WO2023033458A1 - 열폭주 시 산소 유입 차단을 위한 구조가 적용된 배터리 모듈 - Google Patents

열폭주 시 산소 유입 차단을 위한 구조가 적용된 배터리 모듈 Download PDF

Info

Publication number
WO2023033458A1
WO2023033458A1 PCT/KR2022/012753 KR2022012753W WO2023033458A1 WO 2023033458 A1 WO2023033458 A1 WO 2023033458A1 KR 2022012753 W KR2022012753 W KR 2022012753W WO 2023033458 A1 WO2023033458 A1 WO 2023033458A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
battery module
blocking member
partition wall
battery
Prior art date
Application number
PCT/KR2022/012753
Other languages
English (en)
French (fr)
Inventor
홍성곤
김승현
오영후
옥승민
조상현
조영범
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22864961.2A priority Critical patent/EP4250458A1/en
Priority to US18/269,515 priority patent/US20240047820A1/en
Priority to CN202280008010.2A priority patent/CN116636073A/zh
Priority to AU2022337863A priority patent/AU2022337863A1/en
Priority to JP2023533753A priority patent/JP2023552351A/ja
Publication of WO2023033458A1 publication Critical patent/WO2023033458A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery, and more particularly, to a battery module capable of effectively preventing the occurrence or spread of fire, a battery pack including the same, and an energy storage system.
  • lithium secondary batteries are in the limelight because of their advantages of free charge and discharge, very low self-discharge rate, and high energy density because they hardly have a memory effect compared to nickel-based secondary batteries.
  • a secondary battery may be used singly, but in general, a plurality of secondary batteries are electrically connected in series and/or parallel to each other in many cases.
  • a plurality of secondary batteries may be accommodated in one module case while being electrically connected to each other to form one battery module.
  • the battery module may be used alone or two or more may be electrically connected in series and/or parallel to form a higher level device such as a battery pack.
  • an energy storage system for storing generated power has been attracting more attention.
  • ESS energy storage system
  • a battery pack used in an energy storage system, a very large capacity may be required compared to a small and medium-sized battery pack. Accordingly, a battery pack may typically include a large number of battery modules. In addition, in order to increase energy density, a plurality of battery modules are often configured in a dense form in a very narrow space.
  • a plurality of battery modules may be vulnerable to fire.
  • a thermal propagation situation occurs in one battery module, a situation in which high-temperature gas is discharged from at least one battery cell may occur.
  • high-temperature sparks may be ejected when the gas is discharged, and the sparks may include an active material detached from an electrode inside a battery cell or molten aluminum particles. If such high-temperature sparks and high-temperature gas meet oxygen, a fire may occur in the battery pack.
  • a fire when a fire occurs in a specific battery cell or module, it may spread to other nearby battery cells, battery modules, or other battery packs.
  • many batteries are concentrated in a small space in an energy storage system, it is not easy to extinguish a fire in the event of a fire.
  • a fire inside the battery pack may cause very serious property and human life damage. Therefore, even if a thermal runaway situation occurs in a specific battery cell or module, it is important not to lead to a fire.
  • the present invention has been devised to solve the above problems, a battery module configured to effectively suppress the occurrence of fire even when high-temperature gas or sparks are generated inside due to thermal runaway, a battery pack including the same, and energy storage It aims to provide a system, etc.
  • a battery module for achieving the above object includes a cell assembly including a plurality of battery cells; a module case provided to accommodate the cell assembly and having an opening on at least one side; a module case provided to accommodate the cell assembly and having an opening on at least one side; and an oxygen inflow blocking cover covering the opening, wherein the oxygen inflow blocking covers each have a vent hole and are overlapped with each other and provided to cover the opening, wherein when gas is generated in the cell assembly, gas passes through the vent hole.
  • two or more partition walls configured to be discharged to the outside of the module case through; and a hole blocking member positioned between the barrier ribs and configured to deform when heat is applied to block the vent hole.
  • the hole blocking member may be configured in the form of a plate-like body as an injection-molded plastic product.
  • the two or more barrier ribs may include a first barrier rib and a second barrier rib disposed overlapping with the hole blocking member interposed therebetween.
  • the hole blocking member is provided in a plate-like shape and includes a gas passage hole through which gas can pass in a thickness direction, and the vent hole of the first partition wall, the gas passage hole, and the vent hole of the second partition wall are mutually connected to each other. At least a portion may be configured to match.
  • the gas passage hole may have a narrower width than the vent hole of the first partition wall and the vent hole of the second partition wall.
  • the gas passage hole may be formed to gradually narrow in width as it is closer to the vent hole of the first barrier rib.
  • the hole blocking member may be composed of a mesh network meltable at a predetermined temperature.
  • the two or more barrier ribs include a first barrier rib, a second barrier rib, and a third barrier rib arranged to face each other in triple, and the hole blocking member is a first hole disposed between the first barrier rib and the second barrier rib.
  • a blocking member and a second hole blocking member disposed between the second barrier rib and the third barrier rib may be included.
  • vent hole of the first partition and the vent hole of the second partition are configured to cross each other, and the vent hole of the second partition and the vent hole of the third partition are configured to cross each other,
  • the first hole blocking member and the second hole blocking member may have a porous structure.
  • the cell assembly may be configured in a form in which a plurality of pouch-type battery cells are stacked on each other.
  • Electrode leads of the plurality of pouch-type battery cells may be positioned in front and rear directions of the module case, and the module case may include the opening portion at at least one of the front and rear sides.
  • a battery pack according to another aspect of the present invention for achieving the above object may include a battery module according to the present invention.
  • an energy storage system for achieving the above object may include a battery module according to the present invention.
  • occurrence of fire in the battery module can be effectively prevented.
  • the inflow of additional oxygen is blocked so that the fire does not spread and is quickly extinguished.
  • the present invention may have various other effects, which will be described in each implementation configuration, or descriptions of effects that can be easily inferred by those skilled in the art will be omitted.
  • FIG. 1 is a schematic perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view in which the module case and oxygen inflow blocking cover of FIG. 1 are separated.
  • FIG. 3 is an exploded perspective view of the oxygen inflow blocking cover of FIG. 2;
  • FIG 4 and 5 are views schematically showing effects of gas discharge and oxygen inflow blocking when gas is generated inside the battery module according to an embodiment of the present invention.
  • FIG. 6 is an enlarged view of a main part as a modified example of FIG. 4 .
  • FIG. 7 is a view showing an example in which the shape of the hole blocking member of FIG. 6 is deformed by heat.
  • FIG. 8 is a view corresponding to FIG. 2 and showing a modified example of the oxygen inflow blocking cover.
  • FIG. 9 is a schematic perspective view of a battery module according to another embodiment of the present invention.
  • FIG. 10 is an exploded perspective view of the oxygen inflow blocking cover of FIG. 9 .
  • 11 and 12 are views schematically showing effects of gas discharge and oxygen inflow blocking when gas is generated inside the battery module according to another embodiment of the present invention.
  • FIG. 13 is a diagram schematically illustrating a battery pack according to an embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a battery module according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view in which the module case and oxygen inflow blocking cover of FIG. 1 are separated
  • FIG. 3 is an oxygen inflow blocking cover of FIG. 2 It is an exploded perspective view.
  • the battery module 10 may include a cell assembly 100, a module case 200, and an oxygen inflow blocking cover 300.
  • the cell assembly 100 may include a plurality of battery cells 110 .
  • the battery cell 110 may include an electrode assembly, an electrolyte solution, and a battery case.
  • the cell assembly 100 may include pouch type battery cells 110 .
  • the cell assembly 100 does not necessarily have to be composed of pouch type battery cells 110 .
  • the cell assembly 100 may be composed of a cylindrical battery cell or a prismatic battery cell.
  • the pouch type battery cells 110 may form the cell assembly 100 in a stacked form.
  • a plurality of pouch-type battery cells 110 may be stacked in a vertical direction (Z-axis direction).
  • Each pouch type battery cell 110 has an electrode lead, and these electrode leads may be located at both ends or at one end of each battery cell 110 .
  • the battery cell 110 shown in FIG. 2 is a bi-directional cell, and electrode leads are located at both ends of the battery cell 110 in the longitudinal direction (X-axis direction).
  • the pouch type battery cell 110 may be replaced with an electrode lead located only at one end in the X-axis direction, for example, at an end in the +X-axis direction.
  • the present invention is not limited by the specific type or form of the battery cell 110, and various battery cells 110 known at the time of filing the present invention may be employed in the cell assembly 100 of the present invention.
  • the cell assembly 100 is accommodated inside the module case 200 so that the electrode leads of the battery cells 110 face the front and rear of the module case 200, that is, both open portions 210, and are not shown for convenience of drawing.
  • bus bar assemblies (not shown) may be assembled at both ends of the cell assembly 100 in the longitudinal direction.
  • the bus bar assembly may include an insulating plate in which slots through which electrode leads pass are formed, and bus bars attached to one surface of the insulating plate and provided in the form of a metal material such as copper.
  • electrode leads of one or more battery cells 110 are pulled out in front of the insulating plate through a slot and welded to one surface of a specific bus bar, and electrode leads of one or more battery cells 110 are pulled out in front of the insulating plate through another slot, and the The battery cells 110 may be connected in series and/or in parallel by welding to a specific bus bar.
  • the module case 200 may have an empty space therein and be configured to accommodate the cell assembly 100 .
  • the module case 200 may be formed with a predetermined length (along the X-axis direction), and may be configured in a substantially rectangular parallelepiped shape with openings 210 provided at the front and rear along the length direction.
  • parts covering the upper and lower portions of the cell assembly 100 in the module case 200 are referred to as an upper plate and a lower plate, and parts covering both side surfaces of the cell assembly 100 are referred to as an upper plate and a lower plate. It will be referred to as the side plates (left plate and right plate).
  • the upper plate and the side plates are integrated to form a U frame having a U-shaped cross section, and the lower plate has both edge lines in an upward direction so that it can be coupled to the U frame by bolting or welding. It may be provided in the form of a bent plate.
  • the module case 200 may be provided in the form of a mono frame in which an upper plate, a lower plate, and a side plate are all integrated in a rectangular tubular shape.
  • the module case 200 has a closed structure on four sides except for the open portion 210, so that when gas or sparks are generated in the cell assembly 100, toward the open portion 210 of the module case 200. Gas or sparks may travel.
  • the oxygen inflow blocking cover 300 exports the gas to the outside of the module case 200, thereby protecting the battery module 10. It is a configuration for minimizing the risk of fire by preventing an explosion due to an increase in internal pressure and blocking oxygen from entering the module case 200 after gas is discharged.
  • the oxygen inflow blocking cover 300 may be provided as a pair at the front and rear of the module case 200, that is, at both openings 210 of the module case 200.
  • the oxygen inflow blocking cover 300 covers the entire opening 210 and may be configured to be coupled to both ends of the module case 200 .
  • various methods such as welding, bolting, hook fastening, and adhesive methods may be employed, and a sealing material such as an O-ring may be added to secure airtightness.
  • the oxygen inflow blocking cover 300 is provided with vent holes H1 and H2, overlapping each other, and provided to cover the opening 210.
  • the first partition wall 310A and the second partition wall 310B, and located between the first partition wall 310A and the second partition wall 310B, are deformed when heat is applied to form the vent holes H1 and H2. It includes a hole blocking member 320 for blocking.
  • the first partition 310A and the second partition 310B are made of a metal material having high mechanical strength or a material having excellent fire resistance
  • the hole blocking member 320 is made of, for example, a plastic (polymer) material that can be melted by heat. can be provided.
  • the hole blocking member 320 may include gas passage holes 321 .
  • the first barrier rib 310A is provided in a plate shape capable of covering the opening 210 of the module case 200 and serves to prevent sparks or flares from leaking to the outside in a thermal runaway situation of the battery cells 110. do. However, to allow gas to pass through the first barrier rib 310A, the first barrier rib includes a plurality of vent holes H1 along the height direction (Z-axis direction).
  • the second barrier rib 310B has a configuration overlapping with the first barrier rib 310A with the hole blocking member 320 interposed therebetween, and may be provided substantially the same as the first barrier rib 310A.
  • the vent hole H2 of the second partition wall 310B is provided in the same shape as the vent hole H1 of the first partition wall 310A and is provided in plurality in the height direction (Z-axis direction) of the second partition wall 310B. can
  • the vent holes H1 of the first partition wall 310A and the vent holes H1 of the second partition wall 310B allow gas to pass therethrough even when the first partition wall 310A and the second partition wall 310B are overlapped.
  • the holes H2 may be configured to match each other in the longitudinal direction (X-axis direction) of the battery module 10 .
  • the hole blocking member 320 is a plastic injection molding and is configured in the form of a plate body having a predetermined thickness. It may be located between the first barrier rib 310A and the second barrier rib 310B. In addition, the hole blocking member 320 includes a plurality of gas passage holes 321 provided along the height direction (Z-axis direction). Gas may pass through the hole blocking member 320 through the plurality of gas passage holes 321 .
  • the hole blocking member 320 is made of an injection-molded plastic material, heat generated due to thermal runaway of the battery cells 110 is transferred to the hole blocking member 320 at a certain level or more, or gas is vented. When heat of above a certain level is transferred to the hole blocking member 320, the hole blocking member 320 may melt and deform in shape. Due to the deformation of the shape of the hole blocking member 320, the vent hole H1 of the first partition 310A and the vent hole H2 of the second partition 310B may be blocked.
  • the vented gas passes through the vent holes H1 and H2 and the gas passage hole 321 to the battery. It can be smoothly discharged to the outside of the module 10. Accordingly, an explosion due to an increase in internal pressure of the battery module 10 may be prevented.
  • the hole blocking member 320 is melted and the vent hole H1 of the first partition wall 310A and the vent hole H2 of the second partition wall 310B are blocked. After the venting gas is discharged, oxygen from being introduced into the battery module 10 through the vent holes and the gas passage hole 321 can be effectively blocked.
  • FIG 4 and 5 are views schematically showing effects of gas discharge and oxygen inflow blocking when gas is generated inside the battery module 10 according to an embodiment of the present invention.
  • the ejected gas is emitted from the opening 210 of the module case 200.
  • the gas passage hole 321 of the hole blocking member 320 is formed in the vent hole H1 of the first partition wall 310A so that heat is effectively transferred to the area around the gas passage hole 321 when the gas is discharged. and a width narrower than that of the vent hole H2 of the second barrier rib 310B. According to this configuration, heat is effectively transferred around the gas passage hole 321 of the hole blocking member 320 so that the shape of the corresponding portion can be easily deformed. Accordingly, as shown in FIG. 5 , the vent hole H1 of the first partition wall 310A and the vent hole H2 of the second partition wall 310B are blocked so that oxygen flows from the outside to the inside of the battery module 10. may be blocked.
  • FIG. 6 is an enlarged view of a main part as a modified example of FIG. 4
  • FIG. 7 is a view showing an example in which the shape of the hole blocking member 320 of FIG. 6 is deformed by heat.
  • the width of the gas passage hole 321 in the vertical direction may gradually narrow as it approaches the vent hole H1 of the first partition wall 310A.
  • the flow of gas indicated by G 0 in FIG. 6 has no obstruction on the path, but in the case of the flow of gas indicated by G 1 , for example, the gas passage hole 321 is blocked. Accordingly, the temperature of the area around the gas passage hole 321 increases more rapidly, so that the area can be effectively melted.
  • the gas discharge pressure acts in the right direction from the gas passage hole 321, a phenomenon in which the melted portion is tilted toward the right direction in FIG. 6, that is, toward the vent hole H2 of the second partition wall 310B may occur. there is.
  • the molten portion is scattered out of the vent hole H2 of the second partition wall 310B together with the gas, and it may be difficult to block the vent hole.
  • the width of the gas passage hole 321 is gradually narrowed toward the vent hole H1 of the first partition wall 310A, so that the gas passage hole 321 is formed when the surrounding plastic region is melted. It is configured so that the upper and lower sides can be fused more quickly. After the upper and lower sides of the gas passage hole 321 are fused in this way, the melted portion becomes highly viscous and does not easily scatter out of the vent hole H2 of the second partition wall 310B. Accordingly, according to the modified example, the vent hole may be blocked more effectively.
  • a hole blocking member 320A made of a mesh network made of a material meltable at a predetermined temperature is employed as an alternative to the hole blocking member 320 in the form of a plastic injection molding having a gas passage hole 321, as shown in FIG. 8, a hole blocking member 320A made of a mesh network made of a material meltable at a predetermined temperature is employed. It could be. In the case of the mesh network, gas discharge can be made more smoothly because of better ventilation than the above-described plastic injection-type hole blocking member 320, and there is an effect of better blocking the inflow or outflow of sparks in the form of particles or foreign substances. .
  • gas generated in a thermal runaway situation of a specific battery cell 110 can be discharged to the outside of the battery module 10. Therefore, explosion of the battery module 10 can be prevented, and fire spread can be prevented by blocking the inflow of oxygen after gas is discharged. That is, in the battery module 10, a heat source such as a spark or combustibles may exist inside the battery module 10 in a thermal runaway situation. The spread of internal fire of the can be prevented or significantly delayed.
  • FIG. 9 is a schematic perspective view of a battery module 10A according to another embodiment of the present invention
  • FIG. 10 is an exploded perspective view of the oxygen inflow blocking cover 400 of FIG. 9 .
  • the battery module 10A includes three barrier ribs 410A, 410B, and 410C that are triple overlapped, and the three barrier ribs 410A and 410B. , 410C) and includes two hole blocking members 420 and 430 disposed between them.
  • the two hole blocking members 420 and 430 are formed in a porous structure.
  • the oxygen inflow blocking cover 400 of the present invention includes a first partition wall 410A, a second partition wall 410B, and a third partition wall 410C disposed to face each other in triple.
  • the oxygen inflow blocking cover 400 includes a first hole blocking member 420 disposed between the first partition wall 410A and the second partition wall 410B, the second partition wall 410B and the second partition wall 410B. and a second hole blocking member 430 disposed between the three partition walls 410C.
  • vent holes J1 and J2 of the first partition wall 410A are provided in a form elongated in the vertical direction (Z-axis direction), one at each side, and the vent hole K1 of the second partition wall 410B is
  • the vent holes Q1 of the third partition wall 410C are provided in a form elongated in the vertical direction (Z-axis direction) at the center so as to be offset from the vents J1 and J2 of the first partition wall 410A.
  • ,Q2) may be provided in a form elongated in the vertical direction (Z-axis direction), one at each side, so as to be positioned offset from the vent hole K1 of the second partition wall 410B.
  • the first hole blocking member 420 and the second hole blocking member 430 are made of a heat-melting material such as plastic resin, and have a porous structure having a predetermined volume, for example, a porous sponge or a porous foam or web. ) can be implemented in the form of The first hole blocking member 420 and the second hole blocking member 430 have ventilation properties not only in the thickness direction (X-axis direction) but also in the horizontal direction (Y-axis direction) and vertical direction (Z-axis direction).
  • the oxygen inflow blocking cover 400 in a thermal runaway situation inside the battery module 10A, the gas is smoothly discharged to the outside while preventing sparks or flares from being discharged to the outside.
  • the first hole blocking member 420 and the second hole blocking member 430 are configured to be deformed by heat, preventing oxygen from flowing into the battery module 10A after gas is discharged. can block
  • 11 and 12 are views schematically showing effects of gas discharge and oxygen inflow blocking when gas is generated inside the battery module 10 according to another embodiment of the present invention.
  • the spark indicated by F in FIG. 11 is blocked by the first barrier rib 410A or vent holes J1 and J2 Even if it passes through, it may be blocked by being blocked by the second partition wall 410B. Moreover, since most of the sparks are in the form of particles, it is difficult to flow into the first hole blocking member 420 having a porous structure.
  • the present embodiment is composed of a triple barrier rib, so that sparks or flares must pass through a complicated path to flow out. Therefore, it is very difficult for sparks or flares to leak out to the outside.
  • the shape of at least one of the first hole blocking member 420 and the second hole blocking member 430 may be deformed. That is, the first hole blocking member 420 or the second hole blocking member 430 melts and the porous structure collapses, or the vent holes J1 and J2 of the first partition wall 410A and the second partition wall 410B The vent hole K1 and the vent holes Q1 and Q2 of the third barrier rib 410C may be blocked. At this time, as indicated by O in FIG. 12 , oxygen may be blocked from flowing into the battery module 10A.
  • the battery module 10A As described above, in the case of the battery module 10A according to another embodiment of the present invention, compared to the above-described embodiment, it is composed of triple barrier ribs 410A, 410B, and 410C, and the vent holes of each of the barrier ribs are staggered As it is located, sparks and flares cannot pass through, and only gas can be discharged to the outside. In addition, after the gas is discharged, the hole blocking members are deformed by heat during the gas discharge process to block the vent holes, thereby preventing oxygen from being introduced into the battery module 10A. As a result, the risk of fire spreading inside the battery module 10A and outside the battery module 10 can be greatly reduced.
  • the battery pack 1 according to the present invention may include a plurality of battery modules according to the present invention described above.
  • the battery pack 1 according to the present invention is a battery known at the time of filing of the present invention, such as other various components other than the battery module, such as a BMS, bus bar, pack case 20, relay, current sensor, etc. It may further include components of the pack 1 and the like.
  • An energy storage system may include one or more battery modules according to the present invention.
  • the energy storage system may include a plurality of battery modules electrically connected to each other in order to have a large energy capacity.
  • a plurality of battery modules according to the present invention constitute one battery pack 1, and an energy storage system may be configured in such a manner that a plurality of such battery packs are included.
  • the energy storage system according to the present invention may further include various other components of the energy storage system known at the time of filing of the present invention.
  • these energy storage systems can be used in various places or devices, such as smart grid systems or electric charging stations.

Abstract

본 발명에 따른 배터리 모듈은 복수 개의 배터리 셀들을 구비하는 셀 어셈블리; 상기 셀 어셈블리를 수용할 수 있게 마련되고 적어도 일측에 개방부를 구비한 모듈 케이스; 및 상기 개방부를 커버하는 산소 유입 차단커버를 포함하며, 상기 산소 유입 차단커버는, 각각 벤트홀을 구비하고 서로 중첩 배치되고 상기 개방부를 커버하도록 마련되되, 상기 셀 어셈블리에서 가스 발생시 가스가 상기 벤트홀을 통해 상기 모듈 케이스의 외부로 배출되도록 구성된 2개 이상의 격벽들; 및 상기 격벽들 사이에 위치하고, 열이 인가되는 경우 형태가 변형되어 상기 벤트홀을 폐색시키도록 구성된 홀 폐색부재를 포함할 수 있다.

Description

열폭주 시 산소 유입 차단을 위한 구조가 적용된 배터리 모듈
본 출원은 2021년 08월 30일자로 출원된 한국 특허출원 번호 제10-2021-0115112호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리에 관한 것으로, 보다 상세하게는 화재 발생 내지 확산을 효과적으로 방지할 수 있는 배터리 모듈과 이를 포함하는 배터리 팩 및 에너지 저장 시스템 등에 관한 것이다.
근래에 들어서, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 로봇, 전기 자동차 등의 상용화가 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있다. 특히, 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이차 전지는 단독으로 사용되기도 하나, 일반적으로는 다수의 이차 전지가 서로 전기적으로 직렬 및/또는 병렬로 연결된 형태로 구성된 경우가 많다. 특히, 다수의 이차 전지는 서로 전기적으로 연결된 상태로 하나의 모듈 케이스 내부에 수납되어, 하나의 배터리 모듈을 구성할 수 있다. 그리고, 배터리 모듈은, 단독으로 사용되거나 또는 둘 이상이 서로 전기적으로 직렬 및/또는 병렬로 연결되어, 배터리 팩 등과 같은 보다 상위 수준의 장치를 구성할 수 있다.
최근, 전력 부족이나 친환경 에너지 등과 같은 이슈가 부각되면서, 생산된 전력을 저장하기 위한 에너지 저장 시스템(ESS; Energy Storage System)이 보다 주목받고 있다. 대표적으로, 이러한 에너지 저장 시스템을 이용하면, 스마트 그리드 시스템(Smart Grid System)과 같은 시스템 구축이 용이하여, 특정 지역이나 도시 등에서 용이하게 전력 수급 조절이 가능할 수 있다.
에너지 저장 시스템에 사용되는 배터리 팩의 경우, 중소형 배터리 팩에 비해 매우 큰 용량이 필요할 수 있다. 따라서, 배터리 팩에는 통상적으로 많은 수의 배터리 모듈이 포함될 수 있다. 그리고, 에너지 밀도를 높이기 위해, 다수의 배터리 모듈은 매우 좁은 공간에 밀집된 형태로 구성되는 경우가 많다.
그런데, 이와 같이 다수의 배터리 모듈이 좁은 공간에 밀집된 상태로 존재하는 경우, 화재에 취약할 수 있다. 예를 들어, 어느 하나의 배터리 모듈에서 열폭주(thermal propagation) 상황이 발생하여, 적어도 하나의 배터리 셀로부터 고온의 가스가 배출되는 상황이 발생할 수 있다. 더욱이, 이러한 가스 배출 시 고온의 스파크가 분출될 수 있는데, 스파크에는 배터리 셀 내부의 전극에서 탈리된 활물질이나 용융된 알루미늄 입자 등이 포함될 수 있다. 만일, 이러한 고온의 스파크 및 고온의 가스가, 산소와 만나는 경우, 배터리 팩의 화재를 발생시킬 수 있다.
특히, 특정 배터리 셀 내지 모듈에서 화재가 발생하는 경우, 이는 주변의 다른 배터리 셀이나 배터리 모듈, 다른 배터리 팩 등으로 확산될 수 있다. 특히, 에너지 저장 시스템은, 좁은 공간에 많은 배터리들이 밀집되어 있기 때문에, 화재가 발생하는 경우, 진압이 용이하지 않다. 더욱이, 에너지 저장 시스템의 규모나 역할을 고려할 때, 배터리 팩 내부의 화재 발생은 매우 심각한 재산 및 인명 상 피해를 발생시킬 우려가 있다. 그러므로, 특정 배터리 셀이나 모듈에서 열폭주 상황 등이 발생하더라도, 화재로까지 나아가지 않도록 하는 것이 중요하다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 열폭주 등으로 인해 내부에서 고온의 가스나 스파크가 발생하더라도 화재 발생을 효과적으로 억제할 수 있도록 구성된 배터리 모듈과 이를 포함하는 배터리 팩 및 에너지 저장 시스템 등을 제공하는 것을 목적으로 한다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 배터리 모듈은, 복수 개의 배터리 셀들을 구비하는 셀 어셈블리; 상기 셀 어셈블리를 수용할 수 있게 마련되고 적어도 일측에 개방부를 구비한 모듈 케이스; 상기 셀 어셈블리를 수용할 수 있게 마련되고 적어도 일측에 개방부를 구비한 모듈 케이스; 및 상기 개방부를 커버하는 산소 유입 차단커버를 포함하며, 상기 산소 유입 차단커버는, 각각 벤트홀을 구비하고 서로 중첩 배치되고 상기 개방부를 커버하도록 마련되되, 상기 셀 어셈블리에서 가스 발생시 가스가 상기 벤트홀을 통해 상기 모듈 케이스의 외부로 배출되도록 구성된 2개 이상의 격벽들; 및 상기 격벽들 사이에 위치하고, 열이 인가되는 경우 형태가 변형되어 상기 벤트홀을 폐색시키도록 구성된 홀 폐색부재;를 포함할 수 있다.
상기 홀 폐색부재는, 플라스틱 사출물로서 판상체 형태로 구성될 수 있다.
상기 2개 이상의 격벽들은, 상기 홀 폐색부재를 사이에 두고 중첩 배치되는 제1 격벽과 제2 격벽을 포함할 수 있다.
상기 홀 폐색부재는 판상체 형태로 마련되고 두께 방향으로 가스가 통과할 수 있는 가스 통과공을 구비하고, 상기 제1 격벽의 벤트홀, 상기 가스 통과공, 상기 제2 격벽의 벤트홀은 서로 간에 적어도 일부분이 일치하도록 구성될 수 있다.
상기 가스 통과공은, 상기 제1 격벽의 벤트홀과 상기 제2 격벽의 벤트홀보다 폭이 좁게 형성될 수 있다.
상기 가스 통과공은 상기 제1 격벽의 벤트홀에 가까울수록 폭이 점진적으로 좁아지게 형성될 수 있다.
상기 홀 폐색부재는, 소정의 온도에서 용융 가능한 메쉬망으로 구성될 수 있다.
상기 2개 이상의 격벽들은, 3중으로 서로 대향하게 배치된 제1 격벽, 제2 격벽 및 제3 격벽을 포함하고, 상기 홀 폐색부재는 상기 제1 격벽과 상기 제2 격벽 사이에 배치되는 제1 홀 폐색부재와, 상기 제2 격벽과 상기 제3 격벽 사이에 배치되는 제2 홀 폐색부재를 포함할 수 있다.
상기 제1 격벽의 벤트홀과 상기 제2 격벽의 벤트홀은 서로 엇갈리게 구성되고, 상기 제2 격벽의 벤트홀과 상기 제3 격벽의 벤트홀은 서로 엇갈리게 구성되고,
상기 제1 홀 폐색부재와 상기 제2 홀 폐색부재는 다공성 구조로 이루어질 수 있다.
상기 셀 어셈블리는, 복수 개의 파우치형 배터리 셀들이 상호 적층된 형태로 구성될 수 있다.
상기 복수 개의 파우치형 배터리 셀들은 전극 리드가 상기 모듈 케이스의 전후 방향에 위치하며, 상기 모듈 케이스는 전방 및 후방 중 적어도 일측에 상기 개방부가 구비될 수 있다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명의 다른 측면에 따른 배터리 팩은, 본 발명에 따른 배터리 모듈을 포함할 수 있다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명의 또 다른 측면에 따른 에너지 저장 시스템은, 본 발명에 따른 배터리 모듈을 포함할 수 있다.
본 발명에 의하면, 배터리 모듈의 화재 발생이 효과적으로 방지될 수 있다.
특히, 본 발명의 일 측면에 의하면, 배터리 모듈 내에 포함된 특정 배터리 셀에서 열폭주 현상 등으로 인해 고온의 가스나 스파크가 발생하더라도, 화재로 진행하지 않도록 할 수 있다.
더욱이, 본 발명의 일 실시 구성에 의하면, 배터리 모듈 외부로 가스를 배출시키면서도 배터리 모듈 내부로 산소가 유입되는 것을 차단할 수 있다. 따라서, 연소의 3요소 중 하나인 산소를 배제시킴으로써, 배터리 모듈 내부에서 연소, 즉 화재가 발생하는 것을 원천적으로 차단할 수 있다.
또한, 본 발명의 일 측면에 의하면, 배터리 모듈 내부에서 화재가 발생한다 하더라도, 추가 산소 유입이 차단되어 화재가 확산되지 않고 신속하게 진압되도록 할 수 있다.
이 밖에도 본 발명은 여러 다른 효과를 가질 수 있으며, 이에 대해서는 각 실시 구성에서 설명하거나, 당업자가 용이하게 유추할 수 있는 효과 등에 대해서는 해당 설명을 생략하도록 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈의 개략적인 사시도이다.
도 2는 도 1의 모듈 케이스와 산소 유입 차단커버를 분리한 분해 사시도이다.
도 3은 도 2의 산소 유입 차단커버의 분해 사시도이다.
도 4 및 도 5는 본 발명의 일 실시예에 따른 배터리 모듈 내부에서 가스가 발생한 경우, 가스 배출과 산소 유입 차단 효과를 도식화하여 나타낸 도면들이다.
도 6은 도 4의 변형예로서 주요 부분을 확대한 도면이다.
도 7은 도 6의 홀 폐색부재가 열에 의해 형태가 변형된 예를 나타낸 도면이다.
도 8은 도 2에 대응하는 도면으로 산소 유입 차단커버의 변형예를 나타낸 도면이다.
도 9는 본 발명의 다른 실시예에 따른 배터리 모듈의 개략적인 사시도이다.
도 10은 도 9의 산소 유입 차단커버의 분해 사시도이다.
도 11 및 도 12는 본 발명의 다른 실시예에 따른 배터리 모듈 내부에서 가스가 발생한 경우, 가스 배출과 산소 유입 차단 효과를 도식화하여 나타낸 도면들이다.
도 13은 본 발명의 일 실시예에 따른 배터리 팩을 개략적으로 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈의 개략적인 사시도이고, 도 2는 도 1의 모듈 케이스와 산소 유입 차단커버를 분리한 분해 사시도이며, 도 3은 도 2의 산소 유입 차단커버의 분해 사시도이다.
이들 도면들을 참조하면, 본 발명의 일 실시예에 따른 배터리 모듈(10)은, 셀 어셈블리(100), 모듈 케이스(200) 및 산소 유입 차단커버(300)를 포함할 수 있다.
상기 셀 어셈블리(100)는, 다수의 배터리 셀(110)을 구비할 수 있다. 상기 배터리 셀(110)은, 전극 조립체, 전해액 및 전지 케이스를 구비할 수 있다. 도 2에 도시된 바와 같이, 셀 어셈블리(100)는 파우치형 배터리 셀(110)들로 구성될 수 있다. 물론, 셀 어셈블리(100)가 반드시 파우치형 배터리 셀(110)들로 구성되어야 하는 것은 아니다. 이를테면, 셀 어셈블리(100)는 원통형 배터리 셀이나 각형 배터리 셀로 구성될 수도 있다.
상기 파우치형 배터리 셀(110)은 서로 적층된 형태로 셀 어셈블리(100)를 형성할 수 있다. 예컨대, 도 2와 같이, 다수의 파우치형 배터리 셀(110)들이 상하 방향(Z축 방향)으로 적층될 수 있다. 각각의 파우치형 배터리 셀(110)은 전극 리드를 구비하며, 이러한 전극 리드는 각 배터리 셀(110)의 양단부에 위치하거나 일 단부에 위치할 수 있다.
도 2에 도시된 배터리 셀(110)은, 양방향 셀로서, 전극 리드가 배터리 셀(110)의 길이 방향(X축 방향) 양단에 위치한다. 그러나 상기 파우치형 배터리 셀(110)은 전극 리드가 X축 방향 일단, 이를테면 +X축 방향의 단부에만 위치하는 것으로 대체될 수도 있다. 본 발명은 이러한 배터리 셀(110)의 구체적인 종류나 형태에 의해 제한되지 않으며, 본 발명의 출원 시점에 공지된 다양한 배터리 셀(110)이 본 발명의 셀 어셈블리(100)에 채용될 수 있다.
셀 어셈블리(100)는 배터리 셀(110)들의 전극 리드 쪽이 모듈 케이스(200)의 전방과 후방, 즉 양쪽 개방부(210)를 향하도록 모듈 케이스(200) 내부에 수납되고, 도면의 편의상 미도시 하였으나, 배터리 셀(110)들의 전기적 연결을 위한 수단으로서 버스바 조립체(미도시)가 셀 어셈블리(100)의 길이 방향에 따른 양단부에 조립될 수 있다. 여기서 버스바 조립체는 전극 리드가 통과할 수 있는 슬롯들이 형성되어 있는 절연판과, 상기 절연판의 일면에 부착되고 구리 등과 같은 금속 소재의 막대 형태로 제공되는 버스바들로 구성될 수 있다. 예컨대 하나 이상의 배터리 셀(110)들의 전극 리드들을 슬롯을 통해 절연판 앞쪽으로 빼내어 특정 버스바의 일면에 용접하고, 또 다른 하나 이상의 배터리 셀(110)들의 전극 리드들을 다른 슬롯을 통해 절연판 앞쪽으로 빼내고 상기 특정 버스바에 용접하는 방식으로 배터리 셀(110)들을 직렬 및/병렬 연결할 수 있다.
상기 모듈 케이스(200)는, 내부에 빈 공간을 구비하고 셀 어셈블리(100)를 수용할 수 있게 구성될 수 있다. 또한, 상기 모듈 케이스(200)는 (X축 방향을 따라) 소정 길이로 형성되며, 개방부(210)가 길이 방향에 따른 전방과 후방에 구비되어 있는 대략 직육면체 형상으로 구성될 수 있다.
이하 설명의 편의상, 모듈 케이스(200)에 있어서 상기 셀 어셈블리(100)의 상부와 하부를 각각 커버하는 부분을 상부 플레이트와 하부 플레이트라고 지칭하고 상기 셀 어셈블리(100)의 양쪽 측면부를 커버하는 부분들을 측부 플레이트들(좌측 플레이트와 우측 플레이트)라고 지칭하기로 한다.
예컨대, 상기 상부 플레이트와 상기 측부 플레이트들은 일체화되어 단면이 U자 형태인 U 프레임으로 형성되고, 상기 하부 플레이트는 상기 U 프레임에 볼팅 또는 용접 등의 방식으로 결합시킬 수 있게 양쪽 가장자리 라인이 상부 방향으로 절곡되어 있는 판 형태로 제공될 수 있다. 대안 예로써, 상기 모듈 케이스(200)는 사각 관형으로 상부 플레이트, 하부 플레이트, 측부 플레이트들이 모두 일체화된 모노 프레임 형태로 제공될 수도 있다.
이러한 모듈 케이스(200)는 개방부(210)를 제외한 4면이 밀폐된 구조로 이루어져 있어, 셀 어셈블리(100)에서 가스나 스파크 등이 발생한 때, 모듈 케이스(200)의 개방부(210) 쪽으로 가스나 스파크가 이동할 수 있다.
상기 산소 유입 차단커버(300)는 배터리 셀(110)들의 열 폭주 상황에서 모듈 케이스(200)의 내부에 가스가 발생한 경우, 상기 가스를 모듈 케이스(200) 외부로 내보냄으로써 배터리 모듈(10)의 내압 증가로 인한 폭발을 방지하고 가스 배출 후 모듈 케이스(200) 내부로 산소가 유입되는 것을 차단하여 화재 위험을 최소화하기 위한 구성이다.
이러한 산소 유입 차단커버(300)는 모듈 케이스(200)의 전방과 후방 즉, 모듈 케이스(200)의 양쪽 개방부(210)에 한 쌍으로 구비될 수 있다. 상기 산소 유입 차단커버(300)는 개방부(210) 전체를 커버하며 모듈 케이스(200)의 양단부에 결합되도록 구성될 수 있다. 산송 유입 차단커버와 모듈 케이스(200)의 결합시 용접, 볼팅, 후크 체결, 접착 방식 등 다양한 방식이 채용될 수 있고, 기밀성 확보를 위해 오링(O-ring) 등과 같은 실링재가 추가될 수 있다.
구체적으로, 상기 산소 유입 차단커버(300)는, 도 2 및 도 3에 도시한 바와 같이, 각각 벤트홀(H1,H2)을 구비하고 서로 중첩 배치되고 상기 개방부(210)를 커버하도록 마련된 제1 격벽(310A)과 제2 격벽(310B), 그리고 상기 제1 격벽(310A)과 상기 제2 격벽(310B) 사이에 위치하고 열이 인가되는 경우 형태가 변형되어 상기 벤트홀(H1,H2)을 폐색시키는 홀 폐색부재(320)를 포함한다.
상기 제1 격벽(310A)과 제2 격벽(310B)은 기계적 강성이 높은 금속 소재 또는 내화성이 우수한 소재로 마련되고, 상기 홀 폐색부재(320)는 열에 의해 용융이 가능한 예컨대 플라스틱(폴리머) 소재로 마련될 수 있다. 또한, 상기 홀 폐색부재(320)는 가스 통과공(321)들을 구비할 수 있다.
상기 제1 격벽(310A)은 모듈 케이스(200)의 개방부(210)를 커버할 수 있는 판형으로 마련되어 배터리 셀(110)들의 열 폭주 상황에서 스파크나 플래어(flare)의 외부 유출을 막는 역할을 한다. 그러나 가스는 상기 제1 격벽(310A)을 통과할 수 있도록, 상기 제1 격벽은 높이 방향(Z축 방향)을 따라 복수 개의 벤트홀(H1)들을 구비한다.
상기 제2 격벽(310B)은 상기 홀 폐색부재(320)를 사이에 두고 상기 제1 격벽(310A)과 중첩되게 배치되는 구성으로, 제1 격벽(310A)과 실질적으로 동일하게 마련될 수 있다. 제2 격벽(310B)의 벤트홀(H2)은 제1 격벽(310A)의 벤트홀(H1)과 동일 형상으로 마련되고 제2 격벽(310B)의 높이 방향(Z축 방향)으로 복수 개가 구비될 수 있다. 상기 제1 격벽(310A)과 상기 제2 격벽(310B)을 중첩 배치해도 가스가 이들을 통과할 수 있게 상기 제1 격벽(310A)의 벤트홀(H1)들과 상기 제2 격벽(310B)의 벤트홀(H2)들은 배터리 모듈(10)의 길이 방향(X축 방향)으로 서로 매칭되게 구성될 수 있다.
홀 폐색부재(320)는 플라스틱 사출물로서 소정 두께를 갖는 판상체 형태로 구성되고 그 일면은 상기 제1 격벽(310A)에 대면 접촉하며 그 타면은 상기 제2 격벽(310B)에 대면 접촉하게 상기 제1 격벽(310A)과 상기 제2 격벽(310B) 사이에 위치할 수 있다. 또한, 상기 홀 폐색부재(320)는 높이 방향(Z축 방향)을 따라 구비된 복수 개의 가스 통과공(321)들을 구비한다. 가스는 상기 복수 개의 가스 통과공(321)들을 통해 홀 폐색부재(320)를 통과할 수 있다.
이러한 가스 통과공(321)은 제1 격벽(310A)의 벤트홀(H1) 및 제2 격벽(310B)의 벤트홀(H2)과 서로 적어도 일부분이 일치하는 높이에 구비된다. 즉, 도 2와 같이, 제1 격벽(310A), 홀 폐색부재(320), 제2 격벽(310B)이 순서대로 겹쳐진 상태에서 제1 격벽(310A)의 벤트홀(H1), 가스 통과공(321), 제2 격벽(310B)의 벤트홀(H2)은 서로 간에 적어도 일부분이 매칭될 수 있다. 따라서 모듈 케이스(200)의 내부에서 가스가 발생할 경우, 상기 가스는 제1 격벽(310A)의 벤트홀(H1) => 홀 폐색부재(320)의 가스 통과공(321) => 제2 격벽(310B)의 벤트홀(H2)을 통해 배터리 모듈(10)의 외부로 배출될 수 있다.
한편, 상기 홀 폐색부재(320)는 플라스틱 사출물로 이루어져 있기 때문에, 배터리 셀(110)들의 열 폭주 상황으로 인해 생성된 열이 일정 수준 이상으로 상기 홀 폐색부재(320)에 전달되거나, 벤팅되는 가스의 열이 일정 수준 이상으로 상기 홀 폐색부재(320)에 전달되는 경우, 홀 폐색부재(320)가 녹아내려 형태가 변형될 수 있다. 이러한 홀 폐색부재(320)의 형태 변형에 의해 제1 격벽(310A)의 벤트홀(H1)과 제2 격벽(310B)의 벤트홀(H2)이 막힐 수 있다.
본 발명의 이러한 구성에 의하면, 배터리 모듈(10) 내부에서 열폭주 상황 등이 발생하여 가스가 벤팅된 경우, 벤팅된 가스는 벤트홀들(H1,H2)과 가스 통과공(321)을 통해 배터리 모듈(10)의 외부로 원활하게 배출될 수 있다. 따라서, 배터리 모듈(10)의 내압 증가로 인한 폭발을 방지할 수 있다. 뿐만 아니라, 벤팅 가스가 배출되면서 전달된 열로 인해, 홀 폐색부재(320)가 녹아내려 제1 격벽(310A)의 벤트홀(H1)과 제2 격벽(310B)의 벤트홀(H2)이 막히게 됨으로써, 벤팅 가스 배출 후 상기 벤트홀들과 가스 통과공(321)을 통해 배터리 모듈(10) 내부로 산소가 유입되는 것이 효과적으로 차단될 수 있다.
이에 대해서는, 도 4 및 도 5를 참조하여 보다 구체적으로 설명한다.
도 4 및 도 5는 본 발명의 일 실시예에 따른 배터리 모듈(10) 내부에서 가스가 발생한 경우, 가스 배출과 산소 유입 차단 효과를 도식화하여 나타낸 도면들이다.
하나 이상의 배터리 셀(110)의 열 폭주 상황에서 도 4의 G로 표시한 바와 같이, 상기 배터리 셀(110)에서 가스가 분출된 경우, 분출된 가스는 모듈 케이스(200)의 개방부(210)로 이동할 수 있다. G로 표시한 가스의 경우 제1 격벽(310A)의 벤트홀(H1) => 홀 폐색부재(320)의 가스 통과공(321) => 제2 격벽(310B)의 벤트홀(H2)을 차례로 통과하여 배터리 모듈(10)의 외부로 배출될 수 있다.
위와 같이 가스가 배출될 때 가스 통과공(321) 주변 영역에 열이 효과적으로 전달되도록, 상기 홀 폐색부재(320)의 가스 통과공(321)은 상기 제1 격벽(310A)의 벤트홀(H1)과 상기 제2 격벽(310B)의 벤트홀(H2)보다 폭이 좁게 형성될 수 있다. 이러한 구성에 의하면, 홀 폐색부재(320)의 가스 통과공(321) 주변에 열전달이 효과적으로 이루어져 해당 부분의 형태가 용이하게 변형될 수 있다. 이에 도 5에 도시된 바와 같이, 제1 격벽(310A)의 벤트홀(H1)과 제2 격벽(310B)의 벤트홀(H2)이 폐색되어 배터리 모듈(10)의 외부에서 내부로 산소 유입이 차단될 수 있다.
도 6은 도 4의 변형예로서 주요 부분을 확대한 도면이고, 도 7은 도 6의 홀 폐색부재(320)가 열에 의해 형태가 변형된 예를 나타낸 도면이다.
도 4의 변형예로서, 가스 통과공(321)은 제1 격벽(310A)의 벤트홀(H1)에 가까울수록 상하 방향 폭이 점진적으로 좁아지게 구성될 수 있다. 상기 구성에 의하면, 도 6에 G0 으로 표시한 가스의 흐름은 경로 상에 장애가 없으나, 예컨대 G1으로 표시한 가스의 흐름의 경우, 가스 통과공(321) 주변 부위에 가로막히게 된다. 이에 따라 상기 가스 통과공(321) 주변 부위의 온도가 더 빠르게 높아져 해당 부위가 효과적으로 용융될 수 있다. 그런데 상기 가스 통과공(321)에서 우측 방향으로 가스 배출 압력이 작용하기 때문에 용용된 부분이 도 6에서 우측 방향 즉, 제2 격벽(310B)의 벤트홀(H2) 방향으로 쏠리게 되는 현상이 일어날 수 있다. 이러한 쏠림 현상이 심화될 경우, 용용된 부분이 가스와 함께 제2 격벽(310B)의 벤트홀(H2) 밖으로 비산되어 벤트홀의 폐색이 어렵게 될 수 있다. 이에 본 변형예는 제1 격벽(310A)의 벤트홀(H1) 쪽으로 갈수록 가스 통과공(321)의 폭을 점진적으로 좁게 형성하여, 그 주변의 플라스틱 영역이 용융될 때 가스 통과공(321)의 상측과 하측이 보다 신속히 융착될 수 있도록 구성한 것이다. 이렇게 가스 통과공(321)의 상측과 하측이 융착된 후에는 용융된 부분의 점성이 강해져 제2 격벽(310B)의 벤트홀(H2) 밖으로 쉽게 비산되지 않는다. 이에 본 변형예에 의하면 벤트홀의 폐색이 보다 효과적으로 이루어질 수 있다.
한편, 가스 통과공(321)을 구비한 플라스틱 사출물 형태의 홀 폐색부재(320)의 대안으로 도 8과 같이, 소정의 온도에서 용융 가능한 소재로 이루어진 메쉬망으로 이루어진 홀 폐색부재(320A)가 채용될 수도 있다. 메쉬망의 경우 전술한 플라스틱 사출물 형태의 홀 폐색부재(320)에 비해 통풍성이 좋아 가스 배출이 보다 원활하게 이루어질 수 있으며, 입자 형태의 스파크나 이물질의 유입 또는 유출을 더 잘 차단할 수 있는 효과가 있다.
이상과 같은 본 발명의 일 실시예에 따른 배터리 모듈(10)의 구성과 그 구성의 작용에 의하면, 특정 배터리 셀(110)의 열 폭주 상황에서 발생한 가스를 배터리 모듈(10)의 외부로 배출할 수 있어 배터리 모듈(10)의 폭발을 방지할 수 있고, 또한, 가스 배출 후 산소 유입을 차단하여 화재 확산을 방지할 수 있다. 즉, 배터리 모듈(10)은 열 폭주 상황에서 배터리 모듈(10) 내부에 스파크와 같은 열원이나 가연물이 존재할 수 있는데, 상기와 같이 연소의 3요소 중 하나인 산소 유입이 차단되면 배터리 모듈(10)의 내부 화재의 확산이 방지 내지 현저히 지연될 수 있다.
도 9는 본 발명의 다른 실시예에 따른 배터리 모듈(10A)의 개략적인 사시도이고, 도 10은 도 9의 산소 유입 차단커버(400)의 분해 사시도이다.
이어서, 상기 도면들은 참조하여, 본 발명의 다른 실시예에 대해 설명한다.
전술한 실시예와 동일한 부재 번호는 동일한 부재를 나타내며, 동일한 부재에 대한 중복된 설명은 생략하기로 하고 전술한 실시예와 차이점을 위주로 설명하기로 한다.
본 발명의 다른 실시예에 따른 배터리 모듈(10A)은 전술한 실시예의 구성과 비교할 때, 3중으로 중첩 배치되는 3개의 격벽들(410A,410B,410C)과, 상기 3개의 격벽들(410A,410B,410C) 사이에 배치되는 2개의 홀 폐색부재들(420,430)을 포함한다. 또한, 상기 2개의 홀 폐색부재들(420,430)은 다공성 구조로 형성된다.
구체적으로, 도 10을 참조하면, 본 발명의 산소 유입 차단커버(400)는 3중으로 서로 대향하게 배치된 제1 격벽(410A), 제2 격벽(410B) 및 제3 격벽(410C)을 포함한다. 또한, 상기 산소 유입 차단커버(400)는 상기 제1 격벽(410A)과 상기 제2 격벽(410B) 사이에 배치되는 제1 홀 폐색부재(420)와, 상기 제2 격벽(410B)과 상기 제3 격벽(410C) 사이에 배치되는 제2 홀 폐색부재(430)를 포함한다.
상기 제1 격벽(410A)의 벤트홀들(J1,J2)은 양쪽 측부에 하나씩 세로 방향(Z축 방향) 길게 연장된 형태로 마련되고, 상기 제2 격벽(410B)의 벤트홀(K1)은 상기 제1 격벽(410A)의 벤트들(J1,J2)과 어긋나게 위치하도록 중앙부에 세로 방향(Z축 방향)으로 길게 연장된 형태로 마련되며, 상기 제3 격벽(410C)의 벤트홀들(Q1,Q2)은 상기 제2 격벽(410B)의 벤트홀(K1)과 어긋나게 위치하도록 양쪽 측부에 하나씩 세로 방향(Z축 방향) 길게 연장된 형태로 마련될 수 있다.
상기 제1 홀 폐색부재(420)와 상기 제2 홀 폐색부재(430)는 플라스틱 수지와 같이 열 용융되는 재질이고, 다공성 구조로 소정의 부피를 갖는 예컨대 다공성의 스펀지 또는 다공성의 폼이나 웹(web) 형태로 구현될 수 있다. 이러한 제1 홀 폐색부재(420)와 제2 홀 폐색부재(430)는 두께 방향(X축 방향) 뿐만 아니라 가로 방향(Y축 방향)과 세로 방향(Z축 방향)으로도 통풍성을 갖는다.
상기와 같은 산소 유입 차단커버(400)의 구성에 의하면, 배터리 모듈(10A) 내부의 열폭주 상황에서 스파크나 플래어(Flare) 등은 외부로 배출되지 않게 막으면서 가스는 외부로 원활하게 배출되도록 할 수 있다. 또한, 전술한 실시예와 같이, 제1 홀 폐색부재(420)와 제2 홀 폐색부재(430)가 열에 의해 변형되게 구성되어 있어, 가스 배출 후 산소가 배터리 모듈(10A) 내부로 유입되는 것을 차단할 수 있다.
이에 대해 도 11과 도 12를 참조하여 보충 설명하기로 한다.
도 11 및 도 12는 본 발명의 다른 실시예에 따른 배터리 모듈(10) 내부에서 가스가 발생한 경우, 가스 배출과 산소 유입 차단 효과를 도식화하여 나타낸 도면들이다.
배터리 셀(110)에서 가스와 스파크 등의 분출된 경우, 도 11에 F로 표시한 스파크는 제1 격벽(410A)에 의해 차단되거나, 제1 격벽(410A)의 벤트홀들(J1,J2)을 통과하더라도 제2 격벽(410B)에 막혀 차단될 수 있다. 더욱이, 스파크는 입자 형태가 대부분이라 다공성 구조의 제1 홀 폐색부재(420) 안으로 유입되기도 어렵다. 또한, 본 실시예는 3중 격벽으로 이루어져 있어 스파크 내지 플래어가 외부로 유출되기 위해서는 복잡한 경로를 거쳐야 한다. 따라서 실질적으로 스파크 내지 플래어는 외부로 유출되기 매우 어렵다.
그러나 도 11에 G로 표시한 가스의 경우, 제1 격벽(410A)의 벤트홀(J1,J2)들=> 다공성 구조의 제1 홀 폐색부재(420) => 제2 격벽(410B)의 벤트홀(K1) => 다공성 구조의 제2 홀 폐색부재(430) => 제3 격벽(410C)의 벤트홀(Q1,Q2)들을 통해 배터리 모듈(10A)의 외부로 배출될 수 있다.
가스 배출 후, 상기 가스가 배출되는 과정에서 열이 상기 제1 홀 폐색부재(420)와 상기 제2 홀 폐색부재(430)에 전달된다. 이에 따라 상기 제1 홀 폐색부재(420)와 상기 제2 홀 폐색부재(430) 중 적어도 어느 하나는 형태가 변형될 수 있다. 즉, 제1 홀 폐색부재(420) 또는 제2 홀 폐색부재(430)가 녹아내려 다공성 구조가 붕괴되거나 제1 격벽(410A)의 벤트홀들(J1,J2), 상기 제2 격벽(410B)의 벤트홀(K1), 상기 제3 격벽(410C)의 벤트홀(Q1,Q2)들이 막히게 될 수 있다. 이때, 도 12의 O로 표시한 바와 같이 산소가 배터리 모듈(10A) 내부로 유입되는 것이 차단될 수 있다.
이상과 같이, 본 발명의 다른 실시예에 따른 배터리 모듈(10A)의 경우, 전술한 실시예와 비교할 때, 3중 격벽들(410A,410B,410C)로 이루어져 있고 상기 각 격벽의 벤트홀들이 엇갈리게 위치해 있어, 스파크와 플래어 등은 통과하지 못하게 하며, 가스만 외부로 배출되도록 할 수 있다. 또한, 가스 배출 후에는 상기 가스 배출 과정에서 열에 의해 홀 폐색부재들이 변형되어 상기 벤트홀들이 폐색될 수 있게 구성되어 있어 배터리 모듈(10A) 내부로 산소가 유입되지 않도록 할 수 있다. 그 결과, 배터리 모듈(10A)의 내부와 배터리 모듈(10)의 외부에서 화재 확산의 위험을 크게 낮출 수 있다.
한편, 본 발명에 따른 배터리 팩(1)은, 상술한 본 발명에 따른 배터리 모듈을 다수 포함할 수 있다. 또한, 본 발명에 따른 배터리 팩(1)은, 이러한 배터리 모듈 이외에 다른 다양한 구성요소, 이를테면, BMS나 버스바, 팩 케이스(20), 릴레이, 전류 센서 등과 같은 본 발명의 출원 시점에 공지된 배터리 팩(1)의 구성요소 등을 더 포함할 수 있다.
본 발명에 따른 에너지 저장 시스템은, 본 발명에 따른 배터리 모듈을 하나 이상 포함할 수 있다. 특히, 에너지 저장 시스템은, 큰 에너지 용량을 갖기 위해, 본 발명에 따른 배터리 모듈이 서로 전기적으로 연결된 형태로 다수 포함되도록 할 수 있다. 또는, 본 발명에 따른 배터리 모듈은, 다수가 하나의 배터리 팩(1)을 구성하고, 이러한 배터리 팩이 다수 포함된 형태로 에너지 저장 시스템이 구성될 수 있다. 이 밖에도, 본 발명에 따른 에너지 저장 시스템은, 본 발명의 출원 시점에 공지된 에너지 저장 시스템의 다른 다양한 구성요소를 더 포함할 수 있다. 더욱이, 이러한 에너지 저장 시스템은, 스마트 그리드 시스템이나 전기 충전 스테이션 등 다양한 장소나 장치에 사용될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
한편, 본 명세서에서 상, 하, 좌, 우와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.

Claims (13)

  1. 복수 개의 배터리 셀들을 구비하는 셀 어셈블리;
    상기 셀 어셈블리를 수용할 수 있게 마련되고 적어도 일측에 개방부를 구비한 모듈 케이스; 및 상기 개방부를 커버하는 산소 유입 차단커버를 포함하며,
    상기 산소 유입 차단커버는,
    각각 벤트홀을 구비하고 서로 중첩 배치되고 상기 개방부를 커버하도록 마련되되, 상기 셀 어셈블리에서 가스 발생시 가스가 상기 벤트홀을 통해 상기 모듈 케이스의 외부로 배출되도록 구성된 2개 이상의 격벽들; 및
    상기 격벽들 사이에 위치하고, 열이 인가되는 경우 형태가 변형되어 상기 벤트홀을 폐색시키도록 구성된 홀 폐색부재;를 포함하는 것을 특징으로 하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 홀 폐색부재는, 플라스틱 사출물로서 판상체 형태로 구성된 것을 특징으로 하는 배터리 모듈.
  3. 제1항에 있어서,
    상기 2개 이상의 격벽들은,
    상기 홀 폐색부재를 사이에 두고 중첩 배치되는 제1 격벽과 제2 격벽을 포함하는 것을 특징으로 하는 배터리 모듈.
  4. 제3항에 있어서,
    상기 홀 폐색부재는 판상체 형태로 마련되고 두께 방향으로 가스가 통과할 수 있는 가스 통과공을 구비하고,
    상기 제1 격벽의 벤트홀, 상기 가스 통과공, 상기 제2 격벽의 벤트홀은 서로 간에 적어도 일부분이 일치하도록 구성된 것을 특징으로 하는 배터리 모듈.
  5. 제4항에 있어서,
    상기 가스 통과공은,
    상기 제1 격벽의 벤트홀과 상기 제2 격벽의 벤트홀보다 폭이 좁게 형성된 것을 특징으로 하는 배터리 모듈.
  6. 제5항에 있어서,
    상기 가스 통과공은 상기 제1 격벽의 벤트홀에 가까울수록 폭이 점진적으로 좁아지게 형성된 것을 특징으로 하는 배터리 모듈.
  7. 제1항에 있어서,
    상기 홀 폐색부재는, 소정의 온도에서 용융 가능한 메쉬망으로 구성된 것을 특징으로 하는 배터리 모듈.
  8. 제1항에 있어서,
    상기 2개 이상의 격벽들은,
    3중으로 서로 대향하게 배치된 제1 격벽, 제2 격벽 및 제3 격벽을 포함하고,
    상기 홀 폐색부재는 상기 제1 격벽과 상기 제2 격벽 사이에 배치되는 제1 홀 폐색부재와, 상기 제2 격벽과 상기 제3 격벽 사이에 배치되는 제2 홀 폐색부재를 포함하는 것을 특징으로 하는 배터리 모듈.
  9. 제8항에 있어서,
    상기 제1 격벽의 벤트홀과 상기 제2 격벽의 벤트홀은 서로 엇갈리게 구성되고, 상기 제2 격벽의 벤트홀과 상기 제3 격벽의 벤트홀은 서로 엇갈리게 구성되고,
    상기 제1 홀 폐색부재와 상기 제2 홀 폐색부재는 다공성 구조로 이루어진 것을 특징으로 하는 배터리 모듈.
  10. 제1항에 있어서,
    상기 셀 어셈블리는, 복수 개의 파우치형 배터리 셀들이 상호 적층된 형태로 구성된 것을 특징으로 하는 배터리 모듈.
  11. 제10항에 있어서,
    상기 복수 개의 파우치형 배터리 셀들은 전극 리드가 상기 모듈 케이스의 전후 방향에 위치하며,
    상기 모듈 케이스는, 전방 및 후방 중 적어도 일측에 상기 개방부를 구비하는 것을 특징으로 하는 배터리 모듈.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 배터리 모듈을 다수 포함하는 배터리 팩.
  13. 제1항 내지 제11항 중 어느 한 항에 따른 배터리 모듈을 포함하는 에너지 저장 시스템.
PCT/KR2022/012753 2021-08-30 2022-08-25 열폭주 시 산소 유입 차단을 위한 구조가 적용된 배터리 모듈 WO2023033458A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22864961.2A EP4250458A1 (en) 2021-08-30 2022-08-25 Battery module to which structure for blocking oxygen inflow during thermal runaway is applied
US18/269,515 US20240047820A1 (en) 2021-08-30 2022-08-25 Battery module having structure for blocking oxygen inflow during thermal propagation
CN202280008010.2A CN116636073A (zh) 2021-08-30 2022-08-25 具有用于在热传播期间阻挡氧气流入的结构的电池模块
AU2022337863A AU2022337863A1 (en) 2021-08-30 2022-08-25 Battery module having structure for blocking oxygen Inflow during thermal propagation
JP2023533753A JP2023552351A (ja) 2021-08-30 2022-08-25 熱暴走時に酸素流入の遮断のための構造が適用されたバッテリーモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210115112A KR20230032354A (ko) 2021-08-30 2021-08-30 열폭주 시 산소 유입 차단을 위한 구조가 적용된 배터리 모듈
KR10-2021-0115112 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023033458A1 true WO2023033458A1 (ko) 2023-03-09

Family

ID=85412882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012753 WO2023033458A1 (ko) 2021-08-30 2022-08-25 열폭주 시 산소 유입 차단을 위한 구조가 적용된 배터리 모듈

Country Status (7)

Country Link
US (1) US20240047820A1 (ko)
EP (1) EP4250458A1 (ko)
JP (1) JP2023552351A (ko)
KR (1) KR20230032354A (ko)
CN (1) CN116636073A (ko)
AU (1) AU2022337863A1 (ko)
WO (1) WO2023033458A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230155208A1 (en) * 2021-11-15 2023-05-18 Beta Air, Llc Heat-dissipating battery pack

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251127A (ja) * 2012-05-31 2013-12-12 Sanyo Electric Co Ltd 電源装置
KR20190022830A (ko) * 2016-07-29 2019-03-06 비와이디 컴퍼니 리미티드 복합 방폭 밸브, 커버 플레이트 어셈블리 및 배터리
KR20190036260A (ko) * 2017-09-27 2019-04-04 주식회사 엘지화학 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
KR20210055364A (ko) * 2019-11-07 2021-05-17 주식회사 엘지화학 배터리 모듈
KR20210063939A (ko) * 2019-11-25 2021-06-02 주식회사 엘지에너지솔루션 배터리 모듈
KR20210115112A (ko) 2020-03-11 2021-09-27 김영주 인삼 닭 농축액 및 이의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251127A (ja) * 2012-05-31 2013-12-12 Sanyo Electric Co Ltd 電源装置
KR20190022830A (ko) * 2016-07-29 2019-03-06 비와이디 컴퍼니 리미티드 복합 방폭 밸브, 커버 플레이트 어셈블리 및 배터리
KR20190036260A (ko) * 2017-09-27 2019-04-04 주식회사 엘지화학 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
KR20210055364A (ko) * 2019-11-07 2021-05-17 주식회사 엘지화학 배터리 모듈
KR20210063939A (ko) * 2019-11-25 2021-06-02 주식회사 엘지에너지솔루션 배터리 모듈
KR20210115112A (ko) 2020-03-11 2021-09-27 김영주 인삼 닭 농축액 및 이의 제조 방법

Also Published As

Publication number Publication date
KR20230032354A (ko) 2023-03-07
EP4250458A1 (en) 2023-09-27
US20240047820A1 (en) 2024-02-08
AU2022337863A1 (en) 2023-07-06
CN116636073A (zh) 2023-08-22
JP2023552351A (ja) 2023-12-15

Similar Documents

Publication Publication Date Title
WO2021221370A1 (ko) 개선된 고정 구조 및 가스 배출 구조를 갖는 배터리 팩, 그리고 이를 포함하는 전자 디바이스 및 자동차
WO2020075962A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 랙 및 이러한 배터리 랙을 포함하는 전력 저장 장치
WO2020256304A1 (ko) 가스배출통로를 구비한 베이스 플레이트를 포함한 배터리 모듈 및 배터리 팩 및 전력 저장장치
WO2018230797A1 (ko) 안전성이 향상된 배터리 모듈 및 배터리 팩
WO2021085911A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 랙 및 전력 저장 장치
WO2022080908A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2018216870A1 (ko) 안전성이 향상된 배터리 모듈
WO2021201421A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022164180A2 (ko) 화재 방지 성능이 향상된 배터리 모듈
WO2023033458A1 (ko) 열폭주 시 산소 유입 차단을 위한 구조가 적용된 배터리 모듈
WO2022203278A1 (ko) 냉각수를 활용한 배터리 셀의 열확산 방지 구조를 갖춘 배터리 모듈 및 이를 포함하는 배터리 팩
WO2018151415A1 (ko) 열팽창성 테이프를 포함하는 안전성이 개선된 배터리 셀 및 이의 제조방법
WO2021015469A1 (ko) 전력 저장 장치
WO2022250311A1 (ko) 벤팅 가스의 온도 저감 및 스파크의 외부 배출 차단 구조를 적용한 배터리 팩
WO2022169247A2 (ko) 셀 단위 가스계 소화약제 가이드 날개를 적용한 배터리 모듈 및 이를 포함하는 배터리 랙과 에너지 저장장치
WO2022149923A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2022149961A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2021221415A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021075688A1 (ko) 전지 모듈 및 이을 포함하는 전지 팩
KR20230039122A (ko) 열폭주 전이 방지 성능이 향상된 배터리 모듈
WO2023158248A1 (ko) 화염 전파 차단 구조를 구비한 배터리 모듈 및 이를 포함하는 배터리 팩
WO2022186564A1 (ko) 화재 방지 성능이 향상된 배터리 모듈
WO2022050731A1 (ko) 배터리 모듈, 및 배터리 팩, 및 자동차
WO2024019390A1 (ko) 배터리 모듈 및, 이를 포함하는 배터리 팩 및 이를 포함하는 자동차
WO2022060003A1 (ko) 배터리 모듈, 배터리 팩, 및 이를 포함하는 자동차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533753

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280008010.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18269515

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022337863

Country of ref document: AU

Date of ref document: 20220825

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022864961

Country of ref document: EP

Effective date: 20230621

NENP Non-entry into the national phase

Ref country code: DE