WO2020241404A1 - ナノダイヤモンド分散組成物 - Google Patents

ナノダイヤモンド分散組成物 Download PDF

Info

Publication number
WO2020241404A1
WO2020241404A1 PCT/JP2020/019893 JP2020019893W WO2020241404A1 WO 2020241404 A1 WO2020241404 A1 WO 2020241404A1 JP 2020019893 W JP2020019893 W JP 2020019893W WO 2020241404 A1 WO2020241404 A1 WO 2020241404A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nanodiamond
particles
dispersion composition
mass
Prior art date
Application number
PCT/JP2020/019893
Other languages
English (en)
French (fr)
Inventor
木本訓弘
梅本浩一
伊原良介
柏木健
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to KR1020217042660A priority Critical patent/KR20220016490A/ko
Priority to CN202080039902.XA priority patent/CN113891914A/zh
Priority to EP20813703.4A priority patent/EP3978568A4/en
Priority to US17/605,596 priority patent/US20220259048A1/en
Priority to JP2021522262A priority patent/JP7539875B2/ja
Publication of WO2020241404A1 publication Critical patent/WO2020241404A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/041Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1472Non-aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants

Definitions

  • the present disclosure relates to nanodiamond dispersion compositions. More specifically, the present disclosure relates to a composition in which nanodiamond particles are dispersed in an organic dispersion medium.
  • the present application claims the priority of Japanese Patent Application No. 2019-101168 filed in Japan on May 30, 2019, the contents of which are incorporated herein by reference.
  • nano-sized fine substances have new properties that cannot be expressed in the bulk state.
  • nanodiamond particles generally have a large proportion of surface atoms, the sum of van der Waals forces that can act between the surface atoms of adjacent particles is large, and aggregation is likely to occur.
  • a phenomenon called agglutination can occur in which the Coulomb interaction between crystal planes of adjacent crystal faces contributes and very strongly aggregates. Therefore, it was very difficult to disperse the nanodiamond particles in the form of primary particles in an organic solvent.
  • Patent Document 3 describes that the wet dispersion treatment is performed by the bead milling method, but in this method, the dispersion is carried out in an organic dispersion medium having an SP value of 11 (cal / cm 3 ) 1/2 or more. However, it was difficult to disperse in an organic dispersion medium having a low SP value of less than, for example, 11 (cal / cm 3 ) 1/2 .
  • an object of the present disclosure is to provide a nanodiamond dispersion composition having excellent dispersibility of nanodiamond particles even in an organic dispersion medium having a low SP value.
  • the inventors of the present disclosure use a nanodiamond dispersion composition having excellent dispersibility of nanodiamond particles even in an organic dispersion medium having a low SP value by using a specific dispersant. Found that can be obtained.
  • the present disclosure relates to what has been completed based on these findings.
  • the present disclosure provides a nanodiamond dispersion composition containing an organic dispersion medium, nanodiamond particles dispersed in the organic dispersion medium, and a fatty acid ester-based dispersant.
  • the fatty acid ester-based dispersant preferably has a mass reduction rate of 20% or less when maintained in an air atmosphere at a temperature of 200 ° C. for 180 minutes.
  • the acid value of the fatty acid ester-based dispersant is preferably 40 mgKOH / g or less.
  • the average dispersed particle size of the nanodiamond particles in the nanodiamond dispersion composition is preferably 2 to 240 nm.
  • the nanodiamond dispersion composition preferably has a haze value of 5 or less.
  • the SP value of the organic dispersion medium is preferably 6.0 to 12.0 (cal / cm 3 ) 1/2 .
  • the nanodiamond dispersion composition preferably has a viscosity at 25 ° C. of 0.2 to 120 mPa ⁇ s.
  • the average molecular weight Mp of the fatty acid ester-based dispersant is preferably 300 or more.
  • the nanodiamond dispersion composition may have a content ratio of nanodiamond particles of 0.01 to 5.0% by mass.
  • the nanodiamond particles preferably contain surface-modified nanodiamonds in which the group represented by the following formula (I) modifies the surface of the nanodiamond particles.
  • R represents a monovalent organic group, and the atom bonded to X is a carbon atom.
  • the nanodiamond dispersion composition of the present disclosure is excellent in dispersibility of nanodiamond particles not only in an organic dispersion medium having a high SP value but also in an organic dispersion medium having a low SP value. Further, the fatty acid ester-based dispersant has high heat resistance, and the nanodiamond dispersion composition of the present disclosure tends to have excellent dispersion stability in a high temperature environment.
  • the nanodiamond dispersion composition (ND dispersion composition) according to the embodiment of the present disclosure includes an organic dispersion medium, nanodiamond particles (ND particles) dispersed in the organic dispersion medium, and a fatty acid ester-based dispersant. And at least include.
  • the average dispersed particle diameter (D50, median diameter) of the ND particles in the ND dispersion composition is preferably 2 to 240 nm, more preferably 4 to 200 nm, more preferably 10 to 180 nm, still more preferably 20 to 150 nm, particularly. It is preferably 25 to 80 nm.
  • the average dispersed particle size can be measured by a dynamic light scattering method. Since the ND dispersion composition has excellent dispersibility of ND particles, it can be dispersed in an organic dispersion medium with an average dispersion particle diameter within the above range.
  • the content of the ND particles in the ND dispersion composition is, for example, 0.01 to 5.0% by mass, preferably 0.1 to 4.0% by mass, and more preferably 0.25 to 3.0% by mass. More preferably, it is 0.5 to 2.0% by mass. When the content ratio is within the above range, the dispersibility of the ND particles is more excellent.
  • the content of the fatty acid ester-based dispersant in the ND dispersion composition is, for example, 10 to 10000 parts by mass, preferably 50 to 1000 parts by mass, based on 100 parts by mass of the total amount of ND particles in the ND dispersion composition. More preferably, it is 70 to 300 parts by mass.
  • the ND dispersion composition may be a concentrated solution diluted at the time of use so that the content ratio of ND particles is low (for example, 0.1 to 2000 mass ppm), and the fatty acid ester-based dispersant in the concentrated solution may be used.
  • the content of ND particles is preferably 1000 to 10000 parts by mass, more preferably 2000 to 100,000 parts by mass, and particularly preferably 3000 to 50000 parts by mass with respect to 100 parts by mass of the total amount of ND particles in the ND dispersion composition. ..
  • the content ratio of the solvent in the ND dispersion composition is, for example, 90 to 99.9999% by mass.
  • the content ratio of the organic dispersion medium in the total amount of the solvent is, for example, 60% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the ND dispersion composition preferably has a haze value of 5 or less, more preferably 3 or less, still more preferably 1 or less, and particularly preferably 0.5 or less. Since the ND dispersion composition has excellent dispersibility of ND particles, it is possible to obtain an ND dispersion composition having the haze value.
  • the haze value can be measured based on JIS K 7136.
  • the viscosity of the ND dispersion composition at 25 ° C. is preferably 0.2 to 120 mPa ⁇ s, more preferably 10 to 100 mPa ⁇ s, and even more preferably 20 to 90 mPa ⁇ s. Since the ND dispersion composition has excellent dispersibility of ND particles, the dispersibility in the organic dispersion medium is excellent even when the viscosity is within the above range.
  • the rotor and the rotation speed of the rotor at the time of measuring the viscosity are appropriately selected according to the measured values.
  • the viscosity can be measured using, for example, an EMS viscometer (trade name "EMS1000", manufactured by Kyoto Denshi Kogyo Co., Ltd.).
  • the ND dispersion composition may be composed of only ND particles, a fatty acid ester-based dispersant, and an organic dispersion medium, or may contain other components.
  • Other components include, for example, dispersants other than fatty acid ester dispersants, surfactants, thickeners, coupling agents, rust preventives, corrosion inhibitors, freezing point lowering agents, defoaming agents, and abrasion resistant additives. , Preservatives, colorants and the like.
  • the content ratio of the fatty acid ester-based dispersant is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more, based on the total amount of the dispersants in the ND dispersion composition. ..
  • the content ratio of the other components is, for example, 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less, particularly preferably 5% by mass or less, based on the total amount of the ND dispersion composition. Is 1% by mass or less. Therefore, the total content of the ND particles, the fatty acid ester dispersant, and the organic dispersion medium is, for example, 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass, based on the total amount of the ND dispersion composition. % Or more, more preferably 95% by mass or more, and particularly preferably 99% by mass or more.
  • the ND particles are not particularly limited, and known or commonly used nanodiamond particles can be used.
  • the ND particles may be surface-modified ND (surface-modified ND) particles or may be surface-modified ND particles.
  • the surface-modified ND particles have a hydroxy group (-OH) or a carboxy group (-COOH) on the surface.
  • -OH hydroxy group
  • -COOH carboxy group
  • Examples of the compound or functional group that surface-modifies the ND particles in the surface-modified ND include a silane compound, a phosphonate ion or a phosphonic acid residue, a surface modifying group having a vinyl group at the terminal, an amide group, and a cationic surfactant. Examples thereof include a cation, a group containing a polyglycerin chain, and a group containing a polyethylene glycol chain.
  • the compound or functional group that surface-modifies the ND particles preferably contains an organic group.
  • the organic group is more preferably an organic group having 4 or more carbon atoms (for example, 4 to 25), further preferably an organic group having 6 or more (for example, 6 to 22) carbon atoms, and particularly preferably 8 or more carbon atoms (for example, 8 to 25).
  • 20) is an organic group.
  • the surface-modifying compound or functional group contains an organic group (particularly, an organic group having 4 or more carbon atoms)
  • the ND particles in the organic dispersion medium due to the hydrophobic interaction between the organic group and the organic dispersion medium. The dispersibility of is better.
  • organic group examples include a substituted or unsubstituted hydrocarbon group, a substituted or unsubstituted heterocyclic group, a group in which two or more of the hydrocarbon group and / or the heterocyclic group are bonded, and the like.
  • organic group examples include organic groups in monovalent organic groups exemplified and described as R in the formula (I) described later.
  • the compound or functional group that surface-modifies the ND particles in the surface-modified ND is represented by the following formula (I) from the viewpoint of being more excellent in dispersibility in the organic dispersion medium in combination with the fatty acid ester-based dispersant. Groups are preferred. That is, the surface-modified ND is preferably a surface-modified ND in which the group represented by the following formula (I) modifies the surface of the nanodiamond particles.
  • R represents a monovalent organic group, and the atom bonded to X is a carbon atom.
  • Examples of the monovalent organic group in R include a substituted or unsubstituted hydrocarbon group (monovalent hydrocarbon group), a substituted or unsubstituted heterocyclic group (monovalent heterocyclic group), and the above. Examples thereof include a monovalent hydrocarbon group and / or a group in which two or more monovalent heterocyclic groups are bonded.
  • the bonded group may be directly bonded or may be bonded via a linking group.
  • Examples of the linking group include amino group, ether bond, ester bond, phosphinic acid group, sulfide bond, carbonyl group, organic group substituted amide group, organic group substituted urethane bond, organic group substituted imide bond, thiocarbonyl group and siloxane. Examples include a bond, a group in which two or more of these are bonded, and the like.
  • hydrocarbon group in the monovalent organic group examples include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • Examples of the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
  • Examples of the alkyl group include C 1-22 alkyl groups (preferably C 2-) such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group and dodecyl group. 20 alkyl groups, more preferably C 3-18 alkyl groups) and the like.
  • alkenyl group examples include a vinyl group, an allyl group, a metalyl group, a 1-propenyl group, an isopropenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, a 1-pentenyl group and a 2-pentenyl group.
  • alkenyl group examples include C 2-22 alkenyl groups such as 3-pentenyl group, 4-pentenyl group and 5-hexenyl group (preferably C 4-20 alkenyl group, more preferably C 8-18 alkenyl group).
  • alkynyl group examples include a C 2-22 alkynyl group such as an ethynyl group and a propynyl group (preferably a C 4-20 alkynyl group, more preferably a C 8-18 alkynyl group).
  • Examples of the alicyclic hydrocarbon group include a C 3-12 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and a cyclododecyl group; and a C 3-12 cycloalkenyl group such as a cyclohexenyl group.
  • Examples include C 4-15 crosslinked cyclic hydrocarbon groups such as bicycloheptanyl group and bicycloheptenyl group.
  • aromatic hydrocarbon group examples include a C 6-14 aryl group such as a phenyl group and a naphthyl group (particularly, a C 6-10 aryl group).
  • heterocycle forming the above heterocyclic group examples include aromatic heterocycles and non-aromatic heterocycles.
  • a heterocycle is a 3- to 10-membered ring (preferably a 4- to 6-membered ring) having a carbon atom and at least one heteroatom (for example, an oxygen atom, a sulfur atom, a nitrogen atom, etc.) in the atoms constituting the ring. ), These fused rings can be mentioned.
  • a heterocycle containing an oxygen atom as a heteroatom for example, a 3-membered ring such as an oxyran ring; a 4-membered ring such as an oxetane ring; a furan ring, a tetrahydrofuran ring, an oxazole ring, an isooxazole ring, a ⁇ -butyrolactone ring).
  • 5-membered rings such as 4-oxo-4H-pyran ring, tetrahydropyran ring, morpholin ring and the like; benzofuran ring, isobenzofuran ring, 4-oxo-4H-chromen ring, chroman ring, isochroman ring and the like Heterocyclic ring; 3-oxatricyclo [4.3.1.1 4,8 ] undecane-2-one ring, 3-oxatricyclo [4.2.1.0 4,8 ] nonane-2-one ring , Etc.), heterocycles containing sulfur atoms as heteroatoms (eg, 5-membered rings such as thiophene ring, thiazole ring, isothiazole ring, thiazizole ring; 6-membered ring such as 4-oxo-4H-thiopyran ring) A 5-membered ring such as a fused ring such as a benzothiophene ring) or a heterocycle
  • Examples of the group in which the aliphatic hydrocarbon group and the alicyclic hydrocarbon group are bonded include a cyclohexylmethyl group and a methylcyclohexyl group.
  • Examples of the group in which the aliphatic hydrocarbon group and the aromatic hydrocarbon group are bonded include a C 7-18 aralkyl group such as a benzyl group and a phenethyl group (particularly, a C 7-10 aralkyl group) and a C such as a cinnamyl group.
  • Examples thereof include a C 1-4 alkyl-substituted aryl group such as a 6-10 aryl-C 2-6 alkenyl group and a tolyl group, and a C 2-4 alkenyl-substituted aryl group such as a styryl group.
  • Examples of the group in which two or more of the monovalent hydrocarbon group and / or the monovalent heterocyclic group are bonded via a linking group include the monovalent hydrocarbon group and / or the monovalent heterocycle.
  • the monovalent organic group may have a substituent.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; cyano group; isocyanato group; isothiocyanate group and the like.
  • the monovalent organic group preferably does not have a functional group containing active hydrogen (hydroxy group, carboxy group, amino group, mono-substituted amino group, thiol group, phosphate group, etc.).
  • the number of carbon atoms in the monovalent organic group is preferably 4 to 25, more preferably 6 to 22, and even more preferably 8 to 20.
  • the number of carbon atoms is 4 or more, the steric hindrance between the surface modifying groups becomes sufficient and it is easy to disperse in the dispersion medium.
  • the number of carbon atoms is 25 or less, the surface modifying groups are suppressed from being entangled with each other, and the surface modifying groups are easily dispersed in the dispersion medium.
  • Examples of the monovalent organic group include a monovalent substituted or unsubstituted hydrocarbon group, a group in which a monovalent substituted or unsubstituted hydrocarbon group and an alkoxy group are bonded, and a monovalent substituted or unsubstituted group.
  • a group in which the hydrocarbon group and the dialkylamino group are bonded is preferable.
  • the above R preferably contains a hydrocarbon group having 4 or more consecutive carbon atoms in a linear manner.
  • a hydrocarbon group include linear alkylene groups such as tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group and decamethylene group; 2-ethylhexamethylene group and the like.
  • Branched chain alkylene group linear alkenylene group such as 1-butenylene group, 2-butenylene group, 1-pentenylene group, 2-pentenylene group, 3-pentenylene group; branched chain such as 2-methyl-2-butenylene group Alkenylene group; an alicyclic hydrocarbon group having 4 or more carbon atoms such as a cyclohexyl group; an aromatic hydrocarbon group having 6 or more carbon atoms such as a phenyl group; a complex containing a structure in which 4 or more carbon atoms such as a piperidine ring are continuous.
  • An example is a cyclic group.
  • the molar ratio of carbon atoms to the total amount of heteroatoms selected from the group consisting of nitrogen atoms, oxygen atoms, sulfur atoms, and silicon atoms is preferably 4.5 or more, more preferably. It is 5 or more, more preferably 5.5 or more. When the molar ratio is 4.5 or more, the dispersibility in an organic solvent is more excellent.
  • the molar ratio is not particularly limited, but may be, for example, 22 or less, or 20 or less.
  • a surface-modified ND having excellent dispersibility in an organic dispersion medium can be more easily produced.
  • R is a monovalent substituted or unsubstituted hydrocarbon. It is preferably a group, more preferably a linear or branched chain hydrocarbon group having 8 to 20 carbon atoms.
  • R is preferably a monovalent organic group containing 8 to 20 carbon atoms.
  • R is preferably a monovalent organic group containing a hydrocarbon group having 4 or more consecutive carbon atoms in a linear manner.
  • the silicon atom when X is ⁇ Si—, the silicon atom has two more bonds other than the bond that binds to the nanodiamond particles and the bond that binds to R in the above formula (I). There are two bonds.
  • the above two bonds are the same or different, a hydrogen atom, an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a silicon atom in another group represented by the above formula (I), and a silicon atom in a silane compound described later. , Or attached to nanodiamond particles via an oxygen atom.
  • the above two bonds are the same or different, and bond to OR 1 , OR 2 , or nanodiamond particles described later.
  • the surface-modified ND when X is ⁇ Si— is preferably a surface-modified ND in which a silane compound is bonded to the surface.
  • the silane compound preferably has a hydrolyzable group and an aliphatic hydrocarbon group.
  • the silane compound used for surface modification of ND particles may be only one kind or two or more kinds.
  • the silane compound preferably contains at least a compound represented by the following formula (1-1).
  • R 1 , R 2 , and R 3 represent the same or different aliphatic hydrocarbon groups having 1 to 3 carbon atoms.
  • R 4 represents an aliphatic hydrocarbon group having 1 or more carbon atoms.
  • Examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms in R 1 , R 2 and R 3 include linear or branched alkyl groups such as methyl, ethyl, propyl and isopropyl groups; vinyl and allyl groups. Such as linear or branched alkenyl group; alkynyl group such as ethynyl group and propynyl group and the like. Of these, linear or branched alkyl groups are preferred.
  • R 4 corresponds to R in the above formula (I) and represents a monovalent organic group.
  • the monovalent organic group is preferably an aliphatic hydrocarbon group having 1 or more carbon atoms, and is, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, n.
  • Linear or branched such as octyl, 2-ethylhexyl, nonyl, isononyl, decyl, isodecyl, lauryl, myristyl, isomyristyl, butyloctyl, isosetyl, hexyldecyl, stearyl, isostearyl, octyldecyl, octyldodecyl, isobehenyl group Chain alkyl groups; linear or branched alkenyl groups such as vinyl, allyl, 1-butenyl, 7-octenyl, 8-nonenyl, 9-decenyl, 11-dodecenyl, oleyl groups; ethynyl, propynyl, decynyl, pentadecynyl , A linear or branched alkynyl group such as an octade,
  • R 4 has a higher lipophilicity and can cause a larger steric hindrance, so that it has an excellent aggregation suppressing effect and can impart a higher degree of dispersibility. Therefore, an aliphatic hydrocarbon having 4 or more carbon atoms can be provided.
  • a hydrogen group is preferable, and an aliphatic hydrocarbon group having 6 or more carbon atoms is particularly preferable.
  • the upper limit of the number of carbon atoms of the aliphatic hydrocarbon group is, for example, 25, preferably 20, and more preferably 12.
  • a linear or branched alkyl group or alkenyl group is preferable, and a linear or branched alkyl group is particularly preferable.
  • R 4 is an aliphatic hydrocarbon group having 4 or more carbon atoms, it exhibits an affinity for an organic dispersion medium and can cause a larger steric hindrance, so that it has an excellent aggregation inhibitory effect and is a group containing an oxygen atom.
  • R 4 is an aliphatic hydrocarbon group having 4 or more carbon atoms, it exhibits an affinity for an organic dispersion medium and can cause a larger steric hindrance, so that it has an excellent aggregation inhibitory effect and is a group containing an oxygen atom.
  • (formula (1) OR 1 'group and OR 2' groups in) exhibits an affinity for organic dispersing medium, high affinity for organic dispersing medium, exhibit a more excellent dispersibility in an organic dispersion medium can do.
  • examples of the ND particles surface-modified with the silane compound include ND particles having a structure surface-modified with a group represented by the following formula (1).
  • R 4 corresponds to R in the group represented by the above formula (1) and represents a monovalent organic group.
  • R 1 ', R 2' are the same or different, a hydrogen atom, a group represented by the aliphatic hydrocarbon group having 1 to 3 carbon atoms or the following formula, (a).
  • the wavy bond in the formula binds to the surface of the nanodiamond particles.
  • R 4 corresponds to R in the group represented by the above formula (1) and represents a monovalent organic group.
  • R 3 and R 5 are the same or different, and represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms.
  • m and n are the same or different, and represent integers of 0 or more.
  • the bond extending to the left from the silicon atom bonds to the oxygen atom.
  • the wavy bond is bonded to the surface of the nanodiamond particles.
  • R 4 in the formula (1) correspond to R 4 in the formula (1-1).
  • Examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms in R 1 ', R 2 ', R 3 and R 5 in the above formula (1) are linear chains such as methyl, ethyl, propyl and isopropyl groups.
  • a branched alkyl group; a linear or branched alkenyl group such as vinyl or allyl group; an alkynyl group such as an ethynyl group or a propynyl group may be used. Of these, linear or branched alkyl groups are preferred.
  • M and n are the number of structural units shown in parentheses, and indicate the same or different integers of 0 or more.
  • the method of combining the two or more structural units may be random, alternating, or block.
  • the silane compound surface-modified ND particle has, for example, a group represented by the following formula (1') and other surface functional groups (for example, an amino group, a hydroxyl group, and a carboxy). It may have other functional groups such as groups).
  • the other functional groups may be only one kind or two or more kinds.
  • R 1 to the equation (1)', R 4 are as defined above.
  • the wavy bond in the formula binds to the surface of the nanodiamond particles.
  • a silane compound (particularly, a compound represented by the above formula (1-1)) is used as the compound to be surface-treated, the said compound is, for example, OR 1 group or OR 2 group in the above formula (1-1).
  • OR 3 groups and other hydrolyzable alkoxysilyl groups are easily hydrolyzed to form silanol groups. Therefore, for example, one of the silanol groups is covalently bonded by dehydration condensation with a hydroxyl group existing on the surface of ND particles.
  • the silanol groups of other silane compounds can be condensed with the remaining two silanol groups to form a siloxane bond (Si—O—Si), and the ND particles have an affinity for an organic dispersion medium. Can be imparted, and even better dispersibility can be exhibited in an organic dispersion medium.
  • the ND particles constituting the surface-modified ND preferably include primary particles of nanodiamond. In addition, it may contain secondary particles in which a plurality of the above primary particles are aggregated (adhered). Further, the surface of the surface-modified ND may have one or more types of other surface functional groups (for example, amino group, hydroxy group, carboxy group, etc.) in addition to the above surface modifying group.
  • the mass ratio [ND / surface modifying group] of ND to the surface modifying group in the surface modifying ND is not particularly limited, but is preferably 0.5 or more, and more preferably 2.5 or more.
  • the mass ratio is preferably 15.0 or less, more preferably 10.0 or less, still more preferably 7.0 or less, and particularly preferably 5.0 or less.
  • the mass ratio is 0.5 or more, the characteristics as a nanodiamond material are not easily impaired.
  • the mass ratio is 15.0 or less (particularly 7.0 or less)
  • the degree of modification of the surface modifying group is sufficient, and the dispersibility in the organic dispersion medium is excellent.
  • the mass ratio is determined based on the weight loss rate of 200 ° C. to 450 ° C. measured by thermogravimetric analysis, and the reduced weight is determined as the mass of the surface modifying group.
  • the organic dispersion medium As the organic dispersion medium, a known or commonly used organic solvent can be used. Above all, from the viewpoint of excellent dispersibility of ND particles in an organic dispersion medium having a lower SP value, the SP value [solubility parameter by Hildebrand ( ⁇ ), unit at 25 ° C.: (cal / cm 3 ) 1/2 ] Is preferably 6.0 to 12.0, more preferably 6.0 or more and less than 11.0. In particular, the SP value of the ND dispersion composition is excellent because the dispersibility of the ND particles is excellent even when an organic solvent having a low dispersibility of the ND particles is used by blending the fatty acid ester-based dispersant.
  • the SP value [solubility parameter by Hildebrand ( ⁇ ), unit at 25 ° C.: (cal / cm 3 ) 1/2 ] Is preferably 6.0 to 12.0, more preferably 6.0 or more and less than 11.0.
  • the SP value of the ND dispersion composition is excellent because the dispers
  • the SP value of the mixture of two or more kinds of organic dispersion media is preferably in the above range, and the SP value of each organic dispersion medium is out of the above range. May be good.
  • organic dispersion medium examples include alkanes such as hexane (SP: 7.0); acetone (SP: 10.0), methyl ethyl ketone (MEK, SP: 9.3), and methyl isobutyl ketone (MIBK, SP: 8).
  • alkanes such as hexane (SP: 7.0); acetone (SP: 10.0), methyl ethyl ketone (MEK, SP: 9.3), and methyl isobutyl ketone (MIBK, SP: 8).
  • the organic dispersion medium may be a lubricating base.
  • a known or commonly used organic solvent used as a lubricating base can be used.
  • polyol esters, poly ⁇ -olefins, mineral oils, alkylbenzenes, and polyalkylene glycols are preferable from the viewpoint of being more excellent in reducing the amount of wear of sliding members.
  • the ND dispersion composition is particularly excellent in dispersibility of ND particles in an organic dispersion medium by using a fatty acid ester-based dispersant. Moreover, since the fatty acid ester-based dispersant has high heat resistance, decomposition due to heat is unlikely to occur. Therefore, even when the temperature of the ND dispersion composition is raised during use or when the ND dispersion composition is used in a high temperature environment, the ND dispersion composition is excellent in dispersion stability in a high temperature environment and discoloration occurs. Hateful. Further, since the fatty acid ester-based dispersant is commercially available and easily available, it does not need to be produced through a complicated production process, and the production is excellent. Only one type of fatty acid ester-based dispersant may be used, or two or more types may be used.
  • the acid value of the fatty acid ester-based dispersant is preferably 40 mgKOH / g or less, more preferably 35 mgKOH / g or less, still more preferably 30 mgKOH / g or less, still more preferably 20 mgKOH / g or less, and particularly preferably 6 mgKOH / g. It is as follows. Further, the acid value may be, for example, 0.1 mgKOH / g or more, 0.3 mgKOH / g or more, and 0.5 mgKOH / g or more. When the acid value is 40 mgKOH / g or less (particularly 30 mgKOH / g or less), the dispersibility in an organic dispersion medium having a low SP value tends to be more excellent.
  • the amine value of the fatty acid ester-based dispersant is preferably 5 mgKOH / g or less, more preferably 1 mgKOH / g or less, still more preferably 0.5 mgKOH / g or less, still more preferably 0.1 mgKOH / g or less, and particularly preferably. Is 0 mgKOH / g.
  • the fatty acid ester-based dispersant preferably has an average molecular weight Mp of 300 or more, more preferably 1000 or more (for example, 1000 to 100,000), and further preferably 3000 or more (for example, 3000 to 10000).
  • Mp average molecular weight
  • the average molecular weight Mp is a standard polystyrene-equivalent molecular weight measured by gel permeation chromatography (GPC).
  • the fatty acid ester-based dispersant preferably has a mass reduction rate (sometimes referred to as "200 ° C. 180-minute mass reduction rate") of 20% or less when maintained in an air atmosphere at a temperature of 200 ° C. for 180 minutes. More preferably, it is 15% or less.
  • a mass reduction rate (sometimes referred to as "200 ° C. 180-minute mass reduction rate") of 20% or less when maintained in an air atmosphere at a temperature of 200 ° C. for 180 minutes. More preferably, it is 15% or less.
  • the mass reduction rate can be measured by differential thermogravimetric simultaneous measurement (TG-DTA).
  • the fatty acid ester-based dispersant may have an acidic functional group.
  • the acidic functional group include carboxylic acid, sulfonic acid, and salts thereof.
  • Examples of fatty acids constituting the fatty acid ester-based dispersant include carboxylic acids, sulfonic acids, and salts thereof.
  • Examples of the carboxylic acid include aliphatic monocarboxylic acids such as acetic acid, propionic acid, capric acid, nonanoic acid, capric acid, octyl acid, lauric acid, myristic acid, palmitic acid, stearic acid, isononanoic acid and araquinic acid; Examples thereof include aromatic monocarboxylic acids such as benzoic acid and p- (t-butylbutyl) benzoic acid.
  • Examples of the sulfonic acid include naphthalene sulfonic acid.
  • the fatty acid is preferably a higher fatty acid. That is, the fatty acid ester-based dispersant is preferably a higher fatty acid ester dispersant.
  • the fatty acid only one kind may be used, or two or more kinds may be used.
  • Examples of the compound constituting the ester component of the fatty acid ester-based dispersant include cyclic ester compounds such as propiolactone, valerolactone and caprolactone; a condensate of glycol and dibasic acid.
  • the polyester in the fatty acid ester-based dispersant preferably has a molecular weight of about 300 to 9000, more preferably 400 to 6000.
  • fatty acid ester-based dispersant Commercially available products can also be used as the fatty acid ester-based dispersant.
  • fatty acid ester-based dispersants include the trade name "Ajispar PA111" and the trade name “Ajispar PN411” (all manufactured by Ajinomoto Fine-Techno Co., Ltd.).
  • the ND dispersion composition may or may not contain zirconia.
  • zirconia When zirconia is contained, the zirconia may be attached to the ND particles, or may be dispersed in the ND dispersion composition without being attached.
  • the adhesion state of zirconia may be physical adhesion (fixation, adhesion, etc.) or chemical adhesion (covalent bond with ND particles or the above-mentioned surface modifying group, bond by intermolecular force, hydrogen bond, ionic bond, etc. ) Or both of these.
  • the content ratio of zirconia in the ND dispersion composition is preferably less than 100 mass ppm, more preferably 20 mass ppm or less, still more preferably 2 mass ppm or less.
  • the ND dispersion composition is excellent in the formability of the familiar surface when used as a lubricant (particularly the initial familiar lubricant), and is easily applied to the sliding member.
  • a familiar surface can be formed.
  • the mixing of zirconium into the familiar surface is suppressed, and even a thin film has an excellent wear suppressing effect and friction reducing effect.
  • the lower limit of the content ratio of zirconia may be, for example, 0.02 mass ppm or 0.1 mass ppm.
  • the content of zirconia in the ND dispersion composition may be 0.01 to 7.5% by mass, 0.1 to 6.0% by mass, 0.25 to 4.5% by mass, and so on. Alternatively, it may be 0.5 to 3.0% by mass.
  • the content ratio of zirconia in the lubricant composition may be, for example, 0.1 to 3000 mass ppm, 0.2 to 1500 mass ppm, 0.5 to 750 mass ppm, or 1 to 150 mass ppm. It may be ppm. Since the ND dispersion composition is excellent in dispersibility of ND particles, it is also excellent in dispersibility in an organic dispersion medium (particularly a lubricating base) even in such a two-step content ratio. Therefore, for example, the content ratio of zirconia in the ND dispersion composition is set to 0.01 to 7.5% by mass during distribution and 0.1 to 3000% by mass during use, for example, during distribution and during use. Can be different from.
  • the content ratio of zirconia can be determined based on the amount of Zr detected based on the dispersion liquid in which Zr is detected by high frequency inductively coupled plasma emission spectroscopy (ICP emission spectroscopy) and the content ratio is known.
  • Zirconia is often derived from zirconia beads contained in a bead mill used for crushing an adhered body of ND particles and nano-dispersing ND particles, and is often mixed in the ND dispersion composition. Therefore, by not performing bead milling using zirconia beads or by minimizing the time for performing the bead milling, an ND dispersion composition having a low zirconia content can be obtained.
  • the ND dispersion composition can be preferably used as an additive that imparts the characteristics of fine ND particles to a resin or the like (for example, a heat or photocurable resin or a thermoplastic resin).
  • a resin or the like for example, a heat or photocurable resin or a thermoplastic resin.
  • the characteristics of the ND particles include mechanical strength, high refractive index, thermal conductivity, insulating property, antioxidant property, crystallization promoting action, dendrite suppressing action and the like.
  • the composition obtained by adding the ND dispersion composition to the resin is, for example, a functional hybrid material, a thermal function (heat resistance, heat storage, thermoconductivity, heat insulation, etc.) material, photonics (organic EL element, LED, etc.).
  • Liquid crystal display, optical disk, etc.) material bio / biocompatible material, coating material, film (hard coat film for touch panel and various displays, heat shield film, etc.) material, sheet material, screen (transmissive transparent screen, etc.) material, It can be preferably used as a filler (a filler for heat dissipation, a filler for improving mechanical properties, etc.), a heat-resistant plastic substrate (a substrate for a flexible display, etc.), a lithium ion battery, or the like.
  • the ND dispersion composition can be preferably used as an anti-friction agent or a lubricant (initial familiar use, main lubrication use, etc.) applied to sliding parts of mechanical parts (for example, automobiles, aircraft, etc.).
  • the above-mentioned lubricant for initial familiarity is used to form a low friction surface (familiar surface) in the initial stage of a machine having a sliding member.
  • the initial familiar lubricant for example, the surface of the sliding member is smoothed and smoothed, or a modified surface is formed.
  • the initial familiar lubricant is removed by cleaning or the like, and sliding is performed using the lubricant for main lubrication.
  • the lubricant that performs this lubrication refers to a lubricant that is not normally removed during the operation of the sliding member (during the use of the machine) and continues to exist in the sliding portion.
  • the initial familiar lubricant can be used as a lubricant for performing main lubrication by supplying the lubricant to the sliding portion as it is without removing it after forming the familiar surface or after removing it once.
  • the ND dispersion composition can be produced, for example, by mixing ND particles, a fatty acid ester-based dispersant, and other components, if necessary, in the organic dispersion medium.
  • a dispersion composition using surface-modified ND particles can be produced through a step (modification step) of reacting a compound to be surface-treated with ND particles in an organic dispersion medium.
  • the solvent used in the modification step may be used as it is as the organic dispersion medium in the ND dispersion composition, or the solvent may be exchanged after the modification step.
  • the reaction between the surface-modifying compound and the ND particles is carried out. It may be crushed or dispersed. As a result, the ND particle agglomerates can be crushed into primary particles, the surface of the ND primary particles can be modified, and the dispersibility of the nanodiamond particles in the ND dispersion composition can be improved. Because it becomes.
  • Modification / Dispersion Step a case where the above-mentioned modification step is carried out by reacting the compound to be surface-modified with the ND particles while crushing or dispersing the ND particles (modification / dispersion step) will be described. ..
  • the mass ratio (former: latter) of the ND particles to be subjected to the reaction in the modification step and the compound to be surface-treated (particularly the silane compound) is, for example, 2: 1 to 1:20.
  • the concentration of the ND particles in the organic dispersion medium at the time of surface treatment is, for example, 0.5 to 10% by mass, and the concentration of the compound is, for example, 5 to 40% by mass.
  • the reaction time for surface treatment is, for example, 4 to 20 hours. Further, it is preferable that the above reaction is carried out while cooling the generated heat with ice water or the like.
  • Examples of the method for crushing or dispersing ND particles include a method of treating with a high shear mixer, a high shear mixer, a homomixer, a ball mill, a bead mill, a high-pressure homogenizer, an ultrasonic homogenizer, a colloid mill, a jet mill and the like. .. Above all, it is preferable to perform ultrasonic treatment in the presence of crushed media (for example, zirconia beads).
  • the diameter of the crushed media is, for example, 15 to 500 ⁇ m, preferably 15 to 300 ⁇ m, and particularly preferably 15 to 100 ⁇ m.
  • the ND particles having a hydroxy group and / or a carboxy group on the surface are nano-dispersed in water, and the ND particles are reacted with the compound represented by the above formula (II) to form a hydroxy group in the ND particles.
  • Surface-modified ND particles are obtained by dehydration condensation of and / or a carboxy group with —H in the compound represented by the above formula (II).
  • the above reaction step is carried out in a state where the ND particles are nano-dispersed in water, that is, in the aqueous dispersion composition of the ND particles.
  • the median diameter (D50) of the ND particles in the aqueous dispersion composition is preferably 1 to 100 nm, more preferably 1 to 50 nm, and even more preferably 1 to 10 nm.
  • the median diameter is within the above range, the amount of hydroxy groups and / or carboxy groups on the surface of the ND particles is large, and the reaction with the compound represented by the above formula (II) proceeds more.
  • the obtained surface-modified ND particles are excellent in dispersibility.
  • the acid catalyst a known or commonly used acid catalyst used for esterification of carboxylic acid and alcohol, dehydration condensation reaction of alcohol and amine, dehydration condensation reaction of alcohol and thiol, etc. can be used.
  • the acid catalyst include sulfonic acid group-containing compounds, hydrochloric acid, nitric acid, sulfuric acid, anhydrous sulfuric acid, phosphoric acid, boric acid, trihaloacetic acid (trichloroacetic acid, trifluoroacetic acid, etc.), salts thereof (ammonium salt, etc.), and the like.
  • examples include inorganic solid acid.
  • the acid catalyst only one kind may be used, or two or more kinds may be used.
  • the acid catalyst may be in the form of a homogeneous catalyst that can be dissolved in a solvent or a substrate during the reaction, or a heterogeneous catalyst that is not soluble during the reaction.
  • a heterogeneous catalyst include a supported catalyst in which an acid component is supported on a carrier.
  • sulfonic acid group-containing compound examples include aliphatic groups such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, dodecanesulfonic acid, hexadecanesulfonic acid, trifluoromethanesulfonic acid, and heptadecafluorooctanesulfonic acid.
  • Sulfonic acid alicyclic sulfonic acid such as 10-campar sulfonic acid; benzene sulfonic acid, p-toluene sulfonic acid, 2,4,6-trimethylbenzene sulfonic acid, hexyl benzene sulfonic acid, octyl benzene sulfonic acid, decyl benzene sulfonic acid
  • Aromatic sulfonic acids such as acid, dodecylbenzenesulfonic acid (DBSA), octadecylbenzenesulfonic acid, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, butyl-2-naphthalenesulfonic acid; sulfonic acid type ion exchange resin, 3- Examples thereof include [trioctylammonio] propan-1-sulfonic acid-trifluimide, 4- [trioct
  • Examples of the inorganic solid acid include silica, silica-alumina, alumina, zeolites, activated clay, and montmorillonite.
  • ammonium salt as the acid catalyst examples include a salt of ammonium ion represented by the following formula (B-1), a salt of ammonium ion represented by the following formula (B-2), and a salt of the following formula (B-3). ), Ammonium ion salt represented by the following formula (B-4), and the like.
  • RI to R III represent groups containing a hydrogen atom, an aliphatic hydrocarbon group, or an aromatic hydrocarbon group, which are the same or different.
  • the aliphatic hydrocarbon group is preferably a linear or branched C 1-22 hydrocarbon group.
  • the group containing the aromatic hydrocarbon group include an aromatic hydrocarbon group such as a phenyl group; a group in which a fatty hydrocarbon group such as 4-t-butylphenyl group and a mesityl group and an aromatic hydrocarbon group are bonded.
  • an aromatic hydrocarbon group such as a phenyl group
  • a group in which a fatty hydrocarbon group such as 4-t-butylphenyl group and a mesityl group and an aromatic hydrocarbon group are bonded.
  • a sulfonic acid ion is preferable, an aromatic sulfonic acid ion is more preferable, and p-dodecyl is particularly preferable. It is a benzenesulfonate ion.
  • R i and R ii are the same or different, represent a group comprising a hydrogen atom, an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group is preferably a linear or branched C 1-4 hydrocarbon group.
  • Examples of the group containing an aromatic hydrocarbon group include an aromatic hydrocarbon group such as a phenyl group, a group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded, and the like. Of these, a hydrogen atom, a methyl group, an isopropyl group, and a phenyl group are preferable.
  • a sulfonic acid ion and a sulfate ion are preferable, and a trifluoromethanesulfonic acid ion, a 10-camphorsulfonic acid ion and a benzenesulfone are particularly preferable. Acid ion and sulfate ion.
  • the acid anion serving as the counter anion of the ammonium ion represented by the above formulas (B-1) to (B-4) includes an oxygen atom forming an acid group and the above formulas (B-1) to (B-4).
  • a complex salt may be formed by forming a hydrogen bond with a hydrogen atom on the nitrogen atom inside.
  • one ammonium cation and one acid anion may form one salt, or two ammonium cations and two acid anions may form one salt.
  • the number of each of the ammonium cation and the acid anion forming one salt is not particularly limited. Further, the acid anion may form a multimer in one salt.
  • sulfuric acid that forms sulfate ions may form a structure represented by [H 2 SO 4 (SO 3 ) X ].
  • Examples of the complex salt formed by the acid anion and the above formula (B-4) include a compound represented by the following formula (C).
  • R i and R ii are the same as those in the above formula (B-4).
  • a sulfonic acid group-containing compound and an ammonium salt of a sulfonic acid group-containing compound are preferable from the viewpoint of further promoting the reaction in the reaction step.
  • the ratio (former: latter, mass ratio) of the ND particles to be subjected to the reaction to the compound represented by the above formula (II) is, for example, 1: 1 to 1:25.
  • the concentration of ND particles in the aqueous dispersion composition is, for example, 1 to 10% by mass, and the concentration of the compound represented by the above formula (II) in the aqueous dispersion composition is, for example, 1 to 60% by mass. is there.
  • reaction conditions of the ND particles and the compound represented by the above formula (II) can be appropriately selected from, for example, a temperature of 0 to 100 ° C., a reaction time of 1 to 48 hours, and a pressure of 1 to 5 atm.
  • an aqueous dispersion composition of surface-modified ND containing a group represented by the above formula (I) can be obtained.
  • the dispersion medium in the ND dispersion composition is obtained. May be replaced.
  • a dispersant is added to and stirred in an ND dispersion composition having a relatively high dispersibility of ND particles, the organic dispersion medium in the ND dispersion composition is distilled off with an evaporator or the like, and then a new organic dispersion medium is mixed. Can be stirred.
  • a method of exchanging the organic dispersion medium without converting the ND particles into dry powder is adopted, and the wettability between the organic dispersion media before and after the exchange is adopted.
  • the ND particles can be easily nano-dispersed in the organic dispersion medium having relatively low dispersibility.
  • the dispersant may be added and stirred at any stage before and after the replacement of the dispersion medium. When the dispersion medium is not exchanged, it may be added to the obtained ND dispersion composition and stirred.
  • an ND dispersion composition in which ND particles are dispersed in an organic solvent can be obtained.
  • the above ND particles can be produced by, for example, a detonation method.
  • the detonation method include an air-cooled detonation method and a water-cooled detonation method.
  • the air-cooled detonation method is preferable in that ND particles having smaller primary particles can be obtained than the water-cooled detonation method.
  • the detonation may be carried out in an atmospheric atmosphere, or in an inert gas atmosphere such as a nitrogen atmosphere, an argon atmosphere, or a carbon dioxide atmosphere.
  • ND particles are not limited to those obtained by the following production method.
  • a molded explosive equipped with an electric detonator is installed inside a pressure-resistant container for detonation, and the container is sealed in a state where the atmospheric composition normal pressure gas and the explosive used coexist in the container. ..
  • the container is made of iron, for example, and the volume of the container is, for example, 0.5 to 40 m 3 .
  • As the explosive a mixture of trinitrotoluene (TNT) and cyclotrimethylene trinitroamine or hexogen (RDX) can be used.
  • TNT / RDX The mass ratio of TNT to RDX (TNT / RDX) is, for example, in the range of 40/60 to 60/40.
  • the electric detonator is then detonated and the explosive is detonated in the container.
  • Detonation is an explosion that accompanies a chemical reaction in which the flame surface on which the reaction occurs moves at a high speed that exceeds the speed of sound.
  • ND particles are generated by the action of the pressure and energy of the shock wave generated by the explosion, using the carbon released by the explosive used as a partial incomplete combustion as a raw material.
  • the generated ND particles are assembled very strongly between adjacent primary particles or crystallites due to the Coulomb interaction between crystal planes in addition to the action of van der Waals force to form a cohesive body.
  • the container and its inside are then cooled by allowing it to cool at room temperature for about 24 hours.
  • the ND particle crude product (including the ND particle coagulant and soot produced as described above) adhering to the inner wall of the container is scraped off with a spatula to perform the ND particle coarse product. Collect the product.
  • a crude product of ND particles can be obtained by the above method. Further, it is possible to obtain a desired amount of crude nanodiamond product by performing the nanodiamond production step as described above a required number of times.
  • a strong acid is allowed to act on the raw material nanodiamond crude product, for example, in an aqueous solvent to remove the metal oxide.
  • the nanodiamond crude product obtained by the detonation method tends to contain metal oxides, and these metal oxides are oxides such as Fe, Co, and Ni derived from containers used in the detonation method. ..
  • metal oxides can be dissolved and removed from the crude nanodiamond product (acid treatment).
  • the strong acid used for this acid treatment is preferably a mineral acid, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia.
  • the strong acid one kind may be used, or two or more kinds may be used.
  • the concentration of the strong acid used in the acid treatment is, for example, 1 to 50% by mass.
  • the acid treatment temperature is, for example, 70 to 150 ° C.
  • the acid treatment time is, for example, 0.1 to 24 hours. Further, the acid treatment can be performed under reduced pressure, normal pressure, or pressure. After such acid treatment, the solid content (including the nanodiamond adherent) is washed with water, for example, by decantation.
  • the oxidation treatment step is a step of removing graphite from the crude ND particle product using an oxidizing agent.
  • the crude ND particle product obtained by the detonation method contains graphite (graphite), which does not form ND particle crystals out of the carbon released by the explosive used due to partial incomplete combustion. Detonated from graphite.
  • Graphite can be removed from the crude ND particle product by allowing an oxidizing agent to act on the crude ND particle product in an aqueous solvent. Further, by allowing an oxidizing agent to act on the surface of the ND particles, an oxygen-containing group such as a carboxy group or a hydroxy group can be introduced.
  • Examples of the oxidizing agent used in this oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, nitric acid, a mixture thereof, and at least one acid selected from these.
  • Examples include mixed acids with other acids (such as sulfuric acid) and salts thereof.
  • it is preferable to use a mixed acid particularly, a mixed acid of sulfuric acid and nitric acid because it is environmentally friendly and has an excellent action of oxidizing and removing graphite.
  • the mixing ratio of sulfuric acid and nitric acid (former / latter; mass ratio) in the mixed acid is, for example, 60/40 to 95/5, even under pressure near normal pressure (for example, 0.5 to 2 atm).
  • the lower limit is preferably 65/35, more preferably 70/30.
  • the upper limit is preferably 90/10, more preferably 85/15, and even more preferably 80/20.
  • the mixing ratio is 60/40 or more, the content of sulfuric acid having a high boiling point is high, so that the reaction temperature becomes, for example, 120 ° C. or more under pressure near normal pressure, and the graphite removal efficiency tends to improve. is there.
  • the mixing ratio is 95/5 or less, the content of nitric acid that greatly contributes to the oxidation of graphite increases, so that the efficiency of removing graphite tends to improve.
  • the amount of the oxidizing agent (particularly the mixed acid) used is, for example, 10 to 50 parts by mass, preferably 15 to 40 parts by mass, and more preferably 20 to 40 parts by mass with respect to 1 part by mass of the crude nanodiamond product.
  • the amount of sulfuric acid used in the mixed acid is, for example, 5 to 48 parts by mass, preferably 10 to 35 parts by mass, and more preferably 15 to 30 parts by mass with respect to 1 part by mass of the crude nanodiamond product.
  • the amount of nitric acid used in the mixed acid is, for example, 2 to 20 parts by mass, preferably 4 to 10 parts by mass, and more preferably 5 to 8 parts by mass with respect to 1 part by mass of the crude nanodiamond product.
  • a catalyst may be used together with the mixed acid.
  • the efficiency of removing graphite can be further improved.
  • the catalyst include copper (II) carbonate and the like.
  • the amount of the catalyst used is, for example, about 0.01 to 10 parts by mass with respect to 100 parts by mass of the crude nanodiamond product.
  • the oxidation treatment temperature is, for example, 100 to 200 ° C.
  • the oxidation treatment time is, for example, 1 to 24 hours.
  • the oxidation treatment can be performed under reduced pressure, normal pressure, or pressure.
  • Alkaline hydrogen peroxide treatment process If the metal oxide that could not be completely removed remains in the ND particles even after the above acid treatment step, the primary particles interact very strongly with each other to form an aggregate (secondary). It takes the form of particles). In such a case, alkali and hydrogen peroxide may be allowed to act on the ND particles in an aqueous solvent. As a result, the metal oxide remaining on the ND particles can be removed, and the separation of the primary particles from the adherent can be promoted. Examples of the alkali used in this treatment include sodium hydroxide, ammonia, potassium hydroxide and the like.
  • the concentration of alkali is, for example, 0.1 to 10% by mass
  • the concentration of hydrogen peroxide is, for example, 1 to 15% by mass
  • the treatment temperature is, for example, 40 to 100 ° C.
  • the treatment time is For example, 0.5 to 5 hours.
  • the alkaline hydrogen peroxide treatment can be performed under reduced pressure, normal pressure, or pressure.
  • the oxidation treatment step or the alkaline hydrogen peroxide treatment step it is preferable to remove the supernatant by, for example, decantation. Further, at the time of decantation, it is preferable to wash the solid content with water. Although the supernatant liquid at the beginning of washing with water is colored, it is preferable to repeatedly wash the solid content with water until the supernatant liquid becomes visually transparent.
  • the ND particles may be subjected to a crushing treatment, if necessary.
  • a crushing treatment for example, a high shear mixer, a high shear mixer, a homomixer, a ball mill, a bead mill, a high-pressure homogenizer, an ultrasonic homogenizer, a colloid mill and the like can be used.
  • the crushing treatment may be performed by a wet method (for example, a crushing process in a state of being suspended in water or the like) or by a dry method. When the dry method is used, it is preferable to provide a drying step before the crushing process.
  • drying process It is preferable to provide a drying step after the alkaline hydrogen peroxide treatment step. For example, after evaporating the liquid content from the ND particle-containing solution obtained through the above alkaline superwater treatment step using a spray dryer or an evaporator, the residual solid content generated thereby is heated in a drying oven. Dry by drying. The heating and drying temperature is, for example, 40 to 150 ° C. By undergoing such a drying step, ND particles can be obtained.
  • the ND particles may be subjected to an oxidation treatment (for example, oxygen oxidation) or a reduction treatment (for example, hydrogenation treatment) in the gas phase, if necessary.
  • an oxidation treatment for example, oxygen oxidation
  • a reduction treatment for example, hydrogenation treatment
  • ND particles having many CH groups on the surface can be obtained.
  • Manufacturing example 1 (Preparation of silane compound surface-modified ND particles) First, the process of producing nanodiamonds by the detonation method was performed. In this step, first, a molded explosive equipped with an electric detonator was installed inside a pressure-resistant container for detonation, and the container was sealed. The container is made of iron and the volume of the container is 15 m 3 . As the explosive, 0.50 kg of a mixture of TNT and RDX was used. The mass ratio of TNT to RDX (TNT / RDX) in this explosive is 50/50. Next, the electric detonator was detonated and the explosive was detonated in the container (generation of nanodiamonds by the detonation method).
  • the temperature of the container and its inside was lowered by leaving it at room temperature for 24 hours. After this cooling, the crude nanodiamond products adhering to the inner wall of the container (including the adherents of nanodiamond particles and soot produced by the above-mentioned detonation method) are scraped off with a spatula, and the nanodiamonds are removed. The crude product was recovered.
  • an acid treatment step was performed on the nanodiamond crude product obtained by performing the above-mentioned production step a plurality of times. Specifically, the slurry obtained by adding 6 L of 10% by mass hydrochloric acid to 200 g of the crude nanodiamond product was heat-treated for 1 hour under reflux under normal pressure conditions. The heating temperature in this acid treatment is 85 to 100 ° C. Next, after cooling, the solid content (including nanodiamond adherents and soot) was washed with water by decantation. Water washing of the solid content by decantation was repeated until the pH of the precipitate was from the low pH side to 2.
  • an oxidation treatment step was performed. Specifically, 6 L of 98% by mass sulfuric acid and 1 L of 69% by mass nitric acid were added to a precipitate (including nanodiamond adherents) obtained through decantation after acid treatment to form a slurry, which was then added to form a slurry. This slurry was heat-treated for 48 hours under reflux under normal pressure conditions. The heating temperature in this oxidation treatment is 140 to 160 ° C. Next, after cooling, the solid content (including the nanodiamond adherent) was washed with water by decantation. The supernatant liquid at the beginning of washing with water was colored, and the solid content was repeatedly washed with water by decantation until the supernatant liquid became visually transparent.
  • 0.3 g of nanodiamond particles obtained in the above drying step was weighed into a reaction vessel, 13.5 g of MIBK and 1.2 g of hexyltrimethoxysilane as a silane compound were added, and the mixture was stirred for 10 minutes.
  • zirconia beads manufactured by Tosoh Corporation, registered trademark "YTZ", diameter 30 ⁇ m
  • YTZ diameter 30 ⁇ m
  • an ultrasonic disperser model “UP-400s”, manufactured by Heelser
  • the ND particles were reacted with the silane compound by sonication. At first, it was gray, but the particle size gradually decreased and the dispersed state improved, and finally it became a uniform and black liquid.
  • MIBK dispersion a silane compound surface-modified ND dispersion
  • Manufacturing example 2 (Preparation of oleylamino group surface-modified ND particles)
  • the crude nanodiamond product obtained by the detonation method in the same manner as in Production Example 1 is subjected to an acid treatment step and an oxidation treatment step in the same manner as in Production Example 1, and then decanted to obtain a solid content (nanodiamond coagulation).
  • a solid content (nanodiamond coagulation)
  • the supernatant liquid at the beginning of washing with water was colored, and the solid content was repeatedly washed with water by decantation until the supernatant liquid became visually transparent. Then, it was dried to obtain an ND adherent as a powder.
  • a gas having about 8% by volume of oxygen and about 92% by volume of nitrogen was heated at 400 ° C. for 6 hours in a rotary kiln blown at a flow rate of 20 L / min.
  • a bead milling device (trade name "parallel four-cylinder sand grinder LSG-4U-2L type", IMEX). Bead milling was performed using (manufactured by Co., Ltd.). Specifically, 30 ml of the slurry after ultrasonic irradiation and zirconia beads having a diameter of 30 ⁇ m are put into a 100 ml mill container, Vessel (manufactured by Imex Co., Ltd.) and sealed, and the device is driven to perform bead milling. Executed. In this bead milling, the input amount of zirconia beads is, for example, 33% by volume with respect to the volume of the mill container, the rotation speed of the mill container is 2570 rpm, and the milling time is 3 hours.
  • the slurry that had undergone the above-mentioned crushing step was centrifuged using a centrifuge device (classification operation).
  • the centrifugal force in this centrifugation treatment was 20000 ⁇ g, and the centrifugation time was 30 minutes.
  • 10 ml of the supernatant of the ND-containing solution that had undergone the centrifugation treatment was collected.
  • the solid content concentration of this ND aqueous dispersion was 6.0% by mass, and the pH was 9.0.
  • the median diameter (particle size D50) of the ND aqueous dispersion obtained as described above was 6.0 nm.
  • Manufacturing example 4 (Preparation of oleate group surface modified ND particles)
  • 0.5 mmol of dodecylbenzenesulfonic acid and 2 mmol of oleic acid were added as acid catalysts to 1 g of the ND aqueous dispersion obtained through the crushing step, and the mixture was stirred at 100 ° C. for 24 hours. It was reacted. After completion of the reaction, 10 mL of toluene was added and the mixture was cooled to room temperature, and then washed with water and saturated brine to obtain a toluene dispersion composition of surface ND particles modified with an oleate group.
  • Examples 1 to 4 (Preparation of ND dispersion composition) After adding 0.2 g of a dispersant to 10 g of the surface-modified ND dispersion liquid obtained in Production Example 1 and stirring the mixture, MIBK was distilled off by a rotary evaporator, and a dispersion medium was added to bring the total weight to 10 g. In this way, an ND dispersion composition was prepared.
  • the nanodiamond concentration of the ND dispersion composition was 2% by mass. The nanodiamond concentration was determined from the absorbance at 350 nm.
  • the dispersants and dispersion media used in Examples 1 to 4 are as follows.
  • Example 1 Dispersant: Higher fatty acid ester dispersant (acid value 35 mgKOH / g, amine value 0 mgKOH / g, average molecular weight Mp5200, mass loss rate at 200 ° C. for 180 minutes 17.8%)
  • Dispersion medium POE
  • Dispersant Higher fatty acid ester dispersant (acid value 35 mgKOH / g, amine value 0 mgKOH / g, average molecular weight Mp5200, mass loss rate at 200 ° C.
  • Dispersion medium Hexane
  • Dispersant Higher fatty acid ester dispersant (acid value 0.5 mgKOH / g, amine value 0 mgKOH / g, average molecular weight Mp8100, mass loss rate at 200 ° C. for 180 minutes 12.1%)
  • Dispersion medium POE
  • Dispersant Higher fatty acid ester dispersant (acid value 0.5 mgKOH / g, amine value 0 mgKOH / g, average molecular weight Mp8100, mass loss rate at 200 ° C. for 180 minutes 12.1%)
  • dispersion medium hexane
  • Examples 5-10 Preparation of ND dispersion composition
  • ND dispersion composition To 3 g of the various surface-modified ND dispersions obtained in Production Examples 2 to 4 above, 0.06 g of a dispersant was added and stirred, then toluene was distilled off with a rotary evaporator, and a dispersion medium was added to bring the total weight to 3 g. did. In this way, an ND dispersion composition was prepared.
  • the nanodiamond concentration of the ND dispersion composition was 2% by mass. The nanodiamond concentration was determined from the absorbance at 350 nm.
  • the surface-modified ND, dispersant, and dispersion medium used in Examples 5 to 10 are as follows.
  • Example 5 Surface-modified ND: Oleyl amino group surface-modified ND obtained in Production Example 2
  • Dispersant Higher fatty acid ester dispersant (acid value 0.5 mgKOH / g, amine value 0 mgKOH / g, average molecular weight Mp8100, mass loss rate at 200 ° C. for 180 minutes 12.1%)
  • Dispersion medium POE
  • Surface-modified ND Oleyl amino group surface-modified ND obtained in Production Example 2
  • Dispersant Higher fatty acid ester dispersant (acid value 0.5 mgKOH / g, amine value 0 mgKOH / g, average molecular weight Mp8100, mass loss rate at 200 ° C.
  • Dispersion medium Hexane
  • Surface-modified ND Oleyloxy group surface-modified ND obtained in Production
  • Dispersant Higher fatty acid ester dispersant (acid value 0.5 mgKOH / g, amine value 0 mgKOH / g, average molecular weight Mp8100, mass loss rate at 200 ° C.
  • Dispersion medium POE
  • Surface-modified ND Oleyloxy group surface-modified ND obtained in Production
  • Dispersant Higher fatty acid ester dispersant (acid value 0.5 mgKOH / g, amine value 0 mgKOH / g, average molecular weight Mp8100, mass loss rate at 200 ° C.
  • Dispersion medium Hexane
  • Example 9 Surface-modified ND: Olate group surface-modified ND obtained in Production Example 4
  • Dispersant Higher fatty acid ester dispersant (acid value 0.5 mgKOH / g, amine value 0 mgKOH / g, average molecular weight Mp8100, mass loss rate at 200 ° C. for 180 minutes 12.1%)
  • Example 10 Surface-modified ND: Olate group surface-modified ND obtained in Production Example 4
  • Dispersant Higher fatty acid ester dispersant (acid value 0.5 mgKOH / g, amine value 0 mgKOH / g, average molecular weight Mp8100, mass loss rate at 200 ° C. for 180 minutes 12.1%)
  • Dispersion medium Hexane
  • Comparative Examples 1 to 5 An ND dispersion composition was prepared in the same manner as in Example 1 except that the following were used as the dispersant and the dispersion medium. No dispersant was used in Comparative Examples 1 and 2.
  • Dispersion medium POE Comparative Example 4 Dispersant: Trade name "SN Sparse 70" (manufactured by San Nopco Co., Ltd., unsaturated hydrocarbon / saturated fatty acid-based dispersant, mass loss rate at 200 ° C for 180 minutes: 32.3%) Dispersion medium: POE Comparative Example 5 Dispersant: Trade name "SN Sparse 70” (manufactured by San Nopco Co., Ltd., unsaturated hydrocarbon /
  • Haze value The ND dispersion compositions obtained in Examples and Comparative Examples were measured using a haze measuring device (trade name “Haze Meter 300A”, manufactured by Nippon Denshoku Industries Co., Ltd.). Each sample solution subjected to the measurement has undergone ultrasonic cleaning for 10 minutes with an ultrasonic cleaner. The thickness (inner dimension) of the measuring glass cell filled with the sample solution and used for the measurement is 1 mm, and the optical path length in the sample related to the measurement is 1 mm. In addition, "-" in the table indicates that the measurement was not performed.
  • Viscosity The ND dispersion compositions obtained in Examples and Comparative Examples were measured using an EMS viscometer (trade name "EMS1000", manufactured by Kyoto Denshi Kogyo Co., Ltd.). A sample of 500 ⁇ L and a ⁇ 2 mm aluminum ball were placed in a test tube and measured at a temperature of 25 ° C. and a rotation speed of 1000 rpm.
  • EMS1000 manufactured by Kyoto Denshi Kogyo Co., Ltd.
  • Mass reduction rate at 200 ° C. for 180 minutes For the dispersants used in Examples and Comparative Examples, a differential thermogravimetric simultaneous measuring device (trade name “TG-DTA 6200”, manufactured by Hitachi High-Tech Science Corporation) was used. The mass loss rate at 200 ° C. for 180 minutes was measured under the following conditions. Atmosphere: Air Temperature: From 30 ° C, raise the temperature to 200 ° C at a heating rate of 20 ° C / min, and hold for 180 minutes after reaching 200 ° C. Sample pan: Quartz
  • the ND dispersion composition (Example) using the fatty acid ester-based dispersant had excellent dispersibility in hexane or POE having a low SP value.
  • the dispersant was not used (Comparative Examples 1 and 2), and the polyether-based dispersant (Comparative Example 3) and the unsaturated hydrocarbon / saturated fatty acid-based dispersant (Comparative Examples 4 and 5) were SPs. Dispersibility was poor in low-value hexane and POE.
  • Example 3 40 g of the ND dispersion composition obtained in Example 3 was put into an air-filled three-necked flask equipped with a stirrer and a thermometer, and stirred at a heating temperature of 230 ° C. (liquid temperature 190 to 200 ° C.) for 17 hours.
  • a heating temperature 230 ° C. (liquid temperature 190 to 200 ° C.) for 17 hours.
  • the acid value was 0.43 mgKOH / g, and no discoloration could be confirmed.
  • Comparative Example 2 in which no dispersant was used, the acid value was 0.42 mgKOH / g and no discoloration could be confirmed.
  • Example 3 the ND dispersion composition obtained in Example 3 is evaluated to have the same degree of heat resistance as when no dispersant is used.
  • Example 4 to 10 the same dispersant as in Example 3 is used, and the mass reduction rate of the dispersant used in Examples 1 and 2 at 200 ° C. for 180 minutes is the dispersant used in Example 3. It is presumed that Examples 1, 2 and 4 to 10 also have the same degree of heat resistance as that of Example 3.
  • [Appendix 1] A nanodiamond dispersion composition containing an organic dispersion medium, nanodiamond particles dispersed in the organic dispersion medium, and a fatty acid ester-based dispersant.
  • Appendix 2 The nanodiamond dispersion according to Appendix 1, wherein the mass reduction rate of the fatty acid ester-based dispersant when maintained in an air atmosphere at a temperature of 200 ° C. for 180 minutes is 20% or less (preferably 15% or less). Composition.
  • the acid value of the fatty acid ester-based dispersant is 40 mgKOH / g or less (preferably 35 mgKOH / g or less, more preferably 30 mgKOH / g or less, still more preferably 20 mgKOH / g or less, particularly preferably 6 mgKOH / g or less).
  • the average dispersed particle size of the nanodiamond particles is 2 to 240 nm (preferably 4 to 200 nm, more preferably 10 to 180 nm, still more preferably 20 to 150 nm, particularly preferably 25 to 80 nm). 4.
  • Appendix 8 The nanodiamond according to any one of Supplementary notes 1 to 7, which has a viscosity at 25 ° C. of 0.2 to 120 mPa ⁇ s (preferably 10 to 100 mPa ⁇ s, more preferably 20 to 90 mPa ⁇ s). Dispersion composition.
  • the average molecular weight Mp of the fatty acid ester-based dispersant is 300 or more (preferably 1000 or more (for example, 1000 to 100,000), more preferably 3000 or more (for example, 3000 to 10000)).
  • the nanodiamond dispersion composition according to any one.
  • the amine value of the fatty acid ester-based dispersant is 5 mgKOH / g or less (preferably 1 mgKOH / g or less, more preferably 0.5 mgKOH / g or less, still more preferably 0.1 mgKOH / g or less, particularly preferably 0 mgKOH.
  • the nanodiamond dispersion composition according to any one of Supplementary notes 1 to 9.
  • the content of the nanodiamond particles is 0.01 to 5.0% by mass (preferably 0.1 to 4.0% by mass, more preferably 0.25 to 3.0% by mass, still more preferably 0. .5 to 2.0% by mass)
  • the content of the fatty acid ester-based dispersant is 10 to 10000 parts by mass (preferably 50 to 1000 parts by mass, more) with respect to 100 parts by mass of the total amount of nanodiamond particles in the nanodiamond dispersion composition.
  • the content of the fatty acid ester-based dispersant is 1000 to 10000 parts by mass (preferably 2000 to 100,000 parts by mass, more) with respect to 100 parts by mass of the total amount of nanodiamond particles in the nanodiamond dispersion composition.
  • the content ratio of the fatty acid ester-based dispersant is 90% by mass or more (preferably 95% by mass or more, more preferably 99% by mass or more) with respect to the total amount of the dispersant in the nanodiamond dispersion composition.
  • the nanodiamond dispersion composition according to any one of Supplementary note 1 to 13.
  • the total content of the nanodiamond particles, the fatty acid ester-based dispersant, and the organic dispersion medium is 70% by mass or more (preferably 80% by mass or more, more preferably 80% by mass or more) with respect to the total amount of the nanodiamond dispersion composition. Is 90% by mass or more, more preferably 95% by mass or more, particularly preferably 99% by mass or more), according to any one of Supplementary note 1 to 14.
  • the nanodiamond dispersion composition is 90% by mass or more (preferably 95% by mass or more, particularly preferably 99% by mass or more) with respect to any one of Supplementary note 1 to 14.
  • the nanodiamond dispersion composition according to any one of Supplementary notes 1 to 15, wherein the nanodiamond particles include a compound containing an organic group or surface-modified nanodiamond particles surface-modified with a functional group.
  • the organic group has 4 or more carbon atoms (for example, 4 to 25) (preferably 6 or more (for example, 6 to 22), more preferably 8 or more carbon atoms (for example, 8 to 20)).
  • nanodiamond dispersion according to any one of Supplementary note 1 to 17, wherein the nanodiamond particles include surface-modified nanodiamonds in which the group represented by the following formula (I) modifies the surface of the nanodiamond particles.
  • R represents a monovalent organic group, and the atom bonded to X is a carbon atom.
  • the monovalent organic group is a monovalent substituted or unsubstituted hydrocarbon group, a group in which a monovalent substituted or unsubstituted hydrocarbon group is bonded to an alkoxy group, a monovalent substituted or no substituent.
  • the nanodiamond dispersion composition according to any one of the hydrocarbon groups (preferably linear or branched hydrocarbon groups having 8 to 20 carbon atoms) and Appendix 18 to 21.
  • X is -NH-, and R is a monovalent organic group containing 8 to 20 carbon atoms, according to any one of Supplementary notes 18 to 22. Nanodiamond dispersion composition.
  • X is -NH-
  • R is a monovalent organic group containing a hydrocarbon group having 4 or more consecutive carbon atoms in a linear manner, Appendix 18 to 23.
  • R is the nanodiamond dispersion composition according to any one of Supplementary notes 18 to 24, which contains a hydrocarbon group having 4 or more consecutive carbon atoms in a linear manner.
  • the molar ratio of carbon atoms to the total amount of heteroatoms selected from the group consisting of nitrogen atoms, oxygen atoms, sulfur atoms, and silicon atoms is 4.5 or more (preferably 5 or more). , More preferably 5.5 or more).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

SP値が低い有機分散媒にも有機分散媒中のナノダイヤモンド粒子の分散性に優れるナノダイヤモンド分散組成物を提供する。 本開示のナノダイヤモンド分散組成物は、有機分散媒と、前記有機分散媒中に分散しているナノダイヤモンド粒子と、脂肪酸エステル系分散剤と、を含む。前記脂肪酸エステル系分散剤は、温度200℃の空気雰囲気下で180分間維持したときの質量減少率が20%以下であることが好ましい。前記脂肪酸エステル系分散剤の酸価は40mgKOH/g以下であることが好ましい。

Description

ナノダイヤモンド分散組成物
 本開示は、ナノダイヤモンド分散組成物に関する。より詳細には、本開示は、有機分散媒中にナノダイヤモンド粒子が分散した組成物に関する。本願は、2019年5月30日に日本に出願した特願2019-101168号の優先権を主張し、その内容をここに援用する。
 ナノサイズの微細な物質は、バルク状態では発現し得ない新しい特性を有することが知られている。例えば、ナノダイヤモンド粒子(=ナノサイズのダイヤモンド粒子)は、機械的強度、高屈折率、熱伝導性、絶縁性、酸化防止性、樹脂などの結晶化を促進する作用などを有する。そのようなナノダイヤモンドの製造に関する技術については、例えば下記の特許文献1~3に記載されている。
特開2005-001983号公報 特開2010-126669号公報 特許5364588号
 しかし、ナノダイヤモンド粒子は、一般に、表面原子の割合が大きいので、隣接粒子の表面原子間で作用し得るファンデルワールス力の総和が大きく、凝集(aggregation)しやすい。これに加えて、ナノダイヤモンド粒子の場合、隣接結晶子の結晶面間クーロン相互作用が寄与して非常に強固に集成する凝着(agglutination)という現象が生じ得る。そのため、ナノダイヤモンド粒子を一次粒子の状態で有機溶媒に分散させることは非常に困難であった。
 また、特許文献3には、ビーズミリング法で湿式分散処理を行うことの記載があるが、この方法ではSP値が11(cal/cm31/2以上である有機分散媒に分散させることしかできず、SP値が例えば11(cal/cm31/2未満の低SP値の有機分散媒に分散させることは困難であった。
 従って、本開示の目的は、SP値が低い有機分散媒にもナノダイヤモンド粒子の分散性に優れるナノダイヤモンド分散組成物を提供することにある。
 本開示の発明者らは、上記目的を達成するため鋭意検討した結果、特定の分散剤を用いることにより、SP値が低い有機分散媒にもナノダイヤモンド粒子の分散性に優れるナノダイヤモンド分散組成物を得ることができることを見出した。本開示はこれらの知見に基づいて完成させたものに関する。
 すなわち、本開示は、有機分散媒と、上記有機分散媒中に分散しているナノダイヤモンド粒子と、脂肪酸エステル系分散剤と、を含むナノダイヤモンド分散組成物を提供する。
 上記脂肪酸エステル系分散剤は、温度200℃の空気雰囲気下で180分間維持したときの質量減少率が20%以下であることが好ましい。
 上記脂肪酸エステル系分散剤の酸価は40mgKOH/g以下であることが好ましい。
 上記ナノダイヤモンド分散組成物中の上記ナノダイヤモンド粒子の平均分散粒子径は2~240nmであることが好ましい。
 上記ナノダイヤモンド分散組成物はヘイズ値が5以下であることが好ましい。
 上記有機分散媒のSP値は6.0~12.0(cal/cm31/2であることが好ましい。
 上記ナノダイヤモンド分散組成物は25℃における粘度が0.2~120mPa・sであることが好ましい。
 上記脂肪酸エステル系分散剤の平均分子量Mpは300以上であることが好ましい。
 上記ナノダイヤモンド分散組成物はナノダイヤモンド粒子の含有割合が0.01~5.0質量%であってもよい。
 上記ナノダイヤモンド粒子は、下記式(I)で表される基がナノダイヤモンド粒子表面を修飾した表面修飾ナノダイヤモンドを含むことが好ましい。
 -X-R   (I)
[式(I)中、Xは、-Si-、-NH-、-O-、-O-C(=O)-、-C(=O)-O-、-NH-C(=O)-、-C(=O)-NH-、または-S-を示し、Xから左に伸びる結合手はナノダイヤモンド粒子に結合する。Rは、一価の有機基を示し、Xと結合する原子が炭素原子である。]
 上記式(I)中、Xは、-Si-、-NH-、-O-、または-O-C(=O)-を示すことが好ましい。
 本開示のナノダイヤモンド分散組成物は、SP値が高い有機分散媒に加え、SP値が低い有機分散媒にもナノダイヤモンド粒子の分散性に優れる。また、脂肪酸エステル系分散剤は耐熱性が高く、本開示のナノダイヤモンド分散組成物は高温環境下における分散安定性にも優れる傾向がある。
 本開示の一実施形態に係るナノダイヤモンド分散組成物(ND分散組成物)は、有機分散媒と、上記有機分散媒中に分散しているナノダイヤモンド粒子(ND粒子)と、脂肪酸エステル系分散剤と、を少なくとも含む。
 上記ND分散組成物中におけるND粒子の平均分散粒子径(D50、メディアン径)は、2~240nmが好ましく、より好ましくは4~200nm、より好ましくは10~180nm、さらに好ましくは20~150nm、特に好ましくは25~80nmである。上記平均分散粒子径は、動的光散乱法によって測定することができる。上記ND分散組成物はND粒子の分散性に優れるため、上記範囲内の平均分散粒子径で有機分散媒中に分散することができる。
 上記ND分散組成物中のND粒子の含有割合は、例えば0.01~5.0質量%、好ましくは0.1~4.0質量%、より好ましくは0.25~3.0質量%、さらに好ましくは0.5~2.0質量%である。含有割合が上記範囲内であると、ND粒子の分散性がより優れる。
 上記ND分散組成物中の脂肪酸エステル系分散剤の含有量は、上記ND分散組成物中のND粒子の総量100質量部に対して、例えば10~10000質量部、好ましくは50~1000質量部、より好ましくは70~300質量部である。脂肪酸エステル系分散剤の含有量が上記範囲内であると、上記ND分散組成物中のND粒子の分散性によりいっそう優れる。なお、上記ND分散組成物は、ND粒子の含有割合が低くなるよう(例えば0.1~2000質量ppm)使用時に希釈される濃縮液であってもよく、上記濃縮液における脂肪酸エステル系分散剤の含有量は、上記ND分散組成物中のND粒子の総量100質量部に対して、1000~1000000質量部が好ましく、より好ましくは2000~100000質量部、特に好ましくは3000~50000質量部である。
 上記ND分散組成物中の溶媒の含有割合は、例えば90~99.9999質量%である。そして、溶媒の総量における有機分散媒の含有割合は、例えば60質量%以上、好ましくは70質量%以上、さら好ましくは80質量%以上、特に好ましくは90質量%以上である。
 上記ND分散組成物は、ヘイズ値が5以下であることが好ましく、より好ましくは3以下、さらに好ましくは1以下、特に好ましくは0.5以下である。上記ND分散組成物はND粒子の分散性に優れるため、上記ヘイズ値のND分散組成物を得ることができる。上記ヘイズ値は、JIS K 7136に基づいて測定することができる。
 上記ND分散組成物の25℃における粘度は、0.2~120mPa・sが好ましく、より好ましくは10~100mPa・s、さらに好ましくは20~90mPa・sである。上記ND分散組成物はND粒子の分散性に優れるため、上記粘度が上記範囲内においても有機分散媒中の分散性に優れる。上記粘度の測定の際の回転子および回転子の回転速度は、測定値に応じて適宜選択される。上記粘度は、例えば、EMS粘度計(商品名「EMS1000」、京都電子工業株式会社製)を用いて測定することができる。
 上記ND分散組成物は、ND粒子、脂肪酸エステル系分散剤、および有機分散媒のみからなるものであってもよく、その他の成分を含有していてもよい。その他の成分としては、例えば、脂肪酸エステル系分散剤以外の分散剤、界面活性剤、増粘剤、カップリング剤、防錆剤、腐食防止剤、凝固点降下剤、消泡剤、耐摩耗添加剤、防腐剤、着色料などが挙げられる。なお、脂肪酸エステル系分散剤の含有割合は、上記ND分散組成物中の分散剤の総量に対して90質量%以上が好ましく、より好ましくは95質量%以上、さらに好ましくは99質量%以上である。上記その他の成分の含有割合は、上記ND分散組成物総量に対して、例えば30質量%以下、好ましくは20質量%以下、さらに好ましくは10質量%以下、さらに好ましくは5質量%以下、特に好ましくは1質量%以下である。従って、ND粒子、脂肪酸エステル系分散剤、および有機分散媒の合計の含有割合は、上記ND分散組成物総量に対して、例えば70質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上である。
(ナノダイヤモンド粒子)
 上記ND粒子は、特に限定されず、公知乃至慣用のナノダイヤモンド粒子を用いることができる。上記ND粒子は、表面修飾されたND(表面修飾ND)粒子であっていてもよいし、表面修飾されていないND粒子であってもよい。なお、表面修飾されていないND粒子は、表面にヒドロキシ基(-OH)やカルボキシ基(-COOH)を有する。ND粒子は、一種のみを用いてもよいし二種以上を用いてもよい。
 上記表面修飾NDにおいてND粒子を表面修飾する化合物または官能基としては、例えば、シラン化合物、ホスホン酸イオン若しくはホスホン酸残基、末端にビニル基を有する表面修飾基、アミド基、カチオン界面活性剤のカチオン、ポリグリセリン鎖を含む基、ポリエチレングリコール鎖を含む基などが挙げられる。
 上記表面修飾NDにおいてND粒子を表面修飾する化合物または官能基は、有機基を含むことが好ましい。上記有機基は、より好ましくは炭素原子数が4以上(例えば4~25)の有機基、さらに好ましくは6以上(例えば6~22)の有機基、特に好ましくは炭素数8以上(例えば8~20)の有機基である。上記表面修飾する化合物または官能基が有機基(特に、炭素原子数が4以上の有機基)を含むと、上記有機基と有機分散媒との疎水性相互作用により、有機分散媒中のND粒子の分散性がより良好となる。上記有機基としては、例えば、置換または無置換の炭化水素基、置換または無置換の複素環式基、上記炭化水素基および/または上記複素環式基が2以上結合した基などが挙げられる。上記有機基の具体例としては、後述の式(I)におけるRとして例示および説明された一価の有機基における有機基が挙げられる。
 上記表面修飾NDにおいてND粒子を表面修飾する化合物または官能基としては、中でも、脂肪酸エステル系分散剤との組み合わせにより有機分散媒中の分散性により優れる観点から、下記式(I)で表される基が好ましい。すなわち、上記表面修飾NDは、下記式(I)で表される基がナノダイヤモンド粒子表面を修飾した表面修飾NDであることが好ましい。
 -X-R   (I)
[式(I)中、Xは、-Si-、-NH-、-O-、-O-C(=O)-、-C(=O)-O-、-NH-C(=O)-、-C(=O)-NH-、または-S-を示し、Xから左に伸びる結合手はナノダイヤモンド粒子に結合する。Rは、一価の有機基を示し、Xと結合する原子が炭素原子である。]
 上記Rにおける一価の有機基としては、例えば、置換または無置換の炭化水素基(一価の炭化水素基)、置換または無置換の複素環式基(一価の複素環式基)、上記一価の炭化水素基および/または上記一価の複素環式基が2以上結合した基などが挙げられる。上記結合した基は、直接結合していてもよいし、連結基を介して結合していてもよい。上記連結基としては、例えば、アミノ基、エーテル結合、エステル結合、ホスフィン酸基、スルフィド結合、カルボニル基、有機基置換アミド基、有機基置換ウレタン結合、有機基置換イミド結合、チオカルボニル基、シロキサン結合、これらの2以上が結合した基などが挙げられる。
 上記一価の有機基における炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、これらが2以上結合した基などが挙げられる。
 上記脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基などが挙げられる。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基等のC1-22アルキル基(好ましくはC2-20アルキル基、より好ましくはC3-18アルキル基)などが挙げられる。アルケニル基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基等のC2-22アルケニル基(好ましくはC4-20アルケニル基、より好ましくはC8-18アルケニル基)などが挙げられる。アルキニル基としては、例えば、エチニル基、プロピニル基等のC2-22アルキニル基(好ましくはC4-20アルキニル基、より好ましくはC8-18アルキニル基)などが挙げられる。
 上記脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基等のC3-12シクロアルキル基;シクロヘキセニル基等のC3-12シクロアルケニル基;ビシクロヘプタニル基、ビシクロヘプテニル基等のC4-15架橋環式炭化水素基などが挙げられる。
 上記芳香族炭化水素基としては、例えば、フェニル基、ナフチル基等のC6-14アリール基(特に、C6-10アリール基)などが挙げられる。
 上記複素環式基を形成する複素環としては、芳香族性複素環、非芳香族性複素環が挙げられる。このような複素環としては、環を構成する原子に炭素原子と少なくとも一種のヘテロ原子(例えば、酸素原子、硫黄原子、窒素原子等)を有する3~10員環(好ましくは4~6員環)、これらの縮合環が挙げられる。具体的には、ヘテロ原子として酸素原子を含む複素環(例えば、オキシラン環等の3員環;オキセタン環等の4員環;フラン環、テトラヒドロフラン環、オキサゾール環、イソオキサゾール環、γ-ブチロラクトン環等の5員環;4-オキソ-4H-ピラン環、テトラヒドロピラン環、モルホリン環等の6員環;ベンゾフラン環、イソベンゾフラン環、4-オキソ-4H-クロメン環、クロマン環、イソクロマン環等の縮合環;3-オキサトリシクロ[4.3.1.14,8]ウンデカン-2-オン環、3-オキサトリシクロ[4.2.1.04,8]ノナン-2-オン環等の橋かけ環)、ヘテロ原子として硫黄原子を含む複素環(例えば、チオフェン環、チアゾール環、イソチアゾール環、チアジアゾール環等の5員環;4-オキソ-4H-チオピラン環等の6員環;ベンゾチオフェン環等の縮合環等)、ヘテロ原子として窒素原子を含む複素環(例えば、ピロール環、ピロリジン環、ピラゾール環、イミダゾール環、トリアゾール環等の5員環;イソシアヌル環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環等の6員環;インドール環、インドリン環、キノリン環、アクリジン環、ナフチリジン環、キナゾリン環、プリン環等の縮合環等)などが挙げられる。
 脂肪族炭化水素基と脂環式炭化水素基とが結合した基としては、例えば、シクロへキシルメチル基、メチルシクロヘキシル基などが挙げられる。脂肪族炭化水素基と芳香族炭化水素基とが結合した基としては、例えば、ベンジル基、フェネチル基等のC7-18アラルキル基(特に、C7-10アラルキル基)、シンナミル基等のC6-10アリール-C2-6アルケニル基、トリル基等のC1-4アルキル置換アリール基、スチリル基等のC2-4アルケニル置換アリール基などが挙げられる。
 上記一価の炭化水素基および/または上記一価の複素環式基が連結基を介して2以上結合した基としては、例えば、上記一価の炭化水素基および/または上記一価の複素環式基と、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、アリールオキシ基、アラルキルオキシ基、アシルオキシ基、アルキルチオ基、アルケニルチオ基、アリールチオ基、アラルキルチオ基、アシル基、アルケニルカルボニル基、アリールカルボニル基、アラルキルカルボニル基、アルコキシカルボニル基、アルケニルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、ジアルキルアミノ基、アシルアミノ基、オキセタニル基含有基、カルバモイル基、またはこれらの2以上が結合した基とが結合した基などが挙げられる。
 上記一価の有機基は置換基を有していてもよい。上記置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;シアノ基;イソシアナート基;イソチオシアナート基などが挙げられる。また、上記一価の有機基は、活性水素を含む官能基(ヒドロキシ基、カルボキシ基、アミノ基、モノ置換アミノ基、チオール基、リン酸基など)を有しないことが好ましい。
 上記一価の有機基における炭素原子数は、4~25であることが好ましく、より好ましくは6~22、さらに好ましくは8~20である。上記炭素原子数が4以上であると、表面修飾基同士の立体障害が充分となり分散媒中で分散しやすい。上記炭素原子数が25以下であると、表面修飾基同士が絡まり合うのを抑制し、分散媒中で分散しやすい。
 上記一価の有機基としては、中でも、一価の置換または無置換の炭化水素基、一価の置換または無置換の炭化水素基とアルコキシ基とが結合した基、一価の置換または無置換の炭化水素基とジアルキルアミノ基とが結合した基が好ましい。
 上記Rは、直鎖状に炭素原子が4以上連続した炭化水素基を含むことが好ましい。このような炭化水素基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基等の直鎖状アルキレン基;2-エチルヘキサメチレン基等の分岐鎖状アルキレン基;1-ブテニレン基、2-ブテニレン基、1-ペンテニレン基、2-ペンテニレン基、3-ペンテニレン基等の直鎖状アルケニレン基;2-メチル-2-ブテニレン基等の分岐鎖状アルケニレン基;シクロヘキシル基等の炭素数4以上の脂環式炭化水素基;フェニル基等の炭素数6以上の芳香族炭化水素基;ピペリジン環等の炭素原子が4以上連続した構造を含む複素環式基などが挙げられる。
 式(I)中、窒素原子、酸素原子、硫黄原子、およびケイ素原子からなる群より選択されるヘテロ原子の総量に対する炭素原子のモル比は、4.5以上であることが好ましく、より好ましくは5以上、さらに好ましくは5.5以上である。上記モル比が4.5以上であるとにより、有機溶媒に対する分散性により優れる。上記モル比は、特に限定されないが、例えば、22以下であってもよく、20以下であってもよい。
 特に、上記式(I)中、Xは、-Si-、-NH-、-O-、-O-C(=O)-、または-C(=O)-O-であることが好ましく、より好ましくは-Si-、-NH-、-O-、または-O-C(=O)-である。この場合、有機分散媒に対する分散性が優れる表面修飾NDをより容易に作製することができる。
 上記式(I)中、Xが-O-、-O-C(=O)-、または-C(=O)-O-である場合、Rは、一価の置換または無置換の炭化水素基であることが好ましく、炭素数8~20の直鎖状または分岐鎖状炭化水素基であることがより好ましい。
 上記式(I)中、Xが-NH-である場合、Rは、8~20個の炭素原子を含む一価の有機基であることが好ましい。また、Xが-NH-である場合、Rは、直鎖状に炭素原子が4以上連続した炭化水素基を含む一価の有機基であることが好ましい。
 上記式(I)中、Xが-Si-である場合、当該ケイ素原子には、ナノダイヤモンド粒子に結合する結合手、および上記式(I)中のRに結合する結合手以外に、さらに二つの結合手が存在する。上記二つの結合手は、同一または異なって、水素原子、炭素数1~3の脂肪族炭化水素基、他の上記式(I)で表される基におけるケイ素原子、後述のシラン化合物におけるケイ素原子、またはナノダイヤモンド粒子に、酸素原子を介して結合している。上記二つの結合手は、具体的には、同一または異なって、後述のOR1、OR2、またはナノダイヤモンド粒子に結合する。
 上記式(I)中、Xが-Si-である場合の上記表面修飾NDは、シラン化合物が表面に結合した表面修飾NDであることが好ましい。上記シラン化合物としては、加水分解性基および脂肪族炭化水素基を有することが好ましい。ND粒子の表面修飾に用いるシラン化合物は、一種のみであってもよいし、二種以上であってもよい。
 上記シラン化合物としては、中でも、下記式(1-1)で表される化合物を少なくとも含有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記式(1-1)中、R1、R2、R3は、同一または異なって、炭素数1~3の脂肪族炭化水素基を示す。R4は炭素数1以上の脂肪族炭化水素基を示す。
 上記R1、R2、R3における炭素数1~3の脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル基等の直鎖状または分岐鎖状アルキル基;ビニル、アリル基等の直鎖状または分岐鎖状アルケニル基;エチニル基、プロピニル基等のアルキニル基などが挙げられる。中でも、直鎖状または分岐鎖状アルキル基が好ましい。
 上記R4は、上記式(I)におけるRに相当し、一価の有機基を示す。上記一価の有機基は、好ましくは炭素数1以上の脂肪族炭化水素基であり、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ペンチル、ヘキシル、n-オクチル、2-エチルヘキシル、ノニル、イソノニル、デシル、イソデシル、ラウリル、ミリスチル、イソミリスチル、ブチルオクチル、イソセチル、ヘキシルデシル、ステアリル、イソステアリル、オクチルデシル、オクチルドデシル、イソベヘニル基等の直鎖状または分岐鎖状アルキル基;ビニル、アリル、1-ブテニル、7-オクテニル、8-ノネニル、9-デセニル、11-ドデセニル、オレイル基等の直鎖状または分岐鎖状アルケニル基;エチニル、プロピニル、デシニル、ペンタデシニル、オクタデシニル基等の直鎖状または分岐鎖状アルキニル基などが挙げられる。
 R4は、中でも、親油性がより高く、また、より大きな立体障害となり得ることから凝集抑制効果に優れ、より高度の分散性を付与することができる点で、炭素数4以上の脂肪族炭化水素基が好ましく、特に好ましくは炭素数6以上の脂肪族炭化水素基である。なお、脂肪族炭化水素基の炭素数の上限は、例えば25、好ましくは20、より好ましくは12である。また、脂肪族炭化水素基としては、直鎖状または分岐鎖状のアルキル基若しくはアルケニル基が好ましく、特に好ましくは直鎖状または分岐鎖状アルキル基である。
 R4は炭素数が4以上の脂肪族炭化水素基であると、有機分散媒に対する親和性を示し、また、より大きな立体障害となり得ることから凝集抑制効果に優れ、さらに、酸素原子を含む基(式(1)中のOR1’基とOR2’基)が有機分散媒に対する親和性を示すため、有機分散媒に対する親和性に優れ、有機分散媒中においてよりいっそう優れた分散性を発揮することができる。
 従って、シラン化合物により表面修飾されたND粒子(シラン化合物表面修飾ND粒子)としては、例えば、下記式(1)で表される基で表面修飾された構造を有するND粒子が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 上記式(1)中、R4は、上記式(1)で表される基におけるRに相当し、一価の有機基を示す。R1’、R2’は同一または異なって、水素原子、炭素数1~3の脂肪族炭化水素基、または下記式(a)で表される基である。式中の波線が付された結合手がナノダイヤモンド粒子の表面に結合する。
Figure JPOXMLDOC01-appb-C000003
 上記式(a)中、R4は、上記式(1)で表される基におけるRに相当し、一価の有機基を示す。R3、R5は同一または異なって、水素原子、または炭素数1~3の脂肪族炭化水素基を示す。m、nは同一または異なって、0以上の整数を示す。なお、ケイ素原子から左にのびる結合手が酸素原子に結合する。また、波線が付された結合手はナノダイヤモンド粒子の表面に結合する。上記式(1)中のR4は式(1-1)中のR4に対応する。
 上記式(1)中のR1’、R2’、R3、R5における炭素数1~3の脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル基等の直鎖状または分岐鎖状アルキル基;ビニル、アリル基等の直鎖状または分岐鎖状アルケニル基;エチニル基、プロピニル基等のアルキニル基などが挙げられる。中でも、直鎖状または分岐鎖状アルキル基が好ましい。
 m、nは括弧内に示される構成単位の数であり、同一または異なって0以上の整数を示す。m、nが2以上である場合、2個以上の構成単位の結合方法としては、ランダム、交互、ブロックの何れであってもよい。
 上記シラン化合物表面修飾ND粒子は、上記式(1)で表される基以外にも、例えば下記式(1’)で表される基、その他の表面官能基(例えば、アミノ基、水酸基、カルボキシ基等)などのその他の官能基を有していてもよい。上記その他の官能基は、一種のみであってもよく、二種以上であってもよい。
Figure JPOXMLDOC01-appb-C000004
 上記式(1’)中、R1’、R4は上記に同じ。式中の波線が付された結合手がナノダイヤモンド粒子の表面に結合する。
 表面処理を施す化合物としてシラン化合物(特に、上記式(1-1)で表される化合物)を使用した場合、上記化合物は、例えば上記式(1-1)中のOR1基、OR2基、OR3基などの加水分解性アルコキシシリル基が容易に加水分解してシラノール基を形成するため、例えばシラノール基のうちの1個がND粒子の表面に存在する水酸基と脱水縮合して共有結合を形成すると共に、残りの2個のシラノール基に、他のシラン化合物のシラノール基が縮合してシロキサン結合(Si-O-Si)を形成することができ、ND粒子に有機分散媒に対する親和性を付与することができ、有機分散媒中において、よりいっそう優れた分散性を発揮することができる。
 表面修飾NDを構成するND粒子は、ナノダイヤモンドの一次粒子を含むことが好ましい。その他、上記一次粒子が複数個凝集(凝着)した二次粒子を含んでいてもよい。また、表面修飾NDの表面には、上記表面修飾基以外にも、その他の表面官能基(例えば、アミノ基、ヒドロキシ基、カルボキシ基など)を一種または二種以上有していてもよい。
 上記表面修飾NDにおける、上記表面修飾基に対するNDの質量比[ND/表面修飾基]は、特に限定されないが、0.5以上であることが好ましく、より好ましくは2.5以上である。また、上記質量比は、15.0以下であることが好ましく、より好ましくは10.0以下、さらに好ましくは7.0以下、特に好ましくは5.0以下である。上記質量比が0.5以上であると、ナノダイヤモンド材料としての特性を損ないにくい。上記質量比が15.0以下(特に、7.0以下)であると、上記表面修飾基の修飾度が充分となり、有機分散媒における分散性により優れる。上記質量比は、熱重量分析により測定される200℃から450℃の重量減少率に基づき、減少した重量を表面修飾基の質量として求められる。
(有機分散媒)
 上記有機分散媒としては、公知乃至慣用の有機溶媒を用いることができる。中でも、より低SP値の有機分散媒に対するND粒子の分散性に優れる観点から、SP値[ヒルデブラントによる溶解性パラメーター(δ)、25℃における、単位:(cal/cm31/2]が6.0~12.0であることが好ましく、より好ましくは6.0以上11.0未満である。特に、上記ND分散組成物は、脂肪酸エステル系分散剤を配合することでND粒子の分散性が低い有機溶媒を用いた場合であってもND粒子の分散性が優れることから、上記SP値が、好ましくは8.2以下(例えば6.0~8.2)または9.0以上(例えば9.0~12.0)、より好ましくは8.0以下(例えば6.5~8.0)または9.2以上(例えば9.2~12.0、好ましくは9.2以上11.0未満)である有機分散媒であることが好ましい。上記有機分散媒は、一種のみを用いてもよいし、二種以上を用いてもよい。なお、二種以上の有機分散媒を用いる場合、二種以上の有機分散媒の混合物のSP値が上記範囲であることが好ましく、それぞれの有機分散媒のSP値は上記の範囲外であってもよい。
 上記有機分散媒としては、例えば、ヘキサン(SP:7.0)等のアルカン;アセトン(SP:10.0)、メチルエチルケトン(MEK、SP:9.3)、メチルイソブチルケトン(MIBK、SP:8.4)等のケトン;ジオキサン(SP:9.8)、テトラヒドロフラン(SP:9.1)等のエーテル;n-プロパノール(SP:11.9)、イソプロパノール(IPA、SP:11.5)、ヘキサノール(SP:10.7)、シクロヘキサノール(SP:11.4)等のアルコール;酢酸エチル(SP:9.1)、ポリオールエステル(SP:9.6)等のエステル;トルエン(SP:8.8)、アルキルベンゼン(SP:7.6)等の芳香族化合物;クロロホルム(SP:9.3)、塩化メチレン(SP:9.7)、二塩化エチレン(SP:9.8)等のハロゲン化炭化水素;エチレンカーボネート/ジエチルカーボネート(EC/DEC=1/1:体積比)混合溶媒(SP:11.75)、エチレンカーボネート/ジエチルカーボネート/メチルエチルカーボネート(1/1/1:体積比)混合溶媒(SP:10.97)等のカーボネート化合物;ポリα-オレフィン(SP:6.0~8.0程度)等のポリオレフィン;鉱油(SP:6.0~8.0程度)、酢酸(SP:12.4)、アセトニトリル(SP:11.8)などが挙げられる。
 また、上記ND分散組成物を後述の潤滑剤として用いる場合、上記有機分散媒は潤滑基剤であってもよい。上記潤滑基剤としては、潤滑基剤として用いられる公知乃至慣用の有機溶媒を用いることができ、例えば、ポリフェニルエーテル、アルキルベンゼン、アルキルナフタレン、エステル油、グリコール系合成油、ポリオレフィン系合成油、鉱油などが挙げられる。より具体的には、ポリα-オレフィン、エチレン-α-オレフィン共重合体、ポリブデン、アルキルベンゼン、アルキルナフタレン、ポリアルキレングリコール、ポリフェニルエーテル、アルキル置換ジフェニルエーテル、ポリオールエステル、二塩基酸エステル、炭酸エステル、リン酸エステル、シリコーン油、フッ素化油、GTL(Gas to Liquids)、鉱油などが挙げられる。中でも、摺動部材の摩耗量低減効果により優れる観点から、ポリオールエステル、ポリα-オレフィン、鉱油、アルキルベンゼン、ポリアルキレングリコールが好ましい。
(脂肪酸エステル系分散剤)
 上記ND分散組成物は、脂肪酸エステル系分散剤を用いることで、有機分散媒中のND粒子の分散性が特に優れる。また、脂肪酸エステル系分散剤は耐熱性が高いため、熱による分解が起こりにくい。このため、上記ND分散組成物が使用中に昇温した場合や、高温環境下で使用された場合にも、上記ND分散組成物は高温環境下における分散安定性にも優れ、また変色も起こりにくい。さらに、脂肪酸エステル系分散剤は市販されており入手も容易であるため、煩雑な製造工程を経て製造する必要はなく、製造容易性に優れる。脂肪酸エステル系分散剤は、一種のみを用いてもよいし、二種以上を用いてもよい。
 脂肪酸エステル系分散剤の酸価は、40mgKOH/g以下であることが好ましく、より好ましくは35mgKOH/g以下、さらに好ましくは30mgKOH/g以下、さらに好ましくは20mgKOH/g以下、特に好ましくは6mgKOH/g以下である。また、上記酸価は、例えば0.1mgKOH/g以上、0.3mgKOH/g以上、0.5mgKOH/g以上であってもよい。上記酸価が40mgKOH/g以下(特に30mgKOH/g以下)であると、SP値の低い有機分散媒に対する分散性により優れる傾向がある。
 脂肪酸エステル系分散剤のアミン価は、5mgKOH/g以下であることが好ましく、より好ましくは1mgKOH/g以下、さらに好ましくは0.5mgKOH/g以下、さらに好ましくは0.1mgKOH/g以下、特に好ましくは0mgKOH/gである。
 脂肪酸エステル系分散剤は、平均分子量Mpが300以上であることが好ましく、より好ましくは1000以上(例えば、1000~100000)、さらに好ましくは3000以上(例えば、3000~10000)である。上記平均分子量Mpが300以上であると、SP値の低い有機分散媒に対する分散性により優れる傾向がある。なお、上記平均分子量Mpは、ゲル・パーミエーション・クロマトグラフィー(GPC)により測定される標準ポリスチレン換算の分子量である。
 脂肪酸エステル系分散剤は、温度200℃の空気雰囲気下で180分間維持したときの質量減少率(「200℃180分質量減少率」と称する場合がある)が20%以下であることが好ましく、より好ましくは15%以下である。上記質量減少率が20%以下であると、上記ND分散組成物は耐熱性により優れ、高温環境下における分散安定性に優れる。上記質量減少率は、示差熱熱重量同時測定(TG-DTA)により測定することができる。
 脂肪酸エステル系分散剤は、酸性官能基を有していてもよい。上記酸性官能基としては、例えば、カルボン酸、スルホン酸、およびこれらの塩が挙げられる。
 脂肪酸エステル系分散剤を構成する脂肪酸としては、例えば、カルボン酸、スルホン酸、およびこれらの塩が挙げられる。上記カルボン酸としては、例えば、酢酸、プロピオン酸、カプリル酸、ノナン酸、カプリン酸、オクチル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソノナン酸、アラキン酸等の脂肪族モノカルボン酸;安息香酸、p-(t-ブチルブチル)安息香酸等の芳香族モノカルボン酸などが挙げられる。上記スルホン酸としては、例えば、ナフタレンスルホン酸などが挙げられる。上記脂肪酸は高級脂肪酸であることが好ましい。すなわち、脂肪酸エステル系分散剤は高級脂肪酸エステル分散剤であることが好ましい。上記脂肪酸は、一種のみを用いてもよいし、二種以上を用いてもよい。
 脂肪酸エステル系分散剤のエステル成分を構成する化合物としては、例えば、プロピオラクトン、バレロラクトン、カプロラクトン等の環状エステル化合物;グリコールと二塩基酸の縮合物などが挙げられる。また、脂肪酸エステル系分散剤におけるポリエステルは、分子量が約300~9000であることが好ましく、より好ましくは400~6000である。
 脂肪酸エステル系分散剤は、市販品を用いることもできる。脂肪酸エステル系分散剤の市販品としては、例えば、商品名「アジスパー PA111」、商品名「アジスパー PN411」(以上、味の素ファインテクノ株式会社製)などが挙げられる。
 上記ND分散組成物は、ジルコニアを含んでいてもよいし、含んでいなくてもよい。ジルコニアを含む場合、ジルコニアは、上記ND粒子に付着していてもよいし、付着せずにND分散組成物中に分散していてもよい。ジルコニアの付着状態は、物理的付着(固着、接着など)であってもよいし、化学的付着(ND粒子または上記表面修飾基との共有結合、分子間力による結合、水素結合、イオン結合など)であってもよいし、これらの両方であってもよい。
 上記ND分散組成物中のジルコニアの含有割合は、100質量ppm未満であることが好ましく、より好ましくは20質量ppm以下、さらに好ましくは2質量ppm以下である。上記ジルコニアの含有割合が100質量ppm未満であると、上記ND分散組成物を潤滑剤(特に初期なじみ用潤滑剤)として用いた場合になじみ面の形成性に優れ、被摺動部材上に容易になじみ面を形成することができる。また、なじみ面中へのジルコニウムの混入が抑制され、薄膜でも優れた摩耗抑制効果および摩擦低減効果を奏する。上記ジルコニアの含有割合の下限は、例えば0.02質量ppm、0.1質量ppmであってもよい。
 また、上記ND分散組成物中のジルコニアの含有割合は、0.01~7.5質量%であってもよく、0.1~6.0質量%、0.25~4.5質量%、または0.5~3.0質量%であってもよい。また、上記潤滑剤組成物中のジルコニアの含有割合は、例えば0.1~3000質量ppmであってもよく、0.2~1500質量ppm、0.5~750質量ppm、または1~150質量ppmであってもよい。上記ND分散組成物はND粒子の分散性に優れるため、このような二段階の含有割合においても有機分散媒(特に潤滑基剤)中の分散性に優れる。このため、例えば上記ND分散組成物中のジルコニアの含有割合について、流通時は0.01~7.5質量%とし、使用時は0.1~3000質量ppmとするなど、流通時と使用時とで異なるものとすることができる。
 ジルコニアの含有割合は、高周波誘導結合プラズマ発光分光分析法(ICP発光分光分析法)によりZrを検出し、含有割合が既知である分散液を基準としてZrの検出量に基づき求めることができる。ジルコニアは、ND粒子の凝着体を解砕してND粒子をナノ分散させるために使用されるビーズミルに含まれるジルコニアビーズに由来してND分散組成物に混入することが多い。このため、ジルコニアビーズを用いたビーズミリングを行わない、あるいは、当該ビーズミリングを行う時間を最小限とすることで、ジルコニアの含有割合が低いND分散組成物を得ることができる。
 上記ND分散組成物は、例えば、微細なND粒子が有する特性を樹脂など(例えば、熱若しくは光硬化性樹脂や熱可塑性樹脂など)に付与する添加剤として好ましく使用することができる。上記ND粒子が有する特性としては、例えば、機械的強度、高屈折率、熱伝導性、絶縁性、酸化防止性、結晶化促進作用、デンドライト抑制作用などが挙げられる。そして、上記ND分散組成物を樹脂に添加して得られる組成物は、例えば、機能性ハイブリッド材料、熱的機能(耐熱、蓄熱、熱電導、断熱等)材料、フォトニクス(有機EL素子、LED、液晶ディスプレイ、光ディスク等)材料、バイオ・生体適合性材料、コーティング材料、フィルム(タッチパネルや各種ディスプレイなどのハードコートフィルム、遮熱フィルム等)材料、シート材料、スクリーン(透過型透明スクリーン等)材料、フィラー(放熱用フィラー、機械特性向上用フィラー等)材料、耐熱性プラスチック基板(フレキシブルディスプレイ用基板等)材料、リチウムイオン電池等材料として好ましく使用することができる。また、上記ND分散組成物は、その他、機械部品(例えば、自動車や航空機等)の摺動部などに適用する減摩剤または潤滑剤(初期なじみ用途、本潤滑用途等)として好ましく使用できる。
 上記初期なじみ用途の潤滑剤(初期なじみ用潤滑剤)は、摺動部材を有する機械の初期において、低摩擦面(なじみ面)を形成するために用いられるものである。初期なじみ用潤滑剤を使用することにより、例えば摺動部材表面の凹凸をならして平滑化したり、あるいは改質面を形成する。なじみ面の形成後には、初期なじみ用潤滑剤は洗浄などにより取り除かれ、本潤滑を行う潤滑剤を用いた摺動が行われる。ここで、本潤滑を行う潤滑剤とは、通常摺動部材の稼働中(機械の使用中)において除去されず摺動部に存在し続ける潤滑剤をいう。なお、上記初期なじみ用潤滑剤は、なじみ面の形成後、除去せずにそのまま若しくは一旦除去した後再度摺動部に供給して、本潤滑を行う潤滑剤として使用することもできる。
(ナノダイヤモンド分散組成物の製造方法)
 上記ND分散組成物は、例えば、上記有機分散媒中にND粒子および脂肪酸エステル系分散剤、さらに必要に応じてその他の成分を混合することで製造することができる。例えば、表面修飾ND粒子を用いた分散組成物は、有機分散媒中において、表面処理を施す化合物をND粒子に反応させる工程(修飾化工程)を経て製造することができる。この場合、修飾化工程に用いた溶媒をそのままND分散組成物における有機分散媒としてもよいし、修飾化工程の後に溶媒交換を行ってもよい。
 上記修飾化工程において、ND粒子中にND粒子が凝着して二次粒子を形成したND粒子凝集体が含まれる場合には、表面修飾を施す化合物とND粒子との反応を、ND粒子を解砕若しくは分散化しつつ行ってもよい。これにより、ND粒子凝集体を一次粒子にまで解砕することができ、ND一次粒子の表面を修飾することができ、ND分散組成物中のナノダイヤモンド粒子の分散性を向上することが可能となるからである。
(1)修飾・分散化工程
 まず、上記修飾化工程を、表面修飾を施す化合物とND粒子との反応を、ND粒子を解砕若しくは分散化しつつ行う場合(修飾・分散化工程)について説明する。修飾化工程における反応に供するND粒子と表面処理を施す化合物(特に、シラン化合物)との質量比(前者:後者)は、例えば2:1~1:20である。また、表面処理を施す際の上記有機分散媒中のND粒子の濃度は、例えば0.5~10質量%であり、上記化合物の濃度は、例えば5~40質量%である。
 表面処理のための反応時間は、例えば4~20時間である。また、上記反応は、発生する熱を、氷水などを用いて冷却しながら行うことが好ましい。
 ND粒子を解砕若しくは分散化する方法としては、例えば、高剪断ミキサー、ハイシアーミキサー、ホモミキサー、ボールミル、ビーズミル、高圧ホモジナイザー、超音波ホモジナイザー、コロイドミル、ジェットミルなどにより処理する方法が挙げられる。中でも、解砕メディア(例えば、ジルコニアビーズなど)の存在下で超音波処理を施すことが好ましい。
 上記解砕メディア(例えば、ジルコニアビーズなど)の直径は、例えば15~500μm、好ましくは15~300μm、特に好ましくは15~100μmである。
(2)修飾化工程
 上記式(I)で表される基を含む表面修飾NDを作製する修飾化工程は、ND分散組成物中へのジルコニアの混入を最小限とするために、ND粒子の解砕若しくは分散化とは別途行うことができる。上記表面修飾NDは、表面にヒドロキシ基またはカルボキシ基を有すND粒子が水にナノ分散した状態で、酸触媒の存在下、ND粒子と下記式(II)で表される化合物とを反応させて表面修飾ND粒子を得る工程(「反応工程」と称する場合がある)を有する製造方法により製造することができる。
 R-X-H   (II)
[式(II)中、XおよびRは、それぞれ、上記式(I)中におけるRおよびXに相当する。]
 上記反応工程では、表面にヒドロキシ基および/またはカルボキシ基を有するND粒子が水にナノ分散した状態で、ND粒子と上記式(II)で表される化合物とを反応させ、ND粒子におけるヒドロキシ基および/またはカルボキシ基と上記式(II)で表される化合物における-Hと脱水縮合させることで表面修飾ND粒子を得る。
 上記反応工程は、ND粒子が水にナノ分散した状態、すなわちND粒子の水分散組成物中で行われる。上記水分散組成物におけるND粒子のメディアン径(D50)は、1~100nmであることが好ましく、より好ましくは1~50nm、さらに好ましくは1~10nmである。上記メディアン径が上記範囲内であると、ND粒子表面のヒドロキシ基および/またはカルボキシ基の量が多く、上記式(II)で表される化合物との反応がより多く進行する。また、得られる表面修飾ND粒子の分散性に優れる。
 上記酸触媒は、カルボン酸とアルコールのエステル化、アルコールとアミンの脱水縮合反応、アルコールとチオールの脱水縮合反応などに用いられる公知乃至慣用の酸触媒を用いることができる。上記酸触媒としては、例えば、スルホン酸基含有化合物、塩酸、硝酸、硫酸、無水硫酸、リン酸、ホウ酸、トリハロ酢酸(トリクロロ酢酸、トリフルオロ酢酸等)、これらの塩(アンモニウム塩等)、無機固体酸などが挙げられる。上記酸触媒は、一種のみを用いてもよいし、二種以上を用いてもよい。
 上記酸触媒は、反応時に溶媒や基質に溶解し得る均一系触媒、反応時に溶解しない不均一系触媒のいずれの形態であってもよい。不均一系触媒としては、例えば、酸成分が担体に担持された担持型触媒が挙げられる。
 上記スルホン酸基含有化合物としては、例えば、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、ドデカンスルホン酸、ヘキサデカンスルホン酸、トリフルオロメタンスルホン酸、ヘプタデカフルオロオクタンスルホン酸等の脂肪族スルホン酸;10-カンファースルホン酸等の脂環式スルホン酸;ベンゼンスルホン酸、p-トルエンスルホン酸、2,4,6-トリメチルベンゼンスルホン酸、ヘキシルベンゼンスルホン酸、オクチルベンゼンスルホン酸、デシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸(DBSA)、オクタデシルベンゼンスルホン酸、1-ナフタレンスルホン酸、2-ナフタレンスルホン酸、ブチル-2-ナフタレンスルホン酸等の芳香族スルホン酸;スルホン酸型イオン交換樹脂、3-[トリオクチルアンモニオ]プロパン-1-スルホン酸-トリフルイミド、4-[トリオクチルアンモニオ]ブタン-1-スルホン酸-トリフルイミド、下記式(A)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記無機固体酸としては、例えば、シリカ、シリカアルミナ、アルミナ、ゼオライト類、活性白土、モンモリロナイトなどが挙げられる。
 上記酸触媒としてのアンモニウム塩としては、例えば、下記式(B-1)で表されるアンモニウムイオンの塩、下記式(B-2)で表されるアンモニウムイオンの塩、下記式(B-3)で表されるアンモニウムイオンの塩、下記式(B-4)で表されるアンモニウムイオンの塩などが挙げられる。
Figure JPOXMLDOC01-appb-C000006
 上記式(B-1)中、RI~RIIIは、同一または異なって、水素原子、脂肪族炭化水素基、または芳香族炭化水素基を含む基を示す。上記脂肪族炭化水素基は、直鎖状または分岐鎖状C1-22炭化水素基が好ましい。上記芳香族炭化水素基を含む基としては、フェニル基等の芳香族炭化水素基;4-t-ブチルフェニル基、メシチル基等の肪族炭化水素基と芳香族炭化水素基が結合した基などが挙げられる。中でも、上記RI~RIIIのうちの二以上が芳香族炭化水素基を含む基であることが好ましい。
 上記式(B-1)~(B-3)で表されるアンモニウムイオンのカウンターアニオンとなる酸アニオンとしては、スルホン酸イオンが好ましく、より好ましくは芳香族スルホン酸イオン、特に好ましくはp-ドデシルベンゼンスルホン酸イオンである。
 上記式(B-4)中、RiおよびRiiは、同一または異なって、水素原子、脂肪族炭化水素基、または芳香族炭化水素基を含む基を示す。上記脂肪族炭化水素基は、直鎖状または分岐鎖状C1-4炭化水素基が好ましい。上記芳香族炭化水素基を含む基としては、フェニル基等の芳香族炭化水素基、肪族炭化水素基と芳香族炭化水素基が結合した基などが挙げられる。中でも、水素原子、メチル基、イソプロピル基、フェニル基が好ましい。
 上記式(B-4)で表されるアンモニウムイオンのカウンターアニオンとなる酸アニオンとしては、スルホン酸イオン、硫酸イオンが好ましく、特に好ましくはトリフルオロメタンスルホン酸イオン、10-カンファースルホン酸イオン、ベンゼンスルホン酸イオン、硫酸イオンである。
 上記式(B-1)~(B-4)で表されるアンモニウムイオンのカウンターアニオンとなる酸アニオンは、酸基を形成する酸素原子と、上記式(B-1)~(B-4)中の窒素原子上の水素原子とで水素結合を形成して錯塩を形成していてもよい。上記錯塩は、アンモニウムカチオン1個と酸アニオン1個とで1つの塩を形成していてもよいし、アンモニウムカチオン2個と酸アニオン2個とで1つの塩を形成していてもよく、1つの塩を形成するアンモニウムカチオンと酸アニオンのそれぞれの個数は特に限定されない。また、1つの塩中において、酸アニオンは多量体を形成していてもよい。例えば、硫酸イオンを形成する硫酸は[H2SO4(SO3X]で表される構造を形成していてもよい。酸アニオンと上記式(B-4)とで形成される錯塩としては、例えば下記式(C)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記式(C)中、RiおよびRiiは、上記式(B-4)におけるものと同様である。
 上記酸触媒としては、中でも、上記反応工程における反応がより促進される観点から、スルホン酸基含有化合物、スルホン酸基含有化合物のアンモニウム塩が好ましい。
 反応に供するND粒子と上記式(II)で表される化合物との比率(前者:後者、質量比)は、例えば1:1~1:25である。また、水分散組成物中におけるND粒子の濃度は、例えば1~10質量%であり、水分散組成物中における上記式(II)で表される化合物の濃度は、例えば1~60質量%である。
 ND粒子と上記式(II)で表される化合物の反応条件は、例えば、温度0~100℃、反応時間1~48時間、圧力1~5atmの範囲内から適宜選択できる。
 以上のようにして、上記式(I)で表される基を含む表面修飾NDの水分散組成物が得られる。
 なお、ND粒子の分散性が比較的低い有機分散媒を用いたND分散組成物を得た場合、または、ND分散組成物を水分散組成物として得た場合、ND分散組成物中の分散媒を交換してもよい。例えば、ND粒子の分散性が比較的高いND分散組成物に分散剤を添加・撹拌し、エバポレーターなどでND分散組成物中の有機分散媒を留去した後、新たに有機分散媒を混合して撹拌することができる。ND粒子がナノ分散した分散組成物を一度得た後、ND粒子を乾燥粉体とすることなく有機分散媒を交換する方法を採用すること、また、交換前後の有機分散媒同士との濡れ性や溶解性を考慮して両有機分散媒を適宜選択することで、分散性が比較的低い有機分散媒中にND粒子がナノ分散しやすくなる。なお、分散剤の添加・撹拌は、分散媒の交換前後のいずれの段階で行ってもよい。また、分散媒の交換を行わない場合は得られたND分散組成物に添加して撹拌してもよい。
 以上のようにして、ND粒子が有機溶媒中に分散したND分散組成物が得られる。
 なお、上記ND粒子は、例えば爆轟法によって製造することができる。上記爆轟法には、空冷式爆轟法、水冷式爆轟法が挙げられる。中でも、空冷式爆轟法が水冷式爆轟法よりも一次粒子が小さいND粒子を得ることができる点で好ましい。
 爆轟は大気雰囲気下で行ってもよく、窒素雰囲気、アルゴン雰囲気、二酸化炭素雰囲気などの不活性ガス雰囲気下で行ってもよい。
 ND粒子の製造方法の一例を以下に説明するが、上記ND粒子は以下の製造方法によって得られるものに限定されない。
(生成工程)
 成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置し、容器内において大気組成の常圧の気体と使用爆薬とが共存する状態で、容器を密閉する。容器は例えば鉄製で、容器の容積は例えば0.5~40m3である。爆薬としては、トリニトロトルエン(TNT)とシクロトリメチレントリニトロアミンすなわちヘキソーゲン(RDX)との混合物を使用することができる。TNTとRDXの質量比(TNT/RDX)は、例えば40/60~60/40の範囲である。
 生成工程では、次に、電気雷管を起爆させ、容器内で爆薬を爆轟させる。爆轟とは、化学反応に伴う爆発のうち反応の生じる火炎面が音速を超えた高速で移動するものをいう。爆轟の際、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素を原料として、爆発で生じた衝撃波の圧力とエネルギーの作用によってND粒子が生成する。生成したND粒子は、隣接する一次粒子或いは結晶子の間がファンデルワールス力の作用に加えて結晶面間クーロン相互作用が寄与して非常に強固に集成し、凝着体を形成する。
 生成工程では、次に、室温において24時間程度放置することにより放冷し、容器およびその内部を降温させる。この放冷の後、容器の内壁に付着しているND粒子粗生成物(上述のようにして生成したND粒子の凝着体および煤を含む)をヘラで掻き取る作業を行い、ND粒子粗生成物を回収する。以上のような方法によって、ND粒子の粗生成物を得ることができる。また、以上のようなナノダイヤモンド生成工程を必要回数行うことによって、所望量のナノダイヤモンド粗生成物を取得することが可能である。
(酸処理工程)
 酸処理工程では、原料であるナノダイヤモンド粗生成物に例えば水溶媒中で強酸を作用させて金属酸化物を除去する。爆轟法で得られるナノダイヤモンド粗生成物には金属酸化物が含まれやすく、この金属酸化物は、爆轟法に使用される容器などに由来するFe、Co、Niなどの酸化物である。例えば水溶媒中で強酸を作用させることにより、ナノダイヤモンド粗生成物から金属酸化物を溶解・除去することができる(酸処理)。この酸処理に用いられる強酸としては、鉱酸が好ましく、例えば、塩酸、フッ化水素酸、硫酸、硝酸、王水が挙げられる。上記強酸は、一種を用いてもよいし、二種以上を用いてもよい。酸処理で使用される強酸の濃度は例えば1~50質量%である。酸処理温度は例えば70~150℃である。酸処理時間は例えば0.1~24時間である。また、酸処理は、減圧下、常圧下、または加圧下で行うことが可能である。このような酸処理の後、例えばデカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行う。沈殿液のpHが例えば2~3に至るまで、デカンテーションによる当該固形分の水洗を反復して行うのが好ましい。爆轟法で得られるナノダイヤモンド粗生成物における金属酸化物の含有量が少ない場合には、以上のような酸処理を省略してもよい。
(酸化処理工程)
 酸化処理工程は、酸化剤を用いてND粒子粗生成物からグラファイトを除去する工程である。爆轟法で得られるND粒子粗生成物にはグラファイト(黒鉛)が含まれるが、このグラファイトは、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素のうちND粒子結晶を形成しなかった炭素に由来する。ND粒子粗生成物に、水溶媒中で酸化剤を作用させることにより、ND粒子粗生成物からグラファイトを除去することができる。また、酸化剤を作用させることにより、ND粒子表面にカルボキシ基やヒドロキシ基などの酸素含有基を導入することができる。
 この酸化処理に用いられる酸化剤としては、例えば、クロム酸、無水クロム酸、二クロム酸、過マンガン酸、過塩素酸、硝酸、これらの混合物や、これらから選択される少なくとも1種の酸と他の酸(例えば硫酸など)との混酸、これらの塩が挙げられる。中でも、混酸(特に、硫酸と硝酸との混酸)を使用することが、環境に優しく、且つグラファイトを酸化・除去する作用に優れる点で好ましい。
 上記混酸における硫酸と硝酸との混合割合(前者/後者;質量比)は、例えば60/40~95/5であることが、常圧付近の圧力(例えば、0.5~2atm)の下でも、例えば130℃以上(特に好ましくは150℃以上。なお、上限は、例えば200℃)の温度で、効率よくグラファイトを酸化して除去することができる点で好ましい。下限は、好ましくは65/35、より好ましくは70/30である。また、上限は、好ましくは90/10、より好ましくは85/15、さらに好ましくは80/20である。上記混合割合が60/40以上であると、高沸点を有する硫酸の含有量が高いため、常圧付近の圧力下では、反応温度が例えば120℃以上となり、グラファイトの除去効率が向上する傾向がある。上記混合割合が95/5以下であると、グラファイトの酸化に大きく貢献する硝酸の含有量が多くなるため、グラファイトの除去効率が向上する傾向がある。
 酸化剤(特に、上記混酸)の使用量は、ナノダイヤモンド粗生成物1質量部に対して例えば10~50質量部、好ましくは15~40質量部、より好ましくは20~40質量部である。また、上記混酸中の硫酸の使用量は、ナノダイヤモンド粗生成物1質量部に対して例えば5~48質量部、好ましくは10~35質量部、より好ましくは15~30質量部である。また、上記混酸中の硝酸の使用量は、ナノダイヤモンド粗生成物1質量部に対して例えば2~20質量部、好ましくは4~10質量部、より好ましくは5~8質量部である。
 また、酸化剤として上記混酸を使用する場合、混酸と共に触媒を使用してもよい。触媒を使用することにより、グラファイトの除去効率を一層向上させることができる。上記触媒としては、例えば、炭酸銅(II)などが挙げられる。触媒の使用量は、ナノダイヤモンド粗生成物100質量部に対して例えば0.01~10質量部程度である。
 酸化処理温度は例えば100~200℃である。酸化処理時間は例えば1~24時間である。酸化処理は、減圧下、常圧下、または加圧下で行うことが可能である。
(アルカリ過水処理工程)
 上記酸処理工程を経た後であっても、ND粒子に除去しきれなかった金属酸化物が残存する場合は、一次粒子間が非常に強く相互作用して集成している凝着体(二次粒子)の形態をとる。このような場合には、ND粒子に対して水溶媒中でアルカリおよび過酸化水素を作用させてもよい。これにより、ND粒子に残存する金属酸化物を除去することができ、凝着体から一次粒子の分離を促進することができる。この処理に用いられるアルカリとしては、例えば、水酸化ナトリウム、アンモニア、水酸化カリウムなどが挙げられる。アルカリ過水処理において、アルカリの濃度は例えば0.1~10質量%であり、過酸化水素の濃度は例えば1~15質量%であり、処理温度は例えば40~100℃であり、処理時間は例えば0.5~5時間である。また、アルカリ過水処理は、減圧下、常圧下、または加圧下で行うことが可能である。
 上記酸化処理工程あるいは上記アルカリ過水処理工程の後、例えばデカンテーションにより上澄みを除去することが好ましい。また、デカンテーションの際には、固形分の水洗を行うことが好ましい。水洗当初の上澄み液は着色しているが、上澄み液が目視で透明になるまで、当該固形分の水洗を反復して行うことが好ましい。
(解砕処理工程)
 ND粒子には、必要に応じて、解砕処理を施してもよい。解砕処理には、例えば、高剪断ミキサー、ハイシアーミキサー、ホモミキサー、ボールミル、ビーズミル、高圧ホモジナイザー、超音波ホモジナイザー、コロイドミルなどを使用することができる。なお、解砕処理は湿式(例えば、水などに懸濁した状態での解砕処理)で行ってもよいし、乾式で行ってもよい。乾式で行う場合は、解砕処理前に乾燥工程を設けることが好ましい。
(乾燥工程)
 上記アルカリ過水処理工程の後、乾燥工程を設けることが好ましい。例えば、上記アルカリ過水処理工程を経て得られたND粒子含有溶液から噴霧乾燥装置やエバポレーターなどを使用して液分を蒸発させた後、これによって生じる残留固形分を乾燥用オーブン内での加熱乾燥によって乾燥させる。加熱乾燥温度は、例えば40~150℃である。このような乾燥工程を経ることにより、ND粒子が得られる。
 また、ND粒子には、必要に応じて、気相にて酸化処理(例えば酸素酸化)や還元処理(例えば水素化処理)を施してもよい。気相にて酸化処理を施すことにより、表面にC=O基を多く有するND粒子が得られる。また、気相にて還元処理を施すことにより、表面にC-H基を多く有するND粒子が得られる。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。各実施形態における各構成およびそれらの組み合わせ等は、一例であって、本開示の趣旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、およびその他の変更が可能である。また、本開示に係る各発明は、実施形態や以下の実施例によって限定されることはなく、特許請求の範囲によってのみ限定される。
 以下に、実施例に基づいて本開示の一実施形態をより詳細に説明する。
 製造例1
(シラン化合物表面修飾ND粒子の作製)
 まず、爆轟法によるナノダイヤモンドの生成工程を行った。本工程では、まず、成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置して容器を密閉した。容器は鉄製で、容器の容積は15m3である。爆薬としては、TNTとRDXとの混合物0.50kgを使用した。この爆薬におけるTNTとRDXの質量比(TNT/RDX)は、50/50である。次に、電気雷管を起爆させ、容器内で爆薬を爆轟させた(爆轟法によるナノダイヤモンドの生成)。次に、室温での24時間の放置により、容器およびその内部を降温させた。この放冷の後、容器の内壁に付着しているナノダイヤモンド粗生成物(上記爆轟法で生成したナノダイヤモンド粒子の凝着体と煤を含む)をヘラで掻き取る作業を行い、ナノダイヤモンド粗生成物を回収した。
 上述のような生成工程を複数回行うことによって取得されたナノダイヤモンド粗生成物に対し、次に、酸処理工程を行った。具体的には、当該ナノダイヤモンド粗生成物200gに6Lの10質量%塩酸を加えて得られたスラリーに対し、常圧条件での還流下で1時間の加熱処理を行った。この酸処理における加熱温度は85~100℃である。次に、冷却後、デカンテーションにより、固形分(ナノダイヤモンド凝着体と煤を含む)の水洗を行った。沈殿液のpHが低pH側から2に至るまで、デカンテーションによる当該固形分の水洗を反復して行った。
 次に、酸化処理工程を行った。具体的には、酸処理後のデカンテーションを経て得た沈殿液(ナノダイヤモンド凝着体を含む)に、6Lの98質量%硫酸と1Lの69質量%硝酸とを加えてスラリーとした後、このスラリーに対し、常圧条件での還流下で48時間の加熱処理を行った。この酸化処理における加熱温度は140~160℃である。次に、冷却後、デカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行った。水洗当初の上澄み液は着色しているところ、上澄み液が目視で透明になるまで、デカンテーションによる当該固形分の水洗を反復して行った。
 次に、上述の水洗処理を経て得られたナノダイヤモンド含有液1000mLを、噴霧乾燥装置(商品名「スプレードライヤー B-290」、日本ビュッヒ株式会社製)を使用して噴霧乾燥に付した(乾燥工程)。これにより、50gのナノダイヤモンド粉体を得た。
 上記乾燥工程で得られたナノダイヤモンド粒子0.3gを反応容器に量り取り、MIBK13.5gおよびシラン化合物としてヘキシルトリメトキシシラン1.2gを添加し10分間撹拌した。
 撹拌後、ジルコニアビーズ(東ソー株式会社製、登録商標「YTZ」、直径30μm)36gを添加した。添加後、氷水中で冷やしながら超音波分散機(型式「UP-400s」、ヒールッシャー社製)を用い、超音波分散機の振動子の先端を反応容器内の溶液に浸けた状態で20時間超音波処理して、ND粒子とシラン化合物を反応させた。最初は灰色であったが、徐々に小粒径化し分散状態もよくなり最後は均一で黒い液体となった。これは、ND粒子凝集体から順次にND粒子が解かれ(解砕)、解離状態にあるND粒子にシラン化合物が作用して結合し、シラン化合物により表面修飾されたND粒子がMIBK中で分散安定化しているためであると考えられる。このようにしてシラン化合物表面修飾ND分散液(MIBK分散液)が得られた。
 製造例2
(オレイルアミノ基表面修飾ND粒子の作製)
 製造例1と同様にして爆轟法により得られたナノダイヤモンド粗生成物について、製造例1と同様にして酸処理工程および酸化処理工程を行った後、デカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行った。水洗当初の上澄み液は着色しているところ、上澄み液が目視で透明になるまで、デカンテーションによる当該固形分の水洗を反復して行った。その後、乾燥してND凝着体を粉体として得た。さらに、酸素約8体積%、窒素約92体積%の気体を流速20L/minで吹き込んだロータリーキルン中にて400℃、6時間加熱した。
 次に、上記ND凝着体を含むスラリー約30mlに、アンモニア水を用いてpHを10に調整した後に、ビーズミリング装置(商品名「並列四筒式サンドグラインダー LSG-4U-2L型」、アイメックス株式会社製)を使用してビーズミリングを行った。具体的には、100mlのミル容器であるベッセル(アイメックス株式会社製)に対して超音波照射後のスラリー30mlと直径30μmのジルコニアビーズとを投入して封入し、装置を駆動させてビーズミリングを実行した。このビーズミリングにおいて、ジルコニアビーズの投入量はミル容器の容積に対して例えば33体積%であり、ミル容器の回転速度は2570rpmであり、ミリング時間は3時間である。
 次に、上述のような解砕工程を経たスラリーについて、遠心分離装置を使用して遠心分離処理を行った(分級操作)。この遠心分離処理における遠心力は20000×gとし、遠心時間は30分間とした。次に、当該遠心分離処理を経たND含有溶液の上清10mlを回収した。このようにして、ナノダイヤモンドが純水に分散するND水分散液を得た。このND水分散液について、固形分濃度は6.0質量%であり、pHは9.0であった。上述のようにして得られたND水分散液のメディアン径(粒径D50)は6.0nmであった。
 次に、上述の解砕工程を経て得られたND水分散液1gに、酸触媒としてドデシルベンゼンスルホン酸0.5mmol、オレイルアミン2mmolを添加し、撹拌しつつ、80℃で8時間反応させた。反応終了後、トルエン10mLを添加し室温まで冷却した後、水および飽和食塩水による洗浄を行い、オレイルアミノ基で表面修飾されたND粒子のトルエン分散組成物を得た。
 製造例3
(オレイルオキシ基表面修飾ND粒子の作製)
 製造例2と同様にして、解砕工程を経て得られたND水分散液1gに、酸触媒としてドデシルベンゼンスルホン酸0.5mmol、オレイルアルコール2mmolを添加し、撹拌しつつ、80℃で24時間反応させた。反応終了後、トルエン10mLを添加し室温まで冷却した後、水及び飽和食塩水による洗浄を行い、オレイルオキシ基で表面修飾されたND粒子のトルエン分散組成物を得た。
 製造例4
(オレート基表面修飾ND粒子の作製)
 製造例2と同様にして、解砕工程を経て得られたND水分散液1gに、酸触媒としてドデシルベンゼンスルホン酸0.5mmol、オレイン酸2mmolを添加し、撹拌しつつ、100℃で24時間反応させた。反応終了後、トルエン10mLを添加し室温まで冷却した後、水及び飽和食塩水による洗浄を行い、オレート基で修飾された表面ND粒子のトルエン分散組成物を得た。
 実施例1~4
(ND分散組成物の作製)
 上記製造例1で得られた表面修飾ND分散液10gに、分散剤0.2gを加えて撹拌した後、ロータリーエバポレーターによりMIBKを留去し、分散媒を加えて総重量を10gとした。このようにして、ND分散組成物を作製した。なお、ND分散組成物のナノダイヤモンド濃度は2質量%であった。ナノダイヤモンド濃度は、350nmにおける吸光度より求めた。実施例1~4で用いた分散剤および分散媒は下記の通りである。
 実施例1
分散剤:高級脂肪酸エステル分散剤(酸価35mgKOH/g、アミン価0mgKOH/g、平均分子量Mp5200、200℃180分質量減少率17.8%)
分散媒:POE
 実施例2
分散剤:高級脂肪酸エステル分散剤(酸価35mgKOH/g、アミン価0mgKOH/g、平均分子量Mp5200、200℃180分質量減少率17.8%)
分散媒:ヘキサン
 実施例3
分散剤:高級脂肪酸エステル分散剤(酸価0.5mgKOH/g、アミン価0mgKOH/g、平均分子量Mp8100、200℃180分質量減少率12.1%)
分散媒:POE
 実施例4
分散剤:高級脂肪酸エステル分散剤(酸価0.5mgKOH/g、アミン価0mgKOH/g、平均分子量Mp8100、200℃180分質量減少率12.1%)、分散媒:ヘキサン
 実施例5~10
(ND分散組成物の作製)
 上記製造例2~4で得られた各種表面修飾ND分散液3gに、分散剤0.06gを加えて撹拌した後、ロータリーエバポレーターによりトルエンを留去し、分散媒を加えて総重量を3gとした。このようにして、ND分散組成物を作製した。なお、ND分散組成物のナノダイヤモンド濃度は2質量%であった。ナノダイヤモンド濃度は、350nmにおける吸光度より求めた。実施例5~10で用いた表面修飾ND、分散剤、および分散媒は下記の通りである。
 実施例5
表面修飾ND:製造例2で得られたオレイルアミノ基表面修飾ND
分散剤:高級脂肪酸エステル分散剤(酸価0.5mgKOH/g、アミン価0mgKOH/g、平均分子量Mp8100、200℃180分質量減少率12.1%)
分散媒:POE
 実施例6
表面修飾ND:製造例2で得られたオレイルアミノ基表面修飾ND
分散剤:高級脂肪酸エステル分散剤(酸価0.5mgKOH/g、アミン価0mgKOH/g、平均分子量Mp8100、200℃180分質量減少率12.1%)
分散媒:ヘキサン
 実施例7
表面修飾ND:製造例3で得られたオレイルオキシ基表面修飾ND
分散剤:高級脂肪酸エステル分散剤(酸価0.5mgKOH/g、アミン価0mgKOH/g、平均分子量Mp8100、200℃180分質量減少率12.1%)
分散媒:POE
 実施例8
表面修飾ND:製造例3で得られたオレイルオキシ基表面修飾ND
分散剤:高級脂肪酸エステル分散剤(酸価0.5mgKOH/g、アミン価0mgKOH/g、平均分子量Mp8100、200℃180分質量減少率12.1%)
分散媒:ヘキサン
 実施例9
表面修飾ND:製造例4で得られたオレート基表面修飾ND
分散剤:高級脂肪酸エステル分散剤(酸価0.5mgKOH/g、アミン価0mgKOH/g、平均分子量Mp8100、200℃180分質量減少率12.1%)
分散媒:POE
 実施例10
表面修飾ND:製造例4で得られたオレート基表面修飾ND
分散剤:高級脂肪酸エステル分散剤(酸価0.5mgKOH/g、アミン価0mgKOH/g、平均分子量Mp8100、200℃180分質量減少率12.1%)
分散媒:ヘキサン
 比較例1~5
 分散剤および分散媒として下記のものを使用したこと以外は実施例1と同様にしてND分散組成物を作製した。なお、比較例1および2では分散剤を使用しなかった。
 比較例1
分散媒:ヘキサン
 比較例2
分散媒:POE
 比較例3
分散剤:商品名「SOLSPERSE 20000」(ルーブリゾール社製、ポリエーテル系分散剤、200℃180分質量減少率:49.2%)
分散媒:POE
 比較例4
分散剤:商品名「SNスパース 70」(サンノプコ株式会社製、不飽和炭化水素・飽和脂肪酸系分散剤、200℃180分質量減少率:32.3%)
分散媒:POE
 比較例5
分散剤:商品名「SNスパース 70」(サンノプコ株式会社製、不飽和炭化水素・飽和脂肪酸系分散剤、200℃180分質量減少率:32.3%)
分散媒:ヘキサン
(評価)
 実施例および比較例で得られた各ND分散組成物および使用した分散剤について以下の通り評価した。評価結果は表に記載した。
(1)ヘイズ値
 実施例および比較例で得られたND分散組成物について、ヘイズ測定装置(商品名「ヘーズメーター 300A」、日本電色工業株式会社製)を使用して測定した。測定に供された各試料液は、超音波洗浄機による10分間の超音波洗浄を経たものである。試料液が充填されて測定に使用された測定用ガラスセルの厚さ(内寸)は1mmであって、測定に係る試料内光路長は1mmである。なお、表中の「-」は、測定を行わなかったことを示す。
(2)D50
 実施例および比較例で得られたND分散組成物を、分散媒を加えて0.1質量%に希釈し、ND粒子の粒度分布を、Malvern社製の装置(商品名「ゼータサイザー ナノZS」)を使用して、動的光散乱法(非接触後方散乱法)により測定した。
(3)分散性
 実施例および比較例で得られたND分散組成物を、分散媒を加えて0.1質量%に希釈し、下記の評価基準に基づいて目視で分散性の評価を行った。
○:透明であり凝集が見られない。
△:少し濁っているが凝集は確認できなかった。
×:濁っており、明らかな凝集が確認できた。
(4)粘度
 実施例および比較例で得られたND分散組成物について、EMS粘度計(商品名「EMS1000」、京都電子工業株式会社製)を使用して測定した。試験管にサンプル500μLとφ2mmアルミボールを入れ、温度25℃、回転数1000rpmとして測定した。
(5)200℃180分質量減少率
 実施例および比較例で使用した分散剤について、示差熱熱重量同時測定装置(商品名「TG-DTA 6200」、株式会社日立ハイテクサイエンス製)を用いて、下記の条件で200℃180分の質量減少率を測定した。
雰囲気:空気 
温度:30℃より、昇温速度20℃/minで200℃まで昇温し、200℃到達後180分間保持
サンプルパン:石英
Figure JPOXMLDOC01-appb-T000008
 表1から分かるように、脂肪酸エステル系分散剤を用いたND分散組成物(実施例)は、SP値が低いヘキサンやPOE中において分散性が優れていた。一方、分散剤を使用しなかった場合(比較例1および2)、およびポリエーテル系分散剤(比較例3)や不飽和炭化水素・飽和脂肪酸系分散剤(比較例4および5)は、SP値が低いヘキサンやPOE中において分散性が劣っていた。
 また、実施例3で得られたND分散組成物40gを、撹拌子および温度計を備え、空気充填された三ツ口フラスコに投入し、加熱温度230℃(液温190~200℃)で17時間撹拌し、加熱後について、目視による変色の程度および酸価を評価したところ、酸価は0.43mgKOH/gであり、変色は確認できなかった。なお、分散剤を使用しなかった比較例2についても同様の試験を行ったところ、酸価は0.42mgKOH/gであり変色は確認できなかった。したがって、実施例3で得られたND分散組成物は、分散剤を使用しない場合と同程度の耐熱性を有すると評価される。なお、実施例4~10では実施例3と同じ分散剤を使用しており、また、実施例1および2で使用した分散剤の200℃180分質量減少率が実施例3で使用した分散剤と同程度であるため、実施例1、2、および4~10も実施例3と同程度の耐熱性を有するものと推測される。
 以下、本開示に係る発明のバリエーションを記載する。
[付記1]有機分散媒と、前記有機分散媒中に分散しているナノダイヤモンド粒子と、脂肪酸エステル系分散剤と、を含むナノダイヤモンド分散組成物。
[付記2]前記脂肪酸エステル系分散剤の、温度200℃の空気雰囲気下で180分間維持したときの質量減少率が20%以下(好ましくは15%以下)である付記1に記載のナノダイヤモンド分散組成物。
[付記3]前記脂肪酸エステル系分散剤の酸価が40mgKOH/g以下(好ましくは35mgKOH/g以下、より好ましくは30mgKOH/g以下、さらに好ましくは20mgKOH/g以下、特に好ましくは6mgKOH/g以下)である付記1または2に記載のナノダイヤモンド分散組成物。
[付記4]前記脂肪酸エステル系分散剤の酸価が0.1mgKOH/g以上(好ましくは0.3mgKOH/g以上、より好ましくは0.5mgKOH/g以上)である付記1~3のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記5]前記ナノダイヤモンド粒子の平均分散粒子径が2~240nm(好ましくは4~200nm、より好ましくは10~180nm、さらに好ましくは20~150nm、特に好ましくは25~80nm)である付記1~4のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記6]ヘイズ値が5以下(好ましくは3以下、より好ましくは1以下、さらに好ましくは0.5以下)である付記1~5のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記7]前記有機分散媒のSP値が6.0~12.0(cal/cm31/2(好ましくは6.0以上11.0未満)である付記1~6のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記8]25℃における粘度が0.2~120mPa・s(好ましくは10~100mPa・s、より好ましくは20~90mPa・s)である付記1~7のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記9]前記脂肪酸エステル系分散剤の平均分子量Mpが300以上(好ましくは1000以上(例えば、1000~100000)、より好ましくは3000以上(例えば、3000~10000))である付記1~8のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記10]前記脂肪酸エステル系分散剤のアミン価が5mgKOH/g以下(好ましくは1mgKOH/g以下、より好ましくは0.5mgKOH/g以下、さらに好ましくは0.1mgKOH/g以下、特に好ましくは0mgKOH/g)である付記1~9のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記11]ナノダイヤモンド粒子の含有割合が0.01~5.0質量%(好ましくは0.1~4.0質量%、より好ましくは0.25~3.0質量%、さらに好ましくは0.5~2.0質量%)である付記1~10のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記12]前記脂肪酸エステル系分散剤の含有量が、前記ナノダイヤモンド分散組成物中のナノダイヤモンド粒子の総量100質量部に対して、10~10000質量部(好ましくは50~1000質量部、より好ましくは70~300質量部)である、付記1~11のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記13]前記脂肪酸エステル系分散剤の含有量が、前記ナノダイヤモンド分散組成物中のナノダイヤモンド粒子の総量100質量部に対して、1000~1000000質量部(好ましくは2000~100000質量部、より好ましくは3000~50000質量部)である、付記1~12のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記14]脂肪酸エステル系分散剤の含有割合は、前記ナノダイヤモンド分散組成物中の分散剤の総量に対して、90質量%以上(好ましくは95質量%以上、より好ましくは99質量%以上)である、付記1~13のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記15]ナノダイヤモンド粒子、脂肪酸エステル系分散剤、および有機分散媒の合計の含有割合は、前記ナノダイヤモンド分散組成物総量に対して、70質量%以上(好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上、特に好ましくは99質量%以上)である、付記1~14のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記16]前記ナノダイヤモンド粒子は有機基を含む化合物または官能基により表面修飾された表面修飾ナノダイヤモンド粒子を含む、付記1~15のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記17]前記有機基は、炭素原子数が4以上(例えば4~25)(好ましくは6以上(例えば6~22)、より好ましくは炭素数8以上(例えば8~20))の有機基である、付記16に記載のナノダイヤモンド分散組成物。
[付記18]前記ナノダイヤモンド粒子が、下記式(I)で表される基がナノダイヤモンド粒子表面を修飾した表面修飾ナノダイヤモンドを含む、付記1~17のいずれか1つに記載のナノダイヤモンド分散組成物。
 -X-R   (I)
[式(I)中、Xは、-Si-、-NH-、-O-、-O-C(=O)-、-C(=O)-O-、-NH-C(=O)-、-C(=O)-NH-、または-S-を示し、Xから左に伸びる結合手はナノダイヤモンド粒子に結合する。Rは、一価の有機基を示し、Xと結合する原子が炭素原子である。]
[付記19]前記一価の有機基が、一価の置換または無置換の炭化水素基、一価の置換または無置換の炭化水素基とアルコキシ基とが結合した基、一価の置換または無置換の炭化水素基とジアルキルアミノ基とが結合した基である、付記18に記載のナノダイヤモンド分散組成物。
[付記20]前記一価の有機基中の炭素原子数が4~25(好ましくは6~22、より好ましくは8~20)である、付記18または19に記載のナノダイヤモンド分散組成物。
[付記21]前記式(I)中、Xは、-Si-、-NH-、-O-、-O-C(=O)-、または-C(=O)-O-(好ましくは、-Si-、-NH-、-O-、または-O-C(=O)-)を示す、付記18~20のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記22]前記式(I)中、Xが-O-、-O-C(=O)-、または-C(=O)-O-であり、Rが、一価の置換または無置換の炭化水素基(好ましくは炭素数8~20の直鎖状または分岐鎖状炭化水素基である)、付記18~21のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記23]前記式(I)中、Xが-NH-であり、Rが、8~20個の炭素原子を含む一価の有機基である、付記18~22のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記24]前記式(I)中、Xが-NH-であり、Rが、直鎖状に炭素原子が4以上連続した炭化水素基を含む一価の有機基である、付記18~23のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記25]前記式(I)中、Rは、直鎖状に炭素原子が4以上連続した炭化水素基を含む、付記18~24のいずれか1つに記載のナノダイヤモンド分散組成物。
[付記26]前記式(I)中、窒素原子、酸素原子、硫黄原子、およびケイ素原子からなる群より選択されるヘテロ原子の総量に対する炭素原子のモル比は4.5以上(好ましくは5以上、より好ましくは5.5以上)である、付記18~25のいずれか1つに記載のナノダイヤモンド分散組成物。

Claims (11)

  1.  有機分散媒と、前記有機分散媒中に分散しているナノダイヤモンド粒子と、脂肪酸エステル系分散剤と、を含むナノダイヤモンド分散組成物。
  2.  前記脂肪酸エステル系分散剤の、温度200℃の空気雰囲気下で180分間維持したときの質量減少率が20%以下である請求項1に記載のナノダイヤモンド分散組成物。
  3.  前記脂肪酸エステル系分散剤の酸価が40mgKOH/g以下である請求項1または2に記載のナノダイヤモンド分散組成物。
  4.  前記ナノダイヤモンド粒子の平均分散粒子径が2~240nmである請求項1~3のいずれか1項に記載のナノダイヤモンド分散組成物。
  5.  ヘイズ値が5以下である請求項1~4のいずれか1項に記載のナノダイヤモンド分散組成物。
  6.  前記有機分散媒のSP値が6.0~12.0(cal/cm31/2である請求項1~5のいずれか1項に記載のナノダイヤモンド分散組成物。
  7.  25℃における粘度が0.2~120mPa・sである請求項1~6のいずれか1項に記載のナノダイヤモンド分散組成物。
  8.  前記脂肪酸エステル系分散剤の平均分子量Mpが300以上である請求項1~7のいずれか1項に記載のナノダイヤモンド分散組成物。
  9.  ナノダイヤモンド粒子の含有割合が0.01~5.0質量%である請求項1~8のいずれか1項に記載のナノダイヤモンド分散組成物。
  10.  前記ナノダイヤモンド粒子が、下記式(I)で表される基がナノダイヤモンド粒子表面を修飾した表面修飾ナノダイヤモンドを含む、請求項1~9のいずれか1項に記載のナノダイヤモンド分散組成物。
     -X-R   (I)
    [式(I)中、Xは、-Si-、-NH-、-O-、-O-C(=O)-、-C(=O)-O-、-NH-C(=O)-、-C(=O)-NH-、または-S-を示し、Xから左に伸びる結合手はナノダイヤモンド粒子に結合する。Rは、一価の有機基を示し、Xと結合する原子が炭素原子である。]
  11.  前記式(I)中、Xは、-Si-、-NH-、-O-、または-O-C(=O)-を示す、請求項10に記載のナノダイヤモンド分散組成物。
PCT/JP2020/019893 2019-05-30 2020-05-20 ナノダイヤモンド分散組成物 WO2020241404A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217042660A KR20220016490A (ko) 2019-05-30 2020-05-20 나노다이아몬드 분산 조성물
CN202080039902.XA CN113891914A (zh) 2019-05-30 2020-05-20 纳米金刚石分散组合物
EP20813703.4A EP3978568A4 (en) 2019-05-30 2020-05-20 NANODIAMOND DISPERSION COMPOSITION
US17/605,596 US20220259048A1 (en) 2019-05-30 2020-05-20 Nanodiamond dispersion composition
JP2021522262A JP7539875B2 (ja) 2019-05-30 2020-05-20 ナノダイヤモンド分散組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019101168 2019-05-30
JP2019-101168 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020241404A1 true WO2020241404A1 (ja) 2020-12-03

Family

ID=73553732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019893 WO2020241404A1 (ja) 2019-05-30 2020-05-20 ナノダイヤモンド分散組成物

Country Status (6)

Country Link
US (1) US20220259048A1 (ja)
EP (1) EP3978568A4 (ja)
JP (1) JP7539875B2 (ja)
KR (1) KR20220016490A (ja)
CN (1) CN113891914A (ja)
WO (1) WO2020241404A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091725A1 (ja) * 2020-10-30 2022-05-05 株式会社ダイセル ナノダイヤモンド分散組成物
WO2022244665A1 (ja) * 2021-05-17 2022-11-24 株式会社ダイセル 冷凍機用組成物および冷凍機用組成物キット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220025241A1 (en) * 2020-07-27 2022-01-27 Google Llc Thermal interface material and method for making the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001983A (ja) 2003-05-20 2005-01-06 Futaba Corp 超分散状態ナノ炭素およびその製造方法
JP2008179738A (ja) * 2007-01-26 2008-08-07 Nissan Motor Co Ltd 潤滑油組成物
WO2009128258A1 (ja) * 2008-04-14 2009-10-22 有限会社アプライドダイヤモンド 水中油型乳化組成物
JP2010126669A (ja) 2008-11-28 2010-06-10 Nihon Micro Coating Co Ltd 微小ダイヤモンド粒子分散液の製造方法及び微小ダイヤモンド粒子分散液
JP2013117016A (ja) * 2011-11-02 2013-06-13 Nanocarbon Research Institute Co Ltd 雪氷上滑走移動用具の潤滑剤組成物及びその製造方法
JP5364588B2 (ja) 2007-11-08 2013-12-11 日本化薬株式会社 ナノダイヤモンド有機溶媒分散体およびその製造法
JP2016044092A (ja) * 2014-08-21 2016-04-04 株式会社ダイセル 撥水コート膜及び該撥水コート膜を有する物品、並びに分散液
JP2017186234A (ja) * 2016-04-01 2017-10-12 株式会社ダイセル 表面修飾ナノダイヤモンド、及びその有機溶媒分散体
WO2018235599A1 (ja) * 2017-06-19 2018-12-27 株式会社ダイセル 表面修飾ナノダイヤモンド、表面修飾ナノダイヤモンドを含む分散液、及び樹脂分散体
JP2019101168A (ja) 2017-11-30 2019-06-24 カシオ計算機株式会社 情報処理装置、情報処理方法、情報処理プログラム、及び、電子楽器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331581C (zh) * 2004-05-14 2007-08-15 深圳市金刚源新材料发展有限公司 在润滑油中添加的纳米金刚石微粒的表面处理方法
JP5480582B2 (ja) 2009-10-14 2014-04-23 有限会社アプライドダイヤモンド 潤滑剤組成物
CN104085888B (zh) * 2014-07-17 2016-05-11 长沙矿冶研究院有限责任公司 爆轰纳米金刚石分散液的制备方法
CN104941470A (zh) * 2015-05-12 2015-09-30 无锡市港下精密砂纸厂 一种金刚石悬浮液
EP3438047B1 (en) * 2016-04-01 2022-06-01 Daicel Corporation Surface-modified nanodiamond, organic solvent dispersion thereof, and method for producing surface-modified nanodiamond
WO2019041093A1 (zh) * 2017-08-28 2019-03-07 深圳先进技术研究院 一种超分散纳米金刚石分散液及其制备方法和应用
WO2022091725A1 (ja) * 2020-10-30 2022-05-05 株式会社ダイセル ナノダイヤモンド分散組成物
JPWO2022244665A1 (ja) * 2021-05-17 2022-11-24

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001983A (ja) 2003-05-20 2005-01-06 Futaba Corp 超分散状態ナノ炭素およびその製造方法
JP2008179738A (ja) * 2007-01-26 2008-08-07 Nissan Motor Co Ltd 潤滑油組成物
JP5364588B2 (ja) 2007-11-08 2013-12-11 日本化薬株式会社 ナノダイヤモンド有機溶媒分散体およびその製造法
WO2009128258A1 (ja) * 2008-04-14 2009-10-22 有限会社アプライドダイヤモンド 水中油型乳化組成物
JP2010126669A (ja) 2008-11-28 2010-06-10 Nihon Micro Coating Co Ltd 微小ダイヤモンド粒子分散液の製造方法及び微小ダイヤモンド粒子分散液
JP2013117016A (ja) * 2011-11-02 2013-06-13 Nanocarbon Research Institute Co Ltd 雪氷上滑走移動用具の潤滑剤組成物及びその製造方法
JP2016044092A (ja) * 2014-08-21 2016-04-04 株式会社ダイセル 撥水コート膜及び該撥水コート膜を有する物品、並びに分散液
JP2017186234A (ja) * 2016-04-01 2017-10-12 株式会社ダイセル 表面修飾ナノダイヤモンド、及びその有機溶媒分散体
WO2018235599A1 (ja) * 2017-06-19 2018-12-27 株式会社ダイセル 表面修飾ナノダイヤモンド、表面修飾ナノダイヤモンドを含む分散液、及び樹脂分散体
JP2019101168A (ja) 2017-11-30 2019-06-24 カシオ計算機株式会社 情報処理装置、情報処理方法、情報処理プログラム、及び、電子楽器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978568A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091725A1 (ja) * 2020-10-30 2022-05-05 株式会社ダイセル ナノダイヤモンド分散組成物
WO2022244665A1 (ja) * 2021-05-17 2022-11-24 株式会社ダイセル 冷凍機用組成物および冷凍機用組成物キット

Also Published As

Publication number Publication date
JPWO2020241404A1 (ja) 2020-12-03
EP3978568A4 (en) 2023-09-20
EP3978568A1 (en) 2022-04-06
US20220259048A1 (en) 2022-08-18
CN113891914A (zh) 2022-01-04
JP7539875B2 (ja) 2024-08-26
KR20220016490A (ko) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2020241404A1 (ja) ナノダイヤモンド分散組成物
JP7094283B2 (ja) 表面修飾ナノダイヤモンド、表面修飾ナノダイヤモンドを含む分散液、及び樹脂分散体
KR101729300B1 (ko) 유기 아연 촉매, 이의 제조 방법 및 상기 촉매를 이용한 폴리알킬렌 카보네이트 수지의 제조 방법
US20220227633A1 (en) Surface-modified nanodiamond and method for producing surface-modified nanodiamond
WO2018186382A1 (ja) 表面修飾ナノダイヤモンド、表面修飾ナノダイヤモンド分散液、及び樹脂分散体
WO2022091725A1 (ja) ナノダイヤモンド分散組成物
JP6749433B2 (ja) 初期なじみ用潤滑剤組成物
JP6755020B2 (ja) 表面修飾ナノダイヤモンド、前記表面修飾ナノダイヤモンドを含む分散液及び複合材料
WO2020095581A1 (ja) ナノダイヤモンド分散組成物
WO2020179370A1 (ja) 表面修飾ナノダイヤモンド、ナノダイヤモンド分散組成物、及び表面修飾ナノダイヤモンドの製造方法
JP7263260B2 (ja) ナノダイヤモンド粒子分散液
WO2020250769A1 (ja) 表面修飾ナノダイヤモンド及び表面修飾ナノ炭素粒子の製造方法
RU2780325C1 (ru) Поверхностно-модифицированный наноалмаз, дисперсная композиция наноалмаза и способ производства поверхностно-модифицированного наноалмаза
JP7451412B2 (ja) 潤滑剤組成物
KR20230145168A (ko) 나노 탄소 재료 분산 조성물
JP2018140893A (ja) 表面修飾ナノダイヤモンド、前記表面修飾ナノダイヤモンドを含む分散液、及び複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217042660

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020813703

Country of ref document: EP

Effective date: 20220103