WO2020237829A1 - 有机发光二极管显示面板及其制造方法 - Google Patents

有机发光二极管显示面板及其制造方法 Download PDF

Info

Publication number
WO2020237829A1
WO2020237829A1 PCT/CN2019/099574 CN2019099574W WO2020237829A1 WO 2020237829 A1 WO2020237829 A1 WO 2020237829A1 CN 2019099574 W CN2019099574 W CN 2019099574W WO 2020237829 A1 WO2020237829 A1 WO 2020237829A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
frame area
display panel
emitting diode
organic light
Prior art date
Application number
PCT/CN2019/099574
Other languages
English (en)
French (fr)
Inventor
张兴永
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/607,368 priority Critical patent/US11011591B2/en
Publication of WO2020237829A1 publication Critical patent/WO2020237829A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display technology, and in particular to an organic light emitting diode display panel and a manufacturing method thereof.
  • organic light emitting diode (OLED) display devices Compared with traditional liquid crystal displays, organic light emitting diode (OLED) display devices have the advantages of light and thin, active light emission, fast response speed, large viewing angle, wide color gamut, high brightness, high contrast, high resolution and power. With many advantages such as low power consumption, OLED display devices have attracted attention in recent years.
  • the OLED display panel is mainly composed of a thin film transistor (TFT) array, an OLED device and a packaging structure.
  • TFT array is composed of a stack of many film layers, including inorganic layers, organic layers, and metal layers.
  • the OLED device includes an anode layer, an organic light-emitting layer and a cathode layer.
  • the packaging structure is usually composed of a three-layer stack structure of inorganic film/organic film/inorganic film.
  • the interfacial adhesion between film layers Due to the diversification of stacking between film layers, the interfacial adhesion between film layers has become an important research topic for manufacturers in the OLED field.
  • the adhesion between the film layers will deteriorate, resulting in peeling between the film layers.
  • the adhesion between the metal layer and the inorganic film is more likely to weaken.
  • the pattern of the pixel defining layer in the frame area serves as a dam and does not completely cover the anode layer, so that the frame Part of the anode layer in the area is exposed.
  • the exposed part of the anode layer in the frame area will directly contact the bottom inorganic layer of the packaging structure. Due to the difference in stress between the bottommost inorganic layer and the metal anode layer in the frame area, peeling is prone to occur at the interface between them, especially under high temperature and high humidity conditions. This peeling phenomenon causes water and oxygen to invade the OLED device, affect the OLED device, shorten the service life of the OLED device, and cause the pixels to fail to display normally.
  • the purpose of the present invention is to provide an organic light emitting diode display panel and a manufacturing method thereof, so as to solve the technical problem that the OLED device of the display panel is damaged by water and oxygen intrusion in the prior art.
  • the present invention provides an organic light emitting diode display panel, which includes a substrate, a flat layer and an anode layer.
  • the substrate has an active area and a frame area.
  • the flat layer is disposed on the substrate, and the flat layer includes a plurality of spacers separated from each other in the frame area, and grooves are defined between the spacers.
  • the anode layer is disposed on the flat layer so that the anode layer is directly disposed on the bottom surface of the groove and the top surface of the spacer in the frame area, and the anode layer is on The border area is discontinuous.
  • the cross section of the spacer has an inverted trapezoid shape.
  • the organic light emitting diode display panel further includes a pixel defining layer, a photosensitive spacer, and an encapsulation layer.
  • the pixel defining layer is disposed on the anode layer, wherein the pixel defining layer includes a plurality of barrier walls separated from each other in the frame area, and the plurality of barrier walls and the plurality of spacers correspond to each other.
  • the photosensitive spacer is arranged on the retaining wall.
  • the packaging layer is provided on the substrate.
  • the encapsulation layer includes a first inorganic layer, an organic layer, and a second inorganic layer in order from bottom to top.
  • the present invention also provides a method of manufacturing an organic light emitting diode display panel, including: providing a substrate, the substrate having an active area and a frame area; forming a flat layer on the substrate, the flat layer on the The frame area includes a plurality of spacers separated from each other, and grooves are defined between the spacers; and an anode layer is formed on the flat layer, wherein the anode layer is formed in the frame area. On the bottom surface of the groove and on the top surface of the spacer, the anode layer is discontinuous in the frame area.
  • the present invention also provides an organic light emitting diode display panel, which includes a substrate, a flat layer, an anode layer, a pixel defining layer, and an organic covering layer.
  • the substrate has an active area and a frame area.
  • the flat layer is provided on the substrate.
  • the anode layer is provided on the flat layer.
  • the pixel defining layer is disposed on the anode layer, wherein the pixel defining layer includes a plurality of first retaining walls separated from each other in the frame area, and the first retaining walls are not completely in the frame area. Covering the anode layer, leaving a part of the anode layer in the frame area exposed.
  • the organic covering layer is directly arranged on the anode layer of the exposed part.
  • the flat layer includes a second retaining wall in the frame area.
  • the first retaining wall and the second retaining wall correspond to each other.
  • the organic light emitting diode display panel further includes an encapsulation layer.
  • the encapsulation layer is disposed on the organic cover layer.
  • the encapsulation layer includes a first inorganic layer, an organic layer, and a second inorganic layer in order from bottom to top.
  • the present invention provides an organic light emitting diode display panel and a manufacturing method thereof.
  • the present invention by making the anode layer disposed in the frame area discontinuous, the peeling does not extend from the frame area to the active area, thereby prolonging the service life of the OLED device.
  • an organic covering layer between the first inorganic layer of the encapsulation layer and the anode layer of the exposed part of the frame area it is possible to avoid the peeling phenomenon of the interface between the first inorganic layer and the metal anode layer, thereby protecting OLED devices are protected from damage by water and oxygen intrusion.
  • FIG. 1 is an organic light emitting diode (organic light emitting diode) provided according to an embodiment of the present invention.
  • FIG. 2A to 2G show schematic diagrams of the manufacturing process of the first structure of the organic light emitting diode display panel of FIG. 1.
  • FIG. 3 is a cross-sectional side view of a second structure of an organic light emitting diode display panel according to an embodiment of the present invention.
  • 4A to 4G show schematic diagrams of the manufacturing process of the second structure of the organic light emitting diode display panel of FIG. 3.
  • the present invention provides an organic light emitting diode display panel. Please refer to FIG. 1, which is a cross-sectional side view of a first structure of an organic light emitting diode (OLED) display panel according to an embodiment of the present invention.
  • OLED organic light emitting diode
  • the organic light emitting diode display panel 1000 includes a substrate 101, a flat layer 102 and an anode layer 202.
  • the substrate 101 has an active area AA and a frame area NA.
  • the flat layer 102 is disposed on the substrate 101, and the flat layer 102 includes a plurality of spacers 204 separated from each other in the frame area NA, and grooves 205 are defined between the spacers 204.
  • the anode layer 202 is disposed on the flat layer 102, so that the anode layer 202 is directly disposed on the bottom surface of the trench 205 and the top surface of the spacer 204 in the frame area NA, Moreover, the anode layer 202 is discontinuous in the frame area NA.
  • the active area AA is a display area, that is, an area for displaying images.
  • the frame area NA is a non-display area.
  • the organic light emitting diode display panel 1000 may further include a pixel defining layer 206, a photospacer 207, and an encapsulation layer 300.
  • the pixel defining layer 206 is disposed on the anode layer 202, wherein the pixel defining layer 206 includes a plurality of dams 208 separated from each other in the frame area NA, the dams 208 and the The spacers 204 correspond to each other.
  • the photosensitive spacer 207 is arranged on the retaining wall 208.
  • the packaging layer 300 is disposed on the substrate 101.
  • the encapsulation layer 300 includes a first inorganic layer 301, an organic layer 302, and a second inorganic layer 303 in order from bottom to top.
  • the photosensitive spacer 207 and the retaining wall 208 below it together serve as a retaining wall structure, which can prevent the organic layer 302 from overflowing during the formation of the organic layer 302 in the subsequent step.
  • the photosensitive spacer 207 can ensure that there is a certain gap between the substrate and the mask during the formation of the organic light-emitting layer 400 in the subsequent step.
  • the cross section of the spacer 204 has an inverted trapezoid shape. Therefore, when the anode layer 202 is formed on the flat layer 102, the anode layer 202 formed in the frame area NA is formed on the bottom surface of the trench 205 and the top surface of the spacer 204 , The anode layer 202 is not formed on the side surface of the spacer 204. Therefore, the anode layer 202 is discontinuous in the frame area NA.
  • the fact that the anode layer 202 is discontinuous in the frame area NA has the following advantages. Even if the anode layer 202 in the frame area NA is in direct contact with the first inorganic layer 301 (as shown in the marked area X in FIG. 1), and the interface between the anode layer 202 and the first inorganic layer 301 are in direct contact, and peeling occurs at the interface therebetween, the peeling will not reach the active area AA.
  • the expansion or extension ensures that the OLED device in the active area AA will not be damaged by the invasion of water and oxygen, and extends the service life of the OLED device.
  • the present invention also provides a method of manufacturing an organic light emitting diode display panel, the method is used to manufacture the organic light emitting diode display panel 1000 of FIG. 1.
  • the method includes the following steps.
  • a substrate 101 is provided.
  • the substrate 101 has an active area AA and a frame area NA.
  • the active area AA is a display area, that is, an area for displaying images.
  • the frame area NA is a non-display area.
  • the flat layer 102 includes a plurality of spacers 204 separated from each other in the frame area NA, and the spacers 204 define ⁇ 205 ⁇ 205.
  • this step includes first blanket deposition of a flat layer of material on the substrate 101. Then, using photolithography and etching processes, the blanket-deposited flat layer material is patterned, so that the patterned flat layer material includes a plurality of spacers 204 separated from each other in the frame area NA. As shown in the figure, the cross section of the spacer 204 has an inverted trapezoid shape.
  • a negative photoresist is used during the photolithography process.
  • an anode layer 202 is formed on the flat layer 102, wherein the anode layer 202 is formed on the bottom surface of the trench 205 and the spacer in the frame area NA. On the top surface of 204, the anode layer 202 is made discontinuous in the frame area NA.
  • this step includes first blanket depositing an anode layer material on the flat layer 102. Then, using photolithography and etching processes, the blanket-deposited anode layer material is patterned.
  • the cross section of the spacer 204 in the frame area NA has an inverted trapezoid shape
  • the anode layer material is deposited by blanket deposition
  • the anode layer 202 is deposited on the bottom surface of the trench 205 and the spacer 204 in the frame area NA.
  • the anode layer 202 is discontinuous in the frame area NA.
  • the patterned anode layer 202 has a pattern used as the anode of the OLED device in the active area AA.
  • the fact that the anode layer 202 is discontinuous in the frame area NA has the following advantages. Even if the anode layer 202 in the frame area NA is in direct contact with the first inorganic layer 301 (as shown in the marked area X in FIG. 1), and the interface between the anode layer 202 and the first inorganic layer 301 are in direct contact, and peeling occurs at the interface therebetween, the peeling will not reach the active area AA.
  • the expansion or extension ensures that the OLED device in the active area AA will not be damaged by the invasion of water and oxygen, and extends the service life of the OLED device.
  • a pixel defining layer 206 is formed on the anode layer 202, so that the pixel defining layer 206 includes a plurality of dams 208 separated from each other in the frame area NA. 208 and the spacer 204 correspond to each other.
  • this step includes first blanket deposition of a pixel defining layer material on the anode layer 202. Then, using photolithography and etching processes, the blanket-deposited pixel defining layer material is patterned.
  • the pixel defining layer material is deposited by blanket deposition, the pixel defining layer 206 is deposited in the trench 205 and on the spacer 204 in the frame area NA, so the pixel defining layer 206 includes more than one pixel defining layer in the frame area NA.
  • Two retaining walls 208 separated from each other, and the retaining wall 208 and the spacer 204 correspond to each other.
  • the patterned pixel defining layer 206 has an opening 500 in the active area AA, and the opening 500 can define the red, green, and blue sub-pixel areas.
  • a photospacer 207 is formed on the retaining wall 208.
  • this step includes first blanket depositing a photosensitive spacer material on the retaining wall 208. Then, using photolithography and etching processes, the blanket-deposited photosensitive spacer material is patterned to form the photosensitive spacer 207 on the retaining wall 208.
  • the photosensitive spacer 207 and the retaining wall 208 below it together serve as a retaining wall structure, which can prevent the organic layer 302 from overflowing during the formation of the organic layer 302 in the subsequent step.
  • the photosensitive spacer 207 can ensure that there is a certain gap between the substrate and the mask during the formation of the organic light-emitting layer 400 in the subsequent step.
  • an organic light emitting layer 400 is formed in the opening 500.
  • this step includes using inkjet printing (IJP) to print red, green, and blue inks in the openings 500 for defining red, green, and blue sub-pixels, respectively.
  • IJP inkjet printing
  • an encapsulation layer 300 is formed on the substrate 101.
  • this step includes forming a first inorganic layer 301 on the substrate 101, forming an organic layer 302 on the first inorganic layer 301, and forming a second inorganic layer 303 on the organic layer 302 .
  • the encapsulation layer 300 includes a first inorganic layer 301, an organic layer 302, and a second inorganic layer 303 in sequence from bottom to top.
  • the present invention also provides an organic light emitting diode display panel with another structure.
  • FIG. 3 is a cross-sectional side view of a second structure of an organic light emitting diode (OLED) display panel according to an embodiment of the present invention.
  • the organic light emitting diode display panel 1000 includes a substrate 101, a flat layer 102, an anode layer 202, a pixel defining layer 606 and an organic cover layer 801.
  • the substrate 101 has an active area AA and a frame area NA.
  • the flat layer 102 is disposed on the substrate 101.
  • the anode layer 202 is disposed on the flat layer 102.
  • the pixel defining layer 606 is disposed on the anode layer 202, wherein the pixel defining layer 606 includes a plurality of first retaining walls 701 separated from each other in the frame area NA.
  • the anode layer 202 is not completely covered in the frame area NA, and part of the anode layer 202 is exposed in the frame area NA.
  • the organic covering layer 801 is directly disposed on the exposed part of the anode layer 202.
  • the flat layer 102 includes a second retaining wall 702 in the frame area NA, and the first retaining wall 701 and the second retaining wall 702 correspond to each other.
  • the organic light emitting diode display panel 1000 may further include an encapsulation layer 300 disposed on the organic cover layer 801.
  • the encapsulation layer 300 includes a first inorganic layer 301, an organic layer 302, and a second inorganic layer 303 in order from bottom to top.
  • the first inorganic layer 301 of the encapsulation layer 300 is not directly disposed on the exposed part of the anode layer 202, and the first inorganic layer 301 is connected to the exposed part of the anode layer 202.
  • the organic covering layer 801 is arranged between part of the anode layer 202, that is, the first inorganic layer 301 directly contacts the organic covering layer 801 and the organic covering layer 801 directly contacts the exposed part of the anode layer 202, as shown in the marked area Y in FIG. 2.
  • the organic covering layer 801 can be used as a stress buffer layer, which can avoid the occurrence of the interface between the first inorganic layer 301 and the metal anode layer 202 due to the large stress difference Peeling phenomenon.
  • the present invention also provides a method of manufacturing an organic light emitting diode display panel, the method is used to manufacture the organic light emitting diode display panel 1000 of FIG. 3.
  • the method includes the following steps.
  • a substrate 101 is provided.
  • the substrate 101 has an active area AA and a frame area NA.
  • the active area AA is a display area, that is, an area for displaying images.
  • the frame area NA is a non-display area.
  • a flat layer 102 is formed on the substrate 101.
  • this step includes first blanket deposition of a flat layer of material on the substrate 101. Then, using photolithography and etching processes, the blanket-deposited flat layer material is patterned, so that the patterned flat layer material includes a second retaining wall 702 in the frame area NA.
  • an anode layer 202 is formed on the flat layer 102.
  • this step includes first blanket depositing an anode layer material on the flat layer 102. Then, using photolithography and etching processes, the blanket-deposited anode layer material is patterned. After patterning, the patterned anode layer has a pattern used as an anode of the OLED device in the active area AA.
  • a pixel defining layer 606 is formed on the anode layer 202, wherein the pixel defining layer 606 includes a plurality of first retaining walls 701 in the frame area NA, and the first retaining wall 701 does not completely cover the anode layer 202 in the frame area NA, so that a part of the anode layer 202 in the frame area NA is exposed.
  • this step includes first blanket depositing a pixel defining layer material on the anode layer 202. Then, using photolithography and etching processes, the blanket-deposited pixel defining layer material is patterned. After patterning, the patterned pixel defining layer 606 has an opening 500 in the active area AA, and the opening 500 can define the red, green, and blue sub-pixel areas.
  • the patterned pixel defining layer 606 forms a plurality of first retaining walls 701 in the frame area NA. For example, as shown in FIG. 2, the first retaining wall 701 is formed on the second retaining wall 702.
  • the first retaining wall 701 and the second retaining wall 702 below it together serve as a retaining wall structure, which can prevent the organic layer 302 from overflowing during the formation of the organic layer 302 in the subsequent step.
  • the first barrier wall 701 can ensure that there is a certain gap between the substrate and the mask during the formation of the organic light-emitting layer 400 in the subsequent step.
  • an organic light emitting layer 400 is formed in the opening 500.
  • this step includes using inkjet printing (IJP) to print red, green, and blue inks in the openings 500 for defining red, green, and blue sub-pixels, respectively.
  • IJP inkjet printing
  • an organic covering layer 801 is directly formed on the exposed part of the anode layer 202.
  • this step includes blanket deposition of an organic covering layer 801 material on the exposed part of the anode layer 202, so that the organic covering layer 801 directly contacts the exposed part of the anode layer 202.
  • the method may further include forming an encapsulation layer 300 on the organic cover layer 801.
  • this step includes forming a first inorganic layer 301 on the substrate 101, forming an organic layer 302 on the first inorganic layer 301, and forming a second inorganic layer 303 on the organic layer 302 .
  • the encapsulation layer 300 includes a first inorganic layer 301, an organic layer 302, and a second inorganic layer 303 in sequence from bottom to top.
  • the first inorganic layer 301 of the encapsulation layer 300 is not directly formed on the exposed part of the anode layer 202, and the first inorganic layer 301 is connected to the exposed part of the anode layer 202.
  • the organic covering layer 801 is formed between part of the anode layer 202, that is, the first inorganic layer 301 directly contacts the organic covering layer 801 and the organic covering layer 801 directly contacts the exposed part of the anode layer 202, as shown in the marked area Y in FIG. 2.
  • the organic covering layer 801 can be used as a stress buffer layer, which can avoid the occurrence of the interface between the first inorganic layer 301 and the metal anode layer 202 due to the large difference in stress between them Peeling phenomenon.
  • the present invention does not specifically limit the material of the organic covering layer 801. As long as the material of the organic covering layer 801 can be used as a stress buffer layer, the material of the organic covering layer 801 falls within the protection scope of the present invention.
  • the present invention provides an organic light emitting diode display panel and a manufacturing method thereof.
  • the peeling does not extend from the frame area to the active area, thereby prolonging the service life of the OLED device.
  • an organic cover layer in the exposed part of the anode layer in the frame area, it is possible to prevent the peeling phenomenon of the interface between the first inorganic layer and the metal anode layer, thereby protecting the OLED device from water and oxygen intrusion. And damaged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提出一种有机发光二极管显示面板及其制造方法。所述有机发光二极管显示面板包括一基板、一平坦层及一阳极层。所述基板具有一主动区域与一边框区域。所述平坦层设置在所述基板上,所述平坦层在所述边框区域中包括多个彼此分离的间隔部,所述间隔部之间定义出沟槽。所述阳极层设置在所述平坦层上。所述阳极层在所述边框区域中直接设置在所述沟槽的底表面上与所述间隔部的顶表面上,使得所述阳极层在所述边框区域中为非连续的。本发明可以解决现有技术中显示面板的OLED器件受到水氧入侵而损坏的技术问题。

Description

有机发光二极管显示面板及其制造方法 技术领域
本发明涉及显示技术领域,特别涉及一种有机发光二极管显示面板及其制造方法。
背景技术
与传统的液晶显示器相比,有机发光二极管(organic light emitting diode,OLED)显示装置具有轻薄、主动发光、响应速度快、可视角大、色域宽、亮度高、对比度高、分辨率高和功耗低等众多优点,因此OLED显示装置近几年受到人们的关注。
OLED显示面板主要是由薄膜晶体管(thin film transistor,TFT)阵列、OLED器件和封装结构构成。其中,TFT阵列是由许多膜层堆叠所构成,包括无机层、有机层、金属层等。OLED器件包括阳极层、有机发光层与阴极层。封装结构通常由无机膜/有机膜/无机膜的三层堆叠结构组成。
由于膜层之间堆叠的多样化,膜层之间的界面粘附力成为OLED领域中制造业者重要的研究课题。然而,在高温高湿条件下,膜层之间的粘附力会恶化,从而造成膜层之间的剥离(peeling)。尤其是,在高温高湿条件下,金属层与无机膜之间的粘附力更容易减弱。
更详细地说,在像素限定层形成于阳极层上后,边框区域(即非显示区)中的像素限定层的图案是作为挡墙(dam)且未完全覆盖阳极层,使得在所述边框区域中的部分阳极层裸露。在封装后,边框区域中裸露的部分阳极层会直接和封装结构的最底部无机层接触。由于边框区域中最底部无机层与金属阳极层之间的应力差异,其之间界面容易发生剥离(peeling),特别是在高温高湿条件下。这种剥离现象导致水氧入侵OLED器件,影响OELD器件、缩短OLED器件的使用寿命、造成像素无法正常显示。
因此,有必要提供一性有机发光二极管显示面板及其制造方法,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种有机发光二极管显示面板及其制造方法,以解决现有技术中显示面板的OLED器件受到水氧入侵而损坏的技术问题。
技术解决方案
为解决上述技术问题,本发明提供一种有机发光二极管显示面板,包括一基板、一平坦层及一阳极层。所述基板具有一主动区域与一边框区域。所述平坦层设置在所述基板上,所述平坦层在所述边框区域中包括多个彼此分离的间隔部,所述间隔部之间定义出沟槽。所述阳极层设置在所述平坦层上,使得所述阳极层在所述边框区域中直接设置在所述沟槽的底表面上与所述间隔部的顶表面上,且所述阳极层在所述边框区域中为非连续的。
在本发明实施例提供的有机发光二极管显示面板中,所述间隔部的截面具有倒梯形的形状。
在本发明实施例提供的有机发光二极管显示面板中,所述有机发光二极管显示面板还包括一像素限定层、一感光间隙物及一封装层。所述像素限定层设置在所述阳极层上,其中所述像素限定层在所述边框区域中包括多个彼此分离的挡墙,所述多个挡墙与所述多个间隔部彼此对应。所述感光间隙物设置在所述挡墙上。所述封装层设置在所述基板上。
在本发明实施例提供的有机发光二极管显示面板中,所述封装层由下至上依序包括一第一无机层、一有机层及一第二无机层。
本发明另提供一种制造有机发光二极管显示面板的方法,包括:提供一基板,所述基板具有一主动区域与一边框区域;形成一平坦层在所述基板上,所述平坦层在所述边框区域中包括多个彼此分离的间隔部,所述间隔部之间定义出沟槽;及形成一阳极层在所述平坦层上,其中所述阳极层在所述边框区域中是形成在所述沟槽的底表面上与所述间隔部的顶表面上,使得所述阳极层在所述边框区域中为非连续的。
本发明还提供一种有机发光二极管显示面板,包括一基板、一平坦层、一阳极层、一像素限定层及一有机覆盖层。所述基板具有一主动区域与一边框区域。所述平坦层设置在所述基板上。所述阳极层设置在所述平坦层上。所述像素限定层设置在所述阳极层上,其中所述像素限定层在所述边框区域中包括多个彼此分离的第一挡墙,所述第一挡墙在所述边框区域中未完全覆盖所述阳极层,而使得在所述边框区域中的部分的阳极层裸露。所述有机覆盖层直接设置在所述裸露的部分的阳极层上。
在本发明实施例提供的有机发光二极管显示面板中,所述平坦层在所述边框区域中包括一第二挡墙。
在本发明实施例提供的有机发光二极管显示面板中,所述第一挡墙与所述第二挡墙彼此对应。
在本发明实施例提供的有机发光二极管显示面板中,所述有机发光二极管显示面板还包括一封装层。所述封装层设置在所述有机覆盖层上。所述封装层由下至上依序包括一第一无机层、一有机层及一第二无机层。
有益效果
相较于现有技术,本发明提出一种有机发光二极管显示面板及其制造方法。根据本发明,通过使得设置在边框区域中的阳极层为非连续的,剥离不会从边框区域向主动区域扩展,因此延长OLED器件的使用寿命。另外,通过设置一有机覆盖层在封装层的第一无机层与边框区域中裸露的部分的阳极层之间,可以避免第一无机层与金属阳极层之间的界面发生剥离现象,藉此保护OLED器件免于受到水氧入侵而损坏。
附图说明
图1是根据本发明实施例提供的有机发光二极管(organic light emitting diode,OLED)显示面板的第一结构的剖面侧视图。
图2A至2G显示制造图1的有机发光二极管显示面板的第一结构的流程示意图。
图3是根据本发明实施例提供的有机发光二极管显示面板的第二结构的剖面侧视图。
图4A至4G显示制造图3的有机发光二极管显示面板的第二结构的流程示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
本发明提供了一种有机发光二极管显示面板。请参照图1,其是根据本发明实施例提供的有机发光二极管(organic light emitting diode,OLED)显示面板的第一结构的剖面侧视图。
所述有机发光二极管显示面板1000包括一基板101、一平坦层102及一阳极层202。所述基板101具有一主动区域AA与一边框区域NA。所述平坦层102设置在所述基板101上,所述平坦层102在所述边框区域NA中包括多个彼此分离的间隔部204,所述间隔部204之间定义出沟槽205。所述阳极层202设置在所述平坦层102上,使得所述阳极层202在所述边框区域NA中直接设置在所述沟槽205的底表面上与所述间隔部204的顶表面上,且所述阳极层202在所述边框区域NA中为非连续的。
所述主动区域AA即是显示区,也就是用以显示画面的区域。所述边框区域NA即是非显示区域。
根据本发明实施例,所述有机发光二极管显示面板1000还可以包括一像素限定层206、一感光间隙物(photospacer)207及一封装层300。所述像素限定层206设置在所述阳极层202上,其中所述像素限定层206在所述边框区域NA中包括多个彼此分离的挡墙(dam)208,所述挡墙208与所述间隔部204彼此对应。所述感光间隙物207设置在所述挡墙208上。所述封装层300设置在所述基板101上。
所述封装层300由下至上依序包括一第一无机层301、一有机层302及一第二无机层303。
所述感光间隙物207与其下方的挡墙208共同作为一挡墙结构,所述挡墙结构可以避免在后面步骤的有机层302形成期间有机层302向外溢出。另外,所述感光间隙物207可以保证在后面步骤的有机发光层400形成期间基板和掩模板(mask)之间具有一定间隙。
根据本发明实施例,所述间隔部204的截面具有倒梯形的形状。因此,在形成所述阳极层202于平坦层102上时,形成在所述边框区域NA中的阳极层202是形成在所述沟槽205的底表面上与所述间隔部204的顶表面上,阳极层202不会形成在所述间隔部204的侧表面上。因此阳极层202在边框区域NA中为非连续的。
所述阳极层202在所述边框区域NA中为非连续的具有以下好处。即使所述边框区域NA中的阳极层202与第一无机层301直接接触(如图1的标示区域X所示),并且其之间介面发生剥离(peeling)现象,剥离不会向主动区域AA扩展或延伸,确保了主动区域AA中的OLED器件不会受到水氧入侵而受到损坏,并延长OLED器件的使用寿命。
请参照图2A至图2G,本发明还提供了一种制造有机发光二极管显示面板的方法,所述方法是用来制造图1的有机发光二极管显示面板1000。所述方法包括以下步骤。
首先,在图2A中,提供一基板101,所述基板101具有一主动区域AA与一边框区域NA。
具体的,所述主动区域AA即是显示区,也就是用以显示画面的区域。所述边框区域NA即是非显示区域。
其次,在图2B中,形成一平坦层102在所述基板101上,所述平坦层102在所述边框区域NA中包括多个彼此分离的间隔部204,所述间隔部204之间定义出沟槽205。
具体的,该步骤包括先毯覆式沉积一平坦层的材料在所述基板101上。然后,利用光刻与蚀刻工艺,将所述毯覆式沉积的平坦层材料予以图案化,以使得图案化后的平坦层材料在所述边框区域NA中包括多个彼此分离的间隔部204。如图所示,所述间隔部204的截面具有倒梯形的形状。
为了形成具有倒梯形截面形状的间隔部204,光刻工艺期间是采用负型光阻。
接着,在图2C中,形成一阳极层202在所述平坦层102上,其中所述阳极层202在所述边框区域NA中是形成在所述沟槽205的底表面上与所述间隔部204的顶表面上,使得所述阳极层202在所述边框区域NA中为非连续的。
具体的,该步骤包括先毯覆式沉积一阳极层的材料在所述平坦层102上。然后,利用光刻与蚀刻工艺,将所述毯覆式沉积的阳极层材料予以图案化。
由于边框区域NA中的间隔部204的截面具有倒梯形的形状,在进行毯覆式沉积阳极层材料时,阳极层202在边框区域NA中是沉积在沟槽205的底表面上与间隔部204的顶表面上,使得所述阳极层202在所述边框区域NA中为非连续的。
另外,在进行图案化后,图案化后的阳极层202在所述主动区域AA中具有用以作为OLED器件的阳极的图案。
所述阳极层202在所述边框区域NA中为非连续的具有以下好处。即使所述边框区域NA中的阳极层202与第一无机层301直接接触(如图1的标示区域X所示),并且其之间介面发生剥离(peeling)现象,剥离不会向主动区域AA扩展或延伸,确保了主动区域AA中的OLED器件不会受到水氧入侵而受到损坏,并延长OLED器件的使用寿命。
在图2D中,形成一像素限定层206在所述阳极层202上,以致所述像素限定层206在所述边框区域NA中包括多个彼此分离的挡墙(dam)208,所述挡墙208与所述间隔部204彼此对应。
具体的,该步骤包括先毯覆式沉积一像素限定层的材料在所述阳极层202上。然后,利用光刻与蚀刻工艺,将所述毯覆式沉积的像素限定层材料予以图案化。在进行毯覆式沉积像素限定层材料时,像素限定层206在边框区域NA中是沉积在沟槽205中与间隔部204上,因此所述像素限定层206在所述边框区域NA中包括多个彼此分离的挡墙208,所述挡墙208与所述间隔部204彼此对应。
另外,在进行图案化后,图案化后的像素限定层206在所述主动区域AA中具有开口500,所述开口500可以限定红色、绿色和蓝色子像素的区域。
然后,在图2E中,形成一感光间隙物(photospacer)207在所述挡墙208上。
具体的,该步骤包括先毯覆式沉积一感光间隙物的材料在所述挡墙208上。然后,利用光刻与蚀刻工艺,将所述毯覆式沉积的感光间隙物材料予以图案化,以在所述挡墙208上形成所述感光间隙物207。
所述感光间隙物207与其下方的挡墙208共同作为一挡墙结构,所述挡墙结构可以避免在后面步骤的有机层302形成期间有机层302向外溢出。另外,所述感光间隙物207可以保证在后面步骤的有机发光层400形成期间基板和掩模板(mask)之间具有一定间隙。
在图2F中,形成一有机发光层400在所述开口500中。
具体的,该步骤包括利用喷墨打印方式(inkjet printing,IJP)将红色、绿色和蓝色墨水分别打印在用以限定红色、绿色和蓝色子像素的开口500中。
最后,在图2G中,形成一封装层300在所述基板101上。
具体的,该步骤包括形成一第一无机层301在所述基板101上,形成一有机层302在所述第一无机层301上,及形成一第二无机层303在所述有机层302上。
亦即,所述封装层300由下至上依序包括一第一无机层301、一有机层302及一第二无机层303。
本发明还提供另一种结构的有机发光二极管显示面板。请参照图3,其是根据本发明实施例提供的有机发光二极管(organic light emitting diode,OLED)显示面板的第二结构的剖面侧视图。
所述有机发光二极管显示面板1000包括一基板101、一平坦层102、一阳极层202、一像素限定层606和一有机覆盖层801。所述基板101具有一主动区域AA与一边框区域NA。所述平坦层102设置在所述基板101上。所述阳极层202设置在所述平坦层102上。所述像素限定层606设置在所述阳极层202上,其中所述像素限定层606在所述边框区域NA中包括多个彼此分离的第一挡墙701,所述第一挡墙701在所述边框区域NA中未完全覆盖所述阳极层202,而使得部分的阳极层202在所述边框区域NA中裸露。所述有机覆盖层801直接设置在所述裸露的部分的阳极层202上。
根据本发明实施例,所述平坦层102在所述边框区域NA中包括一第二挡墙702,所述第一挡墙701与所述第二挡墙702彼此对应。
根据本发明实施例,所述有机发光二极管显示面板1000还可以包括一封装层300,所述封装层300设置在所述有机覆盖层801上。所述封装层300由下至上依序包括一第一无机层301、一有机层302及一第二无机层303。
根据本发明,在所述边框区域NA中,所述封装层300的第一无机层301不是直接设置在所述裸露的部分的阳极层202上,所述第一无机层301与所述裸露的部分的阳极层202之间设置有所述有机覆盖层801,亦即所述第一无机层301直接接触所述有机覆盖层801且所述有机覆盖层801直接接触所述裸露的部分的阳极层202,如图2的标示区域Y所示。由于所述有机覆盖层801的材质为有机材料,所述有机覆盖层801可以作为应力缓冲层,可避免因第一无机层301与金属阳极层202之间应力差异太大导致其之间界面发生剥离(peeling)现象。
请参照图4A至图4G,本发明还提供了一种制造有机发光二极管显示面板的方法,所述方法是用来制造图3的有机发光二极管显示面板1000。所述方法包括以下步骤。
首先,在图4A中,提供一基板101,所述基板101具有一主动区域AA与一边框区域NA。
具体的,所述主动区域AA即是显示区,也就是用以显示画面的区域。所述边框区域NA即是非显示区域。
其次,在图4B中,形成一平坦层102在所述基板101上。
具体的,该步骤包括先毯覆式沉积一平坦层的材料在所述基板101上。然后,利用光刻与蚀刻工艺,将所述毯覆式沉积的平坦层材料予以图案化,以使得图案化后的平坦层材料在所述边框区域NA中包括一第二挡墙702。
接着,在图4C中,形成一阳极层202在所述平坦层102上。
具体的,该步骤包括先毯覆式沉积一阳极层的材料在所述平坦层102上。然后,利用光刻与蚀刻工艺,将所述毯覆式沉积的阳极层材料予以图案化。在进行图案化后,图案化后的阳极层在所述主动区域AA中具有用以作为OLED器件的阳极的图案。
然后,在图4D中,形成一像素限定层606在所述阳极层202上,其中所述像素限定层606在所述边框区域NA中包括多个第一挡墙701,所述第一挡墙701在所述边框区域NA中未完全覆盖所述阳极层202,而使得在所述边框区域NA中的部分的阳极层202裸露。
具体的,该步骤包括先毯覆式沉积一像素限定层的材料在所述阳极层202上。然后,利用光刻与蚀刻工艺,将所述毯覆式沉积的像素限定层材料予以图案化。进行图案化后,图案化后的像素限定层606在所述主动区域AA中具有开口500,所述开口500可以限定红色、绿色和蓝色子像素的区域。图案化后的像素限定层606在所述边框区域NA中形成多个第一挡墙701。例如,如图2所示,第一挡墙701是形成在第二挡墙702上。
所述第一挡墙701与其下方的第二挡墙702共同作为一挡墙结构,所述挡墙结构可以避免在后面步骤的有机层302形成期间有机层302向外溢出。另外,所述第一挡墙701可以保证在后面步骤的有机发光层400形成期间基板和掩模板(mask)之间具有一定间隙。
在图4E中,形成一有机发光层400在所述开口500中。
具体的,该步骤包括利用喷墨打印方式(inkjet printing,IJP)将红色、绿色和蓝色墨水分别打印在用以限定红色、绿色和蓝色子像素的开口500中。
最后,在图4F中,直接形成一有机覆盖层801在所述裸露的部分的阳极层202上。
具体的,该步骤包括毯覆式沉积一有机覆盖层801的材料在所述裸露的部分的阳极层202上,使得所述有机覆盖层801直接接触所述裸露的部分的阳极层202。
如图4G所示,所述方法还可以包括形成一封装层300在所述有机覆盖层801上。
具体的,该步骤包括形成一第一无机层301在所述基板101上,形成一有机层302在所述第一无机层301上,及形成一第二无机层303在所述有机层302上。亦即,所述封装层300由下至上依序包括一第一无机层301、一有机层302及一第二无机层303。
根据本发明,在所述边框区域NA中,所述封装层300的第一无机层301不是直接形成在所述裸露的部分的阳极层202上,所述第一无机层301与所述裸露的部分的阳极层202之间形成有所述有机覆盖层801,亦即所述第一无机层301直接接触所述有机覆盖层801且所述有机覆盖层801直接接触所述裸露的部分的阳极层202,如图2的标示区域Y所示。由于所述有机覆盖层801的材质为有机材料,所述有机覆盖层801可以作为应力缓冲层,可避免因第一无机层301与金属阳极层202之间应力差异太大导致其之间界面发生剥离(peeling)现象。
需要说明的是,本发明不对有机覆盖层801的材质作具体限定。只要有机覆盖层801的材质可以作为应力缓冲层,所述有机覆盖层801的材质即落入本发明的保护范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
相较于现有技术,本发明提出一种有机发光二极管显示面板及其制造方法。根据本发明,通过使得设置在边框区域中的阳极层为非连续的,剥离不会从边框区域向主动区域扩展,因此延长OLED器件的使用寿命。另外,通过直接设置一有机覆盖层在边框区域中裸露的部分的阳极层尚,可以避免第一无机层与金属阳极层之间的界面发生剥离现象,藉此保护OLED器件免于受到水氧入侵而损坏。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (9)

  1. 一种有机发光二极管显示面板,包括:
    一基板,所述基板具有一主动区域与一边框区域;
    一平坦层,所述平坦层设置在所述基板上,所述平坦层在所述边框区域中包括多个彼此分离的间隔部,所述间隔部之间定义出沟槽;及
    一阳极层,所述阳极层设置在所述平坦层上,使得所述阳极层在所述边框区域中直接设置在所述沟槽的底表面上与所述间隔部的顶表面上,且所述阳极层在所述边框区域中为非连续的。
  2. 根据权利要求1所述的有机发光二极管显示面板,其中,所述间隔部的截面具有倒梯形的形状。
  3. 根据权利要求1所述的有机发光二极管显示面板,还包括:
    一像素限定层,所述像素限定层设置在所述阳极层上,其中所述像素限定层在所述边框区域中包括多个彼此分离的挡墙,所述挡墙与所述间隔部彼此对应;
    一感光间隙物,所述感光间隙物设置在所述挡墙上;及
    一封装层,所述封装层设置在所述基板上。
  4. 根据权利要求3所述的有机发光二极管显示面板,其中,所述封装层由下至上依序包括一第一无机层、一有机层及一第二无机层。
  5. 一种制造有机发光二极管显示面板的方法,包括:
    提供一基板,所述基板具有一主动区域与一边框区域;
    形成一平坦层在所述基板上,所述平坦层在所述边框区域中包括多个彼此分离的间隔部,所述间隔部之间定义出沟槽;及
    形成一阳极层在所述平坦层上,其中所述阳极层在所述边框区域中是形成在所述沟槽的底表面上与所述间隔部的顶表面上,使得所述阳极层在所述边框区域中为非连续的。
  6. 一种有机发光二极管显示面板,包括:
    一基板,所述基板具有一主动区域与一边框区域;
    一平坦层,所述平坦层设置在所述基板上;
    一阳极层,所述阳极层设置在所述平坦层上;
    一像素限定层,所述像素限定层设置在所述阳极层上,其中所述像素限定层在所述边框区域中包括多个彼此分离的第一挡墙,所述第一挡墙在所述边框区域中未完全覆盖所述阳极层,而使得在所述边框区域中的部分的阳极层裸露;
    一有机覆盖层,所述有机覆盖层直接设置在所述裸露的部分的阳极层上。
  7. 根据权利要求6所述的有机发光二极管显示面板,其中,所述平坦层在所述边框区域中包括一第二挡墙。
  8. 根据权利要求7所述的有机发光二极管显示面板,其中,所述第一挡墙与所述第二挡墙彼此对应。
  9. 根据权利要求8所述的有机发光二极管显示面板,还包括:
    一封装层,所述封装层设置在所述有机覆盖层上;
    其中所述封装层由下至上依序包括一第一无机层、一有机层及一第二无机层。
PCT/CN2019/099574 2019-05-28 2019-08-07 有机发光二极管显示面板及其制造方法 WO2020237829A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/607,368 US11011591B2 (en) 2019-05-28 2019-08-07 Organic light emitting diode display panel and method for fabricating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910451474.0A CN110277508B (zh) 2019-05-28 2019-05-28 有机发光二极管显示面板及其制造方法
CN201910451474.0 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020237829A1 true WO2020237829A1 (zh) 2020-12-03

Family

ID=67960178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099574 WO2020237829A1 (zh) 2019-05-28 2019-08-07 有机发光二极管显示面板及其制造方法

Country Status (2)

Country Link
CN (1) CN110277508B (zh)
WO (1) WO2020237829A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373854A (zh) * 2021-09-15 2022-04-19 友达光电股份有限公司 显示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635067B (zh) * 2019-09-27 2022-02-22 京东方科技集团股份有限公司 一种有机发光显示面板及显示装置
CN113068416A (zh) * 2019-11-01 2021-07-02 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN111509024B (zh) * 2020-05-06 2024-02-02 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制作方法
CN111725424A (zh) * 2020-06-11 2020-09-29 武汉华星光电半导体显示技术有限公司 一种显示面板
CN113437235B (zh) * 2021-06-22 2024-04-23 京东方科技集团股份有限公司 显示基板、制备方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900681A (zh) * 2015-06-09 2015-09-09 上海天马有机发光显示技术有限公司 有机发光显示面板及其形成方法
CN107564854A (zh) * 2017-08-24 2018-01-09 京东方科技集团股份有限公司 Oled背板制作方法
CN107887405A (zh) * 2016-09-30 2018-04-06 群创光电股份有限公司 有机电激发光显示面板
CN207441754U (zh) * 2017-11-30 2018-06-01 京东方科技集团股份有限公司 一种oled显示面板、oled显示装置
KR20190030951A (ko) * 2017-09-15 2019-03-25 엘지디스플레이 주식회사 표시 장치
CN109659444A (zh) * 2018-11-29 2019-04-19 昆山国显光电有限公司 显示面板及显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677266B1 (ko) * 2010-02-12 2016-11-18 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900681A (zh) * 2015-06-09 2015-09-09 上海天马有机发光显示技术有限公司 有机发光显示面板及其形成方法
CN107887405A (zh) * 2016-09-30 2018-04-06 群创光电股份有限公司 有机电激发光显示面板
CN107564854A (zh) * 2017-08-24 2018-01-09 京东方科技集团股份有限公司 Oled背板制作方法
KR20190030951A (ko) * 2017-09-15 2019-03-25 엘지디스플레이 주식회사 표시 장치
CN207441754U (zh) * 2017-11-30 2018-06-01 京东方科技集团股份有限公司 一种oled显示面板、oled显示装置
CN109659444A (zh) * 2018-11-29 2019-04-19 昆山国显光电有限公司 显示面板及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114373854A (zh) * 2021-09-15 2022-04-19 友达光电股份有限公司 显示装置
CN114373854B (zh) * 2021-09-15 2023-07-04 友达光电股份有限公司 显示装置

Also Published As

Publication number Publication date
CN110277508A (zh) 2019-09-24
CN110277508B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
CN110277508B (zh) 有机发光二极管显示面板及其制造方法
WO2021258886A1 (zh) 一种显示面板及其制备方法和显示装置
US9722005B2 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
WO2021232984A1 (zh) 显示面板、驱动方法及显示装置
US10950632B2 (en) Array substrate, method for fabricating the same and display panel
CN109346505B (zh) 一种有机发光显示面板、其制备方法及显示装置
US9373814B2 (en) Organic light-emitting diode (OLED) display panel, pixel define layer (PDL) and preparation method thereof
US9064822B2 (en) Organic electroluminescent device and method of manufacturing the same
WO2020199445A1 (zh) 一种oled显示器件及其制备方法
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
WO2021012312A1 (zh) Oled显示面板
WO2021254033A1 (zh) 柔性显示基板及其制备方法、显示装置
WO2020224010A1 (zh) Oled 显示面板及其制备方法
WO2015032240A1 (zh) Oled阵列基板及其制造方法、显示装置
EP3327782B1 (en) Display substrate and preparation method thereof and display device
WO2020252899A1 (zh) Oled 显示面板及制备方法
WO2022048010A1 (zh) 显示面板及其制作方法
US20220115452A1 (en) Display Substrate, Display Panel, Display Device and Manufacturing Method of Display Panel
WO2020077714A1 (zh) 显示面板及其制作方法、显示模组
WO2020056809A1 (zh) 一种 woled 背板及其制备方法
WO2021093028A1 (zh) 彩膜基板及其制备方法
CN110867526B (zh) 显示基板及其制备方法、显示装置
US11011591B2 (en) Organic light emitting diode display panel and method for fabricating same
US20230165098A1 (en) Display substrate, manufacturing method thereof and three-dimensional display apparatus
WO2023173473A1 (zh) 显示面板和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930492

Country of ref document: EP

Kind code of ref document: A1