WO2020241592A1 - レーザ光発生装置およびそれを備えたレーザ加工装置 - Google Patents

レーザ光発生装置およびそれを備えたレーザ加工装置 Download PDF

Info

Publication number
WO2020241592A1
WO2020241592A1 PCT/JP2020/020607 JP2020020607W WO2020241592A1 WO 2020241592 A1 WO2020241592 A1 WO 2020241592A1 JP 2020020607 W JP2020020607 W JP 2020020607W WO 2020241592 A1 WO2020241592 A1 WO 2020241592A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
laser
output
laser light
module
Prior art date
Application number
PCT/JP2020/020607
Other languages
English (en)
French (fr)
Inventor
芳道 齊藤
周治 若生
五十嵐 弘
真吾 津田
秀康 町井
松原 真人
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021522760A priority Critical patent/JP7258132B2/ja
Priority to US17/604,766 priority patent/US20220200236A1/en
Publication of WO2020241592A1 publication Critical patent/WO2020241592A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06808Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06835Stabilising during pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4018Lasers electrically in series

Definitions

  • the present disclosure relates to a laser light generator and a laser processing device including the laser light generator.
  • gas laser devices such as CO 2 lasers and solid-state laser devices such as YAG (Yttrium Aluminum Garnet) lasers that are excited by lamps have been conventionally used.
  • LD Laser Diodes
  • solid-state laser devices excited by laser diodes hereinafter referred to as "LD (Laser Diodes)
  • fiber lasers and direct diode laser devices that directly output laser light
  • LD Laser Diodes
  • an LD module composed of a large number of LDs arranged in series or in parallel is generally used.
  • high efficiency and high heat dissipation are required.
  • Patent Document 1 a plurality of power supply units are provided corresponding to a plurality of LD modules, and the drive current of each LD module is controlled so as to maximize the optical conversion efficiency.
  • a laser light generator that obtains higher efficiency is disclosed. Further, in this laser light generator, heat is dispersed and high heat dissipation is obtained by providing a plurality of LD modules and a plurality of power supply units.
  • the LD is a current drive type element
  • a constant current source that supplies the LD with a constant drive current required to obtain a desired laser output. It is common.
  • the response speed of the output current becomes slow due to the storage of electromagnetic energy in the reactor. Therefore, there is a problem that a desired laser pulse cannot be obtained even if an attempt is made to output a laser pulse having a short pulse width according to the processing conditions.
  • Patent Document 2 a switching element is connected in parallel to the LD module, and the switching element is turned on / off to consume the electromagnetic energy of the reactor. Discloses a technique for increasing the response speed of the drive current of the LD module.
  • Patent Document 1 discloses high heat dissipation and high efficiency, but does not disclose the stability of the laser output.
  • Patent Document 2 it is possible that the laser output is rippled due to the current ripple generated in the drive current of the LD module due to the switching operation of the full bridge circuit included in the constant current source, and a stable laser output cannot be obtained. There is sex.
  • a main object of the present disclosure is to provide a laser light generator capable of obtaining a stable laser output, and a laser processing device including the laser light generator.
  • the laser light generator of the present disclosure includes a plurality of power supply units, a plurality of laser diode modules, a condensing unit, and a control device.
  • Each of the plurality of power supply units is driven by a plurality of control signals, and each power supply unit is configured to output a current.
  • a plurality of laser diode modules are provided corresponding to a plurality of power supply units, and each laser diode module is configured to receive a current from the corresponding power supply unit and output a laser beam.
  • the condensing unit is configured to collect and output a plurality of laser beams output from each of the plurality of laser diode modules.
  • the control device is configured to generate a plurality of control signals. The control device is configured so that the phase or frequency of each of the plurality of control signals can be changed.
  • the phase or frequency of each of a plurality of control signals driving a plurality of power supply units can be changed.
  • the ripples contained in the laser light output from the plurality of laser diode modules can be canceled out from each other, and a stable laser output with a small ripple can be obtained.
  • FIG. It is a circuit block diagram which shows the structure of the laser light generator according to Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the control device shown in FIG. It is a block diagram which shows the structure of the control part shown in FIG. It is a circuit block diagram which shows the structure of the power-source part shown in FIG. It is a circuit block diagram which shows the structure of the current path switching circuit shown in FIG. It is a time chart which shows the operation of the laser light generator shown in FIGS. 1 to 5.
  • It is a circuit block diagram which shows the comparative example of Embodiment 1.
  • FIG. It is a time chart which shows the operation of the laser light generator shown in FIG. 7. It is a time chart for demonstrating the problem of Embodiment 1.
  • Embodiment 1 It is a circuit block diagram which shows the modification of Embodiment 1. It is a time chart which shows the operation of the laser light generator shown in FIG. It is a circuit block diagram which shows the other modification of Embodiment 1.
  • FIG. It is a time chart which shows the operation of the laser light generator shown in FIG. It is a circuit block diagram which shows still another modification of Embodiment 1.
  • FIG. It is a time chart which shows the operation of the laser light generator shown in FIG. It is a block diagram which shows the main part of the laser light generator according to Embodiment 2. It is a time chart which shows an example of the operation of the laser light generator shown in FIG. It is a time chart which shows other operation example of the laser light generator shown in FIG.
  • FIG. 1 is a circuit block diagram showing a configuration of a laser light generator according to the first embodiment.
  • the laser light generator includes a plurality of (three in this example) power supply units PS1 to PS3, a plurality of reactors L1 to L3, a plurality of DC positive buses PL1 to PL3, and a plurality of DC negative buses NL1 to NL3.
  • the positive electrodes of the power supply units PS1 to PS3 are connected to one terminal of the reactors L1 to L3, respectively.
  • the other terminals of the reactors L1 to L3 are connected to one end of the DC positive bus PL1 to PL3, respectively.
  • the other ends of the DC positive bus PL1 to PL3 are connected to the anode terminals of the LD modules M1 to M3, respectively.
  • the cathode terminals of the LD modules M1 to M3 are connected to the ground voltage GND line and are connected to one end of each of the DC negative bus lines NL1 to NL3.
  • the other ends of the DC negative bus NL1 to NL3 are connected to the negative electrodes of the power supply units PS1 to PS3, respectively.
  • the power supply units PS1 to PS3 operate in synchronization with the control signals CNT1 to CNT3 supplied from the control device 4, respectively, and output currents I1 to I3.
  • the power supply units PS1 to PS3 are collectively referred to as “power supply unit PS”
  • the control signals CNT1 to CNT3 are collectively referred to as “control signal CNT”
  • the currents I1 to I3 are comprehensively referred to as "current I”. May be called.
  • the power supply unit PS full-wave rectifies the three-phase AC voltage from the AC power supply 5 and converts it into a DC voltage, and converts the DC voltage into an AC voltage having an amplitude corresponding to the duty ratio of the control signal CNT. Then, the AC voltage is full-wave rectified and the current I is output.
  • Reactors L1 to L3 smooth the currents I1 to I3, respectively.
  • the current detectors CD1 to CD3 detect the currents I1 to I3 flowing through the DC positive buses PL1 to PL3, respectively, and control the signals ⁇ I1 to ⁇ I3 indicating the detected values. Output to 4.
  • Each of the LD modules M1 to M3 includes at least one (three in this example) LD connected in series between the anode terminal and the cathode terminal.
  • the LD modules M1 to M3 are driven by the currents IM1 to IM3, respectively, and output laser beams ⁇ 1 to ⁇ 3, respectively.
  • the drive currents IM1 to IM3 of the LD module M1 are 0A.
  • the drive current IM1 of the LD module M1 becomes the current I1.
  • the combiner 1 collects the laser beams ⁇ 1 to ⁇ 3 from the LD modules M1 to M3 and outputs them as one laser beam ⁇ .
  • the power detector 2 detects the power P of the output laser beam ⁇ of the combiner 1 and outputs a signal ⁇ P indicating the detected value.
  • the power P of the laser beam ⁇ is expressed in units such as watts and joules.
  • the operation unit 3 includes, for example, a plurality of buttons operated by the user of the laser light generator, a display device for displaying various information, a numerical control device, and the like.
  • the user of the laser light generator operates the operation unit 3 to set the waveform of the beam-on signal BON indicating the output timing of the laser light ⁇ .
  • the beam-on signal BON is a signal such as a rectangular wave signal, a triangular wave, or a sine wave.
  • the laser beam ⁇ is output when the beam-on signal BON is at the “H” level, and the output of the laser beam ⁇ is stopped when the beam-on signal BON is at the “L” level.
  • the user of the laser light generator operates the operation unit 3 to set the laser output set value Pc indicating the power of the laser light ⁇ .
  • the laser output set value Pc may be a constant value or a value that changes in synchronization with the beam-on signal BON.
  • the waveform of the beam-on signal BON and the laser output set value Pc are stored in a storage unit (not shown) in the operation unit 3. For example, when the user of the laser light generator turns on the output start button included in the operation unit 3, the beam-on signal BON and the laser output set value Pc are read from the storage unit (not shown) and output to the control device 4. Will be done.
  • the control device 4 is a control signal based on the signals ⁇ I1 to ⁇ I3 from the current detectors CD1 to CD3, the signals ⁇ P from the power detector 2, the laser output set value Pc from the operation unit 3, and the beam-on signal BON. CNT1 to CNT3 and beam-on signals B1 to B3 are generated.
  • the control device 4 When the beam-on signal BON is at the "H” level, the control device 4 sets the beam-on signals B1 to B3 to the "H” level and controls the output signal ⁇ P of the power detector 2 to be the laser output set value Pc. Generates signals CNT1 to CNT3. When the beam-on signal BON is at the "L” level, the control device 4 sets the beam-on signals B1 to B3 to the “L” level and stops the generation of the control signals CNT1 to CNT3.
  • the control signal CNT is, for example, a Pulse Width Modulation (PWM) signal.
  • PWM Pulse Width Modulation
  • the frequency (switching frequency) of the control signal CNT is constant, and its duty ratio can be controlled.
  • the duty ratio is the ratio of the time during which the control signal CNT is set to the “H” level within one cycle of the control signal CNT to one cycle.
  • the duty ratio of the control signal CNT1 is controlled so that there is no deviation between the detected values of the current command value Ic1 and the current detector CD1.
  • the current command values Ic1 to Ic3 may be comprehensively referred to as "current command value Ic”
  • the current detectors CD1 to CD3 may be comprehensively referred to as "current detector CD”.
  • the control device 4 shifts the phases of the pulses of the control signals CNT1 to CNT3 by 60 degrees. As a result, the ripple phases of the currents IM1 to IM3 flowing through the LD modules M1 to M3 are shifted by 120 degrees, and the phases of the ripples contained in the laser beams ⁇ 1 to ⁇ 3 are shifted by 120 degrees. As a result, the ripples contained in the laser beams ⁇ 1 to ⁇ 3 cancel each other out, and the ripples contained in the laser beams ⁇ are reduced.
  • control CNT may be a pulse frequency modulation (PFM) signal.
  • PFM pulse frequency modulation
  • the pulse width (time at the "H" level) of the control signal CNT is constant, and its period (that is, frequency) can be controlled. Therefore, when the period (that is, frequency) of the control signal CNT changes, the duty ratio changes.
  • the frequency of the control signal CNT is controlled so that there is no deviation between the current command value Ic and the detection value of the current detector CD.
  • FIG. 1 shows a case where three sets of the power supply unit PS, the reactor L, the current detector CD, the current path switching circuit CS, and the LD module M are provided, but the case is not limited to the three sets. It may be 2 sets or 4 sets or more.
  • the AC power supply 5 supplies, for example, an AC voltage of 100V to 480V to the power supply units PS1 to PS3.
  • the AC power supply 5 may be a three-phase AC power supply or a single-phase AC power supply.
  • the AC power source 5 may be a commercial AC power source or a private power generator.
  • each component of the laser light generator will be described in detail.
  • FIG. 2 is a block diagram showing the configuration of the control device 4.
  • the control device 4 includes a plurality of control units 11 to 13 corresponding to the plurality of power supply units PS1 to PS3, respectively.
  • the control units 11 to 13 are connected to each other by a communication line 14 such as a communication cable, exchange information with each other, and operate in synchronization with each other.
  • the control unit 11 generates the control signal CNT1 and the beam-on signal B1 based on the signal ⁇ I1 from the current detector CD1, the signal ⁇ P from the power detector 2, the laser output set value Pc from the operation unit 3, and the beam-on signal BON. To do.
  • the control unit 12 generates the control signal CNT2 and the beam-on signal B2 based on the signal ⁇ I2 from the current detector CD2, the signal ⁇ P from the power detector 2, the laser output set value Pc from the operation unit 3, and the beam-on signal BON. To do.
  • the phase of the pulse of the control signal CNT2 is 60 degrees behind the phase of the pulse of the control signal CNT1.
  • the control unit 13 generates the control signal CNT3 and the beam-on signal B3 based on the signal ⁇ I3 from the current detector CD3, the signal ⁇ P from the power detector 2, the laser output set value Pc from the operation unit 3, and the beam-on signal BON. To do.
  • the phase of the pulse of the control signal CNT3 is 60 degrees behind the phase of the pulse of the control signal CNT2.
  • the functions of the control units 11 to 13 can be realized by using the processing circuits 15 to 17, respectively.
  • the processing circuits 15 to 17 referred to here refer to dedicated hardware such as a dedicated processing circuit, a processor, and a storage device.
  • the dedicated processing circuit is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or these. The combination of is applicable.
  • the functions of the control units 11 to 13 may be collectively realized by one processing circuit.
  • each of the above functions is realized by software, firmware, or a combination thereof.
  • Software or firmware is written as a program and stored in a storage device.
  • the processor reads and executes the program stored in the storage device. It can be said that these programs cause the computer to execute the procedures and methods for realizing each of the above functions.
  • the storage device corresponds to a semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (Electrically Erasable Programmable Read Only Memory (registered trademark)). ..
  • the semiconductor memory may be a non-volatile memory or a volatile memory.
  • storage devices include magnetic disks, flexible disks, optical disks, compact disks, minidiscs, and DVDs (Digital Versatile Discs).
  • FIG. 3 is a block diagram showing the configuration of the control unit 11.
  • the control unit 11 includes a communication / calculation unit 21, a storage unit 22, a command unit 23, and a current control unit 24.
  • the communication / calculation unit 21 communicates with the other control units 12 and 13 via the communication line 14, obtains the number N of the power supply units PS to be operated and the phase angle ⁇ 1 of the corresponding control signal CNT1, and obtains the number N and the phase angle ⁇ 1.
  • the phase angle ⁇ 1 is given to the command unit 23 and the current control unit 24, respectively.
  • the storage unit 22 stores in advance the share ratio SR1 of the laser output of the corresponding LD module M1.
  • SR1 1 / N.
  • the beam-on signal B1 is given to the current path switching circuit CS1, and the current command value Ic1 is given to the current control unit 24.
  • the current control unit 24 generates a control signal CNT1 so that the current I1 indicated by the output signal ⁇ I1 of the current detector CD1 becomes the current command value Ic1.
  • the phase angle ⁇ 1 of the pulse of the control signal CNT1 is 0 degrees as described above.
  • the duty ratio of the control signal CNT1 is controlled so that there is no deviation between the current I1 and the current command value Ic1. That is, the current control unit 24 reduces the duty ratio of the control signal CNT1 when I1> Ic1 and increases the duty ratio of the control signal CNT1 when I1 ⁇ Ic1. As a result, the current I1 is controlled by the current command value Ic1.
  • the configurations of the other control units 12 and 13 are the same as the configurations of the control units 11.
  • the current command value Ic may be determined only from the laser output set value Pc without using the output signal ⁇ P of the power detector 2. That is, when the current command value Ic is determined only from the laser output set value Pc, the current-power characteristics (IP) of the LD modules M1 to M3 (hereinafter, may be comprehensively referred to as "LD module M").
  • the current command value Ic is determined from the laser output set value Pc based on the characteristic).
  • the IP characteristics may be those described in a data sheet or the like, or those measured in advance. Further, the IP characteristics may be stored in the storage unit 22. By storing the IP characteristic in the storage unit 22, the current command value Ic can be determined from the IP characteristic.
  • the power detector 2 and the peripheral circuits of the power detector 2 are not required, so that the cost of the device can be reduced.
  • the laser light ⁇ having a power P different from the laser output set value Pc is emitted. It may be output.
  • the current command value Ic1 is obtained from the laser output set value Pc based on the current IP characteristics of the LD module M.
  • the current IP characteristics of the LD module M are the output signal ⁇ P of the power detector 2 and the detection value of the current detector CD when the LD module M is driven, or the output signal ⁇ P of the power detector 2. It is a characteristic of the laser output with respect to the drive current IM of the LD module M obtained from the current command value Ic.
  • the LD module M is deteriorated or the IP characteristics are varied, it is possible to obtain the laser beam ⁇ having the same power as the laser output set value Pc. Further, since the degree of deterioration of the LD module M can be known from the current IP characteristics, it is possible to predict the remaining life of the LD module M.
  • FIG. 4 is a circuit block diagram showing the configuration of the power supply unit PS1 shown in FIG.
  • the power supply unit PS1 includes a rectifier circuit 31 that rectifies the AC voltage supplied from the AC power supply 5, a smoothing capacitor 32 that smoothes the output voltage of the rectifier circuit 31, and DC from the rectifier circuit 31 and the smoothing capacitor 32.
  • a full bridge circuit 33 that receives a voltage supply and outputs an AC voltage, and a transformer 34 that transforms the AC voltage supplied from the full bridge circuit 33 into the primary winding 34a and outputs it from the secondary winding 34b.
  • a rectifier circuit 35 that rectifies the AC voltage output from the transformer 34.
  • the full bridge circuit 33 includes four switching elements 33a to 33d.
  • the switching elements 33a and 33d are turned off and the switching elements 33b and 33c are turned on.
  • the switching elements 33a and 33d are turned off and the switching elements 33b and 33c are turned on.
  • the switching elements 33a and 33d are turned on and the switching elements 33b and 33c are turned off.
  • the power supply unit PS1 is driven by the AC power supplied from the AC power supply 5, and outputs a current I1 having a value corresponding to the control signal CNT1 supplied from the control unit 11.
  • the conversion power amount can be changed to the forward circuit method, flyback circuit method, push-pull circuit method, half bridge circuit method, chopper circuit method, etc., which are general DC-DC converter circuit methods.
  • a circuit method that optimizes efficiency and cost may be adopted depending on the situation, or a composite form of these circuit methods may be adopted.
  • the rectifier circuits 31 and 35 are full-wave rectifier circuits composed of diodes.
  • the configuration of the rectifier circuits 31 and 35 is not limited to this. Rectifier circuits 31 and 35 may be configured by using switching elements instead of diodes. In this case, the loss can be reduced.
  • the switching element used in the power supply unit PS and the current path switching circuit CS it is preferable to use an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), or the like.
  • a switching element made of Si (Silicon) material can be used, but if a switching element made of SiC (Siliconcarbide) or GaN (Galliumnitride) material is used, switching loss and conduction loss are suppressed. This makes it possible to improve the efficiency and reduce the loss of the power supply unit PS1.
  • an N-type MOSFET is used as the switching element will be described, but the present invention is not limited to this.
  • the configuration of the power supply unit PS2 and PS3 is the same as the configuration of the power supply unit PS1.
  • the power capacity of each of the power supply units PS1 to PS3 should be reduced. it can.
  • an inexpensive and general-purpose transformer 34 having a small power capacity
  • an inexpensive and general-purpose reactor L1 to L3 having a small power capacity.
  • ⁇ Reactor L1 to L3> The reactors L1 to L3 smooth the currents I1 to I3 supplied from the power supply units PS1 to PS3 to the LD modules M1 to M3, respectively, thereby determining the magnitude of the current ripple generated in the drive currents of the LD modules M1 to M3. Reduce. As a result, the power of the output laser beams ⁇ 1 to ⁇ 3 of the LD modules M1 to M3 can be stabilized.
  • an edgewise coil or an entirely molded reactor may be used as each of the reactors L1 to L3.
  • the edgewise coil referred to here is a coil in which a flat wire is wound in the edgewise direction, and since the winding has a one-layer structure, the winding is round and has a multi-layer structure, as compared with a reactor. The heat dissipation can be improved.
  • the entire molded reactor can dissipate heat from the molded part, so it has higher heat dissipation than the unmolded reactor. Therefore, by using an edgewise coil or a reactor that is entirely molded, it is possible to suppress the temperature rise of each reactor. Therefore, it is possible to reduce the size of the cooling mechanism (for example, heat radiation fins, water cooling mechanism, etc.) required to dissipate heat from the reactor, and to simplify the cooling method (for example, from forced air cooling to natural air cooling), thus reducing the number of cooling members. be able to.
  • the cooling mechanism for example, heat radiation fins, water cooling mechanism, etc.
  • a smoothing capacitor may be provided in parallel with each of the current path switching circuits CS1 to CS3. Specifically, it is connected in parallel between the DC positive bus PL1 and the DC negative bus NL1, between the DC positive bus PL2 and the DC negative bus NL2, and between the DC positive bus PL3 and the DC negative bus NL3.
  • a smoothing capacitor may be provided.
  • the current I output from the power supply unit PS can be further smoothed, the current supplied to the LD module M can be further smoothed, and the laser output of the LD module M can be further stabilized. Therefore, if the response speed of the laser output is not required, it is better to provide a smoothing capacitor.
  • a series resistance element shunt resistance element
  • a CT Current Transformer
  • a Hall current sensor or the like
  • an IC Integrated Circuit
  • FIG. 5 is a circuit block diagram showing the configuration of the current path switching circuit CS1 shown in FIG.
  • the current path switching circuit CS1 includes a switching element 41 connected between the DC positive bus PL1 and the DC negative bus NL1 and a current switching control unit 42 that controls the switching element 41.
  • the switching element 41 is, for example, an N-type MOSFET.
  • the current switching control unit 42 converts the beam-on signal B1 supplied from the control unit 11 (FIG. 3) into a gate signal G1 that turns on and off the switching element 41.
  • the operation of the current path switching circuit CS1 will be described.
  • the beam-on signal B1 is supplied to the current switching control unit 42, and the current switching control unit 42 controls the on / off of the switching element 41.
  • the current I1 output from the reactor L1 is switched between flowing through the LD module M1 and flowing through the switching element 41.
  • the current path switching circuit CS1 raises or lowers the drive current of the LD module M1 in response to the beam-on signal B1.
  • the current path switching circuit CS1 when the drive current of the LD module M1 is started, the switching element 41 is turned on before the drive current of the LD module M1 is started, the current is passed through the reactor L1, and the reactor is pre-reacted. By storing energy in L1, the time required to start up the drive current of the LD module M1 can be shortened.
  • the time required to reduce the drive current of the LD module M1 can be shortened by turning on the switching element 41 and switching the current path of the output current of the reactor L1. That is, by providing the current path switching circuit CS1, it is possible to shorten the time required to start up and down the drive current of the LD module M1, and it is possible to instantly switch the laser output on and off.
  • a snubber circuit may be further provided in parallel with the switching element 41 in order to suppress the surge voltage generated when the switching element 41 is turned off.
  • the snubber circuit for example, an RCD snubber circuit in which a resistor element and a capacitor are connected in parallel and a diode is connected in series to the resistor element may be used.
  • the current path switching circuit CS1 and the LD module M1 are often separated from each other.
  • the wiring between the current path switching circuit CS1 and the LD module M1 becomes long, and the parasitic inductance of the wiring may make it difficult to appropriately control the drive current of the LD module M1.
  • the current path switching circuit CS1 is located near the LD module M1 so that the wiring between the current path switching circuit CS1 and the LD module M1 is shortened. May be installed. Further, the wiring may be wired so that the loop area of the wiring between the current path switching circuit CS1 and the LD module M1 is minimized so that the effect of canceling the mutual inductance of the wiring is large.
  • Each of the current path switching circuits CS2 and CS3 is the same as the current path switching circuit CS1.
  • Each of the LD modules M1 to M3 contains at least one LD.
  • the LD module M includes a plurality of LDs
  • the plurality of LDs are connected in series in the forward direction between the anode terminal and the cathode terminal of the LD module M. Further, in the high power laser apparatus, at least one or more LD modules M are used.
  • the combiner 1 has a function of combining the laser beams ⁇ 1 to ⁇ 3 of the three LD modules M1 to M3.
  • the combiner 1 not only an optical fiber type but also a prism, a mirror, an optical coupling element, or the like may be used.
  • ⁇ Power detector 2> In FIG. 1, it is schematically described that a part of the laser beam ⁇ is incident on the power detector 2 from the combiner 1.
  • a part of the laser beam ⁇ is detected by branching using a beam splitter or the like, for example.
  • the laser beam ⁇ is propagating in the optical fiber, for example, light from the end of the branched optical fiber is detected by using an optical branching device, or leaked light is detected from the clad of the optical fiber. Can be done.
  • the incident structure of the laser beams ⁇ 1 to ⁇ 3 on the power detector 2 is not limited to the structure shown in FIG.
  • the power detector 2 referred to here is a sensor that detects the magnitude of the laser output, and indicates a sensor that measures the amount of light by any of photoelectric, thermal, photochemical, and mechanical methods.
  • a PD (photodiode) that can measure photoelectrically has high sensitivity and a high response speed, so it is preferable to use a PD as the power detector 2.
  • the three control units 11 to 13 (FIG. 2) included in the control device 4 control the three power supply units PS1 to PS3 (FIG. 1), respectively, and control the drive currents of the three LD modules M1 to M3, respectively.
  • the command unit 23 (FIG. 3) of the control unit 11 the value P / 3 of 1/3 of the power P of the laser light ⁇ indicated by the output signal ⁇ P of the power detector 2 is the laser output set value Pc.
  • the drive current of the LD module M1 is determined so as to match the value Pc / 3 of 1/3, and is output as the current command value Ic1. This is to output the laser beam ⁇ 1 having a power of 1/3 of the laser output set value Pc from the LD module M1.
  • the current control unit 24 (FIG. 3) is a full bridge of the power supply unit PS1 so that the current I1 indicated by the output signal ⁇ I1 of the current detector CD1 matches the current command value Ic1 supplied from the command unit 23.
  • the switching elements 33a to 33d included in the circuit 33 (FIG. 4) are controlled to be turned on and off.
  • the switching frequencies of the full bridge circuits 33 of the power supply units PS1 to PS3 are equal to each other, and the switching phases are shifted by 60 degrees.
  • the AC current output by the full bridge circuit 33 is full-wave rectified by the rectifier circuit 35 (FIG. 4), so that the current after rectification is a current ripple with a frequency twice the switching frequency. Occurs. Therefore, the phase difference of the current ripples generated in the currents I1 to I3 output from the power supply units PS1 to PS3 and flowing through the reactors L1 to L3, respectively, is 120 degrees.
  • the currents I1 to I3 flowing through the reactors L1 to L3 are equal to the drive currents of the LD modules M1 to M3. Therefore, the current ripples generated in the drive currents of the three LD modules M1 to M3 have a phase difference of 120 degrees from each other, and the ripples of the laser outputs of the LD modules M1 to M3 also have a phase difference of 120 degrees from each other.
  • the laser output obtained by combining the laser outputs of the modules M1 to M3 can obtain a stable laser output due to the effect of canceling the ripples of the laser outputs.
  • FIG. 6 is a time chart showing the operation of the laser light generators shown in FIGS. 1 to 5.
  • (A) to (C) show the waveforms of the currents IM1 to IM3 flowing through the LD modules M1 to M3, respectively
  • (D) shows the waveform of the power P of the laser beam ⁇ .
  • the phases of the current ripples generated in the drive currents IM1 to IM3 of the LD modules M1 to M3 are shifted by 120 degrees, the ripple of the power P of the laser beam ⁇ is reduced.
  • FIG. 7 is a circuit block diagram showing a comparative example of the first embodiment, and is a diagram to be compared with FIG.
  • the laser light generator of the comparative example differs from the laser light generator of FIG. 1 in that the power supply unit PS2, PS3, the reactor L2, L3, the current detector CD2, CD3, and the current path switching circuit CS2. , CS3, LD modules M2, M3, and combiner 1 have been removed, and LD module M1 has been replaced by LD module M10.
  • the LD module M10 includes a plurality of LDs (9 in this example) connected in series.
  • the power detector 2 detects the power of the laser beam ⁇ 1A output from the LD module M10, and gives a signal ⁇ P indicating the detected value to the control device 4.
  • the output voltage of the power supply unit PS1 is a square wave voltage having an amplitude value of VLI and a frequency of f
  • the voltage on the output side of the reactor L1 is VLO
  • the inductance value of the reactor L1 is L
  • the current ripple (peak to peak) IR superimposed on is expressed by the following equation (1).
  • IR (VLI-VLO) / (L ⁇ f) ⁇ VLO / VLI... (1)
  • VLI 200V
  • VLO 50V
  • f 100kHz
  • L 100 ⁇ H
  • the current ripple IR superimposed on the current I1 flowing through the reactor L1 is 3.75A according to the equation (1).
  • FIG. 8 is a time chart showing the operation of the laser light generator shown in FIG. 7.
  • (A) shows the waveform of the current IM10 flowing through the LD module M10
  • (B) shows the waveform of the power of the laser light ⁇ 1A output from the LD module M10.
  • the drive current IM10 of the LD module M10 and the laser output P are in a proportional relationship.
  • the ripple rate of the laser output P of the LD module M10 is ⁇ 4.7%. That is, the ripple rate of the laser output P of the laser light generator according to the comparative example is ⁇ 4.7%.
  • the terminal voltage of each LD included in the LD modules M1 to M3 is included in the LD module M10. It must be the same as the voltage between the terminals of each LD. For that purpose, since the number of LDs contained in each of the LD modules M1 to M3 is one-third of the number of LDs contained in the LD module M10, the voltage between the terminals of the LD modules M1 to M3 is set. It is necessary to reduce the voltage between terminals of the LD module M10 to one-third.
  • the voltage VLO on the output side of the reactor L1 in the laser light generator of the first embodiment is 50 / 3V, which is one-third of the voltage VLO of the output side of the reactor L1 in the laser light generator of the first embodiment.
  • VLI 200 V
  • f 100 kHz
  • L 100 ⁇ H
  • the current ripple IR superimposed on the current I1 flowing through the reactor L1 is 1.53 A according to the mathematical formula (1).
  • the current ripple rate of the drive currents IM1 to IM3 of the LD modules M1 to M3 is ⁇ 1.9%.
  • the ripple rate of the power of the output laser beams ⁇ 1 to ⁇ 3 of the LD modules M1 to M3 is ⁇ 1.9%.
  • the laser light generator of the first embodiment is used as a laser processing device and the object is processed by irradiating the laser light ⁇ , it is possible to improve the flatness accuracy of the processed cross section at the time of laser processing.
  • the voltage between the terminals of the LD modules M1 to M3 can be reduced to 1/3 of the voltage between the terminals of the LD module M10 in the comparative example, so that the switching element 41 of the current path switching circuit CS ( As shown in FIG. 5), a low-priced low-voltage product can be used.
  • the low-priced, low-voltage switching element 41 has a low on-resistance value, which can contribute to high efficiency.
  • the on-resistance value of an N-type MOSFET with a withstand voltage of 900 V is 0.73 ⁇
  • the on-resistance value of an N-type MOSFET with a withstand voltage of 300 V is 0.04 ⁇
  • Efficiency can be improved.
  • the on-resistance value of each withstand voltage N-type MOSFET is an example of the minimum on-resistance value that is generally used at present.
  • the inductance value of the reactors L1 to L3 in the laser light generator according to the first embodiment is set to one-third of the inductance value of the reactor L1 of the laser light generator according to the comparative example.
  • the current ripple rate of the drive currents of the LD modules M1 to M3 is three times the current ripple rate of the drive currents of the LD modules M1 in the effect 1 of the first embodiment.
  • the ripple rate of the laser output obtained from the combiner 1 is the ripple of the laser output of the LD modules M1 to M3. It is reduced to one-third of the rate, and has the same magnitude as the ripple rate of the laser output of the laser light generator in the effect 1 of the first embodiment. Therefore, when the stability of the laser output is about the same as that of the laser light generator according to the comparative example, the inductance values of the reactors L1 to L3 can be reduced.
  • the reactors L1 to L3 By reducing the inductance values of the reactors L1 to L3, it is possible to reduce the size and cost of the reactors L1 to L3.
  • a place for mounting is limited due to an increase in the size of the reactors L1 to L3, and there is a problem that a high cost is required because the manufacturers that can manufacture the reactor are limited.
  • the reactors L1 to L3 can be miniaturized, the problem that the mounting location is limited can be solved, the number of manufacturers that can manufacture the reactors increases, and a general-purpose reactor at a low price can be used.
  • thermal stress due to the temperature difference of the LD is repeatedly applied to the LD.
  • the light emitting element and the bonding wire in the LD or the lead frame and the bonding wire in the LD are metals having different coefficients of thermal expansion, stress is generated due to the difference in the coefficient of thermal expansion, and the light emitting element and the bonding wire in the LD, Alternatively, cracks may occur at the joint between the lead frame and the bonding wire in the LD, leading to failure.
  • the LD modules M1 to M3 are arranged in a dispersed manner to reduce the temperature difference between the LD temperature when the laser output is large and the LD temperature when the laser output is small. It is possible to reduce LD failure due to thermal stress and extend the life.
  • the temperature difference between the LD temperature when the laser output is large and the LD temperature when the laser output is small becomes small, it is not necessary to use an LD having high reliability under temperature cycle conditions and the like. Further, since the temperature rise of the LD becomes small, a general-purpose LD having a low heat resistant temperature can be used. Therefore, it is possible to replace an expensive LD such as an LD having high reliability under temperature cycle conditions or an LD having a high heat resistant temperature with an inexpensive LD, and it is possible to reduce the cost of the device.
  • FIG. 9 is a time chart for explaining the problems of the first embodiment.
  • (A) shows the waveform of the current command value Ic1 (FIG. 3)
  • (B) shows the waveform of the gate signal G1 (FIG. 5)
  • (C) shows the output current of the reactor L1 (FIG. 1).
  • the waveform of I1 is shown
  • FIG. 1D shows the waveform of the current IM1 flowing through the LD module M1 (FIG. 1).
  • FIG. 9 shows a case where the current command value Ic1 is changed from a large value IH (for example, 40A) to 0A, and then changed to a value IL (for example, 20A) smaller than the value IH.
  • the beam-on signal B1 (FIG. 5) is set to the "H" level of the activation level.
  • the beam-on signal B1 is set to the "L" level of the deactivation level.
  • the current command value Ic1 is set to the value IH, and the current I1 having the same value IH as the current command value Ic1 is output from the power supply unit PS1 and the reactor L1. Further, the gate signal G1 is set to the "L" level and the switching element 41 is turned off. As a result, all the output current I1 of the reactor L1 flows to the LD module M1, the drive current IM1 of the LD module M1 becomes IH, and the high-power laser beam ⁇ 1 is output from the LD module M1. At this time, electromagnetic energy is stored in the reactor L1.
  • the current command value Ic1 is set to 0A
  • the output current of the power supply unit PS1 becomes 0A
  • the gate signal G1 is set to the "H" level
  • the switching element 41 is turned on. Due to the electromagnetic energy stored in the reactor L1, a current I1 flows from the other terminal of the reactor L1 to one terminal of the reactor L1 via the switching element 41 and the rectifier circuit 35 (FIG. 4).
  • the current command value Ic1 is set to the value IL, and the current of the same value IL as the current command value Ic1 is output from the power supply unit PS1. Further, the gate signal G1 is set to the "L" level and the switching element 41 is turned off. As a result, all the output currents I1 of the power supply unit PS1 and the reactor L1 flow to the LD module M1, and the low-power laser beam ⁇ 1 is output from the LD module M1.
  • the internal impedance of the switching element 41 is small, the electromagnetic energy stored in the reactor L1 is hardly consumed at times t1 to t2, and the output current I1 of the reactor L1 is slightly reduced from the IH.
  • FIG. 10 is a circuit block diagram showing a modification 1 of the first embodiment, which is compared with FIG. With reference to FIG. 10, the difference of this modification 1 from the first embodiment is that the current path switching circuit CS1 is replaced by the current path switching circuit CS1A.
  • the current path switching circuit CS1A is obtained by replacing the current switching control unit 42 of the current path switching circuit CS1 with the current switching control unit 42A.
  • the current switching control unit 42A outputs the gate voltage VG in response to the beam-on signal B1.
  • the switching element 41 is, for example, an N-type MOSFET.
  • the gate voltage VG is applied between the gate and the source of the switching element 41.
  • the gate voltage VG is set to the "L” level.
  • the gate voltage VG is set to the set voltage VM for the set time T1 and then set to the "H" level. Be made.
  • the set voltage VM is a voltage between the "L” level and the “H” level, and is set to a voltage required to drive the switching element 41 in the active region.
  • the active region is a region in which the drain current increases when the gate-source voltage of the switching element 41 is increased.
  • the "L" level of the gate voltage VG is set to the voltage required to drive the switching element 41 in the cutoff region.
  • the cutoff region is a region in which the drain current does not flow even if the voltage between the gate and the source of the switching element 41 is increased.
  • FIG. 11 also shows a case where the current command value Ic1 is changed from a large value IH (for example, 40A) to 0A, and then changed to a value IL (for example, 20A) smaller than the value IH.
  • the beam-on signal B1 (FIG. 5) is set to the "H" level of the activation level.
  • the beam-on signal B1 is set to the "L" level of the deactivation level.
  • the current command value Ic1 is set to 0A, and the output current of the power supply unit PS1 becomes 0A. Further, at time t1, the gate voltage VG is set to the set voltage VM. As a result, the switching element 41 is driven in the active region, and the switching element 41 operates as a resistance element.
  • the output current of the power supply unit PS1 becomes 0A, but due to the electromagnetic energy stored in the reactor L1, the other terminal of the reactor L1 passes through the parallel connection of the switching element 41 and the LD module M1 and the rectifier circuit 35 (FIG. 4).
  • the current I1 flows through one terminal of the reactor L1.
  • the electromagnetic waves stored in the reactor L1 without outputting the laser beam ⁇ 1 from the LD module M1.
  • Energy can be consumed by the LD module M1 and the switching element 41, and the output current I1 of the reactor L1 can be rapidly reduced from the IH.
  • the electromagnetic energy stored in the reactor L1 is completely consumed, and the output current I1 of the reactor L1 and the drive current IM1 of the LD module M1 become 0A.
  • the gate voltage VG is set to the "H” level, the switching element 41 operates in the saturation region, and the switching element 41 is turned on.
  • the current command value Ic1 is set to the value IL, and the current of the same value IL as the current command value Ic1 is output from the power supply unit PS1.
  • the gate voltage VG is set to the "L” level and the switching element 41 is turned off. As a result, all the output currents I1 of the power supply unit PS1 and the reactor L1 flow to the LD module M1, and the low-power laser beam ⁇ 1 is output from the LD module M1.
  • the high-power laser beam ⁇ 1 as shown in FIG. 9 is pulsed. It is not output to. Since the same applies to the other laser beams ⁇ 2 and ⁇ 3, the laser beam ⁇ that collects the laser beams ⁇ 1 to ⁇ 3 does not instantaneously become a large power. By performing laser processing using this laser beam ⁇ , it is possible to prevent processing defects from occurring.
  • FIG. 12 is a circuit block diagram showing another modification 2 of the first embodiment, which is compared with FIG. With reference to FIG. 12, the difference between this modification 2 and the first embodiment is that the current path switching circuit CS1 is replaced by the current path switching circuit CS1B.
  • the current path switching circuit CS1B is obtained by adding an energy consuming unit 43 to the current path switching circuit CS1 and replacing the current switching control unit 42 with the current switching control unit 42B.
  • the energy consuming unit 43 includes a resistance element 44 and a switching element 45 connected in series between the DC positive bus PL1 and the DC negative bus NL1.
  • the switching element 45 is, for example, an N-type MOSFET.
  • the current switching control unit 42B outputs gate signals G1 and G2 in response to the beam-on signal B1.
  • the gate signals G1 and G2 are given to the gates of the switching elements 41 and 45, respectively.
  • the beam-on signal B1 is the activation level "H” level
  • both the gate signals G1 and G2 are set to the "L" level.
  • the gate signal G2 When the beam-on signal B1 is lowered from the activation level “H” level to the deactivation level “L” level, the gate signal G2 is raised to the “H” level and after the set time T1 elapses. , The gate signal G2 is lowered to the "L” level, and the gate signal G1 is raised to the "H” level.
  • FIG. 13 is a time chart showing the operation of the laser light generator which is the second modification, and is a diagram to be compared with FIG.
  • FIG. 13 shows the waveform of the current command value Ic1 (FIG. 3)
  • FIG. 3 shows the waveforms of the gate signals G1 and G2 (FIG. 12), respectively
  • (D) shows the reactor L1.
  • the waveform of the output current I1 of FIG. 1 is shown
  • FIG. 1E shows the waveform of the current IM1 flowing through the LD module M1 (FIG. 1).
  • FIG. 13 shows a case where the current command value Ic1 is changed from a large value IH (for example, 40A) to 0A, and then changed to a value IL (for example, 20A) smaller than the value IH.
  • the beam-on signal B1 (FIG. 5) is set to the "H" level of the activation level.
  • the beam-on signal B1 is set to the "L" level of the deactivation level.
  • the reactor L1 does not output the laser beam ⁇ 1 from the LD module M1.
  • the stored electromagnetic energy can be consumed by the LD module M1 and the resistance element 44, and the output current I1 of the reactor L1 can be rapidly reduced from the IH.
  • the electromagnetic energy stored in the reactor L1 is completely consumed, and the output current I1 of the reactor L1 and the drive current IM1 of the LD module M1 become 0A.
  • the gate signal G2 is raised to the "L” level and the switching element 45 is turned off, and the gate signal G1 is raised to the "H” level and the switching element 41 is turned on.
  • the current command value Ic1 is set to the value IL, and the current of the same value IL as the current command value Ic1 is output from the power supply unit PS1. Further, the gate signal G1 is set to the "L" level and the switching element 41 is turned off. As a result, all the output currents I1 of the power supply unit PS1 and the reactor L1 flow to the LD module M1, and the low-power laser beam ⁇ 1 is output from the LD module M1.
  • the high-power laser beam ⁇ 1 as shown in FIG. 9 is pulsed. It is not output to. Since the same applies to the other laser beams ⁇ 2 and ⁇ 3, the laser beam ⁇ that collects the laser beams ⁇ 1 to ⁇ 3 does not have a large power instantaneously. By performing laser processing using this laser beam ⁇ , it is possible to prevent processing defects from occurring.
  • the voltage between terminals of the LD module M1 immediately after the switching element 45 is turned on is VO (0)
  • the inductance value of the reactor L1 is L
  • the resistance value of the resistance element 44 is R
  • the voltage between terminals VO (t) of the LD module M1 is expressed by the following equation (2).
  • the inductance value L of the reactor L2 can be reduced to one-third as compared with the comparative example. Therefore, in this modification 2, the time t required to set the VO (t) to a desired voltage value can be reduced to one-third of that of the comparative example. As a result, the time for turning on the switching element 45 in the energy consuming unit 43 can be reduced to one-third, and the magnitude of the drive current IM1 of the LD module M1 can be switched from a large value IH to a small value IL. The time required can be reduced to one-third, and the response speed of the laser output can be increased.
  • FIG. 14 is a circuit block diagram showing still another modification 3 of the first embodiment, and is a diagram to be compared with FIG. With reference to FIG. 14, the difference between the third modification and the first embodiment is that the current path switching circuit CS1 is replaced by the current path switching circuit CS1C.
  • the current path switching circuit CS1C replaces the current switching control unit 42 with the current switching control unit 42C.
  • FIG. 15 is a time chart showing the operation of the laser light generator according to the modified example 3, and is a diagram to be compared with FIG.
  • FIG. 15 shows the waveform of the current command value Ic1 (FIG. 3)
  • (B) shows the waveform of the gate signal G3 (FIG. 14)
  • (C) shows the output current of the reactor L1 (FIG. 1).
  • the waveform of I1 is shown
  • (D) shows the waveform of the current IM1 flowing through the LD module M1 (FIG. 1)
  • (E) is an example of an enlarged view of the region from time t2 to time t3 of (D).
  • FIG. 15 shows a case where the current command value Ic1 is changed from a large value IH (for example, 40A) to 0A, and then changed to a value IL (for example, 20A) smaller than the value IH.
  • the beam-on signal B1 (FIG. 5) is set to the "H" level of the activation level.
  • the beam-on signal B1 is set to the "L" level of the deactivation level.
  • the current command value Ic1 is set to the value IH, and the current I1 having the same value IH as the current command value Ic1 is output from the power supply unit PS1 and the reactor L1. Further, the gate signal G3 is set to the "L" level and the switching element 41 (FIG. 14) is turned off. As a result, all the output current I1 of the reactor L1 flows to the LD module M1, the drive current IM1 of the LD module M1 becomes IH, and the high-power laser beam ⁇ 1 is output from the LD module M1. At this time, electromagnetic energy is stored in the reactor L1.
  • the current command value Ic1 is set to 0A
  • the output current of the power supply unit PS1 becomes 0A
  • the gate signal G3 is set to the "H" level
  • the switching element 41 is turned on. Due to the electromagnetic energy stored in the reactor L1, a current I1 flows from the other terminal of the reactor L1 to one terminal of the reactor L1 via the switching element 41 and the rectifier circuit 35.
  • the current command value Ic1 is set to the value IL, and the current of the same value IL as the current command value Ic1 is output from the power supply unit PS1.
  • the current switching control unit 42C starts pulse width modulation of the gate signal G3.
  • the pulse width modulation of the gate signal G3 is stopped, and the gate signal G3 is set to the “L” level.
  • the current IM1 having the same value IL as the current command value Ic1 flows through the LD module M1, and the stable laser beam ⁇ 1 is output.
  • the gate signal G3 is pulse-width modulated immediately after the time t2, as shown in FIG. 15 (B).
  • the drive current IM1 of the LD module M1 changes in a pulse shape
  • the power of the laser beam ⁇ 1 output from the LD module M1 changes in a pulse shape. ..
  • the power of the laser beam ⁇ 1 is an average value when the pulse is on and when the pulse is off, the high output as shown in FIG. 9 is not obtained.
  • the other laser light ⁇ 2 and ⁇ 3 are the same as the laser light ⁇ 1, the laser light ⁇ that collects the laser light ⁇ 1 to ⁇ 3 does not have a high output. By performing laser processing using this laser beam ⁇ , it is possible to prevent processing defects from occurring. Further, since the electromagnetic energy of the reactor L1 is not wasted, the efficiency can be improved.
  • FIG. 16 is a block diagram showing a main part of the laser light generator according to the second embodiment, and is a diagram to be compared with FIG.
  • the difference between the laser light generator and the first embodiment is that the phase angles ⁇ 1 to ⁇ 3 of the control signals CNT1 to CNT3 can be set by using the operation unit 3.
  • the phase angles ⁇ 1 to ⁇ 3 are given to the control units 11 to 13, respectively.
  • the user of the laser light generator operates the operation unit 3 to set the phase angles ⁇ 1 to ⁇ 3 of the control signals CNT1 to CNT3 in addition to the laser output set value Pc and the waveform of the beam-on signal BON.
  • Each of the phase angles ⁇ 1 to ⁇ 3 may be a constant value, or may be a value that changes in synchronization with the beam-on signal BON.
  • the waveform of the beam-on signal BON, the laser output set value Pc, and the phase angles ⁇ 1 to ⁇ 3 are stored in a storage unit (not shown) in the operation unit 3.
  • the beam-on signal BON, the laser output set value Pc, and the phase angles ⁇ 1 to ⁇ 3 are read from the storage unit (not shown). Is output to the control device 4.
  • the current control unit 24 (FIG. 3) in the control unit 11 generates the control signal CNT1 having the set phase angle ⁇ 1.
  • the current control unit 24 in the control unit 12 generates the control signal CNT2 having the set phase angle ⁇ 2.
  • the current control unit 24 in the control unit 13 generates a control signal CNT3 having a set phase angle ⁇ 3.
  • phase angles ⁇ 1, ⁇ 2, and ⁇ 3 are 0 degrees, 60 degrees, and 120 degrees, respectively, the same result as in the first embodiment is obtained, and as shown in FIG. 6, the laser outputs of the three LD modules M1 to M3 The ripples effectively cancel each other out, and the ripple rate of the output laser beam ⁇ becomes small.
  • FIG. 17 is a time chart showing an example of the operation of the laser light generator shown in FIG. 16, and is a diagram to be compared with FIG. In FIG. 17, (A) to (C) show the waveforms of the currents IM1 to IM3 flowing through the LD modules M1 to M3, respectively, and (D) shows the waveform of the power P of the laser beam ⁇ .
  • the phases of the current ripples generated in the drive currents IM1 to IM3 of the LD modules M1 to M3 are the same, the ripples of the laser outputs of the three LD modules M1 to M3 are added and the output laser beam ⁇ Ripple rate increases.
  • FIG. 18 is a time chart showing another operation example of the laser light generator shown in FIG. 16, which is compared with FIG. Also in FIGS. 18, (A) to (C) show waveforms of the currents IM1 to IM3 flowing through the LD modules M1 to M3, respectively, and (D) shows the waveform of the power P of the laser beam ⁇ .
  • the phases of the current ripples generated in the drive currents IM1 and IM2 of the LD modules M1 and M2 are shifted by 240 degrees from each other, and the phases of the current ripples generated in the drive currents I2 and I3 of the LD modules M2 and M3 are the same. is there.
  • the ripple generated in the output laser light ⁇ 1 of the LD module M1 and the ripple generated in the output laser light ⁇ 2 and ⁇ 3 of the LD modules M2 and M3 cancel each other out, but the ripple generated in the output laser light ⁇ 2 and ⁇ 3 of the LD modules M2 and M3 are added. Will be done.
  • the ripple rate of the laser output can be changed instantaneously by changing the phase angles ⁇ 1 to ⁇ 3 of the control signals CNT1 to CNT3 to a desired magnitude.
  • the processed cross section can be made to the desired flatness accuracy according to the magnitude of the ripple rate of the laser output, and the pattern such as a satin finished surface can be made highly accurate. It is possible to form or form a flat processed cross section. Further, by synchronizing the control of the processing head that outputs the laser beam ⁇ with the frequency of the ripple generated in the laser output, for example, the unevenness of the processing cross section caused by the ripple can be formed at regular intervals to create a pattern. ..
  • FIG. 19 is a block diagram showing a main part of the laser light generator according to the third embodiment, and is a diagram to be compared with FIG. With reference to FIG. 19, the difference between the laser light generator and the second embodiment is that the frequencies f1 to f3 of the control signals CNT1 to CNT3 can be set by using the operation unit 3, and the set frequencies are set. This is a point where f1 to f3 are given to the control units 11 to 13, respectively.
  • the user of the laser light generator operates the operation unit 3 to set the frequencies f1 to f3 of the control signals CNT1 to CNT3 in addition to the laser output set value Pc and the waveform of the beam-on signal BON.
  • Each of the frequencies f1 to f3 may be a constant value, or may be a value that changes in synchronization with the beam-on signal BON.
  • the waveform of the beam-on signal BON, the laser output set value Pc, and the frequencies f1 to f3 are stored in a storage unit (not shown) in the operation unit 3.
  • the beam-on signal BON, the laser output set value Pc, and the frequencies f1 to f3 are read from the storage unit (not shown). Is output to the control device 4.
  • the current control unit 24 (FIG. 3) in the control unit 11 generates the control signal CNT1 having the set frequency f1.
  • the current control unit 24 in the control unit 12 generates a control signal CNT2 having a set frequency f2.
  • the current control unit 24 in the control unit 13 generates a control signal CNT3 having a set frequency f3.
  • the full bridge circuits 33 (FIG. 4) of the power supply units PS1 to PS3 are switched according to the control signals CNT1 to CNT3, respectively.
  • the switching frequency of the full bridge circuit 33 is low, the switching loss is small, the temperature rise of the power supply units PS1 to PS3 is small, but the current ripple is large.
  • the switching frequency of the full bridge circuit 33 is high, the switching loss generated in the full bridge circuit 33 is large, the temperature rise of the power supply units PS1 to PS3 is large, but the current ripple is small.
  • the high temperature power supply unit is switched at a low frequency, and the low temperature power supply unit is switched at a high frequency to reduce the temperature rise of the high temperature power supply unit and reduce the temperature rise of the low temperature power supply unit. It is possible to reduce the current ripple superimposed on the output current of the frequency unit. That is, by changing the frequencies f1 to f3 of the control signals CNT1 to CNT3 during operation, it is possible to reduce the current ripple and suppress the temperature rise of the power supply unit PS.
  • FIG. 21 is a block diagram showing a main part of the laser light generator according to the fourth embodiment, and is a diagram to be compared with FIG.
  • the difference between the laser light generator and the first embodiment is that the operation unit 3 can be used to set a mode for predicting the remaining life of the LD modules M1 to M3.
  • the signal CM1 is given from the operation unit 3 to the control units 11 to 13.
  • the control units 11 to 13 sequentially execute the remaining life prediction mode in response to the signal CM1.
  • the command unit 23 (FIG. 3) of the control unit 11 executes the remaining life prediction mode before the command unit 23 of the control units 12 and 13.
  • the command unit 23 sequentially outputs a plurality of current command values Ic1 having different values one by one.
  • the current control unit 24 controls the duty ratio of the control signal CNT1 so that the current I1 indicated by the output signal ⁇ I1 of the current detector CD1 becomes the current command value Ic1.
  • the current I1 is output from the power supply unit PS1
  • the LD module M1 is driven by the current I1
  • the laser beam ⁇ 1 is output.
  • the power of the laser beam ⁇ 1 is detected by the power detector 2 (FIG. 1), and a signal ⁇ P indicating the detected value is given to the command unit 23.
  • the command unit 23 changes the magnitude of the current command value Ic1 in a plurality of steps, detects the power of the laser beam ⁇ 1 indicated by the output signal ⁇ P of the power detector 2 for each current command value Ic1, and detects the power of the laser beam ⁇ 1.
  • the current-power characteristic (IP characteristic) of the above is obtained, and the IP characteristic is stored in the storage unit 22.
  • the storage unit 22 stores the initial IP characteristics.
  • the command unit 23 compares the initial IP characteristics stored in the storage unit 22 with the IP characteristics after aging deterioration, and predicts the remaining life Tr1 of the LD module M1 based on the comparison result. ..
  • FIG. 22 is a diagram showing the IP characteristics at the initial stage and the IP characteristics after aging deterioration stored in the storage unit 22.
  • the LD module M1 at the initial stage outputs the laser beam ⁇ 1 when the drive current IM1 is equal to or higher than the threshold current Is1.
  • the LD module M1 after deterioration with time outputs the laser beam ⁇ 1 when the drive current IM1 is the threshold current Is2 or more. Is1 ⁇ Ith2.
  • the laser output efficiency E1 of the LD module M1 at the initial stage is larger than the laser output efficiency E2 of the LD module M1 after deterioration over time.
  • the laser output efficiency is the slope of the IP characteristic curve in the region above the threshold current Is.
  • the command unit 23 determines the initial threshold current Is1 and the laser output efficiency E1 from the initial IP characteristics and the aging deterioration IP characteristics stored in the storage unit 22, and the aging deterioration.
  • the threshold current Is2 and the laser output efficiency E2 are read, the read Is1, E1 and Is2, E2 are compared, and the remaining life Tr1 of the LD module M1 after aging deterioration is predicted based on the comparison result.
  • control unit 12 (FIG. 21) predicts the remaining life Tr2 of the LD module M2 in the same manner as the control unit 11.
  • control unit 13 (FIG. 21) predicts the remaining life Tr3 of the LD module M3 in the same manner as the control unit 11.
  • the control units 11 to 13 reduce the share ratio SR of the LD module M having a short remaining life Tr and the LD module having a long remaining life Tr.
  • the power sharing ratios SR1 to SR3 of the LD modules M1 to M3 are changed so that the sharing ratio SR of M becomes large.
  • the current command values Ic1 to Ic3 are set so that the drive current IM of the LD module M having a short remaining life Tr becomes small and the drive current IM of the LD module M having a long remaining life Tr becomes large. It is possible to extend the life of the LD module M having a short remaining life Tr.
  • FIG. 23 is a circuit block diagram showing the configuration of the laser light generator according to the fifth embodiment, and is a diagram to be compared with FIG. With reference to FIG. 23, this laser light generator differs from the laser light generator of FIG. 1 in that voltage detectors VD1 to VD3 are added and the control device 4 is replaced by the control device 4A. ..
  • the voltage detector VD1 detects the voltage V1 between the terminals of the LD module M1 and outputs a signal ⁇ V1 indicating the detected value to the control device 4A.
  • the voltage detector VD2 detects the voltage V2 between the terminals of the LD module M2 and outputs a signal ⁇ V2 indicating the detected value to the control device 4A.
  • the voltage detector VD3 detects the voltage V3 between the terminals of the LD module M3 and outputs a signal ⁇ V3 indicating the detected value to the control device 4A.
  • FIG. 24 is a block diagram showing the configuration of the control device 4A, which is compared with FIG. 2. With reference to FIG. 24, the difference between the control device 4A and the control device 4 is that the control units 11 to 13 are replaced with the control units 11A to 13A, respectively.
  • the user of the laser light generator operates the operation unit 3 to set the remaining life prediction mode for predicting the remaining life of the LD modules M1 to M3.
  • the operation unit 3 gives the signals CM2 instructing the execution of the remaining life prediction mode to the control units 11A to 13A.
  • the control units 11A to 13A execute the remaining life prediction mode in response to the signal CM2.
  • the output signals ⁇ V1 to ⁇ V3 of the voltage detectors VD1 to VD3 are given to the control units 11A to 13A, respectively.
  • FIG. 25 is a block diagram showing the configuration of the control unit 11A, which is compared with FIG. With reference to FIG. 25, the difference between the control unit 11A and the control unit 11 is that the command unit 23 is replaced by the command unit 23A.
  • the command unit 23A of the control unit 11A executes the remaining life prediction mode.
  • the command unit 23A sequentially outputs a plurality of current command values Ic1 having different values one by one.
  • the current control unit 24 controls the duty ratio of the control signal CNT1 so that the current I1 indicated by the output signal ⁇ I1 of the current detector CD1 becomes the current command value Ic1.
  • the current I1 is output from the power supply unit PS1, the LD module M1 is driven by the current I1, and the laser beam ⁇ 1 is output.
  • the command unit 23A changes the magnitude of the current command value Ic1 in a plurality of steps, and detects the inter-terminal voltage V1 of the LD module M1 indicated by the output signal ⁇ V1 of the voltage detector VD1 for each current command value Ic1.
  • the current-voltage characteristic (IV characteristic) of the LD module M1 is obtained, and the IV characteristic is stored in the storage unit 22.
  • the storage unit 22 stores the initial IV characteristics.
  • the command unit 23A compares the initial IV characteristic stored in the storage unit 22 with the IV characteristic after aging deterioration, and predicts the remaining life of the LD module M1 based on the comparison result.
  • FIG. 26 is a diagram showing the IV characteristics at the initial stage and the IV characteristics after aging deterioration stored in the storage unit 22.
  • the current IM1 starts to flow when V1 reaches the threshold voltage Vth1, and is proportional to V1 thereafter.
  • IM1 increases.
  • the current IM1 starts to flow when V1 reaches the threshold voltage Vth2, and then the IM1 becomes proportional to V1.
  • the command unit 23A determines the initial threshold voltage Vth1 and the threshold voltage Vth2 after aging deterioration based on the initial IV characteristics and the aging deterioration IV characteristics stored in the storage unit 22. Is read, Vth1 and Vth2 are compared, and the remaining life Tr1 of the LD module M1 after aging deterioration is predicted based on the comparison result.
  • the control units 12A and 13A (FIG. 24) predict the remaining life Tr2 and Tr3 of the LD modules M2 and M3 at the same time as the control unit 11A in the same manner as the control unit 11A.
  • the control units 11A to 13A When the normal operation of outputting the laser beam ⁇ is performed after the end of the remaining life prediction mode, the control units 11A to 13A have a small share ratio SR of the LD module M having a short remaining life Tr, and the LD module having a long remaining life Tr.
  • the power sharing ratios SR1 to SR3 of the LD modules M1 to M3 are changed so that the sharing ratio SR of M becomes large.
  • the current command values Ic1 to Ic3 are determined so that the drive current IM of the LD module M having a short remaining life Tr becomes small and the drive current IM of the LD module M having a long remaining life Tr becomes large. Extends the life of the LD module M, which has a short life Tr.
  • the inter-terminal voltages V1 to V3 of the three LD modules M1 to M3 can be detected at the same time, and the LD modules M1 to M3 can be detected.
  • the IV characteristics can be detected at the same time. Therefore, the remaining life can be predicted in a shorter time as compared with the fourth embodiment in which it is necessary to sequentially detect the IP characteristics of the LD modules M1 to M3 one by one.
  • the IV characteristics of the LD modules M1 to M3 can be measured even when all the LD modules M1 to M3 are in the operating state, for example, during processing of the workpiece using the laser beam ⁇ . However, the remaining life can be measured.
  • FIG. 27 is a block diagram showing a main part of the laser light generator according to the sixth embodiment, which is compared with FIG. 24.
  • the difference between this laser light generator and the fifth embodiment is that the operating unit 3 is used to set a luminous efficiency detection mode for detecting the luminous efficiencies EA1 to EA3 of the LD modules M1 to M3.
  • This is a point where the signal CM3 is given from the operation unit 3 to the control units 11A to 13A when the mode is set.
  • the control units 11A to 13A sequentially execute the luminous efficiency detection mode in response to the signal CM3.
  • the command unit 23A executes the luminous efficiency detection mode before the control units 12A and 13A.
  • the command unit 23A outputs the set current command value Ic1.
  • the current control unit 24 controls the duty ratio of the control signal CNT1 so that the current I1 indicated by the output signal ⁇ I1 of the current detector CD1 becomes the current command value Ic1.
  • the current I1 is output from the power supply unit PS1, the LD module M1 is driven by the current I1, and the laser beam ⁇ 1 is output.
  • the power of the laser beam ⁇ 1 is detected by the power detector 2, and a signal ⁇ P indicating the detected value is given to the command unit 23A. Further, the voltage V1 between the terminals of the LD module M1 is detected by the voltage detector VD1, and a signal ⁇ V1 indicating the detected value is given to the command unit 23A.
  • the command unit 23C is based on the power of the laser beam ⁇ 1 indicated by the signal ⁇ P, the inter-terminal voltage V1 of the LD module M1 indicated by the signal ⁇ V1, and the drive current I1 of the LD module M1 indicated by the current command value Ic1.
  • the light emission efficiency EA1 P / (V1 ⁇ I1) of the LD module M1 is obtained.
  • the control unit 12A detects the luminous efficiency EA2 of the LD module M2 in the same manner as the control unit 11A.
  • the control unit 13A detects the luminous efficiency EA3 of the LD module M3 in the same manner as the control unit 11A.
  • the control units 11A to 13A When the normal operation of outputting the laser beam ⁇ is performed after the end of the luminous efficiency detection mode, the control units 11A to 13A have a small share ratio SR of the LD module M having a low luminous efficiency EA, and the LD module having a high luminous efficiency EA.
  • the power sharing ratios SR1 to SR3 of the LD modules M1 to M3 are changed so that the sharing ratio SR of M becomes large.
  • the drive current IM of the LD module M having a low luminous efficiency EA is reduced, and the drive current IM of the LD module M having a high luminous efficiency EA is increased, so that the efficiency of the laser light generator can be improved.
  • the junction temperature of each LD varies depending on the characteristics of the LD and the arrangement of the cooling member such as the heat sink. Therefore, in some LDs, the temperature difference between the junction temperature when the laser output of the LD module is on and when it is off cannot be reduced, and the thermal stress caused by the heat cycle is repeatedly applied to the LD, and the LD is early. It may lead to failure. In the seventh embodiment, this problem is solved.
  • FIG. 28 is a circuit block diagram showing the configuration of the laser light generator according to the seventh embodiment, and is a diagram to be compared with FIG. With reference to FIG. 28, this laser light generator differs from the laser light generator of FIG. 1 in that temperature detectors TD1 to TD3 are added and the control device 4 is replaced with the control device 4B. ..
  • the temperature detector TD1 detects the temperature Te1 of the LD module M1 and gives a signal ⁇ Te1 indicating the detected value to the control device 4B.
  • the temperature detector TD2 detects the temperature Te2 of the LD module M2 and gives a signal ⁇ Te2 indicating the detected value to the control device 4B.
  • the temperature detector TD3 detects the temperature Te3 of the LD module M3 and gives a signal ⁇ Te3 indicating the detected value to the control device 4B.
  • FIG. 29 is a circuit block diagram showing the configuration of the control device 4B, which is compared with FIG. 2.
  • the control device 4B differs from the control device 4 of FIG. 2 in that the control units 11 to 13 are replaced with the control units 11B to 13B, respectively.
  • the user of the laser light generator operates the operation unit 3 to set a temperature detection mode for detecting temperatures Te1 to Te3 when the LD modules M1 to M3 are off.
  • the operation unit 3 gives the signals CM4 instructing the execution of the temperature detection mode to the control units 11B to 13B.
  • the control units 11B to 13B execute the temperature detection mode in response to the signal CM4.
  • FIG. 30 is a block diagram showing the configuration of the control unit 11B, which is compared with FIG. With reference to FIG. 30, the difference between the control unit 11B and the control unit 11 is that the command unit 23 is replaced by the command unit 23B.
  • the command unit 23B executes the temperature detection mode.
  • the command unit 23B outputs the current command value Ic1 for passing the set current.
  • the current control unit 24 controls the duty ratio of the control signal CNT1 so that the current I1 indicated by the output signal ⁇ I1 of the current detector CD1 becomes the current command value Ic1.
  • the current I1 is output from the power supply unit PS1, the LD module M1 generates heat due to the current I1, and the temperature Te1 of the LD module M1 rises.
  • the temperature Te1 of the LD module M1 is detected by the temperature detector TD1 (FIG. 28), and a signal ⁇ Te1 indicating the detected value is given to the command unit 23B.
  • the command unit 23B detects the temperature Te1 of the LD module M1.
  • the control units 12B and 13B (FIG. 29) detect the temperatures Te2 and Te3 of the LD modules M2 and M3, respectively, in the same manner as the control unit 11B.
  • the control units 11B to 13B When the normal operation of outputting the laser beam ⁇ is performed after the temperature detection mode is completed, the control units 11B to 13B have a small current flowing through the LD module M having a high temperature Te and a large current flowing through the LD module M having a low temperature Te.
  • the current command values Ic1 to Ic3 of the LD modules M1 to M3 are determined so that the current flows.
  • the temperature difference at the junction of the LD can be reduced even if the characteristics of the LD vary or the arrangement of cooling members such as a heat sink affects the LD, and the thermal stress caused by the heat cycle is repeatedly applied to the LD.
  • the life of the LD modules M1 to M3 can be extended.
  • the temperatures Te1 to Te3 of the LD modules M1 to M3 may be measured at the same time by the temperature detectors TD1 to TD3.
  • the IP characteristics, IV characteristics, threshold current Is, threshold voltage Vth, laser output efficiency E, and light emission efficiency EA of the LD modules M1 to M3 depend on the temperatures Te1 to Te3 of the LD modules M1 to M3. Change. Therefore, when predicting the remaining life of the LD modules M1 to M3, the remaining life of the LD modules M1 to M3 is predicted by considering the temperatures Te1 to Te3 of the LD modules M1 to M3 measured by the temperature detectors TD1 to TD3. It is possible to improve the accuracy.
  • FIG. 31 is a circuit block diagram showing a main part of the laser light generator according to the eighth embodiment, and is a diagram to be compared with FIG. With reference to FIG. 31, the difference between the laser light generator and the first embodiment is that the control device 4 is replaced by the control device 4C. In the control device 4C, the control units 11 to 13 are replaced with the control units 11C to 13C. In the eighth embodiment, it is possible to set a mode in which the number N of the LD modules M to emit light is changed according to the laser output set value Pc by using the operation unit 3, and the mode is set. In this case, the signal CM5 is given from the operation unit 3 to the control units 11C to 13C.
  • FIG. 32 is a block diagram showing the configuration of the control unit 11C, and is a diagram to be compared with FIG. With reference to FIG. 32, the difference between the control unit 11C and the control unit 11 is that the communication / calculation unit 21 is replaced by the communication / calculation unit 21A.
  • the command unit 23 of the control unit 11C so that the value of 1 / N of the power P of the output laser light ⁇ indicated by the output signal ⁇ P of the power detector 2 becomes the value of 1 / N of the laser output set value Pc. Generates the current command value Ic1.
  • the current control unit 24 generates the control signal CNT1 so that the detected value of the current detector CD1 becomes the current command value Ic1. Since other configurations and operations are the same as those in the first embodiment, the description thereof will not be repeated.
  • the laser output set value Pc when the laser output set value Pc is small, only one of the LD modules M1 to M3 (for example, M1) is made to emit light, so that the laser has a lower power than that of the first embodiment. It can output light ⁇ . Therefore, when the workpiece is processed by using the laser beam ⁇ , fine and precise processing can be performed by using the low power laser beam ⁇ .
  • FIG. 33 is a diagram showing the relationship between the drive current IM (A) of the LD module M and the current ripple rate Ri (%).
  • the current ripple rate of the LD module M10 with respect to the drive current IM is ⁇ 9. It will be 4%.
  • the number of LDs is 3 minutes as compared with the comparative example in order to obtain the same output as the laser light generator (FIG. 7) according to the comparative example of the first embodiment.
  • 60A which is a drive current IM of three times the size
  • the current ripple rate Ri of the LD module M1 with respect to the drive current IM is ⁇ 3.1%. Therefore, in the eighth embodiment, when the low output operation is performed, the current ripple rate Ri of the drive currents of the LD modules M1 to M3 can be reduced, and a stable laser output can be obtained.
  • the eighth embodiment not only a stable laser output can be obtained, but also the power conversion efficiency can be improved.
  • FIG. 34 is a diagram showing the relationship between the laser output and the power conversion efficiency.
  • a curve (solid line) showing the characteristics of the laser light generator according to the eighth embodiment and a curve (dotted line) showing the characteristics of the laser light generator (FIG. 7) according to the comparative example of the first embodiment. Is shown.
  • the eighth embodiment and the comparative example of the first embodiment are described in a low output region where the laser output is 0 to 33% and the laser output is 33 to 66%.
  • the medium output region and the high output region where the laser output is 66 to 100% are divided and compared.
  • the eighth embodiment when the laser output is reduced from 100%, a high power conversion efficiency of about 94% is obtained in the high output region and the medium output region, and the laser output is about 20. If it is less than%, the power conversion efficiency is greatly reduced.
  • the power conversion efficiency of the power supply unit PS1 is high at high output, but the power conversion efficiency of the power supply unit PS1 is low at low output. Because. Therefore, in the comparative example, there is a problem that the power conversion efficiency at low output is low.
  • the power conversion efficiency at the time of low output can be improved by setting the mode in which the number N of the LD modules M to emit light is changed according to the laser output set value Pc. ..
  • the power capacity of each of the power supply units PS1 to PS3 is about one-third of the power capacity of the power supply unit PS1 of the laser light generator (FIG. 7) according to the comparative example. Then, in the low output region, in order to make only one of the LD modules M1 to M3 (for example, the LD module M1) emit light, one of the power supply units PS1 to PS3 (for example, the power supply unit PS1) is emitted. ) Is used only.
  • the medium output region in order to make only any two LD modules (for example, LD modules M1 and M2) of the LD modules M1 to M3 emit light, two power supply units (for example, a power supply) among the power supply units PS1 to PS3 are emitted. Only parts PS1, PS2) are used. Further, in the high output region, all of the power supply units PS1 to PS3 are used in order to make all of the LD modules M1 to M3 emit light. As a result, in the eighth embodiment, the power conversion efficiency of the power supply units PS1 to PS3 can be increased in a wide range from the low output region to the high output region.
  • the ripple rate of the laser output is reduced, so that stable and accurate processing is possible even when the laser output is small. For example, when processing a thin plate, processing with less burrs and fine processing become possible. Laser marking at low output is also possible. Therefore, the conditions that can be processed are greatly expanded. Therefore, it is possible to improve the reliability of the laser processing accuracy.
  • the LD modules M1 to M3 may be sequentially driven one by one.
  • the power supply unit PS1, the reactor L1, and the LD module M1, the power supply unit PS2, the reactor L2, and the LD module M2, and the power supply unit PS3, the reactor L3, and the LD module M3 can be sequentially suspended. It is possible to suppress the temperature rise of the power supply units PS1 to PS3, the reactors L1 to L3, and the LD modules M1 to M3.
  • FIG. 35 is a circuit block diagram showing a main part of the laser light generator according to the ninth embodiment, and is a diagram to be compared with FIG. With reference to FIG. 35, the difference between the laser light generator and the first embodiment is that the control device 4 is replaced with the control device 4D. In the control device 4D, the control units 11 to 13 of the control device 4 are replaced with the control units 11D to 13D, respectively, and the notification unit 50 is added.
  • the user of the laser light generator operates the operation unit 3 to set a failure detection mode for detecting a failure of the LD modules M1 to M3.
  • the operation unit 3 gives the signals CM6 instructing the execution of the failure detection mode to the control units 11D to 13D.
  • the control units 11D to 13D execute the failure detection mode in response to the signal CM6.
  • control unit 11D responds to the signal CM6 so that the difference between the power of the laser beam ⁇ 1 indicated by the output signal ⁇ P of the power detector 2 and the laser output set value Pc is eliminated.
  • the current command value Ic1 is generated to cause the LD module M1 to emit light.
  • the control unit 11D determines that a short-circuit failure of the LD module M1 has occurred, and activates the signal ⁇ S1 from the non-activation level “L” level. Raise to the "H" level of the level.
  • the reference value Ps is a reference current value for determining whether or not the LD module M is out of order.
  • control unit 11D determines that an open failure of the LD module M1 has occurred when the current I1 indicated by the output signal ⁇ I1 of the current detector CD1 is 0A when the power supply unit PS1 is being driven. , The signal ⁇ O1 is raised from the non-activation level “L” level to the activation level “H” level.
  • the control unit 12D is the same as the control unit 11D, and when the power of the laser beam ⁇ 2 is smaller than the reference value Ps, it is determined that a short-circuit failure of the LD module M2 has occurred, and the signal ⁇ S2 is set to the deactivation level. Raise from the "L” level to the activation level "H” level. Further, the control unit 12D determines that an open failure of the LD module M2 has occurred when the current I2 indicated by the output signal ⁇ I2 of the current detector CD2 is 0A when the power supply unit PS2 is being driven. , The signal ⁇ O2 is raised from the non-activation level “L” level to the activation level “H” level.
  • the control unit 13D is also the same as the control unit 11D, and when the power of the laser beam ⁇ 3 is smaller than the reference value Ps, it is determined that a short-circuit failure of the LD module M3 has occurred, and the signal ⁇ S3 is set to the deactivation level. Raise from the "L” level to the activation level "H” level. Further, the control unit 13D determines that an open failure of the LD module M3 has occurred when the current I3 indicated by the output signal ⁇ I3 of the current detector CD3 is 0A when the power supply unit PS3 is being driven. , The signal ⁇ O3 is raised from the non-activation level “L” level to the activation level “H” level.
  • the notification unit 50 When the signals ⁇ S1 to ⁇ S3 are set to the activation level “H” level, the notification unit 50 notifies that a short-circuit failure of the LD modules M1 to M3 has occurred by sound, light, an image, or the like. Notify the user of. Further, when the signals ⁇ O1 to ⁇ O3 are set to the activation level “H” level, the notification unit 50 indicates that an open failure of the LD modules M1 to M3 has occurred by sound, light, an image, or the like. Notify the user of the generator.
  • FIG. 36 is a flowchart showing the operation of the control device 4D in the failure detection mode.
  • the control device 4D controls the power supply unit PS and drives the drive current IM to any one of the LD modules M1 to M3 (hereinafter, referred to as the LD module M1). (IM1) is supplied.
  • step S2 the control device 4D determines whether or not the drive current IM1 flowing through the LD module M1 is 0A based on the output signal ⁇ I1 of the current detector CD1 corresponding to the LD module M1, and the drive current IM1 is 0A. If this is the case, the process proceeds to step S5 because an open failure of the LD module M1 has occurred, and if the drive current IM1 is not 0A, the process proceeds to step S3.
  • step S3 the control device 4D determines whether or not the laser output of the driven LD module M1 is less than the reference value Ps, and if the laser output is less than the reference value Ps, a short-circuit failure of the LD module M1 occurs. Since it has occurred, the process proceeds to step S5, and if the laser output is not less than the reference value Ps, the process proceeds to step S4. In step S4, the control device 4D determines that the driven LD module M1 has not failed, and proceeds to step S8.
  • the control device 4D determines that a failure of the LD module M1 has occurred in step S5, notifies that a failure has occurred using the notification unit 50 in step S6, and uses the LD module M1 that has failed in step S7. To cancel. Specifically, the supply of the control signal to the power supply unit PS1 corresponding to the failed LD module M1 is stopped, and the supply of the current to the LD module M1 is stopped.
  • step S8 the control device 4D determines whether or not there is an LD module for which the presence or absence of a failure has not yet been determined, and if there is no undetermined LD module, the execution of the failure detection mode ends.
  • the control device 4D supplies the drive current IM (IM2) to any one of the undetermined LD modules (for example, the LD module M2), and returns to step S2.
  • Steps S2 to S9 are repeatedly executed until it is determined whether or not all the LD modules have failed.
  • the controller 4D uses the drive current IM of the remaining LD module M to output the laser beam ⁇ of the power indicated by the laser output set value Pc until the failed LD module is repaired or replaced with a new one. change.
  • the laser light generator according to the ninth embodiment it is possible to detect the presence or absence of failure of the LD module M and output the laser light ⁇ using the LD module that has not failed.
  • the laser beam generator (FIG. 7) according to the comparative example of the first embodiment, since only one LD module M10 is provided, if the LD module M10 fails, the device is operated until the repair is completed. This may not be possible, and the laser processing process may be completely stopped, resulting in a large loss for a factory equipped with a laser processing device.
  • the laser output can be supplemented by the other LD module to perform the laser processing, so that the laser processing process is stopped.
  • the loss of the factory can be suppressed.
  • the laser light generator according to the ninth embodiment since the same number of LDs as the LD module M10 are distributed among the three LD modules M1 to M3, even if one LD fails, the failed LD is generated. It is only necessary to replace the LD in the included LD module. Therefore, the number of LDs to be replaced can be reduced to one-third as compared with the comparative example, and the repair cost can be reduced.
  • both the short-circuit failure and the open failure are detected, but only the short-circuit failure may be detected, or only the open failure may be detected.
  • FIG. 37 is a circuit block diagram showing a main part of the laser light generator according to the tenth embodiment, which is compared with FIG. 24.
  • the difference between the laser light generator and the fifth embodiment is that the control device 4A is replaced with the control device 4E.
  • the control device 4E replaces the control units 11A to 13A of the control device 4A with the control units 11E to 13E, respectively.
  • the user of the laser light generator operates the operation unit 3 to set a failure detection mode for detecting a failure of the LD modules M1 to M3.
  • the operation unit 3 gives the signals CM7 instructing the execution of the failure detection mode to the control units 11E to 13E.
  • the control units 11E to 13E execute the failure detection mode in response to the signal CM7.
  • the control unit 11E performs the same operation as the control unit 11A, and in response to the signal CM7, has a value P / 3 of 1/3 of the power P of the laser beam ⁇ indicated by the output signal ⁇ P of the power detector 2.
  • the current command value Ic1 is generated and the LD module M1 is made to emit light so that there is no difference between the laser output set value Pc and the value Pc / 3.
  • the control unit 11E determines that a short-circuit failure of the LD module M1 has occurred when the voltage V1 between terminals of the LD module M1 indicated by the output signal ⁇ V1 of the voltage detector VD1 is smaller than the reference value Vs.
  • the signal ⁇ S1 is raised from the non-activation level “L” level to the activation level “H” level.
  • the reference value Vs is a reference voltage value for determining whether or not the LD module M is out of order.
  • control unit 11E determines that an open failure of the LD module M1 has occurred when the current I1 indicated by the output signal ⁇ I1 of the current detector CD1 is 0A when the power supply unit PS1 is being driven. , The signal ⁇ O1 is raised from the non-activation level “L” level to the activation level “H” level.
  • the control unit 12E is the same as the control unit 11E, and when the voltage V2 between terminals of the LD module M2 indicated by the output signal ⁇ V2 of the voltage detector VD2 is smaller than the reference value Vs, a short-circuit failure of the LD module M2 occurs. It is determined that the signal has occurred, and the signal ⁇ S2 is raised from the non-activation level “L” level to the activation level “H” level. Further, the control unit 12E determines that an open failure of the LD module M2 has occurred when the current I2 indicated by the output signal ⁇ I2 of the current detector CD2 is 0A when the power supply unit PS2 is being driven. , The signal ⁇ O2 is raised from the non-activation level “L” level to the activation level “H” level.
  • the control unit 13E is also the same as the control unit 11E, and when the voltage V3 between terminals of the LD module M3 indicated by the output signal ⁇ V3 of the voltage detector VD3 is smaller than the reference value Vs, a short-circuit failure of the LD module M3 occurs. It is determined that the signal has occurred, and the signal ⁇ S3 is raised from the non-activation level “L” level to the activation level “H” level. Further, the control unit 13E determines that an open failure of the LD module M3 has occurred when the current I3 indicated by the output signal ⁇ I3 of the current detector CD3 is 0A when the power supply unit PS3 is being driven. , The signal ⁇ O3 is raised from the non-activation level “L” level to the activation level “H” level.
  • FIG. 38 is a flowchart showing the operation of the control device 4E in the failure detection mode, and is a diagram to be compared with FIG. 36.
  • the flowchart of FIG. 38 differs from the flowchart of FIG. 36 in that step S1 is replaced by steps S1A and S1B, and step S9 is replaced by step S9A.
  • the control device 4E supplies the drive currents IM1 to IM3 to all the LD modules M1 to M3 in step S1A, respectively, and in step S1B, any one of the LD modules M1 to M3. To specify. Further, when it is determined in step S8 that there is an undetermined LD module, the control device 4E returns to step S2 by designating any one of the unidentified LD modules in step S9A. Since other configurations and operations are the same as those of the fifth and ninth embodiments, the description thereof will not be repeated.
  • the laser light generator according to the tenth embodiment can also detect the presence or absence of failure of the LD module M and output the laser light ⁇ using the LD module that has not failed.
  • the power supply units PS1 to PS3 when the short-circuit failure is detected, the power supply units PS1 to PS3 are driven one by one and the laser outputs of the LD modules M1 to M3 are measured one by one, so that the short-circuit failure detection time is long.
  • the power supply units PS1 to PS3 when the short-circuit failure is detected, the power supply units PS1 to PS3 are simultaneously driven and the terminal voltages V1 to V3 of the LD modules M1 to M3 are measured at the same time, so that the short-circuit failure detection time Can be shortened as compared with the ninth embodiment.
  • both the short-circuit failure and the open failure are detected in the tenth embodiment, only the short-circuit failure may be detected or only the open failure may be detected.
  • FIG. 39 is a circuit block diagram showing the configuration of the laser light generator according to the eleventh embodiment, which is compared with FIG. 1.
  • the difference between the laser light generator and the laser light generator of FIG. 1 is that the LD modules M1 to M3 are replaced by the LD modules M1A to M3A, respectively.
  • the LD modules M1A to M3A have different numbers of LDs from each other.
  • the LD module M1A may include four LDs connected in series
  • the LD module M2A may include three LDs connected in series
  • the LD module M3A may include two LDs connected in series. It is shown.
  • the number of LDs is not limited to the above number.
  • the control device 4 selects at least one LD module among the three LD modules M1 to M3 based on the laser output set value Pc, and causes the selected LD module to emit light. Since other configurations and operations are the same as those in the first embodiment, the description thereof will not be repeated.
  • the laser output set value Pc when the laser output set value Pc is small, the laser output is smaller than that of the first embodiment by passing the drive current IM3 through the LD module M3A having a small number of LDs in series. It can be obtained, and processing using a lower output laser beam ⁇ becomes possible.
  • the LD module M1A having a large number of LDs in series is driven, and when a small output is obtained, the LD module M3A having a small number of LDs in series is driven to change from low output to high output. It is possible to obtain the laser output in gradation. Therefore, it is possible to increase the types of objects that can be processed.
  • the LD module M1A having a large number of LDs in series outputs the laser beam ⁇ 1 having an output close to the laser output set value Pc, and the laser output is finely adjusted by the output laser beam ⁇ 3 of the LD module M3A having a small number of LDs in series.
  • the magnitude of the laser output can be finely controlled by performing various controls. Therefore, it is possible to perform high-precision processing.
  • FIG. 40 is a circuit block diagram showing a configuration of a laser light generator according to a twelfth embodiment, which is compared with FIG. 1.
  • the difference between the laser light generator and the laser light generator of FIG. 1 is that the power supply unit PS1 is replaced by the auxiliary power supply units PS1a and PS1b, and the power supply unit PS2 is replaced by the auxiliary power supply units PS2a and PS2b.
  • the power supply unit PS3 is replaced by the sub-power supply units PS3a and PS3b, the reactor L1 is replaced by the sub-reactors L1a and L1b, the reactor L2 is replaced by the sub-reactors L2a and L2b, and the reactor L3 is replaced by the sub-reactors L3a and L3a. It is a point replaced by L3b.
  • One terminal of the subreactors L1a and L1b is connected to the positive electrode of the sub power supply units PS1a and PS1b, respectively, and both of these other terminals are connected to the DC positive bus PL1.
  • the current detector CD1 detects the current I1 which is the sum of the output currents of the subreactors L1a and L1b, and outputs a signal ⁇ I1 indicating the detected value to the control device 4.
  • Both the negative electrodes of the auxiliary power supply units PS1a and PS1b are connected to the DC negative bus NL1.
  • the sub power supply units PS1a and PS1b are driven by the sub control signals CNT1a and CNT1b, respectively.
  • the phases of the pulses of the sub-control signals CNT1a and CNT1b are 180 degrees out of phase with each other, and the sub-power supply units PS1a and PS1b are interleaved controlled. Therefore, the phases of the current ripples included in the output currents of the sub-reactors L1a and L1b are 180 degrees out of phase with each other, and the current ripples included in the output currents of the sub-reactors L1a and L1b cancel each other out. Therefore, the current ripple contained in the current I1 becomes smaller, and the ripple rate of the laser beam ⁇ 1 output from the LD module M1 becomes smaller.
  • the sub-reactors L2a and L2b and the sub-power supply units PS2a and PS2b, and the sub-reactors L3a and L3b and the sub-power supply units PS3a and PS3b have the same configurations as the sub-reactors L1a and L1b and the sub-power supply units PS1a and PS1b. Since other configurations and operations are the same as those in the first embodiment, the description thereof will not be repeated.
  • auxiliary power supply units are provided corresponding to each LD module, and the two auxiliary power supply units are interleaved controlled, so that the current ripple of the current flowing through each LD module can be reduced.
  • the ripple rate generated in the output laser beam ⁇ can be further reduced as compared with the first embodiment.
  • the inductance value of each reactor for smoothing the current ripple and the capacitance value of the smoothing capacitor can be further reduced, it is possible to contribute to the reduction of component cost.
  • FIG. 41 is a circuit block diagram showing a modified example of the twelfth embodiment, which is compared with FIG. 40.
  • the difference from FIG. 40 is that the subreactors L1a and L1b form the magnetically coupled reactor portion U1, the subreactors L2a and L2b form the magnetically coupled reactor portion U2, and the subreactors L3a,
  • L3b constitutes the magnetically coupled reactor portion U3.
  • the sub-reactors L1a and L1b are wound around the same iron core and magnetically coupled.
  • the sub-reactors L2a and L2b are wound around the same iron core and magnetically coupled.
  • the sub-reactors L3a and L3b are wound around the same iron core and magnetically coupled.
  • the phase angles ⁇ 1 to ⁇ 3 of the control signals CNT1 to CNT3 are set to 0 degrees and 60 degrees, respectively, so that the phases of the current ripples generated in the drive currents IM1 to IM3 of the LD modules M1 to M3 are shifted by 120 degrees. It was set to 120 degrees. As a result, ideally, the ripple of the power P of the laser beam ⁇ is reduced by the effect that the ripples of the laser outputs of the LD modules M1 to M3 cancel each other out.
  • the magnitude of each current ripple generated in the currents IM1 to IM3 differs due to the variation in the parts (for example, the variation in the inductance values of the reactors L1 to L3).
  • the current ripple IR is + 25%
  • the current ripple IR is-. It will be 17%. Therefore, the current ripples generated in the currents IM1 to IM3 may be superimposed, and the ripple of the power P of the laser beam ⁇ may increase. Therefore, in the thirteenth embodiment, the phase difference between the current ripples is adjusted based on the magnitude of each current ripple flowing through the LD modules M1 to M3 to suppress the ripple of the laser beam ⁇ and stabilize the laser output. To become.
  • phase difference between current ripples the phase difference between the phase lead side and the phase lag side of the current ripple flowing through another LD module with respect to the phase of the current ripple flowing through one LD module.
  • the magnitude of the phase difference with which the absolute value is smaller is referred to as "phase difference between current ripples”.
  • FIG. 42 is a time chart showing an example of the operation of the laser light generator in the comparative example of the thirteenth embodiment.
  • (A) to (C) show the waveforms of the currents IM1 to IM3 flowing through the LD modules M1 to M3, respectively, and (D) shows the waveforms when the currents IM1 to IM3 are added together.
  • the total current value of the currents IM1 to IM3 is proportional to the power P of the laser beam ⁇ .
  • the phase difference between the current ripples of the currents IM1 to IM3 is 120 degrees from each other. Then, it is assumed that the inductance values of the reactors L1 and L2 vary by + 20% from the reference value, and the inductance values of the reactor L3 vary by ⁇ 20% from the reference value.
  • the current ripple of each of the currents IM1 to IM3 is about 1.4A for the currents IM1 and IM2 and about 2A for the current IM3, and the current ripple rate of the sum of the currents IM1 to IM3 is about ⁇ 4. It is 0.0%.
  • FIG. 43 is a time chart showing an example of the operation of the laser light generator according to the thirteenth embodiment. Also in FIG. 43, (A) to (C) show the waveforms of the currents IM1 to IM3 flowing through the LD modules M1 to M3, respectively, and (D) shows the waveforms when the currents IM1 to IM3 are added together.
  • the phase angles ⁇ 1 to CNT3 of the control signals CNT1 to CNT3 are adjusted so that the laser output is stable (so that the ripple of the laser light ⁇ is suppressed) based on the magnitude of the current ripple of each current IM1 to IM3.
  • the phase difference between the current ripples is adjusted by controlling ⁇ 3 (the adjustment method will be described later). Also in this example, it is assumed that the inductance values of the reactors L1 and L2 vary by + 20% from the reference value, and the inductance values of the reactor L3 vary by -20% from the reference value.
  • the current ripple of each of the currents IM1 to IM3 is about 1.4A for the currents IM1 and IM2 and about 2A for the current IM3.
  • the ripple rate of the current obtained by adding the currents IM1 to IM3 is suppressed to about ⁇ 1.6% by adjusting the phase difference between the current ripples so that the laser output is stable.
  • FIG. 44 is a block diagram showing the configuration of the control unit 11F in the laser light generator according to the thirteenth embodiment, and is a diagram to be compared with FIG.
  • the configurations of the control units 12F and 13F (not shown) are the same as those of the control unit 11F, and in FIG. 44, the configuration of the control unit 11F is typically shown.
  • the control unit 11F differs from the control unit 11 of FIG. 3 in that the communication / calculation unit 21 is replaced by the communication / calculation unit 21B.
  • the communication / calculation unit 21B receives the output signal ⁇ I1 of the current detector CD1. Then, the communication / calculation unit 21B transmits the output signal ⁇ I1 to other control units 12F and 13F (not shown). Similarly, each of the other control units 12F and 13F also outputs the output signal of the corresponding current detector to the other control unit. As a result, the output signals ⁇ I1 to ⁇ I3 of the current detectors CD1 to CD3 are shared by each control unit.
  • the communication / calculation unit 21B detects the magnitude of each current ripple flowing through the LD modules M1 to M3 from the output signals ⁇ I1 to ⁇ I3 of the current detectors CD1 to CD3. Then, the communication / calculation unit 21B determines the phase difference between the current ripples from the detected magnitude of each current ripple by using the correspondence between the magnitude of each current ripple and the phase difference between the current ripples.
  • the correspondence between the magnitude of each current ripple and the phase difference between the current ripples is created in advance and stored in the storage unit 22.
  • the above correspondence can be created by various methods. For example, before shipping the laser light generator, a current is passed through the LD modules M1 to M3, the phase of each current ripple is changed in various ways, and the detected value of the power P of the laser light ⁇ is fed back to the control device 4. Then, the phase of each current ripple at which the laser output is most stable (the ripple of the laser beam ⁇ is minimized) is acquired, and the correspondence relationship (table) between the magnitude of each current ripple and the phase difference between the current ripples is created. You may.
  • the current IM1 is obtained from the magnitude of each current ripple detected by using the correspondence between the magnitude of each current ripple and the phase difference between the current ripples created as described above.
  • the phase difference between the current ripples of IM3 and the phase difference between the current ripples of the currents IM2 and IM3 are determined to be 144 degrees, and the phase difference between the current ripples of the currents IM1 and IM2 is determined to be 72 degrees.
  • the phase difference between the current ripple of the current IM1 and the current ripple of the current IM2 is referred to as ⁇ Rp1
  • the phase difference between the current ripple of the current IM2 and the current ripple of the current IM3 is referred to as ⁇ Rp2.
  • the phase difference between the current ripple of the current IM3 and the current ripple of the current IM1 is referred to as ⁇ Rp3.
  • the communication / calculation unit 21B obtains the phase angle ⁇ 1 of the corresponding control signal CNT1 from the phase difference between the determined current ripples and gives it to the current control unit 24.
  • the magnitude of each current ripple flowing through the LD modules M1 to M3 is determined between the current ripples so that the laser output is stable (so that the ripple of the laser light ⁇ is suppressed).
  • the phase difference is adjusted. That is, in the first embodiment, the phase differences ⁇ Rp1 to ⁇ Rp3 between the current ripples are the same (120 degrees), but in the thirteenth embodiment, the phase differences ⁇ Rp1 to ⁇ Rp3 are different.
  • the phase differences ⁇ Rp1 to ⁇ Rp3 are different, two of the phase differences ⁇ Rp1 to ⁇ Rp3 may be the same and one may be different, or the phase differences ⁇ Rp1 to ⁇ Rp3 may be different from each other.
  • the phase difference between the current ripples is adjusted so that the magnitudes of the phase differences between the current ripples having adjacent peaks are not equal.
  • FIG. 45 is a diagram showing current waveforms when the phase differences ⁇ Rp1 to ⁇ Rp3 between current ripples are the same.
  • the phase differences ⁇ Rp1 to ⁇ Rp3 are equal to each other and are 120 degrees.
  • the ripple rate of the current obtained by adding the currents IM1 to IM3 may increase.
  • FIG. 46 is a diagram showing an example of current waveforms when the phase differences ⁇ Rp1 to ⁇ Rp3 between current ripples are different. In this example, a case where two of the phase differences ⁇ Rp1 to ⁇ Rp3 are the same but one is different is shown.
  • the phase differences ⁇ Rp2 and ⁇ Rp3 are equal to each other, and the phase difference ⁇ Rp1 is different from the phase differences ⁇ Rp2 and ⁇ Rp3.
  • the phase difference ⁇ Rp2 and ⁇ Rp3 are 160 degrees, and the phase difference ⁇ Rp1 is 40 degrees. That is, in this example, with respect to the phase difference between the current ripples having adjacent peaks, the phase difference between the current ripples is adjusted so that two phase differences having different magnitudes occur.
  • FIG. 47 is a diagram showing another example of the current waveform when the phase differences ⁇ Rp1 to ⁇ Rp3 between the current ripples are different. In this example, the case where the phase differences ⁇ Rp1 to ⁇ Rp3 are different from each other is shown.
  • the phase differences ⁇ Rp1 to ⁇ Rp3 are, for example, 120 degrees, 160 degrees, and 80 degrees, respectively. That is, in this example, the phase difference between the current ripples is adjusted so that the phase difference between the current ripples having adjacent peaks has three different magnitudes.
  • the phase difference between the current ripples ⁇ Rp1 to is increased according to the magnitude of each current ripple according to the correspondence between the magnitude of each current ripple and the phase difference between the current ripples.
  • the magnitude of the current ripple flowing through the LD modules M1 to M3 is detected from the output signals ⁇ I1 to ⁇ I3 of the current detectors CD1 to CD3, respectively, but is estimated from the temperatures of the reactors L1 to L3. May be good.
  • a magnetic material is often used for the reactor core, and in the case of a ferrite core, which is often used as a magnetic material, the magnetic permeability has a positive temperature characteristic. Therefore, when the temperature of the reactor rises, the inductance value of the reactor rises. Then, using the above equation (1), the magnitude (IR) of the current ripple can be estimated from the inductance value (L) of the reactor. Therefore, the magnitude of the current ripple can be estimated from the temperature of the reactor by predicting the relationship between the temperature of the reactor and the inductance value.
  • the inductance value L of the reactor can be expressed by the following equation.
  • L k ⁇ ⁇ ⁇ ⁇ ⁇ a 2 ⁇ n 2 / b... (3)
  • k is the Nagaoka coefficient
  • is the magnetic permeability
  • a, b, and n are the radius, length, and number of turns of the reactor, respectively.
  • the magnetic permeability ⁇ changes with temperature. Therefore, by acquiring the temperature characteristics of magnetic permeability ⁇ in advance based on specifications, evaluation tests, etc., the magnitude of the current ripple is estimated from the temperature of the reactor using equations (3) and (1). be able to.
  • FIG. 48 is a diagram showing a configuration of a laser processing device including a laser light generator.
  • the laser processing device includes a laser light generator 51, an optical fiber 52, a processing head 53, a lens 54, and a positioning device 55.
  • the laser light generator 51 has been described in any of the above embodiments and modifications, and outputs a laser light ⁇ having a small ripple.
  • the optical fiber 52 transmits the laser light ⁇ output from the laser light generator 51 to the processing head 53.
  • the processing head 53 vertically irradiates the surface of the object 56 with the laser beam ⁇ .
  • the lens 54 is provided between the processing head 53 and the object 56, and its focus is on the surface of the object 56.
  • the object 56 is mounted on the positioning device 55.
  • the positioning device 55 moves the object 56 in the horizontal and vertical directions, and focuses the processed position on the surface of the object 56 with the lens 54.
  • the laser light ⁇ emitted from the laser light generator 51 is irradiated to the processed position of the object 56 via the optical fiber 52, the processing head 53, and the lens 54 to process the object 56.
  • the above-mentioned laser light generator since the above-mentioned laser light generator is used, it is possible to irradiate the object 56 with a stable laser light ⁇ having a small ripple, and to improve the flatness accuracy of the processed cross section during laser processing. be able to.
  • PS1 to PS3 power supply unit L1 to L3 reactor, PL1 to PL3 DC positive bus, NL1 to NL3 DC negative bus, CD1 to CD3 current detector, CS1 to CS3, CS1A to CS1C current path switching circuit, M1 to M3, M1A to M3A, M10 LD module, PS1a to PS3a, PS1b to PS3b auxiliary power supply unit, L1a to L3a, L1b to L3b secondary reactor, U1 to U3 magnetic coupling type reactor unit, 1 combiner, 2 power detector, 3 operation unit, 4, 4A-4E control device, 5 AC power supply, 11-13, 11A-11F, 12A-12F, 13A-13F control unit, 14 communication line, 15-17 processing device, 21,21A, 21B communication / calculation unit, 22 storage Unit, 23, 23A, 23B command unit, 24 current control unit, 31, 35 rectifier circuit, 32 smoothing capacitor, 33 full bridge circuit, 33a to 33d, 41, 45 switching element, 34 transformer, 34a primary

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

レーザ光発生装置は、電源部(PS1~PS3)と、LDモジュール(M1~M3)と、コンバイナ(1)と、制御装置(4)とを備える。LDモジュール(M1~M3)は、それぞれ電源部(PS1~PS3)から電流(I1~I3)を受けてレーザ光(α1~α3)を出力する。コンバイナ(1)は、レーザ光(α1~α3)を集めて1つのレーザ光(β)を出力する。制御装置(4)は、レーザ光(β)のパワーがレーザ出力設定値(Pc)になり、かつ、電流(I1~I3)が電流指令値(Ic1~Ic3)になるように、制御信号(CNT1~CNT3)を生成する。制御信号(CNT1~CNT3)のパルスの位相は、互いに60度ずつずれている。

Description

レーザ光発生装置およびそれを備えたレーザ加工装置
 本開示は、レーザ光発生装置およびそれを備えたレーザ加工装置に関する。
 金属の溶接や切断、マーキング等の加工分野では、従来COレーザ等の気体レーザ装置やYAG(Yttrium Aluminum Garnet)レーザ等のランプ励起による固体レーザ装置が使用されてきた。しかしながら、近年では、ファイバーレーザ等のレーザダイオード(以下「LD(Laser Diode)」と称する。)励起による固体レーザ装置や、レーザ光を直接出力するダイレクトダイオードレーザ装置の高出力化が進んでいる。これにより、上記の加工分野では、COレーザ等の気体レーザやYAGレーザ等のランプ励起による固体レーザ装置から、ファイバーレーザ等のLD励起による固体レーザ装置やダイレクトダイオードレーザ装置への置き換えが進んでいる。
 LDを用いて高出力のレーザ光を生成するために、LDを直列または並列に多数配列して構成されたLDモジュールが一般的に使用されている。この場合、高効率性と高放熱性が求められる。たとえば特許第6360090号公報(特許文献1)には、複数のLDモジュールに対応してそれぞれ複数の電源部が設けられ、光変換効率が最大となるように各LDモジュールの駆動電流を制御することにより高い効率を得るレーザ光発生装置が開示されている。また、このレーザ光発生装置では、複数のLDモジュールおよび複数の電源部を設けることにより、熱を分散させて高い放熱性を得ている。
 また、LDを用いたレーザ光発生装置では、LDは電流駆動型の素子であるので、所望のレーザ出力を得るのに必要な一定の駆動電流をLDに供給する定電流源を使用することが一般的である。しかしながら、このような定電流源では、一般的にリアクトルが使用されるので、リアクトルに電磁エネルギーが蓄えられることにより出力電流の応答速度が遅くなる。このため、加工条件に合わせてパルス幅の短いレーザパルスを出力しようとしても、所望のレーザパルスを得ることができないという問題がある。
 この問題を解決するため、たとえば特許第6257869号公報(特許文献2)には、LDモジュールに対してスイッチング素子が並列接続され、そのスイッチング素子をオン/オフさせてリアクトルの電磁エネルギーを消費することにより、LDモジュールの駆動電流の応答速度を高速にする技術が開示されている。
特許第6360090号公報 特許第6257869号公報
 しかしながら、特許文献1では、高放熱性および高効率性に関して開示されているが、レーザ出力の安定性については開示されていない。
 また、特許文献2では、定電流源に含まれるフルブリッジ回路のスイッチング動作に伴ってLDモジュールの駆動電流に生じる電流リップルにより、レーザ出力にリップルが生じ、安定したレーザ出力を得ることができない可能性がある。
 それゆえに、本開示の主たる目的は、安定したレーザ出力を得ることが可能なレーザ光発生装置、およびそれを備えたレーザ加工装置を提供することである。
 本開示のレーザ光発生装置は、複数の電源部と、複数のレーザダイオードモジュールと、集光部と、制御装置とを備える。複数の電源部は、複数の制御信号によってそれぞれ駆動され、各電源部は、電流を出力するように構成される。複数のレーザダイオードモジュールは、複数の電源部にそれぞれ対応して設けられ、各レーザダイオードモジュールは、対応の電源部から電流を受けてレーザ光を出力するように構成される。集光部は、複数のレーザダイオードモジュールからそれぞれ出力される複数のレーザ光を集めて出力するように構成される。制御装置は、複数の制御信号を生成するように構成される。制御装置は、複数の制御信号の各々の位相または周波数を変更可能に構成される。
 このレーザ光発生装置では、複数の電源部を駆動する複数の制御信号の各々の位相または周波数が変更可能になっている。これにより、たとえば複数の制御信号の位相を互いにずらすことにより、複数のレーザダイオードモジュールから出力されるレーザ光に含まれるリップルを互いに打ち消し、リップルの小さな安定したレーザ出力を得ることが可能となる。
実施の形態1に従うレーザ光発生装置の構成を示す回路ブロック図である。 図1に示す制御装置の構成を示すブロック図である。 図2に示す制御部の構成を示すブロック図である。 図1に示す電源部の構成を示す回路ブロック図である。 図1に示す電流経路切換回路の構成を示す回路ブロック図である。 図1~図5に示すレーザ光発生装置の動作を示すタイムチャートである。 実施の形態1の比較例を示す回路ブロック図である。 図7に示すレーザ光発生装置の動作を示すタイムチャートである。 実施の形態1の問題点を説明するためのタイムチャートである。 実施の形態1の変形例を示す回路ブロック図である。 図10に示すレーザ光発生装置の動作を示すタイムチャートである。 実施の形態1の他の変形例を示す回路ブロック図である。 図12に示すレーザ光発生装置の動作を示すタイムチャートである。 実施の形態1のさらに他の変形例を示す回路ブロック図である。 図14に示すレーザ光発生装置の動作を示すタイムチャートである。 実施の形態2に従うレーザ光発生装置の要部を示すブロック図である。 図16に示すレーザ光発生装置の動作の一例を示すタイムチャートである。 図16に示すレーザ光発生装置の他の動作例を示すタイムチャートである。 実施の形態3に従うレーザ光発生装置の要部を示すブロック図である。 図19に示すレーザ光発生装置の動作の一例を示すタイムチャートである。 実施の形態4に従うレーザ光発生装置の要部を示すブロック図である。 図21に示す記憶部に格納されたI-P特性を示す図である。 実施の形態5に従うレーザ光発生装置の構成を示す回路ブロック図である。 図23に示す制御装置の構成を示すブロック図である。 図24に示す制御部の構成を示すブロック図である。 図25に示す記憶部に格納されたI-V特性を示す図である。 実施の形態6に従うレーザ光発生装置の要部を示すブロック図である。 実施の形態7に従うレーザ光発生装置の構成を示す回路ブロック図である。 図28に示す制御装置の構成を示すブロック図である。 図29に示す制御部の構成を示すブロック図である。 実施の形態8に従うレーザ光発生装置の要部を示すブロック図である。 図31に示す制御部の構成を示すブロック図である。 実施の形態8の効果を説明するための図である。 レーザ出力と電力変換効率との関係を示す図である。 実施の形態9に従うレーザ光発生装置の要部を示すブロック図である。 図35に示す制御装置の動作を示すフローチャートである。 実施の形態10に従うレーザ光発生装置の要部を示すブロック図である。 図37に示す制御装置の動作を示すフローチャートである。 実施の形態11に従うレーザ光発生装置の構成を示す回路ブロック図である。 実施の形態12に従うレーザ光発生装置の構成を示す回路ブロック図である。 実施の形態12の変形例を示す回路ブロック図である。 実施の形態13の比較例におけるレーザ光発生装置の動作の一例を示すタイムチャートである。 実施の形態13に従うレーザ光発生装置の動作の一例を示すタイムチャートである。 実施の形態13に従うレーザ光発生装置における制御部の構成を示すブロック図である。 電流リップル間の位相差が互いに同じであるときの電流波形を示す図である。 電流リップル間の位相差が異なるときの電流波形の一例を示す図である。 電流リップル間の位相差が異なるときの電流波形の他の例を示す図である。 レーザ光発生装置を備えるレーザ加工装置の構成を示す図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
 実施の形態1.
 <全体構成>
 図1は、実施の形態1に従うレーザ光発生装置の構成を示す回路ブロック図である。図1において、このレーザ光発生装置は、複数(この例では3つ)の電源部PS1~PS3、複数のリアクトルL1~L3、複数の直流正母線PL1~PL3、複数の直流負母線NL1~NL3、電流検出器CD1~CD3、複数の電流経路切換回路CS1~CS3、複数のLDモジュールM1~M3、コンバイナ1、パワー検出器2、操作部3、および制御装置4を備える。
 電源部PS1~PS3の正電極は、それぞれリアクトルL1~L3の一方端子に接続される。リアクトルL1~L3の他方端子は、それぞれ直流正母線PL1~PL3の一方端に接続される。直流正母線PL1~PL3の他方端は、それぞれLDモジュールM1~M3のアノード端子に接続される。
 LDモジュールM1~M3のカソード端子は、接地電圧GNDのラインに接続されるとともに、それぞれ直流負母線NL1~NL3の一方端に接続される。直流負母線NL1~NL3の他方端は、それぞれ電源部PS1~PS3の負電極に接続される。
 電源部PS1~PS3は、それぞれ制御装置4から供給される制御信号CNT1~CNT3に同期して動作し、電流I1~I3を出力する。なお、以下では、電源部PS1~PS3を包括的に「電源部PS」と称し、制御信号CNT1~CNT3を包括的に「制御信号CNT」と称し、電流I1~I3を包括的に「電流I」と称する場合がある。
 具体的には、電源部PSは、交流電源5からの三相交流電圧を全波整流して直流電圧に変換し、その直流電圧を制御信号CNTのデューティ比に応じた振幅の交流電圧に変換し、その交流電圧を全波整流して電流Iを出力する。
 リアクトルL1~L3は、それぞれ電流I1~I3を平滑化する。電流経路切換回路CS1~CS3が非導通状態のとき、電流検出器CD1~CD3は、それぞれ直流正母線PL1~PL3に流れる電流I1~I3を検出し、検出値を示す信号φI1~φI3を制御装置4に出力する。
 電流経路切換回路CS1~CS3の一方端子は、それぞれ電流正母線PL1~PL3に接続され、それらの他方端子は、それぞれ電流負母線NL1~NL3に接続される。電流経路切換回路CS1~CS3は、制御装置4からそれぞれビームオン信号B1~B3を受ける。ビームオン信号B1が非活性化レベルの「L」レベルである場合には、電流経路切換回路CS1の端子間が導通状態になる。ビームオン信号B1が活性化レベルの「H」レベルである場合には、電流経路切換回路CS1の端子間が非導通状態になる。電流経路切換回路CS2,CS3についても同様である。
 LDモジュールM1~M3の各々は、アノード端子およびカソード端子間に直列接続された少なくとも1つ(この例では3つ)のLDを含む。LDモジュールM1~M3は、それぞれ電流IM1~IM3によって駆動され、それぞれレーザ光α1~α3を出力する。電流経路切換回路CS1の端子間が導通状態である場合には、LDモジュールM1の駆動電流IM1~IM3は0Aとなる。電流経路切換回路CS1の端子間が非導通状態である場合には、LDモジュールM1の駆動電流IM1は電流I1となる。LDモジュールM2,M3の駆動電流IM2,IM3についても同様である。
 コンバイナ1は、LDモジュールM1~M3からのレーザ光α1~α3を集め、1つのレーザ光βとして出力する。パワー検出器2は、コンバイナ1の出力レーザ光βのパワーPを検出し、検出値を示す信号φPを出力する。レーザ光βのパワーPは、ワットやジュール等の単位で表されるものである。
 操作部3は、たとえば、レーザ光発生装置の使用者によって操作される複数のボタン、種々の情報を表示する表示装置や数値制御装置等を含む。レーザ光発生装置の使用者は、操作部3を操作して、レーザ光βの出力タイミングを示すビームオン信号BONの波形をセットする。ビームオン信号BONは、矩形波信号、三角波、正弦波等の信号である。ビームオン信号BONが「H」レベルである場合にレーザ光βが出力され、ビームオン信号BONが「L」レベルである場合にレーザ光βの出力が停止される。
 また、レーザ光発生装置の使用者は、操作部3を操作して、レーザ光βのパワーを示すレーザ出力設定値Pcをセットする。レーザ出力設定値Pcは一定値でもよいし、ビームオン信号BONに同期して変化する値であっても構わない。ビームオン信号BONの波形およびレーザ出力設定値Pcは、操作部3内の記憶部(図示せず)に記憶される。たとえば、レーザ光発生装置の使用者が操作部3に含まれる出力開始ボタンをオンすると、ビームオン信号BONおよびレーザ出力設定値Pcが記憶部(図示せず)から読み出されて制御装置4に出力される。
 制御装置4は、電流検出器CD1~CD3からの信号φI1~φI3と、パワー検出器2からの信号φPと、操作部3からのレーザ出力設定値Pcおよびビームオン信号BONとに基づいて、制御信号CNT1~CNT3およびビームオン信号B1~B3を生成する。
 ビームオン信号BONが「H」レベルである場合、制御装置4は、ビームオン信号B1~B3を「H」レベルにするとともに、パワー検出器2の出力信号φPがレーザ出力設定値Pcになるように制御信号CNT1~CNT3を生成する。ビームオン信号BONが「L」レベルである場合、制御装置4は、ビームオン信号B1~B3を「L」レベルにするとともに、制御信号CNT1~CNT3の生成を停止する。
 制御信号CNTは、たとえばパルス幅変調(Pulse Width Modulation:PWM)信号である。この場合、制御信号CNTの周波数(スイッチング周波数)は一定であり、そのデューティ比は制御可能になっている。デューティ比は、制御信号CNTの1周期内で制御信号CNTが「H」レベルにされる時間と1周期との比である。制御信号CNT1のデューティ比は、電流指令値Ic1と電流検出器CD1との検出値の偏差がなくなるように制御される。なお、以下では、電流指令値Ic1~Ic3を包括的に「電流指令値Ic」と称し、電流検出器CD1~CD3を包括的に「電流検出器CD」と称する場合がある。
 制御装置4は、制御信号CNT1~CNT3のパルスの位相を60度ずつずらす。これにより、LDモジュールM1~M3に流れる電流IM1~IM3のリップルの位相が120度ずつずれ、レーザ光α1~α3に含まれるリップルの位相が120度ずつずれる。その結果、レーザ光α1~α3に含まれるリップルが互いに打ち消し合い、レーザ光βに含まれるリップルが低減する。
 なお、制御CNTは、パルス周波数変調(Pulse Frequency Modulation:PFM)信号であっても構わない。この場合、制御信号CNTのパルス幅(「H」レベルである時間)は一定であり、その周期(すなわち周波数)は制御可能になっている。そのため、制御信号CNTの周期(すなわち周波数)が変化すると、そのデューティ比が変化する。制御信号CNTの周波数は、電流指令値Icと電流検出器CDの検出値の偏差がなくなるように制御される。
 また、図1では、電源部PS、リアクトルL、電流検出器CD、電流経路切換回路CS、およびLDモジュールMが3組設けられた場合が示されているが、3組に限るものではなく、2組でもよいし、4組以上でも構わない。また、交流電源5は、たとえば100V~480Vの交流電圧を電源部PS1~PS3に供給する。交流電源5は、三相交流電源でも単相交流電源でも構わない。交流電源5は、商用交流電源でもよいし、自家用発電機でもよい。以下、レーザ光発生装置の各構成要素について詳細に説明する。
 <制御装置4>
 図2は、制御装置4の構成を示すブロック図である。図2において、制御装置4は、複数の電源部PS1~PS3にそれぞれ対応する複数の制御部11~13を含む。制御部11~13は、通信ケーブルのような通信回線14によって互いに接続されており、互いに情報を授受し、互いに同期して動作する。制御部11~13は、電源部PSの台数Nが3であることを検知し、制御信号CNT1~CNT3のパルスの位相を180/N=60度ずつずらすことを決定する。
 制御部11は、電流検出器CD1からの信号φI1、パワー検出器2からの信号φP、操作部3からのレーザ出力設定値Pcおよびビームオン信号BONに基づいて、制御信号CNT1およびビームオン信号B1を生成する。
 制御部12は、電流検出器CD2からの信号φI2、パワー検出器2からの信号φP、操作部3からのレーザ出力設定値Pcおよびビームオン信号BONに基づいて、制御信号CNT2およびビームオン信号B2を生成する。制御信号CNT2のパルスの位相は、制御信号CNT1のパルスの位相よりも60度遅れている。
 制御部13は、電流検出器CD3からの信号φI3、パワー検出器2からの信号φP、操作部3からのレーザ出力設定値Pcおよびビームオン信号BONに基づいて、制御信号CNT3およびビームオン信号B3を生成する。制御信号CNT3のパルスの位相は、制御信号CNT2のパルスの位相よりも60度遅れている。
 制御部11~13の機能は、それぞれ処理回路15~17を用いて実現できる。ここでいう処理回路15~17は、専用処理回路のような専用のハードウェアや、プロセッサおよび記憶装置のことをいう。専用のハードウェアを利用する場合、専用処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。制御部11~13の機能を、まとめて1つの処理回路で実現してもよい。
 プロセッサおよび記憶装置を利用する場合、上記の各機能は、ソフトウェア、ファームウェアまたはこれらの組合せにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、記憶装置に記憶される。プロセッサは記憶装置に記憶されたプログラムを読み出して実行する。これらのプログラムは、上記の各機能を実現する手順および方法をコンピュータに実行させるものであるとも言える。
 記憶装置は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、またはEEPROM(Electrically Erasable Programmable Read Only Memory(登録商標))といった半導体メモリが該当する。半導体メモリは、不揮発性メモリでもよいし揮発性メモリでもよい。また、記憶装置は、半導体メモリ以外にも、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)が該当する。
 図3は、制御部11の構成を示すブロック図である。図3において、制御部11は、通信/演算部21、記憶部22、指令部23、電流制御部24を含む。通信/演算部21は、通信回線14を介して他の制御部12,13と通信し、運転する電源部PSの台数Nと、対応する制御信号CNT1の位相角度θ1とを求め、台数Nおよび位相角度θ1をそれぞれ指令部23および電流制御部24に与える。
 ここでは、運転する電源部PSの台数Nは3である。また、対応する電源部PSの番号をnとすると、位相角度θnは、θn=180×(n-1)/Nによって算出される。制御部11に対応する電源部PS1の番号nは1であるので、θ1=0度となる。なお、制御信号CNT2の位相角度θ2は60度となり、制御信号CNT3の位相角度θ3は120度となる。
 記憶部22には、対応するLDモジュールM1のレーザ出力の分担率SR1が予め格納されている。ここでは、SR1=1/Nである。なお、LDモジュールM2,M3のレーザ出力の分担率SR1,SR3も1/Nである。したがって、本実施の形態1では、LDモジュールM1~M3のレーザ出力の分担率SR1~SR3は、ともに1/N=1/3である。
 指令部23は、パワー検出器2の出力信号φPによって示される出力レーザ光βのパワーPに分担率SR1=1/3を乗じて得られる値P/3が、レーザ出力設定値Pcに分担率SR1=1/3を乗じて得られる値Pc/3になるように電流指令値Ic1を生成するとともに、ビームオン信号BONに対して遅延したビームオン信号B1を生成する。ビームオン信号B1は電流経路切換回路CS1に与えられ、電流指令値Ic1は電流制御部24に与えられる。
 電流制御部24は、電流検出器CD1の出力信号φI1によって示される電流I1が電流指令値Ic1になるように、制御信号CNT1を生成する。制御信号CNT1のパルスの位相角度θ1は、上述した通り0度である。制御信号CNT1のデューティ比は、電流I1と電流指令値Ic1の偏差がなくなるように制御される。すなわち、電流制御部24は、I1>Ic1である場合には制御信号CNT1のデューティ比を減少させ、I1<Ic1である場合には制御信号CNT1のデューティ比を増大させる。これにより、電流I1は電流指令値Ic1に制御される。他の制御部12,13の各々の構成は、制御部11の構成と同様である。
 なお、パワー検出器2の出力信号φPを用いずに、レーザ出力設定値Pcのみから電流指令値Icを決定してもよい。すなわち、電流指令値Icをレーザ出力設定値Pcのみから決定する場合、LDモジュールM1~M3(以下、包括的に「LDモジュールM」と称する場合がある。)の電流-パワー特性(I-P特性)に基づき、レーザ出力設定値Pcから電流指令値Icを決定する。I-P特性は、データシート等に記載されているものでもよいし、事前に測定したものでもよい。また、I-P特性は、記憶部22に記憶されていてもよい。I-P特性が記憶部22に記憶されることにより、I-P特性から電流指令値Icを決定することができる。
 この場合、パワー検出器2や、パワー検出器2の周辺回路が不要となるので、装置の低コスト化を図ることができる。しかしながら、LDモジュールMの劣化やI-P特性のばらつき等により、電流指令値Icと同じ大きさの電流がLDモジュールM1に流れても、レーザ出力設定値Pcと異なるパワーPのレーザ光βが出力される恐れがある。
 電流指令値Icをレーザ出力設定値Pcとパワー検出器2の出力信号φPとを用いて決定する場合、現状のLDモジュールMのI-P特性に基づき、レーザ出力設定値Pcから電流指令値Ic1を決定する。ここで、現状のLDモジュールMのI-P特性とは、LDモジュールMを駆動したときのパワー検出器2の出力信号φPと電流検出器CDの検出値、もしくはパワー検出器2の出力信号φPと電流指令値Icから得られる、LDモジュールMの駆動電流IMに対するレーザ出力の特性のことである。
 このとき、LDモジュールMの劣化やI-P特性のばらつき等があっても、レーザ出力設定値Pcと同じパワーのレーザ光βを得ることが可能となる。また、現状のI-P特性からLDモジュールMの劣化度合いが分かるため、LDモジュールMの残存寿命を予測することが可能となる。
 <電源部PS1~PS3>
 図4は、図1に示した電源部PS1の構成を示す回路ブロック図である。図4において、電源部PS1は、交流電源5から供給される交流電圧を整流する整流回路31と、整流回路31の出力電圧を平滑化する平滑コンデンサ32と、整流回路31および平滑コンデンサ32から直流電圧の供給を受けて、交流電圧を出力するフルブリッジ回路33と、1次巻線34aにフルブリッジ回路33から供給される交流電圧を変圧して、2次巻線34bから出力するトランス34と、トランス34から出力される交流電圧を整流する整流回路35とを含む。
 フルブリッジ回路33は、4つのスイッチング素子33a~33dを含む。制御信号CNT1が「H」レベルである場合には、スイッチング素子33a,33dがオフするとともに、スイッチング素子33b,33cがオンする。制御信号CNT1が「H」レベルである場合には、スイッチング素子33a,33dがオフするとともに、スイッチング素子33b,33cがオンする。制御信号CNT1が「L」レベルである場合には、スイッチング素子33a,33dがオンするとともに、スイッチング素子33b,33cがオフする。
 制御信号CNT1のデューティ比が増大すると、スイッチング素子33b,33cのオン時間が長くなり、トランス34の交流出力電圧の振幅が増大し、整流回路35の直流出力電圧が増大し、電源部PS1から出力される電流I1が増大する。
 逆に、制御信号CNT1のデューティ比が減少すると、スイッチング素子33b,33cのオン時間が短くなり、トランス34の交流出力電圧の振幅が減少し、整流回路35の直流出力電圧が減少し、電源部PS1から出力される電流I1が減少する。フルブリッジ回路33およびトランス34は、対応する制御信号CNT1のデューティ比に応じた値の振幅と、対応する制御信号CNT1の周波数に応じた値の周波数を有する交流電圧を出力する交流電圧発生回路を構成する。したがって、電源部PS1は、交流電源5から供給される交流電力によって駆動され、制御部11から供給される制御信号CNT1に応じた値の電流I1を出力する。
 なお、フルブリッジ回路33に代えて、一般的なDC-DCコンバータの回路方式であるフォワード回路方式やフライバック回路方式、プッシュプル回路方式、ハーフブリッジ回路方式、チョッパ回路方式等、変換電力量に応じて効率やコストが最適となる回路方式を採用してもよく、また、それらの回路方式の複合形であってもよい。
 整流回路31,35は、ダイオードで構成される全波整流回路である。なお、整流回路31,35の構成はこれに限定されるものではない。ダイオードの代わりにスイッチング素子を用いて整流回路31,35を構成してもよい。この場合、低損失化が可能となる。
 電源部PSや電流経路切換回路CSで使用するスイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)や、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等を用いるとよい。この場合、Si(Silicon)の材料で構成されたスイッチング素子を使用し得るが、SiC(Siliconcarbide)やGaN(Galliumnitride)の材料で構成されたスイッチング素子を用いると、スイッチング損失や、導通損失を抑えることができ、電源部PS1の高効率化、低損失化が可能となる。以下、スイッチング素子としてN型MOSFETが用いられる場合について説明するが、これに限られるものではない。
 電源部PS2,PS3の構成は、電源部PS1の構成と同様である。本実施の形態1では、3つのLDモジュールM1~M3に対して、それぞれに電力を供給する3つの電源部PS1~PS3が設けられるので、電源部PS1~PS3の各々の電力容量を小さくすることできる。これにより、安価で汎用的な電力容量の小さいトランス34や、チョッパ回路方式の場合は安価で汎用的な電力容量の小さいリアクトルL1~L3を用いることができる。
 <リアクトルL1~L3>
 リアクトルL1~L3は、それぞれ、電源部PS1~PS3からLDモジュールM1~M3に供給される電流I1~I3を平滑化することにより、LDモジュールM1~M3の駆動電流に生じる電流リップルの大きさを低減する。これにより、LDモジュールM1~M3の出力レーザ光α1~α3のパワーを安定させることができる。
 リアクトルL1~L3の各々に大きな電流が流れる場合、リアクトルL1~L3の各々として、エッジワイズコイルや、全体をモールドしたリアクトルを用いてもよい。ここでいうエッジワイズコイルとは、平角線がエッジワイズ方向に巻回されたコイルのことをいい、巻線が1層構造であるため巻線が丸型で多層構造であるリアクトルと比べて、放熱性を高くできる。
 また、全体をモールドしたリアクトルは、モールド部から放熱することができるため、モールドしていないリアクトルと比べて放熱性が高い。そのため、エッジワイズコイルや、全体をモールドしたリアクトルを用いることで、各々のリアクトルの温度上昇を抑えることが可能となる。そのため、リアクトルを放熱するために必要な冷却機構(たとえば放熱フィン、水冷機構等)の小型化、および冷却方式の簡素化(たとえば、強制空冷から自然空冷)が可能となるので、冷却部材を減らすことができる。
 また、電流経路切換回路CS1~CS3の各々に並列に平滑コンデンサを備えてもよい。具体的には、直流正母線PL1と直流負母線NL1との間、直流正母線PL2と直流負母線NL2との間、および直流正母線PL3と直流負母線NL3との間の各々に並列に接続される平滑コンデンサを備えてもよい。
 このような平滑コンデンサを備えた場合、LDモジュールMの駆動電流の立ち上がりおよび立ち下がりの速度が低下するため、LDモジュールMのレーザ出力の応答速度が低下する恐れがある。また、フルブリッジ回路33のスイッチング動作によって入出力電流に生じる電流リップルを吸収するために、高いリップル耐量を有する平滑コンデンサを備える必要がある。さらに、電流リップルが大きい場合はコンデンサの並列数を増加する必要があり、装置が大型化し高価になる。
 しかしながら、電源部PSから出力される電流Iをさらに平滑化できるため、LDモジュールMに供給される電流をさらに平滑化し、LDモジュールMのレーザ出力をより安定化させることができる。そのため、レーザ出力の応答速度の速さを求めない場合は、平滑コンデンサを備えるほうがよい。
 <電流検出器CD1~CD3>
 電流検出器CDとしては、直列抵抗素子(シャント抵抗素子)やCT(Current Transformer)やホール電流センサ等がよく用いられる。また、電流検出器CDとして、電流検出用のIC(Integrated Circuit)を使用してもよい。汎用的な部品を使うことでコストを低減することが可能である。
 <電流経路切換回路CS1~CS3>
 図5は、図1に示した電流経路切換回路CS1の構成を示す回路ブロック図である。図5において、電流経路切換回路CS1は、直流正母線PL1および直流負母線NL1間に接続されたスイッチング素子41と、スイッチング素子41を制御する電流切換制御部42とを含む。スイッチング素子41は、たとえばN型MOSFETである。電流切換制御部42は、制御部11(図3)から供給されるビームオン信号B1を、スイッチング素子41をオンおよびオフさせるゲート信号G1に変換する。
 次に、電流経路切換回路CS1の動作について説明する。電源部PS1が駆動していて、リアクトルL1に電流が流れている状態において、ビームオン信号B1を電流切換制御部42に供給し、電流切換制御部42によってスイッチング素子41のオンおよびオフを制御することにより、リアクトルL1から出力される電流I1をLDモジュールM1に流すか、スイッチング素子41に流すかを切り換える。
 スイッチング素子41がオフのとき、電流I1はLDモジュールM1に流れ、スイッチング素子41がオンのとき、電流I1は電流経路切換回路CS1内のスイッチング素子41に流れる。すなわち、電流経路切換回路CS1では、ビームオン信号B1に応じてLDモジュールM1の駆動電流の立ち上げや立ち下げを行なう。
 仮に、電流経路切換回路CS1がない場合、LDモジュールM1の駆動電流を立ち上げるとき、リアクトルL1にエネルギーを蓄える必要があるため、LDモジュールM1の駆動電流の立ち上げに要する時間が長くなる問題がある。また、LDモジュールM1の駆動電流を立ち下げるとき、リアクトルL1に蓄えられたエネルギーにより、LDモジュールM1の駆動電流の立ち下げに要する時間が長くなる問題がある。
 一方、電流経路切換回路CS1が備えられる場合、LDモジュールM1の駆動電流を立ち上げるとき、LDモジュールM1の駆動電流を立ち上げる前にスイッチング素子41をオンにしてリアクトルL1に電流を流し、予めリアクトルL1にエネルギーを蓄えておくことにより、LDモジュールM1の駆動電流の立ち上げに要する時間を短縮できる。
 また、LDモジュールM1の駆動電流を立ち下げるとき、スイッチング素子41をオンにして、リアクトルL1の出力電流の電流経路を切り換えることで、LDモジュールM1の駆動電流の立ち下げに要する時間を短縮できる。すなわち、電流経路切換回路CS1を備えることにより、LDモジュールM1の駆動電流の立ち上げや立ち下げに要する時間を短縮することができ、レーザ出力のオンおよびオフを瞬時に切り換えることが可能となる。
 なお、LDモジュールM1の駆動電流が大きい場合、スイッチング素子41をオフする際に生じるサージ電圧を抑制するために、スイッチング素子41に対して並列にスナバ回路をさらに設けてもよい。スナバ回路としては、たとえば抵抗素子とコンデンサを並列にして、これにダイオードを直列に接続してなるRCDスナバ回路等を使用するとよい。
 また、レーザ加工装置のような大型の装置では、電流経路切換回路CS1とLDモジュールM1とが離れている場合が多い。この場合、電流経路切換回路CS1およびLDモジュールM1間の配線が長くなり、配線の寄生インダクタンスによって、LDモジュールM1の駆動電流を好適に制御することが困難になる恐れがある。
 電流経路切換回路CS1およびLDモジュールM1間の配線の寄生インダクタンス値を小さくするために、電流経路切換回路CS1およびLDモジュールM1間の配線が短くなるようにLDモジュールM1の近傍に電流経路切換回路CS1を設置してもよい。また、配線の相互インダクタンスの打ち消し効果が大きくなるように、電流経路切換回路CS1およびLDモジュールM1間の配線のループ面積が最小となるように配線してもよい。電流経路切換回路CS2,CS3の各々は、電流経路切換回路CS1と同じである。
 <LDモジュールM1~M3>
 LDモジュールM1~M3の各々は、少なくとも1つ以上のLDを含む。LDモジュールMが複数のLDを含む場合、複数のLDは、LDモジュールMのアノード端子およびカソード端子間に順方向に直列接続される。また、高出力レーザ装置では、少なくとも1つ以上のLDモジュールMが使用される。
 <コンバイナ1>
 コンバイナ1は、3つのLDモジュールM1~M3のレーザ光α1~α3を結合させる機能を有する。コンバイナ1としては、光ファイバタイプだけでなく、プリズムやミラーや光結合素子等を用いてもよい。
 <パワー検出器2>
 図1では、コンバイナ1からパワー検出器2にレーザ光βの一部が入射しているように模式的に記載されている。レーザ光βが空間を伝搬している場合には、たとえばビームスプリッター等を用いて分岐させてレーザ光βの一部を検出する。また、レーザ光βが光ファイバ内を伝搬している場合には、たとえば光分岐器を使用して分岐した光ファイバの終端からの光を検出したり、光ファイバのクラッドから漏れ光を検出したりすることができる。
 また、パワー検出器2へのレーザ光α1~α3の入射構造は、図1に示した構造に限定されない。ここでいうパワー検出器2は、レーザ出力の大きさを検出するセンサであり、光電的、熱的、光化学的、および機械的な方法のいずれかで光量を計測するセンサを示す。光電的に計測できるPD(フォトダイオード)は、感度が高く応答速度も速いので、パワー検出器2としてPDを用いるとよい。
 <レーザ光発生装置の基本動作>
 制御装置4に含まれる3つの制御部11~13(図2)は、それぞれ3つの電源部PS1~PS3(図1)を制御し、それぞれ3つのLDモジュールM1~M3の駆動電流を制御する。ここで、制御部11の指令部23(図3)は、パワー検出器2の出力信号φPによって示されるレーザ光βのパワーPの1/3の値P/3が、レーザ出力設定値Pcの1/3の値Pc/3に一致するように、LDモジュールM1の駆動電流を決定し、電流指令値Ic1として出力する。レーザ出力設定値Pcの1/3のパワーのレーザ光α1をLDモジュールM1から出力させるためである。
 また、電流制御部24(図3)は、電流検出器CD1の出力信号φI1によって示される電流I1が、指令部23から供給される電流指令値Ic1に一致するように、電源部PS1のフルブリッジ回路33(図4)に含まれるスイッチング素子33a~33dをオンおよびオフ制御する。ここで、電源部PS1~PS3のフルブリッジ回路33のスイッチング周波数は互いに等しく、スイッチングの位相は60度ずつずれている。
 電源部PS1~PS3の各々では、フルブリッジ回路33が出力する交流電流を、整流回路35(図4)によって全波整流するため、整流後の電流にはスイッチング周波数の2倍の周波数の電流リップルが発生する。したがって、電源部PS1~PS3から出力されてそれぞれリアクトルL1~L3に流れる電流I1~I3に生じる電流リップルの位相差は120度となる。
 ここで、電流経路切換回路CS1~CS3のスイッチング素子41がオフのとき、リアクトルL1~L3に流れる電流I1~I3は、LDモジュールM1~M3の駆動電流と等しい。そのため、3つのLDモジュールM1~M3の駆動電流に生じる電流リップルは互いに120度の位相差となり、LDモジュールM1~M3のレーザ出力のリップルも互いに120度の位相差となるため、コンバイナ1によりLDモジュールM1~M3のレーザ出力を結合して得られるレーザ出力は、レーザ出力のリップルが打ち消しあう効果により、安定したレーザ出力を得ることができる。
 図6は、図1~図5に示したレーザ光発生装置の動作を示すタイムチャートである。図6において、(A)~(C)はそれぞれLDモジュールM1~M3に流れる電流IM1~IM3の波形を示し、(D)はレーザ光βのパワーPの波形を示している。図6から分かるように、LDモジュールM1~M3の駆動電流IM1~IM3に生じる電流リップルの位相は120度ずつずれているので、レーザ光βのパワーPのリップルは低減されている。
 比較例.
 図7は、実施の形態1の比較例を示す回路ブロック図であって、図1と対比される図である。図7を参照して、比較例のレーザ光発生装置が図1のレーザ光発生装置と異なる点は、電源部PS2,PS3、リアクトルL2,L3、電流検出器CD2,CD3、電流経路切換回路CS2,CS3、LDモジュールM2,M3、およびコンバイナ1が除去され、LDモジュールM1がLDモジュールM10で置換されている点である。
 LDモジュールM10は、直列接続された複数(この例では9個)のLDを含む。LDモジュールM10に含まれるLDの数(9個)は、LDモジュールM1~M3(図1)に含まれるLDの数(3×3=9個)と等しい。パワー検出器2は、LDモジュールM10から出力されるレーザ光α1Aのパワーを検出し、その検出値を示す信号φPを制御装置4に与える。
 次に、レーザ光α1Aのリップル率について説明する。図7において、電流経路切換回路CS1のスイッチング素子41がオフされ、リアクトルL1に流れる電流I1と、LDモジュールM10の駆動電流IM10とは同じ値であるものとする。
 電源部PS1の出力電圧を、振幅値がVLIで、周波数がfである矩形波電圧とし、リアクトルL1の出力側の電圧をVLO、リアクトルL1のインダクタンス値をLとしたとき、リアクトルL1に流れる電流に重畳する電流リップル(ピークtoピーク)IRは、次式(1)で表される。
 IR=(VLI-VLO)/(L×f)×VLO/VLI …(1)
 たとえば、VLIを200V、VLOを50V、fを100kHz、Lを100μHとすると、リアクトルL1に流れる電流I1に重畳する電流リップルIRは数式(1)より3.75Aとなる。ここで、電流リップル率RiをRi=IR/I1×100(%)と定義し、電流I1を40Aとすると、Ri=(3.75/2)/40×100=±4.7%となる。
 図8は、図7に示したレーザ光発生装置の動作を示すタイムチャートである。図8において、(A)はLDモジュールM10に流れる電流IM10の波形を示し、(B)はLDモジュールM10から出力されるレーザ光α1Aのパワーの波形を示している。
 比較例では、LDモジュールM10の駆動電流IM10とレーザ出力Pが比例関係にある。この場合、LDモジュールM10の駆動電流IM10の電流リップルが±4.7%であるとき、LDモジュールM10のレーザ出力Pのリップル率は±4.7%となる。すなわち、比較例に係るレーザ光発生装置のレーザ出力Pのリップル率は±4.7%となる。
 (実施の形態1の効果1)
 次に、実施の形態1のレーザ光発生装置におけるレーザ出力のリップル率について説明する。実施の形態1のレーザ光発生装置と比較例のレーザ光発生装置とで同じレーザ出力を得るためには、LDモジュールM1~M3に含まれる各LDの端子間電圧を、LDモジュールM10に含まれる各LDの端子間電圧と同じにする必要がある。そのためには、LDモジュールM1~M3の各々に含まれるLDの数が、LDモジュールM10に含まれるLDの数の3分の1であるので、LDモジュールM1~M3の各々の端子間電圧を、LDモジュールM10の端子間電圧の3分の1にする必要がある。
 したがって、実施の形態1のレーザ光発生装置におけるリアクトルL1の出力側の電圧VLOを、実施の形態1のレーザ光発生装置におけるリアクトルL1の出力側の電圧VLOの3分の1である50/3Vとする。また、比較例と同様に、VLIを200V、fを100kHz、Lを100μHとすると、リアクトルL1に流れる電流I1に重畳する電流リップルIRは、数式(1)より、1.53Aとなる。ここで、リアクトルL1に流れる電流I1を40Aとすると、リアクトルL1に流れる電流リップル率Riは、Ri=(1.53/2)/40=±1.9%となる。
 LDモジュールM1~M3の駆動電流IM1~IM3とレーザ光α1~α3のパワーとが比例関係にある場合、LDモジュールM1~M3の駆動電流IM1~IM3の電流リップル率が±1.9%であるとき、LDモジュールM1~M3の出力レーザ光α1~α3のパワーのリップル率は±1.9%となる。
 実施の形態1では、図6(A)~(D)で示したように、LDモジュールM1~M3の駆動電流I1~I3のリップルの位相は120度ずつずれている。したがって、LDモジュールM1~M3の出力レーザ光α1~α3のパワーのリップルの位相も120度ずつずれている。また、LDモジュールM1~M3の出力レーザ光α1~α3をコンバイナ1で結合して出力するため、レーザ光βのパワーのリップル率は、±1.9%÷3=±0.6%となる。
 以上のように、本実施の形態1では、比較例よりも安定したレーザ出力を得ることができる。本実施の形態1のレーザ光発生装置をレーザ加工装置として使用し、レーザ光βを照射して対象物を加工すれば、レーザ加工時の加工断面の平坦精度を向上することが可能となる。
 (実施の形態1の効果2)
 実施の形態1に従うレーザ光発生装置では、LDモジュールM1~M3の端子間電圧を比較例におけるLDモジュールM10の端子間電圧の1/3に低減できるので、電流経路切換回路CSのスイッチング素子41(図5)として低価格な低耐圧品を使用することができる。
 また、低価格で低耐圧品のスイッチング素子41はオン抵抗値が低いので、高効率化にも貢献することができる。たとえば、900V耐圧のN型MOSFETのオン抵抗値は0.73Ωであるのに対し、300V耐圧のN型MOSFETのオン抵抗値は0.04Ωであり、オン抵抗値による導通損失を下げることができ、効率の向上を図ることができる。なお、各耐圧のN型MOSFETのオン抵抗値は、現時点で汎用的に使用されている最小オン抵抗値の一例である。
 (実施の形態1の効果3)
 レーザ出力の安定性を向上させる代わりに、リアクトルL1~L3のインダクタンス値Lを小さくすることも可能である。たとえば、実施の形態1に係るレーザ光発生装置におけるリアクトルL1~L3のインダクタンス値を、比較例に係るレーザ光発生装置のリアクトルL1のインダクタンス値の3分の1にする。この場合、LDモジュールM1~M3の駆動電流の電流リップル率は、実施の形態1の効果1におけるLDモジュールM1の駆動電流の電流リップル率の3倍となる。
 しかしながら、実施の形態1では、LDモジュールM1~M3の出力レーザ光α1~α3をコンバイナ1で結合するので、コンバイナ1から得られるレーザ出力のリップル率は、LDモジュールM1~M3のレーザ出力のリップル率と比べて3分の1に低減し、実施の形態1の効果1におけるレーザ光発生装置のレーザ出力のリップル率と同じ大きさとなる。したがって、レーザ出力の安定性が、比較例に係るレーザ光発生装置と同程度でよい場合には、リアクトルL1~L3のインダクタンス値を小さくすることが可能となる。
 リアクトルL1~L3のインダクタンス値を小さくすることで、リアクトルL1~L3の小型化、コスト低減が可能となる。特に、大きなレーザ出力を有するレーザ光発生装置では、リアクトルL1~L3の大型化により実装上での場所が限定される問題や、製造できるメーカーが限られてくるため高コストとなる問題がある。しかしながら、インダクタンス値を小さくすることにより、リアクトルL1~L3を小型化し、実装上での場所が限定される問題を解決し、製造できるメーカーが多くなり価格の安い汎用リアクトルの使用が可能となる。
 また、リアクトルL1~L3のインダクタンス値を小さくすることにより、発熱損失の小さい高効率なリアクトルL1~L3を使用することができ、リアクトルL1~L3の放熱に必要な冷却機構(たとえば放熱フィン、水冷機構等)の小型化、および冷却方式の簡素化(たとえば、強制空冷から自然空冷)が可能となるので、冷却部材を減らすことができる。
 (実施の形態1の効果4)
 実施の形態1に従うレーザ光発生装置では、3つの電源部PS1~PS3および3つのLDモジュールM1~M3を分散して配置することができるので、電源部PS1~PS3およびLDモジュールM1~M3の放熱性を高めることができる。したがって、電源部PS1~PS3およびLDモジュールM1~M3から熱を放散させる絶縁シート等の放熱部材や、水冷或いは空冷のヒートシンク等の冷却部材を小型化し、価格を安くできる。
 また、レーザ出力を繰り返し変化させると、LDの温度差に起因した熱的なストレスがLDに繰り返し加わる。LD内の発光素子とボンディングワイヤ、あるいはLD内のリードフレームとボンディングワイヤが、熱膨張係数の異なる金属である場合、熱膨張係数の差により応力が生じて、LD内の発光素子とボンディングワイヤ、あるいはLD内のリードフレームとボンディングワイヤの接合部にクラックが発生し、故障に至る恐れがある。
 実施の形態1に従うレーザ光発生装置では、LDモジュールM1~M3を分散して配置することにより、レーザ出力が大きいときのLDの温度とレーザ出力が小さいときのLDの温度との温度差を小さくすることができ、熱的なストレスによるLDの故障を低減でき、寿命を延ばすことができる。
 また、レーザ出力が大きいときのLDの温度とレーザ出力が小さいときのLDの温度との温度差が小さくなるので、温度サイクル条件等で高い信頼性を有するLDを使用する必要がなくなる。また、LDの温度上昇が小さくなるので、耐熱温度が低い汎用LDが使用可能となる。そのため、温度サイクル条件等で高い信頼性を有するLDや、耐熱温度の高いLD等の高価なLDから、安価なLDへの置き換えが可能となり、装置の低コスト化を図ることができる。
 (実施の形態1の問題点)
 図9は、実施の形態1の問題点を説明するためのタイムチャートである。図9において、(A)は電流指令値Ic1(図3)の波形を示し、(B)はゲート信号G1(図5)の波形を示し、(C)はリアクトルL1(図1)の出力電流I1の波形を示し、(D)はLDモジュールM1(図1)に流れる電流IM1の波形を示している。
 図9では、電流指令値Ic1を大きな値IH(たとえば40A)から0Aに変更し、その後、値IHよりも小さな値IL(たとえば20A)に変更する場合が示されている。電流指令値Ic1がIH,ILである場合には、ビームオン信号B1(図5)は活性化レベルの「H」レベルにされている。電流指令値Ic1が0Aである場合には、ビームオン信号B1は非活性化レベルの「L」レベルにされている。
 時刻t0~t1では、電流指令値Ic1が値IHに設定され、電源部PS1およびリアクトルL1から電流指令値Ic1と同じ値IHの電流I1が出力される。また、ゲート信号G1が「L」レベルにされてスイッチング素子41がオフされる。これにより、リアクトルL1の出力電流I1が全てLDモジュールM1に流れ、LDモジュールM1の駆動電流IM1はIHとなり、LDモジュールM1から大パワーのレーザ光α1が出力される。このとき、リアクトルL1には電磁エネルギーが蓄えられる。
 時刻t1~t2では、電流指令値Ic1が0Aに設定され、電源部PS1の出力電流は0Aになり、ゲート信号G1が「H」レベルにされてスイッチング素子41がオンされる。リアクトルL1に蓄えられた電磁エネルギーにより、リアクトルL1の他方端子からスイッチング素子41および整流回路35(図4)を介してリアクトルL1の一方端子に電流I1が流れる。
 リアクトルL1の出力電流I1は、全てスイッチング素子41に流れるので、LDモジュールM1の駆動電流IM1は0Aになり、LDモジュールM1からのレーザ光α1の出力は停止される。このとき、リアクトルL1の電磁エネルギーは徐々に減少し、リアクトルL1の出力電流I1は徐々に減少する。
 時刻t2では、電流指令値Ic1が値ILに設定され、電源部PS1から電流指令値Ic1と同じ値ILの電流が出力される。また、ゲート信号G1が「L」レベルにされてスイッチング素子41がオフされる。これにより、電源部PS1およびリアクトルL1の出力電流I1が全てLDモジュールM1に流れ、LDモジュールM1から小パワーのレーザ光α1が出力される。
 ここで、スイッチング素子41の内部インピーダンスは小さいので、時刻t1~t2では、リアクトルL1に蓄積された電磁エネルギーはほとんど消費されず、リアクトルL1の出力電流I1はIHから少ししか減少しない。
 このため、スイッチング素子41がオフされたとき(時刻t2)、電源部PS1の出力電流と、IHから少ししか減少していないリアクトルL1の出力電流I1との和の電流がLDモジュールM1に流れ、瞬時的に電流指令値Ic1=ILよりも大きな駆動電流IM1がLDモジュールM1に流れ、瞬時的に大きなパワーのレーザ光α1がLDモジュールM1から出力される。他のレーザ光α2,α3でも同様であるので、レーザ光α1~α3を集めたレーザ光βは瞬時的に大きなパワーとなる。このレーザ光βを用いてレーザ加工を行なうと、加工不良を起こす恐れがある。以下の変形例1~3では、この問題点の解決が図られる。
 変形例1.
 図10は、実施の形態1の変形例1を示す回路ブロック図であって、図5と対比される図である。図10を参照して、この変形例1が実施の形態1と異なる点は、電流経路切換回路CS1が電流経路切換回路CS1Aで置換されている点である。電流経路切換回路CS1Aは、電流経路切換回路CS1の電流切換制御部42を電流切換制御部42Aで置換したものである。
 電流切換制御部42Aは、ビームオン信号B1に応答してゲート電圧VGを出力する。スイッチング素子41は、たとえばN型MOSFETである。ゲート電圧VGは、スイッチング素子41のゲートおよびソース間に与えられる。ビームオン信号B1が活性化レベルの「H」レベルである場合には、ゲート電圧VGは「L」レベルにされる。ビームオン信号B1が活性化レベルの「H」レベルから非活性化レベルの「L」レベルに立ち下げられた場合には、ゲート電圧VGは設定時間T1だけ設定電圧VMにされた後に「H」レベルにされる。
 設定電圧VMは、「L」レベルと「H」レベルとの間の電圧であって、スイッチング素子41を能動領域で駆動させるために必要な電圧に設定されている。能動領域とは、スイッチング素子41のゲートおよびソース間電圧を増加させたときに、ドレイン電流が増加する領域である。ゲート電圧VGを設定電圧VMにすると、スイッチング素子41のオン抵抗値は比較的高い値になり、スイッチング素子41は抵抗素子として動作する。
 なお、ゲート電圧VGの「H」レベルは、スイッチング素子41を飽和領域で駆動させるために必要な電圧に設定されている。飽和領域とは、スイッチング素子41のゲートおよびソース間電圧を増加させたときに、ドレイン電流が飽和する領域である。ゲート電圧VGを「H」レベルにすると、スイッチング素子41がオンし、スイッチング素子41のオン抵抗値は最小になる。
 また、ゲート電圧VGの「L」レベルは、スイッチング素子41を遮断領域で駆動させるために必要な電圧に設定されている。遮断領域とは、スイッチング素子41のゲートおよびソース間電圧を増加させても、ドレイン電流が流れない領域である。ゲート電圧VGを「L」レベルにすると、スイッチング素子41はオフし、スイッチング素子41の抵抗値は最大になる。
 この変形例1では、他の電流経路切換回路CS2,CS3も、電流経路切換回路CS1Aと同じ構成に変更される。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。
 図11は、変形例1となるレーザ光発生装置の動作を示すタイムチャートであって、図9と対比される図である。図11において、(A)は電流指令値Ic1(図3)の波形を示し、(B)はゲート電圧VG(図10)の波形を示し、(C)はリアクトルL1(図1)の出力電流I1の波形を示し、(D)はLDモジュールM1(図1)に流れる電流IM1の波形を示している。
 図11でも、電流指令値Ic1を大きな値IH(たとえば40A)から0Aに変更し、その後、値IHよりも小さな値IL(たとえば20A)に変更する場合が示されている。電流指令値Ic1がIH,ILである場合には、ビームオン信号B1(図5)は活性化レベルの「H」レベルにされている。電流指令値Ic1が0Aである場合には、ビームオン信号B1は非活性化レベルの「L」レベルにされている。
 時刻t0~t1では、電流指令値Ic1が値IHに設定され、電源部PS1およびリアクトルL1から電流指令値Ic1と同じ値IHの電流I1が出力される。また、ゲート電圧VGが「L」レベルにされてスイッチング素子41が遮断領域で動作し、スイッチング素子41がオフされる。これにより、リアクトルL1の出力電流I1が全てLDモジュールM1に流れ、LDモジュールM1の駆動電流IM1はIHとなり、LDモジュールM1から大パワーのレーザ光α1が出力される。このとき、リアクトルL1には電磁エネルギーが蓄えられる。
 時刻t1において、電流指令値Ic1が0Aに設定され、電源部PS1の出力電流は0Aになる。また、時刻t1では、ゲート電圧VGが設定電圧VMにされる。これにより、スイッチング素子41が能動領域で駆動され、スイッチング素子41は抵抗素子として動作する。
 電源部PS1の出力電流は0Aになるが、リアクトルL1に蓄えられた電磁エネルギーにより、リアクトルL1の他方端子からスイッチング素子41およびLDモジュールM1の並列接続体と整流回路35(図4)とを介してリアクトルL1の一方端子に電流I1が流れる。
 このとき、LDモジュールM1に流れる電流IM1がLDの発振しきい値未満となるように電圧VMを設定することにより、LDモジュールM1からレーザ光α1を出力させずに、リアクトルL1に蓄積された電磁エネルギーをLDモジュールM1とスイッチング素子41で消費することができ、リアクトルL1の出力電流I1をIHから急速に減少させることができる。時刻t1~t2の間に、リアクトルL1に蓄積された電磁エネルギーは完全に消費され、リアクトルL1の出力電流I1およびLDモジュールM1の駆動電流IM1は0Aとなる。
 時刻t2において、ゲート電圧VGが「H」レベルにされてスイッチング素子41は飽和領域で動作し、スイッチング素子41はオン状態にされる。時刻t3では、電流指令値Ic1が値ILに設定され、電源部PS1から電流指令値Ic1と同じ値ILの電流が出力される。また、ゲート電圧VGが「L」レベルにされてスイッチング素子41がオフされる。これにより、電源部PS1およびリアクトルL1の出力電流I1が全てLDモジュールM1に流れ、LDモジュールM1から小パワーのレーザ光α1が出力される。
 この変形例1では、電流指令値Ic1の立ち上がり時(時刻t3)には、リアクトルL1の電磁エネルギーが完全に消費されているので、図9で示したような大パワーのレーザ光α1がパルス的に出力されることはない。他のレーザ光α2,α3でも同様であるので、レーザ光α1~α3を集めたレーザ光βは瞬時的に大パワーとなることはない。このレーザ光βを用いてレーザ加工を行なうことにより、加工不良を起こすことを防止することができる。
 変形例2.
 図12は、実施の形態1の他の変形例2を示す回路ブロック図であって、図5と対比される図である。図12を参照して、この変形例2が実施の形態1と異なる点は、電流経路切換回路CS1が電流経路切換回路CS1Bで置換されている点である。電流経路切換回路CS1Bは、電流経路切換回路CS1にエネルギー消費部43を追加するとともに電流切換制御部42を電流切換制御部42Bで置換したものである。
 エネルギー消費部43は、直流正母線PL1と直流負母線NL1との間に直列接続された抵抗素子44およびスイッチング素子45を含む。スイッチング素子45は、たとえばN型MOSFETである。
 電流切換制御部42Bは、ビームオン信号B1に応答してゲート信号G1,G2を出力する。ゲート信号G1,G2は、それぞれスイッチング素子41,45のゲートに与えられる。ビームオン信号B1が活性化レベルの「H」レベルである場合には、ゲート信号G1,G2はともに「L」レベルにされる。
 ビームオン信号B1が活性化レベルの「H」レベルから非活性化レベルの「L」レベルに立ち下げられた場合には、ゲート信号G2が「H」レベルに立ち上げられ、設定時間T1の経過後に、ゲート信号G2が「L」レベルに立ち下げられるとともに、ゲート信号G1が「H」レベルに立ち上げられる。
 この変形例2では、他の電流経路切換回路CS2,CS3も、電流経路切換回路CS1Bと同じ構成に変更される。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。
 図13は、変形例2となるレーザ光発生装置の動作を示すタイムチャートであって、図9と対比される図である。図13において、(A)は電流指令値Ic1(図3)の波形を示し、(B),(C)はそれぞれゲート信号G1,G2(図12)の波形を示し、(D)はリアクトルL1(図1)の出力電流I1の波形を示し、(E)はLDモジュールM1(図1)に流れる電流IM1の波形を示している。
 図13では、電流指令値Ic1を大きな値IH(たとえば40A)から0Aに変更し、その後、値IHよりも小さな値IL(たとえば20A)に変更する場合が示されている。電流指令値Ic1がIH,ILである場合には、ビームオン信号B1(図5)は活性化レベルの「H」レベルにされている。電流指令値Ic1が0Aである場合には、ビームオン信号B1は非活性化レベルの「L」レベルにされている。
 時刻t0~t1では、電流指令値Ic1が値IHに設定され、電源部PS1およびリアクトルL1から電流指令値Ic1と同じ値IHの電流I1が出力される。また、ゲート信号G1,G2が「L」レベルにされてスイッチング素子41,45がオフされる。これにより、リアクトルL1の出力電流I1が全てLDモジュールM1に流れ、LDモジュールM1の駆動電流IM1はIHとなり、LDモジュールM1から大パワーのレーザ光α1が出力される。このとき、リアクトルL1には電磁エネルギーが蓄えられる。
 時刻t1において、電流指令値Ic1が0Aに設定され、電源部PS1の出力電流は0Aになる。また、時刻t1では、ゲート信号G2が「H」レベルにされ、スイッチング素子45がオンされる。このとき、電源部PS1の出力電流は0Aになるが、リアクトルL1に蓄えられた電磁エネルギーにより、リアクトルL1の他方端子からエネルギー消費部43およびLDモジュールM1の並列接続体、並びに整流回路35(図4)を介してリアクトルL1の一方端子に電流I1が流れる。
 このとき、LDモジュールM1に流れる電流IM1がLDの発振しきい値未満となるように抵抗素子44の抵抗値を設定することにより、LDモジュールM1からレーザ光α1を出力させずに、リアクトルL1に蓄積された電磁エネルギーをLDモジュールM1と抵抗素子44で消費することができ、リアクトルL1の出力電流I1をIHから急速に減少させることができる。時刻t1~t2の間に、リアクトルL1に蓄積された電磁エネルギーは完全に消費され、リアクトルL1の出力電流I1およびLDモジュールM1の駆動電流IM1は0Aとなる。
 時刻t2において、ゲート信号G2が「L」レベルに立ち下げられてスイッチング素子45がオフされるとともに、ゲート信号G1が「H」レベルに立ち上げられてスイッチング素子41がオンされる。
 時刻t3では、電流指令値Ic1が値ILに設定され、電源部PS1から電流指令値Ic1と同じ値ILの電流が出力される。また、ゲート信号G1が「L」レベルにされてスイッチング素子41がオフされる。これにより、電源部PS1およびリアクトルL1の出力電流I1が全てLDモジュールM1に流れ、LDモジュールM1から小パワーのレーザ光α1が出力される。
 この変形例2では、電流指令値Ic1の立ち上がり時(時刻t3)には、リアクトルL1の電磁エネルギーが完全に消費されているので、図9で示したような大パワーのレーザ光α1がパルス的に出力されることはない。他のレーザ光α2,α3でも同様であるので、レーザ光α1~α3を集めたレーザ光βは瞬時的に大パワーとなるはない。このレーザ光βを用いてレーザ加工を行なうことにより、加工不良を起こすことを防止することができる。
 また、スイッチング素子45をオンした直後におけるLDモジュールM1の端子間電圧をVO(0)とし、リアクトルL1のインダクタンス値をLとし、抵抗素子44の抵抗値をRとし、スイッチング素子45をオンした時間をt=0[s]とすると、LDモジュールM1の端子間電圧VO(t)は、次式(2)で表わされる。
 VO(t)=VO(0)×[1-e^(-Rt/L)] …(2)
 上述の通り、実施の形態1では、比較例に比べてリアクトルL2のインダクタンス値Lを3分の1にすることができる。したがって、この変形例2では、VO(t)を所望の電圧値にするために要する時間tを、比較例の3分の1にすることが可能である。これにより、エネルギー消費部43内のスイッチング素子45をオンする時間を3分の1に低減することができ、LDモジュールM1の駆動電流IM1の大きさを大きな値IHから小さな値ILに切り換えるのに要する時間を3分の1に低減することが可能となり、レーザ出力の応答速度を高めることができる。
 変形例3.
 変形例1,2では、リアクトルL1に蓄積された電磁エネルギーを電流経路切換回路CS1A,CS1BおよびLDモジュールM1で消費することにより、瞬時的にILよりも大きな駆動電流がLDモジュールM1に流れる問題を解決した。しかしながら、このような解決方法では、リアクトルL1に蓄積された電磁エネルギーを消費するので、効率が低下するという問題がある。この変形例3では、この問題の解決が図られる。
 図14は、実施の形態1のさらに他の変形例3を示す回路ブロック図であって、図5と対比される図である。図14を参照して、この変形例3が実施の形態1と異なる点は、電流経路切換回路CS1が電流経路切換回路CS1Cで置換されている点である。電流経路切換回路CS1Cは、電流切換制御部42を電流切換制御部42Cで置換したものである。
 電流切換制御部42Cは、ビームオン信号B1、電流指令値Ic1、電流検出器CD1の出力信号φI1に基づいてゲート信号G3を生成する。ゲート信号G3は、スイッチング素子41のゲートに与えられる。ビームオン信号B1が非活性化レベルの「L」レベルである場合には、ゲート信号G3は「L」レベルにされる。
 ビームオン信号B1が非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げられた場合には、電流検出器CD1の検出値が電流指令値Ic1になるまで、ゲート信号G3はパルス幅変調される。
 この変形例3では、他の電流経路切換回路CS2,CS3も、電流経路切換回路CS1Cと同じ構成に変更される。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。
 図15は、変形例3となるレーザ光発生装置の動作を示すタイムチャートであって、図9と対比される図である。図15において、(A)は電流指令値Ic1(図3)の波形を示し、(B)はゲート信号G3(図14)の波形を示し、(C)はリアクトルL1(図1)の出力電流I1の波形を示し、(D)はLDモジュールM1(図1)に流れる電流IM1の波形を示し、(E)は(D)の時刻t2から時刻t3までの領域の拡大図の一例である。
 図15では、電流指令値Ic1を大きな値IH(たとえば40A)から0Aに変更し、その後、値IHよりも小さな値IL(たとえば20A)に変更する場合が示されている。電流指令値Ic1がIH,ILである場合には、ビームオン信号B1(図5)は活性化レベルの「H」レベルにされている。電流指令値Ic1が0Aである場合には、ビームオン信号B1は非活性化レベルの「L」レベルにされている。
 時刻t0~t1では、電流指令値Ic1が値IHに設定され、電源部PS1およびリアクトルL1から電流指令値Ic1と同じ値IHの電流I1が出力される。また、ゲート信号G3が「L」レベルにされてスイッチング素子41(図14)がオフされる。これにより、リアクトルL1の出力電流I1が全てLDモジュールM1に流れ、LDモジュールM1の駆動電流IM1はIHとなり、LDモジュールM1から大パワーのレーザ光α1が出力される。このとき、リアクトルL1には電磁エネルギーが蓄えられる。
 時刻t1~t2では、電流指令値Ic1が0Aに設定され、電源部PS1の出力電流は0Aになり、ゲート信号G3が「H」レベルにされてスイッチング素子41がオンされる。リアクトルL1に蓄えられた電磁エネルギーにより、リアクトルL1の他方端子からスイッチング素子41および整流回路35を介してリアクトルL1の一方端子に電流I1が流れる。
 リアクトルL1の出力電流I1は、全てスイッチング素子41に流れるので、LDモジュールM1の駆動電流IM1は0Aになり、LDモジュールM1からのレーザ光α1の出力は停止される。このとき、リアクトルL1の電磁エネルギーは徐々に減少し、リアクトルL1の出力電流I1は徐々に減少する。
 時刻t2では、電流指令値Ic1が値ILに設定され、電源部PS1から電流指令値Ic1と同じ値ILの電流が出力される。時刻t2において、電流切換制御部42Cによってゲート信号G3のパルス幅変調が開始される。時刻t3において、電流検出器CD1の検出値が電流指令値Ic1になると、ゲート信号G3のパルス幅変調が停止され、ゲート信号G3は「L」レベルにされる。これにより、電流指令値Ic1と同じ値ILの電流IM1がLDモジュールM1に流れ、安定したレーザ光α1が出力される。
 この変形例3では、図15(B)に示されるように、時刻t2の直後にゲート信号G3がパルス幅変調される。これにより、図15(D),(E)に示されるように、LDモジュールM1の駆動電流IM1がパルス状に変化し、LDモジュールM1から出力されるレーザ光α1のパワーがパルス状に変化する。レーザ光α1のパワーは、パルスがオンのときとオフのときの平均値となるので、図9に示したような高出力にはならない。他のレーザ光α2,α3についてもレーザ光α1と同様であるので、レーザ光α1~α3を集めたレーザ光βは高出力にならない。このレーザ光βを用いてレーザ加工を行なうことにより、加工不良を起こすことを防止することができる。また、リアクトルL1の電磁エネルギーを無駄に消費することがないので、効率の向上を図ることができる。
 実施の形態2.
 図16は、実施の形態2に従うレーザ光発生装置の要部を示すブロック図であって、図2と対比される図である。図16を参照して、このレーザ光発生装置が実施の形態1と異なる点は、操作部3を用いて制御信号CNT1~CNT3の位相角度θ1~θ3が設定可能になっており、設定された位相角度θ1~θ3がそれぞれ制御部11~13に与えられる点である。
 レーザ光発生装置の使用者は、操作部3を操作して、レーザ出力設定値Pcおよびビームオン信号BONの波形に加え、制御信号CNT1~CNT3の位相角度θ1~θ3をセットする。位相角度θ1~θ3の各々は一定値でもよいし、ビームオン信号BONに同期して変化する値であっても構わない。ビームオン信号BONの波形、レーザ出力設定値Pc、および位相角度θ1~θ3は、操作部3内の記憶部(図示せず)に記憶される。
 たとえば、レーザ光発生装置の使用者が操作部3に含まれる出力開始ボタンをオンすると、ビームオン信号BON、レーザ出力設定値Pc、および位相角度θ1~θ3が記憶部(図示せず)から読み出されて制御装置4に出力される。
 制御部11内の電流制御部24(図3)は、設定された位相角度θ1の制御信号CNT1を生成する。制御部12内の電流制御部24は、設定された位相角度θ2の制御信号CNT2を生成する。制御部13内の電流制御部24は、設定された位相角度θ3の制御信号CNT3を生成する。
 位相角度θ1,θ2,θ3がそれぞれ0度、60度、120度である場合は、実施の形態1と同じ結果となり、図6で示したように、3つのLDモジュールM1~M3のレーザ出力のリップルが効果的に打ち消し合い、出力レーザ光βのリップル率は小さくなる。
 図17は、図16に示したレーザ光発生装置の動作の一例を示すタイムチャートであって、図6と対比される図である。図17において、(A)~(C)はそれぞれLDモジュールM1~M3に流れる電流IM1~IM3の波形を示し、(D)はレーザ光βのパワーPの波形を示している。
 図17では、θ1=θ2=θ3=0度の場合が示されている。図17から分かるように、LDモジュールM1~M3の駆動電流IM1~IM3に生じる電流リップルの位相は同じであるので、3つのLDモジュールM1~M3のレーザ出力のリップルは加算され、出力レーザ光βのリップル率は大きくなる。
 また、図18は、図16に示したレーザ光発生装置の他の動作例を示すタイムチャートであって、図6と対比される図である。図18においても、(A)~(C)はそれぞれLDモジュールM1~M3に流れる電流IM1~IM3の波形を示し、(D)はレーザ光βのパワーPの波形を示している。
 図18では、θ1=0度、θ2=θ3=120度の場合が示されている。図18から分かるように、LDモジュールM1,M2の駆動電流IM1,IM2に生じる電流リップルの位相は互いに240度ずれ、LDモジュールM2,M3の駆動電流I2,I3に生じる電流リップルの位相は同じである。LDモジュールM1の出力レーザ光α1に生じるリップルとLDモジュールM2,M3の出力レーザ光α2,α3に生じるリップルとは打ち消し合うが、LDモジュールM2,M3の出力レーザ光α2,α3に生じるリップルは加算される。
 したがって、θ1=0度、θ2=θ3=120度の場合におけるレーザ出力のリップル率は、θ1=0度、θ2=60度、θ3=120度の場合におけるレーザ出力のリップル率よりも大きくなり、θ1=θ2=θ3=0度の場合におけるレーザ出力のリップル率よりも小さくなる。
 本実施の形態2では、制御信号CNT1~CNT3の位相角度θ1~θ3を所望の大きさに変化させることにより、レーザ出力のリップル率を瞬時に変化させることが可能となる。このレーザ光発生装置をレーザ加工装置として使用した場合、レーザ出力のリップル率の大きさに応じて、加工断面を所望の平坦精度にすることができ、梨地加工面のような模様を高精度に形成したり、平坦な加工断面を形成することが可能となる。また、レーザ光βを出力する加工ヘッドの制御と、レーザ出力に生じるリップルの周波数を同期させることにより、たとえば、リップルにより生じる加工断面の凹凸を一定間隔で形成して模様を作成することができる。
 実施の形態3.
 図19は、実施の形態3に従うレーザ光発生装置の要部を示すブロック図であって、図16と対比される図である。図19を参照して、このレーザ光発生装置が実施の形態2と異なる点は、操作部3を用いて制御信号CNT1~CNT3の周波数f1~f3が設定可能になっており、設定された周波数f1~f3がそれぞれ制御部11~13に与えられる点である。
 レーザ光発生装置の使用者は、操作部3を操作して、レーザ出力設定値Pcおよびビームオン信号BONの波形に加え、制御信号CNT1~CNT3の周波数f1~f3をセットする。周波数f1~f3の各々は一定値でもよいし、ビームオン信号BONに同期して変化する値であっても構わない。ビームオン信号BONの波形、レーザ出力設定値Pc、および周波数f1~f3は、操作部3内の記憶部(図示せず)に記憶される。
 たとえば、レーザ光発生装置の使用者が操作部3に含まれる出力開始ボタンをオンすると、ビームオン信号BON、レーザ出力設定値Pc、および周波数f1~f3が記憶部(図示せず)から読み出されて制御装置4に出力される。
 制御部11内の電流制御部24(図3)は、設定された周波数f1の制御信号CNT1を生成する。制御部12内の電流制御部24は、設定された周波数f2の制御信号CNT2を生成する。制御部13内の電流制御部24は、設定された周波数f3の制御信号CNT3を生成する。
 図20は、図19で説明したレーザ光発生装置の動作の一例を示すタイムチャートである。図20において、(A)~(C)はそれぞれLDモジュールM1~M3に流れる電流IM1~IM3の波形を示し、(D)はレーザ光βのパワーPの波形を示している。図20では、f1<f2<f3である場合が示されている。
 図20から分かるように、制御信号CNT1~CNT3の周波数f1~f3が異なると、LDモジュールM1~M3の駆動電流I1~I3に生じる電流リップルの周波数も互いに異なり、LDモジュールM1~M3のレーザ出力のリップルの周波数も互いに異なることとなる。したがって、LDモジュールM1~M3のレーザ出力のリップルのピーク値が重なる確率が小さくなり、出力レーザ光βのリップルが小さくなり、安定したレーザ出力を得ることができる。
 なお、制御信号CNT1~CNT3の周波数f1~f3をレーザ光βの出力中に変化させてもよい。電源部PS1~PS3のフルブリッジ回路33(図4)は、それぞれ制御信号CNT1~CNT3に従ってスイッチングされる。フルブリッジ回路33のスイッチング周波数が低い場合、スイッチング損失が小さく、電源部PS1~PS3の温度上昇が小さいが、電流リップルが大きくなる。これに対して、フルブリッジ回路33のスイッチング周波数が高い場合、フルブリッジ回路33で生じるスイッチング損失が大きく、電源部PS1~PS3の温度上昇が大きいが、電流リップルが小さくなる。
 電源部PS1~PS3のうち、温度が高い電源部を低い周波数でスイッチングさせ、温度が低い電源部を高い周波数でスイッチングさせることにより、温度が高い電源部の温度上昇を低減し、温度が低い電源部の出力電流に重畳する電流リップルを小さくすることが可能となる。すなわち、制御信号CNT1~CNT3の周波数f1~f3を動作中に変化させることにより、電流リップルを小さくしたり、電源部PSの温度上昇を抑えることが可能となる。
 実施の形態4.
 図21は、実施の形態4に従うレーザ光発生装置の要部を示すブロック図であって、図2と対比される図である。図21を参照して、このレーザ光発生装置が実施の形態1と異なる点は、操作部3を用いて、LDモジュールM1~M3の残存寿命を予測するモードを設定することが可能となっており、そのモードが設定された場合には操作部3から制御部11~13に信号CM1が与えられる点である。制御部11~13は、信号CM1に応答して、残存寿命予測モードを順次実行する。
 信号CM1が与えられた場合、制御部11の指令部23(図3)は、制御部12,13の指令部23よりも先に残存寿命予測モードを実行する。指令部23は、互いに異なる値の複数の電流指令値Ic1を1つずつ順次出力する。電流制御部24は、電流検出器CD1の出力信号φI1によって示される電流I1が電流指令値Ic1になるように、制御信号CNT1のデューティ比を制御する。これにより、電源部PS1から電流I1が出力され、その電流I1によってLDモジュールM1が駆動され、レーザ光α1が出力される。レーザ光α1のパワーはパワー検出器2(図1)によって検出され、その検出値を示す信号φPが指令部23に与えられる。
 指令部23は、電流指令値Ic1の大きさを複数段階で変えて、各電流指令値Ic1毎に、パワー検出器2の出力信号φPによって示されるレーザ光α1のパワーを検出し、LDモジュールM1の電流-パワー特性(I-P特性)を求め、そのI-P特性を記憶部22に格納する。記憶部22には、初期時のI-P特性が格納されている。指令部23は、記憶部22に格納されている初期時のI-P特性と経時劣化後のI-P特性とを比較し、比較結果に基づいて、LDモジュールM1の残存寿命Tr1を予測する。
 図22は、記憶部22に格納された初期時のI-P特性と経時劣化後のI-P特性とを示す図である。図22において、初期時のLDモジュールM1は、駆動電流IM1がしきい値電流Ith1以上のときにレーザ光α1を出力する。経時劣化後のLDモジュールM1は、駆動電流IM1がしきい値電流Ith2以上のときにレーザ光α1を出力する。Ith1<Ith2である。
 また、初期時のLDモジュールM1のレーザ出力効率E1は、経時劣化後のLDモジュールM1のレーザ出力効率E2よりも大きい。レーザ出力効率とは、しきい値電流Ith以上の領域におけるI-P特性曲線の傾きである。
 指令部23は、記憶部22に格納された初期時のI-P特性と経時劣化後のI-P特性から、初期時のしきい値電流Ith1およびレーザ出力効率E1と、経時劣化後のしきい値電流Ith2およびレーザ出力効率E2とを読み取り、読み取ったIth1,E1とIth2,E2とを比較し、比較結果に基づいて経時劣化後のLDモジュールM1の残存寿命Tr1を予測する。
 制御部12(図21)は、制御部11の次に、制御部11と同様にして、LDモジュールM2の残存寿命Tr2を予測する。制御部13(図21)は、制御部12の次に、制御部11と同様にして、LDモジュールM3の残存寿命Tr3を予測する。
 残存寿命予測モードの終了後、レーザ光βを出力する通常動作を行なう場合、制御部11~13は、残存寿命Trの短いLDモジュールMの分担率SRが小さくなり、残存寿命Trの長いLDモジュールMの分担率SRが大きくなるように、LDモジュールM1~M3のパワーの分担率SR1~SR3を変更する。これにより、残存寿命Trの短いLDモジュールMの駆動電流IMが小さくなり、残存寿命Trの長いLDモジュールMの駆動電流IMが大きくなるように、電流指令値Ic1~Ic3が設定されることとなり、残存寿命Trの短いLDモジュールMを延命することが可能となる。
 その結果、レーザ光発生装置のメンテナンス間隔を延ばすことが可能となる。また、LDモジュールM1~M3の残存寿命Tr1~Tr3の差を低減することができ、一度のメンテナンスで多くのLDモジュールMを交換できるので、交換頻度を減らすことが可能となる。
 実施の形態5.
 図23は、実施の形態5に従うレーザ光発生装置の構成を示す回路ブロック図であって、図1と対比される図である。図23を参照して、このレーザ光発生装置が図1のレーザ光発生装置と異なる点は、電圧検出器VD1~VD3が追加され、制御装置4が制御装置4Aで置換されている点である。
 電圧検出器VD1は、LDモジュールM1の端子間電圧V1を検出し、その検出値を示す信号φV1を制御装置4Aに出力する。電圧検出器VD2は、LDモジュールM2の端子間電圧V2を検出し、その検出値を示す信号φV2を制御装置4Aに出力する。電圧検出器VD3は、LDモジュールM3の端子間電圧V3を検出し、その検出値を示す信号φV3を制御装置4Aに出力する。
 図24は、制御装置4Aの構成を示すブロック図であって、図2と対比される図である。図24を参照して、制御装置4Aが制御装置4と異なる点は、制御部11~13がそれぞれ制御部11A~13Aと置換されている点である。
 レーザ光発生装置の使用者は、操作部3を操作して、LDモジュールM1~M3の残存寿命を予測する残存寿命予測モードを設定する。それに応じて操作部3は、残存寿命予測モードの実行を指示する信号CM2を制御部11A~13Aに与える。制御部11A~13Aは、信号CM2に応答して、残存寿命予測モードを実行する。また、電圧検出器VD1~VD3の出力信号φV1~φV3は、それぞれ制御部11A~13Aに与えられる。
 図25は、制御部11Aの構成を示すブロック図であって、図3と対比される図である。図25を参照して、制御部11Aが制御部11と異なる点は、指令部23が指令部23Aで置換されている点である。
 制御部11Aに信号CM2が与えられた場合、制御部11Aの指令部23Aは、残存寿命予測モードを実行する。指令部23Aは、互いに異なる値の複数の電流指令値Ic1を1つずつ順次出力する。電流制御部24は、電流検出器CD1の出力信号φI1によって示される電流I1が電流指令値Ic1になるように、制御信号CNT1のデューティ比を制御する。これにより、電源部PS1から電流I1が出力され、その電流I1によってLDモジュールM1が駆動され、レーザ光α1が出力される。
 指令部23Aは、電流指令値Ic1の大きさを複数段階で変えて、各電流指令値Ic1毎に、電圧検出器VD1の出力信号φV1によって示されるLDモジュールM1の端子間電圧V1を検出し、LDモジュールM1の電流-電圧特性(I-V特性)を求め、そのI-V特性を記憶部22に格納する。記憶部22には、初期時のI-V特性が格納されている。指令部23Aは、記憶部22に格納されている初期時のI-V特性と経時劣化後のI-V特性とを比較し、比較結果に基づいて、LDモジュールM1の残存寿命を予測する。
 図26は、記憶部22に格納された初期時のI-V特性と経時劣化後のI-V特性とを示す図である。図26において、初期時のLDモジュールM1では、端子間電圧V1を0Vから徐々に増大させていくと、V1がしきい値電圧Vth1になった時に電流IM1が流れ始め、その後はV1に比例してIM1が増大する。経時劣化後のLDモジュールM1では、端子間電圧V1を0Vから徐々に増大させていくと、V1がしきい値電圧Vth2になった時に電流IM1が流れ始め、その後はV1に比例してIM1が増大する。Vth1<Vth2である。
 指令部23Aは、記憶部22に格納された初期時のI-V特性と経時劣化後のI-V特性から、初期時のしきい値電圧Vth1と、経時劣化後のしきい値電圧Vth2とを読み取り、読み取ったVth1とVth2とを比較し、比較結果に基づいて経時劣化後のLDモジュールM1の残存寿命Tr1を予測する。制御部12A,13A(図24)は制御部11Aと同時に、制御部11Aと同様にして、LDモジュールM2,M3の残存寿命Tr2,Tr3をそれぞれ予測する。
 残存寿命予測モードの終了後、レーザ光βを出力する通常動作を行なう場合、制御部11A~13Aは、残存寿命Trの短いLDモジュールMの分担率SRが小さくなり、残存寿命Trの長いLDモジュールMの分担率SRが大きくなるように、LDモジュールM1~M3のパワーの分担率SR1~SR3を変更する。これにより、残存寿命Trの短いLDモジュールMの駆動電流IMが小さくなり、残存寿命Trの長いLDモジュールMの駆動電流IMが大きくなるように、電流指令値Ic1~Ic3を決定することにより、残存寿命Trの短いLDモジュールMを延命する。
 その結果、レーザ光発生装置のメンテナンス間隔を延ばすことが可能となる。また、LDモジュールM1~M3の残存寿命Tr1~Tr3の差を低減することができ、一度のメンテナンスで多くのLDモジュールMを交換できるので、交換頻度を減らすことが可能となる。
 また、本実施の形態5では、3つの電圧検出器VD1~VD3を設けたので、3つのLDモジュールM1~M3の端子間電圧V1~V3を同時に検出することができ、LDモジュールM1~M3のI-V特性を同時に検出することができる。したがって、LDモジュールM1~M3のI-P特性を1つずつ順次検出する必要がある実施の形態4と比べ、残存寿命予測を短時間で行なうことができる。
 また、全てのLDモジュールM1~M3が動作状態でも、LDモジュールM1~M3のI-V特性を計測できるので、たとえば、レーザ光βを使用して被加工物を加工している際中であっても、残存寿命を計測することができる。
 実施の形態6.
 図27は、実施の形態6に従うレーザ光発生装置の要部を示すブロック図であって、図24と対比される図である。図27を参照して、このレーザ光発生装置が実施の形態5と異なる点は、操作部3を用いて、LDモジュールM1~M3の発光効率EA1~EA3を検出する発光効率検出モードを設定することが可能となっており、そのモードが設定された場合には、操作部3から制御部11A~13Aに信号CM3が与えられる点である。制御部11A~13Aは、信号CM3に応答して、発光効率検出モードを順次実行する。
 信号CM3が制御部11Aに与えられた場合、指令部23A(図25)は、制御部12A,13Aよりも先に、発光効率検出モードを実行する。指令部23Aは、設定された電流指令値Ic1を出力する。電流制御部24は、電流検出器CD1の出力信号φI1によって示される電流I1が電流指令値Ic1になるように、制御信号CNT1のデューティ比を制御する。これにより、電源部PS1から電流I1が出力され、その電流I1によってLDモジュールM1が駆動され、レーザ光α1が出力される。
 レーザ光α1のパワーはパワー検出器2によって検出され、その検出値を示す信号φPが指令部23Aに与えられる。また、LDモジュールM1の端子間電圧V1が電圧検出器VD1によって検出され、その検出値を示す信号φV1が指令部23Aに与えられる。
 指令部23Cは、信号φPによって示されるレーザ光α1のパワーと、信号φV1によって示されるLDモジュールM1の端子間電圧V1と、電流指令値Ic1によって示されるLDモジュールM1の駆動電流I1とに基づいて、LDモジュールM1の発光効率EA1=P/(V1×I1)を求める。制御部12Aは、制御部11Aの次に、制御部11Aと同様にして、LDモジュールM2の発光効率EA2を検出する。制御部13Aは、制御部12Aの次に、制御部11Aと同様にして、LDモジュールM3の発光効率EA3を検出する。
 発光効率検出モードの終了後、レーザ光βを出力する通常動作を行なう場合、制御部11A~13Aは、発光効率EAの低いLDモジュールMの分担率SRが小さくなり、発光効率EAの高いLDモジュールMの分担率SRが大きくなるように、LDモジュールM1~M3のパワーの分担率SR1~SR3を変更する。これにより、発光効率EAの低いLDモジュールMの駆動電流IMを小さくし、発光効率EAの高いLDモジュールMの駆動電流IMを大きくすることとなり、レーザ光発生装置の効率を高めることができる。
 実施の形態7.
 実施の形態1の比較例となるレーザ光発生装置(図7)では、LDモジュールM10のレーザ出力がオフのときに、発振しきい値電流Ith未満の設定電流をLDモジュールM10に流して、LDモジュールM10の温度を上昇させている。これにより、レーザ出力のオン/オフ動作が繰り返される場合において、レーザ出力がオンの場合とオフの場合とのLDのジャンクションの温度差を小さくしている。これにより、ヒートサイクルに起因する熱的ストレスが、LDに繰り返し加わることを防ぎ、LDを構成するチップとボンディングワイヤやはんだ等の接合部にクラックが発生し、故障に至ることを予防している。
 しかしながら、比較例では、LDの特性ばらつきや、ヒートシンク等の冷却部材の配置によって、各LDのジャンクション温度にばらつきが生じる。そのため、一部のLDでは、LDモジュールのレーザ出力がオンの時とオフの時とのジャンクション温度の温度差を小さくできず、ヒートサイクルに起因する熱的ストレスが、LDに繰り返し加わり、早期に故障に至る可能性がある。本実施の形態7では、この問題の解決が図られる。
 図28は、実施の形態7に従うレーザ光発生装置の構成を示す回路ブロック図であって、図1と対比される図である。図28を参照して、このレーザ光発生装置が図1のレーザ光発生装置と異なる点は、温度検出器TD1~TD3が追加され、制御装置4が制御装置4Bと置換されている点である。
 温度検出器TD1は、LDモジュールM1の温度Te1を検出し、その検出値を示す信号φTe1を制御装置4Bに与える。温度検出器TD2は、LDモジュールM2の温度Te2を検出し、その検出値を示す信号φTe2を制御装置4Bに与える。温度検出器TD3は、LDモジュールM3の温度Te3を検出し、その検出値を示す信号φTe3を制御装置4Bに与える。
 図29は、制御装置4Bの構成を示す回路ブロック図であって、図2と対比される図である。図29を参照して、この制御装置4Bが図2の制御装置4と異なる点は、制御部11~13がそれぞれ制御部11B~13Bと置換されている点である。
 レーザ光発生装置の使用者は、操作部3を操作して、LDモジュールM1~M3のオフ時における温度Te1~Te3を検出する温度検出モードを設定する。それに応じて操作部3は、温度検出モードの実行を指示する信号CM4を制御部11B~13Bに与える。制御部11B~13Bは、信号CM4に応答して、温度検出モードを実行する。
 図30は、制御部11Bの構成を示すブロック図であって、図3と対比される図である。図30を参照して、制御部11Bが制御部11と異なる点は、指令部23が指令部23Bで置換されている点である。
 信号CM4が制御部11Bに与えられた場合、指令部23Bは、温度検出モードを実行する。指令部23Bは、設定電流を流すための電流指令値Ic1を出力する。電流制御部24は、電流検出器CD1の出力信号φI1によって示される電流I1が電流指令値Ic1になるように、制御信号CNT1のデューティ比を制御する。これにより、電源部PS1から電流I1が出力され、その電流I1によってLDモジュールM1が発熱し、LDモジュールM1の温度Te1が上昇する。
 LDモジュールM1の温度Te1は温度検出器TD1(図28)によって検出され、その検出値を示す信号φTe1が指令部23Bに与えられる。指令部23Bは、LDモジュールM1の温度Te1を検知する。制御部12B,13B(図29)は、制御部11Bと同様にして、LDモジュールM2,M3の温度Te2,Te3をそれぞれ検出する。
 温度検出モードの終了後、レーザ光βを出力する通常動作を行なう場合、制御部11B~13Bは、温度Teが高いLDモジュールMには小さな電流が流れ、温度Teが低いLDモジュールMには大きな電流が流れるように、LDモジュールM1~M3の電流指令値Ic1~Ic3を決定する。
 これにより、LDの特性ばらつきや、ヒートシンク等の冷却部材の配置の影響があっても、LDのジャンクションの温度差を小さくすることができ、ヒートサイクルに起因する熱的ストレスが、LDに繰り返し加わることを避けて、LDモジュールM1~M3の長寿命化を図ることができる。
 なお、LDモジュールM1~M3のI-P特性、I―V特性を測定するとき、温度検出器TD1~TD3によってLDモジュールM1~M3の温度Te1~Te3を同時に測定してもよい。LDモジュールM1~M3のI-P特性、I-V特性、しきい値電流Ith、しきい値電圧Vth、レーザ出力効率E、発光効率EAは、LDモジュールM1~M3の温度Te1~Te3に応じて変化する。したがって、LDモジュールM1~M3の残存寿命を予測するとき、温度検出器TD1~TD3で計測したLDモジュールM1~M3の温度Te1~Te3を考慮することで、LDモジュールM1~M3の残存寿命の予測精度を向上することが可能となる。
 実施の形態8.
 図31は、実施の形態8に従うレーザ光発生装置の要部を示す回路ブロック図であって、図2と対比される図である。図31を参照して、このレーザ光発生装置が実施の形態1と異なる点は、制御装置4が制御装置4Cで置換されている点である。制御装置4Cは、制御部11~13を制御部11C~13Cで置換したものである。本実施の形態8では、操作部3を用いて、発光させるLDモジュールMの数Nをレーザ出力設定値Pcに応じて変更するモードを設定することが可能となっており、そのモードが設定された場合には、操作部3から制御部11C~13Cに信号CM5が与えられる。
 図32は、制御部11Cの構成を示すブロック図であって、図3と対比される図である。図32を参照して、制御部11Cが制御部11と異なる点は、通信/演算部21が通信/演算部21Aで置換されている点である。
 通信/演算部21Aは、レーザ出力設定値Pcに応じて、発光させるLDモジュールMの数Nを求める。たとえば、レーザ出力設定値Pcが小さい場合にはN=1となり、レーザ出力設定値Pcが少し大きい場合にはN=2となり、レーザ出力設定値Pcが大きい場合にはN=3となる。求められたNは、指令部23に与えられる。
 N=1である場合、制御部11C~13C(図31)のうちの制御部11Cの指令部23のみが電流指令値Ic1を出力する。N=2である場合、制御部11C~13Cのうちの2個の制御部11C,12Cの指令部23が電流指令値Ic1,Ic2を出力する。N=3である場合、全ての制御部11C~13Cの指令部23が電流指令値Ic1~Ic3を出力する。
 制御部11Cの指令部23は、パワー検出器2の出力信号φPによって示される出力レーザ光βのパワーPの1/Nの値が、レーザ出力設定値Pcの1/Nの値になるように電流指令値Ic1を生成する。電流制御部24は、電流検出器CD1の検出値が電流指令値Ic1になるように、制御信号CNT1を生成する。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。
 本実施の形態8では、レーザ出力設定値Pcが小さい場合、LDモジュールM1~M3のうちのいずれか1つのLDモジュール(たとえばM1)のみを発光させるので、実施の形態1よりも低パワーのレーザ光βを出力することができる。したがって、レーザ光βを用いて被加工物を加工する場合には、低パワーのレーザ光βを用いて微細で精密な加工を行なうことができる。
 図33は、LDモジュールMの駆動電流IM(A)と電流リップル率Ri(%)との関係を示す図である。図33では、VLI=200V、VLO=50V、f=100kHz、L=100μHの条件で測定された結果が示されている。
 たとえば、実施の形態1の比較例に係るレーザ光発生装置(図7)において、LDモジュールM10の駆動電流IMを20Aとした場合、LDモジュールM10の駆動電流IMに対する電流リップル率は、±9.4%となる。
 一方、本実施の形態8のレーザ光発生装置において、実施の形態1の比較例に係るレーザ光発生装置(図7)と同じ出力を得るために、比較例と比べてLDの数量が3分の1であるLDモジュールM1に3倍の大きさの駆動電流IMである60Aを流した場合、LDモジュールM1の駆動電流IMに対する電流リップル率Riは、±3.1%となる。したがって、本実施の形態8では、低出力動作を行なう場合、LDモジュールM1~M3の駆動電流の電流リップル率Riを低減でき、安定したレーザ出力を得ることができる。
 また、本実施の形態8によれば、安定したレーザ出力を得ることができるだけでなく、電力変換効率も向上させることができる。
 図34は、レーザ出力と電力変換効率との関係を示す図である。この図34では、実施の形態8に係るレーザ光発生装置の特性を示す曲線(実線)と、実施の形態1の比較例に係るレーザ光発生装置(図7)の特性を示す曲線(点線)とが示されている。
 以下、実施の形態8と、実施の形態1の比較例(以下、単に「比較例」と称する。)とを、レーザ出力が0~33%の低出力領域と、レーザ出力が33~66%の中出力領域と、レーザ出力が66~100%の高出力領域とに分けて比較する。
 図34を参照して、実施の形態8では、レーザ出力を100%から低下させていくと、高出力領域及び中出力領域において94%程度の高い電力変換効率が得られ、レーザ出力が約20%以下になると電力変換効率が大きく低下する。
 これに対して、比較例では、レーザ出力を100%から低下させていくと、高出力領域では94%程度の高い電力変換効率が得られているが、中出力領域になると電力変換効率が徐々に低下し、低出力領域になると電力変換効率が大きく低下する。
 これは、比較例では、1つの電源部PS1によってLDモジュールM10を駆動するので、高出力時は電源部PS1の電力変換効率が高いが、低出力時は電源部PS1の電力変換効率が低くなるからである。このため、比較例では、低出力時の電力変換効率が低いという課題がある。
 これに対して、実施の形態8では、発光させるLDモジュールMの数Nをレーザ出力設定値Pcに応じて変更するモードを設定することで、低出力時の電力変換効率を向上させることができる。
 実施の形態8では、電源部PS1~PS3の各々の電力容量が、比較例に係るレーザ光発生装置(図7)の電源部PS1の電力容量の3分の1程度とされる。そして、低出力領域では、LDモジュールM1~M3のうちのいずれか1つのLDモジュール(たとえばLDモジュールM1)のみを発光させるために、電源部PS1~PS3のうち1つの電源部(たとえば電源部PS1)のみが使用される。また、中出力領域では、LDモジュールM1~M3のうちのいずれか2つのLDモジュール(たとえばLDモジュールM1,M2)のみを発光させるために、電源部PS1~PS3のうち2つの電源部(たとえば電源部PS1,PS2)のみが使用される。さらに、高出力領域では、LDモジュールM1~M3の全てを発光させるために、電源部PS1~PS3の全てが使用される。これにより、本実施の形態8では、低出力領域から高出力領域までの広範囲において、電源部PS1~PS3の電力変換効率を高くすることができる。
 実施の形態8のレーザ光発生装置をレーザ加工装置として使用する場合、レーザ出力のリップル率が低減されるため、レーザ出力が小さい場合でも安定した精度のよい加工が可能となる。たとえば板厚が薄い板を加工するときにバリの少ない加工や微細加工が可能となる。また低出力でのレーザマーキングも可能となる。したがって、加工できる条件が大幅に広がる。したがって、レーザ加工精度の信頼性の向上を図ることができる。
 また、レーザ出力設定値Pcが小さい場合には、LDモジュールM1~M3を1つずつ順次駆動させてもよい。その場合、電源部PS1、リアクトルL1、およびLDモジュールM1と、電源部PS2、リアクトルL2、およびLDモジュールM2と、電源部PS3、リアクトルL3、およびLDモジュールM3とを順次休止させることができるので、電源部PS1~PS3、リアクトルL1~L3、LDモジュールM1~M3の温度上昇を抑えることが可能となる。
 実施の形態9.
 図35は、実施の形態9に従うレーザ光発生装置の要部を示す回路ブロック図であって、図2と対比される図である。図35を参照して、このレーザ光発生装置が実施の形態1と異なる点は、制御装置4が制御装置4Dと置換されている点である。制御装置4Dは、制御装置4の制御部11~13をそれぞれ制御部11D~13Dと置換し、報知部50を追加したものである。
 レーザ光発生装置の使用者は、操作部3を操作して、LDモジュールM1~M3の故障を検出する故障検出モードを設定する。それに応じて操作部3は、故障検出モードの実行を指示する信号CM6を制御部11D~13Dに与える。制御部11D~13Dは、信号CM6に応答して、故障検出モードを実行する。
 制御部11Dは、制御部11と同じ動作を行なう他、信号CM6に応答して、パワー検出器2の出力信号φPによって示されるレーザ光α1のパワーとレーザ出力設定値Pcとの差がなくなるように、電流指令値Ic1を生成してLDモジュールM1を発光させる。そして制御部11Dは、レーザ光α1のパワーが基準値Psよりも小さい場合には、LDモジュールM1の短絡故障が発生したと判別し、信号φS1を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。基準値Psは、LDモジュールMが故障しているか否かを判別する基準の電流値である。
 また、制御部11Dは、電源部PS1を駆動させている場合に、電流検出器CD1の出力信号φI1によって示される電流I1が0Aであるときは、LDモジュールM1の開放故障が発生したと判別し、信号φO1を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。
 制御部12Dは、制御部11Dと同様であり、レーザ光α2のパワーが基準値Psよりも小さい場合には、LDモジュールM2の短絡故障が発生したと判別し、信号φS2を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。また、制御部12Dは、電源部PS2を駆動させている場合に、電流検出器CD2の出力信号φI2によって示される電流I2が0Aであるときは、LDモジュールM2の開放故障が発生したと判別し、信号φO2を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。
 制御部13Dも、制御部11Dと同様であり、レーザ光α3のパワーが基準値Psよりも小さい場合には、LDモジュールM3の短絡故障が発生したと判別し、信号φS3を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。また、制御部13Dは、電源部PS3を駆動させている場合に、電流検出器CD3の出力信号φI3によって示される電流I3が0Aであるときは、LDモジュールM3の開放故障が発生したと判別し、信号φO3を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。
 報知部50は、信号φS1~φS3が活性化レベルの「H」レベルにされた場合には、それぞれLDモジュールM1~M3の短絡故障が発生したことを音、光、画像等によってレーザ光発生装置の使用者に報知する。また、報知部50は、信号φO1~φO3が活性化レベルの「H」レベルにされた場合には、それぞれLDモジュールM1~M3の開放故障が発生したことを音、光、画像等によってレーザ光発生装置の使用者に報知する。
 図36は、故障検出モード時における制御装置4Dの動作を示すフローチャートである。図36を参照して、ステップS1において制御装置4Dは、電源部PSを制御して、LDモジュールM1~M3のうちのいずれか1つ(以下では、LDモジュールM1とする。)に駆動電流IM(IM1)を供給する。
 ステップS2において制御装置4Dは、LDモジュールM1に対応する電流検出器CD1の出力信号φI1に基づいて、LDモジュールM1に流れる駆動電流IM1が0Aであるか否かを判別し、駆動電流IM1が0Aである場合には、LDモジュールM1の開放故障が発生しているためステップS5に進み、駆動電流IM1が0Aでない場合には、ステップS3に進む。
 ステップS3において、制御装置4Dは、駆動させたLDモジュールM1のレーザ出力が基準値Ps未満か否かを判別し、レーザ出力が基準値Ps未満である場合には、LDモジュールM1の短絡故障が発生しているためステップS5に進み、レーザ出力が基準値Ps未満でない場合には、ステップS4に進む。ステップS4において、制御装置4Dは、駆動させたLDモジュールM1は故障していないと判別し、ステップS8に進む。
 制御装置4Dは、ステップS5においてLDモジュールM1の故障が発生したと判別し、ステップS6において報知部50を用いて故障が発生したことを報知し、ステップS7において故障しているLDモジュールM1の使用を中止する。具体的には、故障しているLDモジュールM1に対応する電源部PS1への制御信号の供給を停止し、LDモジュールM1への電流の供給を停止する。
 ステップS8において、制御装置4Dは、故障の有無を未だ判別していないLDモジュールがあるか否かを判別し、未判別のLDモジュールがない場合には、故障検出モードの実行を終了する。未判別のLDモジュールがある場合には、制御装置4Dは、未判別のLDモジュールのうちのいずれか1つ(たとえばLDモジュールM2)に駆動電流IM(IM2)を供給し、ステップS2に戻る。全てのLDモジュールの故障の有無が判別されるまで、ステップS2~S9が繰り返し実行される。
 制御装置4Dは、故障したLDモジュールが修理されるか新品と交換されるまで、レーザ出力設定値Pcによって示されるパワーのレーザ光βを出力するために、残りのLDモジュールMの駆動電流IMを変更する。
 本実施の形態9に従うレーザ光発生装置によれば、LDモジュールMの故障の有無を検出し、故障していないLDモジュールを用いてレーザ光βを出力することができる。
 また、実施の形態1の比較例に係るレーザ光発生装置(図7)では、1つのLDモジュールM10のみが設けられているので、LDモジュールM10が故障した場合、修理が完了するまで装置を動作させることができず、レーザ加工工程が、全停止してレーザ加工装置を備えた工場にとって、大きなロスが生じる恐れがある。
 しかしながら、本実施の形態9では、LDモジュールM1~M3のいずれかが故障しても、他のLDモジュールでレーザ出力を補填して、レーザ加工を行なうことができるので、レーザ加工工程を停止させず、工場のロスを抑えることができる。
 また、修理時、LDモジュール内のLDが1つ故障すると、LDモジュール毎交換する必要がある。比較例に係るレーザ光発生装置では、LDモジュールM10の中に、使用する全てのLDが含まれているので、1つのLDが故障すると、全てのLDを交換する必要がある。
 一方、本実施の形態9に係るレーザ光発生装置では、LDモジュールM10と同数のLDが3つのLDモジュールM1~M3に分散されているので、1つのLDが故障しても、故障したLDが含まれるLDモジュール内のLDのみを交換するだけで済む。したがって、交換するLDの数を比較例と比べて3分の1に減らすことができ、修理費を低減できる。
 なお、本実施の形態9では、短絡故障および開放故障の両方を検出しているが、短絡故障のみを検出してもよいし、開放故障のみを検出してもよい。
 実施の形態10.
 図37は、実施の形態10に従うレーザ光発生装置の要部を示す回路ブロック図であって、図24と対比される図である。図37を参照して、このレーザ光発生装置が実施の形態5と異なる点は、制御装置4Aが制御装置4Eと置換されている点である。制御装置4Eは、制御装置4Aの制御部11A~13Aをそれぞれ制御部11E~13Eと置換したものである。
 レーザ光発生装置の使用者は、操作部3を操作して、LDモジュールM1~M3の故障を検出する故障検出モードを設定する。それに応じて操作部3は、故障検出モードの実行を指示する信号CM7を制御部11E~13Eに与える。制御部11E~13Eは、信号CM7に応答して、故障検出モードを実行する。
 制御部11Eは、制御部11Aと同じ動作を行なう他、信号CM7に応答して、パワー検出器2の出力信号φPによって示されるレーザ光βのパワーPの1/3の値P/3と、レーザ出力設定値Pcの1/3の値Pc/3との差がなくなるように、電流指令値Ic1を生成してLDモジュールM1を発光させる。
 そして、制御部11Eは、電圧検出器VD1の出力信号φV1によって示されるLDモジュールM1の端子間電圧V1が基準値Vsよりも小さい場合には、LDモジュールM1の短絡故障が発生したと判別し、信号φS1を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。基準値Vsは、LDモジュールMが故障しているか否かを判別する基準の電圧値である。
 また、制御部11Eは、電源部PS1を駆動させている場合に、電流検出器CD1の出力信号φI1によって示される電流I1が0Aであるときは、LDモジュールM1の開放故障が発生したと判別し、信号φO1を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。
 制御部12Eは、制御部11Eと同様であり、電圧検出器VD2の出力信号φV2によって示されるLDモジュールM2の端子間電圧V2が基準値Vsよりも小さい場合には、LDモジュールM2の短絡故障が発生したと判別し、信号φS2を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。また、制御部12Eは、電源部PS2を駆動させている場合に、電流検出器CD2の出力信号φI2によって示される電流I2が0Aであるときは、LDモジュールM2の開放故障が発生したと判別し、信号φO2を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。
 制御部13Eも、制御部11Eと同様であり、電圧検出器VD3の出力信号φV3によって示されるLDモジュールM3の端子間電圧V3が基準値Vsよりも小さい場合には、LDモジュールM3の短絡故障が発生したと判別し、信号φS3を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。また、制御部13Eは、電源部PS3を駆動させている場合に、電流検出器CD3の出力信号φI3によって示される電流I3が0Aであるときは、LDモジュールM3の開放故障が発生したと判別し、信号φO3を非活性化レベルの「L」レベルから活性化レベルの「H」レベルに立ち上げる。
 図38は、故障検出モード時における制御装置4Eの動作を示すフローチャートであって、図36と対比される図である。図38のフローチャートが図36のフローチャートと異なる点は、ステップS1がステップS1A,S1Bで置換され、ステップS9がステップS9Aで置換されている点である。
 図38を参照して、制御装置4Eは、ステップS1Aにおいて、全てのLDモジュールM1~M3にそれぞれ駆動電流IM1~IM3を供給し、ステップS1Bにおいて、LDモジュールM1~M3のうちのいずれか1つを指定する。また、ステップS8において、未判別のLDモジュールがあると判別された場合に、制御装置4Eは、ステップS9Aにおいて、未判別のLDモジュールのうちのいずれか1つを指定してステップS2に戻る。他の構成および動作は、実施の形態5,9と同じであるので、その説明は繰り返さない。
 本実施の形態10に従うレーザ光発生装置によっても、LDモジュールMの故障の有無を検出し、故障していないLDモジュールを用いてレーザ光βを出力することができる。
 また、実施の形態9では、短絡故障検出時において電源部PS1~PS3を1つずつ駆動させてLDモジュールM1~M3のレーザ出力を1つずつ計測するので、短絡故障の検出時間が長かった。これに対して、本実施の形態10では、短絡故障検出時において電源部PS1~PS3を同時に駆動させてLDモジュールM1~M3の端子間電圧V1~V3を同時に計測するので、短絡故障の検出時間を実施の形態9よりも短縮することができる。
 また、LDモジュールM1~M3を1つずつ駆動させる必要がないため、レーザ加工中のように複数のLDモジュールを発光させている状態でも故障を検出できる。そのため、加工中にLDモジュールが故障することによる加工物のダメージを最小限にすることが可能である。
 なお、本実施の形態10でも、短絡故障および開放故障の両方を検出しているが、短絡故障のみを検出してもよいし、開放故障のみを検出してもよい。
 実施の形態11.
 図39は、実施の形態11によるレーザ光発生装置の構成を示す回路ブロック図であって、図1と対比される図である。図39を参照して、このレーザ光発生装置が図1のレーザ光発生装置と異なる点は、LDモジュールM1~M3がそれぞれLDモジュールM1A~M3Aで置換されている点である。
 LDモジュールM1A~M3Aは、互いに異なる数のLDを有する。この例では、LDモジュールM1Aは直列接続された4個のLDを含み、LDモジュールM2Aは直列接続された3個のLDを含み、LDモジュールM3Aは直列接続された2個のLDを含む場合が示されている。なお、LDの数は、上記の数に限定されるものではない。
 制御装置4は、レーザ出力設定値Pcに基づいて、3つのLDモジュールM1~M3のうちの少なくとも1つのLDモジュールを選択し、選択したLDモジュールを発光させる。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。
 本実施の形態11では、レーザ出力設定値Pcが小さい場合には、LDの直列数が少ないLDモジュールM3Aに駆動電流IM3のみに流すことにより、実施の形態1と比べて、より小さなレーザ出力を得ることができ、より低出力のレーザ光βを用いた加工が可能となる。
 また、大きな出力を得るときはLDの直列数が多いLDモジュールM1Aを駆動し、小さな出力を得るときは、LDの直列数が少ないLDモジュールM3Aを駆動することにより、低出力から高出力までのレーザ出力を、階調的に得ることが可能となる。したがって、加工できる対象物の種類を増やすことが可能となる。
 また、LDの直列数が多いLDモジュールM1Aからレーザ出力設定値Pcに近い出力のレーザ光α1を出力させ、LDの直列数の少ないLDモジュールM3Aの出力レーザ光α3によってレーザ出力を微調整するような制御をすることにより、レーザ出力の大きさを細かく制御することができる。したがって、高精度な加工をすることが可能となる。
 実施の形態12.
 図40は、実施の形態12に従うレーザ光発生装置の構成を示す回路ブロック図であって、図1と対比される図である。図40を参照して、このレーザ光発生装置が図1のレーザ光発生装置と異なる点は、電源部PS1が副電源部PS1a,PS1bで置換され、電源部PS2が副電源部PS2a,PS2bで置換され、電源部PS3が副電源部PS3a,PS3bで置換されるとともに、リアクトルL1が副リアクトルL1a,L1bで置換され、リアクトルL2が副リアクトルL2a,L2bで置換され、リアクトルL3が副リアクトルL3a,L3bで置換されている点である。
 副リアクトルL1a,L1bの一方端子はそれぞれ副電源部PS1a,PS1bの正極に接続され、それらの他方端子はともに直流正母線PL1に接続される。電流検出器CD1は、副リアクトルL1a,L1bの出力電流の和の電流I1を検出し、検出値を示す信号φI1を制御装置4に出力する。副電源部PS1a,PS1bの負極はともに直流負母線NL1に接続される。
 副電源部PS1a,PS1bは、それぞれ副制御信号CNT1a,CNT1bによって駆動される。副制御信号CNT1a,CNT1bのパルスの位相は互いに180度ずれており、副電源部PS1a,PS1bはインターリーブ制御される。したがって、副リアクトルL1a,L1bの出力電流に含まれる電流リップルの位相は互いに180度ずれており、副リアクトルL1a,L1bの出力電流に含まれる電流リップルは互いに打ち消し合うので、実施の形態1と比べて、電流I1に含まれる電流リップルは小さくなり、LDモジュールM1から出力されるレーザ光α1のリップル率は小さくなる。
 副リアクトルL2a,L2b及び副電源部PS2a,PS2b、並びに副リアクトルL3a,L3b及び副電源部PS3a,PS3bについても、副リアクトルL1a,L1b及び副電源部PS1a,PS1bと同様の構成を有する。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。
 本実施の形態12では、各LDモジュールに対応して2つの副電源部を設け、2つの副電源部をインターリーブ制御するので、各LDモジュールに流れる電流の電流リップルを低減することができる。その結果、実施の形態1と比べて、出力レーザ光βに生じるリップル率をさらに低減することができる。また、電流リップルを平滑化する各リアクトルのインダクタンス値や平滑コンデンサの容量値をさらに小さくできるので、部品コストの低減化にも貢献できる。
 図41は、実施の形態12の変形例を示す回路ブロック図であって、図40と対比される図である。図41を参照して、図40と異なる点は、副リアクトルL1a,L1bが磁気結合型リアクトル部U1を構成し、副リアクトルL2a,L2bが磁気結合型リアクトル部U2を構成し、副リアクトルL3a,L3bが磁気結合型リアクトル部U3を構成している点である。リアクトル部U1では、副リアクトルL1a,L1bが同一鉄心に巻回されて磁気結合されている。リアクトル部U2では、副リアクトルL2a,L2bが同一鉄心に巻回されて磁気結合されている。リアクトル部U3では、副リアクトルL3a,L3bが同一鉄心に巻回されて磁気結合されている。この変形例では、各リアクトルの小型化、部品コストの低減化を図ることができる。
 実施の形態13.
 実施の形態1では、LDモジュールM1~M3の駆動電流IM1~IM3に生じる電流リップルの位相が120度ずつずれるように、制御信号CNT1~CNT3の位相角度θ1~θ3をそれぞれ0度、60度、120度とした。これにより、理想的には、各LDモジュールM1~M3のレーザ出力のリップルが打ち消し合う効果により、レーザ光βのパワーPのリップルが低減される。
 しかしながら、実際には、部品のばらつき(たとえば、リアクトルL1~L3のインダクタンス値のばらつき)により、電流IM1~IM3に生じる各電流リップルの大きさは異なる。たとえば、上記の式(1)から、リアクトルのインダクタンス値Lのばらつきが-20%である場合、電流リップルIRは+25%となり、インダクタンス値Lのばらつきが+20%である場合、電流リップルIRは-17%となる。このため、電流IM1~IM3に生じる電流リップルが重畳されて、レーザ光βのパワーPのリップルが増大する場合がある。そこで、本実施の形態13では、LDモジュールM1~M3に流れる各電流リップルの大きさに基づいて電流リップル間の位相差を調整することにより、レーザ光βのリップルを抑制してレーザ出力を安定化する。
 なお、以下では、「電流リップル間の位相差」について、あるLDモジュールに流れる電流リップルの位相に対して、他のLDモジュールに流れる電流リップルの位相進み側の位相差と位相遅れ側の位相差とのうち絶対値が小さい方の位相差の大きさを「電流リップル間の位相差」と称することとする。
 図42は、本実施の形態13の比較例におけるレーザ光発生装置の動作の一例を示すタイムチャートである。図42において、(A)~(C)はそれぞれLDモジュールM1~M3に流れる電流IM1~IM3の波形を示し、(D)は電流IM1~IM3を足し合わせたときの波形を示す。電流IM1~IM3を足し合わせた電流値は、レーザ光βのパワーPと比例関係にある。
 この比較例では、電流IM1~IM3の電流リップル間の位相差は、互いに120度である。そして、リアクトルL1,L2のインダクタンス値が基準値に対して+20%ばらついており、リアクトルL3のインダクタンス値が基準値に対して-20%ばらついているものとしている。
 この比較例では、各電流IM1~IM3の電流リップルは、電流IM1,IM2では約1.4A、電流IM3では約2Aであり、電流IM1~IM3を足し合わせた電流のリップル率は、約±4.0%である。
 図43は、本実施の形態13に従うレーザ光発生装置の動作の一例を示すタイムチャートである。図43においても、(A)~(C)はそれぞれLDモジュールM1~M3に流れる電流IM1~IM3の波形を示し、(D)は電流IM1~IM3を足し合わせたときの波形を示す。
 本実施の形態13では、各電流IM1~IM3の電流リップルの大きさから、レーザ出力が安定するように(レーザ光βのリップルが抑制されるように)制御信号CNT1~CNT3の位相角度θ1~θ3を制御することによって電流リップル間の位相差が調整される(調整方法については後述)。そして、この例でも、リアクトルL1,L2のインダクタンス値が基準値に対して+20%ばらついており、リアクトルL3のインダクタンス値が基準値に対して-20%ばらついているものとする。
 したがって、本実施の形態13でも、各電流IM1~IM3の電流リップルは、電流IM1,IM2では約1.4A、電流IM3では約2Aである。一方、電流IM1~IM3を足し合わせた電流のリップル率は、レーザ出力が安定するように電流リップル間の位相差が調整されることにより、約±1.6%に抑えられている。
 図44は、本実施の形態13に従うレーザ光発生装置における制御部11Fの構成を示すブロック図であって、図3と対比される図である。なお、図示しない制御部12F,13Fの構成も制御部11Fと同様であり、この図44では、制御部11Fの構成が代表的に示されている。図44を参照して、制御部11Fが図3の制御部11と異なる点は、通信/演算部21が通信/演算部21Bで置換されている点である。
 通信/演算部21Bは、電流検出器CD1の出力信号φI1を受ける。そして、通信/演算部21Bは、図示しない他の制御部12F,13Fへ出力信号φI1を送信する。なお、他の制御部12F,13Fの各々も同様に、対応の電流検出器の出力信号を他の制御部へ出力する。これにより、各制御部において、電流検出器CD1~CD3の出力信号φI1~φI3が共有される。
 通信/演算部21Bは、電流検出器CD1~CD3の出力信号φI1~φI3から、LDモジュールM1~M3に流れる各電流リップルの大きさを検出する。そして、通信/演算部21Bは、各電流リップルの大きさと電流リップル間の位相差との対応関係を用いて、検出された各電流リップルの大きさから電流リップル間の位相差を決定する。
 各電流リップルの大きさと電流リップル間の位相差との対応関係は、予め作成されて記憶部22に記憶されている。上記対応関係は、種々の手法で作成することができる。たとえば、当該レーザ光発生装置の出荷前に、LDモジュールM1~M3に電流を流し、各電流リップルの位相を種々変化させてレーザ光βのパワーPの検出値を制御装置4にフィードバックする。そして、レーザ出力が最も安定する(レーザ光βのリップルが最小となる)各電流リップルの位相を取得し、各電流リップルの大きさと電流リップル間の位相差との対応関係(テーブル)を作成してもよい。
 或いは、当該レーザ光発生装置からのレーザ出力前やキャリブレーション設定時に、LDモジュールM1~M3に電流を流して、上記と同様の手法により各電流リップルの大きさと電流リップル間の位相差との対応関係(テーブル)を作成してもよい。
 図43に示した例では、上記のようにして作成された、各電流リップルの大きさと電流リップル間の位相差との対応関係を用いて、検出された各電流リップルの大きさから、電流IM1,IM3の電流リップル間の位相差、及び電流IM2,IM3の電流リップル間の位相差は144度に決定され、電流IM1,IM2の電流リップル間の位相差は72度に決定されている。
 なお、本実施の形態13において、以下では、電流IM1の電流リップルと電流IM2の電流リップルとの位相差をΔRp1と称し、電流IM2の電流リップルと電流IM3の電流リップルとの位相差をΔRp2と称し、電流IM3の電流リップルと電流IM1の電流リップルとの位相差をΔRp3と称する。
 そして、通信/演算部21Bは、決定された電流リップル間の位相差から、対応する制御信号CNT1の位相角度θ1を求め、電流制御部24に与える。このように、LDモジュールM1~M3に流れる電流リップル間の位相差を異ならせることで、レーザ光βのリップルを低減し、安定したレーザ出力を得ることができる。
 このように、本実施の形態13では、LDモジュールM1~M3に流れる各電流リップルの大きさから、レーザ出力が安定するように(レーザ光βのリップルが抑制されるように)電流リップル間の位相差が調整される。すなわち、実施の形態1では、電流リップル間の位相差ΔRp1~ΔRp3が互いに同じ(120度)であったが、本実施の形態13では、位相差ΔRp1~ΔRp3が異なる。位相差ΔRp1~ΔRp3が異なるとは、位相差ΔRp1~ΔRp3のうちの2つが同じで1つが異なっていてもよいし、位相差ΔRp1~ΔRp3が互いに異なっていてもよい。言い換えると、本実施の形態13では、ピークが隣接する電流リップル間の位相差の大きさが均等にならないように、電流リップル間の位相差が調整される。
 図45は、電流リップル間の位相差ΔRp1~ΔRp3が互いに同じであるときの電流波形を示した図である。図45を参照して、位相差ΔRp1~ΔRp3は、互いに等しく120度である。このような場合、リアクトルのインダクタンス値にばらつきがあると、図42に示したように、電流IM1~IM3を足し合わせた電流のリップル率(レーザ光βのリップル)が大きくなる可能性がある。
 図46は、電流リップル間の位相差ΔRp1~ΔRp3が異なるときの電流波形の一例を示した図である。この例では、位相差ΔRp1~ΔRp3のうちの2つが同じで1つが異なる場合が示されている。
 図46を参照して、位相差ΔRp2,ΔRp3は互いに等しく、位相差ΔRp1は位相差ΔRp2,ΔRp3と異なる。たとえば、位相差ΔRp2,ΔRp3は160度であり、位相差ΔRp1は40度である。すなわち、この例では、ピークが隣接する電流リップル間の位相差について、大きさの異なる2つの位相差が生じるように、電流リップル間の位相差が調整されている。
 図47は、電流リップル間の位相差ΔRp1~ΔRp3が異なるときの電流波形の他の例を示した図である。この例では、位相差ΔRp1~ΔRp3が互いに異なる場合が示されている。
 図47を参照して、位相差ΔRp1~ΔRp3は、たとえば、それぞれ120度、160度、80度である。すなわち、この例では、ピークが隣接する電流リップル間の位相差について、大きさの異なる3つの位相差が生じるように、電流リップル間の位相差が調整されている。
 このように、本実施の形態13では、各電流リップルの大きさと電流リップル間の位相差との予め準備された対応関係に従って、各電流リップルの大きさに応じて電流リップル間の位相差ΔRp1~ΔRp3を適宜異ならせることにより、レーザ光βのリップルを抑制してレーザ出力を安定化することができる。
 なお、上記では、LDモジュールM1~M3に流れる電流リップルの大きさは、それぞれ電流検出器CD1~CD3の出力信号φI1~φI3から検出するものとしたが、リアクトルL1~L3の温度から推定してもよい。
 具体的には、リアクトルのコアには磁性材料が用いられることが多く、磁性材料としてよく使用されているフェライトコアの場合、透磁率がプラスの温度特性を有する。このため、リアクトルの温度が上昇すると、リアクトルのインダクタンス値が上昇する。そして、上記の式(1)を用いて、リアクトルのインダクタンス値(L)から電流リップルの大きさ(IR)を推定することができる。したがって、リアクトルの温度とインダクタンス値との関係を予測することにより、リアクトルの温度から電流リップルの大きさを推定することができる。
 たとえば、リアクトルのインダクタンス値Lは、次式によって示すことができる。
 L=k×μ×π×a2×n2/b …(3)
 ここで、kは長岡係数、μは透磁率、a,b,nはそれぞれリアクトルの半径、長さ、巻数を示す。
 上述のように、上記パラメータにおいて、透磁率μは温度により変化する。そこで、透磁率μの温度特性を仕様や評価試験等に基づき事前に取得しておくことにより、式(3)及び式(1)を用いて、リアクトルの温度から電流リップルの大きさを推定することができる。
 実施の形態14.
 図48は、レーザ光発生装置を備えるレーザ加工装置の構成を示す図である。図48において、レーザ加工装置は、レーザ光発生装置51、光ファイバ52、加工ヘッド53、レンズ54、および位置決め装置55を備える。
 レーザ光発生装置51は、上記の各実施の形態及び各変形例のいずれかで説明したものであり、リップルの小さなレーザ光βを出力する。光ファイバ52は、レーザ光発生装置51から出力されたレーザ光βを加工ヘッド53に伝送する。加工ヘッド53は、対象物56の表面にレーザ光βを垂直に照射する。レンズ54は、加工ヘッド53と対象物56の間に設けられ、その焦点は対象物56の表面に合せられている。
 対象物56は、位置決め装置55に搭載される。位置決め装置55は、対象物56を水平および垂直方向に移動させ、対象物56の表面の被加工位置をレンズ54の焦点に合せる。レーザ光発生装置51から出射されたレーザ光βは、光ファイバ52、加工ヘッド53、およびレンズ54を介して対象物56の被加工位置に照射され、対象物56を加工する。
 本実施の形態14では、上述したレーザ光発生装置が用いられるので、リップルが小さな安定したレーザ光βを対象物56に照射することができ、レーザ加工時の加工断面の平坦精度の向上を図ることができる。
 今回開示された各実施の形態は、技術的に矛盾しない範囲で適宜組合わせて実施することも予定されている。そして、今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本開示により示される技術的範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 PS1~PS3 電源部、L1~L3 リアクトル、PL1~PL3 直流正母線、NL1~NL3 直流負母線、CD1~CD3 電流検出器、CS1~CS3,CS1A~CS1C 電流経路切換回路、M1~M3,M1A~M3A,M10 LDモジュール、PS1a~PS3a,PS1b~PS3b 副電源部、L1a~L3a,L1b~L3b 副リアクトル、U1~U3 磁気結合型リアクトル部、1 コンバイナ、2 パワー検出器、3 操作部、4,4A~4E 制御装置、5 交流電源、11~13,11A~11F,12A~12F,13A~13F 制御部、14 通信回線、15~17 処理装置、21,21A,21B 通信/演算部、22 記憶部、23,23A,23B 指令部、24 電流制御部、31,35 整流回路、32 平滑コンデンサ、33 フルブリッジ回路、33a~33d,41,45 スイッチング素子、34 トランス、34a 1次巻線、34b 2次巻線、42,42A~42C 電流切換制御部、43 エネルギー消費部、44 抵抗素子、VD1~VD3 電圧検出器、TD1~TD3 温度検出器、50 報知部、51 レーザ光発生装置、52 光ファイバ、53 加工ヘッド、54 レンズ、55 位置決め装置。

Claims (20)

  1.  複数の制御信号によってそれぞれ駆動され、各々が電流を出力するように構成された複数の電源部と、
     前記複数の電源部にそれぞれ対応して設けられ、各々が対応の電源部から電流を受けてレーザ光を出力するように構成された複数のレーザダイオードモジュールと、
     前記複数のレーザダイオードモジュールからそれぞれ出力される複数のレーザ光を集めて出力するように構成された集光部と、
     前記複数の制御信号を生成するように構成された制御装置とを備え、
     前記制御装置は、前記複数の制御信号の各々の位相または周波数を変更可能に構成される、レーザ光発生装置。
  2.  前記制御装置は、前記複数の制御信号のうちの少なくとも2つの制御信号の位相または周波数が互いに異なるように、前記複数の制御信号を生成する、請求項1に記載のレーザ光発生装置。
  3.  前記複数の電源部の各々から出力される電流は、対応の電源部を駆動する制御信号に同期して変化する電流リップルを含み、
     前記複数のレーザダイオードモジュールの各々から出力されるレーザ光は、対応のレーザダイオードモジュールが受ける電流に含まれる電流リップルに同期して変化するリップルを含み、
     前記制御装置は、前記集光部から出力されるレーザ光に含まれるリップルを低減するように、前記少なくとも2つの制御信号の位相または周波数を互いに異ならせる、請求項2に記載のレーザ光発生装置。
  4.  前記制御装置は、前記複数のレーザダイオードモジュールにそれぞれ流れる複数の電流リップル間に位相差を設けるとともに、ピークが隣接する電流リップル間の位相差について、大きさの異なる少なくとも2つの位相差が生じるように、前記複数の制御信号を生成する、請求項3に記載のレーザ光発生装置。
  5.  前記制御装置は、前記複数のレーザダイオードモジュールにそれぞれ流れる複数の電流リップル間に位相差を設けるとともに、前記複数の電流リップル間の位相差について、ピークが隣接する電流リップル間の位相差の大きさが均等にならないように、前記複数の制御信号を生成する、請求項3に記載のレーザ光発生装置。
  6.  前記複数の電源部にそれぞれ対応して設けられる複数のリアクトルと、
     前記複数のレーザダイオードモジュールにそれぞれ並列接続される複数の第1スイッチング素子とをさらに備え、
     前記複数のリアクトルの各々は、対応の電源部と、対応のレーザダイオードモジュールとの間に接続される、請求項1から請求項5のいずれか1項に記載のレーザ光発生装置。
  7.  前記制御装置は、
     前記複数のレーザダイオードモジュールのうちの第1レーザダイオードモジュールからレーザ光を出力する場合には、前記第1レーザダイオードモジュールに対応する第1スイッチング素子が非導通となるように前記対応の第1スイッチング素子を制御し、
     前記第1レーザダイオードモジュールからのレーザ光の出力を停止する場合には、前記対応の第1スイッチング素子が導通するように前記対応の第1スイッチング素子を制御する、請求項6に記載のレーザ光発生装置。
  8.  前記複数の電源部にそれぞれ対応して設けられ、各々が対応の電源部から出力される電流を検出する複数の電流検出器をさらに備える、請求項1から請求項7のいずれか1項に記載のレーザ光発生装置。
  9.  前記複数のレーザダイオードモジュールにそれぞれ対応して設けられ、各々が対応のレーザダイオードモジュールの端子間電圧を検出する複数の電圧検出器をさらに備える、請求項1から請求項8のいずれか1項に記載のレーザ光発生装置。
  10.  前記集光部から出力されるレーザ光のパワーを検出するパワー検出器をさらに備える、請求項1から請求項9のいずれか1項に記載のレーザ光発生装置。
  11.  前記制御装置は、前記複数の電流検出器、前記複数の電圧検出器、前記パワー検出器の少なくとも1つ以上の検出結果を用いて、前記複数のレーザダイオードモジュールの残存寿命を予測する、請求項8から請求項10のいずれか1項に記載のレーザ光発生装置。
  12.  前記制御装置は、前記複数の電流検出器、前記複数の電圧検出器、前記パワー検出器の少なくとも1つ以上の検出結果を用いて、前記複数のレーザダイオードモジュールの発光効率を検出する、請求項8から請求項11のいずれか1項に記載のレーザ光発生装置。
  13.  前記制御装置は、前記複数の電流検出器、前記複数の電圧検出器、前記パワー検出器の少なくとも1つ以上の検出結果を用いて、前記複数のレーザダイオードモジュールの故障を検出する、請求項8から請求項12のいずれか1項に記載のレーザ光発生装置。
  14.  前記制御装置は、前記残存寿命の予測結果、前記発光効率の検出結果、前記故障の検出結果の少なくとも1つ以上に応じて、前記複数のレーザダイオードモジュールに流れる電流の大きさをそれぞれ変化させる前記複数の制御信号を生成する、請求項8から請求項13のいずれかに記載のレーザ光発生装置。
  15.  前記複数のレーザダイオードモジュールにそれぞれ対応して設けられ、各々が対応のレーザダイオードモジュールの温度を検出する複数の温度検出器をさらに備え、
     前記制御装置は、前記複数のレーザダイオードモジュールを発光させる場合に、検出された温度の高いレーザダイオードモジュールに流れる電流が、検出された温度の低いレーザダイオードモジュールに流れる電流よりも小さくなるように、前記複数の制御信号を生成する、請求項1から請求項14のいずれか1項に記載のレーザ光発生装置。
  16.  前記制御装置は、
     レーザ出力設定値に応じて駆動するレーザダイオードモジュールを少なくとも1つ以上選択し、
     選択されたレーザダイオードモジュールに電流が流れ、かつ、非選択のレーザダイオードモジュールには電流が流れないように、前記複数の制御信号を生成する、請求項1から請求項15のいずれか1項に記載のレーザ光発生装置。
  17.  前記複数のレーザダイオードモジュールの各々は、少なくとも1つのレーザダイオードを含み、
     各レーザダイオードモジュールに含まれるレーザダイオードの数は、前記複数のレーザダイオードモジュール間で互いに異なる、請求項1から請求項16のいずれか1項に記載のレーザ光発生装置。
  18.  前記複数の制御信号の各々は、互いに位相が異なる第1および第2の副制御信号を含み、
     前記複数の電源部の各々は、
     前記第1の副制御信号によって駆動され、前記第1の副制御信号に応じた電流を出力するように構成された第1の副電源部と、
     前記第2の副制御信号によって駆動され、前記第2の副制御信号に応じた電流を出力するように構成された第2の副電源部とを含み、
     前記複数のリアクトルの各々は、前記第1および第2の副電源部に対応して設けられ、前記第1および第2の副電源部の正電極と、前記対応のレーザダイオードモジュールのアノード端子との間に接続される第1および第2の副リアクトルを含む、請求項6から請求項17のいずれか1項に記載のレーザ光発生装置。
  19.  前記第1および第2の副リアクトルは、磁気結合型リアクトルを構成する、請求項18に記載のレーザ光発生装置。
  20.  請求項1から請求項19のいずれか1項に記載のレーザ光発生装置と、
     前記レーザ光発生装置から出力されるレーザ光を対象物の表面に照射する加工ヘッドとを備えるレーザ加工装置。
PCT/JP2020/020607 2019-05-28 2020-05-25 レーザ光発生装置およびそれを備えたレーザ加工装置 WO2020241592A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021522760A JP7258132B2 (ja) 2019-05-28 2020-05-25 レーザ光発生装置およびそれを備えたレーザ加工装置
US17/604,766 US20220200236A1 (en) 2019-05-28 2020-05-25 Laser beam generation device and laser processing apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019099470 2019-05-28
JP2019-099470 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020241592A1 true WO2020241592A1 (ja) 2020-12-03

Family

ID=73552794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020607 WO2020241592A1 (ja) 2019-05-28 2020-05-25 レーザ光発生装置およびそれを備えたレーザ加工装置

Country Status (3)

Country Link
US (1) US20220200236A1 (ja)
JP (1) JP7258132B2 (ja)
WO (1) WO2020241592A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215611A1 (ja) * 2021-04-05 2022-10-13 パナソニックIpマネジメント株式会社 レーザ発振器及びそれを備えたレーザ加工装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098978B (zh) * 2020-09-14 2024-03-26 哈工大机器人(合肥)国际创新研究院 提高tof相机激光器导通速度、降低驱动功耗的系统及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191223A (ja) * 2003-12-25 2005-07-14 Toshiba Corp 半導体レーザ光源装置
US20050185428A1 (en) * 2004-02-19 2005-08-25 Crawford Ian D. Efficient fast pulsed laser or light-emitting diode driver
JP2007049051A (ja) * 2005-08-12 2007-02-22 Fujifilm Corp 半導体レーザ光源
WO2016167019A1 (ja) * 2015-04-15 2016-10-20 三菱電機株式会社 レーザダイオード駆動用電源装置
JP2017503351A (ja) * 2014-01-06 2017-01-26 フィリップス ライティング ホールディング ビー ヴィ リップルに基づく発光ダイオード駆動
JP2017054931A (ja) * 2015-09-09 2017-03-16 ファナック株式会社 複数のレーザダイオードモジュールを有する長寿命高効率レーザ装置
JP2017059603A (ja) * 2015-09-15 2017-03-23 株式会社島津製作所 半導体レーザ装置
JP2017084964A (ja) * 2015-10-28 2017-05-18 ファナック株式会社 レーザ光を合波して出力するレーザ発振器
JP2017092206A (ja) * 2015-11-09 2017-05-25 ファナック株式会社 故障診断機能を有するレーザ装置
WO2018078730A1 (ja) * 2016-10-25 2018-05-03 三菱電機株式会社 レーザ加工機及びレーザ加工機の演算装置
JP2018181950A (ja) * 2017-04-06 2018-11-15 ファナック株式会社 複数のレーザモジュールを備えたレーザ装置
JP2019071364A (ja) * 2017-10-10 2019-05-09 株式会社タムラ製作所 リアクトル

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191223A (ja) * 2003-12-25 2005-07-14 Toshiba Corp 半導体レーザ光源装置
US20050185428A1 (en) * 2004-02-19 2005-08-25 Crawford Ian D. Efficient fast pulsed laser or light-emitting diode driver
JP2007049051A (ja) * 2005-08-12 2007-02-22 Fujifilm Corp 半導体レーザ光源
JP2017503351A (ja) * 2014-01-06 2017-01-26 フィリップス ライティング ホールディング ビー ヴィ リップルに基づく発光ダイオード駆動
WO2016167019A1 (ja) * 2015-04-15 2016-10-20 三菱電機株式会社 レーザダイオード駆動用電源装置
JP2017054931A (ja) * 2015-09-09 2017-03-16 ファナック株式会社 複数のレーザダイオードモジュールを有する長寿命高効率レーザ装置
JP2017059603A (ja) * 2015-09-15 2017-03-23 株式会社島津製作所 半導体レーザ装置
JP2017084964A (ja) * 2015-10-28 2017-05-18 ファナック株式会社 レーザ光を合波して出力するレーザ発振器
JP2017092206A (ja) * 2015-11-09 2017-05-25 ファナック株式会社 故障診断機能を有するレーザ装置
WO2018078730A1 (ja) * 2016-10-25 2018-05-03 三菱電機株式会社 レーザ加工機及びレーザ加工機の演算装置
JP2018181950A (ja) * 2017-04-06 2018-11-15 ファナック株式会社 複数のレーザモジュールを備えたレーザ装置
JP2019071364A (ja) * 2017-10-10 2019-05-09 株式会社タムラ製作所 リアクトル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215611A1 (ja) * 2021-04-05 2022-10-13 パナソニックIpマネジメント株式会社 レーザ発振器及びそれを備えたレーザ加工装置

Also Published As

Publication number Publication date
JPWO2020241592A1 (ja) 2020-12-03
JP7258132B2 (ja) 2023-04-14
US20220200236A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2020241592A1 (ja) レーザ光発生装置およびそれを備えたレーザ加工装置
US7764022B2 (en) Power supply apparatus and display apparatus
JP2010140675A (ja) 電源装置
US9350257B2 (en) Power supply apparatus and driving method thereof
JP2003333861A (ja) 電源装置およびその設計方法、並びに、発電装置
JP6257869B1 (ja) レーザダイオード駆動用電源装置及びレーザ加工装置
WO2017094120A1 (ja) 電流制御装置及び電流制御方法
JP4794826B2 (ja) 電源装置
JP2011041465A (ja) 電源装置
JP6417930B2 (ja) 非絶縁型電源装置
JP4954725B2 (ja) 発光素子駆動装置およびそれを用いた表示装置
Jia et al. Topology and control innovation for auxiliary power supply in dimmable LED drivers
JP7122681B2 (ja) 電源装置及び照明システム
JP2008278735A (ja) 直流電源装置
JP2007128713A (ja) 放電灯点灯装置
WO2022044280A1 (ja) レーザ光発生装置およびレーザ加工装置
WO2018193505A1 (ja) レーザダイオード駆動用電源装置及びレーザ加工装置
WO2023243321A1 (ja) コンバータ装置
JPWO2019073506A1 (ja) 半導体装置、及び、電力変換装置
JP2010259317A (ja) 負荷駆動装置
JP2018057181A (ja) 電圧変換装置
JP2021121146A (ja) 点灯システム、照明システム、及び照明器具
Jia Technologies for Improving Performance of Indoor Dimmable Light-Emitting Diode (LED) Drivers
JP2011119111A (ja) 電源装置および液晶表示装置
JP2012054462A (ja) Led駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813505

Country of ref document: EP

Kind code of ref document: A1