WO2020228213A1 - Oled显示面板及其制备方法 - Google Patents

Oled显示面板及其制备方法 Download PDF

Info

Publication number
WO2020228213A1
WO2020228213A1 PCT/CN2019/106653 CN2019106653W WO2020228213A1 WO 2020228213 A1 WO2020228213 A1 WO 2020228213A1 CN 2019106653 W CN2019106653 W CN 2019106653W WO 2020228213 A1 WO2020228213 A1 WO 2020228213A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
groove
substrate
display panel
via hole
Prior art date
Application number
PCT/CN2019/106653
Other languages
English (en)
French (fr)
Inventor
余赟
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/612,423 priority Critical patent/US11043651B2/en
Publication of WO2020228213A1 publication Critical patent/WO2020228213A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present invention relates to the technical field of display driving, in particular to an OLED display panel and a preparation method thereof.
  • the full screen is OLED (Organic Light-Emitting Diode (Organic Light-Emitting Diode) display technology is one of the development directions.
  • the under-screen camera technology can further increase the screen-to-body ratio on the basis of the existing technology, which is conducive to the realization of a comprehensive screen design.
  • the current under-screen camera technology mainly has two structures: through holes and blind holes.
  • the through hole design requires all the substrates in the camera area to be hollowed out to form through holes, which will cause the display area to be easily corroded by water and oxygen, and there is a problem of poor reliability. .
  • the present invention provides an OLED display panel and a preparation method thereof, so as to solve the problem that the existing OLED display panel adopts a through hole design and needs to hollow out all the substrates in the camera area, causing the display area to be easily corroded by water and oxygen, thereby affecting the product The question of reliability.
  • the present invention provides an OLED display panel with a barrier area defined thereon.
  • the display panel includes a substrate, several inorganic layers disposed on the substrate, and several organic layers disposed on the inorganic layer. , A light-emitting layer provided on the organic layer, an encapsulation layer provided on the organic light-emitting layer, and a via hole penetrating the inorganic layers and the organic layer; wherein the via hole is located In the retaining wall area, at least one groove is provided on the sidewall of the via hole, and the light-emitting layer is discontinuous at the groove; the groove is along a direction perpendicular to the thickness direction of the substrate The upper width is greater than the thickness of the light emitting layer; the packaging layer covers the light emitting layer, and the packaging layer fills the groove.
  • two opposite side walls of the via hole are respectively provided with a groove, and the openings of the two grooves are arranged oppositely.
  • the plurality of layers of the inorganic layer include a buffer layer, a gate insulating layer, and an interlayer insulating layer that are sequentially disposed away from the substrate.
  • the several organic layers include a flat layer and a pixel definition layer which are sequentially disposed away from the substrate.
  • the groove is disposed between the interlayer insulating layer and the gate insulating layer.
  • the groove is disposed between the interlayer insulating layer and the flat layer
  • the present invention provides an OLED display panel with a barrier area defined thereon.
  • the display panel includes a substrate, several inorganic layers disposed on the substrate, and several organic layers disposed on the inorganic layer. , A light-emitting layer provided on the organic layer, an encapsulation layer provided on the organic light-emitting layer, and a via hole penetrating the inorganic layers and the organic layer; wherein the via hole is located In the barrier wall area, at least one groove is opened on the side wall of the via hole, and the light-emitting layer is discontinuous at the groove.
  • the width of the groove in a direction perpendicular to the thickness direction of the substrate is greater than the thickness of the light-emitting layer.
  • the encapsulation layer covers the light-emitting layer, and the encapsulation layer fills the groove.
  • two opposite side walls of the via hole are respectively provided with a groove, and the openings of the two grooves are arranged oppositely.
  • the plurality of layers of the inorganic layer include a buffer layer, a gate insulating layer, and an interlayer insulating layer that are sequentially disposed away from the substrate.
  • the several organic layers include a flat layer and a pixel definition layer which are sequentially disposed away from the substrate.
  • the groove is disposed between the interlayer insulating layer and the gate insulating layer.
  • the groove is disposed between the interlayer insulating layer and the flat layer.
  • the present invention also provides a method for manufacturing an OLED display panel, including the following steps:
  • the first metal block is formed between adjacent inorganic layers, or between adjacent organic layers, or between the inorganic layer and the organic layer. between.
  • several layers of the inorganic layer include a buffer layer, a gate insulating layer, and an interlayer insulating layer which are sequentially disposed away from the substrate; and several organic layers include several layers of organic layers disposed away from the substrate in order.
  • the flat layer and pixel definition layer are sequentially disposed away from the substrate.
  • the S20 further includes preparing an active layer, a gate, and a source and drain located outside the barrier region on the substrate.
  • a buffer layer, a gate insulating layer, two first metal blocks arranged in the same layer at intervals, an interlayer insulating layer, and a flat layer are sequentially prepared on the substrate.
  • Layer, and pixel definition layer are sequentially prepared on the substrate.
  • the first metal block is prepared in the same layer as the gate electrode or in the same layer as the source and drain electrodes.
  • the beneficial effects of the present invention are as follows: by forming a deep via hole between the edge of the cut line of the through hole and the edge of the display area, and forming a groove on the side wall of the via hole, the organic light-emitting layer that is subsequently evaporated is at the groove Disconnect, block the continuity of the organic light-emitting layer at the through hole, thereby protecting the display area from water and oxygen erosion, and improving the reliability of the product.
  • FIG. 1 is a schematic diagram of the structure of an OLED display panel of the present invention
  • Figure 2 is a schematic diagram of an enlarged structure at A in Figure 1;
  • Figure 3 is a schematic cross-sectional structure diagram at B-B' in Figure 2;
  • FIG. 4 is a flow chart of the steps of a method for manufacturing an OLED display panel of the present invention.
  • 5 to 8 are schematic structural diagrams of the manufacturing process of the OLED display panel according to the first embodiment of the present invention.
  • FIG. 9 to 11 are schematic structural diagrams of the manufacturing process of the OLED display panel of the second embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the structure of an OLED display panel according to the second embodiment of the present invention.
  • the present invention is directed to the existing OLED display panel. Because the through-hole design is used to install the camera, all the substrates in the camera area need to be hollowed out, which will cause the display area to be corroded by water and oxygen, which will affect the technical problems of the display. Can solve this defect.
  • the present invention provides an OLED display panel, on which a barrier area DA, a through hole area THA, and a display area AA are defined.
  • the through hole area THA is used to install a camera to realize the design of the under-screen camera.
  • the blocking wall area DA is arranged between the through hole area THA and the display area AA, and the blocking wall area DA is a ring structure arranged around the through hole area THA.
  • the retaining wall area DA separates the boundary of the cutting path of the through hole area THA from the boundary of the display area AA, so as to prevent the display area from being corroded by water and oxygen due to the opening of through holes in the through hole area THA, thereby improving The reliability of the product.
  • the OLED display panel includes a substrate, several inorganic layers disposed on the substrate, several organic layers disposed on the inorganic layer, a light emitting layer disposed on the organic layer, and a light emitting layer disposed on the organic layer.
  • the encapsulation layer on the light-emitting layer.
  • the OLED display panel is provided with a via hole, the via hole penetrates through several layers of the inorganic layer and several layers of the organic layer, the via hole is arranged in the barrier wall area, and the side of the via hole At least one groove is opened on the wall, and the opening of the groove faces the via hole.
  • the width of the groove in a direction perpendicular to the thickness direction of the substrate (that is, the depth of the groove) is greater than the thickness of the light-emitting layer, thereby ensuring that the light-emitting layer is subsequently evaporated during evaporation.
  • the grooves are not continuous.
  • the encapsulation layer covers the light-emitting layer, and the thickness of the encapsulation layer is greater than the width of the groove in a direction perpendicular to the thickness direction of the substrate, thereby ensuring that the encapsulation layer is continuous at the groove , Fill the groove.
  • the several inorganic layers include a buffer layer, a gate insulating layer, and an interlayer insulating layer that are sequentially disposed away from the substrate; the several organic layers include a flat layer and a pixel defining layer disposed sequentially away from the substrate.
  • the two opposite side walls of the via hole may respectively define a groove, and the openings of the two grooves are opposite, and the two grooves are arranged in the same layer.
  • the grooves can also be arranged on different film layers, so that the subsequent light-emitting layer is disconnected in multiple places in the barrier area DA, thereby making the light-emitting layer discontinuous, and avoiding water and oxygen from eroding the display area AA The light-emitting layer.
  • the groove can be formed by etching a metal block.
  • metal devices such as gates, source and drain electrodes are formed on the substrate
  • the metal block pattern in the barrier area DA is retained, and the OLED display panel is completed
  • the array substrate of the array substrate in the barrier area DA is dry-etched to form a vertical deep via, and the metal block on at least one side of the via is retained, and the side surface of the metal block is exposed Afterwards, the metal block is etched by hydrofluoric acid or silver acid, and the groove is formed at the position of the metal block.
  • the present invention also provides a method for manufacturing an OLED display panel, which includes the following steps:
  • the first metal block is formed between the adjacent inorganic layers, or between the adjacent organic layers, or between the inorganic layer and the organic layer.
  • the metal block in the barrier region DA is retained and subsequently etched, Forming the groove; when the groove is disposed between the interlayer insulating layer and the flat layer, when the source and drain electrodes are formed, the metal blocks in the barrier region DA are retained, It is subsequently etched to form the groove.
  • OLED display panel provided by the present invention and the preparation method thereof will be described in detail below with reference to specific embodiments.
  • this embodiment provides an OLED display panel 100, including a substrate 10, several inorganic layers disposed on the substrate, a light emitting layer 80 disposed on the organic layer, and The encapsulation layer on the light-emitting layer 80 and the via 101 are described.
  • the OLED display panel 100 defines a display area AA, a through hole area THA, and a barrier area DA disposed between the display area AA and the through hole area THA.
  • the display area AA is used to realize color display
  • the through hole area THA is used to place a camera
  • the barrier area DA is used to disconnect the light-emitting layer 80 so that the light-emitting layer 80 is on the substrate. 10 is not continuous, thereby preventing water and oxygen from corroding the portion of the light-emitting layer 80 located in the display area.
  • the via hole 101 is disposed in the retaining wall area DA, the via hole 101 penetrates several layers of the inorganic layer and several layers of the organic layer, and two opposite sidewalls of the via hole 101 are provided with two opposite sides. Set the groove 102.
  • the light-emitting layer 80 is discontinuous at the groove 102, the encapsulation layer 90 covers the light-emitting layer 80, and the encapsulation layer 90 fills the groove 102.
  • the opening of the groove 102 faces the via hole 101 and communicates with the via hole 101.
  • the width of the groove 102 in a direction perpendicular to the thickness direction of the substrate 10 is greater than that of the light-emitting layer 80.
  • the thickness is such that when the organic light-emitting material of the light-emitting layer 80 is subsequently evaporated, the groove 102 is broken due to poor step coverage, forming a discontinuous film layer.
  • the width of the groove 102 in a direction perpendicular to the thickness direction of the substrate 10 is 250 nanometers
  • the thickness of the light-emitting layer 80 is 100 nanometers
  • the light-emitting layer The thickness of 80 is relatively thin, so the light-emitting layer 80 can be broken at the groove 102 to form a discontinuous film.
  • the thickness of the encapsulation layer 90 is greater than the horizontal width of the groove 102, the step coverage of the encapsulation layer 90 at the groove 102 is good, and the encapsulation layer 90 will not break at the groove 102.
  • the layer 90 fills up the groove 102.
  • the encapsulation layer 90 includes a first inorganic encapsulation layer, an organic encapsulation layer, and a second inorganic encapsulation layer sequentially stacked on the light-emitting layer 80.
  • the thickness of the first inorganic encapsulation layer is 2 microns, which is larger than the The depth of the groove 102, so that the first inorganic encapsulation layer is continuous at the groove 102 and can directly contact the inorganic layer on the substrate 10, so that when a through hole is subsequently opened in the through hole region THA It is possible to open a through hole on the inorganic layer to cut off the erosion path of water and oxygen along the light-emitting layer 80, and the erosion path of water and oxygen is cut off at the groove 102, thereby improving the device performance of the display area AA.
  • the substrate 10 includes a first polyimide substrate 11, a barrier layer 12, and a second polyimide substrate 13 stacked in sequence.
  • the several inorganic layers include a buffer layer 20, a gate insulating layer 30, and an interlayer insulating layer 40 which are sequentially disposed on the second polyimide substrate 13.
  • the several organic layers include a flat layer 50 and a pixel definition layer 60 which are sequentially disposed on the interlayer insulating layer 40.
  • the via hole 101 sequentially penetrates the buffer layer 20, the gate insulating layer 30, the interlayer insulating layer 40, the flat layer 50, and the pixel definition layer 60.
  • the OLED display panel 100 further includes an active layer, a gate, and source and drain located outside the barrier area DA, and the groove 102 is formed by etching a metal layer provided on the same layer as the gate. Forming.
  • a substrate 10 is provided, and a barrier area DA is defined on the substrate 10;
  • the substrate 10 includes a first polyimide substrate 11, a barrier layer 12, and a second polyimide substrate that are stacked in sequence. Define the through hole area THA, the retaining wall area DA, and the display area AA.
  • a buffer layer 20 On the second polyimide substrate 13, a buffer layer 20, a gate insulating layer 30, two first metal blocks 102' arranged in the same layer at intervals, an interlayer insulating layer 40, and a flat layer are sequentially prepared on the second polyimide substrate 13. 50.
  • the material of the first metal block 102' is molybdenum metal, and the width of the first metal block 102' is 250 nanometers;
  • the S20 further includes preparing an active layer, a gate, a source and a drain and other devices outside the barrier area DA on the substrate 10.
  • two of the first metal blocks 102' are arranged on the gate insulating layer 30 at intervals, and the first metal blocks 102' are prepared in the same layer as the gate metal, and the first metal blocks 102' is formed by retaining two patterned metal blocks of the gate metal in the barrier area DA during the process of depositing the gate metal.
  • the first metal block 102' may be disposed on other film layers, and when other metal devices are prepared, the patterned metal remaining in the barrier area DA, thereby forming the first Metal block 102'.
  • a second metal block may be provided on other film layers, so that multiple grooves are formed in different film layers subsequently, so that the light-emitting layer 80 that is subsequently vapor-deposited is disconnected at multiple places, thereby disconnecting the The light-emitting layer 80 is separated from other parts in the display area AA.
  • the S20 further includes preparing a support pad 70 on the pixel definition layer, and the support pad 70 is used to support a certain height to prevent the mask from damaging the light-emitting layer when the organic light-emitting material is subsequently evaporated.
  • a via hole is formed in the retaining wall area DA.
  • the via hole 101 penetrates through several layers of the inorganic layer and several layers of the organic layer, and the via hole exposes the side surface of the first metal block 102' ;
  • a photoresist 200 is coated on the surface of the pixel definition layer 60, and the above-mentioned multilayer film is exposed and etched using the same photomask, between the two first metal blocks 102' A deep via 101 is formed, and the via 101 exposes two opposite sides of the two first metal blocks 102', that is, the via 101 is located between the two opposite sides of the two first metal blocks 102' between;
  • the via 101 passes through the buffer layer 20, the gate insulating layer 30, the interlayer insulating layer 40, the flat layer 50, and the pixel definition layer 60 in sequence.
  • the first metal block 102' is etched with an etching solution to form a groove 102 on the sidewall of the via 101;
  • the etching solution can be a silver acid solution or a hydrofluoric acid solution.
  • a wet etching process is used to etch away the two first metal blocks 102' with a silver acid solution. The position of the block 102' forms the groove 102, and then the photoresist 200 is removed.
  • S50 forming a light-emitting layer 80 on the organic layer, wherein the light-emitting layer 80 is discontinuous at the groove 102 of the via 101;
  • the thickness of the light-emitting layer 80 is 100 nanometers.
  • the organic light-emitting material is vapor-deposited on the surface of the pixel defining layer 60 and the sidewall of the via hole 101. Because the film thickness of the vapor-deposited organic light-emitting material is relatively thin, the steps cover It has poor performance and breaks at the groove to form the discontinuous light-emitting layer 80.
  • S60 forming an encapsulation layer 90 on the organic layer, wherein the encapsulation layer 90 covers the light-emitting layer 80 and fills the groove 102;
  • the encapsulation layer 90 includes a first inorganic encapsulation layer, an organic encapsulation layer, and a second inorganic encapsulation layer stacked in sequence.
  • the thickness of the first inorganic encapsulation layer is 2 micrometers, and the step at the groove 102 covers
  • the encapsulation layer 90 forms a continuous film at the groove 102 and directly contacts the inorganic film layer on the substrate 10 to improve the water and oxygen barrier effect.
  • the OLED display panel 100 in the through hole area THA is laser cut to form a through hole for accommodating the camera, between the edge of the cutting track and the edge of the display area AA
  • the retaining wall area can effectively prevent water and oxygen from intruding and improve the reliability of the product.
  • the first metal block 102' is etched with silver acid to form the groove 102 without causing damage to other film layers, and thus It is ensured that the subsequent light-emitting layer 80 is disconnected at the groove 102, and the inorganic encapsulation layer of the encapsulation layer 90 has good step coverage there, so that the inorganic encapsulation layer and the substrate 10
  • the inorganic film layer is in direct contact to realize the design of opening holes on the inorganic layer and cut off the intrusion path of water and oxygen along the light-emitting layer 80.
  • the first metal block 102' is prepared in the same layer as the source and drain electrodes.
  • the groove 102 is formed at a position different from that in the first embodiment.
  • the groove 102 in this embodiment is prepared by preparing the source When the drain metal is formed, the patterned metal block in the barrier area DA is retained, and the metal block is etched away.
  • the two grooves 102 in this embodiment are arranged at intervals between the interlayer insulating layer 40 and the flat layer 50.
  • the depth of the grooves 102 is 730 nanometers, and the other structures are all It is the same as the first embodiment and will not be repeated here.
  • the film layer in the barrier area DA is exposed and etched, and the first metal block 102' A via 101 is formed therebetween, and the via 101 exposes the sidewalls of the two first metal blocks 102'.
  • the two first metal blocks 102' are etched with a hydrofluoric acid solution, and the grooves 102 are formed at the first metal blocks 102'.
  • the subsequent process steps are the same as those implemented above. The example is the same, so I won't repeat it here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种OLED显示面板包括衬底、数层无机层、数层有机层、发光层、封装层、以及过孔,过孔贯穿数层无机层和数层有机层,且过孔位于挡墙区域内,过孔的侧壁上开设有至少一凹槽,发光层在凹槽处不连续。通过在通孔与显示区之间形成一深过孔,并在过孔侧壁形成凹槽,能够阻断有机发光层在通孔处的连续性,保护显示区不受水氧的侵蚀。

Description

OLED显示面板及其制备方法 技术领域
本发明涉及显示驱动技术领域,尤其涉及一种OLED显示面板及其制备方法。
背景技术
全面屏是OLED(Organic Light-Emitting Diode,有机发光二极管)显示技术发展的方向之一,屏下摄像头技术能够在现有技术基础上进一步提升屏幕的屏占比,有利于实现全面屏设计。目前的屏下摄像头技术主要为通孔和盲孔两种结构,通孔设计需要把摄像头区域内的基板全部挖空以形成通孔,会导致显示区域易受到水氧侵蚀,存在信赖性差的问题。
技术问题
本发明提供一种OLED显示面板及其制备方法,以解决现有的OLED显示面板,由于采用通孔设计,需要将摄像头区域的基板全部挖空,导致显示区域易受到水氧侵蚀,进而影响产品的信赖性的问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明提供一种OLED显示面板,其上定义有挡墙区域,所述显示面板包括衬底、设置于所述衬底上的数层无机层、设置于所述无机层上的数层有机层、设置于所述有机层上的发光层、设置于所述有机发光层上的封装层、以及贯穿所述数层无机层和所述数层有机层的过孔;其中,所述过孔位于所述挡墙区域内,所述过孔的侧壁上开设有至少一凹槽,所述发光层在所述凹槽处不连续;所述凹槽沿着与所述衬底厚度方向垂直方向上的宽度大于所述发光层的厚度;所述封装层覆盖所述发光层,且所述封装层填充满所述凹槽。
在本发明的一实施例中,所述过孔的两相对侧壁上分别开设有一所述凹槽,且两所述凹槽的开口相对设置。
在本发明的一实施例中,数层所述无机层包括依次远离所述衬底设置的缓冲层、栅极绝缘层、层间绝缘层。
在本发明的一实施例中,数层有机层包括依次远离所述衬底设置的平坦层和像素定义层。
在本发明的一实施例中,所述凹槽设置于所述层间绝缘层与所述栅极绝缘层之间。
在本发明的一实施例中,所述凹槽设置于所述层间绝缘层与所述平坦层之间
本发明提供一种OLED显示面板,其上定义有挡墙区域,所述显示面板包括衬底、设置于所述衬底上的数层无机层、设置于所述无机层上的数层有机层、设置于所述有机层上的发光层、设置于所述有机发光层上的封装层、以及贯穿所述数层无机层和所述数层有机层的过孔;其中,所述过孔位于所述挡墙区域内,所述过孔的侧壁上开设有至少一凹槽,所述发光层在所述凹槽处不连续。
在本发明的一种实施例中,所述凹槽沿着与所述衬底厚度方向垂直的方向上的宽度大于所述发光层的厚度。
在本发明的一种实施例中,所述封装层覆盖所述发光层,且所述封装层填充满所述凹槽。
在本发明的一种实施例中,所述过孔的两相对侧壁上分别开设有一凹槽,且两所述凹槽的开口相对设置。
在本发明的一种实施例中,数层所述无机层包括依次远离所述衬底设置的缓冲层、栅极绝缘层、层间绝缘层。
在本发明的一种实施例中,数层有机层包括依次远离所述衬底设置的平坦层和像素定义层。
在本发明的一种实施例中,所述凹槽设置于所述层间绝缘层与所述栅极绝缘层之间。
在本发明的一种实施例中,所述凹槽设置于所述层间绝缘层与所述平坦层之间。
本发明还提供一种OLED显示面板的制备方法,包括以下步骤:
S10,提供一衬底,在所述衬底上定义出挡墙区域;
S20,在所述衬底上制备数层无机层、至少一第一金属块、以及数层有机层,其中,所述第一金属块位于所述挡墙区域;
S30,在所述挡墙区域内形成一过孔,所述过孔贯穿数层所述无机层和数层所述有机层,所述过孔露出所述第一金属块的侧面;
S40,利用刻蚀液对所述第一金属块进行刻蚀,在所述过孔的侧壁上形成凹槽;
S50,在所述有机层上形成发光层,其中,所述发光层在所述过孔的凹槽处不连续;
S60,在所述有机层上形成封装层,其中,所述封装层覆盖所述发光层且填充满所述凹槽。
在本发明的一种实施例中,所述第一金属块形成于相邻的所述无机层之间、或相邻的所述有机层之间、或所述无机层与所述有机层之间。
在本发明的一种实施例中,数层所述无机层包括依次远离所述衬底设置的缓冲层、栅极绝缘层、层间绝缘层;数层有机层包括依次远离所述衬底设置的平坦层和像素定义层。
在本发明的一种实施例中,所述S20还包括在所述衬底上制备位于所述挡墙区域之外的有源层、栅极和源漏极。
在本发明的一种实施例中,所述S20中,在所述衬底上依次制备缓冲层、栅极绝缘层、两间隔同层设置的所述第一金属块、层间绝缘层、平坦层、以及像素定义层。
在本发明的一种实施例中,所述第一金属块与所述栅极同层制备或者与所述源漏极同层制备。
有益效果
本发明的有益效果为:通过在通孔的切割道边缘与显示区边缘之间形成一深过孔,并在过孔侧壁形成凹槽,使得后续蒸镀的有机发光层在该凹槽处断开,阻断有机发光层在通孔处的连续性,进而保护显示区不受水氧的侵蚀,提高产品的可靠性。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明OLED显示面板的结构示意图;
图2为图1中A处的放大结构示意图;
图3为图2中B-B’处的剖面结构示意图;
图4为本发明OLED显示面板的制备方法的步骤流程图;
图5~8为本发明实施例一的OLED显示面板的制备过程的结构示意图;
图9~11为本发明实施例二的OLED显示面板的制备过程的结构示意图;
图12为本发明实施例二的OLED显示面板的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有的OLED显示面板,由于采用通孔设计来安装摄像头,需要将摄像头区域的基板全部挖空,会导致显示区域一受到水氧侵蚀,,进而影响显示的技术问题,本实施例能够解决该缺陷。
如图1和图2所示,本发明提供一种OLED显示面板,其上定义有挡墙区域DA、通孔区域THA、以及显示区域AA。
其中,所述通孔区域THA用于安装摄像头,以实现屏下摄像头的设计。所述挡墙区域DA设置于所述通孔区域THA和所述显示区域AA之间,所述挡墙区域DA为环绕所述通孔区域THA设置的圆环结构。
所述挡墙区域DA将所述通孔区域THA的切割道边界与所述显示区域AA的边界间隔开来,从而避免通孔区域THA内由于开设通孔造成显示区域受到水氧侵蚀,从而提高产品的信赖性。
所述OLED显示面板包括衬底、设置于所述衬底上的数层无机层、设置于所述无机层上的数层有机层、设置于所述有机层上的发光层、以及设置于所述发光层上的封装层。
其中,所述OLED显示面板上设置有过孔,所述过孔贯穿数层所述无机层和数层有机层,所述过孔设置于所述挡墙区域内,且所述过孔的侧壁上开设有至少一凹槽,所述凹槽的开口朝向所述过孔。
所述凹槽沿着与所述衬底厚度方向垂直的方向上的宽度(即所述凹槽的深度)大于所述发光层的厚度,进而保证后续所述发光层在蒸镀的时候,在所述凹槽处不连续。
所述封装层覆盖所述发光层,且所述封装层的厚度大于所述凹槽沿着与所述衬底厚度方向垂直方向上的宽度,进而保证所述封装层在所述凹槽处连续,填充满所述凹槽。
数层所述无机层包括依次远离所述衬底设置的缓冲层、栅极绝缘层、层间绝缘层;所述数层有机层包括依次远离所述衬底设置的平坦层和像素定义层。
所述过孔的两相对侧壁上可分别开设一所述凹槽,且两所述凹槽的开口相对,两所述凹槽同层设置。所述凹槽也可设置于不同膜层上,使得后续所述发光层在所述挡墙区域DA内多处断开,进而使得所述发光层不连续,避免水氧侵蚀显示区域AA内的所述发光层。
所述凹槽可通过刻蚀金属块形成,在所述衬底上形成栅极、源漏极等金属器件时,保留所述挡墙区域DA内的金属块图案,在完成所述OLED显示面板的阵列基板后,对所述挡墙区域DA内的阵列基板进行干刻蚀形成垂直深过孔,并且保留所述过孔的至少一侧的所述金属块,且露出所述金属块的侧面,之后利用氢氟酸或银酸刻蚀所述金属块,在所述金属块所在的位置形成所述凹槽。
如图4所示,本发明还提供一种OLED显示面板的制备方法,包括以下步骤:
S10,提供一衬底,在所述衬底上定义出挡墙区域;
S20,在所述衬底上制备数层无机层、至少一第一金属块、以及数层有机层,其中,所述第一金属块位于所述挡墙区域;
S30,在所述挡墙区域内形成一过孔,所述过孔贯穿数层所述无机层和数层所述有机层,所述过孔露出所述第一金属块的侧面;
S40,利用刻蚀液对所述第一金属块进行刻蚀,在所述过孔的侧壁上形成凹槽;
S50,在所述有机层上形成发光层,其中,所述发光层在所述过孔的凹槽处不连续;
S60,在所述有机层上形成封装层,其中,所述封装层覆盖所述发光层且填充满所述凹槽。
所述第一金属块形成于相邻的所述无机层之间、或相邻的所述有机层之间、或所述无机层与所述有机层之间。
当所述凹槽设置于所述层间绝缘层与所述栅极绝缘层之间时,则在形成栅极时,保留所述挡墙区域DA内的金属块,后续对其进行刻蚀,形成所述凹槽;当所述凹槽设置于所述层间绝缘层与所述平坦层之间时,则在形成所述源漏极时,保留所述挡墙区域DA内的金属块,后续对其进行刻蚀,形成所述凹槽。
下面结合具体实施例对本发明提供的OLED显示面板及其制备方法进行详细说明。
实施例一
如图3所示,本实施例提供一种OLED显示面板100,包括衬底10、设置于所述衬底上的数层无机层、设置于所述有机层上的发光层80、设置于所述发光层80上的封装层、以及过孔101。
所述OLED显示面板100上定义有显示区域AA、通孔区域THA、设置于所述显示区域AA和所述通孔区域THA之间的挡墙区域DA。
所述显示区域AA用于实现色彩显示,所述通孔区域THA用于放置摄像头,所述挡墙区域DA用于将所述发光层80断开,使得所述发光层80在所述衬底10上不连续,进而避免水氧对所述发光层80位于所述显示区域的部分造成腐蚀。
所述过孔101设置于所述挡墙区域DA内,所述过孔101贯穿数层所述无机层和数层所述有机层,所述过孔101的两相对侧壁上开设有两相对设置的凹槽102。
所述发光层80在所述凹槽102处不连续,所述封装层90覆盖所述发光层80,且所述封装层90填充满所述凹槽102。
所述凹槽102的开口朝向所述过孔101,与所述过孔101连通,所述凹槽102的沿与所述衬底10的厚度方向垂直的方向的宽度大于所述发光层80的厚度,使得后续蒸镀所述发光层80的有机发光材料时,因台阶覆盖性差在所述凹槽102处断开,形成不连续的膜层。
在本实施例中,所述凹槽102沿与所述衬底10的厚度方向垂直的方向的宽度(即水平宽度)为250纳米,所述发光层80的厚度为100纳米,所述发光层80的厚度较薄,因此所述发光层80在所述凹槽102处能够断开,形成不连续的膜。
所述封装层90的厚度大于所述凹槽102的水平宽度,所述封装层90在所述凹槽102处的台阶覆盖性良好,在所述凹槽102处不会断开,所述封装层90填填充满所述凹槽102。
所述封装层90包括依次层叠设置于所述发光层80上的第一无机封装层、有机封装层、以及第二无机封装层,所述第一无机封装层的厚度为2微米,大于所述凹槽102的深度,因此所述第一无机封装层在所述凹槽102处连续,能够与所述衬底10上的无机层直接接触,使得后续在所述通孔区域THA开设通孔时,能够实现在无机层上开通孔,切断水氧沿所述发光层80的侵蚀路径,水氧的侵蚀路径在所述凹槽102处被截断,从而提高所述显示区域AA的器件性能。
在本实施例中,所述衬底10包括依次层叠设置的第一聚酰亚胺基板11、阻挡层12、以及第二聚酰亚胺基板13。
数层所述无机层包括依次设置于所述第二聚酰亚胺基板13上的缓冲层20、栅极绝缘层30、层间绝缘层40。
数层所述有机层包括依次设置于所述层间绝缘层40上的平坦层50和像素定义层60。
所述过孔101依次贯穿所述缓冲层20、栅极绝缘层30、层间绝缘层40、平坦层50、以及像素定义层60。
所述OLED显示面板100还包括位于所述挡墙区域DA之外的有源层、栅极以及源漏极,所述凹槽102是通过刻蚀与所述栅极同层设置的金属层而形成的。
如图5~8所示,下面详细介绍本实施例的OLED显示面板的制备方法,包括以下步骤:
S10,提供一衬底10,在所述衬底10上定义出挡墙区域DA;
如图3和图5所示,具体地,所述衬底10包括依次层叠设置的第一聚酰亚胺基板11、阻挡层12、以及第二聚酰亚胺基板,在所述衬底上定义出通孔区域THA、挡墙区域DA、以及显示区域AA。
S20,在所述衬底10上制备数层无机层、至少一第一金属块102’、以及数层有机层,其中,所述第一金属块102’位于所述挡墙区域DA;
具体地,在所述第二聚酰亚胺基板13上依次制备缓冲层20、栅极绝缘层30、两间隔同层设置的所述第一金属块102’、层间绝缘层40、平坦层50、以及像素定义层60;
所述第一金属块102’的材料为钼金属,所述第一金属块102’的宽度为250纳米;
其中,所述S20还包括在所述衬底10上制备位于所述挡墙区域DA之外的有源层、栅极、源漏极等器件。在本实施例中,两个所述第一金属块102’间隔设置于所述栅极绝缘层30上,所述第一金属块102’与栅极金属同层制备,所述第一金属块102’是在沉积栅极金属的过程中,保留该栅极金属在所述挡墙区域DA内的两块图案化的金属块而形成的。
在其他实施例中,所述第一金属块102’可设置于其他膜层上,在制备其他金属器件时,保留在所述挡墙区域DA内的图案化的金属,从而形成所述第一金属块102’。
在其他实施例中,可在其他膜层设置第二金属块,使得后续在不同膜层形成多个凹槽,进而使得后续蒸镀的所述发光层80在多处断开,从而将所述发光层80在所述显示区域AA的部分与其他部分阻隔开。
所述S20还包括在所述像素定义层上制备支撑垫70,所述支撑垫70用以支撑起一定的高度,避免后续蒸镀有机发光材料时,掩模板对发光层造成损伤。
S30,在所述挡墙区域DA内形成一过孔,所述过孔101贯穿数层所述无机层和数层所述有机层,所述过孔露出所述第一金属块102’的侧面;
如图6所示,在所述像素定义层60表面涂布一层光阻200,利用同一道光罩对上述多层膜层进行曝光和刻蚀,在两所述第一金属块102’之间形成深过孔101,且所述过孔101露出两所述第一金属块102’的两相对侧面,即所述过孔101位于所述两所述第一金属块102’的两相对侧面之间;
所述过孔101依次穿过所述缓冲层20、所述栅极绝缘层30、所述层间绝缘层40、所述平坦层50、以及所述像素定义层60。
如图7所示,S40,利用刻蚀液对所述第一金属块102’进行刻蚀,在所述过孔101的侧壁上形成凹槽102;
所述刻蚀液可为银酸溶液或氢氟酸溶液,本实施例中通过湿法刻蚀工艺,利用银酸溶液将两所述第一金属块102’刻蚀掉,在该第一金属块102’的位置形成所述凹槽102,之后,将所述光阻200去除。
如图8所示,S50,在所述有机层上形成发光层80,其中,所述发光层80在所述过孔101的凹槽102处不连续;
所述发光层80的厚度为100纳米,在所述像素定义层60表面及所述过孔101侧壁上蒸镀有机发光材料,由于蒸镀的有机发光材料的膜层厚度较薄,台阶覆盖性较差,在所述凹槽处断裂,形成不连续的所述发光层80。
如图3所示,S60,在所述有机层上形成封装层90,其中,所述封装层90覆盖所述发光层80且填充满所述凹槽102;
所述封装层90包括依次层叠设置的第一无机封装层、有机封装层、以及第二无机封装层,所述第一无机封装层的厚度为2微米,在所述凹槽102处的台阶覆盖性良好,所述封装层90在所述凹槽102处形成连续性的薄膜,与所述衬底10上的无机膜层直接接触,提高阻隔水氧的效果。
在完成所述封装层90的制备后,对所述通孔区域THA内的所述OLED显示面板100进行镭射切割,形成容纳摄像头的通孔,在切割道边缘和所述显示区域AA边缘之间设置有所述挡墙区域,能够有效地防止水氧入侵,提高产品的可靠性。
由于银酸对钼金属和无机材料的刻蚀选择比较大,用银酸刻蚀所述第一金属块102’,在形成所述凹槽102的同时,不会对其他膜层造成损坏,进而保证了后续所述发光层80在所述凹槽102处断开,又可满足所述封装层90的无机封装层在该处台阶覆盖性良好,使得无机封装层与所述衬底10上的无机膜层直接接触,实现在无机层上开通孔的设计,切断水氧沿所述发光层80的入侵路径。
实施例二
本实施例中的所述第一金属块102’与所述源漏极同层制备,所述凹槽102形成的位置与实施例一不同,本实施例中的凹槽102是通过在制备源漏极金属时,保留挡墙区域DA内的图案化的金属块,将该金属块刻蚀掉而形成的。
如图12所示,本实施例中的两所述凹槽102间隔设置于所述层间绝缘层40与所述平坦层50之间,所述凹槽102的深度为730纳米,其他结构均与实施例一相同,这里不再赘述。
如图9所示,在所述层间绝缘层40上沉积源漏极金属膜层时,保留所述挡墙区域DA内的两块图案化的金属块(即第一金属块102’)。
如图10所示,在所述衬底10上制备所述像素定义层60之后,对所述挡墙区域DA内的膜层进行曝光和刻蚀,在两所述第一金属块102’之间形成过孔101,所述过孔101露出两所述第一金属块102’的侧壁。
如图11所示,之后利用氢氟酸溶液对两所述第一金属块102’进行刻蚀,在所述第一金属块102’处形成所述凹槽102,之后的工艺步骤与上述实施例一相同,这里不再赘述。
有益效果:通过在通孔的切割道边缘与显示区边缘之间形成一深过孔,并在过孔侧壁形成凹槽,使得后续蒸镀的有机发光层在该凹槽处断开,阻断有机发光层在通孔处的连续性,进而保护显示区不受水氧的侵蚀,提高产品的可靠性。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种OLED显示面板,其中,其上定义有挡墙区域,所述显示面板包括:
    衬底;
    数层无机层,设置于所述衬底上;
    数层有机层,设置于所述无机层上;
    发光层,设置于所述有机层上;
    封装层,设置于所述发光层上;以及
    过孔,贯穿数层所述无机层和数层所述有机层;其中,
    所述过孔位于所述挡墙区域内,所述过孔的侧壁上开设有至少一凹槽,所述发光层在所述凹槽处不连续;
    所述凹槽沿着与所述衬底厚度方向垂直方向上的宽度大于所述发光层的厚度;
    所述封装层覆盖所述发光层,且所述封装层填充满所述凹槽。
  2. 根据权利要求1所述的OLED显示面板,其中,所述过孔的两相对侧壁上分别开设有一所述凹槽,且两所述凹槽的开口相对设置。
  3. 根据权利要求1所述的OLED显示面板,其中,数层所述无机层包括依次远离所述衬底设置的缓冲层、栅极绝缘层、层间绝缘层。
  4. 根据权利要求3所述的OLED显示面板,其中,数层有机层包括依次远离所述衬底设置的平坦层和像素定义层。
  5. 根据权利要求4所述的OLED显示面板,其中,所述凹槽设置于所述层间绝缘层与所述栅极绝缘层之间。
  6. 根据权利要求4所述的OLED显示面板,其中,所述凹槽设置于所述层间绝缘层与所述平坦层之间。
  7. 一种OLED显示面板,其中,其上定义有挡墙区域,所述显示面板包括:
    衬底;
    数层无机层,设置于所述衬底上;
    数层有机层,设置于所述无机层上;
    发光层,设置于所述有机层上;
    封装层,设置于所述发光层上;以及
    过孔,贯穿数层所述无机层和数层所述有机层;其中,
    所述过孔位于所述挡墙区域内,所述过孔的侧壁上开设有至少一凹槽,所述发光层在所述凹槽处不连续。
  8. 根据权利要求7所述的OLED显示面板,其中,所述凹槽沿着与所述衬底厚度方向垂直方向上的宽度大于所述发光层的厚度。
  9. 根据权利要求7所述的OLED显示面板,其中,所述封装层覆盖所述发光层,且所述封装层填充满所述凹槽。
  10. 根据权利要求7所述的OLED显示面板,其中,所述过孔的两相对侧壁上分别开设有一所述凹槽,且两所述凹槽的开口相对设置。
  11. 根据权利要求7所述的OLED显示面板,其中,数层所述无机层包括依次远离所述衬底设置的缓冲层、栅极绝缘层、层间绝缘层。
  12. 根据权利要求11所述的OLED显示面板,其中,数层有机层包括依次远离所述衬底设置的平坦层和像素定义层。
  13. 根据权利要求12所述的OLED显示面板,其中,所述凹槽设置于所述层间绝缘层与所述栅极绝缘层之间。
  14. 根据权利要求12所述的OLED显示面板,其中,所述凹槽设置于所述层间绝缘层与所述平坦层之间。
  15. 一种OLED显示面板的制备方法,包括以下步骤:
    S10,提供一衬底,在所述衬底上定义出挡墙区域;
    S20,在所述衬底上制备数层无机层、至少一第一金属块、以及数层有机层,其中,所述第一金属块位于所述挡墙区域;
    S30,在所述挡墙区域内形成一过孔,所述过孔贯穿数层所述无机层和数层所述有机层,所述过孔露出所述第一金属块的侧面;
    S40,利用刻蚀液对所述第一金属块进行刻蚀,在所述过孔的侧壁上形成凹槽;
    S50,在所述有机层上形成发光层,其中,所述发光层在所述过孔的凹槽处不连续;
    S60,在所述有机层上形成封装层,其中,所述封装层覆盖所述发光层且填充满所述凹槽。
  16. 根据权利要求15所述的制备方法,其中,所述第一金属块形成于相邻的所述无机层之间、或相邻的所述有机层之间、或所述无机层与所述有机层之间。
  17. 根据权利要求15所述的制备方法,其中,数层所述无机层包括依次远离所述衬底设置的缓冲层、栅极绝缘层、层间绝缘层;数层有机层包括依次远离所述衬底设置的平坦层和像素定义层。
  18. 根据权利要求17所述的制备方法,其中,所述S20还包括在所述衬底上制备位于所述挡墙区域之外的有源层、栅极和源漏极。
  19. 根据权利要求18所述的制备方法,其中,所述S20中,在所述衬底上依次制备缓冲层、栅极绝缘层、两间隔同层设置的所述第一金属块、层间绝缘层、平坦层、以及像素定义层。
  20. 根据权利要求19所述的制备方法,其中,所述第一金属块与所述栅极同层制备或者与所述源漏极同层制备。
PCT/CN2019/106653 2019-05-13 2019-09-19 Oled显示面板及其制备方法 WO2020228213A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/612,423 US11043651B2 (en) 2019-05-13 2019-09-19 OLED display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910393523.X 2019-05-13
CN201910393523.XA CN110224006B (zh) 2019-05-13 2019-05-13 Oled显示面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2020228213A1 true WO2020228213A1 (zh) 2020-11-19

Family

ID=67820756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106653 WO2020228213A1 (zh) 2019-05-13 2019-09-19 Oled显示面板及其制备方法

Country Status (2)

Country Link
CN (1) CN110224006B (zh)
WO (1) WO2020228213A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114120837A (zh) * 2021-11-30 2022-03-01 昆山国显光电有限公司 显示模组和移动终端
TWI773167B (zh) * 2020-12-30 2022-08-01 大陸商友達光電(昆山)有限公司 顯示面板

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200131399A (ko) * 2019-05-13 2020-11-24 삼성디스플레이 주식회사 디스플레이 패널 및 이를 포함하는 디스플레이 장치
CN110224006B (zh) * 2019-05-13 2021-06-01 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN110429118A (zh) * 2019-07-31 2019-11-08 云谷(固安)科技有限公司 显示面板及其制备方法和显示装置
CN110910755B (zh) * 2019-11-11 2021-09-03 武汉华星光电技术有限公司 显示面板母板及显示面板
CN111370589B (zh) * 2020-01-02 2023-01-06 京东方科技集团股份有限公司 具有通孔的显示屏及其形成方法
CN111244112B (zh) * 2020-01-20 2022-11-01 京东方科技集团股份有限公司 显示面板、显示装置和显示面板的制作方法
CN111463242B (zh) * 2020-04-09 2023-12-01 合肥鑫晟光电科技有限公司 一种显示面板、其制作方法及显示装置
CN111415974B (zh) * 2020-04-29 2022-10-04 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
CN111816664B (zh) * 2020-06-24 2024-02-02 合肥维信诺科技有限公司 显示面板及其制备方法
CN112164766B (zh) * 2020-09-24 2022-08-05 武汉华星光电半导体显示技术有限公司 有机发光显示基板的制法
CN112186023B (zh) * 2020-09-30 2022-07-12 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN113346028B (zh) * 2021-05-31 2024-04-19 京东方科技集团股份有限公司 一种发光器件、制备方法和显示装置
CN113690251B (zh) * 2021-08-11 2022-11-08 武汉华星光电半导体显示技术有限公司 显示面板
CN114141791B (zh) * 2021-11-19 2023-08-22 武汉华星光电半导体显示技术有限公司 显示面板、移动终端
CN114464754B (zh) * 2022-01-25 2023-05-12 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180102379A1 (en) * 2016-03-01 2018-04-12 Shenzhen China Star Optoelectronics Technology Co., Ltd. Manufacture method of array substrate and array substrate manufactured by the method
CN109671870A (zh) * 2018-12-19 2019-04-23 武汉华星光电半导体显示技术有限公司 有机发光显示装置及其制造方法
CN109742121A (zh) * 2019-01-10 2019-05-10 京东方科技集团股份有限公司 一种柔性基板及其制备方法、显示装置
CN110224006A (zh) * 2019-05-13 2019-09-10 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031648B1 (ko) * 2013-04-18 2019-10-15 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102160694B1 (ko) * 2013-11-01 2020-09-29 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN109742264B (zh) * 2019-01-08 2020-07-31 京东方科技集团股份有限公司 显示区开孔封装方法、显示区开孔封装结构及显示面板
CN109742133B (zh) * 2019-02-28 2021-04-30 云谷(固安)科技有限公司 显示面板及其制备方法和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180102379A1 (en) * 2016-03-01 2018-04-12 Shenzhen China Star Optoelectronics Technology Co., Ltd. Manufacture method of array substrate and array substrate manufactured by the method
CN109671870A (zh) * 2018-12-19 2019-04-23 武汉华星光电半导体显示技术有限公司 有机发光显示装置及其制造方法
CN109742121A (zh) * 2019-01-10 2019-05-10 京东方科技集团股份有限公司 一种柔性基板及其制备方法、显示装置
CN110224006A (zh) * 2019-05-13 2019-09-10 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773167B (zh) * 2020-12-30 2022-08-01 大陸商友達光電(昆山)有限公司 顯示面板
CN114120837A (zh) * 2021-11-30 2022-03-01 昆山国显光电有限公司 显示模组和移动终端
CN114120837B (zh) * 2021-11-30 2024-01-30 昆山国显光电有限公司 显示模组和移动终端

Also Published As

Publication number Publication date
CN110224006A (zh) 2019-09-10
CN110224006B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2020228213A1 (zh) Oled显示面板及其制备方法
CN111653595B (zh) 一种显示基板及其制作方法、显示面板
US11043651B2 (en) OLED display panel and manufacturing method thereof
WO2022047851A1 (zh) 显示面板及其制备方法
US11864413B2 (en) Display substrate and method for manufacturing the same, display device
WO2021254033A1 (zh) 柔性显示基板及其制备方法、显示装置
CN110473983B (zh) 显示面板母板和显示面板母板的制备方法
JP2006344849A (ja) 薄膜トランジスタ
WO2020113783A1 (zh) 一种显示屏的制作方法
CN110690259B (zh) 一种阵列基板、oled显示面板、掩膜板
KR20120116782A (ko) 유기발광다이오드 표시장치의 제조방법
WO2023098283A1 (zh) 显示基板及其制作方法、以及显示装置
WO2023098292A1 (zh) 显示基板及其制作方法、以及显示装置
WO2022048010A1 (zh) 显示面板及其制作方法
WO2020237829A1 (zh) 有机发光二极管显示面板及其制造方法
WO2023098285A1 (zh) 显示基板以及显示装置
WO2021027112A1 (zh) 一种显示面板及显示装置
WO2021120340A1 (zh) Oled 显示器及其制作方法
WO2022027741A1 (zh) 阵列基板、其制备方法以及显示面板
JP2020507215A (ja) アレイ基板及びその製造方法
WO2023246810A1 (zh) 显示面板、显示装置及显示面板的制作方法
WO2020007091A1 (zh) 显示面板及其制备方法,显示装置
TWI765788B (zh) 顯示面板及其製造方法
CN112928071B (zh) Oled显示面板及其制备方法
WO2020258867A1 (zh) 显示装置及其显示基板、显示基板的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928629

Country of ref document: EP

Kind code of ref document: A1