WO2020224329A1 - 一种金属件与玻璃钢的连接结构及船体 - Google Patents

一种金属件与玻璃钢的连接结构及船体 Download PDF

Info

Publication number
WO2020224329A1
WO2020224329A1 PCT/CN2020/079546 CN2020079546W WO2020224329A1 WO 2020224329 A1 WO2020224329 A1 WO 2020224329A1 CN 2020079546 W CN2020079546 W CN 2020079546W WO 2020224329 A1 WO2020224329 A1 WO 2020224329A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal piece
perforation
perforations
metal
connection structure
Prior art date
Application number
PCT/CN2020/079546
Other languages
English (en)
French (fr)
Inventor
梁明森
Original Assignee
珠海市琛龙船厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市琛龙船厂有限公司 filed Critical 珠海市琛龙船厂有限公司
Priority to KR1020217035600A priority Critical patent/KR20210145793A/ko
Priority to JP2021564344A priority patent/JP7302016B2/ja
Priority to EP20802763.1A priority patent/EP3943378A4/en
Publication of WO2020224329A1 publication Critical patent/WO2020224329A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/42Shaft brackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/24Hulls characterised by their construction of non-metallic material made predominantly of plastics
    • B63B2005/242Hulls characterised by their construction of non-metallic material made predominantly of plastics made of a composite of plastics and other structural materials, e.g. wood or metal
    • B63B2005/245Hulls characterised by their construction of non-metallic material made predominantly of plastics made of a composite of plastics and other structural materials, e.g. wood or metal made of a composite of plastics and metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/02Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2231/00Material used for some parts or elements, or for particular purposes
    • B63B2231/40Synthetic materials
    • B63B2231/52Fibre reinforced plastics materials

Definitions

  • the invention relates to the technical field of metal anti-corrosion, in particular to a connection structure of a metal piece and glass steel and a ship hull.
  • FRP is often used to coat the metal surface of the hull to prevent corrosion.
  • the specific gravity of FRP is small and the surface is smooth. It can effectively reduce resistance and increase speed. It also has good antimagnetic, sound insulation and electrical insulation properties.
  • FRP Two materials that are incompatible with metal so when used for a long time, FRP will crack or even peel off the metal surface, losing the anti-rust effect, and can only re-coat FRP on the metal surface, visible coating
  • the FRP method has a high maintenance cost, and reduces the time to ship and reduces production efficiency.
  • the first object of the present invention is to provide a connection structure between a metal piece and glass fiber reinforced plastic that is fastened by a combination.
  • the second object of the present invention is to provide a ship hull with the above-mentioned connection structure of metal parts and glass steel.
  • the present invention provides a connection structure between a metal piece and glass fiber reinforced plastic.
  • the metal piece is provided with a perforation, the perforation penetrates the metal piece, and the metal piece is provided with a first side and a second side along the axial direction of the perforation.
  • Side; FRP includes connecting fiber bundles and resin, the connecting fiber bundles pass through the perforations, the two ends of the connecting fiber bundles are respectively located at the first side of the metal piece and the second side of the metal piece, the resin is wrapped on the surface of the metal piece and the connecting fiber Outside the bundle, resin is filled in the perforations.
  • a specific solution is that the metal piece is provided with an edge around the perforation; the first end of the connecting fiber bundle is guided from the perforation around the edge to the second side of the metal piece, and the second end of the connection fiber bundle is guided from the perforation around the edge to the metal The first side of the piece.
  • the connecting fiber bundle includes a plurality of connecting fibers, the first ends of the plurality of connecting fibers are radially guided around the edge to the second side of the metal piece from the perforation, and the second ends of the plurality of connecting fibers are radially perforated. Lead around the edge to the first side of the metal piece.
  • the connecting fiber bundle uses glass fiber, carbon fiber, boron fiber, aramid fiber, alumina fiber or silicon carbide fiber.
  • Another specific solution is to use epoxy resin or unsaturated resin as the resin.
  • the metal piece is provided with multiple perforations, the perforations are arranged in circular holes, the diameter of the perforation is D, the linear distance between two adjacent perforation centers is A, and A is 0.5D to 30D.
  • the metal piece is provided with multiple perforations, and the perforations are arranged in circular holes.
  • the diameter of the perforation is D.
  • the linear distance from the center of the perforation to the edge is B, and B is 0.5D to 30D.
  • the metal piece is provided with a plurality of perforations, the perforations are arranged in circular holes, the diameter of the perforation is D, the depth of the perforation is C, D is greater than or equal to 0.2C, and D is less than or equal to 30C.
  • the present invention also provides a ship hull, which is provided with any one of the above-mentioned metal parts and FRP connection structure.
  • the metal part in the connection structure between the metal part and the glass fiber reinforced plastic is a rudder blade or a stern shaft frame.
  • the connecting fiber bundle of the present invention passes through the perforation so that both ends are located on both sides, and can also connect the first end of the fiber bundle to the second side of the metal piece from the perforation edge, and the second end of the connecting fiber bundle is self-perforated.
  • the edge is led to the second side of the metal piece, and the two ends of the connecting fiber bundle are respectively wound around the metal piece, that is, the connecting fiber bundle is led from the first side of the metal piece to the second side of the metal piece or from the first side of the metal piece.
  • the two sides lead to the first side of the metal piece, which increases the coverage of the connecting fiber bundle.
  • the connecting fiber bundle is on the first side of the metal piece and the second side of the metal piece.
  • the positions of the metal parts are fixed so that the two ends of the connecting fiber bundles located on the first side of the metal part and the second side of the metal part can respectively add the resin coated on the first side of the metal part and the second side of the metal part.
  • the fibers exert a mutual tension force, so that the resin is not easy to peel off and fall off from the first side of the metal piece and the second side of the metal piece, so as to better ensure that the metal piece is not easily corroded.
  • the second ends of the plurality of connecting fibers are guided radially around the edge from the perforation to the first side of the metal piece, so that The coverage area of the connecting fiber can be maximized to cover the first side and the second side of the metal piece, so as to maximize the tension of the resin fiber on the first side and the second side of the metal piece to maximize It is chemically ensured that the resin on the first side of the metal part and the second side of the metal part will not be peeled and fallen off.
  • the rudder blades and stern shaft support need to be immersed in water during the operation of the ship, and the rudder blades and stern shaft support are arranged close to the propeller, the water flow through the rudder blades and stern shaft support is relatively turbulent, and the water flow is easy to affect the rudder blades and stern.
  • the impact of the glass fiber reinforced plastic on the shaft frame will easily cause the glass fiber reinforced plastic on the rudder blade and the stern shaft frame to peel off, causing the rudder blade and the stern shaft frame to be corroded. Therefore, the connection structure of the metal part and the glass fiber reinforced plastic is applied to the rudder blade and the stern shaft frame. It helps to ensure that the rudder blade and stern shaft frame are not corroded, and increase the service life of the rudder blade and stern shaft frame.
  • Fig. 1 is a front view of the first embodiment of the connection structure between the metal part and the glass fiber reinforced plastic of the present invention.
  • Fig. 2 is a cross-sectional view in the direction of E-E in Fig. 1.
  • Fig. 3 is a side view of the second embodiment of the connection structure between the metal piece and the glass fiber reinforced plastic of the present invention.
  • Fig. 4 is a cross-sectional view in the direction of F-F in Fig. 3.
  • Fig. 5 is a front view of the third embodiment of the connection structure between the metal piece and the glass fiber reinforced plastic of the present invention.
  • Fig. 6 is a cross-sectional view of Embodiment 4 of the connection structure between the metal part and the glass fiber reinforced plastic of the present invention.
  • the metal parts in the connection structure of the metal parts and the glass fiber reinforced plastics of this embodiment are arranged in a strip-shaped plate 11, and the strip-shaped plate 11 is surrounded by a first edge 12, wherein the strip-shaped plate
  • the edges on both sides of the strip 11 extend in the vertical direction, and along the extending direction of the strip 11, the two ends of the strip 11 are arranged in arcs respectively, that is, the first edge 12 is formed by the vertical edges on both sides. 121 and the arc edges 122 at both ends are connected.
  • the elongated board 11 includes a first side 111 and a second side 112 oppositely arranged, and the first side 111 and the second side 112 are respectively connected to each other at the first edge 12 around the elongated board 11.
  • Three first perforations 13 are provided in the elongated plate 11, the three first perforations 13 are respectively arranged in a circular shape, and the three first perforations 13 are respectively arranged in sequence along the extending direction of the elongated plate 11. It can be seen that each first perforation 13 is surrounded by a first edge 12.
  • Each first through hole 13 penetrates from the first side surface 111 to the second side surface 112 respectively.
  • the intervals between the centers of the three first perforations 13 are equal.
  • the distance from the center of each first perforation 13 to the vertical edges 121 on both sides is equal.
  • the distances from the center of the first perforation 13 at both ends to the arc edges 122 at both ends of the strip plate 11 are respectively equal.
  • the diameter of the first perforation 13 is D1
  • the linear distance between the centers of two adjacent first perforations 13 is A1
  • along the direction perpendicular to the first edge 12 the center of the first perforation 13 to the first edge
  • the linear distance of 12 is B1
  • the hole depth of the first perforation 13 is C1.
  • A1 is 0.5D1 to 30D1, preferably, A1 is D1 to 3D1.
  • B1 is 0.5D1 to 30D1, preferably B1 is D1 to 3D1.
  • D1 is greater than or equal to 0.2C1, and D1 is less than or equal to 30C1.
  • D1 is greater than or equal to C1, and D1 is less than or equal to 10C1.
  • the glass fiber reinforced plastic in the connection structure of the metal member and the glass fiber reinforced plastic of the present embodiment includes the first connecting fiber bundle and the first resin 14.
  • a first connecting fiber bundle is inserted through each first perforation 13 respectively.
  • the first connecting fiber bundle includes a plurality of first connecting fibers 15, the first ends 151 of the first connecting fibers 15 are provided on the side of the first side surface 111 of the elongated plate 11, and the second ends 152 of the first connecting fibers 15 It is arranged on the side of the second side surface 112 of the elongated plate 11.
  • the first ends 151 of the plurality of first connecting fibers 15 are drawn radially from the first perforation 13 around the first edge 12 to the side of the second side 112 of the elongated plate 11.
  • the second end 152 is led radially around the first edge 12 from the first perforation 13 to the side of the first side surface 111 of the elongated plate 11.
  • the first resin 14 is coated on the surface of the elongated plate 11, the first resin 14 is filled in each first perforation 13, and the first resin 14 and the first connecting fibers 15 are bonded to each other.
  • the first connecting fiber 15 can be one or more of glass fiber, carbon fiber, boron fiber, aramid fiber, alumina fiber or silicon carbide fiber.
  • the first resin 14 may be epoxy resin or unsaturated resin.
  • the connection structure of the metal part and FRP of the present invention is applied to the stern shaft frame, that is, the metal part in this embodiment is the stern shaft frame 21 on the hull.
  • the stern frame 21 is a double-arm stern frame, that is, the stern frame 21 is provided with a first support arm 211 and a second support arm 212, the first support arm 211 and the second support arm 212 respectively extend in an oblique direction, Along the extension direction of the first support arm 211 and the second support arm 212, one ends of the first support arm 211 and the second support arm 212 are respectively connected to the hull, and the other ends of the first support arm 211 and the second support arm 212 are mutually connected.
  • first support arm 211 and the second support arm 212 are respectively provided with second edges 23 on both sides of the second support arm 211.
  • the edges 23 are respectively separated by the connecting ends of the first support arm 211, and the second edges 23 located on both sides of the second support arm 212 are separated by the connecting ends of the second support arm 212 respectively.
  • the surfaces of the first support arm 211 and the second support arm 212 are respectively provided with a first arm surface and a second arm surface disposed oppositely.
  • the first support arm 211 as an example, the first arm surface 2111 and the second arm surface 2112 are connected to each other at the second edges 23 on both sides of the first support arm 211 respectively.
  • a plurality of second perforations 24 are provided on the first support arm 211, the second perforations 24 are arranged in a circular shape, and each second perforation 24 penetrates from the first arm surface 2111 to the second arm surface 2112 respectively.
  • the diameter of the second perforation 24 is D2, and the linear distance between the centers of two adjacent second perforations 24 is A2.
  • the straight-line distance of is B2, and the hole depth of the second perforation 24 is C2.
  • A2 is 0.5D2 to 30D2, preferably, A2 is D2 to 3D2.
  • B2 is 0.5D2 to 30D2, preferably B2 is D2 to 3D2.
  • D2 is greater than or equal to 0.2C2, and D2 is less than or equal to 30C2.
  • D2 is greater than or equal to C2, and D2 is less than or equal to 10C2.
  • the FRP in this embodiment includes a second connecting fiber bundle and a second resin 25. Each second perforation 24 is inserted with a second connecting fiber bundle.
  • the second connecting fiber bundle includes a plurality of second connecting fibers 26. The first end of the second connecting fiber 26 is located on the side of the first arm surface 2111, and the second end of the second connecting fiber 26 is located on the side of the second arm surface 2112.
  • the first ends of the plurality of second connecting fibers 26 are respectively guided radially from the second perforation 24 around the second edges 23 on both sides of the first support arm 211 to the side of the second arm surface 2112, and the plurality of second connecting fibers 26
  • the second end 261 of the second perforation 24 is guided radially around the second edges 23 on both sides of the first support arm 211 to the side of the first arm surface 2111, and then the second resin 25 is coated on the support arm surface.
  • the second perforation 24 is filled with a second resin 25, wherein the second resin 25 and the second connecting fibers 26 are bonded to each other.
  • the second connecting fiber 26 can be glass fiber, carbon fiber, boron fiber, aramid fiber, alumina fiber or silicon carbide fiber.
  • the second resin 25 may be epoxy resin or unsaturated resin.
  • the first support arm 211 is cross-sectionally taken along the H-H direction, and the cross-sectional view of the first support arm 211 is the same as the structure shown in FIG. 2.
  • the connection structure of the metal part and the glass fiber reinforced plastic of the present invention is applied to the rudder blade, that is, the metal part in this embodiment is the rudder blade 31 on the hull. Since only one end of the rudder blade 31 is connected to the hull, a third edge 32 is provided around the connecting end of the rudder blade 31.
  • the rudder blade 31 includes a third side surface 311 and a fourth side surface (not shown in the figure) which are arranged oppositely.
  • the rudder blade 31 is provided with a third perforation 33, which is arranged in a circular shape.
  • the side surface 311 penetrates to the fourth side surface.
  • the third side surface 311 and the fourth side surface are connected to each other at the third edge 32.
  • the diameter of the third perforation 33 is D3, and the linear distance between the centers of two adjacent third perforations 33 is A3. Along the direction perpendicular to the third edge 32, the center of the third perforation 33 reaches the third edge 32.
  • the straight-line distance of is B3, and the depth of the third perforation 33 is C3.
  • A3 is 0.5D3 to 30D3, preferably, A3 is D3 to 3D3.
  • B3 is 0.5D3 to 30D3, preferably, B3 is D3 to 3D3.
  • D3 is greater than or equal to 0.2C3, and D3 is less than or equal to 30C3.
  • D3 is greater than or equal to C3, and D3 is less than or equal to 10C3.
  • the FRP in this embodiment includes a third fiber bundle and a third resin (not shown in the figure), the third perforation 33 is provided with a third connecting fiber bundle, and the third connecting fiber bundle includes a plurality of third connecting fibers 34, The first end of the third connecting fiber 34 is located on the side of the third side surface 311, and the second end of the third connecting fiber 34 is located on the side of the fourth side surface.
  • the first ends of the plurality of third connecting fibers 34 are respectively guided radially from the third perforation 33 around the third edge 32 around the rudder blade 31 to the side of the fourth side surface, and the second ends 341 of the plurality of third connecting fibers 34
  • the third perforations 33 are respectively guided radially around the third edge 32 around the rudder blade 31 to the side of the third side surface 311.
  • the surface of the rudder blade 31 is coated with a third resin
  • the third hole 33 is filled with a third resin, wherein the third resin and the third connecting fiber 34 are bonded to each other.
  • the third connecting fiber 34 may be glass fiber, carbon fiber, boron fiber, aramid fiber, alumina fiber or silicon carbide fiber.
  • the third resin may be epoxy resin or unsaturated resin.
  • the rudder blade 31 is cross-sectioned along the direction I-I, and the cross-sectional view of the rudder blade 31 is the same as the structure shown in Fig. 2.
  • the metal piece 41 is provided with a plurality of perforations 43, and the connecting fiber bundles 44 pass through different perforations 43.
  • the two ends of the bundle 44 are respectively located on the first side and the second side of the metal piece. Because the length of the metal piece is longer, it is not necessary to wrap the resin 44 on the surface of the metal piece and the connecting fiber. Outside the bundle, the resin 44 is filled in the multiple perforations 43. This can also achieve the purpose of the present invention.
  • the hull of the present invention can be used for fishing boats, yachts and other ships.
  • Metal parts such as rudder blades or stern shaft frames are arranged on the hull.
  • the present invention adopts a special connection structure of metal parts and glass fiber reinforced plastics, the fiber bundles are installed in the glass fiber reinforced plastics. And resin, so that the two ends of the connecting fiber bundle can respectively exert a mutual tension force on the resin on the first side of the metal piece and the second side of the metal piece, so that the resin is not easy to peel off from the metal piece to ensure that the metal piece is not Corrosion, thereby extending the service life of the ship.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Laminated Bodies (AREA)

Abstract

一种金属件与玻璃钢的连接结构及船体,其中金属件(11、21、31、41)上设有贯穿其的穿孔(13、24、33、43),金属件(11、21、31、41)沿着穿孔(13、24、33、43)的轴向设有第一侧和第二侧。玻璃钢包括连接纤维束(15、26、34、44)和树脂(14、25、44),连接纤维束(15、26、34、44)穿过穿孔(13、24、33、43),连接纤维束(15、26、34、44)的两端分别位于金属件(11、21、31、41)的第一侧和第二侧,树脂(14、25、44)包裹在金属件(11、21、31、41)的表面和连接纤维束(15、26、34、44)外,树脂(14、25、44)填充于穿孔(13、24、33、43)中。由上述连接件构成的船体部件中的玻璃纤维不易剥离和脱落、保证金属件不易被腐蚀。

Description

一种金属件与玻璃钢的连接结构及船体 技术领域
本发明涉及金属防腐技术领域,特别涉及一种金属件与玻璃钢的连接结构及船体。
背景技术
大多数船舶都采用金属外壳。而金属在海洋环境中,受海水温度、海水含盐度、海洋大气温度、海洋大气湿度的影响,船舶很容易被腐蚀,特别是连接螺旋桨的艉轴架,由于长期浸泡于水中,且位于水流猛击处,腐蚀程度更是严重。腐蚀不仅降低了船舶钢结构和强度,缩短了船舶的使用寿命,同时还会使航行阻力增加,航速降低,影响使用性能。更为严重的是,一旦出现穿孔或开裂的情况,还会导致海损事故的发生,造成惊人的损失。
而目前常采用玻璃钢敷裹于船体金属表面的方式以防腐,玻璃钢比重小、表面光滑,可有效降低阻力、增大航速,且具有良好的抗磁、隔音、电绝缘性能等特点,然而由于玻璃钢与金属是不相溶的两种材质,故当使用时间稍长时,玻璃钢就会裂开甚至从金属表面剥落,失去防锈效果,只能再于金属表面重新敷裹玻璃钢,可见的敷裹玻璃钢的方式维护成本高,且减少了出船的时间,降低了生产效益。
发明概述
技术问题
本发明的第一目的是提供一种结合方式紧固的金属件与玻璃钢的连接结构。
本发明的第二目的是提供一种具有上述的金属件与玻璃钢的连接结构的船体。
技术解决手段
为了实现本发明的第一目的,本发明提供一种金属件与玻璃钢的连接结构,金属件上设有穿孔,穿孔贯穿金属件,金属件沿着穿孔的轴向设有第一侧和第二侧;玻璃钢包括连接纤维束和树脂,连接纤维束穿过穿孔,连接纤维束的两端分别位于金属件的第一侧和金属件的第二侧处,树脂包裹在金属件的表面和连 接纤维束外,树脂填充于穿孔中。
一个具体的方案是,金属件于穿孔的周围设有边缘;连接纤维束的第一端自穿孔绕边缘引至金属件的第二侧,连接纤维束的第二端自穿孔绕边缘引至金属件的第一侧。
一个具体的方案是,连接纤维束包括多条连接纤维,多条连接纤维的第一端自穿孔呈放射状绕边缘引至金属件的第二侧,多条连接纤维的第二端自穿孔呈放射状绕边缘引至金属件的第一侧。
再一个具体的方案是,连接纤维束采用玻璃纤维、碳纤维、硼纤维、芳纶纤维、氧化铝纤维或碳化硅纤维。
再一个具体的方案是,树脂采用环氧树脂或不饱和树脂。
再一个具体的方案是,金属件上设有多个穿孔,穿孔呈圆孔设置,穿孔的直径大小为D,相邻的两个穿孔圆心之间的直线距离大小为A,A为0.5D至30D。
再一个具体的方案是,金属件上设有多个穿孔,穿孔呈圆孔设置,穿孔的直径大小为D,沿垂直于边缘的方向,穿孔的圆心到边缘的直线距离大小为B,B为0.5D至30D。
再一个具体的方案是,金属件上设有多个穿孔,穿孔呈圆孔设置,穿孔的直径大小为D,穿孔的孔深大小为C,D大于等于0.2C,D小于等于30C。
为实现本发明的第二目的,本发明还提供了一种船体,船体上设有上述任一项所述的金属件与玻璃钢的连接结构。
一个具体的方案是,金属件与玻璃钢的连接结构中的金属件为舵叶或艉轴架。
问题的解决方案
发明的有益效果
有益效果
本发明的连接纤维束除了穿过穿孔使得两端位于两侧,且还可以连接纤维束的第一端自穿孔绕边缘引至金属件的第二侧,连接纤维束的第二端自穿孔绕边缘引至金属件的第二侧,通过连接纤维束两端分别对金属件的相互缠绕,也即连接纤维束自金属件的第一侧引至金属件的第二侧或者自金属件的第二侧引至金属件的第一侧,增大了连接纤维束的覆盖面。并且通过于金属件的表面涂覆树 脂,于穿孔中填充树脂,利用树脂与连接纤维束之间的相互粘结作用,使得连接纤维束于金属件的第一侧和金属件的第二侧上的位置固定化,使得位于金属件的第一侧和金属件的第二侧的连接纤维束的两端可分别对涂覆于金属件的第一侧和金属件的第二侧上的树脂加纤维施加相互拉紧的作用力,使得树脂不易从金属件的第一侧和金属件的第二侧上剥离和脱落,以更好地保证金属件不易被腐蚀。
并且,由于多条连接纤维的第一端自穿孔呈放射状绕边缘引至金属件的第二侧,多条连接纤维的第二端自穿孔呈放射状绕边缘引至金属件的第一侧,使得连接纤维的覆盖面积能最大化地覆盖到金属件的第一侧和第二侧上,以最大化地对位于金属件第一侧和金属件第二侧上的树脂纤维进行拉紧,以最大化地保证位于金属件第一侧和金属件第二侧上的树脂不被剥离和脱落。
此外,由于舵叶和艉轴架在船舶运作过程中需要浸泡于水中,且舵叶和艉轴架靠近螺旋桨设置,所以经过舵叶和艉轴架的水流较为湍急,水流易对舵叶和艉轴架上的玻璃钢进行冲击,易造成舵叶和艉轴架上的玻璃钢剥离,使得舵叶和艉轴架受到腐蚀,所以将该金属件与玻璃钢的连接结构应用于舵叶和艉轴架上,有助于保证舵叶和艉轴架不被腐蚀,增长舵叶和艉轴架的使用寿命。
对附图的简要说明
附图说明
图1是本发明的金属件与玻璃钢的连接结构实施例一的正视图。
图2是图1中E-E方向的剖视图。
图3是本发明的金属件与玻璃钢的连接结构实施例二的侧视图。
图4是图3中的F-F方向的剖视图。
图5是本发明的金属件与玻璃钢的连接结构实施例三的正视图。
图6是本发明的金属件与玻璃钢的连接结构实施例四的剖视图。
以下结合附图及实施例对本发明作进一步说明。
发明实施例
本发明的实施方式
实施例一:
参见图1和图2,本实施例的金属件与玻璃钢的连接结构中的金属件呈长条形板11设置,长条形板11的周围围设有第一边缘12,其中长条形板11的两侧边缘沿竖直方向延伸,沿着长条形板11的延伸方向,长条形板11的两端边缘分别呈圆弧设置,也即第一边缘12由两侧的竖直边缘121和两端的圆弧边缘122连接而成。
长条形板11包括相对设置的第一侧面111和第二侧面112,第一侧面111和第二侧面112分别于长条形板11四周的第一边缘12处相互连接。长条形板11中设有三个第一穿孔13,三个第一穿孔13分别呈圆形设置,三个第一穿孔13分别沿长条形板11的延伸方向依次排列。可见,每个第一穿孔13均被第一边缘12所围绕。每个第一穿孔13分别自第一侧面111贯通至第二侧面112。沿着长条形板11的延伸方向,三个第一穿孔13圆心之间的间隔相等。沿着垂直于长条形板11延伸方向的方向,每一个第一穿孔13的圆心到两侧的竖直边缘121的距离相等。沿着长条形板11的延伸方向,位于两端的第一穿孔13的圆心到长条形板11两端的圆弧边缘122的距离分别相等。
其中第一穿孔13的直径为D1,相邻的两个第一穿孔13圆心之间的直线距离大小为A1,沿着垂直于第一边缘12的方向,第一穿孔13的圆心到第一边缘12的直线距离大小为B1,第一穿孔13的孔深大小为C1。其中A1为0.5D1至30D1,优选地,A1为D1至3D1。B1为0.5D1至30D1,优选地,B1为D1至3D1。D1大于等于0.2C1,D1小于等于30C1,优选地,D1大于等于C1,D1小于等于10C1。
参见图1和图2,本实施例的金属件与玻璃钢的连接结构中的玻璃钢包括第一连接纤维束和第一树脂14。每个第一穿孔13中分别穿插设有第一连接纤维束。第一连接纤维束包括多条第一连接纤维15,第一连接纤维15的第一端151设于长条形板11的第一侧面111的侧方,第一连接纤维15的第二端152设于长条形板11的第二侧面112的侧方。多条第一连接纤维15的第一端151自第一穿孔13呈放射状绕四周的第一边缘12引至长条形板11的第二侧面112的侧方,多条第一连接纤维15的第二端152自第一穿孔13呈放射状绕四周的第一边缘12引至长条形板11的第一侧面111的侧方。第一树脂14涂覆于长条形板11的表面,第一树脂14填充于每个第一穿孔13中,第一树脂14与第一连接纤维15之间相互粘结。其中第一连接 纤维15可采用玻璃纤维、碳纤维、硼纤维、芳纶纤维、氧化铝纤维或碳化硅纤维中的一种或者多种。第一树脂14可采用环氧树脂或不饱和树脂。
实施例二:
参见图3和图4,将本发明的金属件与玻璃钢的连接结构应用到艉轴架上,也即本实施例中的金属件为船体上的艉轴架21。此艉轴架21为双臂艉轴架,也即艉轴架21上设有第一支撑臂211和第二支撑臂212,第一支撑臂211和第二支撑臂212分别沿斜向延伸,沿着第一支撑臂211和第二支撑臂212的延伸方向,第一支撑臂211和第二支撑臂212的一端分别与船体连接,第一支撑臂211和第二支撑臂212的另一端相互汇聚于轴毂22上。沿着第一支撑臂211和第二支撑臂212的延伸方向,第一支撑臂211和第二支撑臂212的两侧分别设有第二边缘23,位于第一支撑臂211两侧的第二边缘23分别被第一支撑臂211的连接端部所隔断,位于第二支撑臂212两侧的第二边缘23分别被第二支撑臂212的连接端部所隔断。第一支撑臂211和第二支撑臂212的表面分别设有相对设置的第一臂面和第二臂面。以第一支撑臂211为例,第一臂面2111和第二臂面2112分别于第一支撑臂211两侧的第二边缘23处相互连接。于第一支撑臂211上设有多个第二穿孔24,第二穿孔24呈圆形设置,每个第二穿孔24分别自第一臂面2111贯穿至第二臂面2112。
其中第二穿孔24的直径为D2,相邻的两个第二穿孔24圆心之间的直线距离大小为A2,沿垂直于第二边缘23的方向,第二穿孔24的圆心到第二边缘23的直线距离大小为B2,第二穿孔24的孔深大小为C2。其中A2为0.5D2至30D2,优选地,A2为D2至3D2。B2为0.5D2至30D2,优选地,B2为D2至3D2。D2大于等于0.2C2,D2小于等于30C2,优选地,D2大于等于C2,D2小于等于10C2。
本实施例中的玻璃钢包括第二连接纤维束和第二树脂25,于每个第二穿孔24中分别穿插设有第二连接纤维束,第二连接纤维束包括多条第二连接纤维26,第二连接纤维26的第一端位于第一臂面2111的侧方,第二连接纤维26的第二端位于第二臂面2112的侧方。多条第二连接纤维26的第一端分别自第二穿孔24呈放射状绕第一支撑臂211两侧的第二边缘23引至第二臂面2112的侧方,多条第二连接纤维26的第二端261分别自第二穿孔24呈放射状绕第一支撑臂211两侧的第二边缘23引至第一臂面2111的侧方,再于支撑臂表面涂覆第二树脂25,于第二穿 孔24中填充第二树脂25,其中第二树脂25与第二连接纤维26之间相互粘结。其中第二连接纤维26可采用玻璃纤维、碳纤维、硼纤维、芳纶纤维、氧化铝纤维或碳化硅纤维。第二树脂25可采用环氧树脂或不饱和树脂。参见图3,沿H-H方向对第一支撑臂211进行剖面,第一支撑臂211的剖视图与图2所示的结构相同。
实施例三:
同理地,参见图5,将本发明的金属件与玻璃钢的连接结构应用到舵叶上时,也即本实施例中的金属件为船体上的舵叶31。由于舵叶31只有一端与船体连接,围绕舵叶31连接端设有第三边缘32。舵叶31包括相对设置的第三侧面311和第四侧面(图中未示出),舵叶31上设有第三穿孔33,第三穿孔33呈圆形设置,第三穿孔33自第三侧面311贯穿至第四侧面。第三侧面311和第四侧面于第三边缘32处相互连接。
其中第三穿孔33的直径为D3,相邻的两个第三穿孔33圆心之间的直线距离大小为A3,沿垂直于第三边缘32的方向,第三穿孔33的圆心到第三边缘32的直线距离大小为B3,第三穿孔33的孔深大小为C3。其中A3为0.5D3至30D3,优选地,A3为D3至3D3。B3为0.5D3至30D3,优选地,B3为D3至3D3。D3大于等于0.2C3,D3小于等于30C3,优选地,D3大于等于C3,D3小于等于10C3。
本实施例中的玻璃钢包括第三纤维束和第三树脂(图中未示出),第三穿孔33中设有第三连接纤维束,第三连接纤维束包括多条第三连接纤维34,第三连接纤维34的第一端位于第三侧面311的侧方,第三连接纤维34的第二端位于第四侧面的侧方。多条第三连接纤维34的第一端分别自第三穿孔33呈放射状绕舵叶31周围的第三边缘32引至第四侧面的侧方,多条第三连接纤维34的第二端341分别自第三穿孔33呈放射状绕舵叶31周围的第三边缘32引至第三侧面311的侧方。再于舵叶31表面涂覆第三树脂,于第三穿孔33中填充第三树脂,其中第三树脂与第三连接纤维34之间相互粘结。其中第三连接纤维34可采用玻璃纤维、碳纤维、硼纤维、芳纶纤维、氧化铝纤维或碳化硅纤维。第三树脂可采用环氧树脂或不饱和树脂。参见图5,沿I-I方向对舵叶31进行剖面,舵叶31的剖视图与图2所示的结构相同。
实施例四:
连接纤维束除了可以卷绕在金属件的边缘外,还可以如图6所示的,金属件41设置有多个穿孔43,多个连接纤维束44除了穿过不同的穿孔43外,连接纤维束44的两端分别位于金属件的第一侧第二侧,由于金属件的长度较长,故可以不卷绕在金属件的边缘外,再将树脂44包裹在金属件的表面和连接纤维束外,树脂44填充于多个穿孔43中。这样是也是能够实现本发明的目的的。
以上所述实施例,只是本发明的较佳实例,并非来限制本发明实施范围,故凡依本发明申请专利范围所述的构造、特征及原理所做的等效变化或修饰,均应包括于本发明专利申请范围内。
工业应用性
本发明的船体可以使渔船、游艇等船舶的船体,船体上设置有舵叶或艉轴架等金属件,由于本发明采用特殊的金属件与玻璃钢的连接结构,通过玻璃钢内设置的连接纤维束以及树脂,使得连接纤维束的两端可分别对金属件第一侧和金属件第二侧上的树脂施加相互拉紧的作用力,使得树脂不易从金属件上剥离,以保证金属件不被腐蚀,从而延长了船舶的使用寿命。

Claims (10)

  1. 一种金属件与玻璃钢的连接结构,其特征在于:
    所述金属件上设有穿孔,所述穿孔贯穿所述金属件,所述金属件沿着所述穿孔的轴向设有第一侧和第二侧;
    所述玻璃钢包括连接纤维束和树脂,所述连接纤维束穿过所述穿孔,所述连接纤维束的两端分别位于所述金属件的第一侧和所述金属件的第二侧,所述树脂包裹在所述金属件的表面和所述连接纤维束外,所述树脂填充于所述穿孔中。
  2. 根据权利要求1所述的金属件与玻璃钢的连接结构,其特征在于:
    所述金属件于所述穿孔的周围设有边缘;
    所述连接纤维束的第一端自所述穿孔绕所述边缘引至所述金属件的第二侧,所述连接纤维束的第二端自所述穿孔绕所述边缘引至所述金属件的第一侧。
  3. 根据权利要求2所述的金属件与玻璃钢的连接结构,其特征在于:
    所述连接纤维束包括多条连接纤维,多条所述连接纤维的第一端自所述穿孔呈放射状绕所述边缘引至所述金属件的第二侧,多条所述连接纤维的第二端自所述穿孔呈放射状绕所述边缘引至所述金属件的第一侧。
  4. 根据权利要求1至3任一项所述的金属件与玻璃钢的连接结构,其特征在于:
    所述连接纤维束为玻璃纤维、碳纤维、硼纤维、芳纶纤维、氧化铝纤维或碳化硅纤维。
  5. 根据权利要求1至3任一项所述的金属件与玻璃钢的连接结构,其特征在于:
    所述树脂为环氧树脂或不饱和树脂。
  6. 根据权利要求1至3任一项所述的金属件与玻璃钢的连接结构,其特征在于:
    所述金属件上设有多个所述穿孔,所述穿孔呈圆孔设置,所述穿 孔的直径大小为D,相邻的两个所述穿孔圆心之间的直线距离大小为A,所述A为0.5D至30D。
  7. 根据权利要求1至3任一项所述的金属件与玻璃钢的连接结构,其特征在于:
    所述金属件上设有多个所述穿孔,所述穿孔呈圆孔设置,所述穿孔的直径大小为D,沿垂直于所述边缘的方向,所述穿孔的圆心到所述边缘的直线距离大小为B,所述B为0.5D至30D。
  8. 根据权利要求1至3任一项所述的金属件与玻璃钢的连接结构,其特征在于:
    所述金属件上设有多个所述穿孔,所述穿孔呈圆孔设置,所述穿孔的直径大小为D,所述穿孔的孔深大小为C,所述D大于等于0.2C,所述D小于等于30C。
  9. 一种船体,其特征在于:
    所述船体设有如权利要求1至8任一项所述的金属件与玻璃钢的连接结构。
  10. 根据权利要求9所述的船体,其特征在于:
    所述金属件与玻璃钢的连接结构中的所述金属件为舵叶或艉轴架。
PCT/CN2020/079546 2019-05-07 2020-03-16 一种金属件与玻璃钢的连接结构及船体 WO2020224329A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217035600A KR20210145793A (ko) 2019-05-07 2020-03-16 금속 부재와 유리 섬유 강화 플라스틱의 연결 구조 및 선체
JP2021564344A JP7302016B2 (ja) 2019-05-07 2020-03-16 金属部品と繊維強化プラスチックの接続構造及び船体
EP20802763.1A EP3943378A4 (en) 2019-05-07 2020-03-16 CONNECTION STRUCTURE BETWEEN A METAL ELEMENT AND FIBERGLASS AND A MARINE BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910375192.7 2019-05-07
CN201910375192.7A CN110015390A (zh) 2019-05-07 2019-05-07 一种金属件与玻璃钢的连接结构及船体

Publications (1)

Publication Number Publication Date
WO2020224329A1 true WO2020224329A1 (zh) 2020-11-12

Family

ID=67193223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079546 WO2020224329A1 (zh) 2019-05-07 2020-03-16 一种金属件与玻璃钢的连接结构及船体

Country Status (5)

Country Link
EP (1) EP3943378A4 (zh)
JP (1) JP7302016B2 (zh)
KR (1) KR20210145793A (zh)
CN (1) CN110015390A (zh)
WO (1) WO2020224329A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110015390A (zh) * 2019-05-07 2019-07-16 珠海市琛龙船厂有限公司 一种金属件与玻璃钢的连接结构及船体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991928A (en) * 1974-08-22 1976-11-16 United Technologies Corporation Method of fabricating titanium alloy matrix composite materials
CN101184606A (zh) * 2005-05-27 2008-05-21 空中客车德国有限公司 多孔材料的增强
CN101417518A (zh) * 2007-10-25 2009-04-29 赢创罗姆有限责任公司 双面-单针-底线-缝纫技术
CN102951259A (zh) * 2011-08-27 2013-03-06 威海中复西港船艇有限公司 玻璃钢船艇腹板的连接结构及加工工艺
CN106827560A (zh) * 2017-01-20 2017-06-13 上海交通大学 一种复合材料与金属连接结构的制造方法
CN106891583A (zh) * 2015-12-17 2017-06-27 比亚迪股份有限公司 一种金属复合板材及其制备方法
CN108545146A (zh) * 2018-06-06 2018-09-18 福建鸿业船艇有限公司 玻璃钢船成型工艺
CN110015390A (zh) * 2019-05-07 2019-07-16 珠海市琛龙船厂有限公司 一种金属件与玻璃钢的连接结构及船体
CN210162232U (zh) * 2019-05-07 2020-03-20 珠海市琛龙船厂有限公司 一种金属件与玻璃钢的连接结构及船体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3718676A1 (de) * 1987-06-04 1988-12-22 Mtu Muenchen Gmbh Formkoerper und verfahren zu seiner herstellung
JPH06179251A (ja) * 1992-12-14 1994-06-28 Tonen Corp Frp製パイプ
CN2395979Y (zh) * 1999-10-22 2000-09-13 中国人民解放军海军工程大学 纤维增强塑料与金属件的连接结构
CN2421152Y (zh) * 2000-05-22 2001-02-28 冷劲松 纤维缠绕玻璃钢夹块管
CN1359786A (zh) * 2000-12-22 2002-07-24 余兴基 缠绕玻璃钢管的方法及专用胎具
JP2003225960A (ja) 2001-11-27 2003-08-12 Wise Gear:Kk イオン発生シート並びにイオン発生シートの製造方法
US20030113489A1 (en) * 2001-12-13 2003-06-19 Smith E. Peter Fiber reinforced cured in place liner for lining an existing conduit and method of manufacture
US6932116B2 (en) * 2002-03-14 2005-08-23 Insituform (Netherlands) B.V. Fiber reinforced composite liner for lining an existing conduit and method of manufacture
JP2007015187A (ja) 2005-07-06 2007-01-25 Universal Shipbuilding Corp Frp成形物
CN201314202Y (zh) * 2008-12-23 2009-09-23 李斌 井下高压玻璃钢管工艺接箍
CN104233964B (zh) * 2014-09-30 2016-05-18 长安大学 钢桁架桥钢管相贯节点的cfrp布加固构造
DE102015103285A1 (de) 2015-03-06 2016-09-08 Becker Marine Systems Gmbh & Co. Kg Anordnung für Mehrschraubenschiffe mit außenliegenden Propellerwellen sowie Verfahren zur Herstellung einer solchen Anordnung
EP3173216B1 (en) * 2015-11-26 2018-04-11 Airbus Operations GmbH Method and needle for reinforcing cellular materials
CN107161285A (zh) * 2017-06-02 2017-09-15 吴卫军 纤维材料船体的制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991928A (en) * 1974-08-22 1976-11-16 United Technologies Corporation Method of fabricating titanium alloy matrix composite materials
CN101184606A (zh) * 2005-05-27 2008-05-21 空中客车德国有限公司 多孔材料的增强
CN101417518A (zh) * 2007-10-25 2009-04-29 赢创罗姆有限责任公司 双面-单针-底线-缝纫技术
CN102951259A (zh) * 2011-08-27 2013-03-06 威海中复西港船艇有限公司 玻璃钢船艇腹板的连接结构及加工工艺
CN106891583A (zh) * 2015-12-17 2017-06-27 比亚迪股份有限公司 一种金属复合板材及其制备方法
CN106827560A (zh) * 2017-01-20 2017-06-13 上海交通大学 一种复合材料与金属连接结构的制造方法
CN108545146A (zh) * 2018-06-06 2018-09-18 福建鸿业船艇有限公司 玻璃钢船成型工艺
CN110015390A (zh) * 2019-05-07 2019-07-16 珠海市琛龙船厂有限公司 一种金属件与玻璃钢的连接结构及船体
CN210162232U (zh) * 2019-05-07 2020-03-20 珠海市琛龙船厂有限公司 一种金属件与玻璃钢的连接结构及船体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943378A4 *

Also Published As

Publication number Publication date
EP3943378A4 (en) 2022-05-18
EP3943378A1 (en) 2022-01-26
CN110015390A (zh) 2019-07-16
JP7302016B2 (ja) 2023-07-03
JP2022530960A (ja) 2022-07-05
KR20210145793A (ko) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2020224329A1 (zh) 一种金属件与玻璃钢的连接结构及船体
CN210162232U (zh) 一种金属件与玻璃钢的连接结构及船体
CN203948808U (zh) 连续纤维增强非粘接复合柔性管
CN207742960U (zh) 一种新型结构耦合传输钢缆
WO2022013524A1 (en) A mounting device for an anti-fouling system
Powell Copper-nickel sheathing and its use for ship hulls and offshore structures
KR20140015912A (ko) 선박용 프로펠러 장치
CN219821675U (zh) 一种可预埋管线的龙骨结构
CN218085915U (zh) 一种船壳内衬涂层结构
CN207742971U (zh) 海洋电缆
CN210063289U (zh) 一种耐腐蚀型船舶壳体
CN212093965U (zh) 一种船舶管路套管压制用芯头
CN104005376B (zh) 快速拼装式桥墩防撞消能圈
CN209814197U (zh) 一种适用于海钓的铝合金钓鱼艇
CN213772218U (zh) 一种防腐游艇铝合金牺牲阳极
CN205564352U (zh) 一种船舶专用电线电缆
CN211196546U (zh) 一种船舶水下设备防腐安装结构
CN107868523A (zh) 船舶外船体保护涂层及其使用方法
CN105086743A (zh) 新型涂料、制备方法及其应用
CN218335139U (zh) 一种方便穿线的镀锌线管
CN216003001U (zh) 一种深v前后双断级执法船
CN208423685U (zh) 一种绝缘耐腐蚀电力管
EP3196115A1 (en) Water intake riser for a floating plant
CN213925626U (zh) 一种封闭甲板船舶海上靠泊引绳
CN112478112A (zh) 一种海船用螺旋桨

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020802763

Country of ref document: EP

Effective date: 20211019

ENP Entry into the national phase

Ref document number: 2021564344

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217035600

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE