WO2020241700A1 - 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法 - Google Patents

窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法 Download PDF

Info

Publication number
WO2020241700A1
WO2020241700A1 PCT/JP2020/020948 JP2020020948W WO2020241700A1 WO 2020241700 A1 WO2020241700 A1 WO 2020241700A1 JP 2020020948 W JP2020020948 W JP 2020020948W WO 2020241700 A1 WO2020241700 A1 WO 2020241700A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
powder
nitride powder
sintered body
mass
Prior art date
Application number
PCT/JP2020/020948
Other languages
English (en)
French (fr)
Inventor
宏幸 塩月
豪 竹田
田中 孝明
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2021522821A priority Critical patent/JPWO2020241700A1/ja
Publication of WO2020241700A1 publication Critical patent/WO2020241700A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics

Definitions

  • the present disclosure relates to a silicon nitride powder and a method for producing the same, and a method for producing a silicon nitride sintered body.
  • Silicon nitride is a material with excellent strength, hardness, toughness, heat resistance, corrosion resistance, heat impact resistance, etc. For this reason, it has been studied to use a silicon nitride sintered body as an insulating substrate for mechanical parts such as gas turbines, turbo rotors, and valves, and power modules for automobiles and machine tools.
  • the silicon nitride sintered body used for these applications is required to have a dense and homogeneous structure.
  • a technique for providing a high-purity and homogeneous silicon nitride powder has been studied.
  • Examples of the method for synthesizing silicon nitride powder include a direct nitriding method (direct reaction method) in which metallic silicon powder is nitrided in a mixed atmosphere of hydrogen gas or ammonia gas and nitrogen gas, a reduction nitriding method for silica powder, and an imide decomposition method. It has been known.
  • Patent Document 1 proposes a method for producing a silicon nitride powder having a high content of ⁇ -type Si 3 N 4 .
  • Patent Document 2 proposes to produce a silicon nitride powder having few impurities by an imide decomposition method.
  • the silicon nitride sintered body may be used even in a high temperature environment, it is required to have excellent strength under high temperature (high temperature strength). It is considered necessary to make the silicon nitride sintered body denser in order to improve the high temperature strength. As a factor that hinders the densification of the silicon nitride sintered body, the influence of impurities contained in the raw material, that is, the silicon nitride powder can be considered.
  • the present disclosure provides a silicon nitride powder capable of producing a silicon nitride sintered body having excellent high-temperature strength by reducing impurities. Further, the present invention provides a method for producing a silicon nitride powder capable of producing a silicon nitride powder with sufficiently reduced impurities at a low production cost. Further, the present invention provides a method for producing a silicon nitride sintered body capable of producing a silicon nitride sintered body having excellent high temperature strength at a low production cost.
  • the silicon nitride powder according to one aspect of the present disclosure has an oxygen content of 3.0% by mass or less and a total content of fluorine and chlorine of 25% by mass or less. Since such silicon nitride powder has a sufficiently low content of oxygen, fluorine, and chlorine that affect the high temperature strength, it is possible to produce a silicon nitride sintered body having excellent high temperature strength.
  • the pregelatinization rate of the silicon nitride powder is preferably 92% by mass or more. By having a high pregelatinization rate, it is possible to promote grain growth during sintering of the silicon nitride powder. This makes it possible to produce a sufficiently densified silicon nitride sintered body. Therefore, a silicon nitride sintered body having more excellent high temperature strength can be obtained.
  • the proportion of primary particles having a particle size of 2 ⁇ m or more is preferably 2% or less.
  • the fine structure of the silicon nitride sintered body obtained by sintering the silicon nitride powder can be made more uniform. Therefore, a silicon nitride sintered body having more excellent high temperature strength can be obtained.
  • a raw material powder containing silica powder, carbon powder and silicon nitride seed crystals is calcined in a nitrogen atmosphere at 1300 to 1550 ° C. for 50 hours or more to obtain silicon nitride. It has a firing step to obtain a powder.
  • the raw material powder is calcined at 1300 to 1550 ° C. for a sufficiently long time in the calcining step, the reduction nitriding reaction of the silica powder proceeds sufficiently. Therefore, it is possible to produce a silicon nitride powder with sufficiently reduced impurities.
  • This production method can reduce the production cost of the silicon nitride powder as compared with the imide method. Further, in the direct nitriding method, pulverization is usually required for pulverization, but acid treatment is required to reduce impurities derived from pulverization. In this case, the chemical component of the acid treatment remains and becomes an impurity. Therefore, according to the method for producing silicon nitride powder of the present disclosure, it is possible to produce silicon nitride powder with sufficiently reduced impurities at a low production cost.
  • the oxygen content of the silicon nitride powder obtained in the above-mentioned firing step is 3.0% by mass or less, and the total content of fluorine and chlorine is 25% by mass or less.
  • the silicon nitride powder obtained in the above-mentioned firing step preferably has a proportion of primary particles having a particle size of 2 ⁇ m or more of 2% or less.
  • the proportion of the above-mentioned primary particles in the present disclosure is based on the number of particles.
  • the method for producing a silicon nitride sintered body according to one aspect of the present disclosure is to obtain a silicon nitride sintered body by firing any of the above-mentioned silicon nitride powders or the silicon nitride powder obtained by any of the above-mentioned production methods. Has a sintering step to obtain.
  • this production method since the silicon nitride powder with reduced impurities is sintered, a silicon nitride sintered body having excellent high temperature strength can be produced.
  • a silicon nitride powder capable of producing a silicon nitride sintered body having excellent high temperature strength by reducing impurities. Further, it is possible to provide a method for producing silicon nitride powder capable of producing silicon nitride powder with sufficiently reduced impurities at a low production cost. Further, it is possible to provide a method for producing a silicon nitride sintered body, which can produce a silicon nitride sintered body having excellent high temperature strength at a low production cost.
  • the silicon nitride powder has an oxygen content of 3.0% by mass or less, and a total content of fluorine and chlorine of 25% by mass or less.
  • the oxygen content may be 2.5% by mass or less, may be 2.3% by mass or less, and may be 1.8 from the viewpoint of enabling the production of a silicon nitride sintered body having more excellent high-temperature strength. It may be less than% by mass.
  • By reducing the oxygen content of the silicon nitride powder it is possible to reduce the internal defects of the silicon nitride sintered body obtained by sintering the silicon nitride powder. Thereby, a silicon nitride sintered body having a sufficiently high high temperature strength can be obtained.
  • the oxygen content tends to depend on the firing time when producing the silicon nitride powder and the blending ratio of the carbon powder in the starting material used when producing the silicon nitride powder.
  • the oxygen content of the silicon nitride powder may be 0.1% by mass or more, or 0.5% by mass or more, from the viewpoint of reducing the production cost of the silicon nitride powder.
  • An example of the oxygen content of the silicon nitride powder may be 0.1 to 3.0% by mass, or 0.5 to 2.5% by mass.
  • the oxygen content of the silicon nitride powder can be measured using a commercially available oxygen / nitrogen analyzer. The measurement is carried out by continuously raising the temperature from 20 ° C. to 3000 ° C. in an atmosphere of helium gas. Of the obtained measurement results, the oxygen content can be quantified from the area of the peak derived from the elimination of oxygen.
  • the total content of fluorine and chlorine in the silicon nitride powder may be 22 mass ppm or less and 20 mass ppm or less from the viewpoint of enabling the production of a silicon nitride sintered body having more excellent high temperature strength. , 19 mass ppm or less.
  • the total content of fluorine and chlorine is the purity of the starting material used in the production of silicon nitride powder, the blending ratio of silica powder and carbon powder (C / SiO 2 ), firing time, and post-treatment (cleaning) after firing. It tends to depend on the presence or absence of.
  • the total content of fluorine and chlorine in the silicon nitride powder may be 1 mass ppm or more, or 5 mass ppm or more, from the viewpoint of reducing the production cost of the silicon nitride powder.
  • An example of the total content of fluorine and chlorine in the silicon nitride powder may be 1 to 25 mass ppm, or 5 to 22 mass ppm.
  • the total content of fluorine and chlorine in the silicon nitride powder can be measured by heating the silicon nitride powder and quantifying the fluorine and chlorine contained in the generated gas by ion chromatography.
  • the pregelatinization rate of the silicon nitride powder may be 92% by mass or more, 95% by mass or more, or 96% by mass or more.
  • the pregelatinization rate of the silicon nitride powder may be 92% by mass or more, 95% by mass or more, or 96% by mass or more.
  • the pregelatinization rate of the silicon nitride powder may be 99% by mass or less, or 98% by mass or less, from the viewpoint of reducing the production cost of the silicon nitride powder.
  • An example of the pregelatinization rate of the silicon nitride powder may be 92 to 99% by mass, 95 to 99% by mass, or 96 to 98% by mass.
  • the pregelatinization rate of the silicon nitride powder can be determined based on the diffraction line intensity of X-ray diffraction.
  • the proportion of primary particles having a particle size of 2 ⁇ m or more among the primary particles contained in the silicon nitride powder is preferably 2% or less.
  • the ratio may be 1% or less, or 0.5% or less.
  • the proportion of the primary particles having a particle size of 2 ⁇ m or more among the primary particles contained in the silicon nitride powder may be 0.1% or more, or 0.3%, from the viewpoint of reducing the production cost of the silicon nitride powder. It may be the above.
  • An example of the above ratio may be 0.1 to 2% and may be 0.3 to 1%.
  • the above ratio is a number-based ratio, and can be obtained based on the particle size distribution measured by incorporating the captured image of the scanning electron microscope into the image analysis type particle size distribution measurement software.
  • the silicon nitride powder may contain carbon or carbide as a component other than silicon nitride.
  • the total content of carbon and carbide in the silicon nitride powder is preferably 10% by mass or less, and more preferably 7% by mass or less in terms of carbon.
  • the method for producing silicon nitride powder includes a blending step of blending silica powder, carbon powder, and silicon nitride seed crystals to prepare a raw material powder, and the raw material powder in a nitrogen atmosphere at 1300 to 1550 ° C. It has a firing step of firing for 50 hours or more to obtain silicon nitride powder.
  • the firing time may be, for example, 200 hours or less from the viewpoint of production efficiency.
  • the silica powder include fused silica powder, crystalline silica powder and silicate compounds.
  • Examples of the carbon powder include acetylene black, furnace black, channel black, and graphite.
  • the silicon nitride used as the seed crystal preferably has a high pregelatinization rate (for example, a pregelatinization rate of 90% or more) from the viewpoint of improving sinterability.
  • the compounding ratio of the carbon powder to the silica powder in the compounding step is based on the molar standard (C / SiO 2 ) from the viewpoint of obtaining the silicon nitride powder in which the total content of fluorine and chlorine and the oxygen content are sufficiently reduced. It may be 0 to 3.8, and may be 3.0 to 3.7.
  • the blending amount of the silicon nitride seed crystal with respect to 100 parts by mass of the silica powder may be 10 to 20 parts by mass and 11 to 18 parts by mass from the viewpoint of obtaining a silicon nitride powder having sufficiently high purity while reducing the production cost. It may be.
  • the total content of fluorine and chlorine in the raw material powder is preferably 50 mass ppm or less, more preferably 40 mass ppm, from the viewpoint of sufficiently reducing the total content of fluorine and chlorine in the silicon nitride powder produced. It is as follows. On the other hand, the total content of fluorine and chlorine in the raw material powder may be 10 mass ppm or more, or 20 mass ppm or more, from the viewpoint of reducing the production cost of the silicon nitride powder.
  • the following reaction formula (1) proceeds by firing the raw material powder using an electric furnace.
  • the firing temperature may be 1450 to 1550 ° C. from the viewpoint of sufficiently proceeding the reaction of the reaction formula (1).
  • the firing time may be 150 hours or more, or 200 hours or more, from the viewpoint of sufficiently advancing the reduction nitriding reaction of the silica powder.
  • the firing time may be 500 hours or less, or 400 hours or less, from the viewpoint of reducing the production cost of the silicon nitride powder.
  • the firing process is performed in a nitrogen atmosphere.
  • the oxygen concentration in the nitrogen atmosphere may be 100 volume ppm or less, or 20 volume ppm or less. By sufficiently lowering the oxygen concentration in the nitrogen atmosphere, the oxygen content of the produced silicon nitride powder can be further reduced.
  • a decarburization step may be performed. The decarburization step can be performed, for example, by heating the silicon nitride powder to 650 to 900 ° C. in the air. This makes it possible to reduce the total content of carbon and carbide in the silicon nitride powder.
  • the silicon nitride powder according to the above-described embodiment can be obtained.
  • properties such as the oxygen content of the silicon nitride powder, the total content of fluorine and chlorine, the pregelatinization rate and the particle size are as described above.
  • silicon nitride powder is produced by a reduction nitriding reaction of silica powder. Therefore, the production cost of the silicon nitride powder can be reduced as compared with the imide method.
  • pulverization is usually required for pulverization, but acid treatment is required to reduce impurities derived from pulverization.
  • the chemical component of the acid treatment remains and becomes an impurity. Therefore, according to the method for producing silicon nitride powder of the present disclosure, it is possible to produce silicon nitride powder with sufficiently reduced impurities at a low production cost.
  • the method for producing a silicon nitride sintered body according to one embodiment includes a sintering step of firing the silicon nitride powder according to the above embodiment to obtain a silicon nitride sintered body.
  • silicon nitride powder is pressed with a molding pressure of, for example, 3.0 to 10.0 MPa to obtain a molded product.
  • the molded product may be produced by uniaxial pressure or by CIP. Alternatively, it may be fired while being molded by hot pressing.
  • the molded product may be fired in an atmosphere of an inert gas such as nitrogen gas or argon gas.
  • the pressure at the time of firing may be 0.7 to 0.9 MPa.
  • the firing temperature may be 1700 to 1900 ° C.
  • the firing time at the firing temperature may be 4 to 20 hours and may be 8 to 16 hours.
  • the rate of temperature rise to the firing temperature may be, for example, 1.0 to 10.0 ° C./hour.
  • the silicon nitride sintered body thus obtained has a sufficiently reduced oxygen content and a total content of fluorine and chlorine. Since the oxygen content is sufficiently reduced, defects generated inside the silicon nitride sintered body can be suppressed. Therefore, it is excellent not only in high temperature strength but also in insulating property and thermal conductivity. As the defects contained in the silicon nitride sintered body, lattice defects such as dislocations and pores can be considered. Further, since the total content of fluorine and chlorine is sufficiently reduced, it is possible to suppress the softening of the grain boundary phase of the silicon nitride sintered body at a high temperature. Therefore, a silicon nitride sintered body having a sufficiently high high temperature strength can be obtained.
  • the high temperature strength in the present disclosure means the strength at 1300 ° C.
  • Silicon nitride sintered bodies having high strength in such a temperature range can be particularly suitably used for applications such as gas turbines, power modules for automobiles, and bearings.
  • the bending strength of the silicon nitride sintered body according to the embodiment at a temperature of 1300 ° C. may be, for example, 700 MPa or more, or 750 MPa or more. This strength is a 4-point bending strength (1300 ° C.) measured using a commercially available measuring device.
  • the silicon nitride powder may be used for applications other than the production of a silicon nitride sintered body.
  • the raw material powder was calcined at 1500 ° C. for 60 hours in a nitrogen atmosphere at atmospheric pressure using an electric furnace to obtain a massive nitride.
  • This nitride was crushed in a silicon nitride mortar to obtain a nitride powder.
  • This was placed in an alumina crucible and heated in an electric furnace at 800 ° C. for 3 hours to decarburize.
  • the decarburized powder obtained by decarburization was filled in an alumina pot together with a silicon nitride ball and pulverized with a vibration mill for 3 hours to obtain a silicon nitride powder.
  • Example 2 A silicon nitride powder was obtained in the same manner as in Example 1 except that the time for firing the raw material powder at 1500 ° C. was changed from 60 hours to 110 hours.
  • Example 1 A silicon nitride powder was obtained in the same manner as in Example 1 except that the time for firing the raw material powder at 1500 ° C. was changed from 60 hours to 10 hours.
  • Example 3 A silicon nitride powder was obtained in the same manner as in Example 1 except that the time for firing the raw material powder at 1500 ° C. was changed from 60 hours to 5 hours.
  • the total content of fluorine and chlorine contained in the silicon nitride powder was measured by the following procedure.
  • the silicon nitride powder was heated using an automatic sample combustion device (manufactured by Mitsubishi Chemical Corporation, device name: AQF-2100H type), and the generated gas was dissolved in water. Fluorine and chlorine dissolved in water were measured using an ion chromatograph (manufactured by Thermo Fisher Scientific Co., Ltd., device name: ICS-2100) according to JIS R 1603: 2007. Based on this measured value, fluorine and chlorine contained in the silicon nitride powder were quantified. The measurement results are as shown in Table 1. In Table 1, the "halogen content" is the total content of fluorine and chlorine.
  • the pregelatinization rate of the prepared silicon nitride powder was measured by the following procedure.
  • An X-ray diffractometer manufactured by Rigaku, device name: Ultima IV
  • the pregelatinization rate was calculated by the following formula. The results are as shown in Table 1.
  • Pregelatinization rate (mass%) (I a102 + I a210 ) / (I a102 + I a210 + I b101 + I b210 ) ⁇ 100
  • the proportion of particles having a particle size of 2 ⁇ m or more contained in the prepared silicon nitride powder was measured by the following procedure. Using a scanning electron microscope (manufactured by JEOL Ltd., device name: JSM-6301F), the silicon nitride powder was observed at a magnification of 5000 times, and an image was taken (field of view: 16 ⁇ m ⁇ 23 ⁇ m). The image taken by the image analysis type particle size distribution measurement software (manufactured by Mountech Co., Ltd., product name: Mac View version 4.0) was captured and the particle size distribution was measured. From the measurement results, the proportion of primary particles having a particle size of 2 ⁇ m or more was calculated. The results are as shown in Table 1.
  • Comparative Examples 1 and 3 having a higher oxygen content than Examples 1 and 2 had lower high-temperature intensities than Examples 1 and 2.
  • Comparative Example 2 in which the total content of fluorine and chlorine was higher than in Examples 1 and 2, also had a lower high temperature intensity than in Examples 1 and 2.
  • Table 1 it was confirmed that a silicon nitride sintered body having excellent high temperature strength can be obtained by using silicon nitride powder having a low oxygen content and a low total content of fluorine and chlorine.
  • a silicon nitride powder capable of producing a silicon nitride sintered body having excellent high temperature strength by reducing impurities. Further, it is possible to provide a method for producing a silicon nitride powder capable of producing a silicon nitride powder with sufficiently reduced impurities at a low production cost. Further, it is possible to provide a method for producing a silicon nitride sintered body, which can produce a silicon nitride sintered body having excellent high temperature strength at a low production cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

酸素含有量が3.0質量%以下、及び、並びに、フッ素及び塩素の合計含有量が25質量ppm以下である窒化ケイ素粉末を提供する。シリカ粉末とカーボン粉末と窒化ケイ素の種結晶とを含む原料粉末を、窒素雰囲気中、1300~1550℃で50時間以上焼成して窒化ケイ素粉末を得る焼成工程を有する、窒化ケイ素粉末の製造方法を提供する。

Description

窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法
 本開示は、窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法に関する。
 窒化ケイ素は、強度、硬度、靭性、耐熱性、耐食性、耐熱衝撃性等に優れた材料である。このため、ガスタービン、ターボロータ、及びバルブ等の機械部品、並びに、自動車及び工作機械等のパワーモジュール等の絶縁基板として窒化ケイ素焼結体を用いることが検討されている。これらの用途に用いられる窒化ケイ素焼結体には、緻密且つ均質な組織を有することが求められる。このような窒化ケイ素焼結体を製造するために、高純度且つ均質な窒化ケイ素粉末を提供する技術が検討されている。
 窒化ケイ素粉末の合成方法としては、金属ケイ素粉末を水素ガス又はアンモニアガスと窒素ガスとの混合雰囲気下で窒化する直接窒化法(直接反応法)、シリカ粉末の還元窒化法、及びイミド分解法等が知られている。特許文献1では、α型Siの含有率が高い窒化ケイ素粉末を製造する方法が提案されている。また、特許文献2では、イミド分解法によって、不純物の少ない窒化ケイ素粉末を製造することが提案されている。
特開平7-81910号公報 特開2000-302421号公報
 窒化ケイ素焼結体は、高温環境下でも用いられる場合があるため、高温下での強度(高温強度)に優れることが求められる。高温強度向上のためには窒化ケイ素焼結体を緻密にする必要があると考えられる。窒化ケイ素焼結体の緻密化を妨げる因子としては、原料、すなわち窒化ケイ素粉末に含まれる不純物の影響が考えられる。
 そこで、本開示では、不純物を低減することによって、優れた高温強度を有する窒化ケイ素焼結体を製造することが可能な窒化ケイ素粉末を提供する。また、十分に不純物が低減された窒化ケイ素粉末を低い製造コストで製造することが可能な窒化ケイ素粉末の製造方法を提供する。また、優れた高温強度を有する窒化ケイ素焼結体を低い製造コストで製造することが可能な窒化ケイ素焼結体の製造方法を提供する。
 本開示の一側面に係る窒化ケイ素粉末は、酸素含有量が3.0質量%以下、並びに、フッ素及び塩素の合計含有量が25質量ppm以下である。このような窒化ケイ素粉末は、高温強度に影響する酸素とフッ素及び塩素の含有量が十分に低いことから、高温強度に優れる窒化ケイ素焼結体を製造することができる。
 上記窒化ケイ素粉末のα化率は92質量%以上であることが好ましい。高いα化率を有することによって、窒化ケイ素粉末の焼結時における粒成長を促進することができる。これによって、十分に緻密化された窒化ケイ素焼結体を製造することができる。したがって、一層優れた高温強度を有する窒化ケイ素焼結体を得ることができる。
 上記窒化ケイ素粉末において、2μm以上の粒径を有する一次粒子の割合は2%以下であることが好ましい。これによって、窒化ケイ素粉末を焼結して得られる窒化ケイ素焼結体の微細組織を一層均一にすることができる。したがって、一層優れた高温強度を有する窒化ケイ素焼結体を得ることができる。
 本開示の一側面に係る窒化ケイ素粉末の製造方法は、シリカ粉末とカーボン粉末と窒化ケイ素の種結晶とを含む原料粉末を、窒素雰囲気中、1300~1550℃で50時間以上焼成して窒化ケイ素粉末を得る焼成工程を有する。この製造方法では、焼成工程において、原料粉末を1300~1550℃で十分に長い時間焼成しているため、シリカ粉末の還元窒化反応が十分に進行する。したがって、十分に不純物が低減された窒化ケイ素粉末を製造することができる。この製造方法は、イミド法に比べて窒化ケイ素粉末の製造コストを低減することができる。また、直接窒化法では微粉化するために通常粉砕が必要となるが、粉砕に由来する不純物を低減するためには酸処理が必要となる。この場合、酸処理の薬液成分が残留して不純物となる。よって、本開示の窒化ケイ素粉末の製造方法によれば、十分に不純物が低減された窒化ケイ素粉末を低い製造コストで製造することができる。
 上述の焼成工程で得られる窒化ケイ素粉末の酸素含有量は3.0質量%以下、並びに、フッ素及び塩素の合計含有量は25質量ppm以下であることが好ましい。このような窒化ケイ素粉末を用いることによって、優れた高温強度を有する窒化ケイ素焼結体を製造することができる。
 上述の焼成工程で得られる窒化ケイ素粉末は、2μm以上の粒径を有する一次粒子の割合が2%以下であることが好ましい。これによって、窒化ケイ素粉末を焼成して得られる窒化ケイ素焼結体の微細組織を一層均一にすることができる。したがって、一層優れた高温強度を有する窒化ケイ素焼結体を得ることができる。本開示における上述の一次粒子の割合は、個数基準である。
 本開示の一側面に係る窒化ケイ素焼結体の製造方法は、上述のいずれかの窒化ケイ素粉末、又は上述のいずれかの製造方法で得られる窒化ケイ素粉末を焼成して窒化ケイ素焼結体を得る焼結工程を有する。この製造方法では、不純物が低減された窒化ケイ素粉末を焼結することから、優れた高温強度を有する窒化ケイ素焼結体を製造することができる。
 本開示によれば、不純物を低減することによって、優れた高温強度を有する窒化ケイ素焼結体を製造することが可能な窒化ケイ素粉末を提供することができる。また、十分に不純物が低減された窒化ケイ素粉末を低い製造コストで製造することが可能な窒化ケイ素粉末の製造方法を提供することができる。また、優れた高温強度を有する窒化ケイ素焼結体を低い製造コストで製造することが可能な窒化ケイ素焼結体の製造方法を提供することができる。
 以下、本開示の一実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 一実施形態に係る窒化ケイ素粉末は、酸素含有量が3.0質量%以下、並びに、フッ素及び塩素の合計含有量が25質量ppm以下である。酸素含有量は、一層優れた高温強度を有する窒化ケイ素焼結体を製造可能とする観点から、2.5質量%以下であってよく、2.3質量%以下であってよく、1.8質量%以下でああってもよい。窒化ケイ素粉末の酸素含有量を低減することによって、窒化ケイ素粉末を焼結して得られる窒化ケイ素焼結体の内部の欠陥を低減することができる。これによって、十分に高い高温強度を有する窒化ケイ素焼結体を得ることができる。酸素含有量は、窒化ケイ素粉末を製造する際の焼成時間、及び、窒化ケイ素粉末を製造する際に用いる出発原料におけるカーボン粉末の配合割合に依存する傾向にある。
 窒化ケイ素粉末の酸素含有量は、窒化ケイ素粉末の製造コスト低減の観点から、0.1質量%以上であってよいし、0.5質量%以上であってもよい。窒化ケイ素粉末の酸素含有量の一例は、0.1~3.0質量%であってよく、0.5~2.5質量%であってもよい。窒化ケイ素粉末の酸素含有量は、市販の酸素・窒素分析装置を用いて測定することができる。測定は、ヘリウムガスの雰囲気中、20℃から3000℃まで連続的に昇温して行う。得られた測定結果のうち、酸素の脱離に由来するピークの面積から酸素含有量を定量することができる。
 窒化ケイ素粉末のフッ素及び塩素の合計含有量は、一層優れた高温強度を有する窒化ケイ素焼結体を製造可能とする観点から、22質量ppm以下であってよく、20質量ppm以下であってよく、19質量ppm以下であってよい。窒化ケイ素粉末のフッ素及び塩素の合計含有量を低減することによって、窒化ケイ素粉末を焼結して得られる窒化ケイ素焼結体の粒界相に含まれるフッ素及び塩素が低減される。このため、高温下で窒化ケイ素焼結体の粒界相が軟化すること抑制できる。したがって、十分に高い高温強度を有する窒化ケイ素焼結体とすることができる。フッ素及び塩素の合計含有量は、窒化ケイ素粉末を製造する際に用いる出発原料の純度、シリカ粉末とカーボン粉末の配合比(C/SiO)、焼成時間、及び焼成後の後処理(洗浄)の有無等に依存する傾向にある。
 例えば、原料粉末を調製する際のシリカ粉末とカーボン粉末の配合比(C/SiO)が小さくなり過ぎると、SiO又はSiOとClとの反応によるSiClの脱離が進行し難くなる傾向にある。また、焼成時間が短くなり過ぎた場合も同様の傾向にある。
 窒化ケイ素粉末のフッ素及び塩素の合計含有量は、窒化ケイ素粉末の製造コスト低減の観点から、1質量ppm以上であってよいし、5質量ppm以上であってもよい。窒化ケイ素粉末のフッ素及び塩素の合計含有量の一例は、1~25質量ppmであってよく、5~22質量ppmであってもよい。窒化ケイ素粉末のフッ素及び塩素の合計含有量は、窒化ケイ素粉末を加熱し、発生したガスに含まれるフッ素及び塩素をイオンクロマトグラフで定量することによって測定することができる。
 窒化ケイ素粉末のα化率は、92質量%以上であってよく、95質量%以上であってよく、96質量%以上であってもよい。高いα化率を有することによって、窒化ケイ素粉末の焼結時に粒成長を促進することができる。これによって、十分に緻密化された窒化ケイ素焼結体を製造することができる。したがって、一層優れた高温強度を有する窒化ケイ素焼結体を得ることができる。
 窒化ケイ素粉末のα化率は、窒化ケイ素粉末の製造コスト低減の観点から、99質量%以下であってよいし、98質量%以下であってもよい。窒化ケイ素粉末のα化率の一例は、92~99質量%であってよく、95~99質量%であってよく、96~98質量%であってもよい。窒化ケイ素粉末のα化率は、X線回折の回折線強度に基づいて求めることができる。
 窒化ケイ素粉末に含まれる一次粒子のうち、2μm以上の粒径を有する一次粒子の割合は好ましくは2%以下である。当該割合は、1%以下であってよいし、0.5%以下であってもよい。この割合を小さくすることによって、窒化ケイ素粉末を焼結して得られる窒化ケイ素焼結体の微細組織を一層均一にすることができる。したがって、一層優れた高温強度を有する窒化ケイ素焼結体を得ることができる。
 窒化ケイ素粉末に含まれる一次粒子のうち、2μm以上の粒径を有する一次粒子の割合は、窒化ケイ素粉末の製造コスト低減の観点から、0.1%以上であってよいし、0.3%以上であってもよい。上記割合の一例は、0.1~2%であってよく、0.3~1%であってもよい。上記割合は、個数基準の割合であり、走査型電子顕微鏡の撮影画像を、画像解析式粒度分布測定ソフトウェアに取り込んで測定される粒度分布に基づいて求めることができる。
 窒化ケイ素粉末は、窒化ケイ素以外の成分として、炭素又は炭化物を含んでいてもよい。窒化ケイ素粉末における炭素及び炭化物の合計含有量は、炭素換算で、好ましくは10質量%以下であり、より好ましくは7質量%以下である。
 一実施形態に係る窒化ケイ素粉末の製造方法は、シリカ粉末とカーボン粉末と窒化ケイ素の種結晶とを配合して原料粉末を調製する配合工程と、原料粉末を窒素雰囲気中、1300~1550℃で50時間以上焼成して窒化ケイ素粉末を得る焼成工程を有する。焼成時間は、生産効率の観点から例えば200時間以下であってよい。シリカ粉末としては、例えば、溶融シリカ粉末、結晶性のシリカ粉末及びケイ酸塩化合物が挙げられる。カーボン粉末としては、アセチレンブラック、ファーネスブラック、チャンネルブラック、及び黒鉛が挙げられる。種結晶として用いる窒化ケイ素は、焼結性を高くする観点から、α化率が高い(例えば、α化率が90%以上)ものが好ましい。
 配合工程における、シリカ粉末に対するカーボン粉末の配合比は、フッ素及び塩素の合計含有量と酸素含有量が十分に低減された窒化ケイ素粉末を得る観点から、モル基準(C/SiO)で2.0~3.8であってよく、3.0~3.7であってもよい。シリカ粉末100質量部に対する窒化ケイ素の種結晶の配合量は、製造コストを低減しつつ純度が十分に高い窒化ケイ素粉末を得る観点から、10~20質量部であってよく、11~18質量部であってもよい。
 原料粉末中のフッ素及び塩素の合計含有量は、製造される窒化ケイ素粉末のフッ素及び塩素の合計含有量を十分に低減する観点から、好ましくは50質量ppm以下であり、より好ましくは40質量ppm以下である。一方、原料粉末中のフッ素及び塩素の合計含有量は、窒化ケイ素粉末の製造コストを低減する観点から、10質量ppm以上であってよく、20質量ppm以上であってもよい。
 焼成工程では、例えば電気炉を用いて原料粉末を焼成することによって、以下の反応式(1)が進行する。反応式(1)の反応を十分に進行させる観点から、焼成温度は1450~1550℃であってもよい。焼成時間は、シリカ粉末の還元窒化反応を十分に進行させる観点から、150時間以上であってよく、200時間以上であってもよい。一方、焼成時間は、窒化ケイ素粉末の製造コストを低減する観点から、500時間以下であってよく、400時間以下であってもよい。
 3SiO+6C+2N→Si+6CO↑   (1)
 焼成工程は、窒素雰囲気中で行う。窒素雰囲気における酸素濃度は、100体積ppm以下であってよく、20体積ppm以下であってもよい。窒素雰囲気における酸素濃度を十分に低くすることによって、製造される窒化ケイ素粉末の酸素含有量を一層低減することができる。窒化ケイ素粉末が炭素又は炭化物を含む場合、脱炭工程を行ってもよい。脱炭工程は、例えば、窒化ケイ素粉末を大気中において650~900℃に加熱して行うことができる。これによって、窒化ケイ素粉末における炭素及び炭化物の合計含有量を低くすることができる。
 上述の製造方法によれば、上記実施形態に係る窒化ケイ素粉末を得ることができる。窒化ケイ素粉末の酸素含有量、フッ素及び塩素の合計含有量、α化率及び粒径等の性状の例は、上述したとおりである。本実施形態の窒化ケイ素粉末の製造方法では、シリカ粉末の還元窒化反応によって窒化ケイ素粉末を製造する。したがって、イミド法に比べて窒化ケイ素粉末の製造コストを低減することができる。また、直接窒化法では微粉化するために通常粉砕が必要となるが、粉砕に由来する不純物を低減するためには酸処理が必要となる。この場合、酸処理の薬液成分が残留して不純物となる。よって、本開示の窒化ケイ素粉末の製造方法によれば、十分に不純物が低減された窒化ケイ素粉末を低い製造コストで製造することができる。
 一実施形態に係る窒化ケイ素焼結体の製造方法は、上記実施形態に係る窒化ケイ素粉末を焼成して窒化ケイ素焼結体を得る焼結工程を有する。この製造方法では、例えば、窒化ケイ素粉末を例えば3.0~10.0MPaの成形圧力で加圧して成形体を得る。成形体は一軸加圧して作製してもよいし、CIPによって作製してもよい。また、ホットプレスによって成形しながら焼成してもよい。
 成形体の焼成は、窒素ガス又はアルゴンガス等の不活性ガス雰囲気中で行ってよい。焼成時の圧力は、0.7~0.9MPaであってよい。焼成温度は1700~1900℃であってよい。当該焼成温度における焼成時間は4~20時間であってよく、8~16時間であってよい。焼成温度までの昇温速度は、例えば1.0~10.0℃/時間であってよい。
 このようにして得られる窒化ケイ素焼結体は、酸素含有量及びフッ素及び塩素の合計含有量が十分に低減されている。酸素含有量が十分に低減されているため、窒化ケイ素焼結体の内部に生じる欠陥を抑制できる。このため、高温強度のみならず絶縁性及び熱伝導性にも優れる。窒化ケイ素焼結体に含まれる欠陥としては、転位等の格子欠陥及び気孔等が考えられる。また、フッ素及び塩素の合計含有量が十分に低減されているため、高温下で窒化ケイ素焼結体の粒界相が軟化することを抑制できる。したがって、十分に高い高温強度を有する窒化ケイ素焼結体を得ることができる。
 本開示における高温強度とは、1300℃における強度をいう。このような温度範囲において高い強度を有する窒化ケイ素焼結体は、ガスタービン、自動車用のパワーモジュール、ベアリング等の用途に特に好適に用いることができる。一実施形態に係る窒化ケイ素焼結体の1300℃の温度における曲げ強度は、例えば700MPa以上であってよく、750MPa以上であってもよい。この強度は、市販の測定装置を用いて測定される4点曲げ強度(1300℃)である。
 以上、幾つかの実施形態を説明したが、本開示は上述の実施形態に何ら限定されるものではない。例えば、窒化ケイ素粉末は、窒化ケイ素焼結体の製造用以外の用途に用いてもよい。
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
<窒化ケイ素粉末の調製>
(実施例1)
 溶融シリカ粉末(粒径:0.6μm)、アセチレンブラック粉末、及び、窒化ケイ素粉末(種結晶)を配合して原料粉末を得た。原料粉末中のフッ素及び塩素の合計含有量は、40質量ppmであった。配合比(質量基準)は、溶融シリカ粉末:アセチレンブラック粉末:窒化ケイ素粉末=55.2%:38.5%:6.3%とした。溶融シリカ粉末に対するアセチレンブラックのモル比(C/SiO)は3.5であった。この原料粉末320gを、2Lのポリエチレン製容器に充填して窒化ケイ素製ボール(φ:15mm)を入れ、ボールミルで2時間混合した。
 原料粉末を、電気炉を用いて大気圧の窒素雰囲気中、1500℃で60時間焼成し、塊状の窒化物を得た。この窒化物を窒化ケイ素製の乳鉢で解砕して窒化物粉末を得た。これをアルミナ坩堝に入れ、電気炉中、800℃で3時間加熱して脱炭した。脱炭して得られた脱炭粉を窒化ケイ素製のボールとともにアルミナポットに充填し、振動ミルで3時間粉砕して、窒化ケイ素粉末を得た。
(実施例2)
 原料粉末を1500℃で焼成する時間を、60時間から110時間に変更したこと以外は、実施例1と同様にして窒化ケイ素粉末を得た。
(比較例1)
 原料粉末を1500℃で焼成する時間を、60時間から10時間に変更したこと以外は、実施例1と同様にして窒化ケイ素粉末を得た。
(比較例2)
 配合比(質量基準)を、溶融シリカ粉末:アセチレンブラック粉末:窒化ケイ素粉末=52.3%:41.7%:6.0%としたこと以外は、実施例2と同様にして窒化ケイ素粉末を得た。溶融シリカ粉末に対するアセチレンブラックのモル比(C/SiO)は4.0であった。
(比較例3)
 原料粉末を1500℃で焼成する時間を、60時間から5時間に変更したこと以外は、実施例1と同様にして窒化ケイ素粉末を得た。
<窒化ケイ素粉末の評価>
 各実施例及び比較例の窒化ケイ素粉末に含まれる酸素含有量を以下の手順で測定した。酸素・窒素分析装置(堀場製作所製、装置名:EMGA-920W)を用いて、黒鉛粉末を入れた坩堝の脱ガスを行った。調製した窒化ケイ素粉末を秤量し、坩堝中の黒鉛粉末と混合した。その後、ヘリウムガスの雰囲気中、20℃から2300℃まで昇温し、昇温に伴って生じる酸素を検知した。酸素の脱離に由来するピーク面積から、窒化ケイ素粉末に含まれる酸素を定量した。測定結果は表1に示すとおりであった。
 窒化ケイ素粉末に含まれるフッ素及び塩素の合計含有量を以下の手順で測定した。自動試料燃焼装置(三菱化学株式会社製、装置名:AQF-2100H型)を用いて窒化ケイ素粉末を加熱し、発生したガスを水に溶解させた。イオンクロマトグラフ(サーモフィッシャーサイエンティフィック社製、装置名:ICS-2100)を用いて、JIS R 1603:2007に準じて水中に溶解したフッ素及び塩素を測定した。この測定値に基づいて、窒化ケイ素粉末に含まれるフッ素及び塩素を定量した。測定結果は表1に示すとおりであった。表1中、「ハロゲン含有量」とは、フッ素と塩素の合計含有量である。
 調製した窒化ケイ素粉末のα化率を以下の手順で測定した。X線回折装置(リガク製、装置名:Ultima IV)を用い、CuKα線で窒化ケイ素粉末のX線回折を行った。α相は(102)面の回折線強度Ia102と、(210)面の回折線強度Ia210、β相は(101)面の回折線強度Ib101と、(210)面の回折線強度Ib210で代表した。これらの回折線強度を用いて、以下の式によってα化率を算出した。結果は表1に示すとおりであった。
  α化率(質量%)=
   (Ia102+Ia210)/(Ia102+Ia210+Ib101+Ib210)×100
 調製した窒化ケイ素粉末に含まれる、粒径2μm以上の粒子の割合を以下の手順で測定した。走査型電子顕微鏡(日本電子株式会社製、装置名:JSM-6301F)を用いて、窒化ケイ素粉末を5000倍に拡大して観察し、画像を撮影した(視野:16μm×23μm)。画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製、製品名:Mac View version4.0)に撮影した画像を取り込み、粒度分布を測定した。測定結果から、粒径が2μm以上である一次粒子の割合を算出した。結果は表1に示すとおりであった。
<窒化ケイ素焼結体の作製>
 各実施例及び比較例の窒化ケイ素粉末を、それぞれ一軸加圧成形し、円柱形状の成形体を作製した。この成形体を、カーボンヒータを備える電気炉中に配置し、窒素雰囲気中、1850℃まで昇温した。1850℃の焼成温度で6時間焼成を行った後、冷却して窒化ケイ素焼結体を得た。
<窒化ケイ素焼結体の評価>
 得られた窒化ケイ素焼結体の密度(20℃)、及び1300℃における4点曲げ強度を測定した。密度は、アルキメデス法によって測定した。1300℃における4点曲げ強度は、株式会社島津製作所製のオートグラフAG-2000(商品名)を用いて測定した。実施例1の窒化ケイ素粉末を用いて作製した窒化ケイ素焼結体の測定結果を基準としたときの密度及び4点曲げ強度の相対値は、表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000001
 酸素含有量が実施例1,2よりも高い比較例1,3は、高温強度が実施例1,2に比べて低かった。フッ素及び塩素の合計含有量が実施例1,2よりも高い比較例2も、高温強度が実施例1,2に比べて低かった。表1に示すとおり、酸素の含有量、並びにフッ素及び塩素の合計含有量が低い窒化ケイ素粉末を用いることによって、高温強度に優れた窒化ケイ素焼結体が得られることが確認された。
 本開示によれば、不純物を低減することによって、高温強度に優れる窒化ケイ素焼結体を製造することが可能な窒化ケイ素粉末を提供することができる。また、十分に不純物が低減された窒化ケイ素粉末を低い製造コストで製造することが可能な窒化ケイ素粉末の製造方法を提供することができる。また、優れた高温強度を有する窒化ケイ素焼結体を低い製造コストで製造することが可能な窒化ケイ素焼結体の製造方法を提供することができる。

Claims (8)

  1.  酸素含有量が3.0質量%以下、並びに、フッ素及び塩素の合計含有量が25質量ppm以下である、窒化ケイ素粉末。
  2.  α化率が92質量%以上である、請求項1に記載の窒化ケイ素粉末。
  3.  2μm以上の粒径を有する一次粒子の割合が2%以下である、請求項1又は2に記載の窒化ケイ素粉末。
  4.  シリカ粉末とカーボン粉末と窒化ケイ素の種結晶とを含む原料粉末を、窒素雰囲気中、1300~1550℃で50時間以上焼成して窒化ケイ素粉末を得る焼成工程を有する、窒化ケイ素粉末の製造方法。
  5.  前記焼成工程で得られる前記窒化ケイ素粉末の酸素含有量は3.0質量%以下、並びに、フッ素及び塩素の合計含有量は25質量ppm以下である、請求項4に記載の窒化ケイ素粉末の製造方法。
  6.  前記焼成工程で得られる前記窒化ケイ素粉末は、2μm以上の粒径を有する一次粒子の割合が2%以下である、請求項4又は5に記載の窒化ケイ素粉末の製造方法。
  7.  請求項1~3のいずれか一項に記載の窒化ケイ素粉末を焼成して窒化ケイ素焼結体を得る焼結工程を有する、窒化ケイ素焼結体の製造方法。
  8.  請求項4~6のいずれか一項に記載の製造方法で得られる窒化ケイ素粉末を焼成して窒化ケイ素焼結体を得る焼結工程を有する、窒化ケイ素焼結体の製造方法。
PCT/JP2020/020948 2019-05-30 2020-05-27 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法 WO2020241700A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021522821A JPWO2020241700A1 (ja) 2019-05-30 2020-05-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-101281 2019-05-30
JP2019101281 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020241700A1 true WO2020241700A1 (ja) 2020-12-03

Family

ID=73553802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020948 WO2020241700A1 (ja) 2019-05-30 2020-05-27 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法

Country Status (3)

Country Link
JP (1) JPWO2020241700A1 (ja)
TW (1) TWI845692B (ja)
WO (1) WO2020241700A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202621A1 (ja) * 2021-03-25 2022-09-29 デンカ株式会社 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621564B2 (ja) * 1982-11-26 1987-01-14 Kogyo Gijutsuin
JPS6340709A (ja) * 1986-08-05 1988-02-22 Showa Denko Kk 易焼結性高純度窒化ケイ素微粉体の製造方法
JPH05310405A (ja) * 1992-05-11 1993-11-22 Denki Kagaku Kogyo Kk 高純度窒化珪素微粒子の製造方法
JPH10218613A (ja) * 1997-02-03 1998-08-18 Shin Etsu Chem Co Ltd 窒化ケイ素粉末の高純化方法
JP2009161376A (ja) * 2007-12-28 2009-07-23 Toda Kogyo Corp 窒化ケイ素粉末の製造法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608205B (zh) * 2019-02-02 2021-04-16 清华大学 一种制备等轴状α相氮化硅粉末的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621564B2 (ja) * 1982-11-26 1987-01-14 Kogyo Gijutsuin
JPS6340709A (ja) * 1986-08-05 1988-02-22 Showa Denko Kk 易焼結性高純度窒化ケイ素微粉体の製造方法
JPH05310405A (ja) * 1992-05-11 1993-11-22 Denki Kagaku Kogyo Kk 高純度窒化珪素微粒子の製造方法
JPH10218613A (ja) * 1997-02-03 1998-08-18 Shin Etsu Chem Co Ltd 窒化ケイ素粉末の高純化方法
JP2009161376A (ja) * 2007-12-28 2009-07-23 Toda Kogyo Corp 窒化ケイ素粉末の製造法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202621A1 (ja) * 2021-03-25 2022-09-29 デンカ株式会社 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体及びその製造方法
JPWO2022202621A1 (ja) * 2021-03-25 2022-09-29
JP7239787B2 (ja) 2021-03-25 2023-03-14 デンカ株式会社 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法

Also Published As

Publication number Publication date
TWI845692B (zh) 2024-06-21
JPWO2020241700A1 (ja) 2020-12-03
TW202106615A (zh) 2021-02-16

Similar Documents

Publication Publication Date Title
TWI573757B (zh) A silicon nitride powder manufacturing method and a silicon nitride powder, and a silicon nitride sintered body and a circuit board using the same
WO2015194552A1 (ja) 窒化ケイ素粉末、窒化ケイ素焼結体及び回路基板、ならびに窒化ケイ素粉末の製造方法
JP5836522B2 (ja) 窒化ケイ素基板の製造方法
CN1413176A (zh) 312相材料的形成方法和烧结方法
JP5228293B2 (ja) イットリア焼結体ならびに耐食性部材、その製造方法
WO2020241700A1 (ja) 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法
JP2022080053A (ja) 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法
JP4325824B2 (ja) 高熱伝導性窒化珪素焼結体の製造方法
JP3438928B2 (ja) 窒化珪素粉末の製造方法
EP3597621A1 (en) Method for producing silicon-carbide-based complex
JPH0812306A (ja) 窒化ケイ素粉末
JP2002220282A (ja) 窒化アルミニウム焼結体とその製造方法
US5585084A (en) Silicon nitride powder
JP2907366B2 (ja) 結晶質窒化珪素粉末の製造法
JP3669406B2 (ja) 窒化ケイ素粉末
JP7536747B2 (ja) 窒化ケイ素粉末及びその製造方法、並びに窒化ケイ素焼結体の製造方法
JP7239787B2 (ja) 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体の製造方法
JP3997596B2 (ja) 窒化ケイ素粉末
WO2022210369A1 (ja) 窒化ケイ素焼結体の製造方法
WO2024195299A1 (ja) 窒化ケイ素粉末の製造方法、及び、窒化ケイ素焼結体の製造方法
JPH10316469A (ja) 珪窒化マグネシウム粉末及びその製造方法
WO2024195609A1 (ja) 窒化ケイ素粉末及びその製造方法、並びに、窒化ケイ素焼結体及びその製造方法
KR20240151759A (ko) 탄화규소 분말 및 그의 제조 방법
WO2023120422A1 (ja) 窒化ケイ素粉末
JPH06211577A (ja) 超微粒子を用いた窒化アルミニウム焼結体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522821

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813923

Country of ref document: EP

Kind code of ref document: A1