WO2020241380A1 - サマリウム鉄窒素系磁性材料 - Google Patents

サマリウム鉄窒素系磁性材料 Download PDF

Info

Publication number
WO2020241380A1
WO2020241380A1 PCT/JP2020/019787 JP2020019787W WO2020241380A1 WO 2020241380 A1 WO2020241380 A1 WO 2020241380A1 JP 2020019787 W JP2020019787 W JP 2020019787W WO 2020241380 A1 WO2020241380 A1 WO 2020241380A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic material
atomic
content
nitrogen
based magnetic
Prior art date
Application number
PCT/JP2020/019787
Other languages
English (en)
French (fr)
Inventor
聡 大賀
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021522251A priority Critical patent/JP7405141B2/ja
Priority to EP20814089.7A priority patent/EP3978164A4/en
Priority to CN202080039894.9A priority patent/CN114008728A/zh
Publication of WO2020241380A1 publication Critical patent/WO2020241380A1/ja
Priority to US17/530,735 priority patent/US20220076865A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a samarium iron-nitrogen magnetic material.
  • a samarium iron nitrogen-based magnetic material containing samarium (Sm), iron (Fe) and nitrogen (N) is known.
  • Samalium iron nitrogen-based magnetic materials are used, for example, as raw materials for bonded magnets.
  • Patent Document 1 the composition component represented in atomic percent, was in Sm x R a Fe rare earth permanent magnet material is a 100-x-y-z- a M y N z
  • R is at least one of Zr and Hf
  • M is at least one of Co, Ti, Nb, Cr, V, Mo, Si, Ga, Ni, Mn, and Al.
  • X + a is 7% to 10%
  • a is 0% to 1.5%
  • y 0% to 5%
  • z is 10% to 14%.
  • the material is disclosed.
  • the rare earth permanent magnet material of Patent Document 1 contains a TbCu 7 type crystal phase or a Th 2 Zn 17 type crystal phase as a main phase, further contains a soft magnetic phase ⁇ -Fe, and the content of the TbCu 7 type crystal phase is 50%.
  • the content ratio of the Th 2 Zn 17 type crystal phase is 0% to 50% (excluding 0)
  • the content of the soft magnetic phase ⁇ -Fe is 0% to 5% (excluding 0). ..
  • a high magnetic property Hcj (coercive force) of 10 kOe that is, about 796 kA / m
  • high thermal stability when exposed to air at 120 ° C. for 2 hours
  • Irreversible demagnetization rate is said to be obtained (Patent Document 1, paragraph 0058).
  • the heat resistance (heat resistant temperature) of a magnetic material can be judged by using the coercive force as a guide, and it is considered that the higher the coercive force, the higher the heat resistance.
  • the coercive force of the samarium iron-nitrogen magnetic material disclosed in the examples described in Patent Document 1 is at most 13.0 kOe (that is, about 1035 kA / m, Table 3 of Patent Document 1). Such a degree of coercive force is not sufficient when higher heat resistance is required.
  • An object of the present invention is to realize a novel samarium iron-nitrogen magnetic material showing a higher coercive force.
  • the present inventor is unique in that a coercive force can be improved by reducing the Co content in a samarium iron-nitrogen-based magnetic material containing Sm, Fe and N, which further contains Ti as essential. As a result of diligent research, the present invention has been completed.
  • the present invention is a samarium iron-nitrogen magnetic material containing Sm, Fe and N. It contains more Ti and Co-containing or Co-free with a content of 2.5 atomic% or less A samarium iron nitrogen based magnetic material is provided.
  • the samarium iron-nitrogen-based magnetic material of the present embodiment contains samarium (Sm), iron (Fe) and nitrogen (N), and further contains titanium (Ti) as an essential component and contains 2.5 atomic% of cobalt (Co). It is included or not included in the following content (hereinafter, also referred to as "Sm-Fe-Co-Ti-N-based magnetic material").
  • the coercive force Hcj thereof is, for example, 1020 kA / m or more, preferably 1040 kA / m or more, more preferably 1060 kA / m or more. Can be.
  • the coercive force is the Sm-Fe-Co-Ti-N-based magnetic material (Sm 8.5 Zr 1.2 Fe 73.4 Co 4.5 Ti 1.) of Example 8 shown in Table 1 of Patent Document 1. It is understood that the coercive force Hcj of 2 N 11.2 ) was 12.5 kOe (that is, about 995 kA / m), whereas it was sufficiently high.
  • the upper limit of the coercive force Hcj of the Sm-Fe-Co-Ti-N magnetic material of the present embodiment is not particularly limited, but may be, for example, 3000 kA / m or less, and typically 2500 kA / m or less.
  • the composition of the Sm-Fe-Co-Ti-N-based magnetic material can be appropriately selected according to the desired magnetic properties and the like as long as the Co content is within the above range.
  • the content (atomic%) of each element in the Sm-Fe-Co-Ti-N based magnetic material can be measured by inductively coupled plasma mass spectrometry (ICP-MS).
  • the content of N can be measured by the inert gas melting method.
  • the Sm content can be, for example, 7 atomic% or more and 10 atomic% or less, and more specifically, 8.0 atomic% or more and 9.5. It can be less than or equal to atomic%.
  • the content of Fe can be, for example, 65 atomic% or more and 80 atomic% or less, and more specifically, 68 atomic% or more and 78 atomic% or less.
  • the content of N can be, for example, 13 atomic% or more and 16 atomic% or less, and more specifically, 14.0 atomic% or more and 15.5 atomic% or less.
  • the total content of each element of the Sm-Fe-Co-Ti-N magnetic material does not exceed 100 atomic%.
  • the total content of all the elements that can be contained in the Sm-Fe-Co-Ti-N magnetic material is theoretically 100 atomic%.
  • the ratio of the contents of Sm and Fe in the Sm-Fe-Co-Ti-N-based magnetic material may be related to its crystal structure.
  • Sm-Fe-Co-Ti- N based magnetic material may comprise a crystalline phase with the TbCu 7 and / or Th 2 Zn 17 type structure, (or crystal structure as a principal phase a crystal phase having the TbCu 7 structure It is preferable to include (as the main body of).
  • the Sm-Fe-Co-Ti-N based magnetic material may further contain an ⁇ -Fe phase. These crystalline phases can be examined by powder X-ray diffraction.
  • the Sm-Fe-Co-Ti-N magnetic material of the present embodiment contains Ti as an essential component, whereby the coercive force can be improved.
  • the content of Ti can be, for example, 0.5 atomic% or more and 1.5 atomic% or less, and more specifically, 0.8 atomic% or more and 1.4 atomic% or less.
  • Ti may exist in place of Fe at the position of Fe, but this embodiment is not limited to such an embodiment.
  • the Sm-Fe-Co-Ti-N magnetic material of the present embodiment does not have to contain Co, but may contain a content of 2.5 atomic% or less.
  • the Sm-Fe-Co-Ti-N-based magnetic material contains Co, this makes it possible to reduce the melt viscosity when the magnetic material is manufactured by the ultra-quenching method described later, thereby causing a quenching loss (thin band). It is possible to improve the yield (production efficiency) by reducing the raw material loss that occurs when the product is obtained.
  • the content of Co is 0 to 2.5 atomic%, and more specifically, it can be 1 atomic% or more and 2.5 atomic% or less.
  • Co may exist in place of Fe at the position of Fe, but this embodiment is not limited to such an embodiment.
  • the Sm-Fe-Co-Ti-N based magnetic material of the present embodiment may contain any suitable other element.
  • the Sm-Fe-Co-Ti-N-based magnetic material of the present embodiment may further contain Zr, whereby the maximum energy product can be increased.
  • the content of Zr can be, for example, 0.5 atomic% or more and 1.5 atomic% or less, and more specifically, 0.8 atomic% or more and 1.4 atomic% or less.
  • Zr may be present at the position of Sm in place of this, but this embodiment is not limited to such an embodiment.
  • Examples of other elements that can be added include at least one selected from the group consisting of V, Cr, Mn, Ga, Nb, Si, Al, Mo, and the like.
  • its content in the case of a plurality of elements, the sum of each content
  • the Sm-Fe-Co-Ti-N-based magnetic material of the present embodiment can have any suitable shape.
  • it may be a powder of a Sm-Fe-Co-Ti-N-based magnetic material, and may have a particle size of about 1 to 300 ⁇ m, although it is not particularly limited.
  • it may be in the form of a bond magnet obtained by mixing powder of a Sm-Fe-Co-Ti-N-based magnetic material with a binder such as resin or plastic and molding and solidifying it into a predetermined shape.
  • the Sm-Fe-Co-Ti-N magnetic material of the present embodiment can be manufactured by, for example, an ultra-quenching method.
  • the ultra-quenching method can be implemented as follows. First, a mother alloy is prepared by mixing the raw metal constituting the Sm-Fe-Co-Ti-N magnetic material at a desired composition ratio. This mother alloy is melted (as a molten state) in an argon atmosphere and injected onto a rotating single roll (for example, a peripheral speed of 30 to 100 m / s), which is then ultra-quenched to form an alloy (amorphous). Obtain a thin band (or ribbon) consisting of (alloyed).
  • This strip is pulverized to obtain a powder (for example, a maximum particle size of 250 ⁇ m or less).
  • the obtained powder is subjected to heat treatment (for example, at 650 to 850 ° C. for 1 to 120 minutes) at a temperature equal to or higher than the crystallization temperature in an argon atmosphere.
  • the heat-treated powder is subjected to nitriding treatment.
  • the nitriding treatment can be carried out by subjecting the heat-treated powder to heat treatment (for example, at 350 to 500 ° C. for 120 to 960 minutes) in a nitrogen atmosphere.
  • the nitriding treatment can also be carried out under arbitrary appropriate conditions using, for example, ammonia gas, a mixed gas of ammonia and hydrogen, a mixed gas of nitrogen and hydrogen, or other nitrogen raw materials.
  • ammonia gas a mixed gas of ammonia and hydrogen
  • nitrogen and hydrogen a mixed gas of nitrogen and hydrogen
  • the powder after the nitriding treatment the Sm-Fe-Co-Ti-N magnetic material of the present embodiment can be obtained.
  • the Sm-Fe-Co-Ti-N magnetic material thus obtained may have a fine crystal structure.
  • the average size of the crystal grains can be, for example, 10 nm to 1 ⁇ m, preferably 10 to 200 nm, but the present embodiment is not limited to such an embodiment.
  • the samarium iron-nitrogen magnetic material in one embodiment of the present invention has been described in detail above, but the present invention is not limited to such an embodiment.
  • the heat-treated powder was subjected to heat treatment at 460 ° C. for 8 hours under a nitrogen atmosphere to be nitrided.
  • a sample of Sm-Fe-Co-Ti-N-based magnetic material was obtained.
  • Sample No. Reference numeral 1 denotes a Sm-Fe-Co-Ti-N-based magnetic material (Sm 8.5 Zr 1.2 Fe 73.4 Co 4.5 Ti 1.2 N) of Example 8 shown in Table 1 of Patent Document 1. 11.2 ) substantially corresponds to. Sample No. In 2 to 7, the Sm content is in the range of 8.0 to 8.6 atomic%, and the Co content is No. It is less than 1.
  • Sample No. 6 to 7 are sample numbers 6 to 7, respectively.
  • the Co content is equivalent to that of 3 and 5, but the Zr content is 0 atomic%.
  • Sample No. 3 is sample No.
  • Compare with No. 6 and sample No. No. 5 is the sample No.
  • a similarly high coercive force can be obtained regardless of the presence or absence of Zr. From another point of view, these comparisons confirmed that the presence of Zr yielded a larger maximum energy product.
  • Sample No. Reference numeral 8 is sample No.
  • the level of Sm content is increased with respect to 1 to 7.
  • the samarium iron-nitrogen magnetic material of the present invention can be used as a magnet material, for example, as a bond magnet, it can be processed into an arbitrary appropriate shape and used for various purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

より高い保磁力を示す新規なサマリウム鉄窒素系磁性材料を実現する。Sm、FeおよびNを含むサマリウム鉄窒素系磁性材料であって、Tiを更に含み、かつ、2.5原子%以下の含有量でCoを更に含む、またはCoを含まない、サマリウム鉄窒素系磁性材料。例えば、Smの含有量は、7原子%以上10原子%以下であり得、Feの含有量は、65原子%以上80原子%以下であり得、Nの含有量は、13原子%以上16原子%以下であり得、Tiの含有量は、0.5原子%以上1.5原子%以下であり得るが、これらに限定されない。

Description

サマリウム鉄窒素系磁性材料
 本発明は、サマリウム鉄窒素系磁性材料に関する。
 希土類磁性材料の1つとして、サマリウム(Sm)、鉄(Fe)および窒素(N)を含むサマリウム鉄窒素系磁性材料が知られている。サマリウム鉄窒素系磁性材料は、例えばボンド磁石の原料等として利用されている。
 サマリウム鉄窒素系磁性材料として、特許文献1には、原子パーセントで表される組成成分が、SmFe100-x-y-z-aである希土類永久磁石材料であって、ここで、RはZr、Hfのうちの少なくとも1種であり、MはCo、Ti、Nb、Cr、V、Mo、Si、Ga、Ni、Mn、Alのうちの少なくとも1種であり、x+aは7%~10%であり、aは0%~1.5%であり、yは0%~5%であり、zは10%~14%であることを特徴とする希土類永久磁石材料が開示されている。特許文献1の希土類永久磁石材料は、TbCu型結晶相またはThZn17型結晶相を主相として含み、軟磁性相α-Feを更に含み、TbCu型結晶相の含有量は50%以上であり、ThZn17型結晶相の含有割合は0%~50%(0を除く)であり、軟磁性相α-Feの含有量は0%~5%(0を除く)である。特許文献1によれば、10kOe(即ち約796kA/m)以上の高い磁気特性Hcj(保磁力)が得られ、高い熱安定性(120℃で空気中に2時間暴露された場合のボンド磁石の不可逆減磁率)が得られるとされている(特許文献1の第0058段落)。
特開2018-157197号公報
 一般的に、磁性材料の耐熱性(耐熱温度)は、保磁力を目安として判断され得、高い保磁力を有するほど、高い耐熱性を示すと考えられる。特許文献1に記載の実施例に開示されているサマリウム鉄窒素系磁性材料の保磁力は、最高でも13.0kOe(即ち約1035kA/m、特許文献1の表3)に過ぎない。かかる程度の保磁力では、より高い耐熱性が求められる場合に十分とは言えない。
 本発明は、より高い保磁力を示す新規なサマリウム鉄窒素系磁性材料を実現することを目的とする。
 本発明者は、Sm、FeおよびNを含むサマリウム鉄窒素系磁性材料であって、Tiを必須として更に含む場合において、Coの含有量を小さくすることにより、保磁力を向上させ得ることを独自に見出し、鋭意研究の結果、本発明を完成するに至った。
 本発明の1つの要旨によれば、Sm、FeおよびNを含むサマリウム鉄窒素系磁性材料であって、
 Tiを更に含み、かつ、
 2.5原子%以下の含有量でCoを更に含む、またはCoを含まない、
サマリウム鉄窒素系磁性材料が提供される。
 本発明のサマリウム鉄窒素系磁性材料によれば、Tiを必須として含み、かつ、Coの含有量を0原子%以上2.5原子%以下とすることによって、より高い保磁力を示す新規なサマリウム鉄窒素系磁性材料が実現される。
 本実施形態のサマリウム鉄窒素系磁性材料は、サマリウム(Sm)、鉄(Fe)および窒素(N)を含み、更に、チタン(Ti)を必須として含み、コバルト(Co)を2.5原子%以下の含有量で含むか、含まない(以下、「Sm-Fe-Co-Ti-N系磁性材料」とも言う)。
 Sm-Fe-Co-Ti-N系磁性材料において、Co含有量を0原子%以上2.5原子%以下とすることによって、より高い保磁力を得ることができ、ひいては、耐熱性(耐熱温度)を向上させることが可能となる。本実施形態のSm-Fe-Co-Ti-N系磁性材料を限定するものではないが、その保磁力Hcjは、例えば1020kA/m以上、好ましくは1040kA/m以上、より好ましくは1060kA/m以上であり得る。かかる保磁力は、特許文献1の表1に示される実施例8のSm-Fe-Co-Ti-N系磁性材料(Sm8.5Zr1.2Fe73.4Co4.5Ti1.211.2)の保磁力Hcjが12.5kOe(即ち約995kA/m)であったのに対して十分に高いことが理解される。本実施形態のSm-Fe-Co-Ti-N系磁性材料の保磁力Hcjの上限は特に限定されないが、例えば3000kA/m以下、代表的には2500kA/m以下であり得る。
 Sm-Fe-Co-Ti-N系磁性材料の組成は、Co含有量が上記範囲以内である限り、所望される磁性特性等に応じて適宜選択され得る。Sm-Fe-Co-Ti-N系磁性材料における各元素の含有量(原子%)は、誘導結合プラズマ質量分析(ICP-MS)により測定することができる。また、Nの含有量は不活性ガス融解法により測定することができる。
 本実施形態のSm-Fe-Co-Ti-N系磁性材料において、Smの含有量は、例えば7原子%以上10原子%以下であり得、より詳細には8.0原子%以上9.5原子%以下であり得る。Feの含有量は、例えば65原子%以上80原子%以下であり得、より詳細には68原子%以上78原子%以下であり得る。Nの含有量は、例えば13原子%以上16原子%以下であり得、より詳細には14.0原子%以上15.5原子%以下であり得る。
 なお、Sm-Fe-Co-Ti-N系磁性材料の各元素の含有量は、合計で100原子%を超えない。Sm-Fe-Co-Ti-N系磁性材料に含まれ得る全ての元素の含有量を合計すると、理論上100原子%となる。
 Sm-Fe-Co-Ti-N系磁性材料におけるSmおよびFeの含有量の比は、その結晶構造と関係し得る。Sm-Fe-Co-Ti-N系磁性材料は、TbCu型および/またはThZn17型構造を有する結晶相を含み得、TbCu型構造を有する結晶相を主相として(または結晶構造の主体として)含むことが好ましい。Sm-Fe-Co-Ti-N系磁性材料は、更に、α-Fe相を含み得る。これら結晶相は、粉末X線回折により調べることができる。より詳細には、Sm-Fe-Co-Ti-N系磁性材料の粉末のX線回折パターンを、SmFeおよびSmFe17(ならびにα-Fe)のX線回折パターンと比較することによって、TbCu型およびThZn17型構造を有する結晶相(ならびにα-Fe相)の存在および/または存在比を調べることができる。但し、本実施形態はこれら態様に限定されない。
 本実施形態のSm-Fe-Co-Ti-N系磁性材料はTiを必須として含み、これにより、保磁力を向上させることができる。Tiの含有量は、例えば0.5原子%以上1.5原子%以下であり得、より詳細には0.8原子%以上1.4原子%以下であり得る。Sm-Fe-Co-Ti-N系磁性材料の結晶構造において、TiはFeの位置にこれと置換して存在し得ると考えられるが、本実施形態はかかる態様に限定されない。
 本実施形態のSm-Fe-Co-Ti-N系磁性材料は、上述のように、Coを含まなくてよいが、2.5原子%以下の含有量で含んでいてもよい。Sm-Fe-Co-Ti-N系磁性材料がCoを含む場合、これにより、後述する超急冷法により磁性材料を製造する場合に溶融粘度を低下させることができ、それにより急冷ロス(薄帯を得る際に生じる原料損失)を減少させて歩留まり(生産効率)を向上させることができる。Coの含有量は、0~2.5原子%であり、より詳細には1原子%以上2.5原子%以下であり得る。Sm-Fe-Co-Ti-N系磁性材料の結晶構造において、CoはFeの位置にこれと置換して存在し得ると考えられるが、本実施形態はかかる態様に限定されない。
 本実施形態のSm-Fe-Co-Ti-N系磁性材料は、任意の適切な他の元素を含み得る。
 例えば、本実施形態のSm-Fe-Co-Ti-N系磁性材料は、Zrを更に含んでいてよく、これにより、最大エネルギー積を増大させることができる。Zrの含有量は、例えば0.5原子%以上1.5原子%以下であり得、より詳細には0.8原子%以上1.4原子%以下であり得る。Sm-Fe-Co-Ti-N系磁性材料の結晶構造において、ZrはSmの位置にこれと置換して存在し得ると考えられるが、本実施形態はかかる態様に限定されない。
 その他に添加され得る元素としては、例えばV、Cr、Mn、Ga、Nb、Si、AlおよびMoなどからなる群より選択される少なくとも1種が挙げられる。かかる元素が存在する場合、その含有量(複数の元素である場合には各含有量の合計)は、例えば2.0原子%以下であり得、より詳細には1.8原子%以下であり得る。
 本実施形態のSm-Fe-Co-Ti-N系磁性材料は、任意の適切な形状を有し得る。例えば、Sm-Fe-Co-Ti-N系磁性材料の粉末であってよく、特に限定されるものではないが、約1~300μmの粒径を有し得る。また例えば、Sm-Fe-Co-Ti-N系磁性材料の粉末を、樹脂やプラスチックなどのバインダと混合して、所定の形状に成形固化することによって得られたボンド磁石の形態であり得る。
 本実施形態のSm-Fe-Co-Ti-N系磁性材料は、例えば超急冷法により製造可能である。超急冷法は次のようにして実施され得る。まず、Sm-Fe-Co-Ti-N系磁性材料を構成する原料金属を所望される組成割合で混合して成る母合金を準備する。この母合金を、アルゴン雰囲気下にて、溶解させて(溶融状態として)、回転する単ロール(例えば、周速度30~100m/s)上に噴射し、これにより超急冷して、合金(アモルファス化している)から成る薄帯(またはリボン)を得る。この薄帯を粉砕して、粉末(例えば、最大粒径250μm以下)を得る。得られた粉末を、アルゴン雰囲気下にて結晶化温度以上の温度にて熱処理(例えば、650~850℃にて1~120分間)に付す。次いで、熱処理後の粉末を窒化処理に付す。窒化処理は、熱処理後の粉末を、窒素雰囲気下にて熱処理(例えば、350~500℃にて120~960分間)に付すことにより実施され得る。しかしながら、窒化処理は、例えばアンモニアガス、アンモニアおよび水素との混合ガス、窒素および水素との混合ガス、またはその他の窒素原料等を用いて、任意の適切な条件で実施することも可能である。窒化処理後の粉末として、本実施形態のSm-Fe-Co-Ti-N系磁性材料が得られる。
 これにより得られるSm-Fe-Co-Ti-N系磁性材料は、微細な結晶構造を有し得る。結晶粒の平均寸法は、例えば10nm~1μm、好ましくは10~200nmであり得るが、本実施形態はかかる態様に限定されない。
 以上、本発明の1つの実施形態におけるサマリウム鉄窒素系磁性材料について詳述したが、本発明はかかる実施形態に限定されない。
・サマリウム鉄窒素系磁性材料の製造
 表1に示す組成のうち、Nを除く原料金属を該組成に対応する割合で混合し、高周波誘導加熱炉にて溶解させて母合金を準備した。
 この母合金を、アルゴン雰囲気下にて、溶解させて、周速度30~100m/sで回転するMoロール上に噴射し、これにより超急冷して薄帯を得た。
 この薄帯を粉砕して、最大粒径32μm以下の粉末を得た(目開き32μmのふるいを使用してふるい分けした)。
 得られた粉末を、アルゴン雰囲気下にて、725~825℃にて3~30分間の熱処理に付した。
 次いで、熱処理後の粉末を、窒素雰囲気下にて、460℃にて8時間の熱処理に付して窒化させた。
 窒化後の粉末として、Sm-Fe-Co-Ti-N系磁性材料の試料を得た。
・組成分析および磁気特性の評価
 上記で得られた試料の組成を誘導結合プラズマ質量分析(ICP-MS)により分析した。
 また、上記で得られた試料の磁気特性を評価した。評価に際して、試料(粉末)の真密度は7.6g/cmとし、反磁界補正は行わず、振動試料型磁力計(VSM)により、保磁力Hcj、残留磁束密度Brおよび最大エネルギー積(BH)maxを測定した。
 これらの結果を表1に示す。
 なお、上記で得られた試料を粉末X線回折により調べたところ、いずれの試料も、TbCu型構造および/またはThZn17型構造を有する結晶相を含み、更に、α-Fe相を含んでいることが確認された。
Figure JPOXMLDOC01-appb-T000001

 表1中、「*」は本発明の比較例を意味し、組成における空欄は、ゼロ(不存在/原料金属不使用)を意味する。試料No.1およびNo.2は、本発明の比較例であり、試料No.3~8は、本発明の実施例である。
 試料No.1は、特許文献1の表1に示される実施例8のSm-Fe-Co-Ti-N系磁性材料(Sm8.5Zr1.2Fe73.4Co4.5Ti1.211.2)に実質的に対応する。試料No.2~7は、Sm含有量を8.0~8.6原子%の範囲としつつ、Coの含有量をNo.1より減らしたものである。
 試料No.1~2の比較から、Co含有量を4.4原子%から3.0原子%に減少させても、保磁力はほぼ変わらず、むしろやや減少した。これに対して、Co含有量を2.5原子%以下とした試料No.3~5では、試料No.1よりも高い保磁力が得られた。より詳細には、試料No.3~5のように、Co含有量を2.5原子%以下の範囲で減少させていくにつれて、より高い保磁力Hcjが得られた。これら結果は、Co含有量を所定の閾値以下とすることにより、保磁力が急激に増加することを示すものである。
 試料No.6~7は、それぞれ試料No.3、5と同等のCo含有量としつつも、Zr含有量を0原子%としたものである。試料No.3を試料No.6と比較すること、および試料No.5を試料No.7と比較することにより、Zrが存在しなくても、保磁力はほとんど変わらないことが確認された。よって、Zrの有無にかからず、同様に高い保磁力が得られるものと理解される。別の観点から、これら比較により、Zrが存在するほうが、より大きい最大エネルギー積が得られることが確認された。
 試料No.8は、試料No.1~7に対して、Sm含有量のレベルを増加させたものである。試料No.8の結果から、Sm含有量のレベルを高くすることにより、より高いレベルの保磁力が得られることがわかった。
 本発明のサマリウム鉄窒素系磁性材料は、磁石材料として利用可能であり、例えばボンド磁石として、任意の適切な形状に加工されて、さまざまな用途に利用され得る。
 本願は、2019年5月31日付けで日本国にて出願された特願2019-102696に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。

Claims (8)

  1.  Sm、FeおよびNを含むサマリウム鉄窒素系磁性材料であって、
     Tiを更に含み、かつ、
     2.5原子%以下の含有量でCoを更に含む、またはCoを含まない、
    サマリウム鉄窒素系磁性材料。
  2.  前記Smの含有量が、7原子%以上10原子%以下であり、
     前記Feの含有量が、65原子%以上80原子%以下であり、
     前記Nの含有量が、13原子%以上16原子%以下であり、
     前記含有量の合計が、100原子%を超えない、請求項1に記載のサマリウム鉄窒素系磁性材料。
  3.  前記Tiの含有量が、0.5原子%以上1.5原子%以下である、請求項1または2に記載のサマリウム鉄窒素系磁性材料。
  4.  Zrを更に含む、請求項1~3のいずれかに記載のサマリウム鉄窒素系磁性材料。
  5.  前記Zrの含有量が、0.5原子%以上1.5原子%以下である、請求項4に記載のサマリウム鉄窒素系磁性材料。
  6.  前記Smの含有量が、8.0原子%以上9.5原子%以下である、請求項1~5のいずれかに記載のサマリウム鉄窒素系磁性材料。
  7.  前記Coの含有量が、1原子%以上2.5原子%以下である、請求項1~6のいずれかに記載のサマリウム鉄窒素系磁性材料。
  8.  TbCu型および/またはThZn17型構造を有する結晶相を含む、請求項1~7のいずれかに記載のサマリウム鉄窒素系磁性材料。
PCT/JP2020/019787 2019-05-31 2020-05-19 サマリウム鉄窒素系磁性材料 WO2020241380A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021522251A JP7405141B2 (ja) 2019-05-31 2020-05-19 サマリウム鉄窒素系磁性材料
EP20814089.7A EP3978164A4 (en) 2019-05-31 2020-05-19 SAMARIUM-IRON-NITROGEN MAGNETIC MATERIAL
CN202080039894.9A CN114008728A (zh) 2019-05-31 2020-05-19 钐铁氮系磁性材料
US17/530,735 US20220076865A1 (en) 2019-05-31 2021-11-19 Samarium-iron-nitrogen-based magnetic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-102696 2019-05-31
JP2019102696 2019-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/530,735 Continuation US20220076865A1 (en) 2019-05-31 2021-11-19 Samarium-iron-nitrogen-based magnetic material

Publications (1)

Publication Number Publication Date
WO2020241380A1 true WO2020241380A1 (ja) 2020-12-03

Family

ID=73552340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019787 WO2020241380A1 (ja) 2019-05-31 2020-05-19 サマリウム鉄窒素系磁性材料

Country Status (5)

Country Link
US (1) US20220076865A1 (ja)
EP (1) EP3978164A4 (ja)
JP (1) JP7405141B2 (ja)
CN (1) CN114008728A (ja)
WO (1) WO2020241380A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561524A (zh) * 2021-11-19 2022-05-31 杭州永磁集团有限公司 一种钐铁合金提高2:17型相含量的热处理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072796A (zh) * 1991-11-26 1993-06-02 北京三环新材料高技术公司 一种新型粘结型铁基稀土永磁体及其制造方法
JPH0913151A (ja) * 1994-12-16 1997-01-14 Matsushita Electric Ind Co Ltd 希土類−鉄−窒素系磁性材料及びその製造方法
JPH10241923A (ja) * 1997-02-21 1998-09-11 Hitachi Metals Ltd 希土類磁石材料およびその製造方法ならびにそれを用いた希土類ボンド磁石
JPH11297518A (ja) * 1998-04-13 1999-10-29 Hitachi Metals Ltd 希土類磁石材料
JPH11340020A (ja) * 1998-03-27 1999-12-10 Toshiba Corp 磁石材料とその製造方法、およびそれを用いたボンド磁石
JP2000049006A (ja) * 1998-05-26 2000-02-18 Hitachi Metals Ltd 希土類磁石材料およびそれを用いた希土類ボンド磁石
JP2002057017A (ja) * 2000-05-29 2002-02-22 Daido Steel Co Ltd 等方性の粉末磁石材料、その製造方法およびボンド磁石
JP2013531359A (ja) * 2010-03-29 2013-08-01 グリレム アドバンスド マテリアルズ カンパニー リミティッド 希土類永久磁石粉、ボンド磁石およびボンド磁石で作られた装置
JP2018157197A (ja) 2017-03-17 2018-10-04 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. 高熱安定性の希土類永久磁石材料、その製造方法及びそれを含む磁石
JP2019102696A (ja) 2017-12-05 2019-06-24 Fdk株式会社 インダクタ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684076A (en) * 1994-12-16 1997-11-04 Matsushita Electric Industrial Co., Ltd. Rare earth-iron-nitrogen based magnetic material and method of manufacturing the same
JPH091315A (ja) * 1995-04-12 1997-01-07 Asahi Tec Corp 車両用ホイールの鋳造方法
CN1144240C (zh) * 1998-03-27 2004-03-31 东芝株式会社 磁性材料
US6413327B1 (en) * 1998-05-26 2002-07-02 Hitachi Metals, Ltd. Nitride type, rare earth magnet materials and bonded magnets formed therefrom
JP2000340422A (ja) * 1999-03-24 2000-12-08 Hitachi Metals Kiko Co Ltd マグネットロール
WO2001039216A1 (fr) * 1999-11-24 2001-05-31 Hitachi Metals, Ltd. Compose isotrope et son procede de preparation, aimant lie isotrope, machine rotative et rouleau a aimant
CN1315679A (zh) * 2000-03-24 2001-10-03 日立金属株式会社 磁辊
TW503409B (en) * 2000-05-29 2002-09-21 Daido Steel Co Ltd Isotropic powdery magnet material, process for preparing and resin-bonded magnet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072796A (zh) * 1991-11-26 1993-06-02 北京三环新材料高技术公司 一种新型粘结型铁基稀土永磁体及其制造方法
JPH0913151A (ja) * 1994-12-16 1997-01-14 Matsushita Electric Ind Co Ltd 希土類−鉄−窒素系磁性材料及びその製造方法
JPH10241923A (ja) * 1997-02-21 1998-09-11 Hitachi Metals Ltd 希土類磁石材料およびその製造方法ならびにそれを用いた希土類ボンド磁石
JPH11340020A (ja) * 1998-03-27 1999-12-10 Toshiba Corp 磁石材料とその製造方法、およびそれを用いたボンド磁石
JPH11297518A (ja) * 1998-04-13 1999-10-29 Hitachi Metals Ltd 希土類磁石材料
JP2000049006A (ja) * 1998-05-26 2000-02-18 Hitachi Metals Ltd 希土類磁石材料およびそれを用いた希土類ボンド磁石
JP2002057017A (ja) * 2000-05-29 2002-02-22 Daido Steel Co Ltd 等方性の粉末磁石材料、その製造方法およびボンド磁石
JP2013531359A (ja) * 2010-03-29 2013-08-01 グリレム アドバンスド マテリアルズ カンパニー リミティッド 希土類永久磁石粉、ボンド磁石およびボンド磁石で作られた装置
JP2018157197A (ja) 2017-03-17 2018-10-04 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. 高熱安定性の希土類永久磁石材料、その製造方法及びそれを含む磁石
JP2019102696A (ja) 2017-12-05 2019-06-24 Fdk株式会社 インダクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978164A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561524A (zh) * 2021-11-19 2022-05-31 杭州永磁集团有限公司 一种钐铁合金提高2:17型相含量的热处理方法
CN114561524B (zh) * 2021-11-19 2022-10-21 杭州永磁集团有限公司 一种钐铁合金提高2:17型相含量的热处理方法

Also Published As

Publication number Publication date
EP3978164A1 (en) 2022-04-06
JPWO2020241380A1 (ja) 2020-12-03
CN114008728A (zh) 2022-02-01
US20220076865A1 (en) 2022-03-10
EP3978164A4 (en) 2023-01-18
JP7405141B2 (ja) 2023-12-26

Similar Documents

Publication Publication Date Title
JP3741597B2 (ja) 多元系希土類−鉄格子浸入型永久磁石材料、およびそれからなる永久磁石、ならびにそれらの製造方法
JPH0521218A (ja) 希土類永久磁石の製造方法
JP2746818B2 (ja) 希土類焼結永久磁石の製造方法
JP4863377B2 (ja) サマリウム−鉄系永久磁石材料
US5968290A (en) Permanent magnet material and bonded magnet
JP7010884B2 (ja) 希土類コバルト永久磁石及びその製造方法、並びにデバイス
JP7405141B2 (ja) サマリウム鉄窒素系磁性材料
JPH04184901A (ja) 希土類鉄系永久磁石およびその製造方法
JP4170468B2 (ja) 永久磁石
JPH06207203A (ja) 希土類永久磁石の製造方法
JPH04330702A (ja) 耐触性に優れた希土類永久磁石
JP2002294413A (ja) 磁石材料及びその製造方法
CN110211759B (zh) Sm-Fe-N磁体材料和Sm-Fe-N粘结磁体
CN106971799A (zh) 硬磁相、其制备方法和磁性材料
JPH06207204A (ja) 希土類永久磁石の製造方法
EP4411760A1 (en) Rare earth magnet material, and magnet
JP2017166018A (ja) ネオジム−鉄−ボロン系合金
JP2004265907A (ja) 硬質磁性組成物
WO2022124344A1 (ja) 永久磁石及びその製造方法、並びにデバイス
Ding et al. Magnetic hardening of melt-spun and crystallized Sm-Fe-V and Sm-(Fe, Co)-V alloys
JPH05198410A (ja) 永久磁石材料
JP2006299402A5 (ja)
JPH0521219A (ja) 希土類永久磁石の製造方法
JPH0533095A (ja) 永久磁石合金およびその製造方法
JP3959124B2 (ja) 希土類−鉄磁石用合金の窒化速度を向上させる方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020814089

Country of ref document: EP

Effective date: 20220103