 경우 배터리 모듈 내부의 온도를 신속히 낮추어 화염이 더 크게 번지는 것을 막는 것을 일 목적으로 한다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 배터리 모듈은, 복수의 배터리 셀; 상기 복수의 배터리 셀이 적층되어 형성된 셀 적층체를 수용하는 모듈 하우징; 상기 셀 적층체의 적층 방향 일 측에서 상기 모듈 하우징을 관통하여 형성되는 에어 인렛; 상기 셀 적층체의 적층 방향 타 측에서 상기 모듈 하우징을 관통하여 형성되는 에어 아웃렛; 및 상기 에어 인렛 및 에어 아웃렛의 내측에 배치되며, 상기 모듈 하우징 내로 유입된 냉각수와의 접촉에 따라 팽창하여 상기 에어 인렛 및 에어 아웃렛을 폐쇄하는 팽창 패드;를 포함한다.
상기 팽창 패드는, 상기 모듈 하우징의 내측면 상에 부착될 수 있다.
상기 팽창 패드는 한 쌍이 구비되며, 한 쌍의 상기 팽창 패드 각각은, 상기 모듈 하우징의 내측면 상부와 하부에 각각 부착될 수 있다.
상기 팽창 패드는, 상기 모듈 하우징의 내측면에 형성된 수용 홈 내에 적어도 일부가 삽입될 수 있다.
상기 배터리 모듈은, 상기 팽창 패드의 양 측에 각각 배치되어 상기 팽창 패드의 팽창을 위한 움직임을 가이드하는 메쉬 플레이트를 포함할 수 있다.
상기 배터리 모듈은, 상기 셀 적층체의 폭 방향 일 측 및 타 측에 각각 결합되는 한 쌍의 버스바 프레임을 포함할 수 있다.
상기 에어 인렛 및 에어 아웃렛은, 상기 버스바 프레임과 모듈 하우징 사이에 형성되는 빈 공간과 대응되는 위치에 형성될 수 있다.
본 발명의 일 실시예에 따른 배터리 팩은, 팩 하우징; 상기 팩 하우징 내에 적층된 복수의 상기 배터리 모듈; 복수의 상기 배터리 모듈을 포함하는 모듈 적층체의 상부에 배치되며 냉각수를 저장하는 물탱크; 상기 물탱크와 배터리 모듈 사이를 연결하는 냉각수 관; 상기 팩 하우징 내에 설치되어 복수의 배터리 모듈 중 적어도 일부에서 발생된 열 폭주 현상을 감지하는 적어도 하나의 센서; 및 상기 센서에 의해 열 폭주 현상이 감지되면 상기 냉각수 관을 통해 냉각수가 상기 배터리 모듈로 유입되도록 하는 제어신호를 출력하는 컨트롤러;를 포함한다.
상기 배터리 팩은 상기 냉각수 관 내에 설치되는 복수의 밸브를 포함하며, 상기 복수의 밸브 각각은 상기 복수의 배터리 모듈과 인접 설치되어 상기 복수의 배터리 모듈로 유입되는 냉각수의 흐름을 개별적으로 허용 또는 차단할 수 있다.
상기 센서는 상기 복수의 배터리 모듈 각각에 설치될 수 있다.
상기 컨트롤러는 상기 복수의 밸브 중 상기 센서에 의해 열 폭주 현상이 감지된 배터리 모듈과 인접 설치된 밸브를 개방하도록 하는 제어신호를 출력할 수 있다.
본 발명의 일 실시예에 따른 에너지저장장치는, 본 발명의 일 실시예에 따른 배터리 팩을 복수 개 포함한다.
본 발명의 일 측면에 따르면, 배터리 모듈 내부에 있는 일부 배터리 셀에서 열 폭주 현상에 따른 화염이 발생하는 경우 배터리 모듈 내부의 온도를 신속히 낮추어 화염이 더 크게 번지는 것을 방지할 수 있다.
또한, 본 발명의 다른 측면에 따르면, 공냉식 배터리 모듈을 포함하는 배터리 팩에 있어서, 열 폭주 현상이 발생된 배터리 모듈의 내부로 냉각수를 투입하였을 때, 냉각수가 배터리 모듈의 내부에 머물 수 있도록 냉각을 위한 공기 유로가 차단될 수 있는 구조를 적용함으로써 효과적으로 열 폭주 현상의 전파를 막을 수 있게 된다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 에너지저장장치를 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리 팩에 있어서, 물탱크와 배터리 모듈 간의 연결구조 및 물탱크와 컨트롤러 간의 관계를 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 배터리 팩에 있어서, 센서, 컨트롤러 및 물탱크 간의 관계를 설명하기 위한 도면이다.
도 4 및 도 5는 본 발명의 일 실시예에 따른 배터리 팩에 적용되는 배터리 모듈을 나타내는 사시도이다.
도 6은 본 발명의 일 실시예에 따른 배터리 팩에 적용되는 배터리 모듈의 내부 구조가 나타나도록 도시된 도면이다.
도 7은 본 발명의 일 실시예에 따른 배터리 팩에 적용되는 배터리 모듈의 정면의 일부를 나타내는 도면으로서, 배터리 모듈 내에 배치되는 팽창 패드를 나타내는 도면이다.
도 8 내지 도 10은 본 발명의 일 실시예에 따른 배터리 팩에 적용되는 배터리 모듈을 측부에서 바라본 단면의 일부를 나타내는 도면으로서, 배터리 모듈 내에 배치되는 팽창 패드를 나타내는 도면이다.
도 11은 본 발명의 다른 실시예에 따른 배터리 팩에 있어서, 물탱크와 배터리 모듈 간의 연결 구조, 그리고 밸브, 컨트롤러 및 물탱크 간의 관계를 설명하기 위한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 에너지저장장치는, 본 발명의 일 실시예에 따른 배터리 팩(100)을 복수 개 포함한다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 배터리 팩(100)은, 팩 하우징(110), 배터리 모듈(120), 물탱크(130), 컨트롤러(controller)(140), 냉각수 관(150) 및 센서(160)를 포함한다.
상기 팩 하우징(110)은, 배터리 팩(100)의 외관을 정의하는 대략 직사각 형태의 프레임으로서, 그 내부에 복수의 배터리 모듈(120), 물탱크(130), 컨트롤러(140), 냉각수 관(150) 및 센서(160)가 설치될 수 있는 공간을 형성한다.
상기 배터리 모듈(120)은, 복수 개 구비되며, 복수의 배터리 모듈(120)은 팩 하우징(110) 내에서 상하로 적층되어 하나의 모듈 적층체를 이룬다. 상기 배터리 모듈(120)의 구체적인 구조에 대해서는 도 4 내지 도 7을 참조하여 상세히 후술하기로 한다.
상기 물탱크(130)는, 팩 하우징(110) 내에 구비되며, 배터리 모듈(120)의 열 폭주 현상 발생 시에 배터리 모듈(120)에 공급될 냉각수를 저장한다. 상기 물탱크(130)는, 신속하고 원활한 냉각수의 공급을 위해 모듈 적층체의 상부에 배치될 수 있다. 이 경우, 별도의 냉각수 펌프를 이용하지 않더라도 자유 낙하 및 냉각수의 수압에 의해 냉각수를 신속하게 배터리 모듈(120)에 공급할 수 있다. 물론, 더욱 신속하고 원활하게 냉각수를 공급하기 위해 물탱크(130)에 별도의 냉각수 펌프가 적용될 수도 있다.
상기 컨트롤러(140)는, 센서(160) 및 물탱크(130)와 연결되어 센서(160)의 센싱 신호에 따라 물탱크(130)를 개방시키도록 하는 제어신호를 출력할 수 있다. 또한, 상기 컨트롤러(140)는, 이러한 기능 외에도, 배터리 모듈(120) 각각과 연결되어 충/방전을 관리하는 BMS(battery management system)로서의 기능을 추가적으로 수행할 수도 있다.
상기 컨트롤러(140)는, 복수의 배터리 모듈(120) 중 적어도 하나에서 발생된 열 폭주 현상으로 인해 배터리 팩(100) 내부에 가스가 감지되거나 또는 기준치 이상으로 온도 상승이 감지되는 경우 물탱크(130)를 개방시키는 제어신호를 출력하고, 이에 따라 냉각수가 배터리 모듈(120)로 공급될 수 있도록 한다.
상기 컨트롤러(140)의 제어신호에 따라 물탱크(130)가 개방되는 경우, 냉각수는 상부에 위치하는 배터리 모듈(120)로부터 하부에 위치하는 배터리 모듈(120)로 순차적으로 공급된다. 따라서, 상기 배터리 모듈(120) 내부의 화염의 진화 및 배터리 모듈(120)의 냉각이 이루어지게 되며, 이로써 열 폭주 현상이 배터리 팩(100) 전체로 확산되는 것을 방지할 수 있다.
상기 냉각수 관(150)은, 물탱크(130)와 배터리 모듈(120) 사이를 연결하며, 물탱크(130)로부터 공급되는 냉각수를 배터리 모듈(120)로 이송시키는 통로로서 기능한다. 이러한 기능의 수행을 위해, 상기 냉각수 관(150)의 일 단은 물탱크와 연결되고, 타 단은 배터리 모듈(120)의 개수만큼 분기되어 복수의 배터리 모듈(120) 각각에 연결된다.
상기 센서(160)는, 상술한 바와 같이, 복수의 배터리 모듈(120) 중 적어도 일부에서 열 폭주 현상이 발생되는 경우, 온도의 상승 및/또는 가스의 분출을 감지하고 감지 신호를 컨트롤러(140)에 송출한다. 이러한 기능의 수행을 위해, 상기 센서(160)는, 온도 센서 또는 가스 감지 센서일 수 있으며, 온도 센서와 가스 감지 센서가 조합된 형태를 가질 수도 있다.
상기 센서(160)는, 배터리 팩(100) 내부의 온도 상승 또는 가스 발생을 감지하기 위해 팩 하우징(110)의 내부에 설치된다. 상기 센서(160)는 배터리 모듈(120)의 온도 및/또는 배터리 모듈(120)로부터 발생되는 가스를 신속하게 센싱하기 위해 복수의 배터리 모듈(120) 각각의 내측 또는 외측에 부착될 수 있다.
다음은, 도 4 내지 도 7을 참조하여, 본 발명의 일 실시예에 따른 배터리 팩(100)에 적용되는 배터리 모듈(120)에 대해서 좀 더 상세히 설명하기로 한다.
도 4 내지 도 7을 참조하면, 상기 배터리 모듈(120)은, 복수의 배터리 셀(121), 버스바 프레임(122), 모듈 하우징(123), 에어 인렛(air inlet)(124), 에어 아웃렛(air outlet)(125) 및 팽창 패드(126)를 포함하는 형태로 구현될 수 있다.
상기 배터리 셀(121)은, 복수개가 구비되며, 복수의 배터리 셀(121)은 적층되어 하나의 셀 적층체를 이룬다. 상기 배터리 셀(121)로는, 예를 들어 파우치 타입 배터리 셀이 적용될 수 있다. 상기 배터리 셀(121)은, 길이 방향 양 측으로 각각 인출되는 한 쌍의 전극 리드(121a)를 구비한다.
상기 버스바 프레임(122)은, 한 쌍이 구비되며, 각각의 버스바 프레임(122)은 셀 적층체의 폭 방향(전극 리드가 형성된 방향)의 일 측 및 타 측을 커버한다. 상기 배터리 셀(121)의 전극 리드(121a)는 버스바 프레임(122)에 형성된 슬릿을 통해 인출되며, 절곡되어 버스바 프레임(122) 상에 용접 등에 의해 고정된다. 즉, 상기 복수의 배터리 셀(121)들은 버스바 프레임(122)에 의해 전기적으로 연결될 수 있다.
상기 모듈 하우징(123)은, 대략 직육면체 형상을 가지며, 내부에 상기 셀 적층체를 수용한다. 상기 모듈 하우징(123)의 길이 방향 일측 면 및 타측 면에는 에어 인렛(124) 및 에어 아웃렛(125)이 형성된다.
도 1의 본 발명의 배터리 팩(100)을 정면에서 바라볼 경우, 상기 에어 인렛(124)은 셀 적층체의 적층 방향 일 측(전방 측), 즉 배터리 모듈(120)의 길이 방향 일 측에 형성되며, 모듈 하우징(123)을 관통하는 홀 형태로 형성된다. 상기 에어 아웃렛(125)은 셀 적층체의 적층 방향 타 측(후방 측), 즉 배터리 모듈(120)이 길이 방향 타 측에 형성되며, 모듈 하우징(123)을 관통하는 홀 형태로 형성된다.
상기 에어 인렛(124)과 에어 아웃렛(125)은 상호 배터리 모듈(120)의 길이 방향(셀 적층체의 적층 방향)을 따라 대각선으로 가로 질러 반대 편에 위치한다.
한편, 상기 버스바 프레임(122)과 모듈 하우징(123) 사이에는 빈 공간이 형성된다. 즉, 상기 모듈 하우징(123)의 6개의 외측 면 중 배터리 셀(121)의 길이 방향 일 측 및 타 측과 대면하는 면과 버스바 프레임(122) 사이에는 배터리 셀(121)의 냉각을 위한 공기가 흐를 수 있는 빈 공간이 형성된다. 상기 빈 공간은, 배터리 모듈(120)의 폭 방향 양 측에 각각 형성된다.
상기 에어 인렛(124)은 배터리 모듈(120)의 폭 방향 일 측에 형성되는 빈 공간과 대응되는 위치에 형성되고, 상기 에어 아웃렛(125)은 배터리 모듈(120)의 폭 방향 타 측에 형성되는 빈 공간과 대응되는 위치에 형성된다.
상기 배터리 모듈(120)에 있어서, 상기 에어 인렛(124)을 통해 내부로 유입된 공기는 배터리 모듈(120)의 폭 방향 일 측에 형성된 빈 공간으로부터 배터리 모듈(120)의 폭 방향 타 측에 형성된 빈 공간으로 이동하면서 배터리 셀(121)을 냉각시킨 후 에어 아웃렛(125)을 빠져나간다. 즉, 상기 배터리 모듈(120)은 공냉식 배터리 모듈에 해당하는 것이다.
상기 냉각수 관(150)은, 셀 적층체의 적층 방향 일 측 또는 타 측으로부터 모듈 하우징(123)을 관통하여 버스바 프레임(122)과 모듈 하우징(123) 사이에 형성되는 상기 빈 공간과 연통한다. 즉, 상기 냉각수 관(150)은, 모듈 하우징(123)의 6개의 면 중 에어 인렛(124)이 형성된 면 또는 에어 아웃렛(125)이 형성된 면과 동일한 면을 관통하여 삽입될 수 있다.
따라서, 상기 냉각수 관(150)을 통해 배터리 모듈(120)의 내부로 유입된 냉각수는 도 4 및 도 5에 도시된 바와 같이, 배터리 모듈(120)의 폭 방향 일 측에 형성된 빈 공간으로부터 배터리 모듈(120)의 폭 방향 타 측에 형성된 빈 공간쪽으로 흘러 들어가 배터리 모듈(120)의 내부를 채운다.
도 7을 참조하면, 상기 팽창 패드(126)는 에어 인렛(124)과 에어 아웃렛(125)의 내 측에 배치된다. 상기 팽창 패드(126)는 모듈 하우징(123)의 내측면에 부착되며, 에어 인렛(124)과 에어 아웃렛(125)이 개방 면적보다 작은 사이즈를 갖는다. 상기 팽창 패드(126)는, 배터리 모듈(120)의 정상적인 사용 상태에서 에어 인렛(124)과 에어 아웃렛(125)을 통한 공기의 흐름이 원활할 수 있도록 하기 위해 에어 인렛(124)과 에어 아웃렛(125)의 개방 면적 대비 대략 30% 미만의 사이즈를 갖는 것이 바람직하다. 한편, 도 6에서는 상기 팽창 패드(126)가 모듈 하우징(123)의 내측면에 부착됨에 있어서, 바닥면에 부착된 경우만을 도시하고 있으나, 팽창 패드(126)는 모듈 하우징(123)의 상부 또는 측부에 부착될 수도 있다.
상기 팽창 패드(126)는, 배터리 모듈(120)의 내부로 유입된 냉각수와 접촉함으로써 팽창되어 에어 인렛(124) 및 에어 아웃렛(125)을 폐쇄한다. 상기 팽창 패드(126)는, 수분을 흡수하는 경우 매우 큰 팽창율을 나타내는 수지를 함유하는 것으로서, 충분한 양의 수분이 제공되는 경우 초기 부피 대비 적어도 대략 2배 이상 그 부피가 증가하는 수지를 함유한다. 상기 팽창 패드(126)에 이용되는 수지로는, 예를 들어 SAF(super absorbent fiber)와 폴리에스테르 스테이플 파이버(polyester staple fiber)가 혼합된 부직포를 들 수 있다. 상기 SAF는 SAP(고흡수성 수지, super absorbent polymer)를 파이버(fiber) 형태로 제작한 것이다.
한편, 상기 팽창 패드(126)의 팽창에 따른 에어 인렛(124) 및 에어 아웃렛(125)의 폐쇄는, 반드시 냉각수가 누수될 수 없는 수준의 완전한 폐쇄를 의미하는 것은 아니며, 누수량을 줄일 수 있도록 에어 인렛(124)과 에어 아웃렛(125)의 개방 면적을 줄여주는 경우 역시 포함하는 것이다.
상기 팽창 패드(126)의 적용으로 인해, 적어도 일부 배터리 모듈(120)에서 열 폭주 현상이 발생되어 배터리 모듈(120) 내부로 냉각수가 유입되는 경우, 에어 인렛(124) 및 에어 아웃렛(125)은 폐쇄된다. 이처럼 상기 에어 인렛(124)과 에어 아웃렛(125)이 폐쇄되는 경우 배터리 모듈(120)의 내부로 유입된 냉각수는 외부로 빠져나가지 않고 배터리 모듈(120)의 내부에 고이게 되며, 이로써 배터리 모듈(120)에 발생된 열 폭주 현상의 빠른 해소가 가능하게 된다.
도 8을 참조하면, 상기 팽창 패드(126)는, 한 쌍이 구비될 수 있으며, 이 경우 한 쌍의 팽창 패드(126)는 모듈 하우징(123)의 내측면 상부와 하부에 각각 부착된다. 상기 한 쌍의 팽창 패드(126)는 서로 대응되는 위치에 부착되어 팽창 시에 상호 접하여 에어 인렛(124) 및 에어 아웃렛(125)을 폐쇄한다.
도 9를 참조하면, 상기 팽창 패드(126)는, 모듈 하우징(123)의 내측면에 소정의 깊이로 형성된 수용 홈(G) 내에 적어도 일부가 삽입되어 고정될 수 있다.
도 10을 참조하면, 상기 팽창 패드(126)는, 수분의 흡수에 따른 팽창 시에 그 양 측에 각각 배치되는 한 쌍의 메쉬 플레이트(127)에 의해 팽창을 위한 움직임이 가이드 될 수 있다. 상기 메쉬 플레이트(127)는 메쉬 타입(mesh type)의 플레이트로서 팽창 패드(126)가 팽창되지 않은 상태에서는 공기 및 냉각수가 통과될 수 있는 구조를 갖는다.
다음은, 도 11을 참조하여, 본 발명의 다른 실시예에 따른 배터리 팩을 설명하기로 한다.
본 발명의 다른 실시예에 따른 배터리 팩은, 앞서 설명한 본 발명의 일 실시예에 따른 배터리 팩(100)과 비교하여 냉각수 관(150) 내에 밸브(170)가 설치되어 있다는 점에서 차이가 있을 뿐, 다른 구성요소들은 실질적으로 동일하다.
따라서, 본 발명의 다른 실시예에 따른 배터리 팩을 설명함에 있어서는, 밸브(170)와 관련하여 중점적으로 설명을 하고 앞선 실시예에서와 중복되는 설명은 생략하기로 한다.
상기 밸브(170)는, 배터리 모듈(120)의 개수만큼 복수개가 구비되며, 각각의 밸브(170)는 복수의 배터리 모듈(120)과 인접 설치되어 복수의 배터리 모듈(120)로 유입되는 냉각수의 흐름을 개별적으로 허용 또는 차단한다.
이처럼, 복수의 밸브(170)를 독립적으로 동작시키기 위해서, 센서(160)는 각각의 배터리 모듈(120)마다 적어도 하나 이상 구비된다. 이처럼 상기 센서(160)가 각각의 배터리 모듈(120)마다 구비되는 경우, 열 폭주 현상이 발생된 일부 배터리 모듈(120)에만 냉각수를 투입하는 것이 가능하게 된다.
즉, 상기 컨트롤러(140)는 일부 센서(160)로부터 감지 신호를 수신하게 되면, 감지 신호를 송출한 센서(160)가 부착된 배터리 모듈(120)에서 열 폭주 현상이 발생된 것으로 판단하고, 복수의 밸브(170)들 중 열 폭주 현상이 발생된 배터리 모듈(120)에 인접 설치된 밸브(170)를 개방하여 냉각수가 투입될 수 있도록 한다.
상술한 바와 같이, 본 발명에 따른 배터리 팩은, 배터리 모듈(120)에 열 폭주 현상이 발생되는 경우 배터리 모듈(120) 내부로 냉각수를 투입하여 열 폭주 현상이 인접한 배터리 모듈(120)로 확산되는 것을 방지할 수 있다. 특히, 본 발명에 따른 배터리 팩은, 공냉식 배터리 모듈(120)에 냉각수가 투입된 경우 냉각수가 내부에 채워질 수 있도록 에어 인렛(124)과 에어 아웃렛(125)이 폐쇄될 수 있는 구조를 가짐으로써 더욱 효과적으로 열 폭주 현상의 확산을 방지할 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (12)

  1. 복수의 배터리 셀;
    상기 복수의 배터리 셀이 적층되어 형성된 셀 적층체를 수용하는 모듈 하우징;
    상기 셀 적층체의 적층 방향 일 측에서 상기 모듈 하우징을 관통하여 형성되는 에어 인렛;
    상기 셀 적층체의 적층 방향 타 측에서 상기 모듈 하우징을 관통하여 형성되는 에어 아웃렛; 및
    상기 에어 인렛 및 에어 아웃렛의 내측에 배치되며, 상기 모듈 하우징 내로 유입된 냉각수와의 접촉에 따라 팽창하여 상기 에어 인렛 및 에어 아웃렛을 폐쇄하는 팽창 패드;
    를 포함하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 팽창 패드는,
    상기 모듈 하우징의 내측면 상에 부착되는 것을 특징으로 하는 배터리 모듈.
  3. 제1항에 있어서,
    상기 팽창 패드는 한 쌍이 구비되며,
    한 쌍의 상기 팽창 패드 각각은, 상기 모듈 하우징의 내측면 상부와 하부에 각각 부착되는 것을 특징으로 하는 배터리 모듈.
  4. 제1항에 있어서,
    상기 팽창 패드는,
    상기 모듈 하우징의 내측면에 형성된 수용 홈 내에 적어도 일부가 삽입되는 것을 특징으로 하는 배터리 모듈.
  5. 제1항에 있어서,
    상기 배터리 모듈은,
    상기 팽창 패드의 양 측에 각각 배치되어 상기 팽창 패드의 팽창을 위한 움직임을 가이드하는 메쉬 플레이트를 포함하는 것을 특징으로 하는 배터리 모듈.
  6. 제1항에 있어서,
    상기 배터리 모듈은,
    상기 셀 적층체의 폭 방향 일 측 및 타 측에 각각 결합되는 한 쌍의 버스바 프레임을 포함하는 것을 특징으로 하는 배터리 모듈.
  7. 제6항에 있어서,
    상기 에어 인렛 및 에어 아웃렛은,
    상기 버스바 프레임과 모듈 하우징 사이에 형성되는 빈 공간과 대응되는 위치에 형성되는 것을 특징으로 하는 배터리 모듈.
  8. 팩 하우징;
    상기 팩 하우징 내에 적층된 복수의 제1항에 따른 배터리 모듈;
    복수의 상기 배터리 모듈을 포함하는 모듈 적층체의 상부에 배치되며 냉각수를 저장하는 물탱크;
    상기 물탱크와 배터리 모듈 사이를 연결하는 냉각수 관;
    상기 팩 하우징 내에 설치되어 복수의 배터리 모듈 중 적어도 일부에서 발생된 열 폭주 현상을 감지하는 적어도 하나의 센서; 및
    상기 센서에 의해 열 폭주 현상이 감지되면 상기 냉각수 관을 통해 냉각수가 상기 배터리 모듈로 유입되도록 하는 제어신호를 출력하는 컨트롤러;
    를 포함하는 배터리 팩.
  9. 제8항에 있어서,
    상기 배터리 팩은 상기 냉각수 관 내에 설치되는 복수의 밸브를 포함하며,
    상기 복수의 밸브 각각은 상기 복수의 배터리 모듈과 인접 설치되어 상기 복수의 배터리 모듈로 유입되는 냉각수의 흐름을 개별적으로 허용 또는 차단하는 것을 특징으로 하는 배터리 팩.
  10. 제9항에 있어서,
    상기 센서는 상기 복수의 배터리 모듈 각각에 설치되는 것을 특징으로 하는 배터리 팩.
  11. 제10항에 있어서,
    상기 컨트롤러는 상기 복수의 밸브 중 상기 센서에 의해 열 폭주 현상이 감지된 배터리 모듈과 인접 설치된 밸브를 개방하도록 하는 제어신호를 출력하는 것을 특징으로 하는 배터리 팩.
  12. 제8항에 따른 배터리 팩을 복수 개 포함하는 에너지저장장치.
PCT/KR2020/008737 2019-07-08 2020-07-03 열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치 WO2021006560A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022500978A JP7358609B2 (ja) 2019-07-08 2020-07-03 熱暴走発生時に冷却水を内部に投入可能な構造を有するバッテリーモジュール、それを含むバッテリーパック及びエネルギー貯蔵装置
EP20837142.7A EP3989336A4 (en) 2019-07-08 2020-07-03 BATTERY MODULE HAVING A STRUCTURE INTO WHICH COOLING WATER CAN BE INTRODUCED WHEN A THERMAL RUNAWAY PHENOMENON OCCURS, AND BATTERY PACK AND ENERGY STORAGE DEVICE COMPRISING THE SAME
US17/625,561 US20220294052A1 (en) 2019-07-08 2020-07-03 Battery module having structure into which cooling water can be introduced when thermal runaway phenomenon occurs, and battery pack and energy storage device comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190082288A KR20210006570A (ko) 2019-07-08 2019-07-08 열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치
KR10-2019-0082288 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021006560A1 true WO2021006560A1 (ko) 2021-01-14

Family

ID=74114266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008737 WO2021006560A1 (ko) 2019-07-08 2020-07-03 열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치

Country Status (5)

Country Link
US (1) US20220294052A1 (ko)
EP (1) EP3989336A4 (ko)
JP (1) JP7358609B2 (ko)
KR (1) KR20210006570A (ko)
WO (1) WO2021006560A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442687B2 (ja) 2021-02-02 2024-03-04 エルジー エナジー ソリューション リミテッド セル単位のガス系消火薬剤ガイド翼を適用したバッテリーモジュール及びそれを含むバッテリーラック、並びにエネルギー貯蔵装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210104492A (ko) * 2020-02-17 2021-08-25 주식회사 엘지에너지솔루션 화재 발생시 내부에 주수된 소화용수의 외부 유출을 지연시킬 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 랙과 에너지 저장장치
KR20230107041A (ko) 2022-01-07 2023-07-14 주식회사 엘지에너지솔루션 열 확산 방지 기능이 구비된 전지 팩
KR20230107040A (ko) 2022-01-07 2023-07-14 주식회사 엘지에너지솔루션 열 확산 방지 기능이 구비된 전지 팩
KR20230107039A (ko) 2022-01-07 2023-07-14 주식회사 엘지에너지솔루션 열 확산 방지 기능이 구비된 전지 팩

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200119B2 (ja) * 2008-02-27 2013-05-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング バッテリモジュールとバッテリモジュールを冷却するための方法
KR20150094030A (ko) * 2014-02-10 2015-08-19 삼성에스디아이 주식회사 배터리 팩
JP2015153616A (ja) * 2014-02-14 2015-08-24 株式会社オートネットワーク技術研究所 バッテリパック
KR20170084606A (ko) * 2016-01-12 2017-07-20 삼성전자주식회사 모듈의 균일한 냉각을 위한 배터리 팩 및 이의 냉각 방법
KR20180007241A (ko) * 2016-07-12 2018-01-22 주식회사 엘지화학 배터리 팩
KR20190082288A (ko) 2016-11-15 2019-07-09 8 리버스 캐피탈, 엘엘씨 산화제 및 수성 스트림과의 접촉에 의한 프로세스 스트림으로부터의 불순물의 제거

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5856472B2 (ja) 2011-12-22 2016-02-09 積水化学工業株式会社 蓄電池の設置構造
JP5880847B2 (ja) 2012-04-25 2016-03-09 三菱自動車工業株式会社 バッテリ装置
JP2014216248A (ja) 2013-04-26 2014-11-17 三菱自動車工業株式会社 バッテリケース
JP3187696U (ja) * 2013-09-10 2013-12-12 株式会社ヴィド久米島 空気電池
CN106571503A (zh) * 2016-11-11 2017-04-19 华中科技大学 一种电动汽车电池模组热失控安全消防系统及方法
JP2018098074A (ja) 2016-12-14 2018-06-21 三菱自動車工業株式会社 組電池
JP2018133134A (ja) 2017-02-13 2018-08-23 三菱自動車工業株式会社 二次電池冷却機構
KR102378539B1 (ko) * 2017-12-06 2022-03-23 주식회사 엘지에너지솔루션 셀 에지 직접 냉각 방식의 배터리 모듈 및 이를 포함하는 배터리 팩
CN109546261A (zh) * 2018-11-19 2019-03-29 浙江南都电源动力股份有限公司 集装箱式储能系统的电池热管理系统
CN209859997U (zh) 2019-03-22 2019-12-27 中国电力科学研究院有限公司 具有消防结构的电池箱及储能电池机柜
EP3840109A4 (en) * 2019-05-30 2022-03-16 LG Energy Solution Ltd. BATTERY MODULE WITH PATH THAT CAN FLOW INTERNAL SUPPLY COOLANT DURING THERMAL RUNAWAY, AND BATTERY PACK AND ESS WITH IT

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200119B2 (ja) * 2008-02-27 2013-05-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング バッテリモジュールとバッテリモジュールを冷却するための方法
KR20150094030A (ko) * 2014-02-10 2015-08-19 삼성에스디아이 주식회사 배터리 팩
JP2015153616A (ja) * 2014-02-14 2015-08-24 株式会社オートネットワーク技術研究所 バッテリパック
KR20170084606A (ko) * 2016-01-12 2017-07-20 삼성전자주식회사 모듈의 균일한 냉각을 위한 배터리 팩 및 이의 냉각 방법
KR20180007241A (ko) * 2016-07-12 2018-01-22 주식회사 엘지화학 배터리 팩
KR20190082288A (ko) 2016-11-15 2019-07-09 8 리버스 캐피탈, 엘엘씨 산화제 및 수성 스트림과의 접촉에 의한 프로세스 스트림으로부터의 불순물의 제거

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442687B2 (ja) 2021-02-02 2024-03-04 エルジー エナジー ソリューション リミテッド セル単位のガス系消火薬剤ガイド翼を適用したバッテリーモジュール及びそれを含むバッテリーラック、並びにエネルギー貯蔵装置

Also Published As

Publication number Publication date
US20220294052A1 (en) 2022-09-15
KR20210006570A (ko) 2021-01-19
EP3989336A1 (en) 2022-04-27
EP3989336A4 (en) 2022-11-16
JP7358609B2 (ja) 2023-10-10
JP2022540461A (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2021006560A1 (ko) 열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치
WO2021167270A1 (ko) 화재 발생시 내부에 주수된 소화용수의 외부 유출을 지연시킬 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 랙과 에너지 저장장치
WO2021177585A1 (ko) 열 폭주 현상 발생 시 냉각수가 배터리 모듈의 내부로 투입될 수 있는 구조를 갖는 배터리 팩 및 이를 포함하는 ess
WO2020242035A1 (ko) 열 폭주 현상 발생 시 내부로 투입된 냉각수가 흐를 수 있는 경로를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 ess
WO2018139737A1 (ko) 소화시스템을 포함하는 배터리 팩
WO2021172697A1 (ko) 초 흡수성 시트를 구비하는 ess
WO2020180115A1 (ko) 열폭주 현상 발생 시 모듈 내부로 공기 유입을 막을 수 있는 구조를 갖는 배터리 모듈 및 이를 포함하는 배터리 팩
WO2020166940A1 (ko) 냉각제가 배터리 모듈 내로 투입될 수 있는 구조를 갖는 에너지 저장 시스템
WO2021025539A1 (ko) 소화 유닛을 포함한 배터리 팩
KR102380446B1 (ko) 열 폭주 현상 발생 시 냉각수가 배터리 모듈의 내부로 투입될 수 있는 구조를 갖는 배터리 팩 및 이를 포함하는 ess
WO2021015469A1 (ko) 전력 저장 장치
WO2021172758A1 (ko) 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2023033458A1 (ko) 열폭주 시 산소 유입 차단을 위한 구조가 적용된 배터리 모듈
WO2021177760A1 (ko) 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2022169247A2 (ko) 셀 단위 가스계 소화약제 가이드 날개를 적용한 배터리 모듈 및 이를 포함하는 배터리 랙과 에너지 저장장치
KR102380444B1 (ko) 열 폭주 현상 발생 시 내부로 투입된 냉각수가 흐를 수 있는 경로를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 ess
WO2021172756A1 (ko) 스프링클러의 신속한 동작이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2021172757A1 (ko) 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2021006586A1 (ko) 외부 단락 장치 및 냉각 장치를 구비하는 배터리 모듈 시스템
WO2021177763A1 (ko) 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2023214745A1 (ko) 배수 구조를 구비한 배터리 랙 및 이를 포함하는 에너지 저장 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500978

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020837142

Country of ref document: EP

Effective date: 20220121