WO2020228540A1 - 一种耐黄变的热塑性聚氨酯发泡材料及其制备方法 - Google Patents

一种耐黄变的热塑性聚氨酯发泡材料及其制备方法 Download PDF

Info

Publication number
WO2020228540A1
WO2020228540A1 PCT/CN2020/087850 CN2020087850W WO2020228540A1 WO 2020228540 A1 WO2020228540 A1 WO 2020228540A1 CN 2020087850 W CN2020087850 W CN 2020087850W WO 2020228540 A1 WO2020228540 A1 WO 2020228540A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polyurethane
yellowing
foam material
polyurethane foam
resistant
Prior art date
Application number
PCT/CN2020/087850
Other languages
English (en)
French (fr)
Inventor
宋红玮
王光阜
杨冲冲
任光雷
钮华荣
Original Assignee
美瑞新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美瑞新材料股份有限公司 filed Critical 美瑞新材料股份有限公司
Priority to US17/594,669 priority Critical patent/US20220213253A1/en
Priority to JP2021566987A priority patent/JP7361415B2/ja
Priority to EP20805765.3A priority patent/EP3950842A4/en
Priority to KR1020217035828A priority patent/KR20210151127A/ko
Priority to BR112021022846A priority patent/BR112021022846A2/pt
Publication of WO2020228540A1 publication Critical patent/WO2020228540A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/132Phenols containing keto groups, e.g. benzophenones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3435Piperidines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the invention belongs to the field of polymer foam materials, and specifically relates to a thermoplastic polyurethane foam material resistant to yellowing and a preparation method thereof.
  • Foam material has a series of advantages such as low density, heat insulation and sound insulation, high specific strength, and cushioning. Therefore, it is widely used in the packaging industry, industry, agriculture, transportation industry, military industry, aerospace industry and daily necessities.
  • Commonly used foam plastics are polyurethane (PU) soft and rigid foam, polystyrene (PS) foam, polyethylene (PE) foam, polypropylene (PP) foam and so on.
  • PU polyurethane
  • PS polystyrene
  • PE polyethylene
  • PP polypropylene
  • polyurethane foam tends to retain isocyanate during the foaming process, which is harmful to the human body, and the foamed material cannot be recycled. Styrofoam products are difficult to degrade and prone to "white pollution”.
  • the United Nations Environment Organization has decided to stop using PS foam products.
  • Polyethylene foam has poor high temperature resistance and is not suitable for application in high temperature fields.
  • Thermoplastic polyurethane elastomer has a wide range of hardness, excellent wear resistance, mechanical strength, water resistance, oil resistance, chemical resistance, mold resistance, environmental friendliness, and recyclability.
  • a molded foamed product can be obtained.
  • This kind of product not only retains the excellent performance of the original matrix, but also has excellent resilience, shape diversity, low density, and can be used in a wide temperature range.
  • TPU foam materials have very broad application prospects in many industrial fields (automobile industry, packaging materials) and daily life fields (shoe materials, pillows, mattresses).
  • Thermoplastic polyurethane foam material has been disclosed in patent documents WO2007/082838A, WO2010/136398A, CN102229709A, CN102276785A, CN103183805A, and the TPU resin raw materials used are generally synthesized from aromatic isocyanates such as MDI.
  • Thermoplastic polyurethane foam material products will be exposed to long-term sunlight during outdoor use.
  • the TPU resin foam material synthesized from MDI and other aromatic isocyanates will have the diurethane bridge structure of the aromatic ring under the action of ultraviolet rays. Automatically oxidize to quinone-imine bond or azo compound, accompanied by yellowing of the product and decrease of mechanical properties.
  • the existing patented technology is to increase the anti-yellowing performance of the material by adding a large amount of UV resistant additives to the thermoplastic polyurethane resin raw materials, but the existing technology still has the following defects: (1) The addition of anti-UV additives cannot The fact that the nature of TPU yellowing is solved at the source is a problem, and with the prolonged use of the product, the effect of anti-UV additives will gradually decrease, and ultimately lead to a greatly reduced product performance and shortened service life. (2) Anti-UV additives are usually added in the process of preparing thermoplastic polyurethane materials or subsequent modified thermoplastic polyurethane materials, especially for industries that require high yellowing resistance, such as the field of shoe materials, which require a large amount of anti-UV additives.
  • thermoplastic polyurethane foam material with excellent yellowing resistance is a problem to be solved urgently.
  • the present invention provides a yellowing-resistant thermoplastic polyurethane foam material and a preparation method thereof.
  • the prepared yellowing-resistant thermoplastic polyurethane foam material has excellent yellowing resistance and controllable foaming density.
  • the cell size is uniform.
  • thermoplastic polyurethane foam material resistant to yellowing comprising the reaction of aliphatic diisocyanate, chain extender, polyol, antioxidant, UV absorber and UV light stabilizer
  • the prepared thermoplastic polyurethane elastomer has a softening point of 90-160°C, preferably 95-150°C, particularly preferably 100-150°C, and a Shore hardness of 40A-98A, preferably 60-90A, especially Preferably 75-88A, the melt index is 5-250g/10min.
  • the foaming material prepared by the present invention has a yellowing resistance grade of 5 under a 300h long-term accelerated test, no yellowing, very good yellowing resistance, and its yellowing resistance is significantly better than the current traditional thermoplastic polyurethane foam materials , And can obtain foam materials with a density of 0.05-0.5g/cm 3 , the foaming density is controllable, the cell size is uniform, and it has good resilience and mechanical strength properties. Because the aliphatic thermoplastic polyurethane is exposed to long-term light Under the environment, the carbamate bridge structure will not automatically oxidize to quinone-imine bonds or yellowing of azo compounds, which can improve the yellowing resistance.
  • the present invention can also be improved as follows.
  • the aliphatic diisocyanate includes hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI) or hydrogenated phenylmethane diisocyanate (H 12 MDI) ), a mixture of one or more of cyclohexyl dimethyl diisocyanate (H 6 XDI), and cyclohexyl diisocyanate.
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • XDI xylylene diisocyanate
  • H 12 MDI hydrogenated phenylmethane diisocyanate
  • H 6 XDI cyclohexyl dimethyl diisocyanate
  • cyclohexyl diisocyanate cyclohexyl diisocyanate
  • the beneficial effect of adopting the above-mentioned further solution is that the above-mentioned raw materials are selected to make the foam material have better yellowing resistance.
  • the chain extender includes one or more mixtures of 1,2-ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and cyclohexanedimethanol .
  • the beneficial effect of adopting the above-mentioned further solution is: selecting the above-mentioned raw materials as the chain extender can improve the mechanical properties of the yellowing-resistant thermoplastic polyurethane foam material.
  • the amount of the antioxidant is 0-0.3% of the total amount of the thermoplastic polyurethane elastomer, and the antioxidant is a hindered phenol antioxidant or a phosphite antioxidant.
  • the amount of the UV absorber is 0.5-1.5% of the total amount of the thermoplastic polyurethane elastomer, and the UV absorber is a benzotriazole type ultraviolet absorber, a formamidine type ultraviolet absorber, and a triazine type ultraviolet Absorbent or benzophenone ultraviolet absorber;
  • the amount of the UV light stabilizer is 0.5-4% of the total amount of the thermoplastic polyurethane elastomer, and the UV light stabilizer is a hindered amine light stabilizer.
  • the beneficial effect of adopting the above-mentioned further solution is to further improve the yellowing resistance effect.
  • polyol is one or more mixtures of polycarbonate polyol, polycaprolactone polyol, or polyether polyol with a functionality of 1.9-2.1.
  • the beneficial effect of adopting the above-mentioned further solution is that the resilience of the made thermoplastic polyurethane foam material can be improved.
  • the present invention also provides a method for preparing a yellowing-resistant thermoplastic polyurethane foam material, which includes a thermoplastic polyurethane elastomer.
  • the thermoplastic polyurethane elastomer is subjected to a physical foaming process to obtain a yellowing-resistant thermoplastic polyurethane foam material.
  • the density of the thermoplastic polyurethane foam material is 0.05-0.5g/cm 3 , and the cell size is 10-200um.
  • the beneficial effect of the preparation method of the yellowing-resistant thermoplastic polyurethane foam material of the present invention is that the preparation method can maintain the thermoplastic polyurethane foam material made of thermoplastic polyurethane elastomer foam to have good mechanical properties.
  • the physical foaming process is preferably carried out in the following manner: including taking 100 parts by weight of the thermoplastic polyurethane elastomer, 1-60 parts by weight of the physical foaming agent and 100-500 parts by weight of water, and adding them to the pressure-resistant container Stir to form a suspension, then heat to 80-160°C, keep the pressure at 10-250bar, constant temperature and pressure for 0-180 minutes, and finally discharge the suspension in the pressure vessel into the atmosphere to obtain a yellowing-resistant thermoplastic polyurethane hair ⁇ .
  • the beneficial effect of adopting the above-mentioned further solution is that the premix is used to heat up and control the pressure to realize rapid foaming, and the foamed thermoplastic polyurethane foam material has good tensile strength and resilience.
  • the physical foaming process can also be carried out in the following manner: including taking 100 parts by weight of the thermoplastic polyurethane elastomer into the extruder to melt, and then injecting the physical foaming agent at the end of the extruder, and the control pressure is 10- 250bar, control the extruder die temperature to 80-180°C, die pressure 10-150bar, and finally extrude through the die to obtain a yellowing-resistant thermoplastic polyurethane foam material.
  • thermoplastic polyurethane elastomer can be realized by an extruder, which can be directly made into foamed particles or foamed plates, and the application range is wider.
  • the physical foaming process includes taking 100 parts by weight of the thermoplastic polyurethane elastomer into a pressure-resistant container, and injecting 1-100 parts by weight of a physical foaming agent into the pressure-resistant container to achieve a pressure of 10-350 bar, The pressure is maintained for 1-48h to make the physical blowing agent reach a dissolution equilibrium in the thermoplastic polyurethane elastomer, and then the dissolving equilibrium material is heated and foamed in a temperature environment of 100-140°C to obtain a thermoplastic polyurethane foam material resistant to yellowing .
  • the beneficial effect of adopting the above-mentioned further solution is that the foaming is performed after pressurization first, so that the foaming agent can completely enter the thermoplastic polyurethane elastomer, the foaming effect is better, and the resilience is better.
  • the physical blowing agent includes one or a mixture of nitrogen, carbon dioxide, air, methane, propane, butane or pentane.
  • the beneficial effect of adopting the above further scheme is that the foaming effect is better.
  • the present invention also provides the application of the above-mentioned thermoplastic polyurethane foam material in the elastic foam field, which is particularly suitable for shoe materials, floor coverings, vehicle parts, toys and the like.
  • a yellowing resistant thermoplastic polyurethane foaming material includes a thermoplastic polyurethane elastomer prepared by the reaction of aliphatic diisocyanate, chain extender, polyol, antioxidant, UV absorber and UV light stabilizer.
  • thermoplastic polyurethane elastomers it is prepared by the following method: using an aliphatic diisocyanate, a polyol with a molar mass of 500-10000 g/mol and a chain extender with a molar mass of 50-500 g/mol to mix, using an extrusion reaction type extruder, A one-pot method or a prepolymer method is used to react at 150-200°C to produce thermoplastic polyurethane elastomers.
  • the adjustment index of each component in the above reaction for preparing the thermoplastic polyurethane elastomer is 80-110; the specific index is: the number of moles of isocyanate groups in the aliphatic diisocyanate and the isocyanate group in the chain extender and polyol Ratio of moles of reactive groups.
  • the softening point of the thermoplastic polyurethane elastomer is 90-160°C, which is measured by Shimadzu CFT-500 series rheometer; the Shore hardness is 40A-98A, and the hardness is measured by the Shore A type durometer; the melt index It is 5-250g/10min.
  • the melt index is obtained by applying 5kg load test at 210°C;
  • the yellowing resistance grade of the foam material is 4.5-5 grade, which adopts 340nm UVA lamp according to ASDM-D1148, and the lamp irradiation intensity is 0.77 W/m2/nm or HG/T3689-2001A method in 300h irradiation test, according to ISO 105-A02: 1993, the yellowing resistance grade is assessed under the standard light source D65, grade 5 means that the material has not turned yellow, grade 4.5 means The material has only a slight yellowing. Grade 1 means that the yellowing of the material is very serious.
  • the aliphatic diisocyanate is hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI) or hydrogenated phenylmethane diisocyanate (H 12 MDI), cyclohexyl dimethylene diisocyanate (H 6 XDI), cyclohexyl diisocyanate;
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • XDI xylylene diisocyanate
  • H 12 MDI hydrogenated phenylmethane diisocyanate
  • H 6 XDI cyclohexyl dimethylene diisocyanate
  • cyclohexyl diisocyanate cyclohexyl diisocyanate
  • the chain extender includes an aliphatic, aromatic or alicyclic diol compound with a molar mass of 50-500 g/mol; specifically, the chain extender is 1,2-ethane with 2-14 C atoms Alcohol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol or cyclohexanedimethanol, or the chain extender is 2-hydroxyethyl ether, m-phenylene glycol bis(hydroxyethyl Base) ether or 1,4-dimethylolcyclohexane;
  • the chain extender is 1,4-butanediol.
  • the amount of the antioxidant is 0-0.3% of the total amount, the preferred amount of the antioxidant is 0-0.1% of the total amount, and the antioxidant is hindered phenolic antioxidant or phosphite Antioxidant, the specific brand is Irganox 1010, Irganox 1076, Irganox 1098, Irganox 3114, Irganox 126, Irgafos 168 or Irgafos 618 of BASF (BASF); the amount of the UV absorber is 0.5-1.5 of the total amount of the thermoplastic polyurethane elastomer %, the preferred amount of UV absorber is 0.8-1.5% of the total amount of the thermoplastic polyurethane elastomer.
  • the specific brand is Irganox 1010, Irganox 1076, Irganox 1098, Irganox 3114, Irganox 126, Irgafos 168 or Irgafos 618 of BASF
  • the UV absorber is benzotriazole ultraviolet absorber, formamidine ultraviolet absorber, triazine ultraviolet absorber Or benzophenone ultraviolet absorber, the specific brand is BASF's TinuvinP, Tinuvin327, Tinuvin328, Tinuvin329, Tinuvin234, Tinuvin312, TinuvinUV-1 or TinuvinUV-3; the amount of UV light stabilizer accounts for the elastic 0.5-4% of the total amount of the body, preferably the amount of UV light stabilizer is 1-3% of the total amount.
  • the UV light stabilizer is a hindered amine light stabilizer, and the specific brands are Tinuvin571, Tinuvin770, Tinuvin622, Tinuvin944 Or Tinuvin144;
  • the polyol is one or more mixtures of polycarbonate polyol, polyester polyol or polyether polyol with a functionality of 1.9-2.1, and the molar mass of the polyester polyol is 800-1200 g/mol, The molar mass of polyether polyol is 500-2000g/mol;
  • the polyol is a polyether polyol with a functionality of 2.
  • the specific polyether polyol can be polyethylene adipate diol (PEA), poly diethylene adipate diol (PDA), polybutylene adipate glycol (PBA), polypropylene adipate glycol (PPA), polyoxypropylene glycol, polytetrahydrofuran polyol (PTMEG); preferably polyadipate A mixture of butanediol ester diol (PBA) and polytetrahydrofuran polyol (PTMEG).
  • a method for preparing yellowing-resistant thermoplastic polyurethane foam material comprising 30 kg of hexamethylene diisocyanate, 11 kg of 1,4-butanediol, 100 kg of polybutylene adipate diol and polytetrahydrofuran
  • a mixture of polyols in a mass ratio of 1:1, hindered phenol antioxidants, benzotriazole ultraviolet absorbers and hindered amine light stabilizers are put into the twin-screw reaction extruder at 150-180°C
  • the specific brand of the benzotriazole ultraviolet absorber is TinuvinP, the specific amount of which is 0.5% of the total amount, and the amount of hindered amine light stabilizer is 0.5% of the total amount.
  • the specific grade is Tinuvin571, the softening point of the thermoplastic polyurethane elastomer particles is 90°C, the Shore hardness is 40A, and the melt index is 250g/10min;
  • thermoplastic polyurethane foam material has a density of 0.05 g/cm 3 and a cell size of 10-40um ;
  • thermoplastic polyurethane foam material obtained above is filled into a mold with a length of 300 mm * a width of 250 mm * a thickness of 50 mm. Use 2bar water vapor to compress 10% along the thickness direction of the mold to bond and shape the thermoplastic polyurethane foam material, and finally obtain a molded foam product.
  • the obtained foam product was placed at 50°C*50%RH (humidity) for 2 hours, dried in a constant temperature room at 80°C for 2 hours, and finally placed at 25°C*50%RH for 2 hours to evaluate its performance.
  • a method for preparing a yellowing-resistant thermoplastic polyurethane foam material comprising 70 kg of isophorone diisocyanate, 15 kg of 1,4-butanediol, 100 kg of polytetrahydrofuran polyol, hindered phenol antioxidant, benzo Triazole ultraviolet absorber and hindered amine light stabilizer are put into a twin-screw extruder and reacted at 150-200°C.
  • the specific brand of hindered phenol antioxidant is antioxidant Irganox 1010, and the specific amount accounts for its total amount.
  • the specific brand of benzotriazole ultraviolet absorber is Tinuvin327
  • the specific dosage is 0.8% of the total amount
  • the amount of hindered amine light stabilizer is 1% of the total
  • the specific brand is Tinuvin770
  • thermoplastic The softening point of polyurethane elastomer particles is 160°C, the Shore hardness is 98A, and the melt index is 5g/10min;
  • thermoplastic polyurethane foaming material has a density of 0.5g/cm3 and a cell size 70-100um;
  • thermoplastic polyurethane foam material obtained above is filled into a mold with a length of 300 mm * a width of 250 mm * a thickness of 50 mm. Use 2bar water vapor to compress 10% along the thickness direction of the mold to bond and shape the thermoplastic polyurethane foam material, and finally obtain a molded foam product. After the obtained foam product was placed at 50°C*50%RH for 2 hours, it was dried in a constant temperature room at 80°C for 2 hours, and finally placed at 25°C*50%RH for 2 hours to evaluate its performance.
  • thermoplastic polyurethane elastomer consisting of 51kg of hydrogenated xylylene diisocyanate, 12kg of 1,4-butanediol, and 100kg of polybutylene adipate
  • Diol, hindered phenol antioxidant, benzotriazole ultraviolet absorber and hindered amine light stabilizer are put into twin-screw extruder and reacted at 150-200°C.
  • the specific grade of hindered phenol antioxidant is antioxidant.
  • Oxygen agent Irganox 1076 the specific dosage accounts for 0.1% of the total
  • the specific brand of benzotriazole ultraviolet absorber is Tinuvin 312
  • the specific dosage accounts for 1% of the total amount
  • the amount of hindered amine light stabilizer accounts for the total amount.
  • the specific grade is Tinuvin622
  • the softening point of the thermoplastic polyurethane elastomer particles is 125°C
  • the Shore hardness 85A
  • the melt index is 100g/10min;
  • thermoplastic polyurethane foam material had a density of 0.15 g/cm3 and a cell size 100-120um;
  • thermoplastic polyurethane foam material obtained above is filled into a mold with a length of 300 mm * a width of 250 mm * a thickness of 50 mm. Use 2bar water vapor to compress 10% along the thickness direction of the mold to bond and shape the thermoplastic polyurethane foam material, and finally obtain a molded foam product. After the obtained foam product was placed at 50°C*50%RH for 2 hours, it was dried in a constant temperature room at 80°C for 2 hours, and finally placed at 25°C*50%RH for 2 hours to evaluate its performance.
  • thermoplastic polyurethane elastomer consisting of 45kg of hydrogenated diphenylmethane diisocyanate, 10g of 1,4-butanediol, 100kg of polytetrahydrofuran polyol, hindered phenols Antioxidant, benzotriazole ultraviolet absorber and hindered amine light stabilizer are put into twin-screw extruder and reacted at 150-200°C.
  • the specific grade of hindered phenol antioxidant is antioxidant Irganox 1098, and the specific dosage is It accounts for 0.1% of the total amount.
  • the specific brand of benzotriazole ultraviolet absorber is TinuvinUV-1, and the specific amount is 1.5% of the total amount.
  • the amount of hindered amine light stabilizer is 3% of the total amount.
  • the specific grade is Tinuvin944, the softening point of the thermoplastic polyurethane elastomer particles is 145°C, the Shore hardness is 80A, and the melt index is 50g/10min;
  • thermoplastic polyurethane elastomer Take 100 parts by weight of the above-mentioned thermoplastic polyurethane elastomer into a twin-screw extruder to melt, control the screw temperature to 100-180°C, and then inject 50 parts by weight of nitrogen through a booster pump at the end of the extruder to control the extruder
  • the temperature of the die head is 100°C
  • the pressure of the die head is 100 bar
  • extruded and foamed through the die head and then cut under water to obtain the yellowing-resistant thermoplastic polyurethane foam material particles
  • the density of the thermoplastic polyurethane foam material is 0.25 g/cm3, the cell size is 70-100um;
  • thermoplastic polyurethane foam material obtained above is filled into a mold with a length of 300 mm * a width of 250 mm * a thickness of 50 mm. Use 2bar water vapor to compress 10% along the thickness direction of the mold to bond and shape the thermoplastic polyurethane foam material, and finally obtain a molded foam product. After the obtained foam product was placed at 50°C*50%RH for 2 hours, it was dried in a constant temperature room at 80°C for 2 hours, and finally placed at 25°C*50%RH for 2 hours to evaluate its performance.
  • thermoplastic polyurethane elastomer consisting of 65kg of hydrogenated diphenylmethane diisocyanate, 12kg of 1,4-butanediol, 100kg of polytetrahydrofuran polyol and hindered phenols
  • Antioxidant, benzotriazole ultraviolet absorber and hindered amine light stabilizer are put into twin-screw extruder and reacted at 150-200°C.
  • the specific grade of hindered phenol antioxidant is antioxidant Irgafos168, and the specific dosage It accounts for 0.3% of the total.
  • the specific brand of benzotriazole ultraviolet absorber is TinuvinUV-3, and the specific dosage is 1.2% of the total amount.
  • the amount of hindered amine light stabilizer is 4% of the total.
  • the specific grade is Tinuvin144, the softening point of the thermoplastic polyurethane elastomer particles is 110°C, the Shore hardness is 90A, and the melt index is 20g/10min;
  • thermoplastic polyurethane elastomer Take 100 parts by weight of the above-mentioned thermoplastic polyurethane elastomer into a twin-screw extruder to melt, control the screw temperature to 100-180°C, and then inject 30 parts by weight of carbon dioxide through a booster pump at the end of the extruder to control the extruder
  • the temperature of the die head is 100°C
  • the pressure of the die head is 80 bar
  • extruded and foamed through the die head and then cut under water to obtain the yellowing-resistant thermoplastic polyurethane foamed plate material particles, the thickness is 20mm
  • thermoplastic polyurethane The density of the foam material is 0.25g/cm3, and the cell size is 100-120um;
  • thermoplastic polyurethane elastomer consisting of 55kg of isophorone diisocyanate, 15kg of 1,4-butanediol, 100kg of polytetrahydrofuran polyol, and hindered phenolic antioxidant , Benzotriazole ultraviolet absorber and hindered amine light stabilizer are put into twin-screw extruder and reacted at 150-200°C.
  • the specific brand of hindered phenol antioxidant is antioxidant Irgafos618, and the specific amount accounts for it. 0.15% of the total amount.
  • the specific brand of benzotriazole ultraviolet absorber is Tinuvin234, and the specific amount is 1.5% of the total amount.
  • the amount of hindered amine light stabilizer is 2.5% of the total amount.
  • the specific brand is Tinuvin571, the softening point of the thermoplastic polyurethane elastomer particles is 155°C, the Shore hardness is 88A, and the melt index is 40g/10min;
  • thermoplastic polyurethane elastomer Take 100 parts by weight of the above-mentioned thermoplastic polyurethane elastomer and put it into a 200L pressure-resistant container, and inject 100 parts by weight of nitrogen into the pressure-resistant container, so that the pressure of the pressure-resistant container reaches 150bar, and the pressure is maintained for 48h, so that the nitrogen is elastic in the thermoplastic polyurethane.
  • the inside of the body reaches the dissolution equilibrium, and the physical foaming agent penetrates into the thermoplastic polyurethane elastomer.
  • the dissolution equilibrium means that the physical foaming agent is dispersed evenly after entering the thermoplastic polyurethane elastomer, and then the dissolved and balanced materials are placed in 140 °C water
  • the steam is heated to foam the thermoplastic polyurethane elastomer to obtain yellowing-resistant thermoplastic polyurethane foam material particles, the thermoplastic polyurethane foam material has a density of 0.22g/cm3 and a cell size of 30-60um;
  • thermoplastic polyurethane foam material obtained above is filled into a mold with a length of 300 mm * a width of 250 mm * a thickness of 50 mm. Use 2bar water vapor to compress 10% along the thickness direction of the mold to bond and shape the thermoplastic polyurethane foam material, and finally obtain a molded foam product. After the obtained foam product was placed at 50°C*50%RH for 2 hours, it was dried in a constant temperature room at 80°C for 2 hours, and finally placed at 25°C*50%RH for 2 hours to evaluate its performance.
  • thermoplastic polyurethane foamed foam products prepared according to Examples 1-6 have a resistance to yellowing under the 300h accelerated test.
  • the grade is 4.5-5, the yellowing resistance is very good, which is significantly better than the foam products made of thermoplastic polyurethane foam materials on the market, and the foam products made of thermoplastic polyurethane foam also have good resilience and mechanical strength performance.

Abstract

本发明涉及一种耐黄变的热塑性聚氨酯发泡材料及其制备方法,属于高分子发泡材料领域,所述耐黄变的热塑性聚氨酯发泡材料包括由脂肪族二异氰酸酯、扩链剂、多元醇、抗氧剂、UV吸收剂和UV光稳定剂反应制得的热塑性聚氨酯弹性体,所述热塑性聚氨酯弹性体的软化点为90-160℃,邵氏硬度为40A-98A,熔融指数为5-250g/10min。所制备的耐黄变的热塑性聚氨酯发泡材料具有优异的耐黄变性能,发泡密度可控,泡孔尺寸均匀。

Description

一种耐黄变的热塑性聚氨酯发泡材料及其制备方法 技术领域
本发明属于高分子发泡材料领域,具体涉及一种耐黄变的热塑性聚氨酯发泡材料及其制备方法。
背景技术
以塑料为基体,通过物理或化学方法在塑料内部填充大量气泡,得到聚合物发泡材料。泡沫材料具有密度低、隔热隔音、比强度高、缓冲等一列优点,因此在包装业、工业、农业、交通运输业、军事工业、航天工业以及日用品等领域得到广泛应用。常用的泡沫塑料品种有聚氨酯(PU)软质和硬质泡沫塑料、聚苯乙烯(PS)泡沫塑料、聚乙烯(PE)泡沫塑料、聚丙烯(PP)泡沫塑料等。但是聚氨酯泡沫塑料在发泡过程中容易残留异氰酸酯,对人体有害,并且发泡材料无法回收利用。聚苯乙烯泡沫塑料产品降解困难,易产生“白色污染”问题,联合国环境组织已决定停止使用PS泡沫塑料产品。聚乙烯泡沫塑料耐高温性能较差,不适合在高温领域内应用。
热塑性聚氨酯弹性体(TPU)具有较宽泛的硬度范围,优异的耐磨性、机械强度、耐水、耐油、耐化学腐蚀、耐霉菌,对环境友好,可回收利用等优点。通过将发泡热塑性聚氨酯粒子填充到模具中,利用水蒸气进行加热成型可得到模塑发泡制品。此种制品在保留原基体优异的性能之外,同时拥有优异的回弹性,形状多样性,低密度,可以在较宽的温度范围内使用。基于上述优点,TPU发泡材料在许多工业领域(汽车工业、包装材料)以及日常生活领域(鞋材、枕头、床垫)具有非常广泛的应用前景。
热塑性聚氨酯发泡材料(E-TPU)在专利文献WO2007/082838A、 WO2010/136398A、CN102229709A、CN102276785A、CN103183805A中已经被公开,采用的TPU树脂原料普遍是由MDI等芳族异氰酸酯合成的。热塑性聚氨酯发泡材料制品在户外使用过程中,会受到长时间的阳光照射,由MDI等芳族异氰酸酯合成的TPU树脂发泡材料在紫外线的作用下芳香环的二氨基甲酸酯桥键结构会自动氧化成醌-亚胺键或偶氮化合物,同时伴随制品变黄和力学性能的下降。目前现有公开的专利技术是通过在热塑性聚氨酯树脂原料中添加大量的耐UV助剂提高材料的抗黄变性能,但现有技术仍存在以下缺陷:(1)抗UV助剂的加入无法从源头上解决TPU变黄的本质这一事实是个问题,并且随着制品使用时间的延长,抗UV助剂效果会逐渐降低,并最终导致制品的性能大大降低,使用寿命缩短。(2)抗UV助剂通常是在制备热塑性聚氨酯材料或后续改性热塑性聚氨酯材料的过程中加入,特别是针对耐黄变性能要求高的行业,如鞋材领域,需要加入大量的抗UV助剂实现制品使用寿命的延长。然而大量抗UV助剂的加入会极大的影响到热塑性聚氨酯弹性体合成过程的稳定性和后续热塑性聚氨酯发泡粒子的最终性能。因此,开发一种具有优异耐黄变性能的热塑性聚氨酯发泡材料是目前亟待解决的问题。
发明内容
本发明为了解决上述技术问题提供一种耐黄变的热塑性聚氨酯发泡材料及其制备方法,所制备的耐黄变的热塑性聚氨酯发泡材料具有优异的耐黄变性能,发泡密度可控,泡孔尺寸均匀。
本发明解决上述技术问题的技术方案如下:一种耐黄变的热塑性聚氨酯发泡材料,包括由脂肪族二异氰酸酯、扩链剂、多元醇、抗氧剂、UV吸收剂和UV光稳定剂反应制得的热塑性聚氨酯弹性体,所述热塑性聚氨酯弹性体的软化点为90-160℃,优选95-150℃,特别优选100-150℃,邵氏硬度为40A-98A,优选60-90A,特别优选75-88A,熔融指数为5-250g/10min。
本发明耐黄变的热塑性聚氨酯发泡材料的有益效果是:
本发明所制备的发泡材料在300h长时间加速测试下的耐黄变等级为5级,不黄变,耐黄变性能非常好,耐黄变性能明显优于目前传统的热塑性聚氨酯发泡材料,并且能得到密度0.05-0.5g/cm 3的发泡材料,发泡密度可控,泡孔尺寸均匀,同时兼顾有良好的回弹性和机械强度性能,由于脂肪族型热塑性聚氨酯在长时间光照环境下不会发生氨基甲酸酯桥键结构自动氧化成醌-亚胺键或偶氮化合物变黄,更能够提高耐黄变性能。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述脂肪族二异氰酸酯包括六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、苯二亚甲基二异氰酸酯(XDI)或氢化苯基甲烷二异氰酸酯(H 12MDI)、环己基二亚甲基二异氰酸酯(H 6XDI)、环己基二异氰酸酯中的一种或多种的混合物。
采用上述进一步方案的有益效果是:选用上述原料,使得发泡材料耐黄变性能更好。
进一步,所述扩链剂包括1,2-乙二醇、1,3-丙二醇、1,4-丁二醇、1,6-己二醇和环己烷二甲醇中的一种或多种混合物。
采用上述进一步方案的有益效果是:选用上述原料作为扩链剂能够提高耐黄变的热塑性聚氨酯发泡材料的机械性能。
进一步,所述抗氧剂用量为占所述热塑性聚氨酯弹性体总量的0-0.3%,所述抗氧剂为受阻酚类抗氧化剂或亚磷酸酯类抗氧剂。
进一步,所述UV吸收剂用量为占所述热塑性聚氨酯弹性体总量的0.5-1.5%,所述UV吸收剂为苯并三唑类紫外线吸收剂、甲脒类紫外线吸收剂、三嗪类紫外线吸收剂或苯甲酮类紫外线吸收剂;
进一步,所述UV光稳定剂用量为占所述热塑性聚氨酯弹性体总量的0.5-4%,所述UV光稳定剂为受阻胺类光稳定剂。
采用上述进一步方案的有益效果是:进一步提高耐黄变效果。
进一步,所述多元醇为官能度为1.9-2.1的聚碳酸酯多元醇、聚己内酯多元醇或聚醚多元醇中的一种或多种混合物。
采用上述进一步方案的有益效果是:能够提高制成的热塑性聚氨酯发泡材料的回弹性。
本发明还提供一种耐黄变的热塑性聚氨酯发泡材料制备方法,包括热塑性聚氨酯弹性体,将所述热塑性聚氨酯弹性体,经过物理发泡工艺得到耐黄变的热塑性聚氨酯发泡材料,所述热塑性聚氨酯发泡材料密度为0.05-0.5g/cm 3,泡孔尺寸为10-200um。
本发明耐黄变的热塑性聚氨酯发泡材料的制备方法的有益效果是:通过本制备方法能够保持由热塑性聚氨酯弹性体发泡制成的热塑性聚氨酯发泡材料具有良好的机械性能。
进一步,所述物理发泡工艺优选通过以下方式进行:包括取100重量份的热塑性聚氨酯弹性体,1-60重量份的物理发泡剂和100-500的重量份水,加入到耐压容器中搅拌形成悬浮液,然后升温至80-160℃,保持压力为10-250bar,恒温恒压0-180分钟,最后将压力容器内的悬浮液排放到大气环境中,得到耐黄变的热塑性聚氨酯发泡材料。
采用上述进一步方案的有益效果是:通过预混合物料进行升温并控制压力,实现快速发泡,发泡后的热塑性聚氨酯发泡材料具有良好的拉伸强度和回弹性。
进一步,所述物理发泡工艺还可以通过以下方式进行:包括取100重量份的热塑性聚氨酯弹性体投入挤出机中熔融,然后在挤出机的末端注入物理发泡剂,控制压力为10-250bar,控制挤出机模头温度为80-180℃,模头压力为10-150bar,最后通过模头挤出得到耐黄变的热塑性聚氨酯发泡材料。
采用上述进一步方案的有益效果是:通过挤出机来实现热塑性聚氨酯弹 性体,能够直接制成发泡颗粒或发泡板材状,适用范围更广。
进一步,所述物理发泡工艺包括取100重量份的热塑性聚氨酯弹性体投入到耐压容器中,并注入1-100重量份的物理发泡剂到耐压容器中,使压力达到10-350bar,压力维持1-48h,使物理发泡剂在热塑性聚氨酯弹性体内部达到溶解平衡,然后将溶解平衡的物料置于100-140℃温度环境内加热发泡,得到耐黄变的热塑性聚氨酯发泡材料。
采用上述进一步方案的有益效果是:先增压在进行发泡,使得发泡剂能够完全进入到热塑性聚氨酯弹性体,发泡效果更好,回弹性更优良。
进一步,所述物理发泡剂包括氮气、二氧化碳、空气、甲烷、丙烷、丁烷或戊烷中的一种或几种混合物。
采用上述进一步方案的有益效果是:发泡效果更好。
另外本发明还提供上述热塑性聚氨酯发泡材料在弹性泡沫领域中的应用,特别适用于鞋材,地面覆盖物,交通工具部件,玩具等。
具体实施方式
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
一种耐黄变的热塑性聚氨酯发泡材料,包括由脂肪族二异氰酸酯、扩链剂、多元醇、抗氧剂、UV吸收剂和UV光稳定剂反应制得的热塑性聚氨酯弹性体。
具体的,通过以下方法制备得到:采用脂肪族二异氰酸酯、摩尔质量为500-10000g/mol的多元醇以及摩尔质量为50-500g/mol的扩链剂混合,使用挤出反应型挤出机,采用一锅法或预聚物方法在150-200℃下进行反应,生产热塑性聚氨酯弹性体。
上述制备热塑性聚氨酯弹性体的反应中各组分的调节指数为80-110;具 体的指数为:脂肪族二异氰酸酯中的异氰酸酯基团的摩尔数与扩链剂和多元醇中对异氰酸酯基团具有反应性基团的摩尔数的比率。
所述热塑性聚氨酯弹性体的软化点为90-160℃,通过岛津CFT-500系列流变仪测得软化点;邵氏硬度为40A-98A,通过邵氏A型硬度计测量硬度;熔融指数为5-250g/10min,根据ASTMD1238,在210℃,施加5kg负荷测试得到熔融指数;发泡材料的耐黄变等级为4.5-5级,其根据ASDM-D1148采用340nmUVA灯,灯照射强度为0.77W/m2/nm或HG/T3689-2001A法于300h照射测试得到的,根据ISO 105-A02:1993,耐黄变等级是在标准光源D65下评定,5级代表材料未变黄,4.5级代表材料只有微弱的变黄,1级代表材料变黄非常严重。
具体的,所述脂肪族二异氰酸酯为六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、苯二亚甲基二异氰酸酯(XDI)或氢化苯基甲烷二异氰酸酯(H 12MDI)、环己基二亚甲基二异氰酸酯(H 6XDI)、环己基二异氰酸酯;
所述扩链剂包括摩尔质量为50-500g/mol的脂肪族、芳香族或脂环族二醇化合物;具体的所述扩链剂为C原子数为2-14的1,2-乙二醇、1,3-丙二醇、1,4-丁二醇、1,6-己二醇或环己烷二甲醇,或者扩链剂为2-羟乙基醚、间苯二醇双(羟乙基)醚或1,4-二羟甲基环己烷;
优选地,所述扩链剂为1,4-丁二醇。
优选地,所述抗氧剂用量为占其总量的0-0.3%,优选的抗氧剂用量为占其总量的0-0.1%,抗氧剂为受阻酚类抗氧化剂或亚磷酸酯类抗氧剂,具体的牌号为BASF(巴斯夫)公司的Irganox1010、Irganox1076、Irganox1098、Irganox3114、Irganox126、Irgafos168或Irgafos 618;所述UV吸收剂用量为占所述热塑性聚氨酯弹性体总量的0.5-1.5%,优选的UV吸收剂用量为占所述热塑性聚氨酯弹性体总量的0.8-1.5%,UV吸收剂为苯并三唑类紫外 线吸收剂、甲脒类紫外线吸收剂、三嗪类紫外线吸收剂或苯甲酮类紫外线吸收剂,具体的牌号为BASF公司的TinuvinP、Tinuvin327、Tinuvin328、Tinuvin329、Tinuvin234、Tinuvin312、TinuvinUV-1或TinuvinUV-3;所述UV光稳定剂用量为占所述热塑性聚氨酯弹性体总量的0.5-4%,优选地UV光稳定剂用量为占其总量的1-3%,UV光稳定剂为受阻胺类光稳定剂,具体的牌号为Tinuvin571、Tinuvin770、Tinuvin622、Tinuvin944或Tinuvin144;
所述多元醇为官能度为1.9-2.1的聚碳酸酯多元醇、聚酯多元醇或聚醚多元醇中的一种或多种混合物,聚酯多元醇的摩尔质量为800-1200g/mol,聚醚多元醇的摩尔质量为500-2000g/mol;
优选地,所述多元醇为官能度为2的聚醚多元醇,具体的聚醚多元醇可为聚己二酸乙二醇酯二醇(PEA),聚己二酸二甘醇酯二醇(PDA),聚己二酸丁二醇酯二醇(PBA),聚己二酸丙二醇酯二醇(PPA),聚氧化丙烯二醇,聚四氢呋喃多元醇(PTMEG);优选为聚己二酸丁二醇酯二醇(PBA)与聚四氢呋喃多元醇(PTMEG)的混合物。
实施例1
一种耐黄变的热塑性聚氨酯发泡材料制备方法,包括由30kg的六亚甲基二异氰酸酯、11kg的1,4-丁二醇、100kg的聚己二酸丁二醇酯二醇与聚四氢呋喃多元醇按质量比为1∶1的比例混合组成的混合物、阻酚类抗氧化剂、苯并三唑类紫外线吸收剂和受阻胺类光稳定剂投入双螺杆反应挤出机中在150-180℃下反应制得的热塑性聚氨酯弹性体,苯并三唑类紫外线吸收剂的具体牌号为TinuvinP,具体用量占其总量的0.5%,受阻胺类光稳定剂用量为占其总量的0.5%,具体的牌号为Tinuvin571,热塑性聚氨酯弹性体粒子的软化点为90℃,邵氏硬度为40A,熔融指数为250g/10min;
取100重量份的上述热塑性聚氨酯弹性体,30重量份的丁烷和300重量份的水,加入到500L的高压反应釜中搅拌形成悬浮液,然后升温至100℃, 保持压力为10bar,然后将压力容器内的悬浮液排放到大气环境中,干燥处理,得到耐黄变的热塑性聚氨酯发泡材料的颗粒物,所述热塑性聚氨酯发泡材料密度为0.05g/cm 3,泡孔尺寸为10-40um;
将上述得到的热塑性聚氨酯发泡材料填充到长300mm*宽250mm*厚50mm的模具中。采用2bar的水蒸气沿模具厚度方向压缩10%使热塑性聚氨酯发泡材料粘结成型,最终得到模塑泡沫制品。将所得到的泡沫制品在50℃*50%RH(湿度)下放置2小时之后,在80℃的恒温室内进行2小时干燥,最后在25℃*50%RH放置2小时后,评价其性能。
实施例2
一种耐黄变的热塑性聚氨酯发泡材料制备方法,包括由70kg的异佛尔酮二异氰酸酯、15kg的1,4-丁二醇、100kg的聚四氢呋喃多元醇、受阻酚类抗氧化剂、苯并三唑类紫外线吸收剂和受阻胺类光稳定剂投入双螺杆挤出机中在150-200℃下反应制得,受阻酚类抗氧化剂具体牌号为抗氧剂Irganox1010,具体用量占其总量的0.05%,苯并三唑类紫外线吸收剂的具体牌号为Tinuvin327,具体用量占其总量的0.8%,受阻胺类光稳定剂用量为占其总量的1%,具体的牌号为Tinuvin770,热塑性聚氨酯弹性体粒子的软化点为160℃,邵氏硬度为98A,熔融指数为5g/10min;
取100重量份的上述热塑性聚氨酯弹性体,60重量份的二氧化碳和500重量份的水,加入到1200L的高压反应釜中搅拌形成悬浮液,然后升温至130℃,保持压力为100bar,恒温恒压180分钟,最后将压力容器内的悬浮液排放到大气环境中,干燥处理,得到耐黄变的热塑性聚氨酯发泡材料的颗粒物,所述热塑性聚氨酯发泡材料密度为0.5g/cm3,泡孔尺寸为70-100um;
将上述得到的热塑性聚氨酯发泡材料填充到长300mm*宽250mm*厚50mm的模具中。采用2bar的水蒸气沿模具厚度方向压缩10%使热塑性聚氨酯发泡材料粘结成型,最终得到模塑泡沫制品。将所得到的泡沫制品在50℃*50%RH 下放置2小时之后,在80℃的恒温室内进行2小时干燥,最后在25℃*50%RH放置2小时后,评价其性能。
实施例3
一种耐黄变的热塑性聚氨酯发泡材料制备方法,包括热塑性聚氨酯弹性体由51kg的氢化苯二亚甲基二异氰酸酯、12kg的1,4-丁二醇、100kg聚己二酸丁二醇酯二醇、受阻酚类抗氧化剂、苯并三唑类紫外线吸收剂和受阻胺类光稳定剂投入双螺杆挤出机中在150-200℃下反应制得,受阻酚类抗氧化剂具体牌号为抗氧剂Irganox1076,具体用量占其总量的0.1%,苯并三唑类紫外线吸收剂的具体牌号为Tinuvin312,具体用量占其总量的1%,受阻胺类光稳定剂用量为占其总量的2%,具体的牌号为Tinuvin622,热塑性聚氨酯弹性体粒子的软化点为125℃,邵氏硬度为85A,熔融指数为100g/10min;
取100重量份的上述热塑性聚氨酯弹性体,30重量份的氮气和500重量份的水,加入到1000L的高压反应釜中搅拌形成悬浮液,然后升温至130℃,保持压力为70bar,恒温恒压70分钟,最后将压力容器内的悬浮液排放到大气环境中,干燥处理,得到耐黄变的热塑性聚氨酯发泡材料的颗粒物,所述热塑性聚氨酯发泡材料密度为0.15g/cm3,泡孔尺寸为100-120um;
将上述得到的热塑性聚氨酯发泡材料填充到长300mm*宽250mm*厚50mm的模具中。采用2bar的水蒸气沿模具厚度方向压缩10%使热塑性聚氨酯发泡材料粘结成型,最终得到模塑泡沫制品。将所得到的泡沫制品在50℃*50%RH下放置2小时之后,在80℃的恒温室内进行2小时干燥,最后在25℃*50%RH放置2小时后,评价其性能。
实施例4
一种耐黄变的热塑性聚氨酯发泡材料制备方法,包括热塑性聚氨酯弹性体由45kg的氢化二苯基甲烷二异氰酸酯、10g的1,4-丁二醇、100kg的聚四氢呋喃多元醇、受阻酚类抗氧化剂、苯并三唑类紫外线吸收剂和受阻胺类 光稳定剂投入双螺杆挤出机中在150-200℃下反应制得,受阻酚类抗氧化剂具体牌号为抗氧剂Irganox1098,具体用量占其总量的0.1%,苯并三唑类紫外线吸收剂的具体牌号为TinuvinUV-1,具体用量占其总量的1.5%,受阻胺类光稳定剂用量为占其总量的3%,具体的牌号为Tinuvin944,热塑性聚氨酯弹性体粒子的软化点为145℃,邵氏硬度为80A,熔融指数为50g/10min;
取100重量份的上述热塑性聚氨酯弹性体投入双螺杆挤出机中熔融,控制螺杆温度为100-180℃,然后在挤出机的末端通过增压泵注入50重量份的氮气,控制挤出机模头温度为100℃,模头压力为100bar,最后通过模头挤出发泡,再通过水下切断得到耐黄变的热塑性聚氨酯发泡材料的颗粒物,所述热塑性聚氨酯发泡材料密度为0.25g/cm3,泡孔尺寸为70-100um;
将上述得到的热塑性聚氨酯发泡材料填充到长300mm*宽250mm*厚50mm的模具中。采用2bar的水蒸气沿模具厚度方向压缩10%使热塑性聚氨酯发泡材料粘结成型,最终得到模塑泡沫制品。将所得到的泡沫制品在50℃*50%RH下放置2小时之后,在80℃的恒温室内进行2小时干燥,最后在25℃*50%RH放置2小时后,评价其性能。
实施例5
一种耐黄变的热塑性聚氨酯发泡材料制备方法,包括热塑性聚氨酯弹性体由65kg的氢化二苯基甲烷二异氰酸酯、12kg的1,4-丁二醇、100kg的聚四氢呋喃多元醇、受阻酚类抗氧化剂、苯并三唑类紫外线吸收剂和受阻胺类光稳定剂投入双螺杆挤出机中在150-200℃下反应制得,受阻酚类抗氧化剂具体牌号为抗氧剂Irgafos168,具体用量占其总量的0.3%,苯并三唑类紫外线吸收剂的具体牌号为TinuvinUV-3,具体用量占其总量的1.2%,受阻胺类光稳定剂用量为占其总量的4%,具体的牌号为Tinuvin144,热塑性聚氨酯弹性体粒子的软化点为110℃,邵氏硬度为90A,熔融指数为20g/10min;
取100重量份的上述热塑性聚氨酯弹性体投入双螺杆挤出机中熔融,控 制螺杆温度为100-180℃,然后在挤出机的末端通过增压泵注入30重量份的二氧化碳,控制挤出机模头温度为100℃,模头压力为80bar,最后通过模头挤出发泡,再通过水下切断得到耐黄变的热塑性聚氨酯发泡板型材料的颗粒物,厚度为20mm,所述热塑性聚氨酯发泡材料密度为0.25g/cm3,泡孔尺寸为100-120um;
将所得到的发泡板材在50℃*50%RH下放置2小时之后,在80℃的恒温室内进行2小时干燥,最后在25℃*50%RH放置2小时后,评价其性能。
实施例6
一种耐黄变的热塑性聚氨酯发泡材料制备方法,包括热塑性聚氨酯弹性体由55kg异佛尔酮二异氰酸酯、15kg的1,4-丁二醇、100kg的聚四氢呋喃多元醇、受阻酚类抗氧化剂、苯并三唑类紫外线吸收剂和受阻胺类光稳定剂投入双螺杆挤出机中在150-200℃下反应制得,受阻酚类抗氧化剂具体牌号为抗氧剂Irgafos618,具体用量占其总量的0.15%,苯并三唑类紫外线吸收剂的具体牌号为Tinuvin234,具体用量占其总量的1.5%,受阻胺类光稳定剂用量为占其总量的2.5%,具体的牌号为Tinuvin571,热塑性聚氨酯弹性体粒子的软化点为155℃,邵氏硬度为88A,熔融指数为40g/10min;
取100重量份的上述热塑性聚氨酯弹性体投入到200L的耐压容器中,并注入100重量份的氮气到耐压容器中,使耐压容器压力达到150bar,压力维持48h,使氮气在热塑性聚氨酯弹性体内部达到溶解平衡,物理发泡剂渗透进入热塑性聚氨酯弹性体内部,溶解平衡是指将物理发泡剂在进入热塑性聚氨酯弹性体内部后,分散均匀,然后将溶解平衡的物料置于140℃水蒸气进行加热从而使热塑性聚氨酯弹性体进行发泡,得到耐黄变的热塑性聚氨酯发泡材料的颗粒物,所述热塑性聚氨酯发泡材料密度为0.22g/cm3,泡孔尺寸为30-60um;
将上述得到的热塑性聚氨酯发泡材料填充到长300mm*宽250mm*厚50mm 的模具中。采用2bar的水蒸气沿模具厚度方向压缩10%使热塑性聚氨酯发泡材料粘结成型,最终得到模塑泡沫制品。将所得到的泡沫制品在50℃*50%RH下放置2小时之后,在80℃的恒温室内进行2小时干燥,最后在25℃*50%RH放置2小时后,评价其性能。
通过对实施例1-6制得的模塑泡沫制品进行测试,通过拉力机测试拉伸强度、断裂伸长率、撕裂强度和回弹性,根据ASDM-D1148采用340nmUVA灯,灯照射强度为0.77W/m2/nm得到耐黄变等级I,根据HG/T3689-2001A法于300h照射测试得到发泡材料的耐黄变等级II,的具体测试数据如下表:
表1
Figure PCTCN2020087850-appb-000001
由表中的数据可以看出,相比于市场现有的热塑性聚氨酯发泡的泡沫制品,根据实施例1-6制得的热塑性聚氨酯发泡的泡沫制品,在300h加速测试下的耐黄变等级为4.5-5级,耐黄变性能非常好,明显优于目前市面上的热塑性聚氨酯发泡材料制成的泡沫制品,并且本热塑性聚氨酯发泡的泡沫制品同样具有良好的回弹性和机械强度性能。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种耐黄变的热塑性聚氨酯发泡材料,其特征在于,包括由脂肪族二异氰酸酯、扩链剂、多元醇、抗氧剂、UV吸收剂和UV光稳定剂反应制得的热塑性聚氨酯弹性体,所述热塑性聚氨酯弹性体的软化点为90-160℃,邵氏硬度为40A-98A,熔融指数为5-250g/10min。
  2. 根据权利要求1所述的一种耐黄变的热塑性聚氨酯发泡材料,其特征在于,所述脂肪族二异氰酸酯包括六亚甲基二异氰酸酯(HDI)、异佛尔酮二异氰酸酯(IPDI)、苯二亚甲基二异氰酸酯(XDI)或氢化二苯基甲烷二异氰酸酯(H 12MDI)、环己基二亚甲基二异氰酸酯(H 6XDI)、环己基二异氰酸酯中的一种或多种的混合物。
  3. 根据权利要求1所述的一种耐黄变的热塑性聚氨酯发泡材料,其特征在于,所述扩链剂包括1,2-乙二醇、1,3-丙二醇、1,4-丁二醇、1,6-己二醇和环己烷二甲醇中的一种或多种混合物。
  4. 根据权利要求1所述的一种耐黄变的热塑性聚氨酯发泡材料,其特征在于,所述抗氧剂用量为占所述热塑性聚氨酯弹性体总量的0-0.3%,所述抗氧剂为受阻酚类抗氧化剂或亚磷酸酯类抗氧剂;所述UV吸收剂用量为占所述热塑新聚氨酯弹性体总量的0.5-1.5%,所述UV吸收剂为苯并三唑类紫外线吸收剂、甲脒类紫外线吸收剂、三嗪类紫外线吸收剂或苯甲酮类紫外线吸收剂;所述UV光稳定剂用量为占所述热塑性聚氨酯弹性体总量的0.5-4%,所述UV光稳定剂为受阻胺类光稳定剂。
  5. 根据权利要求1所述的一种耐黄变的热塑性聚氨酯发泡材料,其特征在于,所述多元醇包括官能度为1.9-2.1的聚碳酸酯多元醇、聚酯多元醇或聚醚多元醇中的一种或多种混合物。
  6. 一种耐黄变的热塑性聚氨酯发泡材料制备方法,其特征在于,包括 将热塑性聚氨酯弹性体,经过物理发泡工艺得到耐黄变的热塑性聚氨酯发泡材料。
  7. 根据权利要求6所述的一种耐黄变的热塑性聚氨酯发泡材料制备方法,其特征在于,所述物理发泡工艺包括将热塑性聚氨酯弹性体,物理发泡剂和水,加入到耐压容器中搅拌形成悬浮液,然后升温,保持压力为10-250bar,最后将压力容器内的悬浮液排放到大气环境中得到耐黄变的热塑性聚氨酯发泡材料。
  8. 根据权利要求6所述的一种耐黄变的热塑性聚氨酯发泡材料制备方法,其特征在于,所述物理发泡工艺包括将热塑性聚氨酯弹性体投入挤出机中熔融,然后在挤出机注入物理发泡剂,控制压力为20-300bar,最后通过模头挤出得到耐黄变的热塑性聚氨酯发泡材料。
  9. 根据权利要求6所述的一种耐黄变的热塑性聚氨酯发泡材料制备方法,其特征在于,所述物理发泡工艺包括将热塑性聚氨酯弹性体投入到耐压容器中,并注入物理发泡剂到耐压容器中,使压力达到10-350bar,压力维持1-48h,然后将物料加热,得到耐黄变的热塑性聚氨酯发泡材料。
  10. 根据权利要求7-9任一项所述的一种耐黄变的热塑性聚氨酯发泡材料制备方法,其特征在于,所述物理发泡剂包括氮气、二氧化碳、空气、甲烷、丙烷、丁烷和戊烷中的一种或几种混合物。
  11. 一种如权利要求1所述的热塑性聚氨酯发泡材料在弹性泡沫领域中的应用,特别适用于鞋材,地面覆盖物,交通工具部件,玩具等。
PCT/CN2020/087850 2019-05-16 2020-04-29 一种耐黄变的热塑性聚氨酯发泡材料及其制备方法 WO2020228540A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/594,669 US20220213253A1 (en) 2019-05-16 2020-04-29 Yellowing-resistant thermoplastic polyurethane foam material and preparation method thereof
JP2021566987A JP7361415B2 (ja) 2019-05-16 2020-04-29 耐黄変熱可塑性ポリウレタン発泡材料及びその製造方法
EP20805765.3A EP3950842A4 (en) 2019-05-16 2020-04-29 NON-YELLOWING THERMOPLASTIC POLYURETHANE FOAM MATERIAL AND METHOD OF MANUFACTURE THEREOF
KR1020217035828A KR20210151127A (ko) 2019-05-16 2020-04-29 내황변 열가소성 폴리우레탄 발포재료 및 이의 제조 방법
BR112021022846A BR112021022846A2 (pt) 2019-05-16 2020-04-29 Espuma de poliuretano termoplástico resistente ao amarelamento e seu respectivo método de produção

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910411191.3A CN110183843B (zh) 2019-05-16 2019-05-16 一种耐黄变的热塑性聚氨酯发泡材料及其制备方法
CN201910411191.3 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020228540A1 true WO2020228540A1 (zh) 2020-11-19

Family

ID=67716647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087850 WO2020228540A1 (zh) 2019-05-16 2020-04-29 一种耐黄变的热塑性聚氨酯发泡材料及其制备方法

Country Status (7)

Country Link
US (1) US20220213253A1 (zh)
EP (1) EP3950842A4 (zh)
JP (1) JP7361415B2 (zh)
KR (1) KR20210151127A (zh)
CN (1) CN110183843B (zh)
BR (1) BR112021022846A2 (zh)
WO (1) WO2020228540A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113583210A (zh) * 2021-08-12 2021-11-02 清远市番亿聚氨酯有限公司 一种耐黄变聚氨酯树脂及其制备方法
CN114380977A (zh) * 2022-01-11 2022-04-22 广东康诚新材料科技股份有限公司 Tpu鞋用材料及其制备方法
JP2022548421A (ja) * 2019-11-26 2022-11-18 美瑞新材料股▲フン▼有限公司 高平坦度熱可塑性ポリウレタン発泡製品、その調製方法及び応用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183843B (zh) * 2019-05-16 2021-12-14 美瑞新材料股份有限公司 一种耐黄变的热塑性聚氨酯发泡材料及其制备方法
CN112622392B (zh) * 2019-09-20 2023-03-10 美瑞新材料股份有限公司 一种具有表面涂层的热塑性聚氨酯泡沫制品及其制备方法
CN111607116A (zh) * 2020-06-28 2020-09-01 东莞市全丰新材料科技有限公司 一种吸塑工艺用tpu膜及其制备方法
CN112048047B (zh) * 2020-08-24 2022-05-10 郑州大学 基于氢键化吡啶的透明耐黄变高强韧自修复聚氨酯弹性体
CN113619141A (zh) * 2021-08-02 2021-11-09 苏州库凌科高分子新材料有限公司 一种水性湿法制造汽车顶棚发泡材料的工艺
CN115703896A (zh) * 2021-08-11 2023-02-17 山东雷德新材料有限公司 一种热塑性聚氨酯弹性体发泡材料及其制备方法和应用
CN114316181B (zh) * 2022-01-24 2024-03-26 美瑞新材料创新中心(山东)有限公司 一种高回弹生物降解聚氨酯发泡材料及其制备方法和应用
CN114701235B (zh) * 2022-05-10 2024-02-23 新贺工业股份有限公司 一种tpu发泡革的连续制作方法
CN115926240A (zh) * 2022-07-25 2023-04-07 万华化学集团股份有限公司 一种高支撑性热塑性聚氨酯发泡材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192452A1 (en) * 1998-07-29 2002-12-19 Basf Corporation Decorative components having an elastomeric outer surface and methods of making such components
WO2007082838A1 (de) 2006-01-18 2007-07-26 Basf Se Schaumstoffe auf basis thermoplastischer polyurethane
CN101402719A (zh) * 2008-11-18 2009-04-08 广州市鹿山化工材料有限公司 透明高弹性热塑性聚氨酯及其制备方法
WO2010136398A1 (de) 2009-05-26 2010-12-02 Basf Se Wasser als treibmittel für thermoplasten
CN102229709A (zh) 2011-05-16 2011-11-02 四川大学 无毒、无异味、可回收的环保型聚氨酯发泡型材及其制备方法
CN102276785A (zh) 2011-07-12 2011-12-14 山东奥邦聚氨酯有限公司 低密度发泡热塑性聚氨酯弹性体及其制备工艺
CN103183805A (zh) 2011-12-28 2013-07-03 北京中能江龙科技开发有限公司 一种新型发泡热塑性聚氨酯弹性体材料的制备方法
CN103408922A (zh) * 2013-08-13 2013-11-27 泉州三盛橡塑发泡鞋材有限公司 一种热塑性聚氨酯弹性体发泡材料及其制备方法
CN103709726A (zh) * 2013-12-17 2014-04-09 烟台开发区新龙华包装材料有限公司 挤出发泡热塑性聚氨酯弹性体珠粒及其制备方法
CN109438661A (zh) * 2018-09-30 2019-03-08 山东诺威聚氨酯股份有限公司 高耐黄变热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN109694494A (zh) * 2018-12-21 2019-04-30 山东一诺威聚氨酯股份有限公司 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN110183843A (zh) * 2019-05-16 2019-08-30 美瑞新材料股份有限公司 一种耐黄变的热塑性聚氨酯发泡材料及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566917A (en) * 1978-11-14 1980-05-20 Toyo Tire & Rubber Co Ltd Manufacture of non-yellowing integral polyurethane foam
EP0747416B1 (en) * 1994-12-21 2004-11-10 Showa Denko Kabushiki Kaisha Aliphatic polyester resin and process for producing the same
IN1997CH00157A (zh) 1996-10-01 2006-06-09 Recticel
JP5099878B2 (ja) * 2006-11-30 2012-12-19 花王株式会社 発泡ポリウレタンの製造方法
WO2009051114A1 (ja) * 2007-10-15 2009-04-23 Mitsui Chemicals Polyurethanes, Inc. ポリウレタン樹脂
DE102009005711A1 (de) * 2009-01-22 2010-07-29 Bayer Materialscience Ag Polyurethanvergussmassen
CN103642200B (zh) * 2013-12-20 2016-01-06 山东美瑞新材料有限公司 一种发泡热塑性聚氨酯珠粒及其制备方法
US20170174818A1 (en) * 2014-03-26 2017-06-22 Lubrizol Advanced Materials, Inc. Polyurethane foams and method for producing same
CN104558496A (zh) * 2015-02-09 2015-04-29 鲁东大学 一种热塑性聚氨酯微孔弹性体及其制备方法
EP3296337A4 (en) * 2015-05-08 2018-12-26 Mitsui Chemicals, Inc. Polyisocyanate composition, polyurethane resin and coating material
JP2017179254A (ja) * 2016-03-31 2017-10-05 株式会社ジェイエスピー 熱可塑性ポリウレタン発泡粒子及び熱可塑性ポリウレタン発泡粒子成形体
KR20190045229A (ko) * 2016-08-25 2019-05-02 바스프 에스이 마이크로파 발포
JP6338809B1 (ja) * 2016-11-17 2018-06-06 三井化学株式会社 発泡用熱可塑性ポリウレタン樹脂およびその製造方法、ならびに、成形品
CN106957404A (zh) * 2017-03-14 2017-07-18 浙江环龙新材料科技有限公司 一种耐黄变tpu薄膜及其制造方法
CN109517361B (zh) * 2017-09-20 2021-12-03 科沃斯机器人股份有限公司 一种tpu共混物及其用途

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192452A1 (en) * 1998-07-29 2002-12-19 Basf Corporation Decorative components having an elastomeric outer surface and methods of making such components
WO2007082838A1 (de) 2006-01-18 2007-07-26 Basf Se Schaumstoffe auf basis thermoplastischer polyurethane
CN101402719A (zh) * 2008-11-18 2009-04-08 广州市鹿山化工材料有限公司 透明高弹性热塑性聚氨酯及其制备方法
WO2010136398A1 (de) 2009-05-26 2010-12-02 Basf Se Wasser als treibmittel für thermoplasten
CN102229709A (zh) 2011-05-16 2011-11-02 四川大学 无毒、无异味、可回收的环保型聚氨酯发泡型材及其制备方法
CN102276785A (zh) 2011-07-12 2011-12-14 山东奥邦聚氨酯有限公司 低密度发泡热塑性聚氨酯弹性体及其制备工艺
CN103183805A (zh) 2011-12-28 2013-07-03 北京中能江龙科技开发有限公司 一种新型发泡热塑性聚氨酯弹性体材料的制备方法
CN103408922A (zh) * 2013-08-13 2013-11-27 泉州三盛橡塑发泡鞋材有限公司 一种热塑性聚氨酯弹性体发泡材料及其制备方法
CN103709726A (zh) * 2013-12-17 2014-04-09 烟台开发区新龙华包装材料有限公司 挤出发泡热塑性聚氨酯弹性体珠粒及其制备方法
CN109438661A (zh) * 2018-09-30 2019-03-08 山东诺威聚氨酯股份有限公司 高耐黄变热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN109694494A (zh) * 2018-12-21 2019-04-30 山东一诺威聚氨酯股份有限公司 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN110183843A (zh) * 2019-05-16 2019-08-30 美瑞新材料股份有限公司 一种耐黄变的热塑性聚氨酯发泡材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022548421A (ja) * 2019-11-26 2022-11-18 美瑞新材料股▲フン▼有限公司 高平坦度熱可塑性ポリウレタン発泡製品、その調製方法及び応用
JP7249713B2 (ja) 2019-11-26 2023-03-31 美瑞新材料股▲フン▼有限公司 高平坦度熱可塑性ポリウレタン発泡製品、その調製方法及び応用
CN113583210A (zh) * 2021-08-12 2021-11-02 清远市番亿聚氨酯有限公司 一种耐黄变聚氨酯树脂及其制备方法
CN114380977A (zh) * 2022-01-11 2022-04-22 广东康诚新材料科技股份有限公司 Tpu鞋用材料及其制备方法

Also Published As

Publication number Publication date
US20220213253A1 (en) 2022-07-07
CN110183843B (zh) 2021-12-14
EP3950842A1 (en) 2022-02-09
EP3950842A4 (en) 2022-12-21
JP7361415B2 (ja) 2023-10-16
JP2022533060A (ja) 2022-07-21
BR112021022846A2 (pt) 2022-03-22
CN110183843A (zh) 2019-08-30
KR20210151127A (ko) 2021-12-13

Similar Documents

Publication Publication Date Title
WO2020228540A1 (zh) 一种耐黄变的热塑性聚氨酯发泡材料及其制备方法
EP3109280B1 (en) Foamed thermoplastic polyurethane particle, and use thereof
CN108239386B (zh) 一种挤出发泡热塑性聚氨酯弹性体粒子及其制备方法
CN107828205B (zh) 一种可硫化交联的发泡聚氨酯混炼胶粒子及其制备方法和成型工艺
CN108239385B (zh) 一种热塑性聚氨酯发泡粒子及其制备方法
JP6279576B2 (ja) 複合フォーム
CN108559057B (zh) 一种新型复合发泡材料及其制备方法
US20210009805A1 (en) Non-pneumatic tire comprising polyurethane matrix and expanded thermoplastic elastomer particles
US20220033609A1 (en) High-strength eTPU
KR101726700B1 (ko) 가교 사이트가 부여된 열가소성 폴리우레탄 및 이를 이용한 가교 발포 방법
CA3131813A1 (en) Soft particle foam consisting of thermoplastic polyurethane
CN110922555B (zh) 热塑性聚氨酯及其弹性体粒子和它们的制备方法
KR20120090708A (ko) 무수축 폴리우레탄 발포체의 제조방법
WO2022161995A1 (en) Process for the manufacturing of a composite material
CN112622392B (zh) 一种具有表面涂层的热塑性聚氨酯泡沫制品及其制备方法
KR102500160B1 (ko) 동적 안락감이 향상된 자동차 시트패드, 제조방법 및 자동차 시트패드용 이소시아네이트 프리폴리머
CN113260649B (zh) 由芳族聚酯-聚氨酯多嵌段共聚物组成的颗粒泡沫
CN111534081B (zh) 一种具有自然透光性的鞋中底材料及其制备方法
US20220267553A1 (en) Novel particle foams
WO2020107136A1 (zh) 一种etpu鞋底材料及其制备方法和应用
CN115298239A (zh) 基于非伯羟基的泡沫
CN116575247A (zh) 一种tpu挤出发泡合成革及其制备方法
CN104945593B (zh) 一种薄膜级tpu切片的制备方法
JP2023544096A (ja) タイヤ用tpu製品の最適な組成物
CN111055798A (zh) 复合保险杠及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217035828

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021566987

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020805765

Country of ref document: EP

Effective date: 20211025

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021022846

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112021022846

Country of ref document: BR

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE CN 201910411191.3 DE 16/05/2019 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA CONFORME O ART. 15 DA PORTARIA 39/2021. O DOCUMENTO DE PRIORIDADE NO IDIOMA ORIGINAL ESTA DISPONIVEL NA PUBLICACAO INTERNACIONAL E NAO FOI APRESENTADA A TRADUCAO DA FOLHA DE ROSTO.

ENP Entry into the national phase

Ref document number: 112021022846

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211112