WO2020233108A1 - 一种双侧双槽并联式无油涡旋空压机 - Google Patents

一种双侧双槽并联式无油涡旋空压机 Download PDF

Info

Publication number
WO2020233108A1
WO2020233108A1 PCT/CN2019/124710 CN2019124710W WO2020233108A1 WO 2020233108 A1 WO2020233108 A1 WO 2020233108A1 CN 2019124710 W CN2019124710 W CN 2019124710W WO 2020233108 A1 WO2020233108 A1 WO 2020233108A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
crankshaft
double
air compressor
mounting hole
Prior art date
Application number
PCT/CN2019/124710
Other languages
English (en)
French (fr)
Inventor
熊树生
翁昕晨
江仁埔
束建兵
洪华星
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2020233108A1 publication Critical patent/WO2020233108A1/zh
Priority to US17/160,348 priority Critical patent/US11578721B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F04C18/0223Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of compressors, in particular to a double-side double-slot parallel oil-free scroll air compressor with large displacement and low pressure ratio.
  • the hydrogen fuel cell system consists of a fuel cell stack, a fuel supply and circulation system, an oxidizer supply system, a water/heat management system, and a control system that coordinates the work of each system.
  • the oxidant supply system is one of the most important auxiliary equipment of hydrogen fuel cell, and its design is closely related to the performance of the hydrogen fuel cell system.
  • As the oxidant supply system of a hydrogen fuel cell it needs to meet the requirements of large displacement and low pressure ratio. Therefore, in engineering practice, there is an urgent need for a compressor with large displacement, low pressure ratio and long service life as the oxidant supply system. Important parts.
  • Scroll air compressor is a common gas compressor, its characteristics just meet the requirement of low pressure ratio of oxidant supply system, and it has been widely used in various engineering projects.
  • Commonly used scroll air compressors mainly include a fixed scroll and a movable scroll.
  • the movable scroll can move circularly around the axis of the fixed scroll under the drive of a power source, through physical compression
  • the method reduces the volume of each compression chamber in the compressed air channel, compresses the gas in the compressed air channel, and finally discharges from the center.
  • the commonly used scroll air compressors often only have one-stage compression, and their displacement is small, which is difficult to meet the needs of hydrogen fuel cells.
  • Chinese patent CN107620704A proposes a dual-mechanical-motor-integrated double-sided oil-free scroll compressor.
  • This patent sets scroll teeth on both end faces of the orbiting scroll disk, and the scroll disk is simultaneously with two fixed scrolls. At the same time, the rotating disk cooperates with the connection for compression.
  • this patent increases the amount of gas compressed by the scroll air compressor per unit time, which helps to reduce the volume of the large displacement scroll air compressor.
  • this patent has the following disadvantages:
  • the scroll air compressor is too simple to meet the needs of the engineering field with complex working conditions
  • the motor is directly installed on the working part, and the motor may be damaged by the impact of the orbiting scroll when the scroll air compressor is working;
  • the technical problem to be solved by the present invention is that the scroll air compressor has a small displacement and is difficult to meet the complex and diverse engineering requirements.
  • the invention provides a double-sided double-slot parallel oil-free scroll air compressor, which can effectively increase the displacement of the scroll air compressor, while the working conditions are stable and the service life is longer.
  • a double-sided double-slot parallel oil-free scroll air compressor which mainly comprises: a casing; a motor, which is fixedly connected in the casing; a rotating shaft, which is movably connected to the casing It is characterized in that it also includes two scroll fixed disks, namely: scroll fixed disk one on the side away from the casing, and one side close to the casing and fixedly connected to the casing
  • the scroll plate two; the scroll plate one and the scroll plate two are fixed and sealed on the outer circumference; on the outer circumference of the scroll plate one, there are at least two evenly arranged in the circumferential direction
  • the scroll plate 1 and the scroll plate 2 are in communication at a position close to the connecting surface of the two;
  • the scroll plate 1 is provided with a scroll tooth 1 on one end surface facing the scroll plate 2 ,
  • the end surface of the second scroll plate and the opposite side of the scroll tooth one is provided with a second scroll tooth; the first scroll tooth and the second scroll tooth have the same size; the first scroll plate and the second scroll
  • the double-slot parallel structure separates the air compressor channel 2 into the air compressor channel 2a and the air compressor channel 2b;
  • the center of the double-sided rotary tooth disk is provided with an exhaust communication hole 1 that communicates with the compressor channel 1 and the compressor channel 2, and the center of the scroll plate 1 is provided with a communication between the outside and the compressor
  • the rotating shaft avoiding hole is provided at the center position of the second scroll plate;
  • the rotating shaft includes an eccentric section, the axis of the eccentric section deviates from the axis of the rotating shaft;
  • a rotating shaft mounting hole is provided at the center position of the moving disk facing the two sides of the scroll plate, the eccentric section passes through the rotating shaft avoiding hole and is fixedly connected in the rotating shaft mounting hole, and the eccentric section drives the double
  • the side-rotating toothed movable disk moves in a circular translational motion around the axis of the rotating shaft; between the double-sided toothed movable disk and the scroll
  • the advantage of this design is that the scroll air compressor uses a double-sided rotary toothed disk with scroll teeth on both sides, and further combines the scroll fixed disk and the vortex on the end surface of the double-sided rotary toothed disk.
  • the spiral teeth are divided into two, and the air pressure channel on the same side is divided into two. Under the condition that the volume of the two-sided spiral teeth moving disc and the scroll fixed disc remains unchanged, the displacement of the scroll air compressor is increased. .
  • the eccentric positioning mechanism can ensure that the moving range of the double-sided rotary tooth disk is determined.
  • the double-sided rotary tooth disk always moves in the circumferential direction along the axis of the rotating shaft within the preset range to ensure different compression spaces in the air pressure channel
  • the air-tightness is achieved between them to avoid the backflow of compressed gas from affecting the compression effect of the scroll air compressor.
  • a cooling mechanism is provided on one end surface of the scroll plate 1 and the scroll plate 2 facing away from the double-sided spiral toothed movable plate; the cooling mechanisms are respectively corresponding to the scroll plate Cooling water cavity one, and cooling water cavity two corresponding to scroll plate two; said cooling water cavity one includes a water tank one fixedly connected with said scroll plate one, a water inlet channel one communicating with water tank one, and a cover The water tank cover plate one installed on the water tank one; the cooling water cavity two is provided with the water inlet channel two, the water tank two and the water tank cover plate two in the same manner as the cooling water cavity one.
  • the air outlet channel includes an air outlet inlet with the same shape as the air outlet communicating hole, and a reinforcing rib for enhancing the strength of the air outlet inlet is provided in the air outlet inlet.
  • the material of the scroll air compressor is aluminum alloy.
  • the motor is a variable frequency motor.
  • the end of the casing away from the second scroll plate is sealedly connected with a detachable end cover, one end of the rotating shaft is fixedly connected to the end cover through a rotating bearing; the other end of the rotating shaft passes through The second rotating bearing is fixedly connected with the second scroll fixed plate; the eccentric section is fixedly connected with the rotating shaft mounting hole through the moving plate bearing.
  • At least two balance weights extending outward from the rotating shaft are provided on the rotating shaft, namely the first balance weight on the side far from the eccentric section and the second balance weight on the side close to the eccentric section;
  • the extension directions of the first balance weight and the second balance weight differ by 180° with respect to the axis of the rotating shaft, and a cavity for accommodating the first balance weight and the second balance weight is arranged inside the scroll air compressor.
  • the eccentric positioning mechanism includes a crankshaft, and the eccentricity of the crankshaft is the same as the eccentricity of the eccentric section; the double-sided rotary toothed disk, the scroll fixed disk 1 and the scroll fixed disk 2 All are provided with crankshaft mounting holes adapted to the crankshaft.
  • crankshaft mounting hole includes: at least two crankshaft mounting holes 1 uniformly distributed along the outer circumferential surface of the double-sided rotary toothed disk; and crankshaft mounting holes on the outer circumferential surface of the scroll fixed disk 2 1.
  • a rotating bearing III is arranged between the crankshaft and the crankshaft mounting hole.
  • the present invention has the following advantages over the prior art:
  • Aluminum alloy can meet the overall structural strength requirements of the scroll air compressor, and the cost is low; the frequency conversion motor can make the scroll air compressor adapt to the compression requirements of different occasions, and the user can automatically adjust the scroll air compressor according to needs
  • the air displacement of the machine helps to increase the diversity of the use scenarios of the scroll air compressor; the rotating bearing can position the rotating shaft while avoiding the swing or severe wear of the rotating shaft; the balance weight can offset the rotation of the rotating shaft Inertia force and moment of inertia increase the working performance and service life of the rotating shaft.
  • crankshaft Since the eccentricity of the crankshaft is the same as the eccentricity of the eccentric section, it is ensured that the double-sided rotary gear moving plate always moves in a circular translational motion along the axis of the rotating shaft without offset; multiple crankshafts are used for simultaneous pairing
  • the movement limit of the side-rotating gear disk can effectively share the force of the rotating inertial force of the double-side gear disk on the rotating shaft, and improve the service life of the scroll air compressor; set multiple crankshafts in different positions to
  • the rotating gear moving disc is simultaneously limited in motion, which improves the motion stability of the double-sided rotating gear moving disc, which helps to improve the overall working stability of the scroll air compressor; further, the rotating bearing 3 also helps to reduce crankshaft work
  • the friction generated in the state increases the service life of the crankshaft.
  • the rotating shaft in this design does not penetrate the double-sided rotary toothed disk, this design has better sealing and dynamic balance performance.
  • Figure 1 shows an overall schematic diagram of a preferred embodiment of a double-sided double-slot parallel oil-free scroll air compressor
  • Figure 2 shows a cross-sectional view of the embodiment of the scroll air compressor
  • Fig. 3 is a schematic diagram of the end faces on both sides of the scroll plate 1 of the embodiment
  • Fig. 4 is a schematic diagram of the end faces on both sides of the scroll plate 2 of the embodiment.
  • Fig. 5 is a schematic diagram of the rotating toothed disk on both sides of the embodiment
  • Fig. 6 is a schematic diagram of the end faces on both sides of the double-sided rotary tooth disk of the embodiment
  • Fig. 7 shows a schematic diagram of the rotating shaft of the embodiment
  • Figure 8 is a schematic diagram of the crankshaft assembly
  • Figure 9 is a schematic diagram of the crankshaft
  • a double-sided double-slot parallel oil-free scroll air compressor includes a casing 5, a scroll fixed plate at one end away from the casing 5, and a scroll plate 2 close to the casing. 5
  • the scroll plate two 3 at one end, the motor 8 is fixedly installed in the casing 5, and can be driven by power on the socket 9.
  • a motor seat is set between the motor 8 and the scroll plate two 3. 4;
  • the end of the casing 5 away from the motor base 4 is fixedly provided with a detachable end cover 6.
  • the structure of the scroll plate-2 is shown in Fig. 3, one end surface is provided with a scroll tooth 21, and the other end surface is provided with a cooling water cavity 22.
  • the cooling water cavity 22 includes a water tank 221 and a water tank.
  • the water tank 1 221 is fixedly arranged on the end surface of the scroll plate 2 facing away from the scroll teeth 21.
  • the water tank cover plate 222 is detachably connected to the water tank Above one 221, the water inlet one 223 is connected with the water tank one 221; similarly, the structure of the scroll plate two 3 is shown in Fig. 2 and Fig. 4, and the scroll plate 2 is provided with a vortex in the same manner as the scroll plate one 2.
  • the scroll plate 1 2 and scroll plate 2 3 are fixedly connected at the outer circumferential position of the scroll teeth in such a way that the end faces of the scroll teeth face each other, and the two communicate with each other in the outer circumferential direction, and the scroll plate One 2 is provided with at least two air inlets 210 uniformly distributed along the circumferential direction in the outer circumferential direction.
  • a double-sided rotary toothed disk 1 is connected between the scroll plate one 2 and the scroll plated two 3, and the structure of the double-sided rotary toothed disk 1 is shown in Figures 5 and 6, which Scroll teeth three 11 are provided on the end surfaces on both sides, one side scroll teeth three 11 and scroll teeth one 21 enclose a compressed air channel 25, and the other side scroll teeth three 11 and two 31 Enclosed into compressed air channel two 35.
  • the compressed air channel 25 and the compressed air channel 35 both have a double-slot parallel structure, and the specific structure and formation method of the double-slot parallel structure are as follows:
  • Two scroll teeth 21, scroll teeth two 31, and scroll teeth three 11 are respectively provided on their corresponding end surfaces.
  • the two scroll teeth on the same end surface are close to the center of the end surface and are centered relative to the center of the end surface.
  • the two symmetrical positions respectively extend in a spiral shape to the outer peripheral surface of the end surface along the same circumferential direction, and the two ends of the two spiral teeth on the outer circumference are also centrally symmetrical with respect to the center of the end surface.
  • Two vortex teeth on the same end surface extend in a clockwise or counterclockwise direction at the same time, and the two vortex teeth enclose two parallel and isolated spiral grooves.
  • the compressed air channel 25 is divided into a compressed air channel a251 and a compressed air channel b252 arranged at intervals, and the second 35 compressed air channel is divided into two compressed air channels arranged at intervals.
  • A351 and the second air compressor b352 increase the volume of air that can be compressed by the scroll air compressor per unit time and increase the total displacement of the scroll air compressor.
  • An exhaust communication hole 13 is provided near the center of the scroll plate one 2 to connect the compressed air channel 25 and the air pressure channel 35, and the central position of the scroll plate 2 is provided with a communicating pressure.
  • Channel one 25 and the outer gas outlet channel 200, the high pressure gas in the gas pressure channel two 35 enters the gas pressure channel one 25 along the exhaust communication hole 13 and mixes with the high pressure gas in the gas pressure channel one 25, and then simultaneously
  • the shape and position of the air outlet inlet 23 of the air outlet channel 200 are arranged corresponding to the exhaust communication hole 13, and a reinforcing rib 231 is added to the air outlet inlet 23.
  • Arranging the inlet 23 of the inlet air passage and the communicating hole 13 of the exhaust gas correspondingly helps to improve the flow stability of the discharged gas of the scroll compressor, and avoid the large difference in the shape of the outlet communicating hole 13 and the outlet 23 leading to discharge.
  • the aerodynamic parameters of the gas are affected and the pressure of the exhaust gas is affected; the reinforcing ribs 231 are used to enhance the strength of the outlet port 23 to ensure that the outlet port 23 will not be deformed when the high-pressure gas is continuously guided to adapt to large-displacement work surroundings.
  • the double-sided rotary toothed disk 1 is driven by a rotating shaft 7, which is driven by a motor 8.
  • the rotating shaft 7 includes an eccentric section 17 with a certain eccentricity.
  • the eccentricity is mainly determined by the eccentricity of the scroll teeth.
  • the size of the involute is determined; the eccentric section 17 passes through the shaft avoiding hole 34 opened in the center of the scroll plate 2 3, and is fixedly connected to the shaft mounting hole 14 in the center of the double-sided rotary tooth disk 1.
  • the double-sided rotary toothed movable disk 1 can perform a translational movement in the circumferential direction around the axis of the rotating shaft 7.
  • the scroll tooth three 11 squeezes the gas pressure channel into several compression cavities that keep airtight with each other, and gradually squeezes the gas in each compression cavity toward the center of the end surface.
  • the compression cavity The volume is gradually reduced to complete the pressurization of the gas.
  • the rotating shaft 7 is also provided with balance weights, namely the balance weight one 701 on the side away from the eccentric section 17, and the balance weight two 702 on the side close to the eccentric section 17, to ensure balance When the block rotates, it will not interfere with the scroll air compressor, and there is a cavity for accommodating the balance block in the scroll air compressor; further, in order to ensure that the axis of the rotating shaft 7 does not easily deviate when it rotates, this
  • a rotating bearing 71 is connected between the rotating shaft 7 and the end cover 6, and a rotating bearing 72 is provided between the rotating shaft 7 and the scroll plate two 3. The rotating bearing 71 and the rotating bearing 72 are paired together.
  • the rotating shaft 7 is restricted to ensure that the axis position of the rotating shaft 7 does not shift during the rotation, and to avoid the shaft body swinging due to inertia when the rotating shaft 7 rotates, which affects the movement trajectory of the double-sided rotary gear disk 1 It can also reduce the friction loss at the connecting position of the rotating shaft 7 and increase the service life of the rotating shaft 7.
  • an eccentric guide mechanism is provided between the double-sided rotary toothed disk 1 and the scroll table; eccentric guide A preferred embodiment of the mechanism is as follows: the outer circumference of the scroll plate 2 3 is evenly provided with at least two crankshaft mounting holes 3101 along the circumferential direction, and the outer circumference of the double-sided rotary tooth disk 1
  • the crankshaft installation hole three 3101 is correspondingly provided with a crankshaft installation hole 1101; the center of the end surface of the double-sided rotary toothed disk 1 facing the scroll plate 1-2 is provided with a crankshaft installation hole 1102, the scroll plate 1-2
  • a crankshaft mounting hole 24 is provided at the center position corresponding to the crankshaft mounting hole 2 1102; a crankshaft 101 is fixedly connected between the crankshaft mounting hole 1101 and the crankshaft mounting hole 3101, and the crankshaft mounting hole 1102 and the crankshaft A
  • crankshaft 101 and the second crankshaft 102 are consistent with the eccentricity of the eccentric section 17.
  • the dimensions of the crankshaft 101 and the second crankshaft 102 are also set to be complete for the convenience of manufacturing. Consistent.
  • crankshaft 101 and the second crankshaft 102 can limit the range of motion of the double-sided rotary gear disk 1 to ensure the double-sided rotary gear disk 1 will not deviate from the working position, and at the same time help to enhance the working stability of the scroll air compressor; crankshaft 101 and crankshaft 102 can also share the force of the rotating inertia of the rotating gear disk 1 on the rotating shaft 7, increasing The service life of the rotating shaft 7.
  • a rotating bearing three 10 can be further arranged between the first crankshaft 101 and the second crankshaft 102 and the mounting hole to ensure that the crankshaft will not be offset due to large wear.
  • the motor 8 can also be set as a variable frequency motor, and the speed of the rotating shaft 7 can be adjusted during use, and then the displacement of the scroll air compressor can be adjusted; aluminum alloy, as a common material, can It satisfies the strength requirements of the scroll teeth, and the cost is relatively low.
  • the rotating shaft 7 drives the double-sided rotary toothed disk 1 through the eccentric section 17 to make a circular translational motion.
  • the scroll tooth three 11 squeezes the scroll tooth one 21 and the scroll tooth two 31, and the compressed air channel 1 25 and the compressed air channel 35 are divided into several different compression chambers, which are gradually moved to the center position of the end face under the extrusion of the moving scroll tooth three 11.
  • the volume of the compression chamber is gradually reduced and compressed
  • the pressure of the gas in the chamber gradually increases; after the gas in the compression chamber is squeezed to the position of the exhaust communication hole 13, the high-pressure gas flows from the exhaust communication hole 13 into the compressor channel 2 35, and is connected with the compressor channel After the compressed high-pressure gas is mixed in the same way in the second 35, it is discharged into the gas outlet channel 200 through the gas outlet inlet 23, and finally discharged from the vortex air compressor; when a part of the gas in the compressed gas channel is discharged, the scroll plate When the air pressure decreases, the external gas flows into the scroll plate 1 2 and scroll plate 2 3 along the air inlet 210 under the action of pressure, and the compression work continues in the next cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种双侧双槽并联式无油涡旋空压机,主要包括两个涡旋定盘(2,3)、双侧旋齿动盘(1),涡旋定盘(2,3)的一侧端面设置有涡旋齿(21,31),双侧旋齿动盘(1)两侧端面均设有涡旋齿三(11),两个涡旋定盘(2,3)和双侧旋齿动盘(1)共同围成分别位于两侧的两条压气通道(25,35);同一端面上的涡旋齿(11,21,31)设置为双槽并联式结构,将同一侧的压气通道(25,35)进一步分隔为两条,有助于增加涡旋空压机的排量;气体从位于涡旋定盘(2)周面上的入气口(210)通入后,经过多条压缩通道的压缩,从涡旋空压机的中心处排出。该技术具有排气量大、工作更加稳定的优点。

Description

一种双侧双槽并联式无油涡旋空压机 技术领域
本发明涉及压缩机领域,特别是一种大排量低压比的双侧双槽并联式无油涡旋空压机。
背景技术
随着大气环境污染严重程度的加剧与传统化石能源的短缺,传统的化石燃料汽车逐渐被新能源汽车所取代。在国家政策的支持下,以电动汽车为代表的新能源汽车产业快速崛起,但由于电动汽车存在电池性能与安全以及续航里程的技术瓶颈,因此效率高、噪声低、排放少的以氢燃料电池为动力型式的新能源汽车备受关注。
作为国家重点发展产业的氢燃料电池汽车一直是近年来相关学者研究的热点领域。作为燃料电池汽车的动力的氢燃料电池系统由燃料电池堆、燃料供给与循环系统、氧化剂供给系统、水/热管理系统以及协调各系统工作的控制系统组成。氧化剂供给系统作为氢燃料燃料电池最重要的辅助设备之一,其设计的好坏与氢燃料电池系统的性能密切相关。作为氢燃料电池的氧化剂供给系统,其需要满足大排量、低压比的要求,因此在工程实践中急需一种拥有大排量、低压比、同时使用寿命较长的压缩机作为氧化剂供给系统的重要部件。
涡旋空压机是一种常见的气体压缩机,其特征正好满足氧化剂供给系统低压比的要求,且现已广泛应用于各种工程项目中。常用的涡旋空压机主要包括一个定涡旋盘和一个动涡旋盘,其中动涡旋盘能在动力源的驱动下绕定涡旋盘的轴心做圆周平动运动,通过物理压缩的方式缩小压气槽道内每个压缩腔的体积,将气体在压气槽道中压缩,最后从中心处排出。但常用涡旋空压机常常只有一级压缩,其排量较小,难以满足氢燃料电池的需要。
中国专利CN107620704A提出一种双机械电机一体化双侧无油涡旋压缩机, 这项专利将动涡旋动盘的两侧端面均设置有涡旋齿,涡旋动盘同时与两个定涡旋盘同时配合连接进行压缩工作。相对于日常使用的单级式涡旋空压机,该项专利增加了涡旋空压机在单位时间内压缩的气体量,有助于缩小大排量涡旋空压机的体积。但是,该项专利存在如下缺点:
1.涡旋空压机过于简单,难以满足工况复杂的工程领域的需求;
2.电机直接安装在工作部位,涡旋空压机工作时电机可能会受到动涡旋盘的冲击导致损坏;
3.难以进一步增大排量。
发明内容
本发明要解决的技术问题是:涡旋空压机排量较小,难以满足复杂多样的工程需求。
本发明提供一种双侧双槽并联式无油涡旋空压机,其能有效增大涡旋空压机的排量,同时工况稳定,使用寿命较长。
为了解决上述技术问题,本发明提供的技术方案如下:
一种双侧双槽并联式无油涡旋空压机,主要包括:机壳;电机,所述电机固定连接于所述机壳内;转动轴,所述转动轴活动连接于所述机壳内,并由所述电机驱动;其特征在于:还包括两个涡旋定盘,分别为:远离机壳一侧的涡旋定盘一、靠近机壳一侧并与所述机壳固定连接的涡旋定盘二;所述涡旋定盘一和涡旋定盘二于外圆周上固定密封连接;在所述涡旋定盘一的外圆周上至少有两个沿圆周方向均匀设置的入气口,所述涡旋定盘一与所述涡旋定盘二于靠近两者连接面的位置处连通;涡旋定盘一朝向涡旋定盘二的一侧端面设置有涡旋齿一,涡旋定盘二与涡旋齿一相对的一侧端面设置有涡旋齿二;所述涡旋齿一与涡旋齿二尺寸一致;所述涡旋定盘一与涡旋定盘二之间连接有双侧旋齿动盘,所述双侧旋齿动盘的两侧端面均设置有涡旋齿三;所述涡旋齿三分别与涡旋齿一和涡旋齿二适配;所述涡旋齿一、涡旋齿二和涡旋齿三均为双槽并联结 构,所述双槽并联结构具体结构为:每一个端面上的涡旋齿均包括两条,两条涡旋齿分别从靠近所在端面的中心位置处,以相对于端面中心呈中心对称的两个位置,同时沿顺时针或者逆时针方向,呈涡旋状向所在端面的外圆周位置延伸;所述涡旋齿一与涡旋齿三啮合连接围成压气槽道一,所述涡旋齿二与涡旋齿三啮合连接围成压气槽道二;所述双槽并联结构将压气槽道一分隔为相互间隔排布的压气槽道一a和压气槽道一b,双槽并联结构将压气槽道二分隔为压气槽道二a和压气槽道二b;所述双侧旋齿动盘上靠近双侧旋齿动盘中心的位置处设置有连通所述压气槽道一和压气槽道二的排气连通孔一,所述涡旋定盘一的中心位置处设置有连通外部和所述压气槽道二的出气通道;所述涡旋定盘二中心位置处设置有转轴避让孔;所述转动轴包括一个偏心段,所述偏心段的轴线偏离转动轴的轴线;所述双侧旋齿动盘朝向涡旋定盘二一侧的中心位置处设置有转轴安装孔,所述偏心段穿过所述转轴避让孔并固定连接于所述转轴安装孔内,所述偏心段驱动所述双侧旋齿动盘绕转动轴的轴线做圆周平动运动;所述双侧旋齿动盘与涡旋定盘一之间、以及所述双侧旋齿动盘与涡旋定盘二之间均设置有偏心定位机构。
这种设计的优点在于,涡旋空压机在使用两侧都设置有涡旋齿的双侧旋齿动盘的基础上,进一步将涡旋定盘以及双侧旋齿动盘端面上的涡旋齿分为两条,进而将同一侧的压气槽道分隔为两条,在保证双侧旋齿动盘和涡旋定盘体积不变的情况下,增加了涡旋空压机的排量。偏心定位机构可以保证双侧旋齿动盘运动范围确定,双侧旋齿动盘在预设的范围内始终沿着转动轴的轴线做沿圆周方向的平动运动,保证压气槽道内不同压缩空间之间达到气密封,避免压缩气体倒流影响涡旋空压机压缩效果。
作为一种优选,所述涡旋定盘一与涡旋定盘二背向双侧旋齿动盘的一侧端面均设置有冷却机构;所述冷却机构分别为与涡旋定盘一对应的冷却水腔一、以及与涡旋定盘二对应的冷却水腔二;所述冷却水腔一包括与所述涡旋定盘一 固定连接的水槽一、连通水槽一的入水通道一、以及盖装于所述水槽一上的水槽盖板一;冷却水腔二以与冷却水腔一相同的方式设置有入水通道二、水槽二以及水槽盖板二。
作为一种优选,所述出气通道包括一个形状与排气连通孔一相同的出气道入口,所述出气道入口中设置有用于增强出气道入口强度的加强筋。
作为一种优选,所述涡旋空压机材质为铝合金。
作为一种优选,所述电机为变频电机。
作为一种优选,所述机壳远离涡旋定盘二的一端密封连接有可拆卸的端盖,所述转动轴一端通过转动轴承一与所述端盖固定连接;所述转动轴另一端通过转动轴承二与所述涡旋定盘二固定连接;所述偏心段通过动盘轴承与所述转轴安装孔固定连接。
作为一种优选,所述转动轴上至少设置有两个朝转动轴外延伸设置的平衡块,分别为设置于远离偏心段一侧的平衡块一和靠近偏心段一侧的平衡块二;所述平衡块一和平衡块二的延伸方向相对于转动轴的轴线相差180°,所述涡旋空压机的内部设置有容纳平衡块一和平衡块二的空腔。
作为一种优选,所述偏心定位机构包括曲轴,所述曲轴的偏心度与所述偏心段的偏心度相同;所述双侧旋齿动盘、涡旋定盘一和涡旋定盘二上均设置有与曲轴适配的曲轴安装孔。
进一步的,所述曲轴安装孔包括:至少两个沿所述双侧旋齿动盘的外圆周面均匀分布的曲轴安装孔一;于所述涡旋定盘二外圆周面上与曲轴安装孔一对应设置的曲轴安装孔三;于所述双侧旋齿动盘背向转轴安装孔一侧的端面中心位置的曲轴安装孔二;于所述涡旋定盘一上对应曲轴安装孔二设置的曲轴安装孔四;所述曲轴包括曲轴一和曲轴二,所述曲轴一固定连接于曲轴安装孔一与曲轴安装孔三之间,所述曲轴二固定连接于曲轴安装孔二与曲轴安装孔四之间。
进一步的,所述曲轴与曲轴安装孔之间设置有转动轴承三。
综合来看,本发明相比现有技术具有以下优点:
1.在不改变涡旋空压机外形体积的情况下,有效增加了涡旋空压机的排气量,更能适应大排量的工作环境;
2.冷却系统的原理与设计均非常简单,性能良好,且可以通过打开水槽盖板直接进行查看和维修,使用方便;
3.将出气道入口与排气连通孔一对应设置,有助于避免由于出气通道入口处的形状与排气连通孔一的形状差别较大,导致出气通道对排出的高压气体的气动参数产生影响的问题;由于高压气体汇合后同时流过出气道入口,高压气体流速、压力较大,为保护出气道入口不会因为受到大载荷的冲击而导致形变,在出气通道内增设加强筋,有助于保护出气道入口。
4.铝合金可以满足涡旋空压机整体结构强度需求,且成本低廉;变频电机可以使得涡旋空压机能够适应不同场合下的压缩工作要求,使用者可以根据需要自动调节涡旋空压机的排气量,有助于增加涡旋空压机的使用场景的多样性;转动轴承能够对转动轴进行定位,同时避免转动轴发生摆动或者磨损严重;平衡块可以抵消转动轴旋转产生的惯性力以及惯性力力矩,增加转动轴的工作性能及使用寿命。
5.由于曲轴的偏心度与偏心段的偏心度相同,保证了双侧旋齿动盘始终沿着转动轴的轴线做圆周平动运动而不会产生偏移;采用多个曲轴同时进行对双侧旋齿动盘的运动限位,能够有效分担双侧旋齿动盘旋转惯性力对转动轴的作用力,提高涡旋空压机的使用寿命;设置多个不同位置的曲轴以对双侧旋齿动盘同时进行运动限位,提高了双侧旋齿动盘的运动稳定性,有助于提升涡旋空压机整体的工作稳定性;进一步的,转动轴承三也有助于减少曲轴工作状态时产生的摩擦力,增加曲轴使用寿命。同时,由于这种设计中转动轴没有贯穿双侧旋齿动盘,本设计具有更好的密封性和动平衡性能。
6.双侧双槽并联式无油涡旋空压机的压缩原理简单,整机尺寸较小,设计 与使用方便。
附图说明
图1所示为一种双侧双槽并联式无油涡旋空压机优选实施例的整体示意图;
图2所示为实施例涡旋空压机的剖视图;
图3所示为实施例涡旋定盘一的两侧端面的示意图;
图4所示为实施例涡旋定盘二的两侧端面的示意图;
图5所示为实施例双侧旋齿动盘的示意图;
图6所示为实施例双侧旋齿动盘的两侧端面的示意图;
图7所示为实施例的转动轴示意图;
图8为曲轴的装配示意图;
图9为曲轴示意图;
附图标记说明:1-双侧旋齿动盘,10-转动轴承三,11-涡旋齿三,13-排气连通孔一,14-转轴安装孔,1101-曲轴安装孔一,1102-曲轴安装孔二,17-偏心段,171-动盘轴承,2-涡旋定盘一,200-出气通道,210-入气口,21-涡旋齿一,22-冷却水腔一,221-水槽一,222-水槽盖板一,223-入水通道一,23-出气道入口,231-加强筋,24-曲轴安装孔四,25-压气槽道一,251-压气槽道一a,252-压气槽道一b,3-涡旋定盘二,31-涡旋齿二,3101-曲轴安装孔三,32-冷却水腔二,321-水槽二,322-水槽盖板二,323-入水通道二,34-转轴避让孔,35-压气槽道二,351-压气槽道二a,352-压气槽道b,4-电机座,5-机壳,6-端盖,7-转动轴,71-转动轴承一,72-转动轴承二,701-平衡块一,702-平衡块二,8-电机,9-插座,10-转动轴承三。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,一体地连接,也可以是可拆卸连接;可以是两个元件内部的连通;可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明的一种优选实施例如图1、图2所示,双侧双槽并联式无油涡旋空压机包括机壳5、远离机壳5一端的涡旋定盘一2、靠近机壳5一端的涡旋定盘二3,电机8固定安装于机壳5内,且可通过插座9通电进行驱动,为保证电机平稳工作,电机8与涡旋定盘二3之间设置有电机座4;机壳5远离电机座4的一端固定设置有可拆卸的端盖6。涡旋定盘一2的结构如图3所示,一侧端面上设置有涡旋齿一21,另一侧端面上设置有冷却水腔一22,冷却水腔一22包括水槽一221、水槽盖板一222、入水口一223,所述水槽一221固定设置在涡旋定盘一2背向涡旋齿一21的一侧端面上,所述水槽盖板一222可拆卸式连接于水槽一221之上,入水口一223与水槽一221连通;类似的,涡旋定盘二3的结构如图2和图4所示,以与涡旋定盘一2相同的方式设置有涡旋齿二31和冷却水腔二32。
所述涡旋定盘一2和涡旋定盘二3以涡旋齿所在端面相向的方式,在两者的外圆周位置处固定连接,两者在外圆周方向上相互连通,且涡旋定盘一2在外圆周方向上设置有至少两个沿圆周方向均匀分布的入气口210。同时,在所述 涡旋定盘一2和涡旋定盘二3之间连接有双侧旋齿动盘1,所述双侧旋齿动盘1结构如图5和图6所示,其两侧端面上均设置有涡旋齿三11,一侧的涡旋齿三11与涡旋齿一21围成压气槽道一25,另一侧的涡旋齿三11与涡旋齿二31围成压气槽道二35。所述压气槽道一25和压气槽道二35均为双槽并联结构,双槽并联结构的具体结构以及形成方式如下:
涡旋齿一21、涡旋齿二31、涡旋齿三11分别在其对应端面上均设置有两条,同一端面上的两条涡旋齿从靠近端面中心、且相对于端面中心呈中心对称的两个位置,沿同一圆周方向分别向端面的外周面呈涡旋状延伸设置,两条涡旋齿位于外圆周上的两个端部同样相对所在端面中心呈中心对称。同一端面上的两条涡旋齿同时沿顺时针或逆时针方向延伸,且两条涡旋齿相互围成两条并联且相互隔离的螺旋槽道。在双槽并联结构设计下,压气槽道一25被分隔为相互间隔排布的压气槽道一a251和压气槽道一b252,压气槽道二35被分隔为相互间隔排布的压气槽道二a351和压气槽道二b352,增加了单位时间内涡旋空压机能够压缩的空气的体积,增大了涡旋空压机的总排量。
在所述涡旋定盘一2靠近中心位置处设置有连通压气槽道一25和压气槽道二35的排气连通孔一13,所述涡旋定盘一2的中心位置设置有连通压气槽道一25和外部的出气通道200,压气槽道二35中的高压气体沿排气连通孔一13进入压气槽道一25后,与压气槽道一25内的高压气体混合,再同时从出气通道200中排出;特别的,将出气通道200的出气道入口23的形状、位置均与排气连通孔一13对应设置,出气道入口23内增设加强筋231。将入气道入口23与排气连通孔一13对应设置,有助于改良涡旋压缩机排出气体的流动稳定性,避免由于排气连通孔一13和出气道入口23形状差异大,导致排出气体的气动参数受到影响进而影响排出气体的压强;加强筋231用以增强出气道入口23的强度,保证出气道入口23在持续导流高压气体时不会发生形变,以适应大排量的工作环境。
所述双侧旋齿动盘1由一根转动轴7驱动,所述转动轴7由电机8驱动,转动轴7包括一段具有一定偏心度的偏心段17,其偏心度主要由涡旋齿的渐开线尺寸决定;偏心段17穿过涡旋定盘二3中心开设的转轴避让孔34,固定连接于双侧旋齿动盘1中心的转轴安装孔14内。所述双侧旋齿动盘1在转动轴7的驱动下,能绕转动轴7的轴心做沿圆周方向的平动运动。运动过程中,涡旋齿三11将压气槽道挤压分隔为数个相互保持气密封的压缩腔,并逐渐将每个压缩腔内的气体向端面中心位置处挤压,挤压过程中压缩腔的体积逐渐减小,完成对气体的增压工作。为平衡偏心段17产生的惯性力矩,转动轴7上还设置有平衡块,分别为远离偏心段17一侧的平衡块一701、以及靠近偏心段17一侧的平衡块二702,为保证平衡块转动时不会与涡旋空压机相互产生干涉,涡旋空压机内留有容纳平衡块的空腔;进一步的,为了保证转动轴7在转动时轴线不会轻易发生偏移,本实施例在转动轴7与端盖6之间连接有转动轴承一71,在转动轴7与涡旋定盘二3之间设置有转动轴承二72,转动轴承一71和转动轴承二72共同对转动轴7进行限位,保证在转动过程中转动轴7的轴线位置不会发生偏移,避免转动轴7转动时由于惯性而产生轴体摆动进而影响双侧旋齿动盘1的运动轨迹的问题,同时还能减少转动轴7连接位置处的摩擦损耗,增加转动轴7的使用寿命。
如图8所示,为保证双侧旋齿动盘1的圆周平动运动轨迹始终维持在预设计位置,双侧旋齿动盘1与涡旋定盘之间设置有偏心导向机构;偏心导向机构的一种优选实施方式如下:所述涡旋定盘二3的外圆周上沿圆周方向均匀设置有至少两个曲轴安装孔三3101,所述双侧旋齿动盘1的外圆周上与曲轴安装孔三3101对应设置有曲轴安装孔一1101;双侧旋齿动盘1朝向涡旋定盘一2的一侧端面的中心位置处设置有曲轴安装孔二1102,涡旋定盘一2的中心位置处与曲轴安装孔二1102对应设置有曲轴安装孔四24;所述曲轴安装孔一1101和曲轴安装孔三3101之间固定连接有曲轴一101,所述曲轴安装孔二1102和曲轴安 装孔四24之间固定连接有曲轴二102,所述曲轴一101和曲轴二102的偏心度均与偏心段17的偏心度一致,为方便制作曲轴一101和曲轴二102尺寸也设置为完全一致。在双侧旋齿动盘1在转动轴7驱动下进行圆周平动运动时,曲轴一101和曲轴二102能对双侧旋齿动盘1的运动范围进行限制,保证双侧旋齿动盘1不会偏离工作位置,同时有助于增强涡旋空压机的工作稳定性;曲轴一101和曲轴二102还能够分担双侧旋齿动盘1旋转惯性对转动轴7的作用力,增加转动轴7的使用寿命。曲轴一101和曲轴二102与安装孔之间还可以进一步设置转动轴承三10,保证曲轴不会由于磨损较大而产生偏移。
为适应不同工况的需要,电机8也可以设置为变频电机,使用时可对转动轴7的转速进行调节,进而调节涡旋空压机的排量;铝合金作为一种常用的材料,能满足涡旋齿的强度要求,同时成本也相对低廉。
下面简要说明涡旋空压机的工作过程:
启动电机8后,转动轴7通过偏心段17驱动双侧旋齿动盘1做圆周平动运动,涡旋齿三11挤压涡旋齿一21和涡旋齿二31,将压气槽道一25和压气槽道二35分隔为数个不同的压缩腔,所述压缩腔在运动的涡旋齿三11的挤压下逐渐向端面中心位置处移动,移动过程中压缩腔的体积逐渐缩小,压缩腔内气体压强逐渐增大;压缩腔内气体被挤压到排气连通孔一13位置处后,高压气体从排气连通孔一13内流入到压气槽道二35内,并与压气槽道二35内以同样方式进行压缩后的高压气体混合后,经过出气道入口23排入出气通道200内,最终排出涡旋空压机;当压气槽道内的气体排出一部分后,涡旋定盘内的气压降低,外部的气体在压强作用下沿入气口210流入涡旋定盘一2和涡旋定盘二3内,继续进行下一个周期的压缩工作。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种双侧双槽并联式无油涡旋空压机,主要包括:
    机壳(5);
    电机(8),所述电机(8)固定连接于所述机壳(5)内;
    转动轴(7),所述转动轴(7)活动连接于所述机壳(5)内,并由所述电机(8)驱动;
    其特征在于:
    还包括两个涡旋定盘,分别为:远离机壳(5)一侧的涡旋定盘一(2)、靠近机壳(5)一侧并与所述机壳(5)固定连接的涡旋定盘二(3);所述涡旋定盘一(2)和涡旋定盘二(3)于外圆周上固定密封连接;在所述涡旋定盘一(2)的外圆周上至少有两个沿圆周方向均匀设置的入气口(210),所述涡旋定盘一(2)与所述涡旋定盘二(3)于靠近两者连接面的位置处连通;
    涡旋定盘一(2)朝向涡旋定盘二(3)的一侧端面设置有涡旋齿一(21),涡旋定盘二(3)与涡旋齿一(21)相对的一侧端面设置有涡旋齿二(31);所述涡旋齿一(21)与涡旋齿二(31)尺寸一致;所述涡旋定盘一(2)与涡旋定盘二(3)之间连接有双侧旋齿动盘(1),所述双侧旋齿动盘(1)的两侧端面均设置有涡旋齿三(11);所述涡旋齿三(11)分别与涡旋齿一(21)和涡旋齿二(31)适配;所述涡旋齿一(21)、涡旋齿二(31)和涡旋齿三(11)均为双槽并联结构,所述双槽并联结构具体结构为:每一个端面上的涡旋齿均包括两条,两条涡旋齿分别从靠近所在端面的中心位置处,以相对于端面中心呈中心对称的两个位置,同时沿顺时针或者逆时针方向,呈涡旋状向所在端面的外圆周位置延伸;
    所述涡旋齿一(21)与涡旋齿三(11)啮合连接围成压气槽道一(25),所述涡旋齿二(31)与涡旋齿三(11)啮合连接围成压气槽道二(35);所述双槽并联结构将压气槽道一(25)分隔为相互间隔排布的压气槽道一a(251)和压气槽道一b(252),双槽并联结构将压气槽道二(35)分隔为压气槽道二a(351) 和压气槽道二b(352);
    所述双侧旋齿动盘(1)上靠近双侧旋齿动盘(1)中心的位置处设置有连通所述压气槽道一(25)和压气槽道二(35)的排气连通孔一(13),所述涡旋定盘一(2)的中心位置处设置有连通外部和所述压气槽道二(35)的出气通道(200);
    所述涡旋定盘二(3)中心位置处设置有转轴避让孔(34);
    所述转动轴(7)包括一个偏心段(17),所述偏心段(17)的轴线偏离转动轴(7)的轴线;所述双侧旋齿动盘(1)朝向涡旋定盘二(3)一侧的中心位置处设置有转轴安装孔(14),所述偏心段(17)穿过所述转轴避让孔(34)并固定连接于所述转轴安装孔(14)内,所述偏心段(17)驱动所述双侧旋齿动盘(1)绕转动轴(7)的轴线做圆周平动运动;
    所述双侧旋齿动盘(1)与涡旋定盘一(21)之间、以及所述双侧旋齿动盘(1)与涡旋定盘二(3)之间均设置有偏心定位机构。
  2. 如权利要求1所述的涡旋空压机,其特征在于:所述涡旋定盘一(2)与涡旋定盘二(3)背向双侧旋齿动盘(1)的一侧端面均设置有冷却机构;所述冷却机构分别为与涡旋定盘一(2)对应的冷却水腔一(22)、以及与涡旋定盘二(3)对应的冷却水腔二(32);所述冷却水腔一(26)包括与所述涡旋定盘一(2)固定连接的水槽一(221)、连通水槽一(221)的入水通道一(223)、以及盖装于所述水槽一(221)上的水槽盖板一(222);冷却水腔二(36)以与冷却水腔一(26)相同的方式设置有入水通道二(323)、水槽二(321)以及水槽盖板二(322)。
  3. 如权利要求1所述的涡旋空压机,其特征在于:所述出气通道(200)包括一个形状与排气连通孔一(13)相同的出气道入口(23),所述出气道入口(23)中设置有用于增强出气道入口(23)强度的加强筋(231)。
  4. 如权利要求1所述的涡旋空压机,其特征在于:所述涡旋空压机材质为铝 合金。
  5. 如权利要求1所述的涡旋空压机,其特征在于:所述电机(8)为变频电机。
  6. 如权利要求1所述的涡旋空压机,其特征在于:所述机壳(5)远离涡旋定盘二(3)的一端密封连接有可拆卸的端盖(6),所述转动轴(7)一端通过转动轴承一(71)与所述端盖(6)固定连接;所述转动轴(7)另一端通过转动轴承二(72)与所述涡旋定盘二(3)固定连接;所述偏心段(17)通过动盘轴承(171)与所述转轴安装孔(14)固定连接。
  7. 如权利要求1所述的涡旋空压机,其特征在于:所述转动轴(7)上至少设置有两个朝转动轴(7)外延伸设置的平衡块,分别为设置于远离偏心段(17)一侧的平衡块一(701)和靠近偏心段(17)一侧的平衡块二(702);所述平衡块一(701)和平衡块二(702)的延伸方向相对于转动轴(7)的轴线相差180°,所述涡旋空压机的内部设置有容纳平衡块一(701)和平衡块二(702)的空腔。
  8. 如权利要求1至7任意一项所述的涡旋空压机,其特征在于:所述偏心定位机构包括曲轴,所述曲轴的偏心度与所述偏心段(17)的偏心度相同;所述双侧旋齿动盘(1)、涡旋定盘一(2)和涡旋定盘二(3)上均设置有与曲轴适配的曲轴安装孔。
  9. 如权利要求8所述的涡旋空压机,其特征在于:
    所述曲轴安装孔包括:至少两个沿所述双侧旋齿动盘(1)的外圆周面均匀分布的曲轴安装孔一(1101);于所述涡旋定盘二(3)外圆周面上与曲轴安装孔一(1101)对应设置的曲轴安装孔三(3101);于所述双侧旋齿动盘(1)背向转轴安装孔(14)一侧的端面中心位置的曲轴安装孔二(1102);于所述涡旋定盘一(2)上对应曲轴安装孔二(1102)设置的曲轴安装孔四(24);
    所述曲轴包括曲轴一(101)和曲轴二(102),所述曲轴一(101)固定连接于曲轴安装孔一(1101)与曲轴安装孔三(3101)之间,所述曲轴二(102) 固定连接于曲轴安装孔二(1102)与曲轴安装孔四(24)之间。
  10. 如权利要求9所述的涡旋空压机,其特征在于:所述曲轴与曲轴安装孔之间设置有转动轴承三(10)。
PCT/CN2019/124710 2019-05-23 2019-12-12 一种双侧双槽并联式无油涡旋空压机 WO2020233108A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/160,348 US11578721B2 (en) 2019-05-23 2021-01-27 Oil-free scroll air compressor with double parallel grooves on both sides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910434248.1 2019-05-23
CN201910434248.1A CN110159528B (zh) 2019-05-23 2019-05-23 一种双侧双槽并联式无油涡旋空压机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/160,348 Continuation US11578721B2 (en) 2019-05-23 2021-01-27 Oil-free scroll air compressor with double parallel grooves on both sides

Publications (1)

Publication Number Publication Date
WO2020233108A1 true WO2020233108A1 (zh) 2020-11-26

Family

ID=67632350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124710 WO2020233108A1 (zh) 2019-05-23 2019-12-12 一种双侧双槽并联式无油涡旋空压机

Country Status (3)

Country Link
US (1) US11578721B2 (zh)
CN (1) CN110159528B (zh)
WO (1) WO2020233108A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159528B (zh) * 2019-05-23 2020-11-17 浙江大学 一种双侧双槽并联式无油涡旋空压机
CN111255709B (zh) * 2020-01-15 2021-04-27 吴艮华 一种涡旋叶轮机
CN116624388B (zh) * 2023-07-19 2023-10-24 珠海凌达压缩机有限公司 一种涡旋盘组件、压缩机和空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138669A (zh) * 1995-06-20 1996-12-25 株式会社日立制作所 涡旋压缩机
CN1208819A (zh) * 1997-07-28 1999-02-24 阿耐斯特岩田株式会社 双卷体干式涡卷真空泵
US6439864B1 (en) * 1999-01-11 2002-08-27 Air Squared, Inc. Two stage scroll vacuum pump with improved pressure ratio and performance
CN1570389A (zh) * 2004-04-28 2005-01-26 兰州理工大学 涡旋压缩机的涡旋盘
EP1496258A3 (en) * 2001-04-25 2008-04-30 Emerson Climate Technologies, Inc. Hermetic compressors
CN110159528A (zh) * 2019-05-23 2019-08-23 浙江大学 一种双侧双槽并联式无油涡旋空压机

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3839252A1 (de) * 1988-11-21 1990-05-23 Asea Brown Boveri Verdraengermaschine nach dem spiralprinzip
JPH0788822B2 (ja) * 1989-04-20 1995-09-27 株式会社日立製作所 オイルフリー式スクロール形流体機械
JPH05157076A (ja) * 1991-11-29 1993-06-22 Mitsubishi Heavy Ind Ltd スクロール型流体機械
EP0545190B1 (de) * 1991-12-05 1996-05-29 AGINFOR AG für industrielle Forschung Verdrängermaschine nach dem Spiralprinzip
DE4205541A1 (de) * 1992-02-24 1993-08-26 Asea Brown Boveri Verdraengermaschine nach dem spiralprinzip
JPH07310682A (ja) * 1994-05-17 1995-11-28 Hitachi Ltd スクロール形流体機械
JP3158938B2 (ja) * 1995-03-20 2001-04-23 株式会社日立製作所 スクロール流体機械及びこれを用いた圧縮気体製造装置
CN1177681A (zh) * 1996-03-29 1998-04-01 阿耐斯特岩田株式会社 无油涡旋真空泵
JPH10103260A (ja) * 1996-09-20 1998-04-21 Asuka Japan:Kk スクロール流体機械
CN2303100Y (zh) * 1997-07-25 1999-01-06 东北大学 双侧无油涡旋真空泵
JPH11236887A (ja) * 1998-02-23 1999-08-31 Mitsubishi Heavy Ind Ltd スクロール型流体機械およびその製造方法
US6758659B2 (en) * 2002-04-11 2004-07-06 Shimao Ni Scroll type fluid displacement apparatus with fully compliant floating scrolls
TWI221502B (en) * 2002-04-11 2004-10-01 Shimao Ni Scroll type fluid displacement apparatus with fully compliant floating scrolls
CN2740814Y (zh) * 2004-10-27 2005-11-16 汤熙华 一种涡旋压缩机
WO2006067844A1 (ja) * 2004-12-22 2006-06-29 Mitsubishi Denki Kabushiki Kaisha スクロール圧縮機
JP5181334B2 (ja) * 2008-03-17 2013-04-10 本田技研工業株式会社 過給機付き内燃機関搭載車両
US8459971B2 (en) * 2008-09-26 2013-06-11 Honda Motor Co., Ltd. Scroll compressor with balancer and oil passages
KR101480472B1 (ko) * 2011-09-28 2015-01-09 엘지전자 주식회사 스크롤 압축기
CN107620704A (zh) 2017-08-23 2018-01-23 南昌大学 一种机械电机一体化双侧无油涡旋压缩机
JP7042364B2 (ja) * 2018-05-04 2022-03-25 エア・スクエアード・インコーポレイテッド 固定スクロール及び旋回スクロールのコンプレッサー、エキスパンダー、又は真空ポンプの液体冷却

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138669A (zh) * 1995-06-20 1996-12-25 株式会社日立制作所 涡旋压缩机
CN1208819A (zh) * 1997-07-28 1999-02-24 阿耐斯特岩田株式会社 双卷体干式涡卷真空泵
US6439864B1 (en) * 1999-01-11 2002-08-27 Air Squared, Inc. Two stage scroll vacuum pump with improved pressure ratio and performance
EP1496258A3 (en) * 2001-04-25 2008-04-30 Emerson Climate Technologies, Inc. Hermetic compressors
CN1570389A (zh) * 2004-04-28 2005-01-26 兰州理工大学 涡旋压缩机的涡旋盘
CN110159528A (zh) * 2019-05-23 2019-08-23 浙江大学 一种双侧双槽并联式无油涡旋空压机

Also Published As

Publication number Publication date
US20210148360A1 (en) 2021-05-20
CN110159528B (zh) 2020-11-17
US11578721B2 (en) 2023-02-14
CN110159528A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2020233108A1 (zh) 一种双侧双槽并联式无油涡旋空压机
EP2472115B1 (en) Spherical expansion compressor adapted to variable working conditions
JP2014088848A (ja) ヘリウム用密閉型スクロール圧縮機
CN213205965U (zh) 涡旋压缩机、制冷设备及汽车
CN102035303A (zh) 变频发电机组内部的冷却系统
CN202100491U (zh) 涡轮压缩机
CN115875260A (zh) 单双级可调伺服电机直驱对称式涡旋压缩机
CN103403296B (zh) 旋转容积式机器
CN114607600B (zh) 一种新型多级罗茨真空泵
CN209761720U (zh) 一种大排量容积回转式压缩机
CN107269529B (zh) 旋转叶片式压缩机
CN208330741U (zh) 带内容积比调节的卧式涡旋式制冷压缩机
CN220890590U (zh) 一种蜗壳和离心式压缩机
CN219993940U (zh) 用于涡旋压缩机的排气止回阀组件和涡旋压缩机
CN212337631U (zh) 一种逆流降噪罗茨泵
CN216642452U (zh) 一种动涡旋盘组件以及应用该组件的涡旋压缩机
CN212296926U (zh) 一种双进气电动离心压缩机
CN111058898B (zh) 一种螺杆膨胀机
CN211343354U (zh) 一种便携式电动充气泵
CN214304160U (zh) 一种液压离心力驱动装置
CN218030640U (zh) 涡旋压缩机
CN211950844U (zh) 一种具有电机冷却功能的涡旋压缩机
CN214464886U (zh) 涡旋压缩膨胀一体机
CN216241285U (zh) 一种涡旋压缩机泄压结构以及涡旋压缩机
CN219672809U (zh) 一种具有可变排量旋转体机构的电动压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929746

Country of ref document: EP

Kind code of ref document: A1