WO2021177760A1 - 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess - Google Patents

신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess Download PDF

Info

Publication number
WO2021177760A1
WO2021177760A1 PCT/KR2021/002710 KR2021002710W WO2021177760A1 WO 2021177760 A1 WO2021177760 A1 WO 2021177760A1 KR 2021002710 W KR2021002710 W KR 2021002710W WO 2021177760 A1 WO2021177760 A1 WO 2021177760A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
module
module housing
battery
sprinkler
Prior art date
Application number
PCT/KR2021/002710
Other languages
English (en)
French (fr)
Inventor
김승현
정지원
배경현
신진규
이진규
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180004662.4A priority Critical patent/CN114175362A/zh
Priority to AU2021231264A priority patent/AU2021231264A1/en
Priority to EP21764340.2A priority patent/EP3993140B1/en
Priority to US17/766,925 priority patent/US20240088469A1/en
Priority to JP2021572923A priority patent/JP7210782B2/ja
Publication of WO2021177760A1 publication Critical patent/WO2021177760A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/06Physical fire-barriers
    • A62C2/065Physical fire-barriers having as the main closure device materials, whose characteristics undergo an irreversible change under high temperatures, e.g. intumescent
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/06Physical fire-barriers
    • A62C2/12Hinged dampers
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/08Control of fire-fighting equipment comprising an outlet device containing a sensor, or itself being the sensor, i.e. self-contained sprinklers
    • A62C37/10Releasing means, e.g. electrically released
    • A62C37/11Releasing means, e.g. electrically released heat-sensitive
    • A62C37/12Releasing means, e.g. electrically released heat-sensitive with fusible links
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/08Control of fire-fighting equipment comprising an outlet device containing a sensor, or itself being the sensor, i.e. self-contained sprinklers
    • A62C37/10Releasing means, e.g. electrically released
    • A62C37/11Releasing means, e.g. electrically released heat-sensitive
    • A62C37/14Releasing means, e.g. electrically released heat-sensitive with frangible vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module having a structure capable of rapid cooling and an ESS including the same.
  • the present invention more specifically, when the venting gas flows out from within the battery module and thus the sprinkler operates, the water level of the cooling fluid (eg, cooling water) for extinguishing and cooling can be rapidly increased. It relates to a battery module having a structure and an ESS including the same.
  • a lithium secondary battery mainly use a lithium-based oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively.
  • a lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate to which the positive electrode active material and the negative electrode active material are applied, respectively, are disposed with a separator interposed therebetween, and a casing for sealing and housing the electrode assembly together with an electrolyte, that is, a battery pouch casing.
  • secondary batteries have been widely used not only in small devices such as portable electronic devices, but also in medium and large devices such as automobiles and power storage devices.
  • a large number of secondary batteries are electrically connected to increase capacity and output.
  • a pouch-type secondary battery is widely used in such a medium-to-large device due to the advantage of easy stacking.
  • such a battery module is generally provided with an external housing made of a metal material in order to protect the plurality of secondary batteries from external impact or to store and store. Meanwhile, the demand for high-capacity battery modules is increasing recently.
  • the present invention was devised in consideration of the above-described problems, and when venting gas flows out from within the battery module and the sprinkler operates due to this, the water level of the cooling fluid (eg, coolant) for fire extinguishing and cooling can rise rapidly.
  • the cooling fluid eg, coolant
  • One purpose is to enable rapid fire extinguishing and cooling.
  • a battery module for solving the above problems includes a cell stack including a plurality of battery cells and a pair of bus bar frames coupled to one side and the other side of the cell stack, respectively a sub-module comprising; a module housing accommodating the sub-module and having an air inlet and an air outlet formed for air circulation; a sprinkler penetrating the module housing from one side in the stacking direction of the cell stack; and an outlet closing device for closing the air outlet by moving by buoyancy caused by the coolant introduced into the module housing through the sprinkler.
  • the outlet closing device may include a fixing bar formed on an inner surface of the module housing; a closed door hinged to the fixing bar; and a buoyancy member attached to the closed door. may include.
  • the fixing bar includes at least two guide grooves
  • the sealing door includes a number of sliding balls corresponding to the number of the guide grooves, and the sliding balls are inserted into the guide grooves to extend the guide grooves. Its movement along the direction can be guided.
  • the guide groove may have an upwardly inclined shape in a direction toward the air outlet.
  • the air outlet may include a plurality of holes formed through the module housing, and the sealing door may include a plurality of insertion protrusions having shapes and sizes corresponding to the holes.
  • the battery module may include an inflation pad that is disposed inside the air inlet and expands upon contact with the cooling fluid introduced into the battery module to at least partially close the air inlet.
  • the expansion pad may be attached to the inner surface of the module housing.
  • At least a portion of the expansion pad may be inserted into an accommodating groove formed on an inner surface of the module housing.
  • the battery module may include mesh plates disposed on both sides of the inflatable pad to guide movement of the inflatable pad.
  • the battery module may include a thermal expansion block disposed in an empty space within the module housing and thermally expanded according to an increase in temperature inside the module housing.
  • the sprinkler may include a coupler positioned outside the module housing and connected to a supply pipe for supplying a cooling fluid; a sprinkler head positioned inside the module housing and connected to the coupler; and an insulating cover including a fixing part fixed to the module housing and a cover part fixed to the fixing part by an adhesive layer and separated from the fixing part as the adhesive force of the adhesive layer is lost or lowered above a reference temperature; may include.
  • the cover part may be hingedly coupled to the fixing part and rotated downward of the sprinkler head around the hinged part above the reference temperature to be opened.
  • the ESS according to an embodiment of the present invention includes a plurality of battery modules according to an embodiment of the present invention.
  • the level of the cooling fluid eg, coolant
  • the level of the cooling fluid for extinguishing and cooling
  • FIG. 1 and 2 are perspective views illustrating a battery module according to an embodiment of the present invention.
  • FIG. 3 is a view showing an internal structure of the battery module shown in FIGS. 1 and 2 .
  • FIGS. 4 and 5 are views showing an internal structure of a battery module according to an embodiment of the present invention, and are views showing a thermal expansion block applied to the present invention.
  • FIG. 6 is a view showing an internal structure of a battery module according to an embodiment of the present invention, and is a view showing an open state of an insulating cover applied to the present invention.
  • FIG. 7 is a perspective view showing an insulating cover applied to the present invention.
  • FIG 8 to 11 are views showing an outlet closing device applied to the present invention.
  • FIG. 12 is a view showing a closed door and a buoyancy member applied to the present invention.
  • FIG. 13 is a view showing a part of a front surface of a battery module according to an embodiment of the present invention, and is a view showing an expansion pad disposed in the battery module.
  • FIG. 14 to 16 are views illustrating a part of a cross-section of a battery module viewed from the side according to an embodiment of the present invention, and illustrating an expansion pad disposed in the battery module.
  • the battery module 1 includes a plurality of battery cells 100 , a bus bar frame 200 , a module housing 300 , an air inlet 400 , and an air It includes an outlet 500 , a sprinkler 600 and an outlet closing device 700 (see FIG. 8 ).
  • the battery module 1 may further include a thermal expansion block (B) and/or an expansion pad (E).
  • the battery cells 100 are provided in plurality, and the plurality of battery cells 100 are stacked to form one cell stack.
  • a pouch type battery cell may be applied.
  • the battery cell 100 includes a pair of electrode leads 110 respectively drawn out in both sides of the longitudinal direction (in a direction parallel to the Y axis shown in the drawing).
  • the cell stack may further include a buffer pad provided between the battery cells 100 adjacent to each other, if necessary. When these buffer paddens and cell stacks are accommodated in the module housing 300 , the cell stacks can be accommodated in a compressed state, thereby limiting movement due to external shocks, and also swells of the battery cells 100 . Ring (swelling) phenomenon can be suppressed.
  • the bus bar frame 200 is provided in a pair, and each bus bar frame 200 is disposed in the width direction of the cell stack (in the direction parallel to the Y axis shown in the drawing). Cover one side and the other side.
  • the electrode lead 110 of the battery cell 100 is drawn out through a slit formed in the bus bar frame 200 , and is bent and fixed on the bus bar provided in the bus bar frame 200 by welding or the like. That is, the plurality of battery cells 100 may be connected in series, parallel, or a mixture of series and parallel by a bus bar provided in the bus bar frame 200 .
  • the cell stack and the bus bar frame 200 are coupled to each other to form one sub-module.
  • the module housing 300 has a substantially rectangular parallelepiped shape and accommodates a combination of a cell stack body and a bus bar frame 200 , that is, a sub-module therein.
  • the module housing 300 includes a pair of base covers 310 covering the lower and upper surfaces (parallel to the XY plane) of the sub-module, respectively, as long as they cover the side (parallel to the XZ plane) of the sub-module, respectively.
  • the air inlet 400 is formed on one side in the stacking direction (parallel to the X-axis) of the cell stack, that is, one side in the longitudinal direction of the battery module 1, and the front cover It has the form of a hole passing through 330 .
  • the air outlet 500 is formed on the other side of the cell stack in the stacking direction, that is, the other side in the longitudinal direction of the battery module 1 , and includes a plurality of holes penetrating the rear cover 340 .
  • the air inlet 400 and the air outlet 500 are located on opposite sides in a diagonal direction along the longitudinal direction (parallel to the X axis) of the mutual battery module 1 .
  • an empty space is formed between the bus bar frame 200 and the side cover 320 . That is, a battery cell ( 100), an empty space through which air for cooling can flow is formed.
  • the empty space is formed on both sides of the battery module 1 in the width direction (in a direction parallel to the Y-axis).
  • the air inlet 400 is formed at a position corresponding to an empty space formed on one side of the width direction (parallel to the Y axis) of the battery module 1
  • the air outlet 500 is the width of the battery module 1 . It is formed at a position corresponding to the empty space formed on the other side of the direction.
  • the battery module (1) the air introduced into the interior through the air inlet (400) from the empty space formed on one side of the battery module (1) in the width direction to the empty space formed on the other side in the width direction of the battery module (1) After cooling the battery cell 100 while moving to space, it exits to the outside through the air outlet 500 . That is, the battery module 1 corresponds to an air-cooled battery module.
  • the air inlet 400 unlike its name, may be used as a passage through which air whose temperature has risen by being used for cooling escapes, and the air outlet 500 is also used for cooling, unlike its name. It can be used as a passage through which external air is introduced. That is, an impeller for forced ventilation may be installed in the air inlet 400 , and the circulation direction of air may be changed according to the rotation direction of the impeller.
  • the sprinkler 600 is connected to a supply pipe (not shown) for supplying a cooling fluid such as, for example, cooling water, and the temperature and gas inside the battery module 1 . It operates when the flow rate of the battery reaches a certain level or more to supply the cooling fluid to the inside of the battery module (1). That is, the sprinkler 600 operates by detecting when an abnormality occurs in the battery cell 100 and venting occurs and high-temperature gas is discharged. As such, when the sprinkler 600 operates, a cooling fluid is supplied to the inside of the battery module 1 to prevent ignition and/or explosion due to overheating of the battery cell 100 .
  • a cooling fluid such as, for example, cooling water
  • a portion of the sprinkler 600 is exposed to the outside of the rear cover 340 , and the remaining portion passes through the rear cover 340 and is located in an empty space formed between the bus bar frame 200 and the side cover 320 . do.
  • the sprinkler 600 is installed opposite to the air outlet 500 formed on one side in the longitudinal direction (parallel to the Y-axis) of the rear cover 340 .
  • the sprinkler 600 includes a coupler 610 , a sprinkler head 620 and an insulating cover 630 .
  • the coupler 610 is located outside the module housing 300 and is connected to a supply pipe (not shown) for supplying a cooling fluid. That is, the coupler 610 is a metal material and is a component for fastening an external supply pipe.
  • the sprinkler head 620 is located inside the module housing 300 and is connected to the coupler 610 .
  • the insulating cover 630 covers the sprinkler head 620, whereby the sprinkler head 620 is in direct contact with the electrode lead 110 of the battery cell 100 and/or the bus bar of the bus bar frame 200 to short circuit. prevent this from occurring.
  • the sprinkler head 620 includes a glass bulb 621 and a holding bracket 622 .
  • the glass bulb 621 blocks the cooling fluid injection port P of the coupler 610, and when the flow rate of the internal gas whose temperature is increased due to the temperature and the venting gas inside the battery module 1 exceeds the reference value, it is broken and cooled Open the fluid injection port (P). That is, the glass bulb 621 contains a liquid that expands as the temperature rises therein, and the liquid is vented in at least some of the battery cells 100 in the battery module 1 to generate a high-temperature venting gas. It expands when it fills the inside of the battery module (1).
  • the cooling fluid fills the inside of the module housing 300 through the cooling fluid injection hole P.
  • the holding bracket 622 is made of a metal material, surrounds the glass bulb 621 and fixes the glass bulb 621 so that it does not move.
  • the insulating cover 630 includes a fixing part 631 and a cover part 632 .
  • the fixing part 631 is attached to the rear cover 340 in a clip fixing manner. That is, a part of the fixing part 631 is located outside the rear cover 340 , and the other part is located inside the rear cover 340 .
  • the cover part 632 extends in an approximately vertical direction from the fixing part 631 , and covers the sprinkler head 620 .
  • the cover part 632 includes a first area 632a facing the cell stack and the bus bar frame 200 and a second area 632b other than the first area.
  • the first area 632a has an open area wider than the open area
  • the second area 632b has an open area wider than the closed area. The reason that at least a part of the cover part 632 has an open shape is to allow the cooling fluid injected through the cooling fluid injection hole P to be smoothly supplied to the inside of the module housing 300 .
  • the open area of the first region 632a is smaller than the open area of the second region 632b is a contact between the holding bracket 622 and the electrode lead 110 and/or the holding bracket 622 . This is to minimize the possibility of a short circuit due to contact between the busbar and the busbar.
  • the first region 632a may include at least one cover hole H for ejecting the cooling fluid.
  • the cover part 632 is coupled to the fixing part 631 fixed to the module housing 300 in a separable structure.
  • An adhesive layer A is interposed between the fixing part 631 and the cover part 632 to maintain the state in which the fixing part 631 and the cover part 632 are coupled to each other in the normal use state of the battery module 1 . do.
  • the adhesive layer (A) is melted and thus the adhesive layer ( The adhesion of A) is reduced or lost. Accordingly, the cover part 632 is already separated from the fixing part 631 by the injection of the cooling fluid or before the cooling fluid is injected.
  • a fixing element other than the adhesive layer (A) may not be applied to the coupling between the fixing part 631 and the cover part 632, and as shown in the drawings of the present invention, a hinge connection other than the adhesive layer (A) A structure may additionally be applied.
  • the hinge coupling structure When the hinge coupling structure is applied to the coupling between the fixing part 631 and the cover part 632 , the cover part 632 is the hinge coupling part (h) as the adhesive force of the adhesive layer (A) is lowered or lost. It rotates around the center and opens.
  • the cover part 632 As described above, as the cover part 632 is separated from the fixing part 631 , the cover part 632 from the cooling fluid injection port P no longer acts as an obstacle to the injection of the cooling fluid, thereby ensuring smooth digestion and cooling. This becomes possible.
  • the outlet closing device 700 moves by buoyancy to close the air outlet 500 . It is a closing device.
  • the outlet closing device 700 includes a fixing bar 710 formed on the inner surface of the module housing 300 , a sealing door 720 hinged to the fixing bar 710 , and buoyancy attached to the sealing door 720 . member 730 .
  • the fixing bar 710 may be formed on the rear cover 340 in which the air outlet 500 is formed, and may have a columnar shape in which a lateral cross-section (a cross-section cut in a direction parallel to the X-Y plane) has a sectoral shape.
  • the fixing bar 710 functions as a support for guiding the movement of the closed door 720 .
  • the fixing bar 710 includes at least two or more guide grooves 711 .
  • the two or more guide grooves 711 are formed on the outer circumferential surface of the fixing bar 710 , and the fixing bar 710 . ) is formed at positions spaced apart from each other along the longitudinal direction (direction parallel to the Z-axis).
  • the guide groove 711 has an inclined shape based on a horizontal plane (a plane parallel to the X-Y plane) along a direction from one end of the guide groove to the other end in the longitudinal direction. More specifically, the guide groove 711 has a shape inclined upward along the direction toward the air outlet 500 .
  • the guide groove 711 having this inclined shape is the direction of closing the air outlet 500 when the airtight door 720 receives a force upward (in the direction parallel to the Z-axis) by the buoyancy force of the cooling water. in order to rotate it to
  • the sealing door 720 is hinged to the fixing bar 710 and rotates when the buoyancy force by the coolant acts to close the air outlet 500 .
  • the sealing door 720 has a sliding number corresponding to the number of insertion protrusions 721 and guide grooves 711 corresponding to the plurality of holes constituting the air outlet 500 .
  • a ball 722 is provided.
  • the insertion protrusion 721 is formed to protrude on one surface of the sealing door 720 , and has a shape and size corresponding to the hole constituting the air outlet 500 .
  • the insertion protrusion 721 is inserted into the hole constituting the outlet 500 when the sealing door 720 is rotated in a direction to close the air outlet 500 by receiving buoyancy by the cooling water, and is inserted into the battery module 1 inside It prevents the cooling water supplied to the air outlet from being lost to the outside through the air outlet (500).
  • the sliding ball 722 has a shape extending from one side of the sealing door 720 toward the fixing bar 710 and is inserted into the guide groove 711 .
  • the sliding ball 722 may move in the guide groove 711 in the longitudinal direction of the guide groove 711 . More specifically, when the cooling water is supplied to the inside of the module housing 300 and the water level of the cooling water rises above a certain level and the sealing door 720 receives buoyancy, the sliding ball 722 is formed in the guide groove 711 . ), the movement is guided from the inside and moves along the extension direction of the guide groove 711 so that the sealing door 720 can rotate toward the air outlet 500 .
  • the buoyancy member 730 is attached to one surface of the sealing door 720 so that when the coolant level inside the module housing 300 rises, the sealing door 720 moves upward by buoyancy (in the direction parallel to the Z axis). to be empowered by The buoyancy member 730 is attached to a surface opposite to the surface on which the insertion protrusion 721 is formed among both surfaces of the sealing door 720 .
  • the buoyancy member 730 may be used without limitation as long as the density is lower than that of the cooling water and thus can receive buoyancy by the cooling water.
  • an air bag filled with air may be used as the buoyancy member 730 .
  • the battery module 1 according to an embodiment of the present invention is provided with an outlet closing device 700 capable of closing the air outlet 500 in the module housing 300 , so that the module housing 300 ) can prevent the coolant supplied inside from leaking out. Accordingly, the battery module 1 according to an embodiment of the present invention can quickly respond to an abnormal temperature rise and/or occurrence of a fire inside, thereby ensuring safety in using the battery module.
  • the battery module 1 may additionally include a plurality of thermal expansion blocks (B).
  • the thermal expansion block B is disposed in an empty space inside the module housing 300 so that the level of the cooling fluid can rapidly rise when the cooling fluid is supplied to the inside of the module housing 300 .
  • the thermal expansion block (B) expands when a high-temperature venting gas is generated as the venting of the battery cell 100 occurs and the temperature inside the module housing 300 rises above the reference temperature, and accordingly, the module housing 300 ) has the effect of reducing the volume of the internal empty space.
  • the thermal expansion block (B) may include, for example, a thermally expandable foaming agent whose volume increases with an increase in temperature.
  • the thermally expandable foaming agent may have, for example, a core-shell structure including an acrylic thermoplastic resin containing hydrocarbons therein.
  • the plurality of thermal expansion blocks B are disposed along the longitudinal direction (parallel to the X axis) of the battery module 1 on the base cover 310 covering the lower surface of the cell stack. They are spaced apart from each other and fixed, and may be disposed in an empty space between the bus bar frame 200 and the side cover 320 .
  • the plurality of thermal expansion blocks B are to be disposed between each terrace portion T of each adjacent battery cell 100 among the plurality of battery cells 100 constituting the cell stack.
  • the terrace portion T means a partial region of the sealing portion 100b of the battery cell 100 .
  • the pouch-type battery cell 100 includes an accommodating portion 100a that is an area in which an electrode assembly (not shown) is accommodated, and a sealing region 100b extending from the periphery of the accommodating portion 100a, and the sealing region 100b. ), a portion positioned in the direction in which the electrode lead 110 is drawn out is referred to as a terrace portion T.
  • thermal expansion block (B) may be applied to both the empty space between the bus bar frame 200 and the side cover 320 and between the adjacent terrace portion T in order to maximize the effect of increasing the level of the cooling fluid. have.
  • the battery module 1 has an air inlet 400 in order to minimize the amount of cooling fluid flowing out when the cooling fluid is supplied therein so that the water level of the cooling fluid can quickly rise.
  • ) may further include an inflation pad (E) that at least partially closes.
  • the expansion pad E is attached to the inner surface of the module housing 300 and has a size smaller than the open area of the air inlet 400 .
  • the expansion pad (E) has a size of less than about 30% of the open area of the air inlet 400 in order to facilitate the flow of air through the air inlet 400 in the normal use state of the battery module 1 It is preferable to have Meanwhile, in the drawings of the present invention, only the case where the expansion pad (E) is attached to the bottom surface in being attached to the inner surface of the module housing 300 is illustrated, but the expansion pad E is attached to the upper part of the module housing 300 Or it may be attached to the side.
  • the expansion pad (E) is expanded by contact with the cooling fluid introduced into the battery module (1) to close the air inlet (400).
  • the expansion pad (E) contains a resin that exhibits a very large expansion rate when it absorbs moisture, and contains a resin whose volume increases by at least about 2 times or more compared to the initial volume when a sufficient amount of moisture is provided.
  • the resin used for the expansion pad E may include, for example, a nonwoven fabric in which super absorbent fiber (SAF) and polyester staple fiber are mixed.
  • SAF super absorbent fiber
  • polyester staple fiber are mixed.
  • SAP super absorbent polymer
  • the closing of the air inlet 400 according to the expansion of the expansion pad E does not necessarily mean complete closure of the level at which the cooling fluid cannot leak.
  • the case of reducing the open area is also included.
  • the expansion pad E Due to the application of the expansion pad E, when a thermal runaway phenomenon occurs in at least some battery modules 1 and a cooling fluid flows into the battery module 1, the air inlet 400 is closed. As such, when the air inlet 400 and the air outlet 500 are closed, the cooling fluid introduced into the battery module 1 does not escape to the outside but accumulates inside the battery module 1, and thus the battery module ( It is possible to quickly solve the thermal runaway phenomenon that occurred in 1).
  • a pair of the expansion pads E may be provided.
  • the pair of expansion pads E are attached to the upper and lower portions of the inner surface of the module housing 300 , respectively.
  • the pair of inflation pads (E) are attached at positions corresponding to each other to contact each other during inflation to close the air inlet (400).
  • At least a portion of the expansion pad E may be inserted and fixed in a receiving groove 300a formed to a predetermined depth on the inner surface of the module housing 300 .
  • the movement for expansion of the expansion pad E may be guided by a pair of mesh plates 400a respectively disposed on both sides thereof when the expansion pad E is expanded according to absorption of moisture.
  • the mesh plate 400a is a mesh-type plate and has a structure through which air and cooling fluid can pass when the expansion pad E is not expanded.
  • an energy storage system (ESS) includes a plurality of battery modules according to an embodiment of the present invention as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명의 일 실시예에 따른 배터리 모듈은, 복수의 배터리 셀을 포함하는 셀 적층체 및 상기 셀 적층체의 일 측과 타 측에 각각 결합되는 한 쌍의 버스바 프레임을 포함하는 서브 모듈; 상기 서브 모듈을 수용하며, 공기의 순환을 위해 형성된 에어 인렛 및 에어 아웃렛을 구비하는 모듈 하우징; 상기 셀 적층체의 적층 방향 일 측에서 상기 모듈 하우징을 관통하는 스프링클러; 및 상기 스프링클러를 통해 상기 모듈 하우징 내부로 유입된 냉각수로 인한 부력에 의해 움직여 상기 에어 아웃렛을 폐쇄하는 아웃렛 폐쇄 장치; 를 포함한다.

Description

신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ESS
본 발명은, 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ESS에 관한 것이다. 본 발명은, 좀 더 구체적으로는, 배터리 모듈 내에서 벤팅 가스가 유출되고 이로 인해 스프링클러가 작동하였을 때, 소화 및 냉각을 위한 냉각 유체(예: 냉각수)의 수위가 빠르게 상승할 수 있도록 할 수 있는 구조를 갖는 배터리 모듈 및 이를 포함하는 ESS에 관한 것이다.
본 출원은 2020년 3월 5일 자로 출원된 한국 특허출원번호 제 10-2020-0027899호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
현재 상용화된 이차전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차전지 등이 있는데, 이 중에서 리튬 이차전지는 니켈 계열의 이차전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 파우치 외장재를 구비한다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐만 아니라, 자동차나 전력저장장치와 같은 중대형 장치에도 이차전지가 널리 이용되고 있다. 이러한 중대형 장치에 이용되는 경우, 용량 및 출력을 높이기 위해 많은 수의 이차전지가 전기적으로 연결된다. 특히, 이러한 중대형 장치에는 적층이 용이하다는 장점으로 인해 파우치형 이차전지가 많이 이용된다.
한편, 근래 에너지 저장원으로서의 활용을 비롯하여 대용량 구조에 대한 필요성이 높아지면서 전기적으로 직렬 및/또는 병렬로 연결된 다수의 이차전지를 포함하는 배터리 모듈에 대한 수요가 증가하고 있다.
또한, 이러한 배터리 모듈은, 복수의 이차전지를 외부 충격으로부터 보호하거나 수납 보관하기 위해서 금속 재질의 외부 하우징을 구비하는 것이 일반적이었다. 한편, 최근 고용량의 배터리 모듈의 수요가 높아지고 있다.
이러한 고용량의 배터리 모듈의 경우, 내부의 배터리 셀 중 적어도 일부에서 벤팅(venting)이 발생되어 배터리 모듈 내부의 온도가 상승하는 경우 큰 피해를 일으킬 수 있다. 즉, 고용량의 배터리 모듈은, 내부의 온도 증가에 따라 열폭주 현상이 발생되는 경우, 온도가 급격히 상승할 수 있고, 이에 따라 큰 규모의 발화 및/또는 폭발을 일으킬 수 있다.
이에 따라, 배터리 모듈 내에서 배터리 셀의 벤팅에 따른 비정상적인 온도 상승이 일어나는 경우, 즉각적인 조치를 취할 수 있도록 빠르고 완전한 소화 기술을 개발하는 것이 필요한 실정이다.
본 발명은, 상술한 문제점을 고려하여 창안된 것으로서, 배터리 모듈 내에서 벤팅 가스가 유출되고 이로 인해 스프링클러가 작동하였을 때, 소화 및 냉각을 위한 냉각 유체(예: 냉각수)의 수위가 빠르게 상승할 수 있도록 하여 신속한 소화 및 냉각이 가능하도록 하는 것을 일 목적으로 한다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 배터리 모듈은, 복수의 배터리 셀을 포함하는 셀 적층체 및 상기 셀 적층체의 일 측과 타 측에 각각 결합되는 한 쌍의 버스바 프레임을 포함하는 서브 모듈; 상기 서브 모듈을 수용하며, 공기의 순환을 위해 형성된 에어 인렛 및 에어 아웃렛을 구비하는 모듈 하우징; 상기 셀 적층체의 적층 방향 일 측에서 상기 모듈 하우징을 관통하는 스프링클러; 및 상기 스프링클러를 통해 상기 모듈 하우징 내부로 유입된 냉각수로 인한 부력에 의해 움직여 상기 에어 아웃렛을 폐쇄하는 아웃렛 폐쇄 장치; 를 포함한다.
상기 아웃렛 폐쇄 장치는, 상기 모듈 하우징의 내측면 상에 형성되는 고정 바; 상기 고정 바에 힌지 결합되는 밀폐 도어; 및 상기 밀폐 도어에 부착되는 부력 부재; 를 포함할 수 있다.
상기 고정 바는, 적어도 2 이상의 가이드 홈을 구비하고, 상기 밀폐 도어는, 상기 가이드 홈의 개수에 대응되는 개수의 슬라이딩 볼을 구비하며, 상기 슬라이딩 볼은 상기 가이드 홈에 삽입되어 상기 가이드 홈의 연장 방향을 따라 그 움직임이 가이드 될 수 있다.
상기 가이드 홈은, 상기 에어 아웃렛을 향하는 방향을 따라 상향 경사진 형태를 가질 수 있다.
상기 에어 아웃렛은, 상기 모듈 하우징을 관통하여 형성된 복수의 홀을 포함하며, 상기 밀폐 도어는, 상기 홀과 대응되는 형상 및 사이즈를 갖는 복수의 삽입 돌기를 구비할 수 있다.
상기 배터리 모듈은, 상기 에어 인렛의 내측에 배치되며, 상기 배터리 모듈 내로 유입된 냉각 유체와의 접촉에 따라 팽창하여 상기 에어 인렛을 적어도 부분적으로 폐쇄하는 팽창 패드를 포함할 수 있다.
상기 팽창 패드는, 상기 모듈 하우징의 내측면 상에 부착될 수 있다.
상기 팽창 패드는, 상기 모듈 하우징의 내측면에 형성된 수용 홈 내에 적어도 일부가 삽입될 수 있다.
상기 배터리 모듈은, 상기 팽창 패드의 양 측에 각각 배치되어 상기 팽창 패드의 팽창을 위한 움직임을 가이드 하는 메쉬 플레이트를 포함할 수 있다.
상기 배터리 모듈은, 상기 모듈 하우징 내의 빈 공간에 배치되어 상기 모듈 하우징 내부의 온도 상승에 따라 열 팽창되는 열 팽창 블록을 포함할 수 있다.
상기 스프링클러는, 상기 모듈 하우징의 외측에 위치하며, 냉각유체를 공급하는 공급관과 연결되는 커플러; 상기 모듈 하우징의 내측에 위치하며, 상기 커플러와 연결되는 스프링클러 헤드; 및 상기 모듈 하우징에 고정되는 고정부 및 접착 층에 의해 상기 고정부와 고정되며 기준 온도 이상에서 상기 접착 층의 접착력이 상실되거나 저하됨에 따라 상기 고정부로부터 분리되는 커버부를 포함하는 절연 커버; 를 포함할 수 있다.
상기 커버부는, 상기 고정부와 힌지 결합되어 상기 기준 온도 이상에서 힌지 결합 부위를 중심으로 상기 스프링클러 헤드의 하방으로 회전하여 개방될 수 있다.
한편, 본 발명의 일 실시예에 따른 ESS는 본 발명의 일 실시예에 따른 배터리 모듈을 복수개 포함한다.
본 발명의 일 측면에 따르면, 배터리 모듈 내에서 벤팅 가스가 유출되고 이로 인해 스프링클러가 작동하였을 때, 소화 및 냉각을 위한 냉각 유체(예: 냉각수)의 수위가 빠르게 상승할 수 있도록 함으로써 신속한 소화 및 냉각이 가능해진다
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 배터리 모듈을 나타내는 사시도이다.
도 3은 도 1 및 도 2에 도시된 배터리 모듈의 내부 구조가 나타나도록 도시된 도면이다.
도 4 및 도 5는 본 발명의 일 실시예에 따른 배터리 모듈의 내부 구조가 나타나도록 도시된 도면으로서, 본 발명에 적용되는 열 팽창 블록이 나타나도록 도시된 도면이다.
도 6은 본 발명의 일 실시예에 따른 배터리 모듈의 내부 구조가 나타나도록 도시된 도면으로서, 본 발명에 적용되는 절연 커버가 개방된 모습을 나타내는 도면이다.
도 7은 본 발명에 적용되는 절연 커버를 나타내는 사시도이다.
도 8 내지 도 11은 본 발명에 적용되는 아웃렛 폐쇄 장치를 나타내는 도면이다.
도 12는 본 발명에 적용되는 밀폐 도어 및 부력 부재를 나타내는 도면이다.
도 13은 본 발명의 일 실시예에 따른 배터리 모듈의 정면의 일부를 나타내는 도면으로서, 배터리 모듈 내에 배치되는 팽창 패드를 나타내는 도면이다.
도 14 내지 도 16은 발명의 일 실시예에 따른 배터리 모듈을 측부에서 바라본 단면의 일부를 나타내는 도면으로서, 배터리 모듈 내에 배치되는 팽창 패드를 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
먼저, 전체 도면을 참조하면, 본 발명의 일 실시예에 따른 배터리 모듈(1)은 복수의 배터리 셀(100), 버스바 프레임(200), 모듈 하우징(300), 에어 인렛(400), 에어 아웃렛(500), 스프링클러(600) 및 아웃렛 폐쇄 장치(700)(도 8 참조)를 포함한다. 또한, 상기 배터리 모듈(1)은, 열 팽창 블록(B) 및/또는 팽창 패드(E)를 추가적으로 더 포함할 수도 있다.
도 3 내지 도 6을 참조하면, 상기 배터리 셀(100)은 복수개가 구비되며, 복수의 배터리 셀(100)들은 적층되어 하나의 셀 적층체를 이룬다. 상기 배터리 셀(100)로는, 예를 들어 파우치 타입의 배터리 셀이 적용될 수 있다. 상기 배터리 셀(100)은, 길이 방향(도면에 도시된 Y축과 나란한 방향) 양 측으로 각각 인출되는 한 쌍의 전극 리드(110)를 구비한다. 한편, 도면에 도시되지는 않았으나, 상기 셀 적층체는, 필요에 따라 서로 인접한 배터리 셀(100) 사이에 구비되는 완충 패드를 더 포함할 수도 있다. 이러한 완충 패든, 셀 적층체를 모듈 하우징(300) 내에 수용시킬 때 셀 적층체가 압축된 상태로 수용될 수 있도록 하며, 이로써 외부 충격에 의한 움직임을 제한할 수 있고, 또한 배터리 셀(100)의 스웰링(swelling) 현상을 억제할 수 있다.
도 3 내지 도 6을 참조하면, 상기 버스바 프레임(200)은, 한 쌍이 구비되며, 각각의 버스바 프레임(200)은, 셀 적층체의 폭 방향(도면에 도시된 Y축과 나란한 방향) 일 측 및 타 측을 커버한다. 상기 배터리 셀(100)의 전극 리드(110)는 버스바 프레임(200)에 형성된 슬릿을 통해 인출되며, 절곡되어 버스바 프레임(200)에 구비된 버스바 상에 용접 등에 의해 고정된다. 즉, 상기 복수의 배터리 셀(100)들은 버스바 프레임(200)에 구비된 버스바에 의해 직렬 또는 병렬 또는 직렬과 병렬이 혼합된 형태로 연결될 수 있다.
상기 셀 적층체와 버스바 프레임(200)은 상호 결합되어 하나의 서브 모듈을 이룬다.
도 1 내지 도 3을 참조하면, 상기 모듈 하우징(300)은, 대략 직육면체 형상을 가지며, 내부에 셀 적층체와 버스바 프레임(200)의 결합체, 즉 서브 모듈을 수용한다. 상기 모듈 하우징(300)은, 서브 모듈의 하면 및 상면(X-Y 평면과 나란한 면)을 각각 커버하는 한 쌍의 베이스 커버(310), 서브 모듈의 측면(X-Z 평면과 나란한 면)을 각각 커버하는 한 쌍의 사이드 커버(320), 서브 모듈의 전면(Y-Z 평면과 나란한 면)을 커버하는 프론트 커버(330) 및 서브 모듈의 후면(Y-Z 평면과 나란한 면)을 커버하는 리어 커버(340)를 포함한다.
도 1 내지 도 3을 참조하면, 상기 에어 인렛(400)은, 셀 적층체의 적층 방향(X축과 나란한 방향) 일 측, 즉 배터리 모듈(1)의 길이 방향 일 측에 형성되며, 프론트 커버(330)를 관통하는 홀 형태를 갖는다. 상기 에어 아웃렛(500)은, 셀 적층체의 적층 방향 타 측, 즉 배터리 모듈(1)의 길이 방향 타 측에 형성되며, 리어 커버(340)를 관통하는 복수의 홀을 포함한다. 상기 에어 인렛(400)과 에어 아웃렛(500)은 상호 배터리 모듈(1)의 길이 방향(X축과 나란한 방향)을 따라 대각선으로 가로 질러 반대 편에 위치한다.
도 3을 참조하면, 상기 버스바 프레임(200)과 사이드 커버(320) 사이에는 빈 공간이 형성된다. 즉, 상기 모듈 하우징(300)의 6개의 외측 면 중 서브 모듈의 폭 방향(Y축과 나란한 방향) 일 측 및 타 측과 대면하는 면과 버스바 프레임(200)의 내측 면 사이에는 배터리 셀(100)의 냉각을 위한 공기가 흐를 수 있는 빈 공간이 형성된다. 상기 빈 공간은, 배터리 모듈(1)의 폭 방향(Y축과 나란한 방향) 양 측에 각각 형성된다.
상기 에어 인렛(400)은 배터리 모듈(1)의 폭 방향(Y축과 나란한 방향) 일 측에 형성되는 빈 공간과 대응되는 위치에 형성되고, 에어 아웃렛(500)은 배터리 모듈(1)의 폭 방향 타 측에 형성되는 빈 공간과 대응되는 위치에 형성된다.
상기 배터리 모듈(1)에 있어서, 에어 인렛(400)을 통해 내부로 유입된 공기는 배터리 모듈(1)의 폭 방향 일 측에 형성된 빈 공간으로부터 배터리 모듈(1)의 폭 방향 타 측에 형성된 빈 공간으로 이동하면서 배터리 셀(100)을 냉각시킨 후 에어 아웃렛(500)을 통해 외부로 빠져나간다. 즉, 상기 배터리 모듈(1)은 공냉식 배터리 모듈에 해당하는 것이다.
한편, 본 발명에 있어서, 상기 에어 인렛(400)은 그 명칭과는 달리 냉각에 이용되어 온도가 상승한 공기가 빠져나가는 통로로서 이용될 수도 있고, 에어 아웃렛(500) 역시 그 명칭과는 달리 냉각을 위한 외부의 공기가 유입되는 통로로서 이용될 수 있다. 즉, 상기 에어 인렛(400)에는 강제 환풍을 위한 임펠러가 설치될 수 있는데, 임펠러의 회전 방향에 따라서 공기의 순환 방향은 달라질 수 있는 것이다.
도 3, 도 6 및 도 7을 참조하면, 상기 스프링클러(600)는, 예를 들어 냉각수와 같은 냉각 유체를 공급하는 공급관(미도시)과 연결되며, 배터리 모듈(1) 내부의 온도 및 내부 기체의 유속이 일정 수준 이상이 되었을 때 작동하여 배터리 모듈(1)의 내부로 냉각 유체를 공급한다. 즉, 상기 스프링클러(600)는, 배터리 셀(100)에 이상이 발생되어 벤팅(venting)이 일어나고 이로 인해 고온의 가스가 배출되는 경우 이를 감지하여 작동한다. 이와 같이 스프링클러(600)가 작동하면, 배터리 모듈(1) 내부에 냉각 유체가 공급되어 배터리 셀(100)의 과열에 따른 발화 및/또는 폭발을 방지할 수 있게 된다.
상기 스프링클러(600)의 일부는 리어 커버(340)의 외측으로 노출되고, 나머지 부분은 리어 커버(340)를 관통하여 버스바 프레임(200)과 사이드 커버(320) 사이에 형성되는 빈 공간 내에 위치한다. 상기 스프링클러(600)는 리어 커버(340)의 길이 방향(Y축과 나란한 방향) 일 측에 형성된 에어 아웃렛(500)과 반대편에 설치된다.
상기 스프링클러(600)는 커플러(610), 스프링클러 헤드(620) 및 절연 커버(630)를 포함한다. 상기 커플러(610)는 모듈 하우징(300)의 외측에 위치하며, 냉각 유체를 공급하는 공급관(미도시)과 연결된다. 즉, 상기 커플러(610)는 금속 재질로서, 외부 공급관의 체결을 위한 부품이다. 상기 스프링클러 헤드(620)는 모듈 하우징(300)의 내측에 위치하며, 커플러(610)와 연결된다. 상기 절연 커버(630)는 스프링클러 헤드(620)를 커버하며, 이로써 스프링클러 헤드(620)가 배터리 셀(100)의 전극 리드(110) 및/또는 버스바 프레임(200)의 버스바와 직접 접촉하여 단락이 발생되는 것을 방지한다.
상기 스프링클러 헤드(620)는 유리 벌브(621) 및 홀딩 브라켓(622)을 포함한다.
상기 유리 벌브(621)는 커플러(610)의 냉각 유체 분사구(P)를 차단하며, 배터리 모듈(1) 내부의 온도 및 벤팅 가스로 인해 온도가 상승한 내부 기체의 유속이 기준치 이상이 되면 파단되어 냉각 유체 분사구(P)를 개방시킨다. 즉, 상기 유리 벌브(621)는 내부에 온도 상승에 따라 팽창되는 액체를 함유하고 있으며, 이러한 액체는 배터리 모듈(1) 내의 배터리 셀(100)들 중 적어도 일부에서 벤팅이 발생되어 고온의 벤팅 가스가 배터리 모듈(1) 내부를 채우게 되면 팽창한다. 상기 액체의 팽창에 따라 유리 벌브(621)의 내압이 상승하고, 동시에 유리 벌브(621)의 외부에서 고압의 벤팅 가스로 인한 기체의 외력이 함께 작용하게 되면 유리 벌브(621)가 파손되고, 이로써 냉각 유체 분사구(P)를 통해 냉각 유체가 모듈 하우징(300)의 내부를 채우게 된다. 상기 홀딩 브라켓(622)은 금속 재질로서, 유리 벌브(621)를 감싸며 유리 벌브(621)가 움직이지 않도록 고정시킨다.
상기 절연 커버(630)는 고정부(631) 및 커버부(632)를 포함한다. 상기 고정부(631)는 리어 커버(340)에 클립 고정 방식으로 부착된다. 즉, 상기 고정부(631)의 일부는 리어 커버(340)의 외측에 위치하고, 나머지 일부는 리어 커버(340)의 내측에 위치한다. 상기 커버부(632)는 고정부(631)로부터 대략 수직한 방향으로 연장되며, 스프링클러 헤드(620)를 커버한다.
상기 커버부(632)는 셀 적층체 및 버스바 프레임(200)과 대면하는 제1 영역(632a) 및 제1 영역을 제외한 나머지 제2 영역(632b)을 포함한다. 상기 제1 영역(632a)은 가려진 면적이 개방된 면적보다 더 넓게 형성되고, 제2 영역(632b)은 가려진 면적보다 개방된 면적이 더 넓게 형성된다. 상기 커버부(632)의 적어도 일부가 개방된 형태를 갖는 것은 냉각 유체 분사구(P)를 통해 분사된 냉각 유체가 모듈 하우징(300)의 내부에 원활히 공급될 수 있도록 하기 위함이다.
또한, 상기 제1 영역(632a)의 개방 면적이 제2 영역(632b)의 개방 면적보다 더 작게 형성되는 것은, 홀딩 브라켓(622)과 전극 리드(110) 간의 접촉 및/또는 홀딩 브라켓(622)과 버스바 간의 접촉에 의한 단락 발생 가능성을 최소화 하기 위함이다. 한편, 상기 제1 영역(632a)은 냉각 유체의 분출을 위한 적어도 하나의 커버 홀(H)을 구비할 수 있다.
한편, 상기 커버부(632)는 모듈 하우징(300)에 고정된 고정부(631)와 분리 가능한 구조로 결합된다. 상기 고정부(631)와 커버부(632) 사이에는 접착 층(A)이 개재되어 배터리 모듈(1)의 정상적인 사용 상태에서는 고정부(631)와 커버부(632)가 상호 결합된 상태를 유지한다. 그러나, 상기 배터리 셀(100)에 벤팅이 발생되어 고온의 가스가 유출되고 이로써 모듈 하우징(300) 내부의 온도가 상승하여 기준 온도 이상이 되면, 접착 층(A)이 녹게 되고 이에 따라 접착 층(A)의 접착력이 저하되거나 상실된다. 이에 따라, 상기 커버부(632)는 냉각 유체의 분사에 의해 또는 냉각 유체가 분사되기 이 전에 이미 고정부(631)로부터 분리된다.
상기 고정부(631)와 커버부(632) 간의 결합에는 접착 층(A) 이 외의 다른 고정요소가 적용되지 않을 수도 있고, 본 발명의 도면에 도시된 바와 같이 접착 층(A) 이 외에 힌지 결합 구조가 추가적으로 적용될 수도 있다. 상기 고정부(631)와 커버부(632) 간의 결합에 힌지 결합 구조가 적용되는 경우에는, 접착 층(A)의 접착력이 저하 또는 상실됨에 따라 커버부(632)가 힌지 결합부위(h)를 중심으로 회전하여 개방된다.
이와 같이 상기 커버부(632)가 고정부(631)로부터 분리됨으로써 냉각 유체 분사구(P)로부터 커버부(632)는 더 이상 냉각 유체의 분사에 방해요소로서 작용하지 않게 되며, 이로써 원활한 소화 및 냉각이 가능하게 된다.
도 3과 함께 도 8 내지 도 11을 참조하면, 상기 아웃렛 폐쇄 장치(700)는, 스프링클러(600)를 통해 모듈 하우징(300) 내부로 냉각수가 유입되면, 부력에 의해 움직여 에어 아웃렛(500)을 폐쇄하는 장치이다. 상기 아웃렛 폐쇄 장치(700)는 모듈 하우징(300)의 내측면 상에 형성되는 고정 바(710), 고정 바(710)에 힌지 결합되는 밀폐 도어(720) 및 밀폐 도어(720)에 부착되는 부력 부재(730)를 포함한다.
상기 고정 바(710)는 에어 아웃렛(500)이 형성된 리어 커버(340) 상에 형성되며, 횡 단면(X-Y 평면과 나란한 방향으로 자른 단면)의 형상이 부채꼴 형상인 기둥 형태를 가질 수 있다. 상기 고정 바(710)는 밀폐 도어(720)의 움직임을 가이드 하기 위한 지지체로서 기능한다. 이러한 기능의 실현을 위해, 상기 고정 바(710)는 적어도 2 이상의 가이드 홈(711)을 구비한다 상기 2 이상의 가이드 홈(711)은 고정 바(710)의 외주면 상에 형성되며, 고정 바(710)의 길이 방향(Z축과 나란한 방향)을 따라 상호 이격된 위치에 형성된다.
상기 가이드 홈(711)은 그 길이 방향 일 측 단부로부터 타 측 단부를 향하는 방향을 따라 수평면(X-Y 평면과 나란한 면)을 기준으로 경사진 형태를 갖는다. 좀 더 구체적으로, 상기 가이드 홈(711)은 에어 아웃렛(500)을 향하는 방향을 따라 상향 경사진 형태를 갖는다. 상기 가이드 홈(711)이 이처럼 경사진 형태를 갖는 것은, 밀폐 도어(720)가 냉각수에 의한 부력에 의해 상방(Z축과 나란한 방향)으로 힘을 받게 되었을 때 에어 아웃렛(500)을 폐쇄시키는 방향으로 회전하도록 하기 위함이다.
상기 밀폐 도어(720)는, 고정 바(710)에 힌지 결합 되어 냉각수에 의한 부력이 작용하였을 때 회전하여 에어 아웃렛(500)을 폐쇄시킨다. 이러한 기능의 실현을 위해, 상기 밀폐 도어(720)는, 에어 아웃렛(500)을 구성하는 복수의 홀들과 대응되는 개수의 삽입 돌기(721) 및 가이드 홈(711)의 개수에 대응되는 개수의 슬라이딩 볼(722)을 구비한다.
상기 삽입 돌기(721)는 밀폐 도어(720)의 일 면 상에 돌출 형성 되며, 에어 아웃렛(500)을 구성하는 홀과 대응되는 형상 및 사이즈를 갖는다. 상기 삽입 돌기(721)는, 밀폐 도어(720)가 냉각수에 의한 부력을 받아 에어 아웃렛(500)을 폐쇄시키는 방향으로 회전하였을 때 아웃렛(500)을 구성하는 홀에 삽입되어 배터리 모듈(1) 내부에 공급된 냉각수가 에어 아웃렛(500)을 통해 외부로 유실되는 것을 방지한다.
상기 슬라이딩 볼(722)은, 밀폐 도어(720)의 일 측으로부터 고정 바(710)를 향하는 방향으로 연장된 형태를 가지며, 가이드 홈(711) 내에 삽입된다. 상기 슬라이딩 볼(722)은 가이드 홈(711) 내에서 가이드 홈(711)의 길이 방향을 따라 움직일 수 있다. 좀 더 구체적으로, 상기 모듈 하우징(300) 내부에 냉각수가 공급되고, 이로 인해 냉각수의 수위가 일정 수준 이상 되어 밀폐 도어(720)가 부력을 받게 되면, 상기 슬라이딩 볼(722)은 가이드 홈(711)의 내측에서 그 움직임이 가이드 되어 가이드 홈(711)의 연장 방향을 따라 이동함으로써 밀폐 도어(720)가 에어 아웃렛(500)을 향해 회전할 수 있도록 한다.
상기 부력 부재(730)는, 밀폐 도어(720)의 일 면 상에 부착되어 모듈 하우징(300) 내부의 냉각수 수위가 상승하였을 때 밀폐 도어(720)가 부력에 의해 상방(Z축과 나란한 방향)으로 힘을 받을 수 있도록 한다. 상기 부력 부재(730)는 밀폐 도어(720)의 양 면 중 삽입 돌기(721)가 형성된 면과 반대쪽 면에 부착된다. 상기 부력 부재(730)는, 밀도가 냉각수보다 낮아 냉각수에 의한 부력을 받을 수 있는 것이라면 제한 없이 이용 가능한다. 상기 부력 부재(730)로는, 예를 들어, 내부에 공기가 채워져 있는 에어백이 이용될 수 있다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 배터리 모듈(1)은, 모듈 하우징(300) 내에 에어 아웃렛(500)을 폐쇄할 수 있는 아웃렛 폐쇄 장치(700)가 구비되어 있어 모듈 하우징(300) 내에 공급되는 냉각수가 외부로 유출되는 것을 방지할 수 있다. 따라서, 본 발명의 일 실시예에 따른 배터리 모듈(1)은, 내부에서 비정상적인 온도 상승 및/또는 화재의 발생 시에 빠른 대처가 가능하며, 이에 따라 배터리 모듈 사용 상의 안전성을 확보할 수 있다.
도 3 내지 도 6을 참조하면, 상기 배터리 모듈(1)은, 복수의 열 팽창 블록(B)을 추가적으로 포함할 수 있다. 상기 열 팽창 블록(B)은 모듈 하우징(300)의 내부에 냉각 유체가 공급되었을 때 냉각 유체의 수위가 빠르게 상승할 수 있도록 하기 위해 모듈 하우징(300)의 내부의 빈 공간에 배치된다. 상기 열 팽창 블록(B)은 배터리 셀(100)의 벤팅이 발생됨에 따라 고온의 벤팅 가스가 발생되어 모듈 하우징(300) 내부의 온도가 기준 온도 이상으로 높아지게 되면 팽창하며, 이에 따라 모듈 하우징(300) 내부 빈 공간의 체적을 감소시키는 효과를 가져온다.
이와 같이, 열 팽창 블록(B)의 팽창에 따라 모듈 하우징(300) 내부 빈 공간의 체적이 감소되면 같은 양의 냉각 유체가 투입되었을 때 냉각 유체의 수위 상승 속도가 더욱 빨라지게 되어 신속한 소화 및 냉각이 가능하게 된다.
상기 열 팽창 블록(B)은, 예를 들어, 온도의 상승에 따라 체적이 증가하는 열 팽창성 발포제를 포함할 수 있다. 상기 열 팽창성 발포제는, 예를 들어, 내부에 탄화수소를 함유하는 아크릴계 열가소성 수지를 포함하는 코어-쉘 구조를 가질 수 있다.
도 3 및 도 4를 참조하면, 복수의 열 팽창 블록(B)은, 셀 적층체의 하면을 커버하는 베이스 커버(310) 상에서 배터리 모듈(1)의 길이 방향(X축과 나란한 방향)을 따라 상호 이격되어 고정되며, 버스바 프레임(200)과 사이드 커버(320) 사이의 빈 공간에 배치될 수 있다.
또한, 도 5를 참조하면, 복수의 열 팽창 블록(B)은, 셀 적층체를 이루는 복수의 배터리 셀(100)들 중 서로 인접한 배터리 셀(100) 각각의 테라스부(T) 사이마다 배치될 수 있다. 여기서, 테라스부(T)라 함은, 배터리 셀(100)의 실링부(100b)의 일부 영역을 의미하는 것이다. 즉, 파우치 타입의 배터리 셀(100)은 전극 조립체(미도시)가 수용되는 영역인 수용부(100a) 및 수용부(100a) 둘레로부터 연장된 실링 영역(100b)을 포함하는데, 실링 영역(100b) 중 전극 리드(110)가 인출된 방향에 위치하는 부분을 테라스부(T)라고 칭한다.
이처럼, 서로 인접한 테라스부(T) 사이마다 열 팽창 블록(B)이 개재되는 경우, 데드 스페이스(dead space)를 활용하는 것이므로 에너지 밀도를 저하시키지 않고 소화 및 냉각 효율 향상을 가져올 수 있다.
한편, 상기 열 팽창 블록(B)은, 냉각 유체의 수위 상승의 효과를 극대화 하기 위해 버스바 프레임(200)과 사이드 커버(320) 사이의 빈 공간 및 인접한 테라스부(T) 사이에 모두 적용될 수도 있다.
도 13을 참조하면, 상기 배터리 모듈(1)은, 그 내부에 냉각 유체가 공급되었을 때 외부로 냉각 유체가 유출되는 양을 최소화 하여 냉각 유체의 수위가 빠르게 상승할 수 있도록 하기 위해 에어 인렛(400)을 적어도 부분적으로 폐쇄하는 팽창 패드(E)를 더 포함 할 수 있다.
상기 팽창 패드(E)는 모듈 하우징(300)의 내측면에 부착되며, 에어 인렛(400)의 개방 면적보다 작은 사이즈를 갖는다. 상기 팽창 패드(E)는 배터리 모듈(1)의 정상적인 사용 상태에서 에어 인렛(400)을 통한 공기의 흐름을 원활할 수 있도록 하기 위해 에어 인렛(400)의 개방 면적 대비 대략 30% 미만의 사이즈를 갖는 것이 바람직하다. 한편, 본 발명의 도면에서는 상기 팽창 패드(E)가 모듈 하우징(300)의 내측면에 부착됨에 있어서 바닥면에 부착된 경우만을 도시하고 있으나, 팽창 패드(E)는 모듈 하우징(300)의 상부 또는 측부에 부착될 수도 있다.
상기 팽창 패드(E)는 배터리 모듈(1)의 내부로 유입된 냉각 유체와 접촉함으로써 팽창되어 에어 인렛(400)을 폐쇄한다. 상기 팽창 패드(E)는, 수분을 흡수하는 경우 매우 큰 팽창율을 나타내는 수지를 함유하는 것으로서, 충분한 양의 수분이 제공되는 경우 초기 부피 대비 적어도 대략 2배 이상 그 부피가 증가하는 수지를 함유한다. 상기 팽창 패드(E)에 이용되는 수지로는, 예를 들어 SAF(super absorbent fiber)와 폴리에스테르 스테이플 파이버(polyester staple fiber)가 혼합된 부직포를 들 수 있다. 상기 SAF는 SAP(고흡수성 수지, super absorbent polymer)를 파이버(fiber) 형태로 제작한 것이다.
한편, 상기 팽창 패드(E)의 팽창에 따른 에어 인렛(400)의 폐쇄는, 반드시 냉각 유체가 누수될 수 없는 수준의 완전한 폐쇄를 의미하는 것은 아니며, 누수량을 줄일 수 있도록 에어 인렛(400)의 개방 면적을 줄여주는 경우 역시 포함하는 것이다.
상기 팽창 패드(E)의 적용으로 인해, 적어도 일부 배터리 모듈(1)에서 열 폭주 현상이 발생되어 배터리 모듈(1) 내부로 냉각 유체가 유입되는 경우, 에어 인렛(400)은 폐쇄된다. 이처럼 상기 에어 인렛(400)과 에어 아웃렛(500)이 폐쇄되는 경우 배터리 모듈(1)의 내부로 유입된 냉각 유체는 외부로 빠져나가지 않고 배터리 모듈(1)의 내부에 고이게 되며, 이로써 배터리 모듈(1)에 발생된 열 폭주 현상의 빠른 해소가 가능하게 된다.
도 14를 참조하면, 상기 팽창 패드(E)는, 한 쌍이 구비될 수 있으며, 이 경우 한 쌍의 팽창 패드(E)는 모듈 하우징(300)의 내측면 상부와 하부에 각각 부착된다. 상기 한 쌍의 팽창 패드(E)는 서로 대응되는 위치에 부착되어 팽창 시에 상호 접하여 에어 인렛(400)을 폐쇄한다.
도 15를 참조하면, 상기 팽창 패드(E)는, 모듈 하우징(300)의 내측면에 소정의 깊이로 형성된 수용 홈(300a) 내에 적어도 일부가 삽입되어 고정될 수 있다.
도 16을 참조하면, 상기 팽창 패드(E)는, 수분의 흡수에 따른 팽창 시에 그 양 측에 각각 배치되는 한 쌍의 메쉬 플레이트(400a)에 의해 팽창을 위한 움직임이 가이드 될 수 있다. 상기 메쉬 플레이트(400a)는 메쉬 타입(mesh type)의 플레이트로서 팽창 패드(E)가 팽창되지 않은 상태에서는 공기 및 냉각 유체가 통과될 수 있는 구조를 갖는다.
한편, 본 발명의 일 실시예에 따른 ESS(Energy storage system)는 상술한 바와 같은 본 발명의 일 실시예에 따른 배터리 모듈을 복수개 포함한다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (13)

  1. 복수의 배터리 셀을 포함하는 셀 적층체 및 상기 셀 적층체의 일 측과 타 측에 각각 결합되는 한 쌍의 버스바 프레임을 포함하는 서브 모듈;
    상기 서브 모듈을 수용하며, 공기의 순환을 위해 형성된 에어 인렛 및 에어 아웃렛을 구비하는 모듈 하우징;
    상기 셀 적층체의 적층 방향 일 측에서 상기 모듈 하우징을 관통하는 스프링클러; 및
    상기 스프링클러를 통해 상기 모듈 하우징 내부로 유입된 냉각수로 인한 부력에 의해 움직여 상기 에어 아웃렛을 폐쇄하는 아웃렛 폐쇄 장치;
    를 포함하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 아웃렛 폐쇄 장치는,
    상기 모듈 하우징의 내측면 상에 형성되는 고정 바;
    상기 고정 바에 힌지 결합되는 밀폐 도어; 및
    상기 밀폐 도어에 부착되는 부력 부재;
    를 포함하는 것을 특징으로 하는 배터리 모듈.
  3. 제2항에 있어서,
    상기 고정 바는, 적어도 2 이상의 가이드 홈을 구비하고,
    상기 밀폐 도어는, 상기 가이드 홈의 개수에 대응되는 개수의 슬라이딩 볼을 구비하며,
    상기 슬라이딩 볼은 상기 가이드 홈에 삽입되어 상기 가이드 홈의 연장 방향을 따라 그 움직임이 가이드 되는 것을 특징으로 하는 배터리 모듈.
  4. 제3항에 있어서,
    상기 가이드 홈은,
    상기 에어 아웃렛을 향하는 방향을 따라 상향 경사진 형태를 갖는 것을 특징으로 하는 배터리 모듈.
  5. 제2항에 있어서,
    상기 에어 아웃렛은, 상기 모듈 하우징을 관통하여 형성된 복수의 홀을 포함하며,
    상기 밀폐 도어는, 상기 홀과 대응되는 형상 및 사이즈를 갖는 복수의 삽입 돌기를 구비하는 것을 특징으로 하는 배터리 모듈.
  6. 제1항에 있어서,
    상기 배터리 모듈은,
    상기 에어 인렛의 내측에 배치되며, 상기 배터리 모듈 내로 유입된 냉각 유체와의 접촉에 따라 팽창하여 상기 에어 인렛을 적어도 부분적으로 폐쇄하는 팽창 패드를 포함하는 것을 특징으로 하는 배터리 모듈.
  7. 제6항에 있어서,
    상기 팽창 패드는,
    상기 모듈 하우징의 내측면 상에 부착되는 것을 특징으로 하는 배터리 모듈.
  8. 제6항에 있어서,
    상기 팽창 패드는,
    상기 모듈 하우징의 내측면에 형성된 수용 홈 내에 적어도 일부가 삽입되는 것을 특징으로 하는 배터리 모듈.
  9. 제6항에 있어서,
    상기 배터리 모듈은,
    상기 팽창 패드의 양 측에 각각 배치되어 상기 팽창 패드의 팽창을 위한 움직임을 가이드 하는 메쉬 플레이트를 포함하는 것을 특징으로 하는 배터리 모듈.
  10. 제1항에 있어서,
    상기 배터리 모듈은,
    상기 모듈 하우징 내의 빈 공간에 배치되어 상기 모듈 하우징 내부의 온도 상승에 따라 열 팽창되는 열 팽창 블록을 포함하는 것을 특징으로 하는 배터리 모듈.
  11. 제1항에 있어서,
    상기 스프링클러는,
    상기 모듈 하우징의 외측에 위치하며, 냉각유체를 공급하는 공급관과 연결되는 커플러;
    상기 모듈 하우징의 내측에 위치하며, 상기 커플러와 연결되는 스프링클러 헤드; 및
    상기 모듈 하우징에 고정되는 고정부 및 접착 층에 의해 상기 고정부와 고정되며 기준 온도 이상에서 상기 접착 층의 접착력이 상실되거나 저하됨에 따라 상기 고정부로부터 분리되는 커버부를 포함하는 절연 커버;
    를 포함하는 것을 특징으로 하는 배터리 모듈.
  12. 제11항에 있어서,
    상기 커버부는,
    상기 고정부와 힌지 결합되어 상기 기준 온도 이상에서 힌지 결합 부위를 중심으로 상기 스프링클러 헤드의 하방으로 회전하여 개방되는 것을 특징으로 하는 배터리 모듈.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 배터리 모듈을 복수개 포함하는 ESS.
PCT/KR2021/002710 2020-03-05 2021-03-04 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess WO2021177760A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180004662.4A CN114175362A (zh) 2020-03-05 2021-03-04 具有能够快速冷却的结构的电池模块和包括该电池模块的ess
AU2021231264A AU2021231264A1 (en) 2020-03-05 2021-03-04 Battery module having structure capable of rapid cooling, and ESS comprising same
EP21764340.2A EP3993140B1 (en) 2020-03-05 2021-03-04 Battery module having structure capable of rapid cooling, and ess comprising same
US17/766,925 US20240088469A1 (en) 2020-03-05 2021-03-04 Battery module having structure capable of rapid cooling, and ess comprising same
JP2021572923A JP7210782B2 (ja) 2020-03-05 2021-03-04 迅速に冷却可能な構造を有するバッテリーモジュール及びそれを含むエネルギー貯蔵システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0027899 2020-03-05
KR1020200027899A KR102648382B1 (ko) 2020-03-05 2020-03-05 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess

Publications (1)

Publication Number Publication Date
WO2021177760A1 true WO2021177760A1 (ko) 2021-09-10

Family

ID=77614121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002710 WO2021177760A1 (ko) 2020-03-05 2021-03-04 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess

Country Status (7)

Country Link
US (1) US20240088469A1 (ko)
EP (1) EP3993140B1 (ko)
JP (1) JP7210782B2 (ko)
KR (1) KR102648382B1 (ko)
CN (1) CN114175362A (ko)
AU (1) AU2021231264A1 (ko)
WO (1) WO2021177760A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210109714A (ko) * 2020-02-27 2021-09-07 주식회사 엘지에너지솔루션 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079259U (ja) * 1993-07-13 1995-02-10 松下電工株式会社 食器乾燥庫用水受け容器
KR200406311Y1 (ko) * 2005-11-04 2006-01-20 주식회사 차세대환경 유체개폐장치 및 유체개폐장치가 설치된 오수정화처리장치
JP2010186568A (ja) * 2009-02-10 2010-08-26 Nippon Yusoki Co Ltd ラック
JP2014216248A (ja) * 2013-04-26 2014-11-17 三菱自動車工業株式会社 バッテリケース
KR20190035580A (ko) * 2014-02-03 2019-04-03 유알에스에이테크 리미티드 열 폭주 완화 배터리 하우징
KR20200027899A (ko) 2018-09-05 2020-03-13 주식회사 엘지화학 열가소성 수지 조성물

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120340A (ja) * 2008-11-21 2010-06-03 Canon Inc 流体排出装置および記録装置
KR20130056932A (ko) * 2011-11-23 2013-05-31 에스케이이노베이션 주식회사 배터리 팩
US8790810B2 (en) * 2011-12-14 2014-07-29 GM Global Technology Operations LLC Battery cell module with sliding repeating elements
JP5993209B2 (ja) * 2012-05-24 2016-09-14 タイガースポリマー株式会社 電池冷却構造
KR101441207B1 (ko) * 2012-12-27 2014-09-17 에이치엘그린파워 주식회사 열팽창 패드를 이용한 전류 차단 장치
KR102235655B1 (ko) * 2016-06-17 2021-04-01 에스케이이노베이션 주식회사 이차 전지 팩
KR101930135B1 (ko) 2016-10-06 2019-03-14 중소기업은행 배터리 팩 내부의 연소 억제 방법 및 장치
JP2018133134A (ja) * 2017-02-13 2018-08-23 三菱自動車工業株式会社 二次電池冷却機構
CN109893802A (zh) * 2019-03-14 2019-06-18 南方电网调峰调频发电有限公司 一种用于电化学储能方舱热管理和消防的系统装备
KR102064416B1 (ko) * 2019-05-24 2020-01-09 주식회사 창성에이스산업 리튬계 배터리 화재 진압 소화제 및 이를 이용해 화재를 진압하는 방법
KR20210109314A (ko) * 2020-02-27 2021-09-06 주식회사 엘지에너지솔루션 배터리 모듈, 및 그것을 포함하는 배터리 랙, 및 전력 저장 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079259U (ja) * 1993-07-13 1995-02-10 松下電工株式会社 食器乾燥庫用水受け容器
KR200406311Y1 (ko) * 2005-11-04 2006-01-20 주식회사 차세대환경 유체개폐장치 및 유체개폐장치가 설치된 오수정화처리장치
JP2010186568A (ja) * 2009-02-10 2010-08-26 Nippon Yusoki Co Ltd ラック
JP2014216248A (ja) * 2013-04-26 2014-11-17 三菱自動車工業株式会社 バッテリケース
KR20190035580A (ko) * 2014-02-03 2019-04-03 유알에스에이테크 리미티드 열 폭주 완화 배터리 하우징
KR20200027899A (ko) 2018-09-05 2020-03-13 주식회사 엘지화학 열가소성 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3993140A4

Also Published As

Publication number Publication date
AU2021231264A1 (en) 2022-02-24
JP2022536132A (ja) 2022-08-12
EP3993140B1 (en) 2024-05-01
EP3993140A4 (en) 2022-11-02
JP7210782B2 (ja) 2023-01-23
US20240088469A1 (en) 2024-03-14
KR102648382B1 (ko) 2024-03-15
EP3993140A1 (en) 2022-05-04
KR20210113481A (ko) 2021-09-16
CN114175362A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2021221370A1 (ko) 개선된 고정 구조 및 가스 배출 구조를 갖는 배터리 팩, 그리고 이를 포함하는 전자 디바이스 및 자동차
WO2022031056A1 (ko) 배터리 모듈, 그것을 포함하는 배터리 팩, 및 자동차
WO2021006560A1 (ko) 열 폭주 현상 발생 시 냉각수가 내부로 투입될 수 있는 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 에너지저장장치
WO2020242035A1 (ko) 열 폭주 현상 발생 시 내부로 투입된 냉각수가 흐를 수 있는 경로를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 ess
WO2022075635A1 (ko) 배터리 랙, 전력 저장 장치, 및 발전 시스템
WO2021172785A1 (ko) 배터리 모듈, 및 그것을 포함하는 배터리 랙, 및 전력 저장 장치
WO2021177760A1 (ko) 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2021172758A1 (ko) 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2021177763A1 (ko) 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2018160012A2 (ko) 카트리지 및 이를 포함하는 배터리 모듈
WO2021172757A1 (ko) 신속한 냉각이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2021172756A1 (ko) 스프링클러의 신속한 동작이 가능한 구조를 갖는 배터리 모듈 및 이를 포함하는 ess
WO2022050731A1 (ko) 배터리 모듈, 및 배터리 팩, 및 자동차
WO2021246657A1 (ko) 팩 케이스에 냉매 순환로가 구비한 전지 팩
WO2022035296A1 (ko) 배터리 팩, 그리고 이를 포함하는 자동차
WO2023068659A1 (ko) 가스 벤팅 유도블록 및 이를 포함하는 파우치형 이차전지
WO2022255787A1 (ko) 배터리 팩, 및 그것을 포함하는 자동차
WO2021177762A1 (ko) 배터리 랙 및 그것을 포함하는 전력 저장 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572923

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021764340

Country of ref document: EP

Effective date: 20220128

ENP Entry into the national phase

Ref document number: 2021231264

Country of ref document: AU

Date of ref document: 20210304

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17766925

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE