WO2020235065A1 - 電池部材及びその製造方法、並びに二次電池 - Google Patents

電池部材及びその製造方法、並びに二次電池 Download PDF

Info

Publication number
WO2020235065A1
WO2020235065A1 PCT/JP2019/020345 JP2019020345W WO2020235065A1 WO 2020235065 A1 WO2020235065 A1 WO 2020235065A1 JP 2019020345 W JP2019020345 W JP 2019020345W WO 2020235065 A1 WO2020235065 A1 WO 2020235065A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
mass
mixture layer
electrode mixture
electrolyte
Prior art date
Application number
PCT/JP2019/020345
Other languages
English (en)
French (fr)
Inventor
秀之 小川
拓也 西村
祐介 瀬良
真代 堀川
明博 織田
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN201980096442.1A priority Critical patent/CN113826254A/zh
Priority to US17/610,154 priority patent/US20220231334A1/en
Priority to PCT/JP2019/020345 priority patent/WO2020235065A1/ja
Priority to EP19929706.0A priority patent/EP3955361A4/en
Priority to JP2021519992A priority patent/JP7527703B2/ja
Publication of WO2020235065A1 publication Critical patent/WO2020235065A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a battery member, a manufacturing method thereof, and a secondary battery.
  • one aspect of the present invention is to provide a battery member capable of manufacturing a secondary battery which is excellent in safety and also excellent in discharge characteristics and capacity retention rate, and a method for manufacturing the same.
  • the present inventors satisfactorily form the interface between the electrode active material and the electrolyte salt, which is an ionic conduction component, and the interface between the electrode mixture layer and the electrolyte layer. Therefore, the discharge characteristics and capacity retention rate of the secondary battery can be improved, and when an organic solvent is used, the safety is generally easily impaired, so that the polymer, oxide particles and electrolyte salt are used.
  • the oxide particles ensure the insulating property between the electrodes. Therefore, compared with the conventional separator composed only of the polymer, the distance between the electrodes is such that the separator melts. It was found that the safety can be improved because the short circuit can be suppressed.
  • One aspect of the present invention includes a current collector, an electrode mixture layer provided on the current collector, and an electrolyte layer provided on the electrode mixture layer, and the electrode mixture layer is an electrode activity.
  • the battery member contains a substance, an organic solvent, and an electrolyte salt, and the electrolyte layer contains a polymer, oxide particles, and an electrolyte salt.
  • the organic solvent may contain at least one selected from the group consisting of carbonic acid esters.
  • the electrode mixture layer may further contain a polymer capable of gelling an organic solvent.
  • Another aspect of the present invention is a secondary battery including the above battery member.
  • Another aspect of the present invention is to add a composition containing an organic solvent and an electrolyte salt to the electrode active material layer containing the electrode active material provided on the current collector to form an electrode mixture layer.
  • a method for manufacturing a battery member comprising a step (a) and a step (b) of providing an electrolyte layer containing a polymer, oxide particles, and an electrolyte salt on the electrode mixture layer.
  • the organic solvent may contain at least one selected from the group consisting of carbonic acid esters.
  • the composition may further contain a polymer capable of gelling an organic solvent.
  • the production method may further include a step of heating the composition before the step (a).
  • the composition may further contain a polymerizable compound, and the polymerizable compound may be a compound that becomes a polymer capable of gelling an organic solvent by polymerization.
  • the production method may further include a step of polymerizing the polymerizable compound in the electrode mixture layer after the step (b).
  • the composition further contains a polymer capable of gelling the organic solvent
  • a polymerizable compound which becomes a polymer capable of gelling the organic solvent by polymerization a step of volatilizing the organic solvent. Since the organic solvent can be gelled without the need for the above, a secondary battery having desired characteristics can be more preferably obtained.
  • the organic solvent and the polymer or the polymerizable compound are added in advance to the electrode mixture layer, and then the organic solvent is gelled to laminate the positive electrode, the electrolyte layer and the negative electrode, and then the electrolytic solution is injected. Therefore, it is possible to secure the permeability of the electrolytic solution (particularly the permeability to the electrode mixture layer), which may be a problem when the area of the secondary battery is increased in order to increase the energy density.
  • a battery member capable of manufacturing a secondary battery which is excellent in safety and also excellent in discharge characteristics and capacity retention rate, and a method for manufacturing the same.
  • FIG. 1 is a perspective view showing a secondary battery according to an embodiment.
  • FIG. 2 is an exploded perspective view showing an embodiment of the electrode group of the secondary battery shown in FIG.
  • FIG. 3A is a schematic cross-sectional view showing a battery member for a secondary battery (positive electrode member) according to one embodiment
  • FIG. 3B is a battery member for a secondary battery (negative electrode) according to another embodiment. It is a schematic cross-sectional view which shows the member).
  • FIG. 4 is an exploded perspective view showing another embodiment of the electrode group of the secondary battery.
  • FIG. 5 is a schematic cross-sectional view showing a battery member (bipolar electrode member) for a secondary battery according to another embodiment.
  • the numerical values and their ranges in the present specification do not limit the present invention.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • FIG. 1 is a perspective view showing a secondary battery according to an embodiment.
  • the secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-shaped battery exterior body 3 accommodating the electrode group 2.
  • the positive electrode and the negative electrode are provided with a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 project from the inside of the battery exterior 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1, respectively.
  • the battery exterior 3 may be formed of, for example, a laminated film.
  • the laminated film may be, for example, a laminated film in which a resin film such as polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, and stainless steel
  • a sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 of the secondary battery shown in FIG.
  • the electrode group 2A according to the embodiment includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • the positive electrode current collector 9 of the positive electrode 6 is provided with a positive electrode current collector tab 4.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
  • the negative electrode current collector 11 of the negative electrode 8 is provided with a negative electrode current collector tab 5.
  • the positive electrode mixture layer 10 and the negative electrode mixture layer 12 are collectively referred to as an electrode mixture layer.
  • the positive electrode active material and the negative electrode active material described later are collectively referred to as an electrode active material.
  • the electrode group 2A includes a first battery member (positive electrode member) including a positive electrode current collector 9, a positive electrode mixture layer 10, and an electrolyte layer 7 in this order.
  • FIG. 3A is a schematic cross-sectional view showing a battery member (positive electrode member) for a secondary battery according to an embodiment, that is, a schematic cross-sectional view showing a first battery member (positive electrode member).
  • the first battery member 13 is provided on the positive electrode current collector 9, the positive electrode mixture layer 10 provided on the positive electrode current collector 9, and the positive electrode mixture layer 10. It is a positive electrode member including the obtained electrolyte layer 7 in this order.
  • the positive electrode current collector 9 may be formed of a metal such as aluminum, titanium, tantalum, or an alloy thereof.
  • the positive electrode current collector 9 is preferably made of aluminum or an alloy thereof because it is lightweight and has a high weight energy density.
  • the positive electrode mixture layer 10 contains a positive electrode active material, an organic solvent, and an electrolyte salt (also referred to as “electrolyte salt A").
  • the positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide or a lithium transition metal phosphate.
  • the lithium transition metal oxide may be, for example, lithium manganate, lithium nickel oxide, lithium cobalt oxide, or the like.
  • the lithium transition metal oxide is a part of transition metals such as Mn, Ni, and Co contained in lithium manganate, lithium nickelate, lithium cobalt, etc., and one or more other transition metals, or It may be a lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 2 O 4 (M 1 comprises at least one transition metal).
  • the lithium transition metal oxides are Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 , LiNi 1/2 Mn 1/2 O 2 , and LiNi 1/2 Mn 3/2 O. It may be 4 mag.
  • the lithium transition metal oxide is preferably a compound represented by the following formula (1) from the viewpoint of further improving the energy density.
  • Lithium transition metal phosphates are LiFePO 4 , LiMnPO 4 , LiMn x M 3 1-x PO 4 (0.3 ⁇ x ⁇ 1, M 3 are Fe, Ni, Co, Ti, Cu, Zn, Mg, and It may be at least one element selected from the group consisting of Zr) and the like.
  • the content of the positive electrode active material may be 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the positive electrode active material may be 99% by mass or less based on the total amount of the positive electrode mixture layer.
  • the organic solvent is a solvent that can dissolve the electrolyte salt A.
  • the organic solvent is preferably a solvent capable of dissolving polymer A, for example, a solvent capable of dissolving polymer A at at least 100 ° C. You can.
  • the organic solvent in the present specification does not include an ionic liquid.
  • the organic solvent may contain, for example, at least one selected from the group consisting of esters, ethers, amides, sulfoxides and sulfones, and preferably contains esters.
  • the organic solvent may be used alone or in combination of two or more.
  • ester examples include carbonic acid ester, fatty acid ester, lactone, and phosphoric acid ester.
  • the organic solvent preferably contains a carbonic acid ester.
  • Examples of the carbonic acid ester include ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, chloroethylene carbonate, chloropropylene carbonate and the like.
  • fatty acid esters include methyl propionate and ethyl propionate.
  • lactone examples include ⁇ -butyrolactone.
  • phosphoric acid ester examples include a phosphoric acid triester.
  • the ether may be chain-like or cyclic.
  • chain ether examples include diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, trimethoxymethane and the like.
  • cyclic ether examples include tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane and the like.
  • Examples of the amide include formamide and dimethylformamide.
  • Examples of sulfoxide include dimethyl sulfoxide and the like.
  • Examples of the sulfone include sulfolane and the like.
  • the content (total content) of the organic solvent may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and is 30% by mass or less and 20% by mass or less, based on the total amount of the positive electrode mixture layer. , Or 10% by mass or less.
  • the electrolyte salt A may be at least one selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt.
  • Anion of the electrolyte salt A is a halide ion (I -, Cl -, Br - , etc.), SCN -, BF 4 - , BF 3 (CF 3) -, BF 3 (C 2 F 5) -, PF 6 - , ClO 4 -, SbF 6 - , N (SO 2 F) 2 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5) 2 -, BPh 4 -, B (C 2 H 4 O 2) 2 -, C ( FSO 2) 3 -, C (CF 3 SO 2) 3 -, CF 3 COO -, CF 3 SO 2 O -, C 6 F 5 SO 2 O -, [B (C 2 O 4) 2] - it may be like.
  • Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f3C], Li [BOB], LiClO 4 , LiCF 3 BF 3 , LiC 2 F 5 BF 3 , LiC 3 F 7 BF. 3 , LiC 4 F 9 BF 3 , Li [C (SO 2 CF 3 ) 3 ], LiCF 3 SO 3 , LiCF 3 COO, and LiRCOO (R is an alkyl group, phenyl group, or naphthyl having 1 to 4 carbon atoms. It may be at least one selected from the group consisting of groups.).
  • Sodium salts are NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f3C], Na [BOB], NaClO 4 , NaCF 3 BF 3 , NaC 2 F 5 BF 3 , NaC 3 F 7 BF. 3 , NaC 4 F 9 BF 3 , Na [C (SO 2 CF 3 ) 3 ], NaCF 3 SO 3 , NaCF 3 COO, and NaRCOO (R is an alkyl group, phenyl group, or naphthyl having 1 to 4 carbon atoms). It may be at least one selected from the group consisting of groups.).
  • Calcium salts are Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca.
  • Magnesium salts are Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f3C] 2 , Mg [BOB] 2 , Mg (ClO 4 ) 2 , Mg.
  • the electrolyte salt A is preferably LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f3C], Li [BOB], LiClO. 4 , LiCF 3 BF 3 , LiC 2 F 5 BF 3 , LiC 3 F 7 BF 3 , LiC 4 F 9 BF 3 , Li [C (SO 2 CF 3 ) 3 ], LiCF 3 SO 3 , LiCF 3 COO, and It is at least one selected from the group consisting of LiRCOO (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group), and more preferably Li [TFSI], Li [FSI], LiPF. It is at least one selected from the group consisting of 6 , LiBF 4 , Li [BOB], and LiClO 4 , and more preferably Li [TFSI] or Li [FSI].
  • LiRCOO R is an alkyl group having 1 to 4 carbon atoms,
  • the content of the electrolyte salt A may be 0.1% by mass or more, 0.4% by mass or more, or 0.7% by mass or more based on the total amount of the positive electrode mixture layer, and is 4.8% by mass or less. It may be 3.2% by mass or less, or 1.6% by mass or less.
  • the concentration of the electrolyte salt A per unit volume of the organic solvent may be 0.3 mol / L or more, 0.6 mol / L or more, or 1.0 mol / L or more, and 2.0 mol / L or less, 1.7 mol or less. It may be less than / L or less than 1.5 mol / L.
  • the positive electrode mixture layer 10 preferably further contains a polymer (also referred to as “polymer A”) capable of gelling the organic solvent. contains.
  • a polymer also referred to as “polymer A” capable of gelling the organic solvent. contains.
  • the polymer capable of gelling an organic solvent means a polymer capable of significantly reducing the fluidity of the organic solvent, and specifically, in the following evaluation of fluidity, the position A and the position. It means a polymer having a distance of less than 1 cm from B.
  • the organic solvent and the organic solvent are gelled in a glass vial (manufactured by AS ONE Corporation, Labran screw tube bottle No. 4, 13.5 mL, bottom diameter: about 2 cm, height: about 4 cm, cylindrical shape).
  • a glass vial manufactured by AS ONE Corporation, Labran screw tube bottle No. 4, 13.5 mL, bottom diameter: about 2 cm, height: about 4 cm, cylindrical shape.
  • Position A is the position of the uppermost surface (the surface farthest from the bottom surface of the glass vial) of the mixture of the organic solvent and the polymer A in the glass vial after standing. Then, the glass vial is allowed to stand at 25 ° C. for 10 minutes in a state where the top and bottom of the glass vial are reversed (the bottom side of the glass vial is up and the lid side is down).
  • the position of the lowermost surface (the surface farthest from the bottom surface of the glass vial) of the mixture of the organic solvent and the polymer A in the glass vial after standing is defined as position B.
  • the fluidity is evaluated based on the distance between the position A and the position B thus obtained.
  • Polymer A is, for example, vinylidene fluoride, hexafluoropropylene, acrylonitrile, methyl methacrylate, N-isopropylacrylamide, methyl acrylate, styrene, pentaerythritol tetraacrylate, diallyldimethylammonium-bis (trifluoromethanesulfonyl) imide, acrylic acid.
  • 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl, methacrylic acid 2,2,3,3,4,5,5,6,6 It may be a polymer containing at least one obtained from the group consisting of 7,7-dodecafluoroheptyl, (ethylene glycol) methacrylate, trimethylpropantriacrylate, isoprene monooxide, and ethylene glycol diglycidyl ether as a monoma unit.
  • the polymer A may be a homopolymer containing only one kind of the monoma unit, a copolymer containing two or more kinds of the monoma unit, and one or more kinds of the monoma unit and a monoma unit other than the monoma unit. It may be a copolymer containing one or more kinds.
  • homopolymas examples include polyvinylidene fluoride, polyacrylonitrile, methyl polyacrylate, polymethyl methacrylate, poly (N-isopropylacrylamide), poly (diallyldimethylammonium-bis (trifluoromethanesulfonyl) imide), and polyacrylic acid 2,2. , 3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl, polymethacrylic acid 2,2,3,3,4,5,5,6,6,7, Examples thereof include 7-dodecafluoroheptyl, polyacrylamide, polyglycidyl methacrylate, and polyethylene glycol.
  • copolyma examples include a copolyma of vinylidene fluoride and hexafluoropropylene, a copolyma of methyl methacrylate and oxetanyl methacrylate, and the like.
  • Polymer A is used by using one of the above polymers alone or in combination of two or more.
  • the polymer A is preferably a polymer containing pentaerythritol tetraacrylate as a monomer unit, polyvinylidene fluoride, or a copolymer of vinylidene fluoride and hexafluoropropylene. And at least one selected from the group consisting of a copolymer of methyl methacrylate and oxetanyl methacrylate.
  • the content of the polymer A may be 0.01% by mass or more, 0.1% by mass or more, or 1% by mass or more, based on the total amount of the positive electrode mixture layer, and is 20% by mass or less and 10% by mass or less. Alternatively, it may be 5% by mass or less.
  • the content of the polymer A may be 0.5 parts by mass or more, 2 parts by mass or more, or 4 parts by mass or more, and 20 parts by mass with respect to 100 parts by mass of the total content of the organic solvent, the electrolyte salt and the polymer A. It may be 10 parts or less, 15 parts by mass or less, or 10 parts by mass or less.
  • the positive electrode mixture layer 10 may further contain an ionic liquid.
  • the ionic liquid contains the following anionic and cationic components.
  • the ionic liquid in the present specification is a substance that is liquid at ⁇ 20 ° C. or higher.
  • Anion component of the ionic liquid is not particularly limited, Cl -, Br -, I - halogen anions such, BF 4 -, N (SO 2 F) 2 - or the like of the inorganic anion, B (C 6 H 5) 4 -, CH 3 SO 3 - , CF 3 SO 3 -, N (C 4 F 9 SO 2) 2 -, N (SO 2 CF 3) 2 -, N (SO 2 CF 2 CF 3) 2 - , etc. It may be an organic anion or the like.
  • Anion component of the ionic liquid preferably, B (C 6 H 5) 4 -, CH 3 SO 3 -, N (C 4 F 9 SO 2) 2 -, CF 3 SO 3 -, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - and N (SO 2 CF 2 CF 3 ) 2 - contains at least one selected from the group consisting of, further improves the ionic conductivity at a relatively low viscosity from the viewpoint of even further improving charge-discharge characteristics, more preferably, N (C 4 F 9 SO 2) 2 -, CF 3 SO 3 -, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 It contains at least one selected from the group consisting of ⁇ and N (SO 2 CF 2 CF 3 ) 2 ⁇ , and more preferably N (SO 2 F) 2 ⁇ .
  • the cation component of the ionic liquid is not particularly limited, but is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyridinium cation, a pyridinium cation, and an imidazolium cation.
  • the chain quaternary onium cation is, for example, a compound represented by the following general formula (2).
  • R 1 to R 4 are independently chain alkyl groups having 1 to 20 carbon atoms or chain alkoxyalkyl groups represented by RO- (CH 2 ) n-.
  • R represents a methyl group or an ethyl group
  • n represents an integer of 1 to 4
  • X represents a nitrogen atom or a phosphorus atom.
  • the number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following general formula (3).
  • R 5 and R 6 are independently alkyl groups having 1 to 20 carbon atoms or alkoxyalkyl groups represented by ROO- (CH 2 ) n- (R is a methyl group). Alternatively, it represents an ethyl group, and n represents an integer of 1 to 4).
  • the alkyl group represented by R 5 and R 6 has preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and further preferably 1 to 5 carbon atoms.
  • the pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following general formula (4).
  • R 7 and R 8 are independently alkyl groups having 1 to 20 carbon atoms or alkoxyalkyl groups represented by ROO- (CH 2 ) n- (R is a methyl group). Alternatively, it represents an ethyl group, and n represents an integer of 1 to 4).
  • the alkyl group represented by R 7 and R 8 has preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the pyridinium cation is, for example, a compound represented by the following general formula (5).
  • R 9 to R 13 are independently alkyl groups having 1 to 20 carbon atoms and alkoxyalkyl groups represented by ROO- (CH 2 ) n- (R is a methyl group or It represents an ethyl group, where n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the imidazolium cation is, for example, a compound represented by the following general formula (6).
  • R 14 to R 18 are independently alkyl groups having 1 to 20 carbon atoms and alkoxyalkyl groups represented by ROO- (CH 2 ) n- (R is a methyl group or Represents an ethyl group, where n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 5.
  • the content of the ionic liquid may be 3% by mass or more, 5% by mass or more, or 10% by mass or more, based on the total amount of the positive electrode mixture layer, and is 30% by mass or less, 25% by mass or less, or 20% by mass. It may be:
  • the positive electrode mixture layer 10 may further contain a conductive agent, a binder, and the like.
  • the conductive agent is not particularly limited, but may be a carbon material such as graphite, acetylene black, carbon black, or carbon fiber.
  • the conductive agent may be a mixture of two or more of the above-mentioned carbon materials.
  • the content of the conductive agent may be 0.1% by mass or more, 1% by mass or more, or 3% by mass or more, based on the total amount of the positive electrode mixture layer, and is 15% by mass or less, 10% by mass or less, or 8 It may be mass% or less.
  • the binder is not particularly limited, but is a polymer containing tetrafluoroethylene, acrylic acid, maleic acid, ethyl methacrylate, etc. as a monomer unit (excluding the above-mentioned polymer A), styrene-butadiene rubber, isoprene rubber, and the like. It may be rubber such as acrylic rubber.
  • the content of the binder may be 0.1% by mass or more, 1% by mass or more, or 3% by mass or more, based on the total amount of the positive electrode mixture layer, and is 15% by mass or less, 10% by mass or less, or. It may be 8% by mass or less.
  • the thickness of the positive electrode mixture layer 10 may be 10 ⁇ m or more, 40 ⁇ m or more, 60 ⁇ m or more, or 80 ⁇ m or more, and may be 200 ⁇ m or less, 180 ⁇ m or less, or 160 ⁇ m or less.
  • the electrolyte layer 7 contains a polymer (hereinafter, also referred to as “polymer B”), oxide particles, and an electrolyte salt (hereinafter, also referred to as “electrolyte salt B”).
  • polymer B also referred to as “polymer B”
  • oxide particles oxide particles
  • electrolyte salt B an electrolyte salt
  • the polymer B is a polymer (binder polymer) that serves as a base (forms a continuous phase) for holding other materials contained in the electrolyte layer 7.
  • Polymer B preferably has a first structural unit selected from the group consisting of ethylene tetrafluoroethylene and vinylidene fluoride.
  • the polymer B is preferably one kind or two or more kinds of polymers, and among the structural units (monomers) constituting the one kind or two or more kinds of polymers, preferably, tetrafluoroethylene and vinylidene fluoride are included.
  • the first structural unit (monomer unit) selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and the second structural unit (monomer unit) selected from the group consisting of methyl methacrylate included.
  • the first structural unit and the second structural unit may be included in one kind of polymer to form a copolymer. That is, the electrolyte layer 7 contains, in one embodiment, at least one copolyma containing both a first structural unit and a second structural unit.
  • the copolyma may be a copolima of vinylidene fluoride and hexafluoropropylene, a copolymer of vinylidene fluoride and maleic acid, a copolymer of vinylidene fluoride and methyl methacrylate, and the like.
  • the electrolyte layer 7 may further contain other polymers.
  • the first structural unit and the second structural unit are contained in different polymers, and at least two of the first polymer having the first structural unit and the second polymer having the second structural unit. It may constitute a polymer of seeds. That is, in one embodiment, the electrolyte layer 7 contains at least two or more types of polymers, a first polymer containing a first structural unit and a second polymer containing a second structural unit, as the polymer B. .. When the electrolyte layer 7 contains the first polymer and the second polymer, other polymers may be further contained.
  • the first polymer may be a polymer consisting of only the first structural unit, or may be a polymer having other structural units in addition to the first structural unit.
  • the other structural unit may be an oxygen-containing hydrocarbon structure such as ethylene oxide (-CH 2 CH 2 O-).
  • the first polymer may be polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride, and a polymer in which the oxygen-containing hydrocarbon structure is introduced into the molecular structure thereof.
  • the second polymer may be a polymer consisting of only the second structural unit, or may be a polymer having other structural units in addition to the second structural unit.
  • the other structural unit may be an oxygen-containing hydrocarbon structure such as ethylene oxide (-CH 2 CH 2 O-).
  • Examples of the combination of the first polymer and the second polymer include polyvinylidene fluoride and polyacrylic acid, ethylene polytetrafluoroethylene and polymethyl methacrylate, vinylidene fluoride and polymethyl methacrylate, and the like.
  • the content of the first structural unit is preferably 5% by mass or more, more preferably 10% by mass or more, based on the total amount of the structural units constituting the polymer B from the viewpoint of further improving the strength of the electrolyte layer 7. It is more preferably 20% by mass or more.
  • the content of the first structural unit is preferably 60 mass based on the total amount of the structural units constituting the polymer B from the viewpoint of further improving the affinity with the ionic liquid when the electrolyte layer 7 contains the ionic liquid. % Or less, more preferably 40% by mass or less, still more preferably 30% by mass or less.
  • the content of the first structural unit is preferably 50% by mass or more based on the total content of the first structural unit and the second structural unit from the viewpoint of further improving the strength of the electrolyte layer 7. It is 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the content of the first structural unit is the sum of the contents of the first structural unit and the second structural unit from the viewpoint of further improving the affinity with the ionic liquid when the electrolyte layer 7 contains the ionic liquid. It is preferably 99% by mass or less, 98% by mass or less, 97% by mass or less, or 96% by mass or less based on the above.
  • the content of the second structural unit is preferably 1 mass based on the total amount of the structural units constituting the polymer B from the viewpoint of further improving the affinity with the ionic liquid when the electrolyte layer 7 contains the ionic liquid. % Or more, more preferably 3% by mass or more, still more preferably 5% by mass or more.
  • the content of the second structural unit is preferably 50% by mass or less, more preferably 20% by mass or less, based on the total amount of the structural units constituting the polymer B from the viewpoint of further improving the strength of the electrolyte layer 7. It is more preferably 10% by mass or less.
  • the content of the second structural unit is the sum of the contents of the first structural unit and the second structural unit from the viewpoint of further improving the affinity with the ionic liquid when the electrolyte layer 7 contains the ionic liquid. Is preferably 1% by mass or more, 3% by mass or more, or 4% by mass or more based on the above.
  • the content of the second structural unit is preferably 50% by mass or less based on the total content of the first structural unit and the second structural unit from the viewpoint of further improving the strength of the electrolyte layer 7. It is 40% by mass or less, 30% by mass or less, 20% by mass or less, 10% by mass or less, or 5% by mass or less.
  • the content of the polymer B is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 20% by mass, based on the total amount of the electrolyte layer, from the viewpoint of further improving the strength of the electrolyte layer 7. % Or more, and particularly preferably 25% by mass or more.
  • the content of the polymer B is preferably 40% by mass or less, more preferably 35% by mass or less, still more preferably 30% by mass or less, based on the total amount of the electrolyte layer, from the viewpoint of further improving the conductivity. Yes, particularly preferably 28% by mass or less.
  • Oxide particles are, for example, inorganic oxide particles.
  • the inorganic oxide is, for example, an inorganic oxide containing Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTIO 3 . It is a particle. Since the oxide particles have polarity, the dissociation of the electrolyte in the electrolyte layer 7 is promoted, and the amorphization of the polymer B is promoted to increase the diffusion rate of the cation component of the electrolyte.
  • the average primary particle size of the oxide particles is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, still more preferably 0, from the viewpoint of further improving the conductivity. It is .015 ⁇ m or more.
  • the average primary particle size of the oxide particles is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less, and further preferably 0.05 ⁇ m or less from the viewpoint of thinning the electrolyte layer 7.
  • the average primary particle size of the oxide particles is preferably 0.005 or more from the viewpoint of thinning the electrolyte composition and suppressing the protrusion of the oxide particles from the surface of the electrolyte composition while improving the conductivity. It is 1 ⁇ m, 0.01 to 0.1 ⁇ m, or 0.015 to 0.05 ⁇ m.
  • the average primary particle size of the oxide particles can be measured by observing the oxide particles with a transmission electron microscope or the like.
  • the average particle size of the oxide particles is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and further preferably 0.03 ⁇ m or more.
  • the average particle size of the oxide particles is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 1 ⁇ m or less.
  • the average particle size of the oxide particles is measured by a laser diffraction method, and corresponds to a particle size in which the volume accumulation is 50% when the volume cumulative particle size distribution curve is drawn from the small particle size side.
  • the shape of the oxide particles may be, for example, lumpy or substantially spherical.
  • the aspect ratio of the oxide particles is preferably 10 or less, more preferably 5 or less, still more preferably 2 or less, from the viewpoint of facilitating the thinning of the electrolyte layer 7.
  • the aspect ratio is the distance between the length in the major axis direction of the particles (maximum length of the particles) and the length in the minor axis direction of the particles (minimum length of the particles) in the scanning electron micrograph of the oxide particles. Defined as a ratio.
  • the length of the particles can be obtained by statistically calculating the above-mentioned photograph using commercially available image processing software (for example, image analysis software manufactured by Asahi Kasei Engineering Co., Ltd., A-kun (registered trademark)). Is.
  • the content of the oxide particles is preferably 5% by mass or more, more preferably 7% by mass or more, still more preferably 10% by mass or more, based on the total amount of the electrolyte layer, from the viewpoint of promoting dissociation of the electrolyte.
  • the content of the oxide particles is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 20% by mass or less, based on the total amount of the electrolyte layer, from the viewpoint of further improving the conductivity. Is.
  • the electrolyte salt B contained in the electrolyte layer 7 may be the electrolyte salt exemplified as the electrolyte salt A contained in the positive electrode mixture layer 10.
  • the electrolyte salt B contained in the electrolyte layer 7 may be the same as or different from the electrolyte salt A contained in the positive electrode mixture layer 10.
  • the content of the electrolyte salt B may be 10% by mass or more and 60% by mass or less based on the total amount of the electrolyte layer from the viewpoint of preferably producing the electrolyte layer 7.
  • the content of the electrolyte salt B is preferably 20% by mass or more based on the total amount of the electrolyte layer from the viewpoint of increasing the conductivity of the electrolyte layer, and enables the secondary battery 1 to be charged and discharged at a high load factor. From the viewpoint of the above, it is more preferably 30% by mass or more.
  • the electrolyte layer 7 may further contain an ionic liquid.
  • the electrolyte salt B may exist in a state of being dissolved in the ionic liquid.
  • the ionic liquid contained in the electrolyte layer 7 may be exemplified as the ionic liquid contained in the positive electrode mixture layer 10.
  • the content of the ionic liquid may be 10% by mass or more and 60% by mass or less based on the total amount of the electrolyte composition from the viewpoint of preferably producing the electrolyte layer 7.
  • the content of the ionic liquid is the electrolyte composition from the viewpoint of increasing the conductivity of the electrolyte layer 7 by increasing the content of the electrolyte salt and enabling the lithium secondary battery to be charged and discharged at a high load factor. Based on the total amount of the substance, it is preferably 55% by mass or less, and more preferably 50% by mass or less.
  • the total content of the electrolyte salt B and the ionic liquid is based on the total amount of the electrolyte layer to further improve the conductivity and suppress the decrease in the capacity of the secondary battery. It is preferably 10% by mass or more, more preferably 25% by mass or more, further preferably 40% by mass or more, and preferably 80% by mass or less from the viewpoint of suppressing a decrease in strength of the electrolyte layer 7. , More preferably 70% by mass or less.
  • the concentration of the electrolyte salt B per unit volume of the ionic liquid is preferably 0.5 mol / L or more, more preferably 0, from the viewpoint of further improving the charge / discharge characteristics. It is .7 mol / L or more, more preferably 1.0 mol / L or more, preferably 2.0 mol / L or less, more preferably 1.8 mol / L or less, still more preferably 1. It is 6 mol / L or less.
  • the thickness of the electrolyte layer 7 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of increasing the strength and further improving the safety.
  • the thickness of the electrolyte layer 7 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, from the viewpoint of further reducing the internal resistance of the secondary battery and further improving the large current characteristics.
  • the electrode group 2A includes a second battery member (negative electrode member) including a negative electrode current collector 11, a negative electrode mixture layer 12, and an electrolyte layer 7 in this order. You can also see it.
  • FIG. 3B is a schematic cross-sectional view showing a battery member (negative electrode member) for a secondary battery according to another embodiment, that is, a schematic cross-sectional view showing a second battery member (negative electrode member).
  • the second battery member 14 is provided on the negative electrode current collector 11, the negative electrode mixture layer 12 provided on the negative electrode current collector 11, and the negative electrode mixture layer 12. It is a negative electrode member including the obtained electrolyte layer 7 in this order. Since the electrolyte layer 7 is the same as the electrolyte layer 7 in the first battery member 13 described above, the description thereof will be omitted below.
  • the negative electrode current collector 11 may be a metal such as aluminum, copper, nickel, stainless steel, an alloy thereof, or the like. Since the negative electrode current collector 11 is lightweight and has a high weight energy density, it is preferably aluminum or an alloy thereof. The negative electrode current collector 11 is preferably copper from the viewpoint of ease of processing into a thin film and cost.
  • the negative electrode mixture layer 12 contains a negative electrode active material, an organic solvent, and an electrolyte salt A.
  • the negative electrode active material may be a carbon material such as graphite or amorphous carbon, a metal material containing tin, silicon or the like, lithium titanate (Li 4 Ti 5 O 12 ), metallic lithium or the like.
  • the content of the negative electrode active material may be 60% by mass or more, 65% by mass or more, or 70% by mass or more based on the total amount of the negative electrode mixture layer.
  • the content of the negative electrode active material may be 99% by mass or less, 95% by mass or less, or 90% by mass or less based on the total amount of the negative electrode mixture layer.
  • the type and content of the organic solvent and the electrolyte salt A contained in the negative electrode mixture layer 12 may be the same as those described for the organic solvent and the electrolyte salt A contained in the positive electrode mixture layer 10 described above.
  • the organic solvent and the electrolyte salt A contained in the negative electrode mixture layer 12 may be the same as or different from the organic solvent and the electrolyte salt A contained in the positive electrode mixture layer 10, respectively.
  • the negative electrode mixture layer 12 preferably further contains a polymer (polymer A) capable of gelling the organic solvent from the viewpoint of further suppressing leakage of the organic solvent (electrolyte solution) from the secondary battery 1.
  • a polymer polymer A
  • the type and content of the polymer A contained in the negative electrode mixture layer 12 may be the same as that described as the polymer A contained in the positive electrode mixture layer 10 described above.
  • the polymer A contained in the negative electrode mixture layer 12 may be the same as or may be different from the polymer A contained in the positive electrode mixture layer 10.
  • the negative electrode mixture layer 12 may further contain an ionic liquid.
  • the type and content of the ionic liquid contained in the negative electrode mixture layer 12 may be the same as that described for the ionic liquid contained in the positive electrode mixture layer 10 described above.
  • the ionic liquid contained in the negative electrode mixture layer 12 may be the same as or different from the ionic liquid contained in the positive electrode mixture layer 10.
  • the negative electrode mixture layer 12 may further contain a conductive agent, a binder, and the like.
  • the types and contents of the conductive agent and the binder contained in the negative electrode mixture layer 12 may be the same as those described for the conductive agent and the binder contained in the positive electrode mixture layer 10 described above.
  • the conductive agent and the binder contained in the negative electrode mixture layer 12 may be the same as or different from the conductive agent and the binder contained in the positive electrode mixture layer 10.
  • the thickness of the negative electrode mixture layer 12 may be 10 ⁇ m or more, 20 ⁇ m or more, 40 ⁇ m or more, or 60 ⁇ m or more.
  • the thickness of the negative electrode mixture layer may be 150 ⁇ m or less, 130 ⁇ m or less, or 110 ⁇ m or less.
  • the method for manufacturing the secondary battery 1 according to the first embodiment is a step (A1) for manufacturing the first battery member (positive electrode member) 13 and a step (B1) for manufacturing the second battery member (negative electrode member) 14.
  • a step (C1) of laminating the first battery member (positive electrode member) 13 and the second battery member (negative electrode member) 14 to obtain the secondary battery 1 is provided.
  • the order of the steps (A1) and (B1) is arbitrary (one of them may be carried out first, or both may be carried out at the same time. The same shall apply hereinafter).
  • a composition (electrolyte solution composition) containing an organic solvent and an electrolyte salt A is applied to a positive electrode active material layer containing a positive electrode active material provided on the positive electrode current collector 9.
  • the step (a) of forming the positive electrode mixture layer 10 in addition to the (electrode active material layer) and the electrolyte layer 7 containing the polymer B, the oxide particles and the electrolyte salt B are provided on the positive electrode mixture layer 10.
  • Step (b) and. It can be said that the step (A1) is a method for manufacturing the first battery member (positive electrode member) 13 including the steps (a) and the steps (b) in this order.
  • a positive electrode laminate including a positive electrode current collector 9 and a positive electrode active material layer containing a positive electrode active material provided on the positive electrode current collector 9 is prepared.
  • a slurry in which a material containing a positive electrode active material, a conductive agent, a binder and the like is dispersed in a dispersion medium is prepared, the slurry is applied to the positive electrode current collector 9, and then the dispersion medium is volatilized.
  • the dispersion medium is not particularly limited, but may be water, an aqueous solvent such as a mixed solvent of alcohol and water, or an organic solvent such as N-methyl-2-pyrrolidone.
  • the electrolytic solution composition containing the organic solvent and the electrolyte salt A is added to the positive electrode active material layer to form the positive electrode mixture layer 10 (electrode mixture layer).
  • the method of adding the electrolytic solution composition into the positive electrode active material layer may be, for example, dropping, coating, printing, spraying or the like.
  • the obtained positive electrode mixture layer 10 contains a positive electrode active material and an electrolytic solution composition arranged (filled) between the positive electrode active materials.
  • the contents of the organic solvent and the electrolyte salt A in the electrolytic solution composition may be adjusted so as to substantially match the desired contents of each component in the positive electrode mixture layer 10.
  • the electrolyte layer 7 is provided on the positive electrode mixture layer 10 obtained in the step (a).
  • the electrolyte layer 7 may be preliminarily molded into a sheet shape on a support film made of a polymer such as polypropylene or polyimide.
  • the electrolyte layer 7 is laminated, for example, by a laminating method, preferably together with a support film, so that the electrolyte layer 7 is in contact with the positive electrode mixture layer 10.
  • the support film is arranged so as to cover the positive electrode mixture layer 10 in addition to the electrolyte layer 7, volatilization of the organic solvent in the positive electrode mixture layer 10 is further suppressed.
  • the electrolyte composition used in step (a) further contains polymer A in addition to the organic solvent and electrolyte salt A, in which case step (A1) is step (a). ),
  • the step (w) of heating the electrolytic solution composition may be further included. That is, another embodiment of the method for manufacturing the first battery member (positive electrode member) 13 includes steps (w), steps (a), and steps (b) in this order.
  • the electrolyte composition is heated to the temperature T1 to dissolve the polymer A (further, the electrolyte salt A) in an organic solvent to obtain a sol-like electrolyte composition.
  • the content of the polymer A in the electrolytic solution composition may be adjusted so as to substantially match the desired content of the polymer A in the positive electrode mixture layer 10.
  • the temperature T1 may be any temperature at which the polymer A can be dissolved in an organic solvent, for example, 60 ° C. or higher, 80 ° C. or higher, or 100 ° C. or higher, 160 ° C. or lower, 140 ° C. or lower, or 120 ° C. or lower. It may be.
  • the heating time may be, for example, 1 hour or more, 3 hours or more, or 5 hours or more, and may be 10 hours or less, 8 hours or less, or 6 hours or less.
  • the viscosity of the sol-like electrolyte composition does not increase excessively before the temperature of the electrolyte composition heated in the step (w) decreases excessively (sol). It is preferable to add the electrolytic solution composition to the positive electrode active material layer while the electrolytic solution composition does not gel.
  • step (x) it is preferable to carry out the step (x) in which the positive electrode mixture layer 10 is allowed to stand in an environment of a temperature T2 lower than the temperature T1 in the step (w) after the step (a).
  • another embodiment of the method for manufacturing the first battery member (positive electrode member) 13 includes steps (w), steps (a), steps (x), and steps (b) in this order.
  • gelation of the organic solvent by the polymer A proceeds suitably in the positive electrode mixture layer 10.
  • the temperature T2 in the step (x) may be, for example, 0 ° C. or higher, 10 ° C. or higher, or 20 ° C. or higher, and may be 60 ° C. or lower, 50 ° C. or lower, or 40 ° C. or lower.
  • the standing time in the step (x) may be, for example, 10 minutes or more, 1 hour or more, or 3 hours or more, and may be 20 hours or less, 15 hours or less, or 10 hours or less.
  • the electrolytic solution composition used in step (a) further contains a polymerizable compound in addition to the organic solvent and electrolyte salt A, in which case step (A1) is a step (A1).
  • step (y) of polymerizing the polymerizable compound in the positive electrode mixture layer 10 may be further included. That is, another embodiment of the method for manufacturing the first battery member (positive electrode member) 13 includes steps (a), steps (b), and steps (y) in this order.
  • the electrolytic solution composition used in step (a) contains an organic solvent, an electrolyte salt A, and a polymerizable compound, and preferably further contains a polymerization initiator that initiates the polymerization of the polymerizable compound. ..
  • the polymerizable compound is at least one compound selected from the group consisting of monomers and oligomas that can form the polymer A by polymerization. That is, the polymerizable compound is a compound (monomer or oligoma) that becomes a polymer (polymer A) capable of gelling an organic solvent by polymerization.
  • the polymerizable compounds are vinylidene fluoride, hexafluoropropylene, acrylonitrile, methyl methacrylate, N-isopropylacrylamide, methyl acrylate, styrene, pentaerythritol tetraacrylate, diallyldimethylammonium-bis (trifluoromethanesulfonyl) imide, and acrylic acid 2.
  • the content (total content) of the polymerizable compound in the electrolytic solution composition may be adjusted so as to substantially match the desired content of the polymer A in the positive electrode mixture layer 10.
  • the polymerization initiator may be appropriately selected from known polymerization initiators.
  • the polymerization initiator may be, for example, an azo compound-based polymerization initiator, an organic peroxide-based polymerization initiator, or the like, or may be a polymerization initiator other than these.
  • azo compound-based polymerization initiator examples include 2,2'-azobis (isobutyronitrile) (AIBN), 1-[(1-cyano-1-methylethyl) azo] formamide, and 2,2'-azobis.
  • AIBN 2,2'-azobis (isobutyronitrile)
  • 1-[(1-cyano-1-methylethyl) azo] formamide 2,2'-azobis.
  • N-Butyl-2-methylpropionamide 2,2'-azobis (N-cyclohexyl-2-methylpropionamide), 2,2'-azobis (2,4,4-trimethylpentane), 2,2 '-Azobis (4-methoxy-2,4-dimethylvaleronitrile) and the like can be mentioned.
  • organic peroxide-based polymerization initiator examples include benzoyl peroxide (BPO), tert-butylperoxyacetate, 2,2-di- (tert-butylperoxy) butane, tert-butylperoxybenzoate, and n.
  • BPO benzoyl peroxide
  • tert-butylperoxyacetate 2,2-di- (tert-butylperoxy) butane
  • tert-butylperoxybenzoate examples include n.
  • the content of the polymerization initiator in the electrolytic solution composition may be, for example, 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the content of the polymerizable compound.
  • step (y) the polymerizable compound in the positive electrode mixture layer 10 is polymerized.
  • the polymer A can be formed from the polymerizable compound, and the organic solvent can be gelled by the polymer A.
  • the method of polymerization may be, for example, a method of polymerizing by applying heat (heat polymerization).
  • the heating temperature and heating time may be appropriately set according to the type of the polymerizable compound.
  • the heating temperature may be, for example, 30 ° C. or higher, 40 ° C. or higher, or 50 ° C. or higher, and may be 100 ° C. or lower, 90 ° C. or lower, or 80 ° C. or lower.
  • the heating time may be, for example, 1 hour or more, 3 hours or more, or 5 hours or more, and may be 48 hours or less, 32 hours or less, or 16 hours or less.
  • the method of polymerization may be a method of polymerizing by irradiating light (photopolymerization).
  • step (B1) is the same as the step (A1) (the "positive electrode” in the step (A1) may be read as the "negative electrode")
  • the method for manufacturing the second battery member (negative electrode member) 14 includes the above-mentioned steps (a) and (b) (however, "positive electrode” is read as “negative electrode") in this order. , Can be said.
  • the above-mentioned steps (w), steps (a) and (b) (however, "positive electrode” is read as “negative electrode”). ) Are provided in this order.
  • steps (a), (b) and (y) however, "positive electrode” is read as “negative electrode”).
  • the first battery member (positive electrode member) 13 obtained in the step (A1) and the second battery member (negative electrode member) 14 obtained in the step (B1) are laminated, for example.
  • the electrolyte layer 7 in the first battery member (positive electrode member) 13 and the electrolyte layer 7 in the second battery member (negative electrode member) 14 are laminated so as to be in contact with each other to obtain the secondary battery 1.
  • the first battery member (positive electrode member) 13 including the electrolyte layer 7 and the second battery member (2nd battery member) including the electrolyte layer 7 ( The negative electrode member) 14 is laminated, but in the method for manufacturing the secondary battery 1 according to another embodiment, the positive electrode 6 (positive electrode current collector 9 and positive electrode mixture layer 10) without the electrolyte layer 7 is provided. ) And the second battery member (negative electrode member) 14 provided with the electrolyte layer 7 may be laminated.
  • the manufacturing method includes a step of manufacturing the positive electrode 6 (A2), a step of manufacturing the second battery member (negative electrode member) 14 described above (B1), and the positive electrode 6 and the second.
  • the present invention includes a step (C2) of laminating the battery member (negative electrode member) 14 of the above to obtain the secondary battery 1.
  • the order of the steps (A2) and the steps (B1) is arbitrary.
  • the step (A2) may include the above-mentioned step (a), the above-mentioned steps (w) and (a) may be provided in this order, and the above-mentioned steps (a) and (y) may be included in this order. You may prepare in order.
  • the step (A2) may preferably include the step (a) and the step (z) in this order, and may include the step (w), the step (a), and the step (z) in this order.
  • Step (w), step (a), step (z) and step (x) may be provided in this order, and steps (a), step (z) and step (y) may be provided in this order.
  • the cover film may be, for example, a film made of a polymer such as polypropylene or polyimide.
  • the organic solvent contained in the electrolytic solution composition (positive electrode mixture layer 10) from the viewpoint of suppressing the volatilization of the organic solvent in the positive electrode mixture layer 10. It is preferable to use an organic solvent having a boiling point of 160 ° C. or higher, 180 ° C. or higher, or 200 ° C. or higher (boiling point at atmospheric pressure).
  • organic solvents examples include ethylene carbonate, propylene carbonate, ⁇ -butyrolactone and the like.
  • the positive electrode 6 obtained in the step (A2) and the second battery member (negative electrode member) 14 obtained in the step (B1) are combined with each other in the positive electrode 6 by, for example, a laminating method.
  • the electrolyte layers 7 in the layer 10 and the second battery member (negative electrode member) 14 are laminated so as to be in contact with each other to obtain the secondary battery 1.
  • the cover film is provided on the positive electrode 6, the positive electrode 6 and the second battery member (negative electrode member) 14 may be laminated after the cover film is peeled off from the positive electrode 6.
  • the positive electrode 6 having no electrolyte layer 7 and the second battery member (negative electrode member) 14 having the electrolyte layer 7 are laminated.
  • the first battery member (positive electrode member) 13 having the electrolyte layer 7 and the negative electrode 8 (negative electrode 8) without the electrolyte layer 7 are provided.
  • the current collector 11 and the negative electrode mixture layer 12) may be laminated.
  • the manufacturing method according to the other embodiment includes the step (A1) for manufacturing the first battery member (positive electrode member) 13 described above, the step (B2) for manufacturing the negative electrode 8, and the first battery member.
  • a step (C3) of laminating the (positive electrode member) 13 and the negative electrode 8 to obtain the secondary battery 1 is provided.
  • the order of the steps (A1) and the steps (B2) is arbitrary.
  • step (B2) is the same as the step (A2) (the "positive electrode” in the step (A2) may be read as the "negative electrode"), detailed description thereof will be omitted.
  • step (C3) is the same as the step (C2) (the "positive electrode” and the “negative electrode” in the step (C2) may be read interchangeably), detailed description thereof will be omitted.
  • the electrolyte layer 7 is provided in advance on at least one of the positive electrode 6 and the negative electrode 8 (the first battery member (positive electrode member) 13 and the second battery member (negative electrode member). At least one of the members (members) 14 is manufactured in advance), but in the method for manufacturing the secondary battery 1 according to the other embodiment, the positive electrode 6 (positive electrode current collector 9 and positive electrode combination) without the electrolyte layer 7 is provided.
  • the agent layer 10) and the negative electrode 8 (negative electrode current collector 11 and negative electrode mixture layer 12) may be laminated with the electrolyte layer 7.
  • the above-mentioned step of producing the positive electrode 6 (A2), the above-mentioned step of producing the negative electrode 8 (B2), and the positive electrode 6, the electrolyte layer 7, and the negative electrode 8 are used. It includes a step (C4) of sequentially stacking the batteries to obtain the secondary battery 1.
  • the order of the steps (A2) and the steps (B2) is arbitrary.
  • the positive electrode 6 obtained in the step (A2), the electrolyte layer 7, and the negative electrode 8 obtained in the step (B2) are laminated, for example, by a laminating method to form a positive electrode mixture layer 10 in the positive electrode 6.
  • the electrolyte layer 7 and the negative electrode mixture layer 12 in the negative electrode 8 are laminated in this order so as to be adjacent to each other to obtain the secondary battery 1.
  • the electrolyte layer 7 may be formed in a sheet shape in advance on the support film described above, for example, and in that case, the support film may be peeled off and then laminated with the positive electrode 6 and the negative electrode 8.
  • the positive electrode 6, the electrolyte layer 7, and the negative electrode 8 may be laminated after the cover film is peeled off from each of the positive electrode 6 and the negative electrode 8.
  • the electrolytic solution composition (positive electrode mixture layer 10) used in the step (A2) contains the polymer A, as described above, the positive electrode mixture layer 10 is statically charged in the step (A2).
  • the step (x) of placing may be carried out.
  • the step (x) may be carried out after the step (C4) (after laminating the positive electrode 6, the electrolyte layer 7 and the negative electrode 8) without carrying out the step (x) in the step (A2).
  • the step (x) of allowing the negative electrode mixture layer 12 to stand still is performed.
  • the step (x) may be carried out, or the step (x) may be carried out after the step (C4) (after laminating the positive electrode 6, the electrolyte layer 7 and the negative electrode 8) without carrying out the step (x) in the step (B2). It may be carried out.
  • the electrolytic solution composition (positive electrode mixture layer 10) used in the step (A2) contains the above-mentioned polymerizable compound, as described above, in the step (A2), the polymerizable solution in the positive electrode mixture layer 10 is polymerizable.
  • the step (y) of polymerizing the compound may be carried out. Alternatively, the step (y) may be carried out after the step (C4) (after laminating the positive electrode 6, the electrolyte layer 7 and the negative electrode 8) without carrying out the step (y) in the step (A2).
  • the electrolytic solution composition (negative electrode mixture layer 12) used in the step (B2) contains the above polymerizable compound
  • the polymerizable compound in the negative electrode mixture layer 12 is polymerized in the step (B2).
  • the step (y) may be carried out, or after the step (C4) (after laminating the positive electrode 6, the electrolyte layer 7 and the negative electrode 8) without carrying out the step (y) in the step (B2), Step (y) may be carried out.
  • the method for manufacturing the secondary battery 1 may include steps (A2) and steps (B2), steps (C4), and steps (x) in this order.
  • A2), step (B2), step (C4), and step (y) may be provided in this order.
  • the order of the steps (A2) and the steps (B2) is arbitrary.
  • the volatilization of the organic solvent can be suppressed, so that the mixing ratio of each component of the electrolytic solution composition to be added to the positive electrode mixture layer 10 or the negative electrode mixture layer 12 , It is difficult for a change to occur between the blending ratio of each component in the obtained positive electrode mixture layer 10 or the negative electrode mixture layer 12. Therefore, the electrolytic solution composition may be prepared with a composition substantially the same as the composition of the positive electrode mixture layer 10 or the negative electrode mixture layer 12 according to the characteristics of the obtained secondary battery 1, and thus the secondary battery has desired characteristics. Battery 1 can be preferably obtained.
  • the organic solvent when the organic solvent is gelled, it is common to volatilize the organic solvent. However, in the method for producing the secondary battery 1 according to each of the above embodiments, the organic solvent does not need to be volatilized. Since the solvent can be gelled, the secondary battery 1 having desired characteristics can be more preferably obtained as compared with the conventional case.
  • the positive electrode 6, the electrolyte layer 7 and the negative electrode 8 are laminated.
  • the permeability of the electrolytic solution (particularly, penetration into the electrode mixture layers 10 and 12), which may be a problem when the area of the secondary battery 1 is increased in order to increase the energy density. Gender) can be secured.
  • FIG. 4 is an exploded perspective view showing another embodiment of the electrode group of the secondary battery.
  • the same reference numerals as those of the electrode group 2B shown in FIG. 2 are given, and redundant description will be omitted.
  • the secondary battery in the other embodiment differs from the secondary battery in the above-described embodiment in that the electrode group 2B further includes the bipolar electrode 15. That is, the electrode group 2B includes a positive electrode 6, a first electrolyte layer 7, a bipolar electrode 15, a second electrolyte layer 7, and a negative electrode 8 in this order.
  • the bipolar electrode 15 is provided on the bipolar electrode current collector 16, the positive electrode mixture layer 10 provided on the surface of the bipolar electrode current collector 16 on the negative electrode 8 side, and the surface of the bipolar electrode current collector 16 on the positive electrode 6 side.
  • the negative electrode mixture layer 12 is provided.
  • the electrode group 2B includes a third battery member (bipolar electrode member) including the first electrolyte layer 7, the bipolar electrode 15, and the second electrolyte layer 7 in this order.
  • FIG. 5 is a schematic cross-sectional view showing a third battery member (bipolar electrode member) which is a battery member for a secondary battery according to another embodiment.
  • the third battery member 17 includes a bipolar electrode current collector 16, a positive electrode mixture layer 10 provided on one surface of the bipolar electrode current collector 16, and a positive electrode mixture layer 10.
  • the bipolar electrode current collector 16 is formed of, for example, a single metal such as aluminum, stainless steel, or titanium, or a clad material obtained by rolling and joining aluminum and copper or stainless steel and copper.
  • the first electrolyte layer 7 and the second electrolyte layer 7 may be of the same type or different from each other, and are preferably the same type of each other.
  • the interface between the electrode active material and the electrolyte salt which is an ionic conduction component, and the electrode mixture layers 10 and 12 and the electrolyte is formed well, and the discharge characteristics and the capacity retention rate of the secondary battery 1 can be improved.
  • safety is generally liable to be impaired.
  • the electrolyte layer 7 containing a polymer, oxide particles and an electrolyte salt a separator composed only of a conventional polymer is used. Compared with, safety can also be improved.
  • the electrode mixture layers 10 and 12 contain a polymer A capable of gelling an organic solvent, volatilization of the organic solvent (electrolyte solution) in the electrode mixture layers 10 and 12 is suppressed.
  • the safety of the secondary battery 1 can be further improved, and only the electrode mixture layers 10 and 12 (or the electrodes (positive electrode 6 and negative electrode 8) or the battery member (positive electrode member 13 and negative electrode member 14)). Only) can be stored for a long period of time, and the secondary battery 1 can be easily manufactured by a simple process of laminating them when necessary.
  • the above-mentioned secondary battery 1 is excellent not only in safety but also in discharge characteristics and capacity retention rate. Therefore, in this secondary battery 1, the size of the secondary battery 1 is increased and the energy density is increased. At the same time, the risk of ignition, which is a particular problem at that time, is reduced. Therefore, the secondary battery 1 is suitable for, for example, a large secondary battery that requires high energy density, and is particularly suitable as an in-vehicle secondary battery mounted on a vehicle such as an automobile.
  • Example 1 [Preparation of positive electrode active material layer] Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 (positive electrode active material) 66 parts by mass, acetylene black (conductive agent, trade name: Li400, average particle size 48 nm (manufacturer catalog value), Denka Co., Ltd. ) 4 parts by mass, polyvinylidene fluoride solution (binder, trade name: Kureha KF Polyma # 1120, solid content: 12% by mass, Kureha Corporation) 14 parts by mass, and N-methyl-2-pyrrolidone (dispersion medium, NMP) A slurry was prepared by mixing 15 parts by mass.
  • acetylene black conductive agent, trade name: Li400, average particle size 48 nm (manufacturer catalog value), Denka Co., Ltd. ) 4 parts by mass
  • polyvinylidene fluoride solution bin, trade name: Kureha KF Polyma # 1120, solid content: 12% by mass, Kureha Corporation
  • This slurry is applied onto a positive electrode current collector (aluminum foil with a thickness of 20 ⁇ m), dried at 120 ° C., rolled, and has a positive electrode activity with a single-sided coating amount of 120 g / m 2 and a mixture density of 2.7 g / cm 3 .
  • a material layer was formed.
  • This slurry is applied onto a negative electrode current collector (copper foil with a thickness of 10 ⁇ m), dried at 80 ° C., and then rolled to obtain a negative electrode active material having a single-sided coating amount of 60 g / m 2 and a mixture density of 1.6 g / cm 3. A layer was formed.
  • a negative electrode current collector copper foil with a thickness of 10 ⁇ m
  • LiFSI lithium bis (fluorosulfonyl) imide
  • EMIFSI 1-ethyl3-methylimidazolium-bis (fluorosulfonyl) imide
  • Kureha 34 parts by mass and 143 parts by mass of NMP were mixed to prepare a slurry. This slurry was applied onto a support film (made of polypropylene) and dried at 80 ° C. to prepare an electrolyte layer (electrolyte sheet) having a thickness of 20 ⁇ m.
  • a sol-like electrolytic solution composition was uniformly applied onto each of the positive electrode active material layer and the negative electrode active material layer to obtain a positive electrode mixture layer and a negative electrode mixture layer.
  • the electrolyte layer was transferred (laminated) together with the support film on each of the obtained positive electrode mixture layer and the negative electrode mixture layer so that the electrolyte layer was in contact with each electrode mixture layer.
  • the mixture was allowed to stand at 25 ° C. for 12 hours to gel the organic solvent to obtain a positive electrode member and a negative electrode member containing a gel-like electrolytic solution composition in each of the positive electrode mixture layer and the negative electrode mixture layer.
  • 0.1C discharge characteristics, 0.5C discharge characteristics, and 2C discharge characteristics were calculated based on the following formulas. The results are shown in Table 1. It can be said that the larger the value of the 0.1C discharge characteristic, the higher the capacity can be taken out from the battery at a low current. It can be said that the larger the value of the 0.5C and 2C discharge characteristics, the better the output characteristics of the battery.
  • Example 2 A secondary battery was produced and evaluated in the same manner as in Example 1 except that [Production of battery member] of Example 1 was changed as follows. Immediately after the sol-like electrolyte composition is uniformly applied onto the positive electrode active material layer and the negative electrode active material layer to obtain the positive electrode mixture layer and the negative electrode mixture layer, the positive electrode mixture layer and the electrolyte are obtained. The layers and the negative electrode mixture layer were superposed in this order. Then, the organic solvent was gelled by allowing to stand at 25 ° C. for 12 hours to integrate the positive electrode mixture layer / electrolyte layer / negative electrode mixture layer.
  • Example 3 In [Preparation of Electrolyte Solution Composition] of Example 1, a solution B in which 1 part by mass of vinylene carbonate (VC) was further added to 100 parts by mass of the solution A was used instead of the solution A. The secondary battery was prepared and evaluated in the same manner as in 1.
  • VC vinylene carbonate
  • a secondary battery was prepared and evaluated in the same manner as in Example 1 except that [Preparation of electrolyte composition] and [Preparation of battery member] of Example 1 were changed as follows.
  • a sol-like solution was obtained by mixing a solution prepared by adding 40 parts by mass of acetone to 10 parts by mass of polymethyl methacrylate and 90 parts by mass of a solution prepared by dissolving LiFSI at 1.5 mol / L in EMIFSI. .. This solution was applied to each of the positive electrode active material layer and the negative electrode active material layer using a substitute for the electrolytic solution composition of Example 1, and vacuum dried at 80 ° C.
  • polyma A positive electrode member and a negative electrode member containing a gel-like composition containing polymethylmethacrylate) and an ionic liquid (EMIFSI) were obtained.
  • the secondary batteries (Examples 1 to 3) prepared by using the electrode mixture layer containing an organic solvent are compared with the secondary batteries (Comparative Example 1) prepared by using the electrode mixture layer containing an ionic liquid. It was found that the discharge characteristics were excellent.
  • the electrode mixture layer containing an organic solvent By using the electrode mixture layer containing an organic solvent, the interface between the electrode active material and the electrolyte salt, which is an ionic conduction component, and the interface between the electrode mixture layer and the electrolyte layer are well formed. This is probably because the output characteristics of the secondary battery have improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の一側面は、集電体と、集電体上に設けられた電極合剤層と、電極合剤層上に設けられた電解質層と、を備え、電極合剤層は、電極活物質と、有機溶媒と、ポリマと、電解質塩と、を含有し、電解質層は、ポリマと、酸化物粒子と、電解質塩と、を含有する、電池部材である。

Description

電池部材及びその製造方法、並びに二次電池
 本開示は、電池部材及びその製造方法、並びに二次電池に関する。
 近年、環境負荷の小さい電気自動車、ハイブリッド自動車の普及率が増加傾向にある。これらの自動車には、ニッケル水素電池、リチウムイオン二次電池等の二次電池が搭載されている。自動車用の二次電池には、電池特性のみならず、高い安全性が求められる。二次電池の安全性を向上させる方法として、電解液を固体電解質へ変更する方法が知られている(例えば特許文献1)。
特開2004-107641号公報
 しかしながら、従来の二次電池においては、安全性の点で更なる改善の余地があることに加えて、安全性を損なわずに電池特性(例えば、放電特性及び容量維持率)を向上させることが必ずしもできていない。
 そこで、本発明の一側面は、安全性に優れると共に、放電特性及び容量維持率にも優れる二次電池を作製可能な電池部材及びその製造方法を提供することを目的とする。
 本発明者らは、電極合剤層に有機溶媒を用いることにより、電極活物質とイオン伝導成分である電解質塩との界面、及び、電極合剤層と電解質層との界面がそれぞれ良好に形成され、二次電池の放電特性及び容量維持率を向上させることができること、更には、有機溶媒を用いた場合、一般的には安全性が損なわれやすいところ、ポリマ、酸化物粒子及び電解質塩を含有する電解質層を用いることにより、酸化物粒子が電極間の絶縁性を担保することから、従来のポリマのみから構成されるセパレータと比較して、当該セパレータが融解するような温度でも電極間の短絡を抑制できるため、安全性も高めることができることを見出した。
 本発明の一側面は、集電体と、集電体上に設けられた電極合剤層と、電極合剤層上に設けられた電解質層と、を備え、電極合剤層は、電極活物質と、有機溶媒と、電解質塩と、を含有し、電解質層は、ポリマと、酸化物粒子と、電解質塩と、を含有する、電池部材である。
 有機溶媒は、炭酸エステルからなる群より選ばれる少なくとも1種を含んでよい。
 電極合剤層は、有機溶媒をゲル化可能なポリマを更に含有してよい。
 本発明の他の一側面は、上記の電池部材を備える二次電池である。
 本発明の他の一側面は、有機溶媒及び電解質塩を含有する組成物を、集電体上に設けられた電極活物質を含有する電極活物質層中に加えて電極合剤層を形成する工程(a)と、電極合剤層上に、ポリマ、酸化物粒子及び電解質塩を含有する電解質層を設ける工程(b)と、を備える、電池部材の製造方法である。
 有機溶媒は、炭酸エステルからなる群より選ばれる少なくとも1種を含んでよい。
 組成物は、有機溶媒をゲル化可能なポリマを更に含有してよい。この場合、上記製造方法は、工程(a)の前に、組成物を加熱する工程を更に備えてよい。
 組成物は、重合性化合物を更に含有してよく、重合性化合物は、重合することにより有機溶媒をゲル化可能なポリマになる化合物であってよい。この場合、上記製造方法は、工程(b)の後に、電極合剤層中の重合性化合物を重合させる工程を更に備えてよい。
 上記組成物が、有機溶媒をゲル化可能なポリマを更に含有する場合、及び、重合することにより有機溶媒をゲル化可能なポリマになる重合性化合物を更に含有する場合、有機溶媒を揮発させる工程を必要とせずに有機溶媒のゲル化が可能であるため、所望の特性を有する二次電池をより好適に得ることができる。加えて、有機溶媒と当該ポリマ又は重合性化合物とを電極合剤層に予め添加した上で、有機溶媒をゲル化させることにより、正極、電解質層及び負極を積層した後で電解液を注液する必要がなくなるため、高エネルギ密度化のために二次電池を大面積化したときに問題となり得る電解液の浸透性(特に電極合剤層への浸透性)を確保できる。
 本発明の一側面によれば、安全性に優れると共に、放電特性及び容量維持率にも優れる二次電池を作製可能な電池部材及びその製造方法を提供することができる。
図1は、一実施形態に係る二次電池を示す斜視図である。 図2は、図1に示した二次電池の電極群の一実施形態を示す分解斜視図である。 図3(a)は一実施形態に係る二次電池用電池部材(正極部材)を示す模式断面図であり、図3(b)は他の一実施形態に係る二次電池用電池部材(負極部材)を示す模式断面図である。 図4は、二次電池の電極群の他の一実施形態を示す分解斜視図である。 図5は、他の一実施形態に係る二次電池用電池部材(バイポーラ電極部材)を示す模式断面図である。
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。
 本明細書における数値及びその範囲は、本発明を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の上限値又は下限値に置き換えてもよい。また、本明細書中に記載される数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 図1は、一実施形態に係る二次電池を示す斜視図である。図1に示すように、二次電池1は、正極、負極、及び電解質層から構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。
 電池外装体3は、例えばラミネートフィルムで形成されていてよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。
 図2は、図1に示した二次電池の電極群2の一実施形態を示す分解斜視図である。図2に示すように、一実施形態に係る電極群2Aは、正極6、電解質層7、及び負極8をこの順に備える。正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極6の正極集電体9には、正極集電タブ4が設けられている。負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極8の負極集電体11には、負極集電タブ5が設けられている。なお、本明細書においては、正極合剤層10及び負極合剤層12をまとめて電極合剤層と呼ぶ。同様に、後述する正極活物質及び負極活物質をまとめて電極活物質と呼ぶ。
 一実施形態において、電極群2Aには、正極集電体9と、正極合剤層10と、電解質層7とをこの順に備える第1の電池部材(正極部材)が含まれていると見ることができる。図3(a)は、一実施形態に係る二次電池用電池部材(正極部材)を示す模式断面図、すなわち第1の電池部材(正極部材)を示す模式断面図である。図3(a)に示すように、第1の電池部材13は、正極集電体9と、正極集電体9上に設けられた正極合剤層10と、正極合剤層10上に設けられた電解質層7とをこの順に備える正極部材である。
 正極集電体9は、アルミニウム、チタン、タンタル等の金属、又はそれらの合金で形成されていてよい。正極集電体9は、軽量で高い重量エネルギ密度を有するため、好ましくはアルミニウム又はその合金で形成されている。
 正極合剤層10は、一実施形態において、正極活物質と、有機溶媒と、電解質塩(「電解質塩A」ともいう)と、を含有する。
 正極活物質は、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物であってよい。
 リチウム遷移金属酸化物は、例えば、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等であってよい。リチウム遷移金属酸化物は、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等に含有されるMn、Ni、Co等の遷移金属の一部を、1種若しくは2種以上の他の遷移金属、又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物であってもよい。すなわち、リチウム遷移金属酸化物は、LiM又はLiM (Mは少なくとも1種の遷移金属を含む)で表される化合物であってよい。リチウム遷移金属酸化物は、具体的には、Li(Co1/3Ni1/3Mn1/3)O、LiNi1/2Mn1/2、LiNi1/2Mn3/2等であってよい。
 リチウム遷移金属酸化物は、エネルギ密度を更に向上させる観点から、好ましくは下記式(1)で表される化合物である。
 LiNiCo 2+e   (1)
[式(1)中、Mは、Al、Mn、Mg及びCaからなる群より選ばれる少なくとも1種であり、a、b、c、d及びeは、それぞれ0.2≦a≦1.2、0.5≦b≦0.9、0.1≦c≦0.4、0≦d≦0.2、-0.2≦e≦0.2、かつb+c+d=1を満たす数である。]
 リチウム遷移金属リン酸塩は、LiFePO、LiMnPO、LiMn 1-xPO(0.3≦x≦1、MはFe、Ni、Co、Ti、Cu、Zn、Mg、及びZrからなる群より選ばれる少なくとも1種の元素である)等であってよい。
 正極活物質の含有量は、正極合剤層全量を基準として、70質量%以上、80質量%以上、又は90質量%以上であってよい。正極活物質の含有量は、正極合剤層全量を基準として、99質量%以下であってよい。
 有機溶媒は、電解質塩Aを溶解し得る溶媒である。正極合剤層がポリマA(詳細は後述)を更に含有する場合、有機溶媒は、好ましくは、ポリマAを溶解し得る溶媒であり、例えば、少なくとも100℃においてポリマAを溶解し得る溶媒であってよい。なお、本明細書における有機溶媒には、イオン液体は含まれない。
 有機溶媒は、例えば、エステル、エーテル、アミド、スルホキシド及びスルホンからなる群より選ばれる少なくとも1種を含んでよく、好ましくは、エステルを含んでいる。有機溶媒は、1種単独で又は2種以上を組み合わせて用いられる。
 エステルとしては、炭酸エステル、脂肪酸エステル、ラクトン、リン酸エステル等が挙げられる。有機溶媒は、好ましくは、炭酸エステルを含んでいる。
 炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、クロロエチレンカーボネート、クロロプロピレンカーボネート等が挙げられる。
 脂肪酸エステルとしては、プロピオン酸メチル、プロピオン酸エチル等が挙げられる。ラクトンとしては、γ-ブチロラクトン等が挙げられる。リン酸エステルとしては、リン酸トリエステル等が挙げられる。
 エーテルは、鎖状であっても環状であってもよい。鎖状のエーテルとしては、ジエチルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、トリメトキシメタン等が挙げられる。環状のエーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン等が挙げられる。
 アミドとしては、ホルムアミド、ジメチルホルムアミド等が挙げられる。スルホキシドとしては、ジメチルスルホキシド等が挙げられる。スルホンとしては、スルホラン等が挙げられる。
 有機溶媒の含有量(合計含有量)は、正極合剤層全量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、30質量%以下、20質量%以下、又は10質量%以下であってよい。
 電解質塩Aは、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種であってよい。
 電解質塩Aのアニオンは、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、BF(CF、BF(C、PF 、ClO 、SbF 、N(SOF) 、N(SOCF 、N(SO 、BPh 、B(C 、C(FSO 、C(CFSO 、CFCOO、CFSO、CSO、[B(C等であってよい。アニオンは、好ましくは、PF 、BF 、N(SOF) 、N(SOCF 、[B(C、又はClO である。
 なお、以下では下記の略称を用いる場合がある。
[FSI]:N(SOF) 、ビス(フルオロスルホニル)イミドアニオン
[TFSI]:N(SOCF 、ビス(トリフルオロメタンスルホニル)イミドアニオン
[BOB]:[B(C、ビスオキサレートボラートアニオン
[f3C]:C(FSO 、トリス(フルオロスルホニル)カルボアニオン
 リチウム塩は、LiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO4、LiCFBF、LiCBF、LiCBF、LiCBF、Li[C(SOCF]、LiCFSO、LiCFCOO、及びLiRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 ナトリウム塩は、NaPF、NaBF、Na[FSI]、Na[TFSI]、Na[f3C]、Na[BOB]、NaClO4、NaCFBF、NaCBF、NaCBF、NaCBF、Na[C(SOCF]、NaCFSO、NaCFCOO、及びNaRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 カルシウム塩は、Ca(PF、Ca(BF、Ca[FSI]、Ca[TFSI]、Ca[f3C]、Ca[BOB]、Ca(ClO、Ca(CFBF、Ca(CBF、Ca(CBF、Ca(CBF、Ca[C(SOCF、Ca(CFSO、Ca(CFCOO)、及びCa(RCOO)(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 マグネシウム塩は、Mg(PF、Mg(BF、Mg[FSI]、Mg[TFSI]、Mg[f3C]、Mg[BOB]、Mg(ClO、Mg(CFBF、Mg(CBF、Mg(CBF、Mg(CBF、Mg[C(SOCF、Mg(CFSO、Mg(CFCOO)、及びMg(RCOO)(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。
 これらのうち、解離性及び電気化学的安定性の観点から、電解質塩Aは、好ましくはLiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO4、LiCFBF、LiCBF、LiCBF、LiCBF、Li[C(SOCF]、LiCFSO、LiCFCOO、及びLiRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であり、より好ましくはLi[TFSI]、Li[FSI]、LiPF、LiBF、Li[BOB]、及びLiClO4からなる群より選ばれる少なくとも1種であり、更に好ましくはLi[TFSI]又はLi[FSI]である。
 電解質塩Aの含有量は、正極合剤層全量を基準として、0.1質量%以上、0.4質量%以上、又は0.7質量%以上であってよく、4.8質量%以下、3.2質量%以下、又は1.6質量%以下であってよい。
 有機溶媒の単位体積あたりの電解質塩Aの濃度は、0.3mol/L以上、0.6mol/L以上、又は1.0mol/L以上であってよく、2.0mol/L以下、1.7mol/L以下、又は1.5mol/L以下であってよい。
 正極合剤層10は、二次電池1からの有機溶媒(電解液)の液漏れを更に抑制する観点から、好ましくは、有機溶媒をゲル化可能なポリマ(「ポリマA」ともいう)を更に含有する。この場合、正極合剤層10中の有機溶媒がゲル化されるため、二次電池1からの有機溶媒の液漏れを抑制できる。
 本明細書において、有機溶媒をゲル化可能なポリマとは、有機溶媒の流動性を大きく低下させることができるポリマを意味し、具体的には、以下の流動性の評価において、位置Aと位置Bとの間の距離が1cm未満となるポリマを意味する。
 まず、ガラスバイアル瓶(アズワン株式会社製、ラボランスクリュー管瓶No.4、13.5mL、底面の直径:約2cm、高さ:約4cmの円筒形)内に有機溶媒と有機溶媒をゲル化可能なポリマ(ポリマA)との混合物(有機溶媒/ポリマA=90/10(質量比))5gを投入して蓋をする。続いて、ポリマAのガラス転移温度以上の温度でポリマAを溶融させた後、ガラスバイアル瓶の底面側を下に、蓋側を上にした状態で、25℃で20時間静置する。この静置後のガラスバイアル瓶中の有機溶媒とポリマAとの混合物の最上面(ガラスバイアル瓶の底面から最も離れた面)の位置を位置Aとする。その後、ガラスバイアル瓶の天地を逆転させた状態(ガラスバイアル瓶の底面側を上に、蓋側を下にした状態)で、25℃で10分間静置する。この静置後のガラスバイアル瓶中の有機溶媒とポリマAとの混合物の最下面(ガラスバイアル瓶の底面から最も離れた面)の位置を位置Bとする。このようにして求めた位置Aと位置Bとの間の距離に基づいて、流動性を評価する。
 ポリマAは、例えば、フッ化ビニリデン、ヘキサフルオロプロピレン、アクリロニトリル、メタクリル酸メチル、N-イソプロピルアクリルアミド、アクリル酸メチル、スチレン、ペンタエリスリトールテトラアクリレート、ジアリルジメチルアンモニウム-ビス(トリフルオロメタンスルホニル)イミド、アクリル酸2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル、メタクリル酸2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル、(エチレングリコール)メタクリレート、トリメチロールプロパントリアクリレート、イソプレンモノオキシド、及びエチレングリコールジグリシジルエーテルからなる群より得られる少なくとも1種をモノマ単位として含むポリマであってよい。
 ポリマAは、上記モノマ単位の1種のみを含むホモポリマであってよく、上記モノマ単位の2種以上を含むコポリマであってよく、上記モノマ単位の1種以上と上記モノマ単位以外のモノマ単位の1種以上とを含むコポリマであってよい。
 ホモポリマとしては、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリ(N-イソプロピルアクリルアミド)、ポリ(ジアリルジメチルアンモニウム-ビス(トリフルオロメタンスルホニル)イミド)、ポリアクリル酸2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル、ポリメタクリル酸2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル、ポリアクリルアミド、ポリグリシジルメタクリレート、ポリエチレングリコール等が挙げられる。コポリマとしては、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ、メチルメタクリレートとオキセタニルメタクリレートとのコポリマ等が挙げられる。
 ポリマAは、上記のようなポリマを1種単独で又は2種以上を組み合わせて用いられる。ポリマAは、二次電池1の長寿命化及び高入出力化の観点から、好ましくは、ペンタエリスリトールテトラアクリレートをモノマ単位として含むポリマ、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ、及びメチルメタクリレートとオキセタニルメタクリレートとのコポリマからなる群より選ばれる少なくとも1種である。
 ポリマAの含有量は、正極合剤層全量を基準として、0.01質量%以上、0.1質量%以上、又は1質量%以上であってよく、20質量%以下、10質量%以下、又は5質量%以下であってよい。
 ポリマAの含有量は、有機溶媒、電解質塩及びポリマAの合計含有量100質量部に対して、0.5質量部以上、2質量部以上、又は4質量部以上であってよく、20質量部以下、15質量部以下、又は10質量部以下であってよい。
 正極合剤層10は、イオン液体を更に含有してもよい。イオン液体は、以下のアニオン成分及びカチオン成分を含有する。なお、本明細書におけるイオン液体は、-20℃以上で液状の物質である。
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、N(SOF) 等の無機アニオン、B(C 、CHSO 、CFSO 、N(CSO 、N(SOCF 、N(SOCFCF 等の有機アニオンなどであってよい。イオン液体のアニオン成分は、好ましくは、B(C 、CHSO 、N(CSO 、CFSO 、N(SOF) 、N(SOCF 及びN(SOCFCF からなる群より選ばれる少なくとも1種を含有し、比較的低粘度でイオン伝導度を更に向上させるとともに、充放電特性も更に向上させる観点から、より好ましくは、N(CSO 、CFSO 、N(SOF) 、N(SOCF 、及びN(SOCFCF からなる群より選ばれる少なくとも1種を含有し、更に好ましくはN(SOF) を含有する。
 イオン液体のカチオン成分は、特に限定されないが、好ましくは鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種である。
 鎖状四級オニウムカチオンは、例えば、下記一般式(2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
式(2)中、R~Rは、それぞれ独立に、炭素数が1~20の鎖状アルキル基、又はR-O-(CH-で表される鎖状アルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表し、Xは、窒素原子又はリン原子を表す。R~Rで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。
 ピペリジニウムカチオンは、例えば、下記一般式(3)で表される、窒素を含有する六員環環状化合物である。
Figure JPOXMLDOC01-appb-C000002
式(3)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。
 ピロリジニウムカチオンは、例えば、下記一般式(4)で表される五員環環状化合物である。
Figure JPOXMLDOC01-appb-C000003
式(4)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。
 ピリジニウムカチオンは、例えば、下記一般式(5)で示される化合物である。
Figure JPOXMLDOC01-appb-C000004
式(5)中、R~R13は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R~R13で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。
 イミダゾリウムカチオンは、例えば、下記一般式(6)で示される化合物である。
Figure JPOXMLDOC01-appb-C000005
式(6)中、R14~R18は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R14~R18で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。
 イオン液体の含有量は、正極合剤層全量を基準として、3質量%以上、5質量%以上、又は10質量%以上であってよく、30質量%以下、25質量%以下、又は20質量%以下であってよい。
 正極合剤層10は、導電剤、結着剤等を更に含有してもよい。
 導電剤は、特に限定されないが、黒鉛、アセチレンブラック、カーボンブラック、炭素繊維等の炭素材料などであってよい。導電剤は、上述した炭素材料の2種以上の混合物であってもよい。
 導電剤の含有量は、正極合剤層全量を基準として、0.1質量%以上、1質量%以上、又は3質量%以上であってよく、15質量%以下、10質量%以下、又は8質量%以下であってよい。
 結着剤は、特に限定されないが、四フッ化エチレン、アクリル酸、マレイン酸、エチルメタクリレート等をモノマ単位として含有するポリマ(ただし、上述したポリマAを除く)、スチレン-ブタジエンゴム、イソプレンゴム、アクリルゴム等のゴムなどであってよい。
 結着剤の含有量は、正極合剤層全量を基準として、0.1質量%以上、1質量%以上、又は3質量%以上であってよく、15質量%以下、10質量%以下、又は8質量%以下であってよい。
 正極合剤層10の厚さは、10μm以上、40μm以上、60μm以上、又は80μm以上であってよく、200μm以下、180μm以下、又は160μm以下であってよい。
 電解質層7は、ポリマ(以下「ポリマB」ともいう)と、酸化物粒子と、電解質塩(以下「電解質塩B」ともいう)と、を含有する。
 ポリマBは、電解質層7に含まれる他の材料を保持するための母体となる(連続相を形成する)ポリマ(バインダポリマ)である。ポリマBは、好ましくは、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する。
 ポリマBは、好ましくは1種又は2種以上のポリマであり、1種又は2種以上のポリマを構成する構造単位(モノマ単位)の中には、好ましくは、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位(モノマ単位)と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位(モノマ単位)とが含まれる。
 第1の構造単位及び第2の構造単位は、1種のポリマに含まれてコポリマを構成してもよい。すなわち、電解質層7は、一実施形態において、第1の構造単位と第2の構造単位との両方を含む少なくとも1種のコポリマを含有する。コポリマは、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ、フッ化ビニリデンとマレイン酸とのコポリマ、フッ化ビニリデンとメチルメタクリレートとのコポリマ等であってよい。電解質層7がコポリマを含有する場合、その他のポリマを更に含有していてもよい。
 第1の構造単位及び第2の構造単位は、それぞれ別のポリマに含まれて、第1の構造単位を有する第1のポリマと、第2の構造単位を有する第2のポリマとの少なくとも2種のポリマを構成していてもよい。すなわち、電解質層7は、一実施形態において、第1の構造単位を含む第1のポリマと、第2の構造単位を含む第2のポリマとの少なくとも2種以上のポリマをポリマBとして含有する。電解質層7が第1のポリマ及び第2のポリマを含有する場合、その他のポリマを更に含有していてもよい。
 第1のポリマは、第1の構造単位のみからなるポリマであってもよく、第1の構造単位に加えてその他の構造単位を更に有するポリマであってもよい。その他の構造単位は、エチレンオキシド(-CHCHO-)等の含酸素炭化水素構造であってよい。第1のポリマは、ポリ四フッ化エチレン、ポリフッ化ビニリデン、ポリフッ化ビニリデン、及び、これらの分子構造の内部に前記含酸素炭化水素構造を導入されたポリマであってよい。
 第2のポリマは、第2の構造単位のみからなるポリマであってもよく、第2の構造単位に加えてその他の構造単位を更に有するポリマであってもよい。その他の構造単位は、エチレンオキシド(-CHCHO-)等の含酸素炭化水素構造であってよい。
 第1のポリマと第2のポリマとの組合せとしては、ポリフッ化ビニリデンとポリアクリル酸、ポリ四フッ化エチレンとポリメチルメタクリレート、ポリフッ化ビニリデンとポリメチルメタクリレート等が挙げられる。
 第1の構造単位の含有量は、電解質層7の強度を更に向上させる観点から、ポリマBを構成する構造単位全量を基準として、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、更に好ましくは20質量%以上である。第1の構造単位の含有量は、電解質層7にイオン液体が含まれる場合にイオン液体との親和性を更に向上させる観点から、ポリマBを構成する構造単位全量を基準として、好ましくは60質量%以下であり、より好ましくは40質量%以下であり、更に好ましくは30質量%以下である。
 第1の構造単位の含有量は、電解質層7の強度を更に向上させる観点から、第1の構造単位及び第2の構造単位の含有量の合計を基準として、好ましくは、50質量%以上、70質量%以上、80質量%以上、90質量%以上、又は95質量%以上である。第1の構造単位の含有量は、電解質層7にイオン液体が含まれる場合にイオン液体との親和性を更に向上させる観点から、第1の構造単位及び第2の構造単位の含有量の合計を基準として、好ましくは、99質量%以下、98質量%以下、97質量%以下、又は96質量%以下である。
 第2の構造単位の含有量は、電解質層7にイオン液体が含まれる場合にイオン液体との親和性を更に向上させる観点から、ポリマBを構成する構造単位全量を基準として、好ましくは1質量%以上であり、より好ましくは3質量%以上であり、更に好ましくは5質量%以上である。第2の構造単位の含有量は、電解質層7の強度を更に向上させる観点から、ポリマBを構成する構造単位全量を基準として、好ましくは50質量%以下であり、より好ましくは20質量%以下であり、更に好ましくは10質量%以下である。
 第2の構造単位の含有量は、電解質層7にイオン液体が含まれる場合にイオン液体との親和性を更に向上させる観点から、第1の構造単位及び第2の構造単位の含有量の合計を基準として、好ましくは、1質量%以上、3質量%以上、又は4質量%以上である。第2の構造単位の含有量は、電解質層7の強度を更に向上させる観点から、第1の構造単位及び第2の構造単位の含有量の合計を基準として、好ましくは、50質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下、又は5質量%以下である。
 ポリマBの含有量は、電解質層7の強度を更に向上させる観点から、電解質層全量を基準として、好ましくは10質量%以上であり、より好ましくは15質量%以上であり、更に好ましくは20質量%以上であり、特に好ましくは25質量%以上である。ポリマBの含有量は、導電率を更に向上させる観点から、電解質層全量を基準として、好ましくは40質量%以下であり、より好ましくは35質量%以下であり、更に好ましくは30質量%以下であり、特に好ましくは28質量%以下である。
 酸化物粒子は、例えば無機酸化物の粒子である。無機酸化物は、例えば、Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等を構成元素として含む無機酸化物であってよい。酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。酸化物粒子は極性を有するため、電解質層7中の電解質の解離を促進するとともに、ポリマBの非晶質化を助長して電解質のカチオン成分の拡散速度を高める。
 酸化物粒子の平均一次粒径(一次粒子の平均粒径)は、導電率を更に向上させる観点から、好ましくは0.005μm以上であり、より好ましくは0.01μm以上であり、更に好ましくは0.015μm以上である。酸化物粒子の平均一次粒径は、電解質層7を薄くする観点から、好ましくは1μm以下であり、より好ましくは0.1μm以下であり、更に好ましくは0.05μm以下である。酸化物粒子の平均一次粒径は、導電率を向上させつつ、電解質組成物を薄層化する観点及び電解質組成物表面からの酸化物粒子の突出を抑制する観点から、好ましくは0.005~1μm、0.01~0.1μm、又は0.015~0.05μmである。酸化物粒子の平均一次粒径は、酸化物粒子を透過型電子顕微鏡等によって観察することによって測定できる。
 酸化物粒子の平均粒径は、好ましくは0.005μm以上であり、より好ましくは0.01μm以上であり、更に好ましくは0.03μm以上である。酸化物粒子の平均粒径は、好ましくは5μm以下であり、より好ましくは3μm以下であり、更に好ましくは1μm以下である。酸化物粒子の平均粒径は、レーザー回折法により測定され、体積累積粒度分布曲線を小粒径側から描いた場合に、体積累積が50%となる粒径に対応する。
 酸化物粒子の形状は、例えば塊状又は略球状であってよい。酸化物粒子のアスペクト比は、電解質層7の薄層化を容易にする観点から、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。アスペクト比は、酸化物粒子の走査型電子顕微鏡写真にて、粒子の長軸方向の長さ(粒子の最大長さ)と、粒子の短軸方向の長さ(粒子の最小長さ)との比として定義される。粒子の長さは、前記写真を、市販の画像処理ソフト(例えば、旭化成エンジニアリング株式会社製の画像解析ソフト、A像くん(登録商標))を用いて、統計的に計算して求めることが可能である。
 酸化物粒子の含有量は、電解質の解離を促進させる観点から、電解質層全量を基準として、好ましくは5質量%以上であり、より好ましくは7質量%以上であり、更に好ましくは10質量%以上である。酸化物粒子の含有量は、導電率を更に向上させる観点から、電解質層全量を基準として、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、更に好ましくは20質量%以下である。
 電解質層7に含まれる電解質塩Bは、正極合剤層10に含まれる電解質塩Aとして例示した電解質塩であってよい。電解質層7に含まれる電解質塩Bは、正極合剤層10に含まれる電解質塩Aと同じであってよく、異なっていてもよい。
 電解質塩Bの含有量は、電解質層7を好適に作製する観点から、電解質層全量を基準として、10質量%以上であってよく、60質量%以下であってよい。電解質塩Bの含有量は、電解質層の導電率を高める観点から、電解質層全量を基準として、好ましくは20質量%以上であり、二次電池1を高い負荷率で充放電することを可能にする観点から、より好ましくは30質量%以上である。
 電解質層7は、イオン液体を更に含有してもよい。この場合、電解質塩Bはイオン液体に溶解した状態で存在していてもよい。電解質層7に含まれるイオン液体は、正極合剤層10に含まれるイオン液体として例示したものであってよい。
 イオン液体の含有量は、電解質層7を好適に作製する観点から、電解質組成物全量を基準として、10質量%以上であってよく、60質量%以下であってよい。イオン液体の含有量は、電解質塩の含有量を増加させることにより、電解質層7の導電率を増大させてリチウム二次電池を高い負荷率で充放電することを可能にする観点から、電解質組成物全量を基準として、好ましくは55質量%以下であり、より好ましくは50質量%以下である。
 電解質層7がイオン液体を含有する場合、電解質塩Bとイオン液体との合計の含有量は、電解質層全量を基準として、導電率を更に向上させ、二次電池の容量低下を抑制する観点から、好ましくは10質量%以上であり、より好ましくは25質量%以上であり、更に好ましくは40質量%以上であり、電解質層7の強度低下を抑制する観点から、好ましくは80質量%以下であり、より好ましくは70質量%以下である。
 電解質層7がイオン液体を含有する場合、イオン液体の単位体積あたりの電解質塩Bの濃度は、充放電特性を更に向上させる観点から、好ましくは0.5mol/L以上であり、より好ましくは0.7mol/L以上であり、更に好ましくは1.0mol/L以上であり、また、好ましくは2.0mol/L以下であり、より好ましくは1.8mol/L以下であり、更に好ましくは1.6mol/L以下である。
 電解質層7の厚さは、強度を高めると共に、安全性を更に向上させる観点から、好ましくは5μm以上、より好ましくは10μm以上である。電解質層7の厚さは、二次電池の内部抵抗を更に低減させる観点及び大電流特性を更に向上させる観点から、好ましくは200μm以下、より好ましくは150μm以下、更に好ましくは100μm以下である。
 他の一実施形態において、電極群2Aには、負極集電体11と、負極合剤層12と、電解質層7とをこの順に備える第2の電池部材(負極部材)が含まれていると見ることもできる。図3(b)は、他の実施形態に係る二次電池用電池部材(負極部材)を示す模式断面図、すなわち第2の電池部材(負極部材)を示す模式断面図である。図3(b)に示すように、第2の電池部材14は、負極集電体11と、負極集電体11上に設けられた負極合剤層12と、負極合剤層12上に設けられた電解質層7とをこの順に備える負極部材である。電解質層7は、上述した第1の電池部材13における電解質層7と同様であるので、以下では説明を省略する。
 負極集電体11は、アルミニウム、銅、ニッケル、ステンレス等の金属、それらの合金などであってよい。負極集電体11は、軽量で高い重量エネルギ密度を有するため、好ましくはアルミニウム及びその合金である。負極集電体11は、薄膜への加工のし易さ及びコストの観点から、好ましくは銅である。
 負極合剤層12は、一実施形態において、負極活物質と、有機溶媒と、電解質塩Aとを含有する。
 負極活物質は、黒鉛、非晶質炭素等の炭素材料、スズ、シリコン等を含む金属材料、チタン酸リチウム(LiTi12)、金属リチウムなどであってよい。
 負極活物質の含有量は、負極合剤層全量を基準として、60質量%以上、65質量%以上、又は70質量%以上であってよい。負極活物質の含有量は、負極合剤層全量を基準として、99質量%以下、95質量%以下、又は90質量%以下であってよい。
 負極合剤層12に含まれる有機溶媒及び電解質塩Aの種類及び含有量は、上述した正極合剤層10に含まれる有機溶媒及び電解質塩Aとして説明したものとそれぞれ同様であってよい。負極合剤層12に含まれる有機溶媒及び電解質塩Aは、それぞれ、正極合剤層10に含まれる有機溶媒及び電解質塩Aと同じであってよく異なっていてもよい。
 負極合剤層12は、二次電池1からの有機溶媒(電解液)の液漏れを更に抑制する観点から、好ましくは、有機溶媒をゲル化可能なポリマ(ポリマA)を更に含有する。この場合、負極合剤層12中の有機溶媒がゲル化されるため、二次電池1からの有機溶媒の液漏れを抑制できる。負極合剤層12に含まれるポリマAの種類及び含有量は、上述した正極合剤層10に含まれるポリマAとして説明したものと同様であってよい。負極合剤層12に含まれるポリマAは、正極合剤層10に含まれるポリマAと同じであってよく異なっていてもよい。
 負極合剤層12は、イオン液体を更に含有していてもよい。負極合剤層12に含まれるイオン液体の種類及び含有量は、上述した正極合剤層10に含まれるイオン液体として説明したものと同様であってよい。負極合剤層12に含まれるイオン液体は、正極合剤層10に含まれるイオン液体と同じであってよく異なっていてもよい。
 負極合剤層12は、導電剤、結着剤等を更に含有してもよい。負極合剤層12に含まれる導電剤及び結着剤の種類及び含有量は、上述した正極合剤層10に含まれる導電剤及び結着剤として説明したものとそれぞれ同様であってよい。負極合剤層12に含まれる導電剤及び結着剤は、正極合剤層10に含まれる導電剤及び結着剤とそれぞれ同じであってよく異なっていてもよい。
 負極合剤層12の厚さは、10μm以上、20μm以上、40μm以上、又は60μm以上であってよい。負極合剤層の厚さは、150μm以下、130μm以下、又は110μm以下であってよい。
 続いて、上述した二次電池1の製造方法について説明する。一実施形態に係る二次電池1の製造方法は、第1の電池部材(正極部材)13を作製する工程(A1)と、第2の電池部材(負極部材)14を作製する工程(B1)と、第1の電池部材(正極部材)13と第2の電池部材(負極部材)14とを積層して二次電池1を得る工程(C1)とを備えている。なお、工程(A1)及び工程(B1)の順序は任意である(いずれか一方を先に実施してもよく、両方を同時に実施してもよい。以下同様。)。
 工程(A1)は、一実施形態において、有機溶媒及び電解質塩Aを含有する組成物(電解液組成物)を、正極集電体9上に設けられた正極活物質を含有する正極活物質層(電極活物質層)中に加えて正極合剤層10を形成する工程(a)と、正極合剤層10上に、ポリマB、酸化物粒子及び電解質塩Bを含有する電解質層7を設ける工程(b)と、を含んでいる。工程(A1)は、工程(a)及び工程(b)をこの順に備える第1の電池部材(正極部材)13の製造方法であるということができる。
 工程(a)では、まず、正極集電体9と、正極集電体9上に設けられた正極活物質を含有する正極活物質層とを備える正極積層体を用意する。正極積層体は、例えば、正極活物質、導電剤、バインダ等を含む材料を分散媒に分散させたスラリを調製し、当該スラリを正極集電体9に塗布した後に分散媒を揮発させることによって作製することができる。分散媒は、特に制限されないが、水、アルコールと水との混合溶媒等の水系溶剤、N-メチル-2-ピロリドン等の有機溶剤であってよい。
 次いで、有機溶媒及び電解質塩Aを含有する電解液組成物を正極活物質層中に加えて、正極合剤層10(電極合剤層)を形成する。電解液組成物を正極活物質層中に加える方法は、例えば、滴下、塗布、印刷、スプレー等であってよい。得られる正極合剤層10は、正極活物質と、正極活物質間に配置(充填)された電解液組成物とを含んでいる。
 電解液組成物における有機溶媒及び電解質塩Aの含有量は、正極合剤層10における各成分の所望の含有量とそれぞれ略一致するように調整すればよい。
 続いて、工程(b)では、工程(a)で得られた正極合剤層10上に、電解質層7を設ける。電解質層7は、例えば、ポリプロピレン、ポリイミド等のポリマ製の支持フィルム上に、予めシート状に成形されていてよい。電解質層7は、例えばラミネート法により、好ましくは支持フィルムと共に、電解質層7が正極合剤層10と接するように積層される。この場合、電解質層7に加えて支持フィルムも正極合剤層10を覆うように配置されるため、正極合剤層10中の有機溶媒の揮発が更に抑制される。
 他の一実施形態では、工程(a)で用いられる電解液組成物が、有機溶媒及び電解質塩Aに加えてポリマAを更に含有しており、この場合、工程(A1)は、工程(a)の前に、電解液組成物を加熱する工程(w)を更に含んでいてよい。すなわち、第1の電池部材(正極部材)13の製造方法の他の一実施形態は、工程(w)、工程(a)及び工程(b)をこの順に備えている。
 工程(w)では、電解液組成物を温度T1に加熱することにより、ポリマA(更には電解質塩A)を有機溶媒に溶解させて、ゾル状の電解液組成物を得る。電解液組成物におけるポリマAの含有量は、正極合剤層10におけるポリマAの所望の含有量と略一致するように調整すればよい。
 温度T1は、ポリマAが有機溶媒に溶解し得る温度であればよく、例えば、60℃以上、80℃以上、又は100℃以上であってよく、160℃以下、140℃以下、又は120℃以下であってよい。加熱時間は、例えば、1時間以上、3時間以上、又は5時間以上であってよく、10時間以下、8時間以下、又は6時間以下であってよい。
 この実施形態における工程(a)では、工程(w)で加熱された電解液組成物の温度が過度に低下しないうちに、すなわち、ゾル状の電解液組成物の粘度が過度に上昇しない(ゾル状の電解液組成物のゲル化が生じない)うちに、電解液組成物を正極活物質層に加えることが好ましい。
 この実施形態では、工程(a)の後に、工程(w)における温度T1より低い温度T2の環境下で正極合剤層10を静置する工程(x)を実施することが好ましい。すなわち、第1の電池部材(正極部材)13の製造方法の他の一実施形態は、工程(w)、工程(a)、工程(x)及び工程(b)をこの順に備えている。これにより、正極合剤層10中でポリマAによる有機溶媒のゲル化が好適に進行する。
 工程(x)における温度T2は、例えば、0℃以上、10℃以上、又は20℃以上であってよく、60℃以下、50℃以下、又は40℃以下であってよい。工程(x)において静置する時間は、例えば、10分間以上、1時間以上、又は3時間以上であってよく、20時間以下、15時間以下、又は10時間以下であってよい。
 他の一実施形態では、工程(a)で用いられる電解液組成物が、有機溶媒及び電解質塩Aに加えて重合性化合物を更に含有しており、この場合、工程(A1)は、工程(b)の後に、正極合剤層10中の重合性化合物を重合させる工程(y)を更に含んでいてよい。すなわち、第1の電池部材(正極部材)13の製造方法の他の一実施形態は、工程(a)、工程(b)及び工程(y)をこの順に備えている。
 この実施形態では、工程(a)で用いられる電解液組成物は、有機溶媒、電解質塩A及び重合性化合物を含有し、好ましくは、重合性化合物の重合を開始させる重合開始剤を更に含有する。
 重合性化合物は、重合することにより上記ポリマAを構成し得るモノマ及びオリゴマからなる群より選ばれる少なくとも1種の化合物である。つまり、重合性化合物は、重合することにより有機溶媒をゲル化可能なポリマ(ポリマA)になる化合物(モノマ又はオリゴマ)である。
 重合性化合物は、フッ化ビニリデン、ヘキサフルオロプロピレン、アクリロニトリル、メタクリル酸メチル、N-イソプロピルアクリルアミド、アクリル酸メチル、スチレン、ペンタエリスリトールテトラアクリレート、ジアリルジメチルアンモニウム-ビス(トリフルオロメタンスルホニル)イミド、アクリル酸2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル、メタクリル酸2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル、(エチレングリコール)メタクリレート、トリメチロールプロパントリアクリレート、イソプレンモノオキシド、エチレングリコールジグリシジルエーテル、及びこれらのオリゴマからなる群より選ばれる少なくとも1種の化合物であってよい。
 電解液組成物における重合性化合物の含有量(合計含有量)は、正極合剤層10におけるポリマAの所望の含有量と略一致するように調整すればよい。
 重合開始剤は、公知の重合開始剤から適宜選択すればよい。重合開始剤は、例えば、アゾ化合物系重合開始剤、有機過酸化物系重合開始剤等であってよく、これら以外の重合開始剤であってもよい。
 アゾ化合物系重合開始剤としては、例えば、2,2’-アゾビス(イソブチロニトリル)(AIBN)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等が挙げられる。
 有機過酸化物系重合開始剤としては、例えば、ベンゾイルパーオキサイド(BPO)、tert-ブチルパーオキシアセテート、2,2-ジ-(tert-ブチルパーオキシ)ブタン、tert-ブチルパーオキシベンゾエート、n-ブチル-4,4-ジ-(tert-ブチルパーオキシ)バレレート、ジ-(2-tert-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジ-tert-ヘキシルパーオキサイド、2,5,-ジメチル-2,5,-ジ(tert-ブチルパーオキシ)ヘキサン、tert-ブチルクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、1,1,3,3,-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、tert-ブチルトリメチルシリルパーオキサイド等が挙げられる。
 電解液組成物中の重合開始剤の含有量は、重合性化合物の含有量100質量部に対して、例えば、0.1質量部以上であってよく、10質量部以下であってよい。
 工程(y)では、正極合剤層10中の重合性化合物を重合させる。これにより、重合性化合物からポリマAが形成されると共に、ポリマAによって有機溶媒がゲル化され得る。
 重合させる方法は、例えば、熱を加えることによって重合させる方法(加熱重合)であってよい。加熱温度及び加熱時間は、重合性化合物の種類に応じて適宜設定すればよい。加熱温度は、例えば、30℃以上、40℃以上、又は50℃以上であってよく、100℃以下、90℃以下、又は80℃以下であってよい。加熱時間は、例えば、1時間以上、3時間以上、又は5時間以上であってよく、48時間以下、32時間以下、又は16時間以下であってよい。重合させる方法は、光を照射することによって重合させる方法(光重合)であってもよい。
 工程(B1)は、工程(A1)と同様である(工程(A1)における「正極」を「負極」と読み替えればよい)ため、詳細な説明を省略する。例えば、第2の電池部材(負極部材)14の製造方法の一実施形態は、上述した工程(a)及び工程(b)(ただし「正極」を「負極」と読み替える)をこの順に備えている、ということができる。また、第2の電池部材(負極部材)14の製造方法の他の一実施形態は、上述した工程(w)、工程(a)及び工程(b)(ただし「正極」を「負極」と読み替える)をこの順に備えている、ということができる。また、第2の電池部材(負極部材)14の製造方法の他の一実施形態は、上述した工程(a)、工程(b)及び工程(y)(ただし「正極」を「負極」と読み替える)をこの順に備えている、ということができる。
 工程(C1)では、工程(A1)で得られた第1の電池部材(正極部材)13と、工程(B1)で得られた第2の電池部材(負極部材)14とを、例えばラミネート法により、第1の電池部材(正極部材)13における電解質層7及び第2の電池部材(負極部材)14における電解質層7が互いに接するように積層して、二次電池1を得る。
 以上説明した実施形態に係る二次電池1の製造方法では、工程(C1)において、電解質層7を備える第1の電池部材(正極部材)13と、電解質層7を備える第2の電池部材(負極部材)14とを積層しているが、他の一実施形態に係る二次電池1の製造方法では、電解質層7が設けられていない正極6(正極集電体9及び正極合剤層10)と、電解質層7を備える第2の電池部材(負極部材)14とを積層してもよい。
 すなわち、他の一実施形態に係る製造方法は、正極6を作製する工程(A2)と、上述した第2の電池部材(負極部材)14を作製する工程(B1)と、正極6と第2の電池部材(負極部材)14とを積層して二次電池1を得る工程(C2)とを備えている。なお、工程(A2)及び工程(B1)の順序は任意である。
 工程(A2)は、上述した工程(a)を備えていてよく、上述した工程(w)及び工程(a)をこの順に備えていてよく、上述した工程(a)及び工程(y)をこの順に備えていてよい。
 工程(A2)は、好ましくは、工程(a)の直後に、工程(a)で得られた正極合剤層10上に、当該正極合剤層10を覆うようにカバーフィルムを設ける工程(z)を更に備えている。すなわち、工程(A2)は、好ましくは、工程(a)及び工程(z)をこの順に備えていてよく、工程(w)、工程(a)及び工程(z)をこの順に備えていてよく、工程(w)、工程(a)、工程(z)及び工程(x)をこの順に備えていてよく、工程(a)、工程(z)及び工程(y)をこの順に備えていてよい。これにより、カバーフィルムが正極合剤層10中の有機溶媒の揮発を抑制し、正極合剤層10がポリマAを含有する場合には、有機溶媒の組成が変化することなく、ゲル化が好適に進行する。カバーフィルムは、例えば、ポリプロピレン、ポリイミド等のポリマ製のフィルムであってよい。
 工程(A2)が工程(z)を備えていない場合、正極合剤層10中の有機溶媒の揮発を抑制する観点から、電解液組成物(正極合剤層10)に含まれる有機溶媒として、160℃以上、180℃以上、又は200℃以上の沸点(大気圧における沸点)を有する有機溶媒を用いることが好ましい。上述した有機溶媒のうち、このような沸点を有する有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン等が挙げられる。
 工程(C2)では、工程(A2)で得られた正極6と、工程(B1)で得られた第2の電池部材(負極部材)14とを、例えばラミネート法により、正極6における正極合剤層10及び第2の電池部材(負極部材)14における電解質層7が互いに接するように積層して、二次電池1を得る。正極6にカバーフィルムが設けられている場合は、カバーフィルムを正極6から剥離した後に、正極6と第2の電池部材(負極部材)14とを積層すればよい。
 上記実施形態に係る二次電池1の製造方法では、工程(C2)において、電解質層7が設けられていない正極6と、電解質層7を備える第2の電池部材(負極部材)14とを積層しているが、他の一実施形態に係る二次電池1の製造方法では、電解質層7を備える第1の電池部材(正極部材)13と、電解質層7が設けられていない負極8(負極集電体11及び負極合剤層12)とを積層してもよい。
 すなわち、他の一実施形態に係る製造方法は、上述した第1の電池部材(正極部材)13を作製する工程(A1)と、負極8を作製する工程(B2)と、第1の電池部材(正極部材)13と負極8とを積層して二次電池1を得る工程(C3)とを備えている。なお、工程(A1)及び工程(B2)の順序は任意である。
 工程(B2)は、工程(A2)と同様である(工程(A2)における「正極」を「負極」と読み替えればよい)ため、詳細な説明を省略する。工程(C3)は、工程(C2)と同様である(工程(C2)における「正極」及び「負極」を相互に読み替えればよい)ため、詳細な説明を省略する。
 上記各実施形態に係る二次電池1の製造方法では、正極6及び負極8の少なくとも一方に電解質層7を予め設けて(第1の電池部材(正極部材)13及び第2の電池部材(負極部材)14の少なくとも一方を予め作製して)いるが、他の一実施形態に係る二次電池1の製造方法では、電解質層7が設けられていない正極6(正極集電体9及び正極合剤層10)及び負極8(負極集電体11及び負極合剤層12)と、電解質層7とを積層してもよい。
 すなわち、他の一実施形態に係る製造方法は、上述した正極6を作製する工程(A2)と、上述した負極8を作製する工程(B2)と、正極6、電解質層7及び負極8をこの順に積層して二次電池1を得る工程(C4)とを備えている。なお、工程(A2)及び工程(B2)の順序は任意である。
 工程(C4)では、工程(A2)で得られた正極6と、電解質層7と、工程(B2)で得られた負極8とを、例えばラミネート法により、正極6における正極合剤層10、電解質層7、及び負極8における負極合剤層12がこの順で隣接するように積層して、二次電池1を得る。
 電解質層7は、例えば、上述した支持フィルム上に予めシート状に成形されていてよく、その場合、支持フィルムを剥離した後に正極6及び負極8と積層すればよい。正極6及び負極8のそれぞれにカバーフィルムが設けられている場合は、カバーフィルムを正極6及び負極8のそれぞれから剥離した後に、正極6、電解質層7及び負極8を積層すればよい。
 この実施形態では、工程(A2)で用いられる電解液組成物(正極合剤層10)が上記ポリマAを含有する場合、上述したように、工程(A2)において、正極合剤層10を静置する工程(x)を実施してよい。あるいは、工程(A2)において工程(x)を実施せずに、工程(C4)の後(正極6、電解質層7及び負極8を積層した後)に工程(x)を実施してもよい。
 工程(B2)で用いられる電解液組成物(負極合剤層12)が上記ポリマAを含有する場合も同様に、工程(B2)において、負極合剤層12を静置する工程(x)を実施してよく、あるいは、工程(B2)において工程(x)を実施せずに、工程(C4)の後(正極6、電解質層7及び負極8を積層した後)に、工程(x)を実施してもよい。
 また、工程(A2)で用いられる電解液組成物(正極合剤層10)が上記重合性化合物を含有する場合、上述したように、工程(A2)において、正極合剤層10中の重合性化合物を重合させる工程(y)を実施してよい。あるいは、工程(A2)において工程(y)を実施せずに、工程(C4)の後(正極6、電解質層7及び負極8を積層した後)に工程(y)を実施してもよい。
 工程(B2)で用いられる電解液組成物(負極合剤層12)が上記重合性化合物を含有する場合も同様に、工程(B2)において、負極合剤層12中の重合性化合物を重合させる工程(y)を実施してよく、あるいは、工程(B2)において工程(y)を実施せずに、工程(C4)の後(正極6、電解質層7及び負極8を積層した後)に、工程(y)を実施してもよい。
 すなわち、他の一実施形態に係る二次電池1の製造方法は、工程(A2)及び工程(B2)と、工程(C4)と、工程(x)とをこの順に備えていてよく、工程(A2)及び工程(B2)と、工程(C4)と、工程(y)とをこの順に備えていてもよい。なお、工程(A2)及び工程(B2)の順序は任意である。
 以上説明した各実施形態に係る二次電池1の製造方法では、有機溶媒の揮発を抑制できるため、正極合剤層10又は負極合剤層12に加える電解液組成物の各成分の配合割合と、得られる正極合剤層10又は負極合剤層12中の各成分の配合割合との間に変化が生じにくくなっている。したがって、得られる二次電池1の特性に応じた正極合剤層10又は負極合剤層12の組成と略同一の組成で電解液組成物を調製すればよいため、所望の特性を有する二次電池1を好適に得ることができる。
 また、有機溶媒をゲル化させる場合、有機溶媒を揮発させることが一般的であるところ、上記各実施形態に係る二次電池1の製造方法では、有機溶媒を揮発させる工程を必要とせずに有機溶媒のゲル化が可能であるため、従来に比べて、所望の特性を有する二次電池1をより好適に得ることができる。加えて、有機溶媒とポリマA又は重合性化合物とを電極合剤層10,12に予め添加した上で、有機溶媒をゲル化させることにより、正極6、電解質層7及び負極8を積層した後で電解液を注液する必要がなくなるため、高エネルギ密度化のために二次電池1を大面積化したときに問題となり得る電解液の浸透性(特に電極合剤層10,12への浸透性)を確保できる。
 次に、図1に示した二次電池の電極群2の他の一実施形態について説明する。図4は、二次電池の電極群の他の一実施形態を示す分解斜視図である。図4では、図2に示した電極群2Bと同一の符号を付し、重複する説明は省略する。図4に示すように、他の一実施形態における二次電池が上述した実施形態における二次電池と異なる点は、電極群2Bが、バイポーラ電極15を更に備えている点である。すなわち、電極群2Bは、正極6と、第1の電解質層7と、バイポーラ電極15と、第2の電解質層7と、負極8とをこの順に備えている。
 バイポーラ電極15は、バイポーラ電極集電体16と、バイポーラ電極集電体16の負極8側の面に設けられた正極合剤層10と、バイポーラ電極集電体16の正極6側の面に設けられた負極合剤層12とを備えている。
 電極群2Bには、第1の電解質層7と、バイポーラ電極15と、第2の電解質層7とをこの順に備える第3の電池部材(バイポーラ電極部材)が含まれていると見ることができる。図5は、他の一実施形態に係る二次電池用電池部材である第3の電池部材(バイポーラ電極部材)を示す模式断面図である。図5に示すように、第3の電池部材17は、バイポーラ電極集電体16と、バイポーラ電極集電体16の一方の面上に設けられた正極合剤層10と、正極合剤層10上におけるバイポーラ電極集電体16と反対側に設けられた第2の電解質層7と、バイポーラ電極集電体16の他方の面上に設けられた負極合剤層12と、負極合剤層12上におけるバイポーラ電極集電体16と反対側に設けられた第1の電解質層7とを備えている。
 バイポーラ電極集電体16は、例えばアルミニウム、ステンレス鋼、チタン等の金属単体、アルミニウムと銅又はステンレス鋼と銅を圧延接合してなるクラッド材などで形成されている。
 第1の電解質層7と第2の電解質層7とは、互いに同種であっても異種であってもよく、好ましくは、互いに同種である。
 以上説明した二次電池1では、電極合剤層10,12に有機溶媒を用いることにより、電極活物質とイオン伝導成分である電解質塩との界面、及び、電極合剤層10,12と電解質層7との界面がそれぞれ良好に形成され、二次電池1の放電特性及び容量維持率を向上させることができる。加えて、有機溶媒を用いた場合、一般的には安全性が損なわれやすいところ、ポリマ、酸化物粒子及び電解質塩を含有する電解質層7を用いることにより、従来のポリマのみから構成されるセパレータと比較して、安全性も高めることができる。
 また、電極合剤層10,12が有機溶媒をゲル化可能なポリマAを含有する場合、電極合剤層10,12中の有機溶媒(電解液)の揮発が抑制される。これにより、二次電池1の安全性を更に向上させることができると共に、電極合剤層10,12のみ(あるいは、電極(正極6及び負極8)又は電池部材(正極部材13及び負極部材14)のみ)を長期保存が可能となり、必要時にそれらを積層するという単純な工程によって簡便に二次電池1を作製することもできる。
 このように、上述した二次電池1は、安全性に優れると共に、放電特性及び容量維持率にも優れているため、この二次電池1では、二次電池1を大型化及び高エネルギ密度化が可能であると共に、その際に特に問題となる発火等のリスクが低減されている。したがって、この二次電池1は、例えば、高エネルギ密度が要求される大型二次電池の用途として好適であり、自動車等の車両に搭載される車載用二次電池として特に好適である。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
[正極活物質層の作製]
 Li(Co1/3Ni1/3Mn1/3)O(正極活物質)66質量部、アセチレンブラック(導電剤、商品名:Li400、平均粒径48nm(製造元カタログ値)、デンカ株式会社)4質量部、ポリフッ化ビニリデン溶液(バインダ、商品名:クレハKFポリマ#1120、固形分:12質量%、株式会社クレハ)14質量部、及びN-メチル-2-ピロリドン(分散媒、NMP)15質量部を混合してスラリを調製した。このスラリを正極集電体(厚さ20μmのアルミニウム箔)上に塗布し、120℃で乾燥後、圧延して、片面塗布量120g/m、合剤密度2.7g/cmの正極活物質層を形成した。
[負極活物質層の作製]
 黒鉛(負極活物質)52質量部、カーボンナノチューブ(導電剤、商品名:VGCF、繊維径150nm(製造元カタログ値)、昭和電工株式会社)0.4質量部、高純度黒鉛(導電剤、商品名:JSP、平均粒径7μm(製造元カタログ値)、日本黒鉛株式会社)1.4質量部、ポリフッ化ビニリデン溶液(バインダ、商品名:クレハKFポリマ#9130、固形分:13質量%、株式会社クレハ)21.8質量部、及びN-メチル-2-ピロリドン(分散媒、NMP)24.4質量部を混合してスラリを調製した。このスラリを負極集電体(厚さ10μmの銅箔)上に塗布し、80℃で乾燥後圧延して、片面塗布量60g/m、合剤密度1.6g/cmの負極活物質層を形成した。
[電解質層の作製]
 リチウムビス(フルオロスルホニル)イミド(LiFSI)を電解質塩として用い、イオン液体である1-エチル3-メチルイミダゾリウム-ビス(フルオロスルホニル)イミド(EMIFSI)に、電解質塩を1.5mol/Lの濃度で溶解させた。上記のように電解質塩を溶解させたイオン液体43質量部と、SiO粒子(商品名:AEROSIL OX50、日本アエロジル株式会社)23質量部と、バインダ(商品名:クレハKFポリマ#8500、株式会社クレハ)34質量部と、NMP 143質量部とを混合して、スラリを調製した。このスラリを支持フィルム(ポリプロピレン製)上に塗布し、80℃で乾燥して、厚さ20μmの電解質層(電解質シート)を作製した。
[電解液組成物の調製]
 エチレンカーボネート(EC)、プロピレンカーボネート(PC)、エチルメチルカーボネート(EMC)及びジエチルカーボネート(DEC)を、EC:PC:EMC:DEC=20:20:35:25(質量比)で混合した有機溶媒に、電解質塩としてヘキサフルオロりん酸リチウム(LiPF)を1.2mol/Lとなるように溶解させた溶液Aを調製した。この溶液A 95質量部に対し、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ(P(VDF-HFP))5質量部添加し、80℃に加熱することで、ゾル状の電解液組成物を得た。
[電池部材の作製]
 正極活物質層上及び負極活物質層上のそれぞれに、ゾル状の電解液組成物を均一に塗布して、正極合剤層及び負極合剤層を得た。得られた正極合剤層上及び負極合剤層上のそれぞれに対して、各電極合剤層に電解質層が接するように、電解質層を支持フィルムごと転写(積層)した。その後、25℃で12時間静置し、有機溶媒をゲル化させ、正極合剤層及び負極合剤層のそれぞれにゲル状の電解液組成物を含む正極部材及び負極部材を得た。
[二次電池の作製]
 正極部材及び負極部材の支持フィルムを剥離し、正極部材及び負極部材の各電解質層同士を貼り合わせた後、直径16mmの円形に打ち抜いた。これをCR2032型のコインセル容器内に配置した後、絶縁性のガスケットを介して電池容器上部をかしめて密閉して、二次電池を得た。
[電池特性の評価]
 作製した二次電池について、充放電装置(東洋システム株式会社製)を用いて、25℃での電池特性を以下の充放電条件で測定した。
(1)終止電圧4.2V、0.1Cで定電流定電圧(CCCV)充電を行った後、0.1Cで終止電圧2.7Vまで定電流(CC)放電する充放電を2サイクル行い、二次電池を初期化した。CCCV充電の終止条件は、電流値が0.05C以下となったとき、または20時間経過したときのいずれかとした。なお、Cとは、「電流値(A)/電池容量(Ah)」を意味する。2サイクル目の放電容量を、0.1Cでの放電容量とした。
(2)次いで、終止電圧4.2V、0.1Cで定電流定電圧(CCCV)充電を行った後、0.5Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを1サイクル行い、0.5Cでの放電容量を求めた。
(3)次いで、終止電圧4.2V、0.1Cで定電流定電圧(CCCV)充電を行った後、2Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを1サイクル行い、0.5Cでの放電容量を求めた。
 得られた放電容量から、下記式に基づき、0.1C放電特性、0.5C放電特性、及び2C放電特性を算出した。結果を表1に示す。0.1C放電特性は、その値が大きいほど、低電流において、電池から高容量を取り出すことができるといえる。0.5C及び2C放電特性は、その値が大きいほど、電池の出力特性に優れているといえる。
 0.1C放電特性(%)=(1)で得られた放電容量/設計放電容量×100
 0.5C放電特性(%)=(2)で得られた放電容量/設計放電容量×100
 2C放電特性(%)=(3)で得られた放電容量/設計放電容量×100
(4)次いで、終止電圧4.2V、0.1Cで定電流定電圧(CCCV)充電を行った後、0.1Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを100サイクル行い、100サイクル時点での放電容量を求めた。100サイクル時点での容量維持率は、下記式に基づき算出した。
 100サイクル時点での容量維持率=(4)で得られた放電容量/(1)で得られた放電容量
<実施例2>
 実施例1の[電池部材の作製]を以下のとおり変更した以外は、実施例1と同様にして、二次電池の作製及び評価を行った。
 正極活物質層上及び負極活物質層上のそれぞれにゾル状の電解液組成物を均一に塗布して、正極合剤層及び負極合剤層を得た後すぐに、正極合剤層、電解質層及び負極合剤層をこの順に重ね合わせた。次いで、25℃で12時間静置することで、有機溶媒をゲル化させ、正極合剤層/電解質層/負極合剤層を一体化させた。
<実施例3>
 実施例1の[電解液組成物の調製]において、溶液A 100質量部に対してビニレンカーボネート(VC)1質量部を更に外添した溶液Bを溶液Aの代わりに用いた以外は、実施例1と同様にして、二次電池の作製及び評価を行った。
<比較例1>
 実施例1の[電解液組成物の調製]及び[電池部材の作製]を以下のとおり変更した以外は、実施例1と同様にして、二次電池の作製及び評価を行った。
 ポリメタクリル酸メチル10質量部にアセトン40質量部を加えて溶解させた溶液と、EMIFSIにLiFSIを1.5mol/Lで溶解させた溶液90質量部とを混合し、ゾル状の溶液を得た。この溶液を実施例1の電解液組成物の代わりに用いて正極活物質層上及び負極活物質層上のそれぞれに塗布し、80℃で12時間真空乾燥することでアセトンを揮発させ、ポリマ(ポリメタクリル酸メチル)及びイオン液体(EMIFSI)を含むゲル状の組成物を含有する正極部材及び負極部材を得た。
Figure JPOXMLDOC01-appb-T000006
 有機溶媒を含有する電極合剤層を用いて作製した二次電池(実施例1~3)は、イオン液体を含有する電極合剤層を用いて作製した二次電池(比較例1)と比較して、放電特性に優れていることが分かった。これは、有機溶媒を含有する電極合剤層を用いることにより、電極活物質とイオン伝導成分である電解質塩との界面、及び、電極合剤層と電解質層との界面がそれぞれ良好に形成され、二次電池の出力特性が向上したためであると考えられる。
 1…二次電池、2,2A,2B…電極群、3…電池外装体、4…正極集電タブ、5…負極集電タブ、6…正極、7…電解質層、8…負極、9…正極集電体、10…正極合剤層、11…負極集電体、12…負極合剤層、13…第1の電池部材、14…第2の電池部材、15…バイポーラ電極、16…バイポーラ電極集電体、17…第3の電池部材。

Claims (10)

  1.  集電体と、前記集電体上に設けられた電極合剤層と、前記電極合剤層上に設けられた電解質層と、を備え、
     前記電極合剤層は、電極活物質と、有機溶媒と、電解質塩と、を含有し、
     前記電解質層は、ポリマと、酸化物粒子と、電解質塩と、を含有する、電池部材。
  2.  前記有機溶媒が炭酸エステルを含む、請求項1に記載の電池部材。
  3.  前記電極合剤層が、前記有機溶媒をゲル化可能なポリマを更に含有する、請求項1又は2に記載の電池部材。
  4.  請求項1~3のいずれか一項に記載の電池部材を備える、二次電池。
  5.  有機溶媒及び電解質塩を含有する組成物を、集電体上に設けられた電極活物質を含有する電極活物質層中に加えて電極合剤層を形成する工程(a)と、
     前記電極合剤層上に、ポリマ、酸化物粒子及び電解質塩を含有する電解質層を設ける工程(b)と、を備える、電池部材の製造方法。
  6.  前記有機溶媒が炭酸エステルを含む、請求項5に記載の製造方法。
  7.  前記組成物が、前記有機溶媒をゲル化可能なポリマを更に含有する、請求項5又は6に記載の製造方法。
  8.  前記工程(a)の前に、前記組成物を加熱する工程を更に備える、請求項7に記載の製造方法。
  9.  前記組成物が、重合性化合物を更に含有し、
     前記重合性化合物は、重合することにより前記有機溶媒をゲル化可能なポリマになる化合物である、請求項5又は6に記載の製造方法。
  10.  前記工程(b)の後に、前記電極合剤層中の前記重合性化合物を重合させる工程を更に備える、請求項9に記載の製造方法。
PCT/JP2019/020345 2019-05-22 2019-05-22 電池部材及びその製造方法、並びに二次電池 WO2020235065A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980096442.1A CN113826254A (zh) 2019-05-22 2019-05-22 电池部件及其制造方法以及二次电池
US17/610,154 US20220231334A1 (en) 2019-05-22 2019-05-22 Battery member, method for manufacturing battery member, and secondary battery
PCT/JP2019/020345 WO2020235065A1 (ja) 2019-05-22 2019-05-22 電池部材及びその製造方法、並びに二次電池
EP19929706.0A EP3955361A4 (en) 2019-05-22 2019-05-22 BATTERY CEMENT, METHOD OF MANUFACTURING BATTERY CEMENT AND SECONDARY BATTERY
JP2021519992A JP7527703B2 (ja) 2019-05-22 2019-05-22 電池部材及びその製造方法、並びに二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020345 WO2020235065A1 (ja) 2019-05-22 2019-05-22 電池部材及びその製造方法、並びに二次電池

Publications (1)

Publication Number Publication Date
WO2020235065A1 true WO2020235065A1 (ja) 2020-11-26

Family

ID=73459342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020345 WO2020235065A1 (ja) 2019-05-22 2019-05-22 電池部材及びその製造方法、並びに二次電池

Country Status (5)

Country Link
US (1) US20220231334A1 (ja)
EP (1) EP3955361A4 (ja)
JP (1) JP7527703B2 (ja)
CN (1) CN113826254A (ja)
WO (1) WO2020235065A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216848A (ja) * 2001-01-23 2002-08-02 Sony Corp ゲル状電解質、およびこれを用いたゲル状電解質電池
JP2003022840A (ja) * 2001-07-09 2003-01-24 Toyota Motor Corp リチウム2次電池
JP2004107641A (ja) 2002-07-23 2004-04-08 Nippon Soda Co Ltd 高分子固体電解質
JP2012018909A (ja) * 2010-06-07 2012-01-26 Sekisui Chem Co Ltd 電解質及び電解質膜
JP2015090777A (ja) * 2013-11-05 2015-05-11 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2016063835A1 (ja) * 2014-10-21 2016-04-28 日本電気株式会社 二次電池およびその製造方法
WO2018193630A1 (ja) * 2017-04-21 2018-10-25 日立化成株式会社 電気化学デバイス用電極及び電気化学デバイス

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4017741B2 (ja) * 1998-05-11 2007-12-05 旭化成エレクトロニクス株式会社 架橋高分子複合電解質および電池
JP4497456B2 (ja) * 2004-04-19 2010-07-07 日立マクセル株式会社 ゲル状電解質およびそれを用いた電気化学素子
CN106711498A (zh) * 2015-11-17 2017-05-24 浙江省化工研究院有限公司 一种聚合物锂离子电池及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216848A (ja) * 2001-01-23 2002-08-02 Sony Corp ゲル状電解質、およびこれを用いたゲル状電解質電池
JP2003022840A (ja) * 2001-07-09 2003-01-24 Toyota Motor Corp リチウム2次電池
JP2004107641A (ja) 2002-07-23 2004-04-08 Nippon Soda Co Ltd 高分子固体電解質
JP2012018909A (ja) * 2010-06-07 2012-01-26 Sekisui Chem Co Ltd 電解質及び電解質膜
JP2015090777A (ja) * 2013-11-05 2015-05-11 ソニー株式会社 電池、電解質、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2016063835A1 (ja) * 2014-10-21 2016-04-28 日本電気株式会社 二次電池およびその製造方法
WO2018193630A1 (ja) * 2017-04-21 2018-10-25 日立化成株式会社 電気化学デバイス用電極及び電気化学デバイス

Also Published As

Publication number Publication date
EP3955361A1 (en) 2022-02-16
EP3955361A4 (en) 2022-04-27
US20220231334A1 (en) 2022-07-21
CN113826254A (zh) 2021-12-21
JPWO2020235065A1 (ja) 2020-11-26
JP7527703B2 (ja) 2024-08-05

Similar Documents

Publication Publication Date Title
JP4364501B2 (ja) 極板、これを採用したリチウム電池、及び極板の製造方法
CN108028413A (zh) 锂二次电池用电极组件和包含其的锂二次电池及电池模块
JP2006172775A (ja) エネルギー貯蔵デバイスとそのモジュール及びそれを用いた自動車
JP6269475B2 (ja) 二次電池
US7387852B2 (en) Polymer electrolyte and lithium battery using the same
US11923505B2 (en) Electrolyte composition and rechargeable battery
WO2020145338A1 (ja) 電解液、電解質スラリ組成物及び二次電池
WO2019035190A1 (ja) 二次電池用電池部材及び二次電池
JP2018206561A (ja) 二次電池
WO2014133171A1 (ja) ゲル電解質およびそれを用いたポリマー二次電池
JP4086939B2 (ja) 高分子固体電解質およびこれを用いたリチウム2次電池と電気2重層キャパシタ
JP2000067918A (ja) リチウム二次電池
US20200144609A1 (en) Battery member for secondary battery, secondary battery, and production methods therefor
WO2020235065A1 (ja) 電池部材及びその製造方法、並びに二次電池
JP7446657B2 (ja) 二次電池用電極、二次電池用電解質層及び二次電池
CN100372162C (zh) 锂电池组
WO2021070296A1 (ja) 電池部材、二次電池、及び電池部材の製造方法
JP7442912B2 (ja) 電池部材の製造方法、電池部材、及び二次電池
JP2000067850A (ja) ポリマー電解質二次電池
JP2020187887A (ja) 組成物、電極及び二次電池
JP2019153545A (ja) 二次電池用負極及び二次電池
JP7108117B1 (ja) 高分子固体電解質、リチウムイオン二次電池、リチウムイオン二次電池の製造方法
JP2020202020A (ja) 固体電解質電池用添加剤、組成物、二次電池用電極及びその製造方法、二次電池用電池部材、並びに二次電池
JP2018166054A (ja) 正極およびこれを用いたリチウムイオン二次電池
JP2020170673A (ja) 二次電池用電池部材及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929706

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019929706

Country of ref document: EP

Effective date: 20211108