WO2020238118A1 - 光刻方法 - Google Patents

光刻方法 Download PDF

Info

Publication number
WO2020238118A1
WO2020238118A1 PCT/CN2019/122349 CN2019122349W WO2020238118A1 WO 2020238118 A1 WO2020238118 A1 WO 2020238118A1 CN 2019122349 W CN2019122349 W CN 2019122349W WO 2020238118 A1 WO2020238118 A1 WO 2020238118A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
lithography
new
strip
strips
Prior art date
Application number
PCT/CN2019/122349
Other languages
English (en)
French (fr)
Inventor
邵仁锦
朱鹏飞
张瑾
浦东林
陈林森
Original Assignee
苏州苏大维格科技集团股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司, 苏州大学 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2020238118A1 publication Critical patent/WO2020238118A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70508Data handling in all parts of the microlithographic apparatus, e.g. handling pattern data for addressable masks or data transfer to or from different components within the exposure apparatus

Definitions

  • the present invention relates to the field of lithography technology, and in particular to a lithography method.
  • maskless laser direct writing lithography technology has gradually attracted widespread attention, mainly used in precision mask manufacturing, micro-optics, flexible optoelectronic materials, flat panel displays, biosensing and other fields.
  • Most maskless laser direct writing lithography machines on the market are based on spatial light modulators as pattern generators for projection exposure. The process is flexible, and the high cost of high-precision quartz masks is eliminated. Compared with the projection lithography machine, its lithography resolution is far different. Therefore, improving the lithography resolution of the maskless laser direct writing lithography machine is still one of the important indicators pursued by the industry.
  • Traditional optical lithography technology mainly uses three ways to improve the resolution: reducing the wavelength of the exposure light source, increasing the numerical aperture NA, and reducing the process factor k1.
  • the purpose is to increase the resolution of lithography by reducing the exposure wavelength.
  • the optical system and control system applicable to different wavelengths are different, and blindly reducing the exposure wavelength will cause the equipment cost to double.
  • the optical proximity effect between dense patterns has a greater impact on the lithography quality than sparse patterns, resulting in an effective resolution of dense patterns that is worse than that of sparse patterns.
  • the double exposure technology improves the lithography contrast of dense patterns through exposure-etch-exposure-etch or exposure-exposure-etch methods.
  • this method is not only cumbersome in process steps and expensive, but also the impact of the overlay accuracy between the two layers of patterns on the lithography resolution is an unstable factor that cannot be ignored.
  • the purpose of the present invention is to provide a lithography method with enhanced resolution.
  • the present invention provides a photolithography method for performing maskless photolithography on a pattern to be processed.
  • the method includes the following steps:
  • step S1 before splitting the to-be-processed graphics, it further includes setting an alignment icon on the to-be-processed graphics, so that each split to-be-processed The sub-graphics all have the alignment icon at the same position.
  • step S1 a preset splitting method is further included, and the preset splitting method is regular splitting or random splitting.
  • step S2 a preset cutting mode is included, and the cutting mode includes vertical, lateral, or oblique. After cutting, the length of the sub-strip is the original length of the sub-graphic .
  • the reorganization process includes: selecting the y-(K-1)th sub-strips of the K-th sub-graphic, and the y-(K -2) Sub-strips, the y-(K-3) sub-strips of the K-2 sub-graphics, and so on to complete the selection of sub-strips required for the y-th new strip.
  • Data splicing is performed on the sub-strips required for y new strips to obtain the y-th new strip, and so on, to obtain the number of new strips n+K-1, where y is in the range of 1 to n+K- 1 takes values in turn, when the sequence number of the selected sub-strips is less than 1 or greater than n, select blank strips for splicing.
  • the width of the new strip is the width M times K of the sub strip.
  • the device for implementing the lithography method includes a laser direct writing lithography machine with a moving platform and a digital micro-reflective DMD.
  • step S3 after the new strips are spliced, n strips The new strip is uploaded to the memory of the digital micro-reflective DMD to form an image.
  • step S4 the scanning movement of the laser direct writing lithography machine movement platform is synchronized with the image rolling of the digital micro-reflective DMD to match the lithography. After scanning lithography, a new strip , The moving platform moves the distance of the sub-strip width M to perform scanning lithography of the next new strip.
  • the width of the new strip is less than or equal to the pixel width W of the image.
  • the lithography method provided by the present invention realizes the enhancement of the resolution of the sub-strips by reorganizing the sub-strips formed by splitting the graphics to be processed, thereby achieving the effect of enhancing the lithographic resolution.
  • FIG. 1 is a flowchart of steps of a photolithography method according to an embodiment of the present invention
  • FIG. 2 is a diagram of a split mode of a graph to be processed in an embodiment of the present invention
  • Figure 3 is a split diagram of a graph to be processed in an embodiment of the present invention.
  • FIG. 4 is a cutting diagram of a new strip of a document in embodiment A of the present invention.
  • FIG. 5 is a cutting diagram of a new strip of the document B of the embodiment of the present invention.
  • Fig. 6 is a cutting diagram of a new strip of a document C according to the embodiment of the present invention.
  • FIG. 7 is a flowchart of reorganization of a new stripe according to an embodiment of the present invention.
  • Fig. 8 is a lithography flow chart of a new stripe according to an embodiment of the present invention.
  • the lithography used for the pattern to be processed includes a lithography machine with a moving platform and a preset scanning mode.
  • the method includes the following steps.
  • the splitting method and the mark alignment icon are preset. Split the graphics to be processed into K sparse sub graphics; after splitting, each sub graphics has the alignment icon of the dense graphics to be processed.
  • the preset splitting methods include regular or random splitting; the alignment icon is set at a position where the graphics to be processed does not affect the graphics information.
  • the preset splitting method is the interval sampling method.
  • the value of f is 2. That is, the graphics Q to be processed are split into A sub graphics, B sub graphics and C sub graphics, and the number of file sets K after splitting is 3.
  • the cutting mode and cutting width M are also preset.
  • the preset cutting mode includes horizontal or vertical or oblique; the cutting width M is the width of the sub-strip.
  • each sub-pattern is sequentially cut according to the order of the sub-patterns formed by the split, so as to form n sub-strips with a width of M.
  • the preset cutting method is vertical cutting, that is, cutting in the Y direction first, and then stepping in the X direction.
  • the sub-strip length is the original length of the graphic file.
  • the first band Band-1 is cut along the Y direction to form sub-bands in the order of A11 to A91.
  • the second band is cut along the Y direction. -2, forming the sub-bands in the order of A12-A92, and so on, until the sub-bands in the order of A19-A99 are formed, thus completing the cutting of all the bands in the A sub-graphic.
  • the sub-strips formed in all the sub-graphics to be processed are reorganized according to a certain rule to form a new strip, and several new strips form a graph, wherein each new strip has one sub-strip in all the sub-graphics.
  • the reorganization process includes: selecting the y-(K-1)th sub-strip of the K-th sub-graphic, the y-(K-2)-th sub-strip of the K-1 sub-graphic, and the K-th sub-strip. -2 sub-patterns y-(K-3) sub-bands, and so on, to complete the selection of the y-th new sub-bands required. Perform data splicing on the sub-strips required by the y-th new strip to obtain the y-th new strip, and so on, to obtain the number of new strips n+K-1. Among them, y takes values in sequence from 1 to n+K-1. When the sequence number of the selected sub-strips is less than 1 or greater than n, blank strips are selected for splicing.
  • the strip data of the three sets of sub-graphics are integrated into a set of data graphics with new strip data in the order of C ⁇ B ⁇ A.
  • the equipment that implements the lithography method includes a laser direct writing lithography machine with a moving platform and a digital micro-reflection DMD (Digital Micromirror Device). After completing the splicing of the new strips, upload the digital micro-reflective DMD to the memory to form an image on the n new strips.
  • a laser direct writing lithography machine with a moving platform and a digital micro-reflection DMD (Digital Micromirror Device).
  • S4 New strips of lithography. Among them, each time a new strip lithography is completed, the width M of a sub-strip is stepped, and another new strip lithography to be processed is performed.
  • the scanning motion of the motion platform of the laser direct writing lithography machine is synchronized with the image rolling of the digital micro-reflective DMD to match lithography.
  • the motion platform moves the distance of the sub-strip width M to perform Scanning lithography of the next new strip.
  • lithography first lithography along the Y direction from top to bottom, and then step along the X direction.
  • stepping only the position does not emit light, that is, no photolithography is performed when stepping.
  • width Wn of the new stripe is less than or equal to the image pixel width W formed in the memory of the digital micro-reflective DMD.
  • the first new stripe data is lithography sequentially from top to bottom along the Y direction.
  • the moving platform moves along the X direction.
  • One third of the strip width is Wn/3, and the next sub-band Band-2 lithography is performed, and so on, until all new strips are lithographically completed.
  • the blank data part only moves and does not emit light.
  • the present invention has many advantages over the prior art.
  • the resolution of the sub-strips is enhanced by reorganizing the n sub-strips formed by splitting the graphics to be processed, thereby achieving the effect of enhancing the lithography resolution.
  • each sub-graphic after splitting has the same alignment icon, avoiding the problem of alignment accuracy, so that the sub-strips will not shift during the reorganization, which ensures the reorganization
  • the accuracy of the post graphics
  • the preset cutting method ensures that the shape of each sub-strip is consistent, which is convenient for subsequent operations.
  • sequence number of the selected sub-strips is less than 1 or greater than n, select blank strips for splicing to ensure the correctness of the reorganized graphics.
  • the scanning movement of the laser direct writing lithography machine movement platform is synchronized with the image scrolling of the digital micro-reflective DMD to match the lithography to ensure the accuracy of lithography and also achieve the effect of enhancing the resolution of lithography.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种光刻方法,用于将待处理图形进行无掩模版的光刻,方法包括如下步骤:S1:将待处理图形进行K次拆分,形成K幅子图形;S2:预设分割宽度M,分别将K幅子图形按照预设分割宽度M切割成n条子条带;S3:将K幅子图形中形成的n条宽度为M的子条带进行重组,形成n条新条带;S4:光刻新条带,其中,每完成一条新条带光刻,步进一条子条带的宽度M,进行另一待处理的新条带光刻。通过将待处理图形拆分分割形成的n条子条带进行重组,实现子条带分辨率的增强,从而达到光刻分辨率增强的效果。

Description

光刻方法
本申请要求了申请日为2019年5月27日,申请号为201910448289.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光刻技术领域,特别是涉及一种光刻方法。
背景技术
随着大规模集成电路的快速发展,无掩膜激光直写光刻技术逐渐被广泛关注,主要应用于精密掩膜制造、微光学、柔性光电子材料、平板显示、生物传感等领域。市面上大部分无掩膜激光直写光刻机是基于空间光调制器作为图形发生器进行投影曝光,工艺灵活,且省去了高精度石英掩膜板的高昂费用,但是与半导体行业中的投影式光刻机相比,其光刻分辨率相差甚远。所以,提高无掩膜激光直写光刻机的光刻分辨率仍然是业界追求的重要指标之一。
传统光学光刻技术主要通过三种途径来提高分辨率:减小曝光光源波长λ、增大数值孔径NA、降低工艺因子k1。其目的就是通过减小曝光波长来增强光刻分辨率,但是,不同波长适用的光学系统和控制系统不同,一味缩小曝光波长会导致设备成本倍增。若单纯增大数值孔径,由焦深公式DOF=k2λ/NA^2可知,光刻系统的焦深会大大减小,不利于光刻系统的聚焦稳定性和图形品质的保障。同时,由于当图形特征尺寸接近曝光波长时,密集图形之间的光学临近效应对光刻品质的影响要大于稀疏图形,导致密集图形的有效分辨率要差于稀疏图形。
有鉴于此,专家们提出了多种分辨率增强的方法,如离轴照明、光学临近修正、相移掩膜、双重曝光等等。如双重曝光技术通过曝光-刻蚀-曝光-刻蚀或者曝光-曝光-刻蚀的方法来提高密集图形的光刻对比度。但此方法不仅工艺步骤繁琐,费用高昂,而且两层图形之间的套刻精度对光刻分辨率的 影响是个不可忽略的不稳定因素。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
发明内容
本发明的目的在于提供一种增强分辨率的光刻方法。
本发明提供一种光刻方法,用于将待处理图形进行无掩模版的光刻,所述方法包括如下步骤:
S1:将所述待处理图形进行K次拆分,形成K幅子图形;
S2:预设分割宽度M,分别将K幅所述子图形按照所述预设分割宽度M切割成n条子条带;
S3:将K幅所述子图形中形成的n条宽度为M的所述子条带进行重组,形成n条新条带;
S4:光刻所述新条带,其中,每完成一条新条带光刻,步进一条所述子条带的宽度M,进行另一待处理的新条带光刻。
在其中一实施例中,在步骤S1中,在对所述待处理图形进行拆分前,还包括在所述待处理图形上设置对位图标,以使拆分后的每一所述待处理子图形均具有相同位置的对位图标。
在其中一实施例中,在步骤S1中,还包括预设拆分方式,所述预设拆分方式为规律的拆分或随机的拆分。
在其中一实施例中,在步骤S2中,包括预设切割方式,所述切割方式包括竖直或横向或斜向,切割后,,所述子条带的长度为所述子图形的原始长度。
在其中一实施例中,在步骤S3中,重组过程包括:选取第K幅子图形的第y-(K-1)条的子条带,第K-1幅子图形的第y-(K-2)条子条带,第K-2幅子图形的第y-(K-3)条子条带,以此类推,完成第y条新条带所需子条带的选取,将所述第y条新条带所需子条带进行数据拼接获得所述第y条新条带, 以此类推,获得数量为n+K-1的新条带,其中,y按照1到n+K-1依次取值,当选取的子条带的序列号小于1或者大于n时,选择空白条带拼接。
在其中一实施例中,所述新条带的宽度为所述子条带的宽度M乘以K。
在其中一实施例中,实现所述光刻方法的设备包括具有运动平台的激光直写光刻机和数字微反射DMD,在步骤S3中,完成所述新条带拼接后,将n条所述新条带上载至所述数字微反射DMD的内存中形成图像。
在其中一实施例中,在步骤S4中,将所述激光直写光刻机运动平台的扫描运动与所述数字微反射DMD的图像滚动同步匹配光刻,扫描光刻完一条新条带之后,所述运动平台移动所述子条带宽度M的距离,进行下一条新条带的扫描光刻。
在其中一实施例中,所述新条带的宽度小于等于所述图像的像素宽度W。
本发明提供的光刻方法,通过将待处理图形拆分分割形成的子条带进行重组,实现子条带分辨率的增强,从而达到光刻分辨率增强的效果。
附图说明
图1为本发明实施例光刻方法的步骤流程图;
图2为本发明实施例待处理图形的拆分方式图;
图3为本发明实施例待处理图形的拆分图;
图4为本发明实施例A文件的新条带的切割图;
图5为本发明实施例B文件的新条带的切割图;
图6为本发明实施例C文件的新条带的切割图;
图7为本发明实施例新条带的重组流程图;
图8为本发明实施例新条带的光刻流程图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。 以下实施例用于说明本发明,但不用来限制本发明的范围。
请参考图1,本发明实施例中提供的光刻方法,用于待处理图形的光刻包括具有运动平台的光刻机,预设扫描方式,所述方法包括如下步骤。
S1:将待处理图形进行K次拆分,形成K幅子图形;
具体地,在拆分前,预设拆分方式和标记对位图标。将待处理图形拆分成K幅稀疏的子图形;拆分后,每一子图形带有密集待处理图形的对位图标。其中,预设拆分方式包括有规律或随机拆分;对位图标设置在待处理图形不影响图形信息的位置。
在本实施例中,预设拆分方式为间隔抽样方式。
如图2所示,将占空比1∶1的密集竖条图形拆分成占空比1∶f(f>=2)的稀疏图形,其中,每套稀疏图形的对位图标位置不变。进一步讲,如将占空比为1∶1的密集图形被规律拆分成占空比为1∶f的稀疏图形(f>=2),那么拆分后的文件套数为f+1套,f值越大,越有利于曝光图形品质的提升,但是所形成的子图形套数也越多,需要根据具体图形特征来设定f值。
如图3所示,在本实施例中,f值为2。即,待处理图形Q分别拆分成A子图形、B子图形和C子图形,拆分后的文件套数K为3。
S2:预设分割宽度M,分别将K幅所述子图形按照所述预设分割宽度M切割成n条子条带;
在待处理图形拆分成K幅子图形之后,还预设切割方式及切割宽度M。预设切割方式包括水平或竖直或斜向;切割宽度M为子条带的宽度。
在切割时,按照拆分形成的各子图形顺序依次对每一子图形进行切割,从而形成n条宽度为M的子条带。
在本实施例中,预设切割方式为竖直切割,即,先沿Y方向切割,再沿X方向步进。
如图4-图6所示,分别对三套子图形(A子图形、B子图形和C子图形)进行数据切割,切割成n个宽度为M的竖直条带;三套子图形的条带切割宽 度要保持一致。其中,子条带长度就是图形文件的原始长度。以图4为例,第一个条带Band-1沿Y方向切割,形成A11~A91顺序的子条带,再沿X方向步进M距离后,沿Y方向切割进行第二个条带Band-2,形成A12~A92顺序的子条带,以此类推,直到形成A19~A99顺序的子条带,从而完成A子图形所有条带的切割。
S3:将K幅所述子图形中形成的n条宽度为M的所述子条带进行重组,形成n条新条带;
按照一定规律将所有待处理子图形中形成的子条带进行重组,形成新条带,若干新条带形成图形,其中,每一新条带具有所有子图形中的一条子条带。
具体地,重组过程包括:选取第K幅子图形的第y-(K-1)条的子条带,第K-1幅子图形的第y-(K-2)条子条带,第K-2幅子图形的第y-(K-3)条子条带,以此类推,完成第y条新条带所需子条带的选取。将第y条新条带所需子条带进行数据拼接获得第y条新条带,以此类推,获得数量为n+K-1的新条带。其中,y按照1到n+K-1依次取值,当选取的子条带的序列号小于1或者大于n时,选择空白条带拼接。
如图7所示,在所有子图形被切割完成后,按照C→B→A的顺序将三套子图形的条带数据整合成一套具有新的条带数据的数据图形。新条带宽度Wn变为子条带宽度M的3倍,既Wn=3*M。重组时,第一条带和第二条带的左边数据以空白条带填补,且第一条带具有两个空白带,第二条具有一个空白带。
实现光刻方法的设备包括具有运动平台的激光直写光刻机和数字微反射DMD(Digital Micromirror Device)。完成新条带拼接后,将n条新条带上载数字微反射DMD至的内存中形成图像。
S4:光刻新条带。其中,每完成一条新条带光刻,步进一条子条带的宽度M,进行另一待处理的新条带光刻。
具体地,将激光直写光刻机运动平台的扫描运动与数字微反射DMD的图 像滚动同步匹配光刻,扫描光刻完一条新条带之后;运动平台移动子条带宽度M的距离,进行下一条新条带的扫描光刻。光刻时,先沿Y方向自上而下光刻,再沿X方向步进。在步进时,只走位不出光,即,步进时不进行光刻。
需要注意的是,新条带的宽度Wn小于等于数字微反射DMD的内存中形成的图像像素宽度W。
如图8所示,第一个新条带数据沿Y方向按照从上到下的顺序依次被光刻,当第一个子条带Band-1光刻完成后,运动平台沿X方向移动新条带宽度的三分之一距离Wn/3,进行下一个子条带Band-2的光刻,以此类推,直到所有新条带光刻完成。其中,空白数据部分只走位不出光。
本发明相对于现有技术有许多优点。
1、通过将待处理图形拆分分割形成的n条子条带进行重组,实现子条带分辨率的增强,从而达到光刻分辨率增强的效果。
2、通过在拆分前设置对位图标,使拆分后每个子图形均具有相同的对位图标,避免了对位精度问题,从而使子条带在重组时不会出现位移,保证了重组后图形的精确性。
3、通过预设切割方式,保证各子条带的形状一致,便于后续操作。
4、通过在选取的子条带的序列号小于1或者大于n时,选择空白条带拼接,保证重组后图形的正确性。
5、通过激光直写光刻机运动平台的扫描运动与数字微反射DMD的图像滚动同步匹配光刻,保证光刻的精度,同时也达到光刻分辨率增强的效果。
在本文中,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”、“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了表达技术方案的清楚及描述方便,因此不能理解为对本发明的限制。
在本文中,除非另有说明,“多个”、“若干”的含义是两个或两个以上。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性 的包含,除了包含所列的那些要素,而且还可包含没有明确列出的其他要素。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (9)

  1. 一种光刻方法,用于将待处理图形进行无掩模版的光刻,其特征在于,所述方法包括如下步骤:
    S1:将所述待处理图形进行K次拆分,形成K幅子图形;
    S2:预设分割宽度M,将所述K幅子图形中的每一子图形按照所述预设分割宽度M切割成n条子条带;
    S3:将所述K幅子图形中形成的n条宽度M的所述子条带进行重组,形成n条新条带;
    S4:光刻所述新条带,其中,每完成一条新条带光刻,步进一条所述子条带的宽度M,进行另一新条带光刻。
  2. 如权利要求1所述的光刻方法,其特征在于,在步骤S1中,在对所述待处理图形进行拆分前,还包括在所述待处理图形上设有对位图标,以使拆分后的每一所述待处理子图形均具有相同位置的对位图标。
  3. 如权利要求1所述的光刻方法,其特征在于,在步骤S1中,还包括预设拆分方式,所述预设拆分方式为规律的拆分或随机的拆分。
  4. 如权利要求1所述的光刻方法,其特征在于,在步骤S2中,包括预设切割方式,所述切割方式包括竖直或横向或斜向,切割后,所述子条带的长度为所述子图形的原始长度。
  5. 如权利要求1所述的光刻方法,其特征在于,在步骤S3中,重组过程包括:选取第K幅子图形的第y-(K-1)条的子条带、第K-1幅子图形的第y-(K-2)条子条带、第K-2幅子图形的第y-(K-3)条子条带,以此类推,完成第y条新条带所需子条带的选取,将所述第y条新条带所需子条带进行数据拼接获得所述第y条新条带,以此类推,获得数量为n+K-1的新条带,其中,y按照1到n+K-1依次取值,当选取的子条带的序列号小于1或者大于n时,选择空白条带拼接。
  6. 如权利要求5所述的光刻方法,其特征在于,所述新条带的宽度为所述子条带的宽度M乘以K。
  7. 如权利要求1所述的光刻方法,其特征在于,实现所述光刻方法的设备包括具有运动平台的激光直写光刻机和数字微反射DMD,在步骤S3中,完成所述新条带拼接后,将n条所述新条带上载至所述数字微反射DMD的内存中形成图像。
  8. 如权利要求7所述的光刻方法,其特征在于,在步骤S4中,将所述激光直写光刻机运动平台的扫描运动与所述数字微反射DMD的图像滚动同步匹配光刻,扫描光刻完一条新条带之后,所述运动平台移动所述子条带宽度M的距离,进行下一条新条带的扫描光刻。
  9. 如权利要求7所述的光刻方法,其特征在于,所述新条带的宽度小于等于所述图像的像素宽度W。
PCT/CN2019/122349 2019-05-27 2019-12-02 光刻方法 WO2020238118A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910448289.6 2019-05-27
CN201910448289.6A CN111999984B (zh) 2019-05-27 2019-05-27 光刻方法

Publications (1)

Publication Number Publication Date
WO2020238118A1 true WO2020238118A1 (zh) 2020-12-03

Family

ID=73461692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122349 WO2020238118A1 (zh) 2019-05-27 2019-12-02 光刻方法

Country Status (2)

Country Link
CN (1) CN111999984B (zh)
WO (1) WO2020238118A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115220905A (zh) * 2021-04-19 2022-10-21 苏州苏大维格科技集团股份有限公司 直写光刻数据处理系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521425A (zh) * 2011-10-25 2012-06-27 清华大学 版图二划分方法
CN102722085A (zh) * 2012-05-11 2012-10-10 中国科学院光电技术研究所 一种无掩模数字投影光刻的图形拼接方法
US9558916B2 (en) * 2014-10-27 2017-01-31 Canon Kabushiki Kaisha Lithography system and method of manufacturing articles
CN107045265A (zh) * 2017-03-07 2017-08-15 无锡影速半导体科技有限公司 直写式光刻机中倾斜式扫描数据的重组方法
CN107145038A (zh) * 2017-03-14 2017-09-08 国家纳米科学中心 一种基于大面积超分辨激光直写系统的图形刻写方法
CN109932869A (zh) * 2017-12-19 2019-06-25 苏州苏大维格光电科技股份有限公司 数字光刻方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285418A (ja) * 1986-06-03 1987-12-11 Fujitsu Ltd 微細幅パタ−ンの露光方法
KR20110052900A (ko) * 2009-11-13 2011-05-19 주식회사 동부하이텍 마스크용 데이터 베이스 생성방법
CN104281013A (zh) * 2014-09-29 2015-01-14 天津津芯微电子科技有限公司 一种直写式光刻系统倾斜扫描拼接方法
CN108062005B (zh) * 2016-11-07 2020-12-25 俞庆平 一种直写式丝网制版系统的拼接改善方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521425A (zh) * 2011-10-25 2012-06-27 清华大学 版图二划分方法
CN102722085A (zh) * 2012-05-11 2012-10-10 中国科学院光电技术研究所 一种无掩模数字投影光刻的图形拼接方法
US9558916B2 (en) * 2014-10-27 2017-01-31 Canon Kabushiki Kaisha Lithography system and method of manufacturing articles
CN107045265A (zh) * 2017-03-07 2017-08-15 无锡影速半导体科技有限公司 直写式光刻机中倾斜式扫描数据的重组方法
CN107145038A (zh) * 2017-03-14 2017-09-08 国家纳米科学中心 一种基于大面积超分辨激光直写系统的图形刻写方法
CN109932869A (zh) * 2017-12-19 2019-06-25 苏州苏大维格光电科技股份有限公司 数字光刻方法及系统

Also Published As

Publication number Publication date
CN111999984B (zh) 2021-07-13
CN111999984A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
JP4617272B2 (ja) 二重露光リソグラフィを実行するための方法、プログラム製品及びデバイス製造方法
JPH07283132A (ja) レティクルパターンをターゲット基板上でつなぎ合わせる方法及び装置
TW200809913A (en) Photomask, method and apparatus that uses the same, photomask pattern production method, pattern formation method, and semiconductor device
WO2020238118A1 (zh) 光刻方法
CN101196683A (zh) 光学近距修正的方法
US7158210B2 (en) Projection exposure apparatus
KR101742358B1 (ko) 포토마스크의 제조 방법, 포토마스크 및 패턴 전사 방법
JP2014102292A (ja) フォトマスク、分割露光方法、および半導体デバイスの製造方法
JP2013171984A (ja) パターン投影装置およびパターン投影方法
JP2006030510A (ja) 濃度分布マスク
JP2923905B2 (ja) フォトマスク
KR20140095924A (ko) 마스크리스 노광장치
JP2013161919A (ja) 露光方法
JP2017026768A (ja) 走査露光装置、走査露光方法、およびデバイス製造方法
JP2005276852A (ja) 微細ホールパターンの形成方法
JPH11133585A (ja) 露光用マスク及びその製造方法
JP6581417B2 (ja) 露光装置、露光方法及び物品の製造方法
JP3469570B2 (ja) 露光用マスクの製造方法
JPH09306826A (ja) 露光装置
JP2009037203A (ja) パターン形成方法、薄膜トランジスタ基板の製造方法及び液晶表示装置の製造方法、並びにフォトマスク
JP2008292871A (ja) 描画データの作成方法および描画方法
JPH0750247A (ja) 露光装置
JP2021076763A (ja) カラーフィルタの製造方法、及びそれに用いるフォトマスク
CN112034675A (zh) 掩膜版、图形制作装置和图形制作方法
JP2011123223A (ja) フォトマスクの製造方法およびフォトマスクならびにそれを用いた半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930853

Country of ref document: EP

Kind code of ref document: A1