WO2020240899A1 - 光学系、画像投写装置および撮像装置 - Google Patents

光学系、画像投写装置および撮像装置 Download PDF

Info

Publication number
WO2020240899A1
WO2020240899A1 PCT/JP2019/049166 JP2019049166W WO2020240899A1 WO 2020240899 A1 WO2020240899 A1 WO 2020240899A1 JP 2019049166 W JP2019049166 W JP 2019049166W WO 2020240899 A1 WO2020240899 A1 WO 2020240899A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
conjugate point
image
cross
section
Prior art date
Application number
PCT/JP2019/049166
Other languages
English (en)
French (fr)
Inventor
恒夫 内田
克 山田
聡 葛原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202410041701.3A priority Critical patent/CN117687189A/zh
Priority to CN201980096237.5A priority patent/CN113811806A/zh
Publication of WO2020240899A1 publication Critical patent/WO2020240899A1/ja
Priority to US17/511,799 priority patent/US20220082805A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • G02B13/007Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror the beam folding prism having at least one curved surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • the present disclosure relates to an optical system using a prism.
  • the present disclosure also relates to an image projection device and an image pickup device using such an optical system.
  • Patent Document 1 discloses a variable magnification optical system, and employs an eccentrically arranged Off-Axial optical element. As a result, the optical path in the variable magnification optical system is bent into a desired shape, and the overall length of the variable magnification optical system is shortened.
  • Patent Document 2 discloses an imaging optical system including a plurality of eccentric prisms. Specifically, two eccentric prisms having rotationally asymmetric reflecting surfaces are arranged on both sides of the diaphragm, and the medium of the eccentric prism 10 before the diaphragm and the medium of the eccentric prism 20 after the diaphragm have optical properties. different.
  • the present disclosure provides an optical system capable of projecting or imaging a short focus and a large screen using a small prism.
  • the present disclosure also provides an image projection device and an image pickup device using such an imaging optical system.
  • One aspect of the present disclosure relates to an optical system having a reduced conjugation point on the reduction side and an expansion conjugation point on the expansion side, and internally having an intermediate imaging position that is conjugated to the reduction conjugation point and the expansion conjugation point, respectively.
  • the reduced conjugate points have an imaging relationship in a rectangular region having a longitudinal direction and a lateral direction.
  • the optical system includes a first sub-optical system including an aperture diaphragm that defines a range through which a light beam passes through the optical system, and a prism provided on the enlarged side of the first sub-optical system and formed of a transparent medium. It includes a second sub-optical system.
  • the prism has a first transmission surface located on the reduction side, a second transmission surface located on the expansion side, and at least one reflection surface located on an optical path between the first transmission surface and the second transmission surface.
  • the aperture stop is positioned between the reduction conjugate point and the intermediate imaging position. A part or all of the intermediate image formed at the intermediate imaging position is positioned inside the medium of the prism.
  • the first reflecting surface closest to the intermediate imaging position has a shape in which a concave surface is directed in a direction in which light rays incident on the first reflecting surface are reflected, and the second transmitting surface has a convex surface on the enlarged side. It has a oriented shape.
  • the longitudinal direction of the rectangular region of the reduction conjugate point is the X direction
  • the lateral direction is the Y direction
  • the normal direction is the Z direction
  • the surface containing the light beam is defined as the Y cross section
  • the cross section perpendicular to the Y cross section is defined as the X cross section.
  • a plurality of main rays passing through the reduction conjugate point so as to intersect on the optical path between the first reflecting surface and the second transmitting surface and when viewed from a direction perpendicular to the X cross section.
  • the curvature shape of the first reflecting surface is set so that a part thereof intersects on the optical path between the first reflecting surface and the second transmitting surface.
  • the image projection device includes the above optical system and an image forming element that generates an image projected on a screen via the optical system.
  • the image pickup device includes the above optical system and an image pickup element that receives an optical image formed by the optical system and converts it into an electrical image signal.
  • a plurality of main rays intersect on the optical path between the first reflecting surface and the second transmitting surface of the prism for both the Y cross section and the X cross section. Therefore, it is possible to project or image a short focus and a large screen using a small prism.
  • FIG. 2A is a Y sectional view showing an optical path through which a main ray passes in the optical system according to the first embodiment.
  • FIG. 2B is an X sectional view when the optical system is viewed from above.
  • Explanatory drawing which shows the usage mode of the image projection apparatus using the optical system which concerns on Example 1.
  • a graph showing the relative positional relationship between the reflecting surface and the Y-direction intermediate image and the X-direction intermediate image in the optical system 1 according to the first embodiment.
  • FIG. 6A is a Y sectional view showing an optical path through which a main ray passes in the optical system according to the second embodiment.
  • FIG. 6B is an X sectional view when the optical system is viewed from above.
  • Explanatory drawing which shows the usage mode of the image projection apparatus using the optical system which concerns on Example 2.
  • a graph showing the relative positional relationship between the reflecting surface and the Y-direction intermediate image and the X-direction intermediate image in the optical system according to the second embodiment.
  • Layout drawing showing the optical system according to the third embodiment FIG. 10A is a Y sectional view showing an optical path through which a main ray passes in the optical system according to the third embodiment.
  • FIG. 10B is an X sectional view when the optical system is viewed from above. Explanatory drawing which shows the usage mode of the image projection apparatus using the optical system which concerns on Example 3.
  • FIG. 14A is a Y sectional view showing an optical path through which a main ray passes in the optical system according to the fourth embodiment.
  • FIG. 14B is an X cross-sectional view when the optical system is viewed from above. Explanatory drawing which shows the usage mode of the image projection apparatus using the optical system which concerns on Example 4.
  • the optical system projects the image light of the original image SA, in which the incident light is spatially modulated by an image forming element such as a liquid crystal display or DMD (digital micromirror device) based on the image signal, onto the screen (image projection).
  • an image forming element such as a liquid crystal display or DMD (digital micromirror device) based on the image signal
  • the optical system according to the present disclosure can be used for arranging a screen (not shown) on the extension line on the enlargement side and enlarging the original image S on the image forming element arranged on the reduction side and projecting it on the screen.
  • the projected surface is not limited to the screen.
  • the projected surface also includes walls, ceilings, floors, windows, etc. in vehicles and aircraft used for houses, stores, and means of transportation.
  • the optical system according to the present disclosure is for collecting light emitted from an object located on an extension line on the enlargement side and forming an optical image of the object on the image pickup surface of an image pickup device arranged on the reduction side. Is also available.
  • FIG. 1 is a layout diagram showing an optical system 1 according to the first embodiment.
  • the optical system 1 includes a first sub-optical system including an aperture stop ST and a second sub-optical system including a prism PM.
  • the reduced conjugate point which is the imaging position on the reduced side
  • the enlarged conjugated point which is the imaging position on the enlarged side
  • the second sub-optical system is provided on the enlarged side of the first sub-optical system.
  • FIG. 18 is an explanatory diagram showing an example of an image region at a reduced conjugate point.
  • the image region at the reduced conjugate point is defined as a rectangular region having a longitudinal direction (X direction) and a lateral direction (Y direction), and has an imaging relationship that is optically conjugate with the image region at the enlarged conjugate point. ..
  • the light beam travels along the normal direction (Z direction) of this rectangular region.
  • this rectangular area has an aspect ratio such as 3: 2, 4: 3, 16: 9, 256: 135, and in the case of an image projection device, corresponds to an image display area of an image forming element, and is an image pickup device. In the case of, it corresponds to the image pickup region of the image sensor.
  • intermediate imaging positions that are conjugated to the reduction conjugate point and the enlargement conjugate point are located inside the optical system 1.
  • This intermediate imaging position is shown as a Y-direction intermediate image IMy in FIG. 1, but an X-direction intermediate image IMx is not shown and will be described later in relation to FIG.
  • the first sub-optical system includes an optical element PA and lens elements L1 to L14 in this order from the reduction side to the enlargement side.
  • the optical element PA represents an optical element such as a TIR (total internal reflection) prism, a prism for color separation and color synthesis, an optical filter, a parallel flat glass, a crystal low-pass filter, and an infrared cut filter.
  • the original image SA is installed on the reduced end surface of the optical element PA (surface 1). For the surface numbers, refer to the numerical examples described later.
  • the optical element PA has two parallel and flat transmission surfaces (surfaces 2 and 3).
  • the lens element L1 has a positive meniscus shape with a convex surface facing the reduction side (surfaces 4 and 5).
  • the lens element L2 has a negative meniscus shape with a convex surface facing the reduction side (surfaces 6 and 7).
  • the lens element L3 has a biconvex shape (surfaces 7 and 8).
  • the lens element L4 has a negative meniscus shape with a convex surface facing the enlargement side (surfaces 8 and 9).
  • the lens elements L2 to L4 are joined to each other to form a composite lens.
  • the lens element L5 has a biconcave shape (surfaces 10 and 11).
  • the lens element L7 has a biconvex shape (surfaces 14 and 15).
  • the lens element L8 has a negative meniscus shape with a convex surface facing the enlargement side (surfaces 16 and 17).
  • the lens element L9 has a positive meniscus shape with a convex surface facing the enlargement side (surfaces 17 and 18).
  • the lens elements L8 and L9 are joined to each other to form a composite lens.
  • the lens element L10 has a biconvex shape (surfaces 19 and 20).
  • the lens element L11 has a biconvex shape (surfaces 21 and 22).
  • the lens element L12 has a biconcave shape (surfaces 22 and 23).
  • the lens elements L11 and L12 are joined to each other to form a composite lens.
  • the lens element L13 has a negative meniscus shape with a convex surface facing the reduction side (surfaces 24 and 25).
  • the lens element L14 has a positive meniscus shape with a convex surface facing the
  • FIG. 17 schematically shows a three-dimensional shape of the prism PM according to the first embodiment
  • FIG. 17A is a rear view
  • FIG. 17B is a front view
  • FIG. 17C is a top view
  • FIG. 17D is a bottom view
  • FIG. 17E is a bottom view. It is a side view.
  • the second sub-optical system includes a transparent medium, for example, a prism PM made of glass, synthetic resin, or the like.
  • the prism PM has a transmission surface A located on the reduction side, a transmission surface B located on the expansion side, and two reflection surfaces R1 and R2 located on the optical path between the transmission surface A and the transmission surface B.
  • the transparent surface A has a free curved surface shape with a concave surface facing the reduction side (surface 28).
  • the reflecting surface R1 has a free curved surface shape in which a concave surface is directed in a direction in which light rays incident on the reflecting surface R1 are reflected (surface 29).
  • the reflective surface R2 has a planar shape (surface 30).
  • the transparent surface B has a free curved surface shape with a convex surface facing the enlarged side (surface 31).
  • the aperture stop ST defines the range in which the light flux passes through the optical system 1, and is positioned between the reduced conjugate point and the above-mentioned intermediate imaging position.
  • the aperture stop ST is located between the lens element L6 and the lens element L7 (surface 13).
  • the intermediate image formed at the intermediate imaging position that is, a part or all of the Y-direction intermediate image IMy and the X-direction intermediate image IMx is positioned inside the medium of the prism PM. Further, when the longitudinal direction of the rectangular region of the reduction conjugate point is the X direction, the lateral direction is the Y direction, and the normal direction is the Z direction, the position where the main light beam passing through the center of the X direction is reflected by the reflection surface R1.
  • the plane containing the above is the Y cross section
  • the cross section perpendicular to the Y cross section is the X cross section
  • the light beam passing through the first sub-optical system has different intermediate imaging positions in the Y cross section and the X cross section, that is, ,
  • the Y-direction intermediate image IMy and the X-direction intermediate image IMx are formed at different positions. As a result, it is possible to reduce the influence on the image quality due to disturbances such as dust and dirt.
  • FIG. 2A is a Y sectional view showing an optical path through which a main ray passes in the optical system 1 according to the first embodiment
  • FIG. 2B is an X sectional view when the optical system 1 is viewed from above.
  • the intermediate portion of the optical system 1 is omitted, and only the optical path inside the prism PM is shown schematically.
  • FIG. 2B shows a main ray passing through the left end portion of the original image SA in the X direction and a main ray passing through the right end portion of the original image SA in the X direction for clarification.
  • Both main rays pass through the first sub-optical system, pass through the transmission surface A, enter the inside of the prism PM, are subsequently reflected by the reflection surface R1, and are formed in a broken line circle before reaching the reflection surface R2. They intersect each other in the indicated region CRx.
  • FIG. 2A when viewed from a direction perpendicular to the Y cross section, a part of a plurality of main rays passing through the reduction conjugate point is light between the reflection surface R1 and the transmission surface B.
  • some of the plurality of main rays passing through the reduction conjugate point are reflected surface R1 and transmitted surface B.
  • the curvature shape of the free curved surface of the reflecting surface R1 is set so as to intersect with and on the optical path.
  • FIG. 3 is an explanatory diagram showing a usage mode of the image projection device using the optical system 1 according to the first embodiment.
  • the image projection device including the optical system 1 is arranged horizontally on a support base such as a table or on a floor.
  • the screen SC is installed vertically upward at a relatively short horizontal distance from the support, for example, 0.5 m.
  • the light generated from the optical system 1 is projected obliquely forward and upward to realize a short focus and a large screen projection.
  • FIG. 4 is a graph showing the relative positional relationship between the reflecting surface R1 and the Y-direction intermediate image IMy and the X-direction intermediate image IMx in the optical system 1 according to the first embodiment, and is viewed from a direction perpendicular to the Y cross section.
  • the horizontal axis is the relative position (unit: mm) in the Z direction with respect to IMx formed by the light beam at the bottom of the Y direction passing through the center of the original image SA in the X direction
  • the vertical axis is the X direction of the original image SA.
  • It is a relative position (unit: mm) in the Y direction with respect to IMx formed by a light ray at the bottom in the Y direction passing through the center.
  • the diamond-shaped mark indicates the X-direction intermediate image IMx
  • the quadrangular mark indicates the Y-direction intermediate image IMy
  • the triangular mark indicates the curved shape of the reflection surface R1.
  • the X-direction intermediate image IMx is a state in which the light flux passing through the optical system 1 is focused only in the X direction and not in the Y direction.
  • the Y-direction intermediate image IMy is a state in which the light flux passing through the optical system 1 is focused only in the Y direction and not in the X direction.
  • the Y-direction intermediate image IMy is distributed diagonally with respect to the Z direction from the vicinity of the coordinates (-2.5,0) to the vicinity of the coordinates (-19.5, -14.5).
  • the X-direction intermediate image IMx is distributed from the vicinity of the coordinates (0,0) toward the coordinates (-13, -15) diagonally with respect to the Z direction and with the concave surface facing the reduced optical path side.
  • the reflecting surface R1 is distributed from the vicinity of the coordinates (9,0) toward the coordinates (0.5, -17) at an angle with respect to the Z direction and with the concave surface facing the reduced optical path side. ..
  • the reflecting surface R1 may have a shape in which the concave surface is directed toward the reduced optical path side along the intermediate imaging position in the X direction parallel to the X cross section of the light ray passing through the center in the longitudinal direction of the rectangular region. Good. As a result, image distortion on the screen SC can be suppressed.
  • FIG. 5 is a layout diagram showing the optical system 1 according to the second embodiment.
  • This optical system 1 has the same configuration as that of the first embodiment, but the first sub-optical system includes lens elements L1 to L13, and the second sub-optical system including the prism PM is forward in the case of an image projection device. The image is projected diagonally downward.
  • the description overlapping with the first embodiment will be omitted.
  • the lens element L1 has a positive meniscus shape with a convex surface facing the reduction side (surfaces 4 and 5).
  • the lens element L2 has a negative meniscus shape with a convex surface facing the reduction side (surfaces 6 and 7).
  • the lens element L3 has a biconvex shape (surfaces 7 and 8).
  • the lens element L4 has a negative meniscus shape with a convex surface facing the enlargement side (surfaces 8 and 9).
  • the lens elements L2 to L4 are joined to each other to form a composite lens.
  • the lens element L5 has a biconcave shape (surfaces 10 and 11).
  • the lens element L7 has a biconvex shape (surfaces 14 and 15).
  • the lens element L8 has a negative meniscus shape with a convex surface facing the enlargement side (surfaces 16 and 17).
  • the lens element L9 has a biconvex shape (surfaces 18 and 19).
  • the lens element L10 has a biconvex shape (surfaces 20 and 21).
  • the lens element L11 has a biconcave shape (surfaces 21 and 22).
  • the lens elements L10 and L11 are joined to each other to form a composite lens.
  • the lens element L12 has a negative meniscus shape with a convex surface facing the reduction side (surfaces 23 and 24).
  • the lens element L13 has a biconvex shape (surfaces 25 and 26).
  • the prism PM has a transmission surface A located on the reduction side, a transmission surface B located on the expansion side, and two reflection surfaces R1 and R2 located on the optical path between the transmission surface A and the transmission surface B.
  • the transparent surface A has a free curved surface shape with a concave surface facing the reduction side (surface 27).
  • the reflecting surface R1 has a free curved surface shape in which a concave surface is directed in a direction in which light rays incident on the reflecting surface R1 are reflected (surface 28).
  • the reflective surface R2 has a planar shape (surface 29).
  • the transparent surface B has a free curved surface shape with a convex surface facing the enlarged side (surface 30).
  • FIG. 6A is a Y cross-sectional view showing an optical path through which the main light beam passes in the optical system 1 according to the second embodiment
  • FIG. 6B is an X cross-sectional view when the optical system 1 is viewed from above.
  • FIG. 6B shows a main ray passing through the left end portion of the original image SA in the X direction and a main ray passing through the right end portion of the original image SA in the X direction for clarification.
  • Both main rays pass through the first sub-optical system, pass through the transmission surface A, enter the inside of the prism PM, are subsequently reflected by the reflection surface R1, and are formed in a broken line circle before reaching the reflection surface R2. They intersect each other in the indicated region CRx.
  • FIG. 7 is an explanatory diagram showing a usage mode of the image projection device using the optical system 1 according to the second embodiment.
  • the image projection device including the optical system 1 is arranged horizontally on a support base such as a table or on a floor.
  • the screen SC is installed horizontally forward at a relatively short vertical distance from the support, for example, 0.3 m away.
  • the light generated from the optical system 1 is projected diagonally forward and downward to realize short focus and large screen projection.
  • FIG. 8 is a graph showing the relative positional relationship between the reflecting surface R1 and the Y-direction intermediate image IMy and the X-direction intermediate image IMx in the optical system 1 according to the second embodiment, and is viewed from a direction perpendicular to the Y cross section. There is.
  • the Y-direction intermediate image IMy is distributed diagonally with respect to the Z direction from the vicinity of the coordinates (-3.5,0) to the vicinity of the coordinates (-17, -10).
  • the X-direction intermediate image IMx is distributed from the vicinity of the coordinates (0,0) toward the coordinates (-12, -10) diagonally with respect to the Z direction and with the concave surface facing the reduced optical path side.
  • the reflection surface R1 is distributed from the vicinity of the coordinates (5.5,0) toward the coordinates (-2,-11) at an angle with respect to the Z direction and with the concave surface facing the reduced optical path side. There is.
  • the reflecting surface R1 may have a shape in which the concave surface is directed toward the reduced optical path side along the intermediate imaging position in the X direction parallel to the X cross section of the light ray passing through the center in the longitudinal direction of the rectangular region. Good. As a result, image distortion on the screen SC can be suppressed.
  • FIG. 9 is a layout diagram showing the optical system 1 according to the third embodiment.
  • This optical system 1 has the same configuration as that of the first embodiment, but the first sub-optical system includes lens elements L1 to L14, and the second sub-optical system including the prism PM is rearward in the case of an image projection device. The image is projected diagonally upward.
  • the description overlapping with the first embodiment will be omitted.
  • the lens element L1 has a positive meniscus shape with a convex surface facing the reduction side (surfaces 4 and 5).
  • the lens element L2 has a negative meniscus shape with a convex surface facing the reduction side (surfaces 6 and 7).
  • the lens element L3 has a biconvex shape (surfaces 7 and 8).
  • the lens element L4 has a negative meniscus shape with a convex surface facing the enlargement side (surfaces 8 and 9).
  • the lens elements L2 to L4 are joined to each other to form a composite lens.
  • the lens element L5 has a biconcave shape (surfaces 10 and 11).
  • the lens element L7 has a biconvex shape (surfaces 14 and 15).
  • the lens element L8 has a negative meniscus shape with a convex surface facing the enlargement side (surfaces 16 and 17).
  • the lens element L9 has a positive meniscus shape with a convex surface facing the enlargement side (surfaces 17 and 18).
  • the lens elements L8 and L9 are joined to each other to form a composite lens.
  • the lens element L10 has a biconvex shape (surfaces 19 and 20).
  • the lens element L11 has a biconvex shape (surfaces 21 and 22).
  • the lens element L12 has a biconcave shape (surfaces 22 and 23).
  • the lens elements L11 and L12 are joined to each other to form a composite lens.
  • the lens element L13 has a negative meniscus shape with a convex surface facing the reduction side (surfaces 24 and 25).
  • the lens element L14 has a positive meniscus shape with a convex surface facing the
  • the prism PM has a transmission surface A located on the reduction side, a transmission surface B located on the expansion side, and one reflection surface R1 located on the optical path between the transmission surface A and the transmission surface B.
  • the transparent surface A has a free curved surface shape with a concave surface facing the reduction side (surface 28).
  • the reflecting surface R1 has a free curved surface shape in which a concave surface is directed in a direction in which light rays incident on the reflecting surface R1 are reflected (surface 29).
  • the transparent surface B has a free curved surface shape with a convex surface facing the enlarged side (surface 30).
  • FIG. 10A is a Y sectional view showing an optical path through which a main ray passes in the optical system 1 according to the third embodiment
  • FIG. 10B is an X sectional view thereof when the optical system 1 is viewed from above.
  • FIG. 10B shows a main ray passing through the left end portion of the original image SA in the X direction and a main ray passing through the right end portion of the original image SA in the X direction for clarification.
  • Both main rays pass through the first sub-optical system, pass through the transmission surface A, enter the inside of the prism PM, are subsequently reflected by the reflection surface R1, and before reaching the transmission surface B, in a broken line circle. They intersect each other in the indicated region CRx.
  • FIG. 11 is an explanatory diagram showing a usage mode of the image projection device using the optical system 1 according to the third embodiment.
  • the image projection device including the optical system 1 is arranged horizontally on a support base such as a table or on a floor.
  • the screen SC is installed vertically upward at a relatively short horizontal distance rearward from the support, for example, 0.6 m.
  • the light generated from the optical system 1 is projected rearward and diagonally upward to realize short focus and large screen projection.
  • FIG. 12 is a graph showing the relative positional relationship between the reflecting surface R1 and the Y-direction intermediate image IMy and the X-direction intermediate image IMx in the optical system 1 according to the third embodiment, and is a graph shown from a direction perpendicular to the Y cross section. There is.
  • the Y-direction intermediate image IMy is distributed diagonally with respect to the Z direction from the vicinity of the coordinates (-2,0) to the vicinity of the coordinates (-19, -14.5).
  • the X-direction intermediate image IMx is distributed from the vicinity of the coordinates (0,0) toward the coordinates (-12.5, -15) at an angle to the Z direction and with the concave surface facing the reduced optical path side.
  • the reflecting surface R1 is distributed from the vicinity of the coordinates (9,0) toward the vicinity of the coordinates (1, -17) at an angle with respect to the Z direction and with the concave surface facing the reduced optical path side.
  • the reflecting surface R1 may have a shape in which the concave surface is directed toward the reduced optical path side along the intermediate imaging position in the X direction parallel to the X cross section of the light ray passing through the center in the longitudinal direction of the rectangular region. Good. As a result, image distortion on the screen SC can be suppressed.
  • FIG. 13 is a layout diagram showing the optical system 1 according to the fourth embodiment.
  • the optical system 1 has the same configuration as that of the first embodiment, but the first sub-optical system includes lens elements L1 to L3 and a prism PF, and the second sub-optical system including the prism PM is an image projection apparatus. In this case, the image is projected diagonally upward and backward.
  • the description overlapping with the first embodiment will be omitted.
  • the lens element L1 has a biconvex shape (surfaces 2 and 3).
  • the lens element L2 has a negative meniscus shape with a convex surface facing the enlargement side (surfaces 4 and 5).
  • the lens element L3 has a negative meniscus shape with a convex surface facing the enlargement side (surfaces 6 and 7).
  • the prism PF is formed of a transparent medium such as glass or synthetic resin, like the prism PM.
  • the prism PF includes a transmission surface P located on the reduction side, a transmission surface Q located on the expansion side, and three reflection surfaces K1, K2, and K3 located on the optical path between the transmission surface P and the transmission surface Q.
  • the transparent surface P has a free curved surface shape with a concave surface facing the reduction side (surface 9).
  • the reflective surface K1 has a free curved surface shape with concave surfaces facing the reduction side and the expansion side (surface 10).
  • the reflective surface K2 has a free curved surface shape with convex surfaces facing the reduction side and the expansion side (surface 11).
  • the reflective surface K3 has a free curved surface shape with concave surfaces facing the reduction side and the expansion side (surface 12).
  • the transparent surface Q has a free curved surface shape with a convex surface facing the reduction side (surface 13).
  • the prism PM has a transmission surface A located on the reduction side, a transmission surface B located on the expansion side, and two reflection surfaces R1 and R2 located on the optical path between the transmission surface A and the transmission surface B.
  • the transparent surface A has a free curved surface shape with a convex surface facing the reduction side (surface 14).
  • the reflective surface R1 has a free curved surface shape with concave surfaces facing the reduction side and the expansion side (surface 15).
  • the reflecting surface R2 has a free curved surface shape in which a convex surface is directed in the direction in which light rays incident on the reflecting surface R1 are reflected (surface 16).
  • the transparent surface B has a free curved surface shape with a convex surface facing the enlarged side (surface 17).
  • the aperture stop ST defines the range in which the light flux passes through the optical system 1, and is positioned between the reduced conjugate point and the above-mentioned intermediate imaging position.
  • the aperture stop ST is located between the lens element L3 and the transmission surface P of the prism PM (surface 8).
  • FIG. 14A is a Y cross-sectional view showing an optical path through which the main light beam passes in the optical system 1 according to the fourth embodiment
  • FIG. 14B is an X cross-sectional view when the optical system 1 is viewed from above.
  • FIG. 14B shows a main ray passing through the left end portion of the original image SA in the X direction and a main ray passing through the right end portion of the original image SA in the X direction for clarification.
  • Both main rays pass through the first sub-optical system, pass through the transmission surface A, enter the inside of the prism PM, are subsequently reflected by the reflection surface R1, and are formed in a broken line circle before reaching the reflection surface R2. They intersect each other in the indicated region CRx.
  • FIG. 15 is an explanatory diagram showing a usage mode of the image projection device using the optical system 1 according to the fourth embodiment.
  • the image projection device including the optical system 1 is arranged horizontally on a support base such as a table or on a floor.
  • the screen SC is installed vertically upward at a relatively short horizontal distance rearward from the support, for example, 0.2 m.
  • the light generated from the optical system 1 is projected obliquely backward and upward to realize short-focus and large-screen projection.
  • FIG. 16 is a graph showing the relative positional relationship between the reflecting surface R1 and the Y-direction intermediate image IMy and the X-direction intermediate image IMx in the optical system 1 according to the fourth embodiment, and is a graph shown from a direction perpendicular to the Y cross section. There is.
  • the Y-direction intermediate image IMy is distributed diagonally with respect to the Z direction from the vicinity of the coordinates (-1,0) to the vicinity of the coordinates (12, -5.7).
  • the X-direction intermediate image IMx is distributed from the vicinity of the coordinates (0,0) toward the coordinates (7.5, -6) at an angle to the Z direction and with the concave surface facing the reduced optical path side.
  • the reflecting surface R1 is oblique to the Z direction from the vicinity of the coordinates (-4.5, -0.5) toward the vicinity of the coordinates (-0.8, -6.8), and is concave on the reduced optical path side. It is distributed in a shape that faces.
  • the reflecting surface R1 may have a shape in which the concave surface is directed toward the reduced optical path side along the intermediate imaging position in the X direction parallel to the X cross section of the light ray passing through the center in the longitudinal direction of the rectangular region. Good. As a result, image distortion on the screen SC can be suppressed.
  • it is more effective to correct the chromatic aberration of magnification when the prism PF and the prism PM are composed of media having different refractive indexes and Abbe numbers than when they are composed of the same medium. ..
  • the optical system according to the present embodiment has a reduction conjugation point on the reduction side and an expansion conjugation point on the expansion side, and has an intermediate imaging position internally which is conjugated to the reduction conjugation point and the expansion conjugation point, respectively.
  • the reduced conjugate points have an imaging relationship in a rectangular region having a longitudinal direction and a lateral direction.
  • a first sub-optical system including an aperture stop ST that defines a range through which the luminous flux passes through the optical system 1 and It is provided on the enlarged side of the first sub-optical system and includes a second sub-optical system including a prism PM formed of a transparent medium.
  • the prism PM has a transmission surface A located on the reduction side, a transmission surface B located on the expansion side, and at least one reflection surface R1 located on the optical path between the transmission surface A and the transmission surface B.
  • the aperture stop ST is positioned between the reduced conjugate point and the intermediate imaging position.
  • a part or all of the intermediate images IMx and IMy formed at the intermediate imaging position are positioned inside the medium of the prism PM.
  • the reflecting surface R1 closest to the intermediate imaging position has a shape in which the concave surface is directed in the direction in which the light rays incident on the reflecting surface R1 are reflected.
  • the transparent surface B has a shape with a convex surface facing the enlarged side.
  • the position where the main light ray passing through the center of the X direction is reflected by the reflection surface R1 is determined.
  • the surface including the surface is defined as the Y cross section and the cross section perpendicular to the Y cross section is defined as the X cross section and viewed from a direction perpendicular to the Y cross section, a part of the plurality of main rays passing through the reduction conjugate point is described above.
  • the curvature shape of the reflecting surface R1 may be set so as to intersect on the optical path between the reflecting surface R1 and the transmitting surface B.
  • the second sub-optical system can be miniaturized, and short-focus and large-screen projection or imaging becomes possible.
  • the reflection surface R1 has a concave surface directed toward the reduced optical path side along an intermediate imaging position in the X direction parallel to the X cross section of a light ray passing through the center of the rectangular region in the longitudinal direction. It may have a shape.
  • the luminous flux passing through the first sub-optical system may include different intermediate imaging positions in the Y cross section and the X cross section.
  • the imaging magnification can be set individually in the X direction and the Y direction, and the degree of freedom in design is increased.
  • FIG. 19 is an explanatory diagram showing the definitions of the imaging magnifications MX and MY at the intermediate imaging position and the imaging magnifications MMX and MMY at the magnifying conjugate point.
  • the reduced conjugate point, the intermediate imaging position, and the enlarged conjugate point are optically conjugate with each other.
  • the length ⁇ Y1 at the reduced conjugate point, the length ⁇ Y2 at the intermediate imaging position in the Y direction, and the length ⁇ Y3 at the enlarged conjugate point are imaged at predetermined magnifications, respectively.
  • the imaging magnification MY at the intermediate imaging position in the Y direction parallel to the Y cross section with respect to the reduced conjugate point and the Y direction imaging magnification MMY at the enlarged conjugate point with respect to the reduced conjugate point are given by the following equations.
  • MY
  • MMY
  • the length ⁇ X1 at the reduced conjugate point, the length ⁇ X2 at the intermediate imaging position in the X direction, and the length ⁇ X3 at the enlarged conjugate point are imaged at predetermined magnifications, respectively. ..
  • the imaging magnification MX at the intermediate imaging position in the X direction parallel to the X cross section with respect to the reduced conjugate point and the X-direction imaging magnification MMX at the enlarged conjugate point with respect to the reduced conjugate point are given by the following equations.
  • MX
  • MMX
  • the optical system according to the present embodiment may satisfy the following condition (1a) or condition (1b). 0 ⁇
  • the optical system according to the present embodiment may satisfy the following condition (2).
  • the difference between the X-direction imaging magnification and the Y-direction imaging magnification on the screen SC can be minimized. If the condition (2) is not satisfied, a difference occurs between the X-direction imaging magnification and the Y-direction imaging magnification on the screen SC, and it becomes difficult to maintain appropriate optical performance.
  • the intermediate imaging position in the X direction may exist between the intermediate imaging position in the Y direction and the reflecting surface R1.
  • the difference between the X-direction imaging magnification and the Y-direction imaging magnification on the screen SC can be minimized.
  • the optical system according to the present embodiment may satisfy the following condition (3). ⁇ (
  • ): The absolute value of the optical path length OPLX and the absolute value of the optical path length OPLY for the three main rays passing through the standardized heights Y 0.0, 0.5, 1.0 at the reduction conjugate point, respectively. It is the total value obtained by adding the difference.
  • the difference between the X-direction imaging magnification and the Y-direction imaging magnification on the screen SC can be minimized. If it is less than the lower limit of the condition (3), the Y-direction imaging magnification becomes smaller than the X-direction imaging magnification on the screen SC, and it becomes difficult to appropriately reproduce the original image SA.
  • the optical system according to the present embodiment may satisfy the following condition (4).
  • condition (4) defines a range in which the original image SA is appropriately reproduced on the screen SC.
  • the optical system according to the present embodiment may satisfy the following condition (5).
  • the reflected light by the transmitting surface B when passing through the transmitting surface B can be suppressed, and the loss of the transmitted light can be reduced, so that the decrease in the amount of light of the projected image can be suppressed.
  • the transmission surface B may have the maximum effective area among the transmission surface A, the transmission surface B, and at least one reflection surface R1.
  • the aperture stop ST may be positioned between the reduction conjugate point and the transmission surface A.
  • the size of the prism PM can be reduced.
  • all of the plurality of main rays passing through the reduced conjugate point may intersect on the optical path between the reflection surface R1 and the transmission surface B.
  • a small prism can be used to reduce the size of the second sub-optical system, and to project or image a short focus and a large screen.
  • either one of the entrance pupil and the exit pupil corresponding to the aperture diaphragm may be positioned in the prism.
  • the entrance pupil is an image of an aperture diaphragm seen from the reduction side.
  • the exit pupil is an image of the aperture diaphragm seen from the enlarged side.
  • a small prism can be used to reduce the size of the second sub-optical system, and to project or image a short focus and a large screen.
  • the intermediate imaging position may be positioned away from the reflection surface R1 on the reduction side.
  • 20A to 20D are cross-sectional views in the Y direction showing various examples of the stepped structure of the prism PM.
  • the various lens elements and various prisms constituting the optical system 1 are generally attached to the inside of the lens barrel 50 by using an adhesive, metal fittings, or the like. At that time, a highly accurate mounting structure is required to faithfully reproduce various dimensions of the optical design.
  • the prism PM is provided with, for example, an end face PMa and an inside corner PMb as mounting reference.
  • the lens barrel 50 is provided with an end face 50a and an outside corner 50b corresponding to the shapes of the end face PMa and the inside corner PMb.
  • the end face PMa and the end face 50a are matched, and the inside corner PMb and the outside corner 50b are matched, so that the prism PM can be fixed to the lens barrel 50 with high accuracy and stability.
  • a stepped structure may be formed on the outer peripheral portion of the prism PM.
  • the prism can be attached to the outer housing with high accuracy and stability.
  • the optical system may be an imaging optical system.
  • the second sub-optical system can be miniaturized, and short-focus and large-screen projection or imaging becomes possible.
  • the unit of length in the table is "mm", and the unit of angle of view is "°".
  • the radius of curvature, the plane spacing, Nd (refractive index with respect to d line), vd (abbe number with respect to d line), N550 (refractive index at wavelength 550 nm), eccentric data one of the optical systems
  • the displacement amounts X, Y, Z of the prism surface with respect to the previous surface and the normal directions ⁇ , ⁇ , ⁇ of the prism surface with respect to the previous surface are shown.
  • the shape of the aspherical surface is defined by the following equation. As the aspherical surface coefficient, only the non-zero coefficient other than the cornic coefficient k is described.
  • z The amount of sag on the surface parallel to the z axis
  • c Curvature at the surface vertex
  • k Conic coefficient
  • a to H r 4th to 18th order coefficients.
  • the free-form surface shape is a local Cartesian coordinate system (x, y, z) whose origin is the surface vertex. It is defined by the following equation using.
  • z Amount of sag on the surface parallel to the z-axis
  • c the curvature at the surface vertex
  • k conic coefficient
  • C j is the coefficient of the monomial x m y n.
  • x ** i ** y ** j the coefficients of the free-form surface in the polynomial.
  • X ** 2 * Y indicates a free-form surface coefficient of a second-order term of x and a first-order term of y in a polynomial.
  • Tables 12 to 15 below show the corresponding values of the conditional expressions (1) to (4) in the numerical examples 1 to 4, respectively.
  • Table 16 shows the corresponding values of the conditional expression (5) in each of the numerical examples 1 to 4.
  • FIG. 21 is a block diagram showing an example of the image projection device according to the present disclosure.
  • the image projection device 100 includes the optical system 1 disclosed in the first embodiment, an image forming element 101, a light source 102, a control unit 110, and the like.
  • the image forming element 101 is composed of a liquid crystal, a DMD, or the like, and generates an image to be projected on the screen SC via the optical system 1.
  • the light source 102 is composed of an LED (light emitting diode), a laser, or the like, and supplies light to the image forming element 101.
  • the control unit 110 is composed of a CPU, an MPU, or the like, and controls the entire device and each component.
  • the optical system 1 may be configured as an interchangeable lens that can be detachably attached to the image projection device 100, or may be configured as an embedded lens integrated with the image projection device 100.
  • the above-mentioned image projection device 100 can project a short focus and a large screen with a small device by the optical system 1 according to the first embodiment.
  • FIG. 22 is a block diagram showing an example of the image pickup apparatus according to the present disclosure.
  • the image pickup apparatus 200 includes the optical system 1 disclosed in the first embodiment, the image pickup device 201, the control unit 210, and the like.
  • the image pickup device 201 is composed of a CCD (charge-coupled device) image sensor, a CMOS image sensor, or the like, and receives an optical image of an object OBJ formed by the optical system 1 and converts it into an electrical image signal.
  • the control unit 110 is composed of a CPU, an MPU, or the like, and controls the entire device and each component.
  • the optical system 1 may be configured as an interchangeable lens that can be detachably attached to the imaging device 200, or may be configured as an embedded lens integrated with the imaging device 200.
  • the optical system 1 enables short focus and large screen imaging with a small apparatus.
  • the present disclosure is applicable to image projection devices such as projectors and head-up displays, and imaging devices such as digital still cameras, digital video cameras, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras.
  • imaging devices such as digital still cameras, digital video cameras, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras.
  • the present disclosure is applicable to optical systems that require high image quality, such as projectors, digital still camera systems, and digital video camera systems.

Abstract

本開示に係る光学系は、開口絞りSTを含む第1サブ光学系と、プリズムPMを含む第2サブ光学系とを備える。プリズムPMは、縮小側に位置する透過面A、拡大側に位置する透過面B、および該透過面Aと該透過面Bとの間の光路上に位置する少なくとも1つの反射面R1を有する。中間結像位置に最も近接した反射面R1は、反射面R1へ入射する光線が反射する方向に凹面を向けた形状を有する。Y断面に対して垂直な方向から見たとき、縮小共役点を通過する複数の主光線の一部が反射面R1と透過面Bとの間の光路上で交差するように、かつ、X断面に対して垂直な方向から見たとき、縮小共役点を通過する複数の主光線の一部が反射面R1と透過面Bとの間の光路上で交差するように、反射面R1の曲率形状が設定される。

Description

光学系、画像投写装置および撮像装置
 本開示は、プリズムを用いた光学系に関する。また本開示は、こうした光学系を用いた画像投写装置および撮像装置に関する。
 特許文献1は、変倍光学系を開示しており、偏心配置したOff-Axial 光学素子を採用している。これにより変倍光学系内の光路を所望の形状に屈曲し、変倍光学系の全長を短縮している。
 特許文献2は、複数の偏心プリズムを含む撮像光学系を開示する。詳細には、絞りの両側にそれぞれ回転非対称な反射面を持つ2つの偏心プリズムが配置され、絞りより前の偏心プリズム10の媒質と、絞りより後の偏心プリズム20の媒質とは光学的性質が異なる。
特開平10-20196号公報 特開2003-84200号公報 特許第6390882号公報
 本開示は、小型のプリズムを用いて短焦点かつ大画面の投写または撮像が可能になる光学系を提供する。また本開示は、こうした結像光学系を用いた画像投写装置および撮像装置を提供する。
 本開示の一態様は、縮小側の縮小共役点および拡大側の拡大共役点を有し、該縮小共役点および該拡大共役点とそれぞれ共役である中間結像位置を内部に有する光学系に関する。前記縮小共役点は、長手方向及び短手方向を有する矩形領域において結像関係を有する。前記光学系は、前記光学系を光束が通過する範囲を規定する開口絞りを含む第1サブ光学系と、該第1サブ光学系より拡大側に設けられ、透明な媒質で形成されたプリズムを含む第2サブ光学系とを備える。前記プリズムは、縮小側に位置する第1透過面、拡大側に位置する第2透過面、および該第1透過面と該第2透過面との間の光路上に位置する少なくとも1つの反射面を有する。前記開口絞りは、前記縮小共役点と前記中間結像位置との間に位置決めされる。前記中間結像位置に形成される中間像の一部または全部が、前記プリズムの媒質内部に位置決めされる。前記中間結像位置に最も近接した第1反射面は、前記第1反射面へ入射する光線が反射する方向に凹面を向けた形状を有し、前記第2透過面は、拡大側に凸面を向けた形状を有する。前記縮小共役点の前記矩形領域の長手方向をX方向、短手方向をY方向、法線方向をZ方向としたとき、X方向の中心を通る主光線が前記第1反射面で反射する位置を含む面をY断面とし、該Y断面に対して垂直な断面をX断面として、Y断面に対して垂直な方向から見たとき、前記縮小共役点を通過する複数の主光線の一部が前記第1反射面と前記第2透過面との間の光路上で交差するように、かつ、X断面に対して垂直な方向から見たとき、前記縮小共役点を通過する複数の主光線の一部が前記第1反射面と前記第2透過面との間の光路上で交差するように、前記第1反射面の曲率形状が設定される。
 また本開示の他の一態様に係る画像投写装置は、上記光学系と、該光学系を経由してスクリーンに投写する画像を生成する画像形成素子と、を備える。
 また本開示の他の一態様に係る撮像装置は、上記光学系と、該光学系が形成する光学像を受光して電気的な画像信号に変換する撮像素子と、を備える。
 本開示に係る光学系によると、Y断面およびX断面の両方に関して、複数の主光線がプリズムの第1反射面と第2透過面との間の光路上で交差している。そのため小型のプリズムを用いて短焦点かつ大画面の投写または撮像が可能になる。
実施例1に係る光学系を示す配置図 図2Aは、実施例1に係る光学系において主光線が通過する光路を示すY断面図。図2Bは、光学系を上方から見たときのX断面図 実施例1に係る光学系を用いた画像投写装置の使用態様を示す説明図 実施例1に係る光学系1において反射面とY方向中間像およびX方向中間像との相対位置関係を示すグラフ 実施例2に係る光学系を示す配置図 図6Aは、実施例2に係る光学系において主光線が通過する光路を示すY断面図。図6Bは、光学系を上方から見たときのX断面図 実施例2に係る光学系を用いた画像投写装置の使用態様を示す説明図 実施例2に係る光学系において反射面とY方向中間像およびX方向中間像との相対位置関係を示すグラフ 実施例3に係る光学系を示す配置図 図10Aは、実施例3に係る光学系において主光線が通過する光路を示すY断面図。図10Bは、光学系を上方から見たときのX断面図 実施例3に係る光学系を用いた画像投写装置の使用態様を示す説明図 実施例3に係る光学系において反射面とY方向中間像およびX方向中間像との相対位置関係を示すグラフ 実施例4に係る光学系を示す配置図 図14Aは、実施例4に係る光学系において主光線が通過する光路を示すY断面図。図14Bは、光学系を上方から見たときのX断面図 実施例4に係る光学系を用いた画像投写装置の使用態様を示す説明図 実施例4に係る光学系において反射面とY方向中間像およびX方向中間像との相対位置関係を示すグラフ 実施例1に係るプリズムPMの3次元形状を概略的に示す図 縮小共役点での画像領域の一例を示す説明図である。 中間結像位置における結像倍率および拡大共役点における結像倍率の定義を示す説明図である。 プリズムの段付き構造の各種例を示すY方向断面図である。 本開示に係る画像投写装置の一例を示すブロック図 本開示に係る撮像装置の一例を示すブロック図
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、あるいは実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、出願人は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものでない。
 以下に、本開示に係る光学系の各実施例について説明する。各実施例では、光学系が、画像信号に基づき液晶やDMD(デジタルマイクロミラーデバイス)等の画像形成素子によって入射光を空間変調した原画像SAの画像光を、スクリーンに投写するプロジェクタ(画像投写装置の一例)に用いられる場合について説明する。即ち、本開示に係る光学系は、拡大側の延長線上に図示しないスクリーンを配置して、縮小側に配置された画像形成素子上の原画像Sを拡大してスクリーンに投写するために利用できる。ただし、被投写面はスクリーンに限定するものではない。住宅や店舗、または移動交通手段に用いられる車両や機内の壁や天井や床、窓なども被投写面に含む。
 また、本開示に係る光学系は、拡大側の延長線上に位置する物体から放射される光を集光し、縮小側に配置された撮像素子の撮像面に物体の光学像を形成するためにも利用できる。
(実施形態1)
 以下、図1~図20を用いて本開示の実施形態1に係る光学系について説明する。
(実施例1)
 図1は、実施例1に係る光学系1を示す配置図である。光学系1は、開口絞りSTを含む第1サブ光学系と、プリズムPMを含む第2サブ光学系とを備える。図1において、左側に縮小側の結像位置である縮小共役点が位置し、右側に拡大側の結像位置である拡大共役点が位置する。第2サブ光学系は、第1サブ光学系より拡大側に設けられる。
 図18は、縮小共役点での画像領域の一例を示す説明図である。縮小共役点での画像領域は、長手方向(X方向)及び短手方向(Y方向)を有する矩形領域として定義され、拡大共役点での画像領域と光学的に共役である結像関係を有する。光線は、この矩形領域の法線方向(Z方向)に沿って進行する。この矩形領域は、一例として、3:2,4:3,16:9,256:135などのアスペクト比を有し、画像投写装置の場合は画像形成素子の画像表示領域に相当し、撮像装置の場合は撮像素子の撮像領域に相当する。
 また、光学系1の内部には、縮小共役点および拡大共役点とそれぞれ共役である中間結像位置が位置する。この中間結像位置は、図1においてY方向中間像IMyとして示しているが、X方向中間像IMxは図示しておらず、図4に関連して後述する。
 第1サブ光学系は縮小側から拡大側へと順に、光学素子PAと、レンズ素子L1~L14とを含む。光学素子PAは、TIR(total internal reflection)プリズム、色分解、色合成用のプリズム、光学フィルタ、平行平板ガラス、水晶ローパスフィルタ、赤外カットフィルタ等の光学素子を表している。光学素子PAの縮小側端面には、原画像SAが設置される(面1)。なお面番号については、後述する数値実施例を参照する。
 光学素子PAは、平行かつ平坦な2つの透過面を有する(面2,3)。レンズ素子L1は、縮小側に凸面を向けた正メニスカス形状を有する(面4,5)。レンズ素子L2は、縮小側に凸面を向けた負メニスカス形状を有する(面6,7)。レンズ素子L3は、両凸形状を有する(面7,8)。レンズ素子L4は、拡大側に凸面を向けた負メニスカス形状を有する(面8,9)。レンズ素子L2~L4は、互いに接合されて複合レンズを構成する。レンズ素子L5は、両凹形状を有する(面10,11)。レンズ素子L6は、両凸形状を有する(面11,12)。レンズ素子L5,L6は、互いに接合されて複合レンズを構成する。
 レンズ素子L7は、両凸形状を有する(面14,15)。レンズ素子L8は、拡大側に凸面を向けた負メニスカス形状を有する(面16,17)。レンズ素子L9は、拡大側に凸面を向けた正メニスカス形状を有する(面17,18)。レンズ素子L8,L9は、互いに接合されて複合レンズを構成する。レンズ素子L10は、両凸形状を有する(面19,20)。レンズ素子L11は、両凸形状を有する(面21,22)。レンズ素子L12は、両凹形状を有する(面22,23)。レンズ素子L11,L12は、互いに接合されて複合レンズを構成する。レンズ素子L13は、縮小側に凸面を向けた負メニスカス形状を有する(面24,25)。レンズ素子L14は、拡大側に凸面を向けた正メニスカス形状を有する(面26,27)。
 図17は、実施例1に係るプリズムPMの3次元形状を概略的に示しており、図17Aは背面図、図17Bは正面図、図17Cは上面図、図17Dは底面図、図17Eは側面図である。
 第2サブ光学系は、透明な媒質、例えば、ガラス、合成樹脂などで形成されたプリズムPMを含む。プリズムPMは、縮小側に位置する透過面Aと、拡大側に位置する透過面Bと、透過面Aと透過面Bとの間の光路上に位置する2つの反射面R1,R2を有する。透過面Aは、縮小側に凹面を向けた自由曲面形状を有する(面28)。反射面R1は、反射面R1へ入射する光線が反射する方向に凹面を向けた自由曲面形状を有する(面29)。反射面R2は、平面形状を有する(面30)。透過面Bは、拡大側に凸面を向けた自由曲面形状を有する(面31)。
 開口絞りSTは、光学系1を光束が通過する範囲を規定するものであり、縮小共役点と上述した中間結像位置との間に位置決めされる。一例として、開口絞りSTは、レンズ素子L6とレンズ素子L7との間に位置する(面13)。
 中間結像位置に形成される中間像、即ち、Y方向中間像IMyおよびX方向中間像IMxの一部または全部は、プリズムPMの媒質内部に位置決めされる。
 また、前記縮小共役点の前記矩形領域の長手方向をX方向、短手方向をY方向、法線方向をZ方向としたとき、X方向の中心を通る主光線が反射面R1で反射する位置を含む面をY断面とし、該Y断面に対して垂直な断面をX断面として、第1サブ光学系を通過する光束は、Y断面とX断面とで異なる中間結像位置を有し、即ち、Y方向中間像IMyとX方向中間像IMxは異なる位置に形成される。これによりゴミや汚れなどの外乱による画質への影響を低減できる。
 図2Aは、実施例1に係る光学系1において主光線が通過する光路を示すY断面図であり、図2(b)は、光学系1を上方から見たときのX断面図である。なお、図2Bでは、光学系1の中間部分を省略し、プリズムPM内部の光路のみを概略的に示している。
 図2Aでは、明確化のために、原画像SAのX方向の中心を通りY方向の最下部(縮小共役点での規格化高さY=0.0)を通過する主光線と、原画像SAのX方向の中心を通りY方向の最上部(縮小共役点での規格化高さY=1.0)を通過する主光線とを示す。両者の主光線は、第1サブ光学系を通過して、透過面Aを通ってプリズムPMの内部に入り、続いて反射面R1によって反射され、反射面R2に到達する手前で、破線円で示す領域CRyにおいて互いに交差している。
 図2Bでは、明確化のために、原画像SAのX方向左端部を通過する主光線と、原画像SAのX方向右端部を通過する主光線とを示す。両者の主光線は、第1サブ光学系を通過して、透過面Aを通ってプリズムPMの内部に入り、続いて反射面R1によって反射され、反射面R2に到達する手前で、破線円で示す領域CRxにおいて互いに交差している。
 本開示では、図2Aに示すように、Y断面に対して垂直な方向から見たとき、縮小共役点を通過する複数の主光線の一部が反射面R1と透過面Bとの間の光路上で交差するように、かつ、図2Bに示すように、X断面に対して垂直な方向から見たとき、縮小共役点を通過する複数の主光線の一部が反射面R1と透過面Bとの間の光路上で交差するように、反射面R1の自由曲面の曲率形状が設定される。こうした構成により、小型のプリズムを用いて、第2サブ光学系を小型化し、かつ、短焦点かつ大画面の投写または撮像が可能になる。
 図3は、実施例1に係る光学系1を用いた画像投写装置の使用態様を示す説明図である。光学系1を含む画像投写装置は、テーブルなどの支持台の上に、または床の上に水平に配置される。スクリーンSCが、支持台から比較的短い水平距離、例えば、0.5mだけ離れた位置に、垂直上方に設置される。光学系1から発生した光は、前方斜め上方に向けて投写され、短焦点かつ大画面の投写を実現する。
 図4は、実施例1に係る光学系1において反射面R1とY方向中間像IMyおよびX方向中間像IMxとの相対位置関係を示すグラフであり、Y断面に対して垂直な方向から見ている。横軸は、原画像SAのX方向中心を通り、Y方向最下部の光線が形成するIMxを基準としたZ方向の相対位置(単位mm)であり、縦軸は、原画像SAのX方向中心を通り、Y方向最下部の光線が形成するIMxを基準としたY方向の相対位置(単位mm)である。菱形マークは、X方向中間像IMxを示し、四角形マークは、Y方向中間像IMyを示し、三角形マークは、反射面R1の湾曲形状を示す。X方向中間像IMxは、光学系1を通過する光束がX方向にのみ集光し、Y方向には集光していない状態である。Y方向中間像IMyは、光学系1を通過する光束がY方向にのみ集光し、X方向には集光していない状態である。
 グラフを見ると、Y方向中間像IMyは、座標(-2.5,0)付近から座標(-19.5,-14.5)付近に向けてZ方向に対して斜めに分布している。X方向中間像IMxは、座標(0,0)付近から座標(-13,-15)付近に向けてZ方向に対して斜めに、かつ、縮小光路側に凹面を向けた形状で分布している。反射面R1は、座標(9,0)付近から座標(0.5,-17)付近に向けてZ方向に対して斜めに、かつ、縮小光路側に凹面を向けた形状で分布している。
 本開示では、反射面R1は、前記矩形領域の長手方向の中心を通る光線のX断面に平行なX方向の中間結像位置に沿って縮小光路側に凹面を向けた形状を有してもよい。これによりスクリーンSC上での画像歪みを抑制できる。
(実施例2)
 図5は、実施例2に係る光学系1を示す配置図である。この光学系1は、実施例1と同様な構成を有するが、第1サブ光学系は、レンズ素子L1~L13を含み、プリズムPMを含む第2サブ光学系は、画像投写装置の場合、前方斜め下方に向けて投写している。以下、実施例1と重複する説明は省略する。
 レンズ素子L1は、縮小側に凸面を向けた正メニスカス形状を有する(面4,5)。レンズ素子L2は、縮小側に凸面を向けた負メニスカス形状を有する(面6,7)。レンズ素子L3は、両凸形状を有する(面7,8)。レンズ素子L4は、拡大側に凸面を向けた負メニスカス形状を有する(面8,9)。レンズ素子L2~L4は、互いに接合されて複合レンズを構成する。レンズ素子L5は、両凹形状を有する(面10,11)。レンズ素子L6は、両凸形状を有する(面11,12)。レンズ素子L5,L6は、互いに接合されて複合レンズを構成する。
 レンズ素子L7は、両凸形状を有する(面14,15)。レンズ素子L8は、拡大側に凸面を向けた負メニスカス形状を有する(面16,17)。レンズ素子L9は、両凸形状を有する(面18,19)。レンズ素子L10は、両凸形状を有する(面20,21)。レンズ素子L11は、両凹形状を有する(面21,22)。レンズ素子L10,L11は、互いに接合されて複合レンズを構成する。レンズ素子L12は、縮小側に凸面を向けた負メニスカス形状を有する(面23,24)。レンズ素子L13は、両凸形状を有する(面25,26)。
 プリズムPMは、縮小側に位置する透過面Aと、拡大側に位置する透過面Bと、透過面Aと透過面Bとの間の光路上に位置する2つの反射面R1,R2を有する。透過面Aは、縮小側に凹面を向けた自由曲面形状を有する(面27)。反射面R1は、反射面R1へ入射する光線が反射する方向に凹面を向けた自由曲面形状を有する(面28)。反射面R2は、平面形状を有する(面29)。透過面Bは、拡大側に凸面を向けた自由曲面形状を有する(面30)。
 図6Aは、実施例2に係る光学系1において主光線が通過する光路を示すY断面図であり、図6Bは、光学系1を上方から見たときのX断面図である。
 図6Aでは、明確化のために、原画像SAのX方向の中心を通りY方向の最下部(縮小共役点での規格化高さY=0.0)を通過する主光線と、原画像SAのX方向の中心を通りY方向の最上部(縮小共役点での規格化高さY=1.0)を通過する主光線とを示す。両者の主光線は、第1サブ光学系を通過して、透過面Aを通ってプリズムPMの内部に入り、続いて反射面R1によって反射され、反射面R2に到達する手前で、破線円で示す領域CRyにおいて互いに交差している。
 図6Bでは、明確化のために、原画像SAのX方向左端部を通過する主光線と、原画像SAのX方向右端部を通過する主光線とを示す。両者の主光線は、第1サブ光学系を通過して、透過面Aを通ってプリズムPMの内部に入り、続いて反射面R1によって反射され、反射面R2に到達する手前で、破線円で示す領域CRxにおいて互いに交差している。
 図7は、実施例2に係る光学系1を用いた画像投写装置の使用態様を示す説明図である。光学系1を含む画像投写装置は、テーブルなどの支持台の上に、または床の上に水平に配置される。スクリーンSCが、支持台から比較的短い垂直距離、例えば、0.3mだけ離れた位置に水平前方に設置される。光学系1から発生した光は、前方斜め下方に向けて投写され、短焦点かつ大画面の投写を実現する。
 図8は、実施例2に係る光学系1において反射面R1とY方向中間像IMyおよびX方向中間像IMxとの相対位置関係を示すグラフであり、Y断面に対して垂直な方向から見ている。
 グラフを見ると、Y方向中間像IMyは、座標(-3.5,0)付近から座標(-17,-10)付近に向けてZ方向に対して斜めに分布している。X方向中間像IMxは、座標(0,0)付近から座標(-12,-10)付近に向けてZ方向に対して斜めに、かつ、縮小光路側に凹面を向けた形状で分布している。反射面R1は、座標(5.5,0)付近から座標(-2,-11)付近に向けてZ方向に対して斜めに、かつ、縮小光路側に凹面を向けた形状で分布している。
 本開示では、反射面R1は、前記矩形領域の長手方向の中心を通る光線のX断面に平行なX方向の中間結像位置に沿って縮小光路側に凹面を向けた形状を有してもよい。これによりスクリーンSC上での画像歪みを抑制できる。
(実施例3)
 図9は、実施例3に係る光学系1を示す配置図である。この光学系1は、実施例1と同様な構成を有するが、第1サブ光学系は、レンズ素子L1~L14を含み、プリズムPMを含む第2サブ光学系は、画像投写装置の場合、後方斜め上方に向けて投写している。以下、実施例1と重複する説明は省略する。
 レンズ素子L1は、縮小側に凸面を向けた正メニスカス形状を有する(面4,5)。レンズ素子L2は、縮小側に凸面を向けた負メニスカス形状を有する(面6,7)。レンズ素子L3は、両凸形状を有する(面7,8)。レンズ素子L4は、拡大側に凸面を向けた負メニスカス形状を有する(面8,9)。レンズ素子L2~L4は、互いに接合されて複合レンズを構成する。レンズ素子L5は、両凹形状を有する(面10,11)。レンズ素子L6は、両凸形状を有する(面11,12)。レンズ素子L5,L6は、互いに接合されて複合レンズを構成する。
 レンズ素子L7は、両凸形状を有する(面14,15)。レンズ素子L8は、拡大側に凸面を向けた負メニスカス形状を有する(面16,17)。レンズ素子L9は、拡大側に凸面を向けた正メニスカス形状を有する(面17,18)。レンズ素子L8,L9は、互いに接合されて複合レンズを構成する。レンズ素子L10は、両凸形状を有する(面19,20)。レンズ素子L11は、両凸形状を有する(面21,22)。レンズ素子L12は、両凹形状を有する(面22,23)。レンズ素子L11,L12は、互いに接合されて複合レンズを構成する。レンズ素子L13は、縮小側に凸面を向けた負メニスカス形状を有する(面24,25)。レンズ素子L14は、拡大側に凸面を向けた正メニスカス形状を有する(面26,27)。
 プリズムPMは、縮小側に位置する透過面Aと、拡大側に位置する透過面Bと、透過面Aと透過面Bとの間の光路上に位置する1つの反射面R1を有する。透過面Aは、縮小側に凹面を向けた自由曲面形状を有する(面28)。反射面R1は、反射面R1へ入射する光線が反射する方向に凹面を向けた自由曲面形状を有する(面29)。透過面Bは、拡大側に凸面を向けた自由曲面形状を有する(面30)。
 図10Aは、実施例3に係る光学系1において主光線が通過する光路を示すY断面図であり、図10Bは、光学系1を上方から見たときのそのX断面図である。
 図10Aでは、明確化のために、原画像SAのX方向の中心を通りY方向の最下部(縮小共役点での規格化高さY=0.0)を通過する主光線と、原画像SAのX方向の中心を通りY方向の最上部(縮小共役点での規格化高さY=1.0)を通過する主光線とを示す。両者の主光線は、第1サブ光学系を通過して、透過面Aを通ってプリズムPMの内部に入り、続いて反射面R1によって反射され、透過面Bに到達する手前で、破線円で示す領域CRyにおいて互いに交差している。
 図10Bでは、明確化のために、原画像SAのX方向左端部を通過する主光線と、原画像SAのX方向右端部を通過する主光線とを示す。両者の主光線は、第1サブ光学系を通過して、透過面Aを通ってプリズムPMの内部に入り、続いて反射面R1によって反射され、透過面Bに到達する手前で、破線円で示す領域CRxにおいて互いに交差している。
 図11は、実施例3に係る光学系1を用いた画像投写装置の使用態様を示す説明図である。光学系1を含む画像投写装置は、テーブルなどの支持台の上に、または床の上に水平に配置される。スクリーンSCが、支持台から後方側に比較的短い水平距離、例えば、0.6mだけ離れた位置に、垂直上方に設置される。光学系1から発生した光は、後方に斜め上方に向けて投写され、短焦点かつ大画面の投写を実現する。
 図12は、実施例3に係る光学系1において反射面R1とY方向中間像IMyおよびX方向中間像IMxとの相対位置関係を示すグラフであり、Y断面に対して垂直な方向から見ている。
 グラフを見ると、Y方向中間像IMyは、座標(-2,0)付近から座標(-19,-14.5)付近に向けてZ方向に対して斜めに分布している。X方向中間像IMxは、座標(0,0)付近から座標(-12.5,-15)付近に向けてZ方向に対して斜めに、かつ、縮小光路側に凹面を向けた形状で分布している。反射面R1は、座標(9,0)付近から座標(1,-17)付近に向けてZ方向に対して斜めに、かつ、縮小光路側に凹面を向けた形状で分布している。
 本開示では、反射面R1は、前記矩形領域の長手方向の中心を通る光線のX断面に平行なX方向の中間結像位置に沿って縮小光路側に凹面を向けた形状を有してもよい。これによりスクリーンSC上での画像歪みを抑制できる。
(実施例4)
 図13は、実施例4に係る光学系1を示す配置図である。この光学系1は、実施例1と同様な構成を有するが、第1サブ光学系は、レンズ素子L1~L3およびプリズムPFを含み、プリズムPMを含む第2サブ光学系は、画像投写装置の場合、後方斜め上方に向けて投写している。以下、実施例1と重複する説明は省略する。
 レンズ素子L1は、両凸形状を有する(面2,3)。レンズ素子L2は、拡大側に凸面を向けた負メニスカス形状を有する(面4,5)。レンズ素子L3は、拡大側に凸面を向けた負メニスカス形状を有する(面6,7)。
 プリズムPFは、プリズムPMと同様に、透明な媒質、例えば、ガラス、合成樹脂などで形成される。プリズムPFは、縮小側に位置する透過面Pと、拡大側に位置する透過面Qと、透過面Pと透過面Qとの間の光路上に位置する3つの反射面K1,K2,K3を有する。透過面Pは、縮小側に凹面を向けた自由曲面形状を有する(面9)。反射面K1は、縮小側および拡大側に凹面を向けた自由曲面形状を有する(面10)。反射面K2は、縮小側および拡大側に凸面を向けた自由曲面形状を有する(面11)。反射面K3は、縮小側および拡大側に凹面を向けた自由曲面形状を有する(面12)。透過面Qは、縮小側に凸面を向けた自由曲面形状を有する(面13)。
 プリズムPMは、縮小側に位置する透過面Aと、拡大側に位置する透過面Bと、透過面Aと透過面Bとの間の光路上に位置する2つの反射面R1,R2を有する。透過面Aは、縮小側に凸面を向けた自由曲面形状を有する(面14)。反射面R1は、縮小側および拡大側に凹面を向けた自由曲面形状を有する(面15)。反射面R2は、反射面R1へ入射する光線が反射する方向に凸面を向けた自由曲面形状を有する(面16)。透過面Bは、拡大側に凸面を向けた自由曲面形状を有する(面17)。
 開口絞りSTは、光学系1を光束が通過する範囲を規定するものであり、縮小共役点と上述した中間結像位置との間に位置決めされる。一例として、開口絞りSTは、レンズ素子L3とプリズムPMの透過面Pとの間に位置する(面8)。
 図14Aは、実施例4に係る光学系1において主光線が通過する光路を示すY断面図であり、図14Bは、光学系1を上方から見たときのX断面図である。
 図14Aでは、明確化のために、原画像SAのX方向の中心を通りY方向の最下部(縮小共役点での規格化高さY=0.0)を通過する主光線と、原画像SAのX方向の中心を通りY方向の最上部(縮小共役点での規格化高さY=1.0)を通過する主光線とを示す。両者の主光線は、第1サブ光学系を通過して、透過面Aを通ってプリズムPMの内部に入り、続いて反射面R1によって反射され、反射面R2に到達する手前で、破線円で示す領域CRyにおいて互いに交差している。
 図14Bでは、明確化のために、原画像SAのX方向左端部を通過する主光線と、原画像SAのX方向右端部を通過する主光線とを示す。両者の主光線は、第1サブ光学系を通過して、透過面Aを通ってプリズムPMの内部に入り、続いて反射面R1によって反射され、反射面R2に到達する手前で、破線円で示す領域CRxにおいて互いに交差している。
 図15は、実施例4に係る光学系1を用いた画像投写装置の使用態様を示す説明図である。光学系1を含む画像投写装置は、テーブルなどの支持台の上に、または床の上に水平に配置される。スクリーンSCが、支持台から後方側に比較的短い水平距離、例えば、0.2mだけ離れた位置に、垂直上方に設置される。光学系1から発生した光は、後方斜め上方に向けて投写され、短焦点かつ大画面の投写を実現する。
 図16は、実施例4に係る光学系1において反射面R1とY方向中間像IMyおよびX方向中間像IMxとの相対位置関係を示すグラフであり、Y断面に対して垂直な方向から見ている。
 グラフを見ると、Y方向中間像IMyは、座標(-1,0)付近から座標(12,-5.7)付近に向けてZ方向に対して斜めに分布している。X方向中間像IMxは、座標(0,0)付近から座標(7.5,-6)付近に向けてZ方向に対して斜めに、かつ、縮小光路側に凹面を向けた形状で分布している。反射面R1は、座標(-4.5,-0.5)付近から座標(-0.8,-6.8)付近に向けてZ方向に対して斜めに、かつ、縮小光路側に凹面を向けた形状で分布している。
 本開示では、反射面R1は、前記矩形領域の長手方向の中心を通る光線のX断面に平行なX方向の中間結像位置に沿って縮小光路側に凹面を向けた形状を有してもよい。これによりスクリーンSC上での画像歪みを抑制できる。実施例4に係る光学系1において、プリズムPFとプリズムPMは、異なる屈折率、アッベ数を有する媒質で構成される方が、同じ媒質で構成する場合と比べて倍率色収差補正により効果的である。
 次に、本実施形態に係る光学系が満足し得る条件を説明する。なお、各実施例に係る光学系に対して、複数の条件が規定されるが、これら複数の条件すべてを満足してもよく、あるいは個別の条件を満足することにより、それぞれ対応する効果が得られる。
 本実施形態に係る光学系は、縮小側の縮小共役点および拡大側の拡大共役点を有し、該縮小共役点および該拡大共役点とそれぞれ共役である中間結像位置を内部に有する光学系1であって、
 前記縮小共役点は、長手方向及び短手方向を有する矩形領域において結像関係を有し、
 前記光学系1を光束が通過する範囲を規定する開口絞りSTを含む第1サブ光学系と、
 該第1サブ光学系より拡大側に設けられ、透明な媒質で形成されたプリズムPMを含む第2サブ光学系とを備え、
 前記プリズムPMは、縮小側に位置する透過面A、拡大側に位置する透過面B、および該透過面Aと該透過面Bとの間の光路上に位置する少なくとも1つの反射面R1を有し、
 前記開口絞りSTは、前記縮小共役点と前記中間結像位置との間に位置決めされ、
 前記中間結像位置に形成される中間像IMx,IMyの一部または全部が、前記プリズムPMの媒質内部に位置決めされ、
 前記中間結像位置に最も近接した反射面R1は、前記反射面R1へ入射する光線が反射する方向に凹面を向けた形状を有し、
 前記透過面Bは、拡大側に凸面を向けた形状を有し、
 前記縮小共役点の前記矩形領域の長手方向をX方向、短手方向をY方向、法線方向をZ方向としたとき、X方向の中心を通る主光線が前記反射面R1で反射する位置を含む面をY断面とし、該Y断面に対して垂直な断面をX断面として、Y断面に対して垂直な方向から見たとき、前記縮小共役点を通過する複数の主光線の一部が前記反射面R1と前記透過面Bとの間の光路上で交差するように、かつ、X断面に対して垂直な方向から見たとき、前記縮小共役点を通過する複数の主光線の一部が前記反射面R1と前記透過面Bとの間の光路上で交差するように、前記反射面R1の曲率形状が設定されてもよい。
 こうした構成によると、Y断面およびX断面の両方に関して、複数の主光線がプリズムの反射面R1と透過面Bとの間の光路上で交差している。そのため小型のプリズムを用いて、第2サブ光学系を小型化し、かつ、短焦点かつ大画面の投写または撮像が可能になる。
 本実施形態に係る光学系は、前記反射面R1は、前記矩形領域の長手方向の中心を通る光線のX断面に平行なX方向の中間結像位置に沿って縮小光路側に凹面を向けた形状を有してもよい。
 こうした構成によると、スクリーンSC上での画像歪みを抑制できる。
 本実施形態に係る光学系では、前記第1サブ光学系を通過する光束は、Y断面とX断面とで異なる中間結像位置を含んでもよい。
 こうした構成によると、結像倍率をX方向とY方向とで個別に設定でき、設計の自由度が高くなる。
 図19は、中間結像位置における結像倍率MX,MYおよび拡大共役点における結像倍率MMX,MMYの定義を示す説明図である。本開示に係る光学系1において、縮小共役点、中間結像位置および拡大共役点は、互いに光学的に共役関係にある。
 Y方向に関して、縮小共役点での長さΔY1、Y方向の中間結像位置での長さΔY2、および拡大共役点での長さΔY3は、予め定めた倍率でそれぞれ結像される。この場合、縮小共役点に対するY断面に平行なY方向の中間結像位置における結像倍率MY、および縮小共役点に対する拡大共役点におけるY方向結像倍率MMYは、下記の式で与えられる。
   MY=|ΔY2/ΔY1|
   MMY=|ΔY3/ΔY1|
 X方向に関しても同様に、縮小共役点での長さΔX1、X方向の中間結像位置での長さΔX2、および拡大共役点での長さΔX3は、予め定めた倍率でそれぞれ結像される。この場合、縮小共役点に対するX断面に平行なX方向の中間結像位置における結像倍率MX、および縮小共役点に対する拡大共役点におけるX方向結像倍率MMXは、下記の式で与えられる。
   MX=|ΔX2/ΔX1|
   MMX=|ΔX3/ΔX1|
 本実施形態に係る光学系は、以下の条件(1a)または条件(1b)を満足してもよい。
 0<|MX|<10 ・・・(1a)
 0<|MY|<10 ・・・(1b)
ここで、
 MX:縮小共役点に対するX断面に平行なX方向の中間結像位置における結像倍率
 MY:縮小共役点に対するY断面に平行なY方向の中間結像位置における結像倍率
である。
 こうした構成によると、中間結像位置を適切に設定でき、第2サブ光学系を小型に維持しながら、スクリーンSC上での画像歪みを抑制できる。さらに、上記範囲においては、スクリーンSC上の、X方向結像倍率とY方向結像倍率の差を極力小さくできる。条件(1a)または条件(1b)の上限を超えると、第2サブ光学系内に形成する中間結像が大きくなり、小型化を維持することが困難となる。なお、中間結像位置における結像倍率MX、MYは縮小共役点での規格化高さY=0からY=1に向けて徐々に小さくなるように設定することが望ましい。そうすることで、中間結像位置の像面湾曲をアンダー側(縮小光路側)に設定でき、スクリーンSC上の像面湾曲を良好な範囲に抑えることが可能となる。 
 さらに、以下の条件(1c)または(1d)を満足することで、上記効果をより奏功することができる。
 0.5<|MX|<7.5 ・・・(1c)
 0.5<|MY|<7.5 ・・・(1d)
 さらに、以下の条件(1e)または(1f)を満足することで、上記効果をより奏功することができる。
 0.6<|MX|<5.0 ・・・(1e)
 0.6<|MY|<5.0 ・・・(1f)
 本実施形態に係る光学系は、以下の条件(2)を満足してもよい。
 |MX|>|MY| ・・・(2)
ここで、
 MX:前記X方向結像倍率
 MY:前記Y方向結像倍率
である。
 こうした構成によると、スクリーンSC上のX方向結像倍率とY方向結像倍率の差を極力小さくできる。条件(2)を満たさない場合、スクリーンSC上にてX方向結像倍率とY方向結像倍率に差が生じ、適切な光学性能を維持することが困難となる。
 本実施形態に係る光学系は、前記Y方向の中間結像位置と前記反射面R1との間に前記X方向の中間結像位置が存在してもよい。
 こうした構成によると、スクリーンSC上のX方向結像倍率とY方向結像倍率の差を極力小さくできる。
 本実施形態に係る光学系は、以下の条件(3)を満足してもよい。
 Σ(|OPLY|-|OPLX|)>0 ・・・(3)
ここで、
 OPLX:前記X方向の中間結像位置と前記反射面R1との間の光路長
 OPLY:前記Y方向の中間結像位置と前記反射面R1との間の光路長
 Σ(|OPLY|-|OPLX|):縮小共役点での規格化高さY=0.0,0.5,1.0をそれぞれ通過する3つの主光線について、光路長OPLXの絶対値と光路長OPLYの絶対値との差を加算した合計値
である。
 こうした構成によると、スクリーンSC上のX方向結像倍率とY方向結像倍率の差を極力小さくできる。条件(3)の下限値を下回る場合、スクリーンSC上のX方向結像倍率に対してY方向結像倍率が小さくなり、原画像SAを適切に再現することが困難となる。
 さらに、以下の条件(3a)を満足することで、上記効果をより奏功することができる。
 Σ(|OPLY|-|OPLX|)>2.5 ・・・(3a)
 さらに、以下の条件(3b)を満足することで、上記効果をより奏功することができる。
 Σ(|OPLY|-|OPLX|)>5.0 ・・・(3b)
 本実施形態に係る光学系は、以下の条件(4)を満足してもよい。
 |2×(MMX-MMY)/(MMX+MMY)|<0.30 ・・・(4)
ここで、
 MMX:縮小共役点に対する拡大共役点におけるX方向結像倍率
 MMY:縮小共役点に対する拡大共役点におけるY方向結像倍率
である。
 こうした構成によると、スクリーンSC上での画像歪みを抑制でき、X方向結像倍率とY方向結像倍率の差を極力小さくできる。条件(4)の上限値を超える場合、スクリーンSC上のX方向結像倍率に対してY方向結像倍率が異なり、原画像SAを適切に再現することが困難となる。条件(4)はスクリーンSC上で原画像SAを適切に再現する範囲を規定している。
 さらに、以下の条件(4a)を満足することで、上記効果をより奏功することができる。
 |2×(MMX-MMY)/(MMX+MMY)|<0.15 ・・・(4a)
 さらに、以下の条件(4b)を満足することで、上記効果をより奏功することができる。
 |2×(MMX-MMY)/(MMX+MMY)|<0.08 ・・・(4b)
 本実施形態に係る光学系は、以下の条件(5)を満足してもよい。
 |θi|<50 ・・・(5)
ここで、
 θi:主光線が媒質の前記透過面Bを通過するときの前記透過面Bに主光線が入射する位置における前記透過面Bの法線に対する入射角(度)
である。
 こうした構成によると、透過面Bを通過するときの透過面Bによる反射光を抑えることができ、透過光の損失を低減できるため、投写画像の光量低下を抑制できる。
 本実施形態に係る光学系は、前記透過面A、前記透過面Bおよび前記少なくとも1つの反射面R1のうち、前記透過面Bが最大の有効面積を有してもよい。
 こうした構成によると、投写画像において均一な光量を実現できる。
 本実施形態に係る光学系は、前記開口絞りSTは、前記縮小共役点と前記透過面Aとの間に位置決めしてもよい。
 こうした構成によると、プリズムPMの小型化が図られる。
 本実施形態に係る光学系は、前記縮小共役点を通過する複数の主光線の全てが、前記反射面R1と前記透過面Bとの間の光路上で交差してもよい。
 こうした構成によると、小型のプリズムを用いて、第2サブ光学系を小型化し、かつ、短焦点かつ大画面の投写または撮像が可能になる。
 本実施形態に係る光学系は、前記開口絞りに対応する入射瞳および射出瞳のいずれか一方が、前記プリズム内に位置決めされてもよい。なお、入射瞳は、縮小側から見た開口絞りの像である。射出瞳は、拡大側から見た開口絞りの像である。
 こうした構成によると、小型のプリズムを用いて、第2サブ光学系を小型化し、かつ、短焦点かつ大画面の投写または撮像が可能になる。
 本実施形態に係る光学系は、前記中間結像位置は、前記反射面R1から縮小側に離間して位置決めされてもよい。
 こうした構成によると、スクリーンSC上での画像歪みを抑制できる。
 図20A~図20Dは、プリズムPMの段付き構造の各種例を示すY方向断面図である。光学系1を構成する各種レンズ素子および各種プリズムは、一般に、接着剤、金具などを用いて鏡筒50の内部に取り付けられる。その際、光学設計の各種寸法を忠実に再現するために、高い精度の取り付け構造が必要になる。
 プリズムPMには、例えば、取り付け基準となる端面PMaおよび入隅部PMbが設けられる。一方、鏡筒50には、端面PMaおよび入隅部PMbの形状に対応した端面50aおよび出隅部50bが設けられる。取り付けの際、端面PMaと端面50aとが適合し、入隅部PMbと出隅部50bとが適合することによって、プリズムPMは、鏡筒50に対して高精度かつ安定に固定できる。
 本実施形態に係る光学系は、前記プリズムPMの外周部に段付き構造が形成されてもよい。
 こうした構成によると、プリズムを外部ハウジングに対して高精度かつ安定に取り付け可能になる。
 本実施形態に係る光学系は、前記光学系は、結像光学系でもよい。
 こうした構成によると、第2サブ光学系を小型化、かつ、短焦点かつ大画面の投写または撮像が可能になる。
 以下、実施例1~4に係る光学系の数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、曲率半径、面間隔、Nd(d線に対する屈折率)、vd(d線に対するアッベ数)、N550(波長550nmでの屈折率)、偏心データ(光学系の一つ前の面に対するプリズム面の変位量X,Y,Zおよび一つ前の面に対するプリズム面の法線方向α,β,γ)を示す。また、面間隔において「可変」とあるのは、下側の表に示すように、拡大共役点での画像サイズ(100”(インチ),80”,60”など)に応じて変化可能であることを意味する。また、各数値実施例において、非球面の形状は次式で定義される。なお、非球面係数は、コーニック係数k以外は0でない係数のみ記す。
Figure JPOXMLDOC01-appb-M000001
ここで、
 z:z軸に平行な面のサグ量、
 r:半径方向の距離(=√(x+y))、
 c:面頂点における曲率
 k:コーニック係数、
 A~H:rの4次~18次係数
である。
 また、自由曲面形状は、その面頂点を原点とするローカルな直交座標系(x,y,z)
を用いた次式で定義している。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
ここで、
 z:z軸に平行な面のサグ量
 r:半径方向の距離(=√(x+y))
 c:面頂点における曲率
 k:コーニック係数
 C:単項式xの係数
である。
 なお、以下の各データにおいて、多項式における自由曲面係数であるxのi次の項、yのj次の項を、x**i*y**jというように記載している。例えば、「X**2*Y」とは、多項式におけるxの2次、yの1次の項の自由曲面係数であることを示す。
(数値実施例1)
 数値実施例1(実施例1に対応)の光学系について、レンズデータを表1に示し、レンズの非球面形状データを表2に示し、プリズムの自由曲面形状データを表3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(数値実施例2)
 数値実施例2(実施例2に対応)の光学系について、レンズデータを表4に示し、レンズの非球面形状データを表5に示し、プリズムの自由曲面形状データを表6に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
(数値実施例3)
 数値実施例3(実施例3に対応)の光学系について、レンズデータを表7に示し、レンズの非球面形状データを表8に示し、プリズムの自由曲面形状データを表9に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
(数値実施例4)
 数値実施例4(実施例4に対応)の光学系について、レンズデータを表10に示し、プリズムの自由曲面形状データを表11に示す。実施例4のみ、レンズデータは第1面基準の絶対値座標となる。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 以下の表12~表15に、各数値実施例1~4における各条件式(1)~(4)の対応値をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 以下の表16に、各数値実施例1~4における条件式(5)の対応値をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000019
(実施形態2)
 以下、図21を用いて本開示の実施形態2を説明する。図21は、本開示に係る画像投写装置の一例を示すブロック図である。画像投写装置100は、実施形態1で開示した光学系1と、画像形成素子101と、光源102と、制御部110などを備える。画像形成素子101は、液晶、DMDなどで構成され、光学系1を経由してスクリーンSCに投写する画像を生成する。光源102は、LED(発光ダイオード)、レーザなどで構成され、画像形成素子101に光を供給する。制御部110は、CPUまたはMPUなどで構成され、装置全体および各コンポーネントを制御する。光学系1は、画像投写装置100に対して着脱自在に取付け可能な交換レンズとして構成してもよく、あるいは画像投写装置100に一体化した組み込みレンズとして構成してもよい。
 以上の画像投写装置100は、実施形態1に係る光学系1により、小型な装置で短焦点かつ大画面の投写が可能になる。
(実施形態3)
 以下、図22を用いて本開示の実施形態3を説明する。図22は、本開示に係る撮像装置の一例を示すブロック図である。撮像装置200は、実施形態1で開示した光学系1と、撮像素子201と、制御部210などを備える。撮像素子201は、CCD(電荷結合素子)イメージセンサ、CMOSイメージセンサなどで構成され、光学系1が形成する物体OBJの光学像を受光して電気的な画像信号に変換する。制御部110は、CPUまたはMPUなどで構成され、装置全体および各コンポーネントを制御する。光学系1は、撮像装置200に対して着脱自在に取付け可能な交換レンズとして構成してもよく、あるいは撮像装置200に一体化した組み込みレンズとして構成してもよい。
 以上の撮像装置200は、実施形態1に係る光学系1により、小型な装置で短焦点かつ大画面の撮像が可能になる。
 以上のように、本開示における技術の開示として、実施の形態を説明した。そのために添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面または詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきでない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において、種々の変更、置換、付加、省略などを行うことができる。
 本開示は、プロジェクタ、ヘッドアップディスプレイなどの画像投写装置、およびデジタルスチルカメラ、デジタルビデオカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等の撮像装置に適用可能である。特に本開示は、プロジェクタ、デジタルスチルカメラシステム、デジタルビデオカメラシステムといった高画質が要求される光学系に適用可能である。

Claims (18)

  1.  縮小側の縮小共役点および拡大側の拡大共役点を有し、該縮小共役点および該拡大共役点とそれぞれ共役である中間結像位置を内部に有する光学系であって、
     前記縮小共役点は、長手方向と短手方向を有する矩形領域において結像関係を有し、
     前記光学系を光束が通過する範囲を規定する開口絞りを含む第1サブ光学系と、
     該第1サブ光学系より拡大側に設けられ、透明な媒質で形成されたプリズムを含む第2サブ光学系とを備え、
     前記プリズムは、縮小側に位置する第1透過面、拡大側に位置する第2透過面、および該第1透過面と該第2透過面との間の光路上に位置する少なくとも1つの反射面を有し、
     前記開口絞りは、前記縮小共役点と前記中間結像位置との間に位置決めされ、
     前記中間結像位置に形成される中間像の一部または全部が、前記プリズムの媒質内部に位置決めされ、
     前記中間結像位置に最も近接した第1反射面は、前記第1反射面へ入射する光線が反射する方向に凹面を向けた形状を有し、
     前記第2透過面は、拡大側に凸面を向けた形状を有し、
     前記矩形領域の長手方向の中心を通る主光線が前記第1反射面で反射する位置を含む面をY断面とし、該Y断面に対して垂直な断面をX断面として、Y断面に対して垂直な方向から見たとき、前記縮小共役点を通過する複数の主光線の一部が前記第1反射面と前記第2透過面との間の光路上で交差するように、かつ、X断面に対して垂直な方向から見たとき、前記縮小共役点を通過する複数の主光線の一部が前記第1反射面と前記第2透過面との間の光路上で交差するように、前記第1反射面の曲率形状が設定される、光学系。
  2.  前記第1反射面は、前記矩形領域の長手方向の中心を通る光線のX断面に平行なX方向の中間結像位置に沿って縮小光路側に凹面を向けた形状を有する、請求項1に記載の光学系。
  3.  前記第1サブ光学系を通過する光束は、Y断面とX断面とで異なる中間結像位置を含む、請求項1に記載の光学系。
  4.  以下の条件(1a)または条件(1b)を満足する、請求項2に記載の光学系。
     1<|MX|<10 ・・・(1a)
     1<|MY|<10 ・・・(1b)
    ここで、
     MX:縮小共役点に対するX断面に平行なX方向の中間結像位置における結像倍率
     MY:縮小共役点に対するY断面に平行なY方向の中間結像位置における結像倍率
    である。
  5.  以下の条件(2)を満足する光線を含む、請求項4に記載の光学系。
     |MX|>|MY| ・・・(2)
    ここで、
     MX:前記X方向結像倍率
     MY:前記Y方向結像倍率
    である。
  6.  前記Y方向の中間結像位置と前記第1反射面との間に前記X方向の中間結像位置が存在する、請求項1に記載の光学系。
  7.  以下の条件(3)を満足する、請求項2に記載の光学系。
     Σ(|OPLY|-|OPLX|)>0 ・・・(3)
    ここで、
     OPLX:前記X方向の中間結像位置と前記第1反射面との間の光路長
     OPLY:前記Y方向の中間結像位置と前記第1反射面との間の光路長
     Σ(|OPLY|-|OPLX|):縮小共役点での規格化高さY=0.0,0.5,1.0をそれぞれ通過する3つの主光線について、光路長OPLXの絶対値と光路長OPLYの絶対値との差を加算した合計値
    である。
  8.  以下の条件(4)を満足する、請求項1に記載の光学系。
     |2×(MMX-MMY)/(MMX+MMY)|<0.30 ・・・(4)
    ここで、
     MMX:縮小共役点に対する拡大共役点におけるX方向結像倍率
     MMY:縮小共役点に対する拡大共役点におけるY方向結像倍率
    である。
  9.  以下の条件(5)を満足する、請求項1に記載の光学系。
     |θi|<50 ・・・(5)
    ここで、
     θi:主光線が媒質の前記第2透過面を通過するときの前記第2透過面に主光線が入射する位置における前記第2透過面の法線に対する入射角(度)
    である。
  10.  前記第1透過面、前記第2透過面および前記少なくとも1つの反射面のうち、前記第2透過面が最大の有効面積を有する、請求項1に記載の光学系。
  11.  前記開口絞りは、前記縮小共役点と前記第1透過面との間に位置決めされる、請求項1に記載の光学系。
  12.  前記縮小共役点を通過する複数の主光線の全てが、前記第1反射面と前記第2透過面との間の光路上で交差する、請求項1に記載の光学系。
  13.  前記開口絞りに対応する入射瞳および射出瞳のいずれか一方が、前記プリズム内に位置決めされる、請求項1に記載の光学系。
  14.  前記中間結像位置は、前記第1反射面から縮小側に離間して位置決めされる、請求項1に記載の光学系。
  15.  前記プリズムの外周部に段付き構造が形成される、請求項1に記載の光学系。
  16.  前記光学系は、結像光学系である、請求項1に記載の光学系。
  17.  請求項1から16のいずれかに記載の光学系と、
     該光学系を経由してスクリーンに投写する画像を生成する画像形成素子と、を備える画像投写装置。
  18.  請求項1から16のいずれかに記載の光学系と、
     該光学系が形成する光学像を受光して電気的な画像信号に変換する撮像素子と、を備える撮像装置。
PCT/JP2019/049166 2019-05-29 2019-12-16 光学系、画像投写装置および撮像装置 WO2020240899A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202410041701.3A CN117687189A (zh) 2019-05-29 2019-12-16 光学系统、图像投射装置以及摄像装置
CN201980096237.5A CN113811806A (zh) 2019-05-29 2019-12-16 光学系统、图像投射装置以及摄像装置
US17/511,799 US20220082805A1 (en) 2019-05-29 2021-10-27 Optical system, image projection apparatus, and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-100454 2019-05-29
JP2019100454A JP7340789B2 (ja) 2019-05-29 2019-05-29 光学系、画像投写装置および撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/511,799 Continuation US20220082805A1 (en) 2019-05-29 2021-10-27 Optical system, image projection apparatus, and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2020240899A1 true WO2020240899A1 (ja) 2020-12-03

Family

ID=73547943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049166 WO2020240899A1 (ja) 2019-05-29 2019-12-16 光学系、画像投写装置および撮像装置

Country Status (4)

Country Link
US (1) US20220082805A1 (ja)
JP (2) JP7340789B2 (ja)
CN (2) CN113811806A (ja)
WO (1) WO2020240899A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107592A1 (ja) * 2020-11-20 2022-05-27 パナソニックIpマネジメント株式会社 光学系、画像投写装置および撮像装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342681B2 (ja) 2019-12-19 2023-09-12 セイコーエプソン株式会社 レンズユニット、投写光学系、およびプロジェクター
JP7127634B2 (ja) 2019-12-19 2022-08-30 セイコーエプソン株式会社 投写光学系およびプロジェクター
JP7415549B2 (ja) 2019-12-25 2024-01-17 セイコーエプソン株式会社 液体収容体
JP7459523B2 (ja) 2020-01-23 2024-04-02 セイコーエプソン株式会社 投写光学系およびプロジェクター
JP2021117276A (ja) * 2020-01-23 2021-08-10 セイコーエプソン株式会社 投写光学系、およびプロジェクター
JP2021117279A (ja) 2020-01-23 2021-08-10 セイコーエプソン株式会社 投写光学系およびプロジェクター
JP7380246B2 (ja) 2020-01-23 2023-11-15 セイコーエプソン株式会社 投写光学系、およびプロジェクター
JP7120259B2 (ja) 2020-01-24 2022-08-17 セイコーエプソン株式会社 投写光学系、およびプロジェクター
JP7424072B2 (ja) 2020-01-24 2024-01-30 セイコーエプソン株式会社 投写光学系、およびプロジェクター
JP7363518B2 (ja) 2020-01-24 2023-10-18 セイコーエプソン株式会社 投写光学系およびプロジェクター
JP2022040640A (ja) 2020-08-31 2022-03-11 セイコーエプソン株式会社 光学系、プロジェクター、および撮像装置
JP2022040642A (ja) 2020-08-31 2022-03-11 セイコーエプソン株式会社 レンズ、光学系、プロジェクター、および撮像装置
JP2022040639A (ja) 2020-08-31 2022-03-11 セイコーエプソン株式会社 光学系、プロジェクター、および撮像装置
JP2022048543A (ja) 2020-09-15 2022-03-28 セイコーエプソン株式会社 光学装置、プロジェクターおよび撮像装置
WO2023281772A1 (ja) 2021-07-09 2023-01-12 パナソニックIpマネジメント株式会社 光学系、撮像装置、光学式接触センサ及び画像投影装置
WO2023119790A1 (ja) * 2021-12-21 2023-06-29 パナソニックIpマネジメント株式会社 光学系、画像投写装置および撮像装置
CN116107063B (zh) * 2023-04-13 2023-06-27 沂普光电(天津)有限公司 一种超短焦投影镜头及投影系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222561A (ja) * 1996-02-15 1997-08-26 Canon Inc ズーム光学系及びそれを用いた撮像装置
JP2006276816A (ja) * 2004-12-07 2006-10-12 Olympus Corp 光学系
JP2007328232A (ja) * 2006-06-09 2007-12-20 Olympus Corp 光学系
WO2019151252A1 (ja) * 2018-02-01 2019-08-08 リコーインダストリアルソリューションズ株式会社 投射光学系および画像表示装置
JP2020020860A (ja) * 2018-07-30 2020-02-06 セイコーエプソン株式会社 投写光学系および投写型画像表示装置
JP2020024377A (ja) * 2018-07-27 2020-02-13 セイコーエプソン株式会社 投写光学系および投写型画像表示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522475B2 (en) * 1996-02-15 2003-02-18 Canon Kabushiki Kaisha Zoom lens
DE60041287D1 (de) * 1999-04-02 2009-02-12 Olympus Corp Optisches Sichtgerät und Bildanzeige mit diesem Gerät
US6761457B2 (en) * 2000-10-06 2004-07-13 Matsushita Electric Industrial Co., Ltd. Optical illumination device and projection display device
JP4509559B2 (ja) * 2001-11-13 2010-07-21 パナソニック株式会社 広角撮像光学系とこれを備えた広角撮像装置、監視用撮像装置、車載用撮像装置、及び投写装置
JP4171278B2 (ja) * 2002-10-15 2008-10-22 松下電器産業株式会社 ズームレンズとそれを用いた映像拡大投写システム、ビデオプロジェクター、リアプロジェクター、及びマルチビジョンシステム
JP4636808B2 (ja) * 2004-03-31 2011-02-23 キヤノン株式会社 画像表示装置
JP2008152073A (ja) * 2006-12-19 2008-07-03 Olympus Corp 光学系
JP5206067B2 (ja) * 2008-03-28 2013-06-12 セイコーエプソン株式会社 投射装置及び画像表示装置
CN101359089B (zh) * 2008-10-08 2010-08-11 北京理工大学 轻小型大视场自由曲面棱镜头盔显示器光学系统
CN102645736B (zh) * 2011-02-21 2015-07-01 郎欢标 光学输入设备及其穿透式光学镜头模组
DE102013205414B4 (de) * 2013-03-27 2021-04-22 Robert Bosch Gmbh Kamera für ein Fahrzeug und Fahrzeug mit der Kamera
JP2017187736A (ja) * 2016-03-30 2017-10-12 パナソニックIpマネジメント株式会社 投写光学系および画像投写装置
JP7148334B2 (ja) * 2018-09-07 2022-10-05 リコーインダストリアルソリューションズ株式会社 投射光学系及び画像投射装置
JP7259413B2 (ja) 2019-03-01 2023-04-18 セイコーエプソン株式会社 投写光学系、投写型画像表示装置、および撮像装置
JP7259412B2 (ja) 2019-03-01 2023-04-18 セイコーエプソン株式会社 投写光学系、投写型画像表示装置、撮像装置、および光学素子の製造方法
JP7259411B2 (ja) 2019-03-01 2023-04-18 セイコーエプソン株式会社 投写光学系、投写型画像表示装置、および撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222561A (ja) * 1996-02-15 1997-08-26 Canon Inc ズーム光学系及びそれを用いた撮像装置
JP2006276816A (ja) * 2004-12-07 2006-10-12 Olympus Corp 光学系
JP2007328232A (ja) * 2006-06-09 2007-12-20 Olympus Corp 光学系
WO2019151252A1 (ja) * 2018-02-01 2019-08-08 リコーインダストリアルソリューションズ株式会社 投射光学系および画像表示装置
JP2020024377A (ja) * 2018-07-27 2020-02-13 セイコーエプソン株式会社 投写光学系および投写型画像表示装置
JP2020020860A (ja) * 2018-07-30 2020-02-06 セイコーエプソン株式会社 投写光学系および投写型画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107592A1 (ja) * 2020-11-20 2022-05-27 パナソニックIpマネジメント株式会社 光学系、画像投写装置および撮像装置

Also Published As

Publication number Publication date
JP2023155289A (ja) 2023-10-20
JP2020194115A (ja) 2020-12-03
US20220082805A1 (en) 2022-03-17
CN113811806A (zh) 2021-12-17
JP7340789B2 (ja) 2023-09-08
CN117687189A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2020240899A1 (ja) 光学系、画像投写装置および撮像装置
EP1855137B1 (en) Rear-projection system with obliquely incident light beam
JP2002107618A (ja) 広角投映レンズおよびこれを用いた投写型画像表示装置
WO2019012795A1 (ja) 画像表示装置及び投射光学系
JP6393906B2 (ja) 投写光学系および画像投写装置
CN112180570B (zh) 投影光学系统及投影装置
US10809506B2 (en) Imaging optical system, projection display device, and imaging apparatus
JP4114515B2 (ja) 投映用ズームレンズ及びこれを備えたプロジェクター
JP2005157153A (ja) 投写光学ユニット及び投写型カラー映像表示装置とこれを用いた背面投写型カラー映像表示装置
JP2012133175A (ja) 撮像光学系および撮像装置
JP4478408B2 (ja) 結像光学系、撮像装置、画像読み取り装置および投射型画像表示装置
JP2004361777A (ja) ソリッド型カタディオプトリック光学系
JP2021039162A (ja) 結像光学系、投写型表示装置、および撮像装置
JP6576299B2 (ja) 結像光学系、撮像装置、および投写型表示装置
JP2021167848A (ja) 投射光学系およびプロジェクタ
JP4340432B2 (ja) 投射用ズームレンズ
US20190056534A1 (en) Imaging optical system, projection display device, and imaging apparatus
WO2023119790A1 (ja) 光学系、画像投写装置および撮像装置
WO2022107592A1 (ja) 光学系、画像投写装置および撮像装置
JP7088217B2 (ja) 投写光学系およびプロジェクター
JP2004109897A (ja) 投映用ズームレンズ及びこれを備えたプロジェクター
WO2023084840A1 (ja) 光学系、画像投写装置および撮像装置
JP2022136517A (ja) 投射光学系及び画像投射装置
JP2021117279A (ja) 投写光学系およびプロジェクター
CN116626867A (zh) 变焦镜头、投影型显示装置及摄像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930175

Country of ref document: EP

Kind code of ref document: A1