WO2020232597A1 - 二胺化合物、其制备方法、热固性树脂组合物及其应用 - Google Patents

二胺化合物、其制备方法、热固性树脂组合物及其应用 Download PDF

Info

Publication number
WO2020232597A1
WO2020232597A1 PCT/CN2019/087608 CN2019087608W WO2020232597A1 WO 2020232597 A1 WO2020232597 A1 WO 2020232597A1 CN 2019087608 W CN2019087608 W CN 2019087608W WO 2020232597 A1 WO2020232597 A1 WO 2020232597A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamine compound
halogen
thermosetting resin
resin composition
compound
Prior art date
Application number
PCT/CN2019/087608
Other languages
English (en)
French (fr)
Inventor
林伟
奚龙
黄天辉
游江
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Priority to PCT/CN2019/087608 priority Critical patent/WO2020232597A1/zh
Publication of WO2020232597A1 publication Critical patent/WO2020232597A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines

Definitions

  • the present invention relates to a diamine compound useful as a component of a thermosetting resin composition, a preparation method of the diamine compound, a thermosetting resin composition and uses thereof, and in particular to a structure having both an aromatic amine group and an aryl ester group A functional diamine compound and a thermosetting resin composition thereof, and a cured product, a semiconductor sealing material, a prepreg, a circuit board, and a laminated film made of the thermosetting resin composition.
  • the material prepared from the thermosetting resin composition with epoxy resin and its curing agent as essential components has the advantages of good heat resistance, insulation, processability and low cost, so it is widely used in electronic materials such as semiconductors and printed circuit boards.
  • amine latent curing agents such as dicyandiamide and aromatic amines are commonly used as curing agents for epoxy resins. They have the characteristics of high reactivity, high curing crosslinking density, and high adhesion between the cured resin and metal.
  • the epoxy group opens a large number of secondary hydroxyl groups, which increases the polarity of the curing system and the water absorption rate. , Resulting in poor performance of the cured product's dielectric properties, humidity and heat resistance.
  • active ester resins have been favored by the electronic materials industry, especially in the field of high-speed and high-frequency materials.
  • the active ester resin contains a more active aryl ester functional group, which can be used as a curing agent to undergo transesterification reaction with epoxy resin.
  • the net structure formed after the reaction does not contain secondary alcohol hydroxyl groups, so that the cured product has a low dielectric Loss, low dielectric constant and low water absorption.
  • the existing active ester-cured epoxy resins also have shortcomings.
  • the crosslinking density of the cured resin is not high, and the macroscopic performance is low heat resistance such as glass transition temperature (Tg).
  • the curing reaction of active ester and epoxy resin will not generate highly polar secondary alcoholic hydroxyl groups, so that the cured product has the advantages of low dielectric loss, low dielectric constant and low water absorption, but the crosslinking density of the cured product is not high ,
  • the macroscopic performance is that the glass transition temperature (Tg) and other heat resistance performance is low, and compared with the amine curing agent, the adhesion of the cured resin to the metal is also significantly reduced.
  • One of the objectives of the present invention is to provide a diamine compound, which has both a bifunctional aryl ester group and a bifunctional aromatic primary amine group in the structure, and has a higher reactive cross-linking point, as a curing agent for epoxy resin , Has the advantages of both amine and active ester curing agents, and can balance the performance of the shortcomings of the two when curing epoxy resin separately.
  • Another object of the present invention is to provide a thermosetting resin composition containing the above diamine compound and its use, which has a lower dielectric constant and dielectric loss factor, and has good heat resistance, toughness, and Excellent adhesion to metals.
  • the present invention relates to a diamine compound, which has the structure shown in the following structural formula (I):
  • Ar 1 is an aryl group selected from
  • R 2 is the same or different, independently selected from H, halogen, unsubstituted or halogen-substituted C1-C5 linear or branched alkyl;
  • Ar 2 is an aryl group, selected from benzene ring and naphthalene ring;
  • R 1 It is selected from halogen, unsubstituted or halogen substituted C1-C5 linear or branched alkyl;
  • n is an integer of 0-4.
  • the aromatic ring has two reactive functional groups: primary amino group and aryl ester group.
  • n is preferably 0 or 1.
  • the present invention also relates to a preparation method of a diamine compound.
  • the preparation method includes an esterification reaction process and a reduction reaction process, wherein:
  • the bifunctional phenol (a1) represented by the following structural formula (a-1) and the mononitro compound (a2) represented by the structural formula (a-2) are combined with the mononitro compound (a2) and
  • the molar ratio of the bifunctional phenol (a1) is at least 2 in the presence of a basic catalyst to carry out the esterification reaction to obtain the dinitro ester compound (a3) represented by the structural formula (a-3), and then the The nitro group in the dinitro ester compound (a3) is reduced to obtain a diamine compound,
  • Ar 1 is an aryl group selected from
  • R 2 is the same or different, independently selected from H, halogen, unsubstituted or halogen-substituted C1-C5 linear or branched alkyl;
  • Ar 2 is an aryl group, selected from benzene ring and naphthalene ring;
  • R 1 It is selected from halogen, unsubstituted or halogen substituted C1-C5 linear or branched alkyl;
  • X is selected from Cl, Br, I or -OH.
  • n is an integer of 0-4, preferably n is 0 or 1.
  • Ar 1 in the bifunctional phenol (a1) is preferably R 2 is more preferably H, -CH 3 , or -C 2 H 5 .
  • the reaction ratio of 1 mole of the bifunctional phenol (a1) and 2 moles of the mononitro compound (a2) is the theoretical ratio of the reaction equation, and the actual preparation process
  • the addition ratio of the mononitro compound (a2) in the feeding process can be appropriately excessive, that is, the bifunctional phenol (a1) can be 1 mole, and the mononitro compound (a2) can be greater than 2 molar reaction ratio.
  • the molar ratio of the bifunctional phenol (a1): the mononitro compound (a2) is between 1:2.0 and 3.0.
  • the mononitro compound (a2) is preferably a mononitro aromatic acid chloride.
  • These basic catalysts can be used alone or in combination of two or more.
  • each raw material component is dissolved in an organic solvent for low-temperature reaction.
  • the organic solvent is not particularly limited, as long as it does not hinder the reaction. Examples include tetrahydrofuran, dioxane, toluene, dichloromethane, dichloroethane, N,N-dimethylformamide, N,N-dimethylacetamide, etc. These organic solvents can be used alone or in two or more types Used in combination; the amount of organic solvent can be adjusted according to the different solubility of the raw materials and products, so that the raw materials and dinitro ester products can be dissolved in the organic solvent.
  • the addition amount of the organic solvent is the quality of each raw material The sum is 5 to 15 times; the low temperature reaction is preferably in the temperature range of -10°C to 50°C. Inert gas such as nitrogen and argon can also be introduced during the reaction.
  • a preparation method of the above-mentioned diamine compound there is no particular limitation on the reduction reaction, as long as it is a method that includes converting a nitro group into an amine group, and a preferred method includes hydration in the presence of a metal or its oxide catalyst.
  • the metal or its oxide catalyst used here includes nickel, palladium, platinum, rhodium, ruthenium, cobalt, copper, etc. or their oxides.
  • the metal or its oxide can also be supported on a carrier such as carbon, barium sulfate , Silica gel, alumina, diatomaceous earth, etc.
  • the metal or its oxide catalysts in the above forms may be used alone or in combination of two or more, and may be a dry product or a wet product.
  • the obtained dinitro ester compound can be separated and purified by methods such as filtration, water washing, concentration, extraction, recrystallization, column chromatography and the like.
  • each raw material component is dissolved in a solvent to react.
  • a solvent water; alcohols such as methanol, ethanol, isopropyl Alcohol, n-butanol, etc.; amides, such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, etc.; ethers, such as tetrahydrofuran, etc.
  • solvents can be used alone or in combination of two or more. Further preferably used are alcohols and amides.
  • the amount of organic solvent can be appropriately adjusted according to the different solubility of the raw materials and products, so that the diamine compound product can be completely dissolved in the organic solvent.
  • the addition amount of the organic solvent is 5-15 of the total mass of the raw materials. Times.
  • the reaction temperature during the reduction reaction is preferably 10 to 150°C, more preferably 50 to 100°C.
  • Inert gas such as nitrogen and argon can also be introduced during the reaction.
  • the obtained diamine compound can be separated and purified by methods such as filtration, concentration, extraction, recrystallization, and column chromatography.
  • the present invention also relates to a thermosetting resin composition, which includes an epoxy resin (A) and a diamine compound (B) as essential components.
  • a diamine compound (B) As the aforementioned diamine compound (B), a diamine represented by the following structural formula (I) is used Compound:
  • Ar 1 is an aryl group selected from
  • R 2 is the same or different, independently selected from H, halogen, unsubstituted or halogen-substituted C1-C5 linear or branched alkyl;
  • Ar 2 is an aryl group, selected from benzene ring and naphthalene ring;
  • R 1 It is selected from halogen, unsubstituted or halogen substituted C1-C5 linear or branched alkyl;
  • n is an integer of 0-4.
  • the epoxy resin (A) refers to an epoxy resin having two or more epoxy groups in one molecule, and is specifically preferably bifunctional bisphenol A Type epoxy resin, bifunctional bisphenol F type epoxy resin, bifunctional bisphenol S type epoxy resin, phenol formaldehyde type epoxy resin, methyl phenol novolak type epoxy resin, bisphenol A type novolak epoxy resin, Dicyclopentadiene epoxy resin, biphenyl epoxy resin, resorcinol epoxy resin, naphthalene epoxy resin, phosphorous epoxy resin, silicon epoxy resin, glycidylamine epoxy resin, grease Cyclic epoxy resin, polyethylene glycol epoxy resin, tetraphenol ethane tetraglycidyl ether, triphenol methane epoxy resin, difunctional cyanate or condensate of difunctional isocyanate and epoxy resin, and Other types of epoxy resins, but not limited to this, can be one of them or a mixture of at least two of them.
  • Typical but non-limiting mixtures are: bifunctional bisphenol A type epoxy resin and bifunctional bisphenol F type Epoxy resin; bifunctional bisphenol S type epoxy resin and phenol formaldehyde type epoxy resin; resorcinol type epoxy resin and naphthalene type epoxy resin; alicyclic epoxy resin and polyethylene glycol type epoxy resin Oxy resin.
  • thermosetting resin composition of the present invention may also include other components, for example, a combination of other epoxy resin curing agents and flame retardants , Inorganic or organic fillers, curing accelerators, etc.
  • the other curing agent for epoxy resin can be selected from amine curing agent, phenol curing agent, benzoxazine curing agent, cyanate ester curing agent, acid anhydride curing agent, active ester curing agent, amine modified Any one or a mixture of at least two of the maleimide curing agents.
  • the flame retardant may be selected from halogen-based organic flame retardants, phosphorus-based organic flame retardants, nitrogen-based organic flame retardants, silicon-containing organic flame retardants, phosphorus and/or nitrogen and/or silicon-containing organic flame retardants Any one or a mixture of at least two of them.
  • the organic filler is selected from any one or a mixture of at least two of polytetrafluoroethylene powder, polyphenylene sulfide or polyethersulfone powder; the inorganic filler is selected from non-metal oxides, metal nitrides, and non-metal nitrides , Inorganic hydrate, inorganic salt, metal hydrate or inorganic phosphorus, or a mixture of at least two, preferably fused silica, crystalline silica, spherical silica, hollow silica, hydrogen Any one or a mixture of at least two of alumina, alumina, talc, aluminum nitride, boron nitride, silicon carbide, barium sulfate, barium titanate, strontium titanate, calcium carbonate, calcium silicate, or mica .
  • the curing accelerator is selected from any one or a mixture of at least two of imidazole compounds, derivatives of imidazole compounds, piperidine compounds, pyridine compounds, organometallic Lewis acids, or triphenylphosphine.
  • thermosetting resin composition means that in addition to the aforementioned components, it can also include other components, and these other components give the thermosetting resin composition different characteristics.
  • the "including” mentioned in the present invention can also be replaced with a closed “being” or “consisting of”.
  • thermosetting resin composition of the present invention is as follows: first put the solids in, then add the liquid solvent, stir until the solids are completely dissolved, then add the liquid resin and accelerator, and continue to stir evenly.
  • the liquid solvent in the present invention is not particularly limited. Specific examples include alcohols such as methanol, ethanol and butanol; ethyl cellosolve, butyl cellosolve, ethylene glycol methyl ether, carbitol, Ethers such as butyl carbitol; ketones such as acetone, methyl ethyl ketone, methyl ethyl ketone, and cyclohexanone; aromatic hydrocarbons such as toluene and xylene; ethyl acetate, ethoxy ethyl acetate, etc. Esters; nitrogen-containing solvents such as N,N-dimethylformamide and N,N-dimethylacetamide.
  • the above solvents can be used alone or in a mixture of two or more.
  • Preferred are ketones such as acetone, methyl ethyl ketone, methyl ethyl ketone, and cyclohexanone.
  • the addition amount of the solvent is selected by those skilled in the art according to their own experience, so that the resin glue solution can reach a viscosity suitable for use.
  • the present invention also relates to a cured product, which is prepared by curing the aforementioned thermosetting resin composition.
  • the present invention also relates to a semiconductor sealing material, which is the above-mentioned cured product.
  • the semiconductor sealing material is formed of a thermosetting resin composition, the thermosetting resin composition in addition to the aforementioned epoxy resin (A) and the aforementioned diamine compound (B), but also 70-95 mass in the composition
  • the percentage of% contains inorganic and/or organic fillers (C).
  • the present invention also relates to a prepreg comprising a substrate and the above-mentioned thermosetting resin composition impregnated into the substrate and semi-cured.
  • the prepreg is prepared by the following method: the substrate (for example, a reinforcing material) and the thermosetting resin composition as described above attached to the reinforcing material after being impregnated and dried at 100-250°C And bake for 1-15 minutes to obtain the prepreg.
  • the present invention does not particularly limit the reinforcing material used, and it may be organic fiber, inorganic fiber woven fabric or non-woven fabric.
  • the organic fiber can be aramid non-woven fabric
  • the inorganic fiber woven fabric can be E-glass fiber cloth, D-glass fiber cloth, S-glass fiber cloth, T-glass fiber cloth, NE-glass fiber cloth Or quartz cloth.
  • the thickness of the reinforcing material is not particularly limited. In view of the good dimensional stability of the laminate, the thickness of the woven fabric and non-woven fabric is preferably 0.01-0.2mm, and it is best to undergo fiber opening treatment and silane coupling
  • the silane coupling agent is preferably any one or at least one of epoxy silane coupling agent, amino silane coupling agent or vinyl silane coupling agent. A mixture of the two.
  • the present invention also relates to a circuit board, which is prepared by hot pressing at least one of the above-mentioned prepreg and metal foil.
  • a circuit board which is prepared by hot pressing at least one of the above-mentioned prepreg and metal foil.
  • it can be prepared by the following method: a laminate made by heating and pressing, bonding one piece of prepreg or two or more pieces of the above-mentioned prepreg together, and on one or both sides of the laminate
  • the above metal foils are glued together.
  • the circuit substrate can be prepared by curing in a hot press, with a curing temperature of 150°C to 250°C, and a curing pressure of 10 to 60 kg/cm 2 .
  • the metal foil is copper foil, nickel foil, aluminum foil, SUS foil, etc., and the material is not limited.
  • the present invention also relates to a laminated film, which includes a substrate film or metal foil and a coating of the above-mentioned thermosetting resin composition coated on at least one surface of the substrate film or metal foil.
  • a laminated film which includes a substrate film or metal foil and a coating of the above-mentioned thermosetting resin composition coated on at least one surface of the substrate film or metal foil.
  • the method is prepared by dissolving or dispersing the above thermosetting resin composition in an organic solvent, then coating it on a base film or metal foil, and drying, thereby obtaining the laminated film.
  • the present invention has at least one of the following beneficial effects:
  • the diamine compound of the present invention has both an aryl ester group and an aromatic amine group in the structure, wherein the aryl ester group does not produce a strong polar secondary hydroxyl group when it reacts with the epoxy resin, thereby obtaining low dielectric loss, Low water absorption and low dielectric constant.
  • the aromatic amine group has high reactivity with epoxy resin, high curing cross-linking density, and good adhesion to metal, thus combining aromatic amines and active esters.
  • the characteristics of the curing agent compensate and balance the shortcomings of the two curing epoxy resins separately.
  • thermosetting resin composition containing epoxy resin and the diamine compound provided by the present invention has a lower dielectric constant and dielectric loss factor as the cured product. It has good heat resistance, toughness, and excellent adhesion to metals.
  • the structural formula is a dinitro ester compound of k-1.
  • the diamine compound with the structural formula K-1 is obtained.
  • the molecular weight of the diamine compound is 535.3
  • the aryl ester group equivalent is 267.65 g/eq.
  • the amine equivalent is 133.8 g/eq.
  • the precipitate was washed several times with deionized water and methanol successively, and then filtered to remove the filter residue. Vacuum drying is carried out to obtain a diamine compound with the structural formula K-2.
  • the molecular weight of the diamine compound was 398.4, the aryl ester group equivalent was 199.2 g/eq., and the amine equivalent was 99.6 g/eq.
  • the filtrate was concentrated by distillation under reduced pressure, and then added to deionized water-methanol for recrystallization.
  • the precipitate was washed several times with deionized water and methanol successively, and then filtered to remove the filter residue.
  • Vacuum drying is carried out to obtain a diamine compound with the structural formula K-3.
  • the molecular weight of the diamine compound was 558.2, the aryl ester group equivalent was 279.1 g/eq., and the amine equivalent was 139.6 g/eq.
  • thermosetting resin composition and its circuit board containing epoxy resin (A) and diamine compound (B) as essential components are prepared as follows: epoxy resin, diamine compound or other curing agents, fillers, and curing accelerators are in a certain proportion Mix evenly in the solvent (see Table 1), control the solid content of the glue liquid to 65%, soak the glue liquid with 7628 glass fiber cloth, control the appropriate thickness, and then bake in an oven at 145 ⁇ 175°C for 2 ⁇ 15min. The prepreg, then 8 sheets of prepreg are stacked together, and 1Oz copper foil is laminated on the upper and lower sides.
  • the curing temperature is 190°C ⁇ 200°C
  • the curing pressure is 30 ⁇ 60Kg/cm 2
  • the curing time is 90 ⁇
  • the circuit substrate is made under the condition of 120min.
  • the specific composition, content and board properties are shown in Table 1, and the raw material manufacturers and grades are shown in Table 2.
  • the examples of the diamine compound of the present invention have obtained lower dielectric constant, dielectric loss factor and water absorption, higher heat resistance, humidity and heat resistance and peel strength (and The adhesion of copper foil), and good toughness.
  • Comparative Examples 1 and 2 existing amine curing agents
  • Examples 1 and 2 have more excellent dielectric properties, heat resistance and moisture resistance performance, and are more tough than existing aromatic amines (DDM) Good
  • Example 3 has higher Tg and peel strength compared to Comparative Example 3 (existing active ester)
  • Example 4 has higher heat resistance, humidity resistance, dielectric properties and toughness compared to Comparative Example 5 It has better performance.
  • Examples 1 and 3 have higher Tg performance and slightly better dielectric properties.
  • Glass transition temperature (Tg) DSC test is used to determine the DSC test method specified in IPC-TM-650 2.4.24.
  • Td/5%) Measured with the TG209 F3 thermogravimetric analyzer produced by NETZSHC in Germany, the heating range is from room temperature to 800°C, the heating rate is 10°C/min, N2 protection, and the sample weight loss is recorded. The temperature at 5% is Td5%.
  • T288 (with copper) Use a TMA instrument to measure in accordance with the T288 (with copper) test method specified in IPC-TM-650 2.4.24.1.
  • Dielectric constant and dielectric loss factor Use the plate method in accordance with IPC-TM-650 2.5.5.9 to determine the dielectric constant and dielectric loss factor at 1 GHz.
  • Moisture and heat resistance (PCT) evaluation Using laminate a, three 100 ⁇ 100mm substrate samples were kept in a pressure retort treatment device at 120°C and 105Kpa for 2 hours, and then immersed in a solder bath at 288°C 5min, observe whether the sample has stratified bubbling, etc., 3 blocks without delamination bubbling are recorded as 3/3, 2 blocks without delamination bubbling are recorded as 2/3, 1 block without delamination bubbling Bubbles are recorded as 1/3, and 0 blocks without stratified bubbling are recorded as 0/3.
  • PCT Moisture and heat resistance
  • PCT water absorption take the substrate pretreated by the PCT test conditions described in (5), and measure it according to the water absorption test method specified in IPC-TM-650 2.6.2.1.
  • Falling weight impact Place three 100 ⁇ 100mm laminate substrate samples on the falling weight impact testing machine, let the falling weight fall freely to impact the plate, photograph the drop mark area of the sample, and use the CAD software to sweep out the drop. Calculate the white area of the mark and calculate the area of the drop mark. The smaller the area of the drop mark, the better the toughness of the sample. On the contrary, the worse the toughness of the sample.

Abstract

本发明提供一种二胺化合物、其制备方法及热固性树脂组合物。所述的二胺化合物具有结构式(I)所示的结构,所述的二胺化合物结构上同时具有芳香胺基和芳酯基官能团,作为环氧树脂用固化剂,其热固性树脂组合物具有较低的介电常数和介电损耗因子,兼具良好的耐热性、韧性、以及与金属优异的粘接力。

Description

二胺化合物、其制备方法、热固性树脂组合物及其应用 技术领域
本发明涉及一种作为热固性树脂组合物的成分而有用的二胺化合物、该二胺化合物的制备方法、热固性树脂组合物及其用途,尤其涉及一种结构上同时具有芳香胺基和芳酯基官能团的二胺化合物及其热固性树脂组合物,以及由该热固性树脂组合物制成的固化物、半导体密封材料、预浸料、电路基板以及积层薄膜。
背景技术
近年来,随着电子信息技术的发展,电子设备安装的小型化、高密度化,信息的大容量化、高频化,对电子材料的介电性能、吸水性、耐热性等提出了更高的要求。
以环氧树脂及其固化剂为必需成分的热固性树脂组合物制备的材料具有良好的耐热性、绝缘性、加工性和成本低廉等优点,因此广泛应用于半导体、印制电路板等电子材料中。现有技术中,双氰胺、芳香胺等胺类潜伏性固化剂作为环氧树脂的常用固化剂,其具有反应活性高、固化交联密度高、树脂固化物与金属的粘接力高等特点,然而,从环氧树脂和胺类固化剂的固化机理可知,二者在交联反应的过程中,环氧基开环产生了大量二次羟基,使得固化体系的极性增强、吸水率上升,导致固化物的介电性能、耐湿热性等性能表现不佳。
近年来,活性酯树脂备受电子材料行业的青睐,尤其在高速、高频材料领域的应用越来越广泛。活性酯树脂中含有较高活性的芳酯基官能团,其作为固化剂可与环氧树脂发生酯交换反应,反应后所形成的网架结构不含仲醇羟基, 使其固化产物具有低介电损耗、低介电常数和低吸水率。但是,现有的活性酯固化环氧树脂也存在不足之处,例如该树脂固化物的交联密度不高,宏观性表现为玻璃化转变温度(Tg)等耐热性表现偏低。
发明内容
现有的胺类固化剂,作为环氧树脂的固化剂,虽然具有反应活性高、固化交联密度高、树脂固化物与金属的粘接力高等特点,但交联反应会产生大量的二次羟基,使得树脂固化物的极性增强、吸水率上升,最终表现为材料的介电性能和耐湿热性表现较差,无法满足电子材料趋于向低介电性能化的发展需求。活性酯与环氧树脂的固化反应不会生成高极性的仲醇羟基,使得固化产物具有低介电损耗、低介电常数和低吸水率等优点,但其固化物的交联密度不高,宏观性表现为玻璃化转变温度(Tg)等耐热性表现偏低,并且与胺类固化剂相比,树脂固化物与金属的粘接力也有明显下降。本发明的目的之一在于提供一种二胺化合物,其结构中同时具有双官能的芳酯基和双官能的芳香伯胺基,具有较高的反应交联点,作为环氧树脂的固化剂,兼具了胺类和活性酯类固化剂的优点,可对二者单独固化环氧树脂时存在的不足之处进行性能平衡。
本发明的另一个目的是提供一种含有上述二胺化合物的热固性树脂组合物及其用途,其具有较低的介电常数和介电损耗因子,兼具良好的耐热性、韧性、以及与金属优异的粘接力。
为了达到上述目的,本发明采用了如下技术方案:
本发明涉及一种二胺化合物,其具有如下结构式(I)所示的结构:
Figure PCTCN2019087608-appb-000001
式中,Ar 1为芳基,选自
Figure PCTCN2019087608-appb-000002
Figure PCTCN2019087608-appb-000003
R 2相同或不同,独立选自H、卤素、未取代的或卤素取代的C1~C5的直链烷基或支链烷基;Ar 2为芳基,选自苯环、萘环;R 1选自卤素、未取代的或卤素取代的C1~C5的直链或支链烷基;n为0~4的整数。对于二胺化合物的一端H 2N-Ar 2-COO-,芳香环上具有伯胺基和芳酯基两种反应官能团,在该芳香环还具有烷基或卤素取代基时,虽然对降低树脂的介电常数、介电性损耗、吸水率和改善溶解性是有利的,但会造成分子的空间位阻增大,并且取代基越多,空间位阻越大,胺基或芳酯基与环氧基发生固化反应的难度就越大,不仅可能增大固化工艺难度,还可能残留未反应的胺基导致材料的耐热性降低,因此,优选n为0或1。
本发明还涉及一种二胺化合物的制备方法,所述的制备方法包括酯化反应过程和还原反应过程,其中:
将下述结构式(a-1)所示的双官能酚(a1)和具有结构式(a-2)所示的单硝基化合物(a2),以所述的单硝基化合物(a2)与所述的双官能酚(a1)的摩尔比至少为2的比例在碱性催化剂的存在下进行酯化反应得到结构式(a-3)所示的二硝基酯化合物(a3),然后将所述的二硝基酯化合物(a3)中的硝基还原而得到二胺化合物,
HO-Ar 1-OH    (a-1)
Figure PCTCN2019087608-appb-000004
Figure PCTCN2019087608-appb-000005
式中,Ar 1为芳基,选自
Figure PCTCN2019087608-appb-000006
Figure PCTCN2019087608-appb-000007
R 2相同或不同,独立选自H、卤素、未取代的或卤素取代的C1~C5的直链烷基或支链烷基;Ar 2为芳基,选自苯环、萘环;R 1选自卤素、未取代的或卤素取代的C1~C5的直链或支链烷基;X选自Cl、Br、I或-OH。
n为0~4的整数,优选地,n为0或1。
从双官能酚(a1)的良好溶解性和反应性,及产物的良好溶解性方面出发,双官能酚(a1)中的Ar 1优选为
Figure PCTCN2019087608-appb-000008
Figure PCTCN2019087608-appb-000009
R 2进一步优选为H、-CH 3、-C 2H 5
所述的二胺化合物的制备方法中,酯化反应过程中,双官能酚(a1)为1摩尔和单硝基化合物(a2)为2摩尔的反应比例为反应方程式的理论比例,实际制备过程中为提高反应效率和收率,投料过程中单硝基化合物(a2)的添加 比例可以是适当过量的,即可以是双官能酚(a1)为1摩尔,单硝基化合物(a2)为大于2摩尔的反应比例。
优选地,所述的结构式(I)二胺化合物的制备方法,在实际制备过程中,双官能酚(a1):单硝基化合物(a2)的摩尔比例为1∶2.0~3.0之间。
从与双官能酚(a1)的反应性良好的方面出发,单硝基化合物(a2)优选为单硝基芳香族酰氯。
作为上述二胺化合物的制备方法中酯化反应过程可用的碱性催化剂,可列举出氢氧化钠、氢氧化钾、氢氧化钙、碳酸钠、碳酸钾、醋酸钠、醋酸钾、碳酸氢钠、碳酸氢钾、三乙胺、吡啶、三丁胺、N,N-二异丙基乙胺、苄基三乙基氯化铵、四乙基溴化铵、四丁基溴化铵、四丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵、十四烷基三甲基氯化铵。这些碱性催化剂可以单独使用或两种以上组合使用。
作为上述二胺化合物的制备方法,酯化反应过程中,各原料成分被溶解在有机溶剂中进行低温反应是优选的,对所述的有机溶剂没有特别限定,只要其不妨碍反应即可,可以列举出四氢呋喃、二恶烷、甲苯、二氯甲烷、二氯乙烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺等,这些有机溶剂可以单独使用或两种以上组合使用;有机溶剂的用量,可根据原料和产物的不同溶解性,进行适当调整,使得各原料和二硝基酯产物能够溶解在有机溶剂中,优选地,有机溶剂的添加量为各原料质量之和的5~15倍;所述的低温反应,优选为-10℃~50℃温度范围。反应过程中还可以通入惰性气体如氮气、氩气等。
作为上述二胺化合物的制备方法,对还原反应没有特别限制,只要其是包括将硝基转化为胺基的方法即可,并且优选的方法包括在金属或其氧化物催化 剂的存在下,与水合肼或氢的还原反应。在此使用的金属或其氧化物催化剂,可列举出镍、钯、铂、铑、钌、钴、铜等或其氧化物,此外,金属或其氧化物还可以负载在载体如碳、硫酸钡、硅胶、氧化铝、硅藻土等上的形式使用。上述形式的金属或其氧化物催化剂可以单独使用或两种以上组合使用,并且可以是干的产品或湿的产品。
在酯化反应完成之后,可以通过过滤、水洗、浓缩、萃取、重结晶、柱色谱法等方法将所得到的二硝基酯化合物分离和纯化。
作为上述二胺化合物的制备方法,还原反应过程中,各原料成分被溶解在溶剂中进行反应是优选的,作为所述的溶剂,可以列举的有水;醇类,如甲醇、乙醇、异丙醇、正丁醇等;酰胺类,如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮等;醚类,如四氢呋喃等。这些溶剂可以单独使用或两种以上组合使用。进一步优选使用的是醇类和酰胺类。有机溶剂的用量,可根据原料和产物的不同溶解性,进行适当调整,使得二胺化合物产物能够完全溶解在有机溶剂中,优选地,有机溶剂的添加量为各原料质量之和的5~15倍。还原反应过程中的反应温度优选为10~150℃,更优选为50~100℃。反应过程中还可以通入惰性气体如氮气、氩气等。
在反应完成之后,可以通过过滤、浓缩、萃取、重结晶、柱色谱法等方法将所得到的二胺化合物分离和纯化。
本发明还涉及一种热固性树脂组合物,其包括环氧树脂(A)和二胺化合物(B)为必需成分,作为前述二胺化合物(B),使用如下结构式(I)所示的二胺化合物:
Figure PCTCN2019087608-appb-000010
式中,Ar 1为芳基,选自
Figure PCTCN2019087608-appb-000011
Figure PCTCN2019087608-appb-000012
R 2相同或不同,独立选自H、卤素、未取代的或卤素取代的C1~C5的直链烷基或支链烷基;Ar 2为芳基,选自苯环、萘环;R 1选自卤素、未取代的或卤素取代的C1~C5的直链或支链烷基;n为0~4的整数。
优选地,所述热固性树脂组合物中,所述环氧树脂(A)是指在1个分子中具有两个或两个以上环氧基团的环氧树脂,具体优选为双官能双酚A型环氧树脂、双官能双酚F型环氧树脂、双官能双酚S型环氧树脂、苯酚甲醛型环氧树脂、甲基苯酚酚醛型环氧树脂、双酚A型酚醛环氧树脂、双环戊二烯环氧树脂、联苯环氧树脂、间苯二酚型环氧树脂、萘系环氧树脂、含磷环氧树脂、含硅环氧树脂、缩水甘油胺型环氧树脂、脂环族类环氧树脂、聚乙二醇型环氧树脂、四苯酚乙烷四缩水甘油醚、三酚甲烷型环氧树脂、双官能氰酸酯或双官能异氰酸酯与环氧树脂的缩合物以及其他类型的环氧树脂,但不仅限于此,可以是其中一种或至少两种的混合物,其中典型但非限制性的混合物为:双官能双酚A型环氧树脂和双官能双酚F型环氧树脂;双官能双酚S型环氧树脂和苯酚甲醛型环氧树脂;间苯二酚型环氧树脂和萘系环氧树脂;脂环族类环氧树脂和聚乙二醇型环氧树脂。
本发明的热固性树脂组合物在前述环氧树脂(A)和二胺化合物(B)为必需成分的基础上,还可以包括其他组分,例如组合使用其他环氧树脂用固化剂、阻燃剂、无机或有机填料、固化促进剂等。
所述其他环氧树脂用固化剂可以选自胺类固化剂、酚类固化剂、苯并噁嗪类固化剂、氰酸酯类固化剂、酸酐类固化剂、活性酯固化剂、胺改性的马来酰亚胺固化剂中的任意一种或至少两种的混合物。
所述阻燃剂可以选自卤系有机阻燃剂、磷系有机阻燃剂、氮系有机阻燃剂、含硅有机阻燃剂、含磷和/或氮和/或硅有机阻燃剂中的任意一种或至少两种的混合物。
所述有机填料选自聚四氟乙烯粉末、聚苯硫醚或聚醚砜粉末中的任意一种或至少两种的混合物;无机填料选自非金属氧化物、金属氮化物、非金属氮化物、无机水合物、无机盐、金属水合物或无机磷中的任意一种或者至少两种的混合物,优选熔融二氧化硅、结晶型二氧化硅、球型二氧化硅、空心二氧化硅、氢氧化铝、氧化铝、滑石粉、氮化铝、氮化硼、碳化硅、硫酸钡、钛酸钡、钛酸锶、碳酸钙、硅酸钙或云母中的任意一种或至少两种的混合物。
所述固化促进剂选自咪唑类化合物、咪唑类化合物的衍生物、哌啶类化合物、吡啶类化合物、有机金属盐路易斯酸或三苯基膦中的任意一种或至少两种的混合物。
本发明中所述的“包括”,意指其除所述组份外,还可以包括其他组份,这些其他组份赋予所述热固性树脂组合物不同的特性。除此之外,本发明所述的“包括”,还可以替换为封闭式的“为”或“由……组成”。
本发明的热固性树脂组合物的常规制备方法为:先将固形物放入,然后加 入液态溶剂,搅拌至固形物完全溶解后,再加入液态树脂和促进剂,继续搅拌均匀即可。
作为本发明中的液态溶剂,没有特别的限定,作为具体例,可以列举出甲醇、乙醇、丁醇等醇类;乙基溶纤剂、丁基溶纤剂、乙二醇甲醚、卡必醇、丁基卡必醇等醚类;丙酮、丁酮、甲基乙基甲酮、环己酮等酮类;甲苯、二甲苯等芳香烃类;醋酸乙酯、乙氧基乙基乙酸酯等酯类;N,N-二甲基甲酰胺、N,N-二甲基乙酰胺等含氮类溶剂。以上溶剂可单独使用,也可两种或两种以上混合使用。优选丙酮、丁酮、甲基乙基甲酮、环己酮等酮类。所述溶剂的添加量由本领域技术人员根据自己经验来选择,使得树脂胶液达到适合使用的粘度即可。
本发明还涉及固化物,其是将如前所述的热固性树脂组合物固化而制备得到的。
本发明还涉及半导体密封材料,其是上述的固化物。优选地,所述半导体密封材料由热固性树脂组合物形成的,所述热固性树脂组合物除了前述环氧树脂(A)和前述二胺化合物(B)之外,还以组合物中70~95质量%的比率含有无机和/或有机填充材料(C)。
本发明还涉及预浸料,所述预浸料包括基材和浸渗到所述基材中且半固化的上述热固性树脂组合物。优选地,所述预浸料是采用如下方法制备得到的:将基材(例如增强材料)及含浸干燥后附着在增强材料上的如上所述的热固性树脂组合物,在100~250℃条件下,烘烤1~15分钟得到所述预浸料。本发明对所使用的增强材料无特别的限定,可以为有机纤维、无机纤维编织布或无纺布。所述的有机纤维可以选择芳纶无纺布,所述的无机纤维编织布可以为E-玻纤布、D-玻纤布、S-玻纤布、T玻纤布、NE-玻纤布或石英布。所述增强材料的厚度无 特别限定,出于层压板有良好的尺寸稳定性的考虑,所述编织布及无纺布厚度优选0.01~0.2mm,且最好是经过开纤处理及硅烷偶联剂表面处理的,为了提供良好的耐水性和耐热性,所述硅烷偶联剂优选为环氧硅烷偶联剂、氨基硅烷偶联剂或乙烯基硅烷偶联剂中的任意一种或至少两种的混合物。
本发明还涉及电路基板,其由至少一张如上所述的预浸料与金属箔热压成型而制得。例如,可以采用如下方法制备得到:通过加热和加压、使一片预浸料或两片以上的如上所述的预浸料粘合在一起而制成的层压板,以及在层压板一面或两面以上的金属箔粘合在一起。所述的电路基板可以在热压机中固化制得,固化温度为150℃~250℃,固化压力为10~60kg/cm 2。所述的金属箔为铜箔、镍箔、铝箔及SUS箔等,其材质不限。
本发明还涉及积层薄膜,其包括基材薄膜或金属箔以及涂布在所述基材薄膜或金属箔的至少一个表面上的如上所述的热固性树脂组合物的涂层,例如可以采用如下方法制备得到:将上述热固性树脂组合物溶解或分散在有机溶剂中,然后将其涂布在基材薄膜或金属箔上,使其干燥,从而得到所述积层薄膜。
与现有技术相比,本发明至少具有以下有益效果之一:
(1)本发明的二胺化合物在结构上同时具有芳酯基和芳香胺基,其中芳酯基与环氧树脂发生反应时不产生强极性的二次羟基,从而获得低介电损耗、低吸水率和较低的介电常数,同时芳香胺基与环氧树脂的反应活性高、固化交联密度较高、与金属的粘接力好,从而兼具了芳香胺类和活性酯类固化剂的特点,又对二者单独固化环氧树脂存在的不足之处进行了弥补和平衡。
(2)相比现有的胺类固化剂,本发明提供的包含环氧树脂和所述二胺化合物的热固性树脂组合物,其固化物具有较低的介电常数和介电损耗因子,兼具 良好的耐热性、韧性、以及与金属优异的粘接力。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
二胺化合物的合成例:
合成实施例1:
在安装有温度计、滴液漏斗、搅拌装置的3L烧瓶中,加入114.2g(0.5mol)的双酚A、220g(1mol)的4-氯-3-硝基苯甲酰氯和1675g四氢呋喃,搅拌溶解。接着,将烧瓶安置在-10℃的低温槽中,缓慢滴加106.2g(1.05mol)的三乙胺催化剂,将体系温度控制在-10℃~0℃范围内,三乙胺滴加完毕后,继续反应4小时。反应完成后静置2h,室温下过滤除去析出的三乙胺盐,滤液减压蒸馏、干燥得到初产物粉末,依次用离子水和乙醇多次洗涤初产物,然后过滤、将滤渣干燥,从而获得结构式为k-1的二硝基酯化合物。
在安装有温度计、滴液漏斗、搅拌装置、回流冷凝管、氮气管的3L烧瓶中,加入238.2g(0.4mol)的结构式为k-1的二硝基酯化合物、6g的5%湿钯碳(5质量%Pd/C·55质量%H 2O)、1000g的N,N-二甲基甲酰胺,通入氮气搅拌。升温至50℃,缓慢滴加80g水合肼约2h,控制反应温度在50℃~70℃范围,滴加完毕后继续搅拌反应6h。反应结束后过滤,滤液减压蒸馏浓缩,然后加入到去离子水-甲醇中重结晶,将析出的沉淀物用依次用去离子水、甲醇反复洗涤几次,然后过滤,将滤渣真空干燥,从而获得结构式为K-1的二胺化合物。该二胺化合物的分子量为535.3,芳酯基当量为267.65g/eq.,胺当量133.8g/eq.。
Figure PCTCN2019087608-appb-000013
化学式k-1的二硝基酯化合物
Figure PCTCN2019087608-appb-000014
二胺化合物化学式K-1
合成实施例2:
在安装有温度计、滴液漏斗、搅拌装置的5L烧瓶中,加入80.1g(0.5mol)的1,5-萘二酚、222.8g(1.2mol)的对硝基苯甲酰氯和3028g的二氯甲烷,通入氮气,搅拌溶解。接着,将烧瓶安置在10℃的低温槽中,3小时内缓慢滴加250g质量分数为20%的氢氧化钠/水溶液(1.25mol),滴加完毕后,继续反应3小时。反应完成后,加入质量分数为1%的稀硫酸水溶液,搅拌中和至呈弱酸性,静置分离上层水相,下层的有机溶液相用去离子水洗至中性后,再水洗2遍,减压蒸馏、干燥,从而获得结构式为k-2的二硝基酯化合物。
在安装有温度计、滴液漏斗、搅拌装置、回流冷凝管的3L烧瓶中,加入183.4g(0.4mol)的结构式为k-2的二硝基酯化合物、1.9g的Raney-Ni催化剂、1300g的N,N-二甲基乙酰胺和200g的乙醇。烧瓶配置有充有氢气的气球,升温至80℃,搅拌回流反应7h。反应结束后冷却到60℃过滤,滤液减压蒸馏浓缩,然后加入到去离子水-甲醇中重结晶,将析出的沉淀物用依次用去离子水、甲醇反复洗涤几次,然后过滤,将滤渣真空干燥,从而获得结构式为K-2的二胺化合物。该二胺化合物的分子量为398.4,芳酯基当量为199.2g/eq.,胺当量 99.6g/eq.。
Figure PCTCN2019087608-appb-000015
二硝基酯化学式k-2
Figure PCTCN2019087608-appb-000016
二胺化合物化学式K-2
合成实施例3:
在安装有温度计、滴液漏斗、搅拌装置的5L烧瓶中,加入96g(0.3mol)的双环戊二烯苯酚、167.1g(0.9mol)的对硝基苯甲酰氯和3950g的甲苯,通入氮气,搅拌溶解。接着,在30℃条件下,3小时内缓慢滴加91.1g(1.25mol)的三乙胺,滴加完毕后,继续反应4小时。反应结束后过滤,滤液加入质量分数为1%的稀硫酸水溶液,搅拌中和至呈弱酸性,静置分离上层水相,下层的有机溶液相用去离子水洗至中性后,再水洗2遍,减压蒸馏、干燥,从而获得结构式为k-3的二硝基酯化合物。
在安装有温度计、滴液漏斗、搅拌装置、回流冷凝管的3L烧瓶中,加入123.7g(0.2mol)的结构式为k-3的二硝基酯化合物、4g的2%Pd/3%Pt/C湿铂/钯/碳(2质量%Pd/3质量%Pt/C·49.8质量%H 2O)、1500g的N,N-二甲基甲酰胺和350g的异丙醇,通入氮气搅拌。升温至100℃,缓慢滴加50g水合肼约3h,滴加完毕后继续搅拌反应4h。反应结束后冷却到60℃过滤,滤液减压蒸馏浓缩,然后加入到去离子水-甲醇中重结晶,将析出的沉淀物用依次用去离子水、甲醇反复洗涤几次,然后过滤,将滤渣真空干燥,从而获得结构式为K-3 的二胺化合物。该二胺化合物的分子量为558.2,芳酯基当量为279.1g/eq.,胺当量139.6g/eq.。
Figure PCTCN2019087608-appb-000017
二硝基酯化学式k-3
Figure PCTCN2019087608-appb-000018
二胺化合物化学式K-3
合成对比例1:
参照合成实施例1的合成方式,采用1mol的对苯二酚、2mol的对硝基苯甲酰氯,通过酯化反应和还原反应合成结构式为L-1的二胺化合物,该二胺化合物的分子量为348.3,芳酯基当量为174.2g/eq.,胺当量87.1g/eq.。
Figure PCTCN2019087608-appb-000019
二胺化合物化学式L-1
合成对比例2:
参照合成实施例1的合成方式,采用1mol的2,6-萘二甲酰氯、2mol的对硝基苯胺通过酯化反应和还原反应合成结构式为L-2的二胺化合物,该二胺化合物的分子量为396.5。
Figure PCTCN2019087608-appb-000020
二胺化合物化学式L-2
实施例1-4和对比例1-5
如下制备含有环氧树脂(A)和二胺化合物(B)为必需成分的热固性树脂组合物及其电路基板:将环氧树脂、二胺化合物或其他固化剂、填料、固化促进剂按一定比例于溶剂中混合均匀(见表1),控制胶液固含量为65%,用7628玻纤布浸渍上述胶液,控制合适厚度,然后在145~175℃的烘箱中烘烤2~15min制成预浸料,然后8张预浸料叠在一起,在其上下两面叠上1Oz的铜箔,在固化温度为190℃~200℃,固化压力为30~60Kg/cm 2,固化时间为90~120min条件下制成电路基板,具体成分、含量以及板材性能如表1所示,原材料厂家和牌号如表2所示。
表1
Figure PCTCN2019087608-appb-000021
表2
组分 厂家及牌号
线性酚醛环氧 台湾长春人造,PNE177
DCPD酚醛环氧 日本DIC,HP-7200H
二胺化合物K-1 合成实施例1
二胺化合物K-2 合成实施例2
二胺化合物K-3 合成实施例3
DICY 双氰胺
DDM 二氨基二苯甲烷
DCPD型活性酯 日本DIC,HPC-8000-65T
二胺化合物L-1 合成对比例1
二胺化合物L-2 合成对比例2
二氧化硅 比利时Sibelco,MEGASIL525
2-Pz 二苯基咪唑
性能分析:
从实施例和对比例可以看出,本发明二胺化合物的实施例获得了较低的介电常数、介电损耗因子和吸水率,较高的耐热性、耐湿热性和剥离强度(与铜箔的粘结力),以及良好的韧性。实施例1和2相比对比例1和2(现有胺类固化剂),具有更优异的介电性能、耐热性和耐湿热性表现,且比现有芳香胺(DDM)的韧性更好;实施例3相比对比例3(现有活性酯),具有更高的Tg和剥离强度;实施例4相比对比例5,在耐热性、耐湿热性、介电性能和韧性方面具有更好的表现;实施例1和3相比对比例4,具有更高的Tg表现,介电性能也略优。
以上特性的测试方法如下:
(1)玻璃化转变温度(Tg):使用DSC测试,按照IPC-TM-650 2.4.24所规定的DSC测试方法进行测定。
(2)热分解温度(Td/5%):采用德国NETZSHC公司生产的TG 209 F3型 热重分析仪测定,升温范围为室温至800℃,升温速率10℃/min,N2保护,记录样品失重达到5%时的温度为Td5%。
(3)T288(带铜):用TMA仪,按照IPC-TM-650 2.4.24.1所规定的T288(带铜)测试方法进行测定。
(4)介电常数和介电损耗因子:按照IPC-TM-650 2.5.5.9使用平板法,测定1GHz下的介电常数和介电损耗因子。
(5)耐湿热性(PCT)评价:用层压板a,将3块100×100mm的基材试样在120℃、105Kpa的加压蒸煮处理装置内保持2h后,浸入288℃的焊锡槽中5min,观察试样是否发生分层鼓泡等现象,3块均未发生分层鼓泡记为3/3,2块未发生分层鼓泡记为2/3,1块未发生分层鼓泡记为1/3,0块未发生分层鼓泡记为0/3。
(6)PCT吸水性:取(5)所述经PCT测试条件预处理后的基板,按照IPC-TM-650 2.6.2.1所规定的吸水性测试方法进行测定。
(7)剥离强度(PS):按照IPC-TM-650 2.4.8方法中的“接收态”实验条件,测试金属盖层的剥离强度。
(8)落锤冲击:将3块100×100mm的层压板基材试样置于落锤冲击试验机上,让落锤自由下落冲击板材,拍摄试样的落痕区域,使用CAD软件扫出落痕发白区域并计算出落痕面积,落痕面积越小,试样的韧性越好,反之,试样的韧性越差。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (8)

  1. 一种二胺化合物,其特征在于,其具有如下结构式(I)所示的结构:
    Figure PCTCN2019087608-appb-100001
    式中,Ar 1为芳基,选自
    Figure PCTCN2019087608-appb-100002
    Figure PCTCN2019087608-appb-100003
    R 2相同或不同,独立选自H、卤素、未取代的或卤素取代的C1~C5的直链烷基或支链烷基;Ar 2为芳基,选自苯环、萘环;R 1选自卤素、未取代的或卤素取代的C1~C5的直链或支链烷基;n为0~4的整数。
  2. 一种二胺化合物的制备方法,其特征在于,所述制备方法包括酯化反应过程和还原反应过程,其中,将下述结构式(a-1)所示的双官能酚(a1)和具有结构式(a-2)所示的单硝基化合物(a2),以所述的单硝基化合物(a2)与所述的双官能酚(a1)的摩尔比至少为2的比例在碱性催化剂的存在下进行酯化反应得到结构式(a-3)所示的二硝基酯化合物(a3),然后将所述的二硝基酯化合物(a3)中的硝基还原而得到二胺化合物,
    HO-Ar 1-OH  (a-1)
    Figure PCTCN2019087608-appb-100004
    Figure PCTCN2019087608-appb-100005
    式中,Ar 1为芳基,选自
    Figure PCTCN2019087608-appb-100006
    Figure PCTCN2019087608-appb-100007
    R 2相同或不同,独立选自H、卤素、未取代的或卤素取代的C1~C5的直链烷基或支链烷基;Ar 2为芳基,选自苯环、萘环;R 1选自卤素、未取代的或卤素取代的C1~C5的直链或支链烷基;X选自Cl、Br、I或-OH;n为0~4的整数。
  3. 如权利要求2所述的制备方法,其特征在于,所述碱性催化剂选自氢氧化钠、氢氧化钾、氢氧化钙、碳酸钠、碳酸钾、醋酸钠、醋酸钾、碳酸氢钠、碳酸氢钾、三乙胺、吡啶、三丁胺、N,N-二异丙基乙胺、苄基三乙基氯化铵、四乙基溴化铵、四丁基溴化铵、四丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化铵、十四烷基三甲基氯化铵中的一种或两种以上的组合。
  4. 一种热固性树脂组合物,其特征在于,所述的热固性树脂组合物包含环氧树脂(A)和权利要求1所述的二胺化合物(B)作为必需成分。
  5. 一种半导体密封材料,其特征在于,其是权利要求4中所述的热固性树脂组合物的固化物。
  6. 一种预浸料,其特征在于,包括基材和浸渗到所述基材中且半固化的如 权利要求4中所述的热固性树脂组合物。
  7. 一种电路基板,其特征在于,所述电路基板由至少一张权利要求6所述的预浸料与金属箔热压成型而制得。
  8. 一种积层薄膜,其特征在于,所述积层薄膜包括基材薄膜或金属箔以及涂布在所述基材薄膜或金属箔的至少一个表面上的如权利要求4中所述的热固性树脂组合物的涂层。
PCT/CN2019/087608 2019-05-20 2019-05-20 二胺化合物、其制备方法、热固性树脂组合物及其应用 WO2020232597A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087608 WO2020232597A1 (zh) 2019-05-20 2019-05-20 二胺化合物、其制备方法、热固性树脂组合物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087608 WO2020232597A1 (zh) 2019-05-20 2019-05-20 二胺化合物、其制备方法、热固性树脂组合物及其应用

Publications (1)

Publication Number Publication Date
WO2020232597A1 true WO2020232597A1 (zh) 2020-11-26

Family

ID=73459033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087608 WO2020232597A1 (zh) 2019-05-20 2019-05-20 二胺化合物、其制备方法、热固性树脂组合物及其应用

Country Status (1)

Country Link
WO (1) WO2020232597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260112A (zh) * 2022-06-27 2022-11-01 佳化化学科技发展(上海)有限公司 一种赛克衍生物及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462060A2 (en) * 1990-06-13 1991-12-18 Ciba-Geigy Ag Curable composition
JPH05194340A (ja) * 1992-01-13 1993-08-03 Mitsui Toatsu Chem Inc ビス(アミノベンゾイルオキシ)ナフタレンおよびその製造方法
JPH05194339A (ja) * 1992-01-13 1993-08-03 Mitsui Toatsu Chem Inc 4,4’−ビス(アミノベンゾイルオキシ)ビフェニルおよびその製造方法
CN101857609A (zh) * 2009-04-10 2010-10-13 长春人造树脂厂股份有限公司 含磷化合物和其制造方法及用途
CN104114532A (zh) * 2012-02-16 2014-10-22 株式会社钟化 二胺、聚酰亚胺、以及聚酰亚胺膜及其利用
CN107857880A (zh) * 2017-11-03 2018-03-30 东华大学 一种高粘结性含酞菁聚酰亚胺树脂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0462060A2 (en) * 1990-06-13 1991-12-18 Ciba-Geigy Ag Curable composition
JPH05194340A (ja) * 1992-01-13 1993-08-03 Mitsui Toatsu Chem Inc ビス(アミノベンゾイルオキシ)ナフタレンおよびその製造方法
JPH05194339A (ja) * 1992-01-13 1993-08-03 Mitsui Toatsu Chem Inc 4,4’−ビス(アミノベンゾイルオキシ)ビフェニルおよびその製造方法
CN101857609A (zh) * 2009-04-10 2010-10-13 长春人造树脂厂股份有限公司 含磷化合物和其制造方法及用途
CN104114532A (zh) * 2012-02-16 2014-10-22 株式会社钟化 二胺、聚酰亚胺、以及聚酰亚胺膜及其利用
CN107857880A (zh) * 2017-11-03 2018-03-30 东华大学 一种高粘结性含酞菁聚酰亚胺树脂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DER-JANG LIAW ET AL.: "Photolysis of bisphenol-based polyurethanes in solution", JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 37, no. 9, 21 January 2000 (2000-01-21), pages 1331 - 1339, XP000803982, ISSN: 2642-4169 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260112A (zh) * 2022-06-27 2022-11-01 佳化化学科技发展(上海)有限公司 一种赛克衍生物及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN109988298B (zh) 一种改性聚苯醚树脂、热固性树脂组合物及其用途
TW201004924A (en) Bismaleamic acid, bismaleimide and cured product thereof
WO2016101539A1 (zh) 一种环氧树脂组合物以及使用它的预浸料和层压板
WO2020217675A1 (ja) 硬化性樹脂組成物
WO2014190526A1 (zh) 氰酸酯树脂组合物及其用途
TWI705955B (zh) 二胺化合物、其製備方法、熱固性樹脂組合物及其應用
TWI585098B (zh) 一種含氰基的磷腈化合物、製備方法及用途
WO2019127391A1 (zh) 马来酰亚胺树脂组合物、预浸料、层压板和印刷电路板
TWI736925B (zh) 雙端胺基活性酯、其製備方法、熱固性樹脂組合物及其應用
JP7261836B2 (ja) 変性マレイミド化合物、その調製方法および使用
CN112694714B (zh) 环氧树脂组合物、预浸料、层压板及印刷电路板
WO2020232597A1 (zh) 二胺化合物、其制备方法、热固性树脂组合物及其应用
WO2020232596A1 (zh) 双端胺基活性酯、其制备方法、热固性树脂组合物及其应用
KR101738292B1 (ko) 시아네이트 수지 조성물 및 그 용도
WO2020217672A1 (ja) 硬化性樹脂組成物
JP2023539665A (ja) マレイミド変性の活性エステル及びその調製方法と使用
CN114479013B (zh) 一种氰基改性的活性酯及其制备方法和应用
JP4061532B2 (ja) 熱硬化性樹脂組成物、その成形硬化物、電子回路基板用樹脂組成物、これを用いた電子回路基板、及びシアン酸エステル化合物
CN112457631B (zh) 活性酯树脂及制备方法、包含其的热固性树脂组合物、预浸料和积层薄膜
CN112625442B (zh) 氰酸酯树脂组合物、预浸料、层压板及印刷电路板
JP2001302686A (ja) 新規有機リン化合物、その製造方法及びエポキシ樹脂組成物
CN116120369A (zh) 一种新型含氮磷耐热环氧固化剂及其制备方法、应用
TW202405046A (zh) 多官能乙烯基樹脂、其製造方法、多官能乙烯基樹脂組成物及其硬化物、預浸體、樹脂片、積層板
JP5029143B2 (ja) エポキシ樹脂組成物、その硬化物、ビルドアップフィルム絶縁層用樹脂組成物、及び新規フェノール樹脂
JP2002047334A (ja) エポキシ樹脂組成物及び電気積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929215

Country of ref document: EP

Kind code of ref document: A1