WO2020218386A1 - 潤滑油組成物、その製造方法及び真空装置 - Google Patents

潤滑油組成物、その製造方法及び真空装置 Download PDF

Info

Publication number
WO2020218386A1
WO2020218386A1 PCT/JP2020/017413 JP2020017413W WO2020218386A1 WO 2020218386 A1 WO2020218386 A1 WO 2020218386A1 JP 2020017413 W JP2020017413 W JP 2020017413W WO 2020218386 A1 WO2020218386 A1 WO 2020218386A1
Authority
WO
WIPO (PCT)
Prior art keywords
fullerene
lubricating oil
oil composition
producing
composition according
Prior art date
Application number
PCT/JP2020/017413
Other languages
English (en)
French (fr)
Inventor
門田 隆二
近藤 邦夫
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2021516185A priority Critical patent/JP6995279B2/ja
Priority to US17/605,282 priority patent/US11795411B2/en
Publication of WO2020218386A1 publication Critical patent/WO2020218386A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M109/00Lubricating compositions characterised by the base-material being a compound of unknown or incompletely defined constitution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • C10M2203/045Well-defined cycloaliphatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/077Ionic Liquids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • the present invention relates to a lubricating oil composition, a method for producing the same, and a vacuum apparatus.
  • the present application claims priority based on Japanese Patent Application No. 2019-83392 filed in Japan on April 24, 2019, the contents of which are incorporated herein by reference.
  • Lubricating oil compositions that can be used under high vacuum are required to have characteristics different from those of ordinary lubricating oil compositions, such as having a low vapor pressure and substantially containing no volatile components.
  • Patent Document 1 proposes a lubricating oil composition using PFAE (perfluoroalkyl ether), tris (2-octyldodecyl) cyclopentane, or the like having a low vapor pressure as a base oil.
  • PFAE perfluoroalkyl ether
  • 2-octyldodecyl 2,3-octyldodecyl
  • Patent Document 2 describes a selection from an ionic liquid composed of a lithium compound such as bis (trifluoromethanesulfonyl) imidelithium, a nitrogen onium cation, and a weakly coordinated fluorine-containing organic anion or a weakly coordinated fluorine-containing inorganic anion.
  • a lithium compound such as bis (trifluoromethanesulfonyl) imidelithium, a nitrogen onium cation, and a weakly coordinated fluorine-containing organic anion or a weakly coordinated fluorine-containing inorganic anion.
  • Antistatic lubricating oil compositions containing the above-mentioned antistatic substances have been proposed.
  • Patent Document 3 proposes a semi-solid lubricating oil composition composed of an ionic liquid having a low vapor pressure and an antistatic conductivity.
  • Patent Document 4 describes, as a lubricating oil composition having heat resistance and antioxidant properties, (a) a fluorine-free synthetic oil having a vapor pressure of 1 ⁇ 10 -4 Torr or less at 25 ° C., and an ionic liquid.
  • a lubricating oil composition containing at least one base oil selected from the group consisting of (b) a fullerene compound and at least one selected from the group consisting of by-product carbon particles during the production of fullerenes has been proposed.
  • base oil deterioration In addition to high-energy rays, base oil deterioration may also be caused by heat generation due to frictional wear when an extreme force is applied to the sliding portion.
  • part of the base oil may evaporate and be lost during use, and the lubricating oil may decrease from the sliding parts. As a result, the sliding portion is worn, which may cause seizure. Further, when a part of the base oil evaporates, the lubricating oil also scatters and adheres to a portion other than the sliding portion of the mechanical device, which may contaminate the mechanical device.
  • the vapor pressure at the initial stage of use could not be lowered to the same level as the vapor pressure of the base oil.
  • the reason why the vapor pressure at the initial stage of use of the lubricating oil composition is high is considered to be the influence of the residue of the volatile component because a volatile component such as an organic solvent is generally used in the manufacturing process of fullerene.
  • An object of the present invention is to exhibit excellent wear resistance, have a low vapor pressure, suppress an increase in vapor pressure due to deterioration of base oil, and stably maintain lubrication performance for a long period of time even under vacuum. It is to provide a lubricating oil composition which can be maintained, a method for producing the same, and a vacuum device.
  • the first aspect of the present invention is the following lubricating oil composition.
  • [1] Contains fullerenes and base oil, The fullerene is a sublimated fullerene, The base oil is a lubricating oil composition which is a multiple alkylcyclopentane oil or an ionic liquid.
  • the first aspect of the present invention preferably includes the features described in [2] below.
  • the second aspect of the present invention is the following method for producing a lubricating oil composition.
  • the second aspect of the present invention preferably includes the features described in the following [4] to [14]. The following features are also preferably combined with each other.
  • a third aspect of the present invention is the following vacuum apparatus.
  • a vacuum apparatus including the vacuum container, wherein the lubricating oil composition according to the above [1] or [2] is used in the vacuum container.
  • the present invention exhibits excellent wear resistance, has a low vapor pressure, suppresses an increase in vapor pressure due to deterioration of base oil, and stably maintains lubrication performance for a long period of time even under vacuum. It is possible to provide a method for producing a lubricating oil composition and a vacuum device that can be maintained.
  • the lubricating oil composition according to the present embodiment contains fullerene and a base oil, the fullerene is a sublimated fullerene, and the base oil is a multiple alkyl cyclopentane oil or an ionic liquid. Further, the lubricating oil composition of the present embodiment may contain a fullerene adduct, an additive and the like, which will be described later.
  • the fullerene production process includes a step of handling the fullerene in a volatile organic solvent, such as extracting the fullerene from soot with an organic solvent such as toluene. Therefore, the molecules of the organic solvent are easily incorporated into the obtained fullerene crystal grains.
  • a lubricating oil composition having a low vapor pressure cannot be obtained.
  • the volatile component is contained, for example, when the lubricating oil composition is used in a high vacuum state, the volatile component volatilizes. At that time, some of the base oil and fullerenes are also scattered in liquid form. Therefore, the parts other than the sliding parts of the mechanical device are contaminated.
  • fullerenes that do not substantially contain volatile components are used in order to prevent contamination and contamination. That is, the fullerene contained in the lubricating oil composition of the present embodiment is a fullerene sublimated product.
  • Fullerene sublimate refers to a fullerene that is substantially free of volatile components. The method for producing the fullerene sublimated product will be described in detail in the "sublimation step" described later.
  • a fullerene sample is dissolved in a base oil to prepare a fullerene solution, and the increase in the degree of degassing of the fullerene solution, which will be described later, is substantially 0 (for example, 0.1 or less) as compared with the base oil. ), It can be determined that this sample contains substantially no volatile components.
  • fullerene in the fullerene sublimation product examples include C 60 and C 70 , higher-order fullerenes, and mixtures thereof.
  • C 60 , C 70 or a mixture thereof is preferable from the viewpoint of high solubility in lubricating oil.
  • a mixture of fullerenes containing 50% by mass or more of C 60 is more preferable because the lubricating oil is less colored in brown to black (the deterioration of the lubricating oil composition can be easily determined by color). It may be contained in an amount of 70% by mass or more and 100% by mass or less, and 90% by mass or more and 100% by mass or less.
  • Fullerene sublimate composed only of C 60 is more preferred.
  • the concentration of the fullerene sublimation product in the lubricating oil composition can be arbitrarily selected, and for example, 0.0001% by mass to 0.010% by mass, 0.0005% by mass to 0.008% by mass, or, if necessary. It is also preferable that it is 0.001% by mass to 0.005% by mass or 0.002% by mass to 0.003% by mass. However, it is not limited to these examples.
  • the lubricating oil composition of the present embodiment may contain a fullerene adduct.
  • the fullerene adduct has a structure in which an adduct having a part of the molecular structure constituting the base oil is added to the fullerene.
  • the concentration of the fullerene adduct in the lubricating oil composition can be arbitrarily selected, and for example, 0.0001% by mass to 0.010% by mass, 0.0005% by mass to 0.008% by mass, or 0.001% by mass. It is also preferable that it is about 0.005% by mass or 0.002% by mass to 0.003% by mass. However, it is not limited to these examples.
  • the concentration of the fullerene adduct may be obtained by any method of choice. For example, as will be described later, it may be estimated from the difference in fullerene concentration before and after the heat treatment.
  • the base oil contained in the lubricating oil composition of the present embodiment is an oil having a low vapor pressure.
  • multiple alkylcyclopentane oils and ionic liquids such as Dialkylpiperidin bis (trifluoromethanesulfonyl) imide are preferable.
  • the base oil preferably does not contain volatile components.
  • the vapor pressure of the base oil is preferably 1 pascal or less, more preferably 0.1 pascal or less, and particularly preferably 0.01 pascal or less at 25 ° C. Is preferable.
  • the molecule of Multiply Alkylated Cyclopentane Oil (hereinafter sometimes referred to as "MAC oil”) has a structure in which a plurality of alkyl groups are bonded to a cyclopentane ring.
  • the total number of carbon atoms of these alkyl groups is preferably 48 or more and 112 or less.
  • the total carbon number may be, for example, 48 or more and 60 or less, 48 or more and 80 or less, 70 or more and 112 or less.
  • the carbon number of each alkyl group may be the same or different.
  • the number of alkyl groups bonded to the cyclopentane ring can also be arbitrarily selected, and may be, for example, 1 to 5, 2 to 4, or 3 to 4.
  • More specific examples include tris (2-octyldodecyl) cyclopentane in which three alkyl groups having 20 carbon atoms are bonded, tetra (dodecyl) cyclopentane in which four alkyl groups having 12 carbon atoms are bonded, and the like. In addition, a mixture thereof is also mentioned. However, it is not limited to these examples.
  • the ionic liquid is an ionic compound composed of an anion portion and a cation portion, and a liquid at room temperature to 80 ° C. is particularly preferable because it is easy to use.
  • the anion portion include bis (trifluoromethanesulfonyl) imide, bis (fluorosulfonyl) imide, and diethyl phosphate.
  • the cation portion include lithium, cyclohexyltrimethylammonium, ethyldimethylphenylethylammonium, methyltrioctylammonium, 1-aryl-3-methylimidazolium, 1-ethyl-3-methylimidazolium, and 1-butyl-3-methyl.
  • Imidazolium 1-hexyl-3-methylimidazolium, 1-butyl-2,3-diethylimidazolium, 3,3'-(butane-1,4-dyl) bis (1 vinyl-3-imidazolium), 1-decyl-3-methylimidazolium, 1-butyl-4-methylpyridium, 4-ethyl-4-methylmorofolinium, tetrabutylphosphonium, tributyl (2-methoxyethyl) phosphonium, trihexyl (tetradecyl) phosphonium, Examples thereof include butyl-1-methylpiperidium, 1-butylpyridium, 1-butyl-methylpyrrolidinium, and tributylsulfonium.
  • the ionic liquid include a compound in which the compound of the cation portion and the compound of the anion portion are appropriately combined.
  • the compound of the cation part and the compound of the anion part to be combined do not have to be one kind. That is, one or more of the respective compounds may be combined with each other.
  • the amount of base oil in the lubricating oil composition can be arbitrarily selected. For example, it may be 90.0000% by mass to 99.9999% by mass. However, it is not limited to these examples. )
  • the lubricating oil composition of the present embodiment contains, in addition to the base oil, the sublimated fullerene, and the fullerene adduct, an additive that does not substantially contain volatile components as long as the effect as the lubricating oil composition is not impaired. be able to.
  • the additive include a commercially available antioxidant, a viscosity index improver, an extreme pressure additive, a cleaning dispersant, a pour point lowering agent, a corrosion inhibitor, a solid lubricant, an oiliness improver, a rust preventive additive, and an anti.
  • examples thereof include emulsifiers, antifoaming agents and hydrolysis inhibitors.
  • One of these additives may be used alone, or two or more of these additives may be used in combination. The amount of additive can be arbitrarily selected.
  • antioxidants examples include butylhydroxyanisole (BHA), dialkyldiphenylamine and the like.
  • viscosity index improver examples include polyalkylstyrene and hydride additives of styrene-diene copolymer.
  • extreme pressure additive examples include dibenzyldisulfide, allyl phosphate ester, allyl phosphite ester, allyl phosphate amine salt, allyl thiophosphate ester, allyl thiophosphate amine salt and the like.
  • cleaning dispersant examples include benzylamine succinic acid derivatives, alkylphenol amines and the like.
  • examples of the pour point lowering agent include chlorinated paraffin-naphthalene condensate, chlorinated paraffin-phenol condensate, polyalkyl styrene type and the like.
  • anti-emulsifier examples include alkylbenzene sulfonate and the like.
  • corrosion inhibitor examples include dialkylnaphthalene sulfonate and the like.
  • the method for producing a lubricating oil composition of the present embodiment includes a dissolution step of dissolving the fullerene sublimation product in the base oil to obtain a fullerene solution.
  • the fullerene solution obtained in this step may be used as it is as a lubricating oil composition, but as will be described later, a further processed fullerene solution may be used as a lubricating oil composition.
  • the fullerene sublimation product used in the dissolution step preferably contains C 60 , C 70 or a mixture thereof from the viewpoint of high solubility in lubricating oil.
  • a mixture of fullerenes containing 50% by mass or more of C 60 is more preferable because the lubricating oil is less colored.
  • Fullerene sublimate consists of C 60 is more preferred.
  • the concentration of fullerene in the fullerene solution is arbitrarily selected, but is preferably 1 mass ppm (0.0001 mass%) or more and 100 mass ppm (0.01 mass%) or less, and is preferably 3 mass ppm (0. It is more preferably 0003 mass%) or more and 75 mass ppm (0.0075 mass%) or less, and further preferably 5 mass ppm (0.0005 mass%) or more and 50 mass ppm (0.005 mass%) or less. preferable.
  • the concentration of fullerenes may be measured by an arbitrarily selected method, for example, a method using high performance liquid chromatography (HPLC).
  • Dissolution in the above dissolution step can be performed by a method of arbitrary selection, preferably by ordinary mechanical stirring, ultrasonic stirring, or the like.
  • the temperature may be agitated at room temperature if the base oil is a low viscosity liquid at room temperature.
  • the base oil is a highly viscous liquid or solid at room temperature, it is preferable to heat it to a low-viscosity liquid state and stir to dissolve it.
  • the stirring time may be arbitrarily selected.
  • the fullerene sublimated product used in the melting step may be a commercially available product, or may be produced from ordinary fullerene (raw material fullerene) by providing a sublimation step. That is, in the method for producing the lubricating oil composition, before the dissolution step, the raw material fullerene is sublimated in a non-oxidizing atmosphere to make it a gas, and then cooled to make it a solid to obtain the fullerene sublimated product. It may further have a sublimation step.
  • the fullerene sublimated product can be obtained by sublimating the raw material fullerene into a gas in a non-oxidizing atmosphere having an oxygen gas partial pressure of 10 pascals or less and then cooling the raw material fullerene into a solid.
  • the raw material fullerene may mean fullerene not obtained in the sublimation step, and a commercially available product may be used.
  • the melting step can be continuously performed after the sublimation step. This method is preferable from the viewpoint of preventing the mixing of volatile components from the air or the like by avoiding the storage of the obtained fullerene sublimated product.
  • a commercially available sublimation purification apparatus can be used to sublimate the raw material fullerene.
  • the raw material fullerene is arranged in a heating part inside the sublimation purification apparatus, and in this state, the inside of the apparatus is depressurized to reduce the partial pressure of oxygen gas to 10 Pascal or less.
  • the heating unit After heating the heating unit after depressurization, the raw material fullerene in the heating unit undergoes a phase change from a solid to a gas. After that, the phase changes from gas to solid by cooling, and precipitates as a fullerene sublimate.
  • the raw material fullerene is once in a gas molecular state, the volatile component in the state contained in the crystal of the raw material fullerene can be removed.
  • the fullerene sublimated product thus obtained does not substantially contain the above-mentioned volatile components. Therefore, by providing the sublimation step, a lubricating oil composition having a low vapor pressure can be obtained.
  • the fullerene solution obtained in the dissolution step may contain insoluble fullerenes and the like. In that case, it is preferable to remove these insoluble components. That is, the method for producing the lubricating oil composition may further include a removing step of removing the insoluble component from the fullerene solution after the dissolving step.
  • the method for removing the insoluble component can be arbitrarily selected, and examples thereof include a method of filtering using a membrane filter, a method of removing sediment by using a centrifuge, and a method of using both of these methods in combination. ..
  • the fullerene adduct can be obtained by heat-treating or radiation-treating the fullerene solution in a non-oxidizing atmosphere such as lowering the oxygen partial pressure. That is, the method for producing the lubricating oil composition may further include a heat treatment step of heat-treating the fullerene solution in a non-oxidizing atmosphere to form the fullerene adduct after the dissolution step. Further, after the dissolution step, a radiation treatment step of irradiating the fullerene solution with radiation in a non-oxidizing atmosphere to produce the fullerene adduct may be further provided.
  • one or both of the heat treatment step and the radiation treatment step may be performed to obtain the fullerene adduct, or both the heat treatment step and the radiation treatment step may be performed at the same time to obtain the fullerene adduct.
  • the fullerene adduct obtained by this treatment has a structure in which an adduct having a part of the molecular structure constituting the base oil is added to the fullerene. An excellent effect can be obtained by producing the fullerene adduct.
  • the change of fullerene into a fullerene adduct can be confirmed by mass spectrum measurement of the fullerene solution before and after the treatment.
  • C 60 is used as the fullerene sublimation product
  • the peak of 720 is reduced and a plurality of peaks of the fullerene adduct appear.
  • the main peak, peaks corresponding to C 60 in which a plurality of alkyl groups having a chain length different are added (722 + 2N) can be confirmed.
  • N is a natural number of 60 or less. This is what two molecules of the alkyl radicals generated by cleavage of the base oil was added to the C 60.
  • the fullerene adduct Since the molecule of the base oil does not necessarily cleave at a specific location, the fullerene adduct usually does not become a single type of molecule, and its analysis becomes difficult. Therefore, the progress of the reaction in which the fullerene adduct is formed may be determined by measuring the concentration of the remaining fullerene and using the fullerene residual rate represented by the following formula as a guide.
  • (Fullerene residual rate) [Fullerene concentration after treatment] / [Fullerene concentration before treatment]
  • the treatment means one or both of heat treatment and radiation treatment.
  • fullerene concentration after treatment when determining the fullerene residual rate during the treatment, the above-mentioned “fullerene concentration after treatment” may be read as “fullerene concentration during treatment”.
  • fullerene concentration can be measured by a method using high performance liquid chromatography (HPLC) described in Examples.
  • HPLC high performance liquid chromatography
  • the concentration of the produced fullerene adduct may be estimated by the following formula. [Fullerene adduct concentration] ⁇ [Fullerene concentration before treatment]-[Fullerene concentration after treatment]
  • the fullerene residual ratio obtained by the above formula is preferably 0.1 or more and 0.7 or less, and more preferably 0.2 or more and 0.5 or less.
  • the residual ratio of fullerene is 0.1 or more and 0.7 or less, the lubricity of the lubricating oil composition is more stably developed from the initial stage of use, frictional wear of sliding parts of mechanical devices is suppressed, and base oil is used. It is possible to suppress the generation of volatile components due to deterioration.
  • the fullerene concentration of the fullerene solution is monitored during the heat treatment step or the radiation treatment step, and the fullerene concentration is 0.1 or more and 0 or more with respect to the concentration of the fullerene before the heat treatment step or the radiation treatment step. It is preferable to carry out until it becomes 0.7 or less.
  • the treatment time of the heat treatment step or the radiation treatment step can be arbitrarily selected, but it is preferably 5 minutes or more and 24 hours or less, which facilitates the heat treatment or radiation treatment operation.
  • the treatment time for example, if the heat treatment temperature or the irradiation intensity is increased, the treatment time can be shortened, and conversely, if the heat treatment temperature is lowered or the radiation irradiation intensity is lowered, the treatment time can be lengthened. it can.
  • the radiation intensity, the irradiation time, and the number of irradiations may be arbitrarily selected. For example, a method of adjusting the number of irradiations such as repeating irradiation of radiation with a certain high radiation intensity for a short time (about 0.1 seconds or more and 3 minutes or less) about 2 to 10 times to bring the fullerene concentration into the range. Is also easy to operate and preferable.
  • the oxygen gas concentration in the solution is in equilibrium with the oxygen gas in the atmosphere.
  • the oxygen molecule reacts with the cleaving molecule and suppresses the formation of the fullerene adduct. Therefore, it is preferable to remove oxygen molecules in the fullerene solution as much as possible and perform heat treatment or radiation treatment in a non-oxidizing atmosphere.
  • the oxygen partial pressure in the non-oxidizing atmosphere is preferably 10 pascals or less in a gas phase in equilibrium with the fullerene solution, and is 5 pascals or less. More preferably, it is more preferably 2 pascals or less.
  • the heat treatment process includes the following two methods, and specific examples of the radiation treatment process include the following one method.
  • the temperature of the heat treatment is preferably a temperature exceeding the upper limit of the operating temperature of the base oil. Cleavage molecules are likely to occur when the upper limit temperature of the base oil is exceeded. In addition, higher temperatures generate more cleavage molecules, resulting in shorter heat treatment times. From the viewpoint of the heat treatment time that is easy to operate, the heat treatment temperature in this heat treatment step is preferably in the range of exceeding the upper limit temperature of the base oil and + 200 ° C. or less of the upper limit temperature of the base oil.
  • the upper limit temperature of the base oil can be known from the catalog of the base oil manufacturer.
  • the upper limit temperature for use may mean the upper limit of the temperature of the base oil, which enables the base oil to be used relatively stably.
  • the heat treatment temperature is preferably 150 ° C. or higher and 300 ° C. or lower, and more preferably 200 ° C. or higher and 250 ° C. or lower.
  • the time of the heat treatment step can be arbitrarily selected, but is preferably 5 minutes to 24 hours. It may be 5 minutes to 30 minutes, 30 minutes to 1 hour, 1 hour to 5 hours, 5 hours to 24 hours, and the like. However, it is not limited to these examples.
  • the method for creating a non-oxidizing atmosphere can be arbitrarily selected.
  • the fullerene solution is placed in an airtight metal container such as stainless steel, and then the container is sealed.
  • the inside of the container is replaced with an inert gas such as nitrogen gas or argon gas, or the fullerene solution in the container is bubbled with the inert gas.
  • the fullerene solution is brought into equilibrium with the inert gas, and the oxygen partial pressure is set to 10 pascals or less.
  • a method of creating a non-oxidizing atmosphere a method of reducing the pressure inside the airtight container can be mentioned.
  • the oxygen partial pressure of the gas phase can be 10 pascals or less, usually 2 pascals or less.
  • the fullerene solution can be heat-treated by creating a non-oxidizing atmosphere in the container by reducing the pressure in this way and heating the container while maintaining that state.
  • the heating of the fullerene solution can be carried out by any method of choice. For example, it can be heated from the outside in an oil bath or the like, irradiated with infrared rays, or irradiated with microwaves. Further, in the heat treatment step, the fullerene residual ratio may be confirmed every time a certain time elapses, and heating (heat treatment) may be continued until a desired fullerene residual ratio is obtained.
  • the radiation used for the above radiation treatment is radiation that has the energy to generate cleaving molecules.
  • it is ultraviolet rays or ionizing radiation, preferably ultraviolet rays. It is more preferably ultraviolet rays having a wavelength of 190 nm or more and 365 nm or less, and further preferably ultraviolet rays having a wavelength of 330 mn or more and 350 nm or less.
  • the CC single bond is cleaved by ultraviolet light having a wavelength of 341 nm or less.
  • the radiation treatment is preferably performed in a non-oxidizing atmosphere as in the above heat treatment.
  • at least a part of the container is made of a material that allows the radiation to be used to pass through, in order to insert a radiation source such as an ultraviolet lamp into the container or to irradiate from the outside of the container.
  • a radiation source such as an ultraviolet lamp
  • the whole or a part of the above-mentioned stainless steel container can be replaced with a material such as quartz glass through which ultraviolet rays are transmitted.
  • the amount of energy of the radiation irradiated in the radiation treatment step can be arbitrarily selected, but 1 J or more and 100 J or less is preferable, 1.5 J or more and 60 J or less is more preferable, and 2 J or more and 20 J or less is further preferable, per 1 mL of the fullerene solution. It may be 1J or more and 10J or less, 1J or more and 8J or less. Within this range, it is easy to adjust the range of the concentration of fullerene after treatment obtained from the above formula, that is, the residual rate of fullerene to 0.1 or more and 0.7 or less. As described above, the irradiation may be performed only once, or may be divided into two or more times and performed a plurality of times.
  • Irradiation may be performed under the same conditions. When the irradiation is divided into a plurality of times, it is preferable that the total energy amount of the radiation is within the above range.
  • the number of irradiations can be arbitrarily selected, and may be, for example, in the range of 1 to 10 times or in the range of 2 to 5 times. However, it is not limited to these examples. It is also preferable to check the fullerene residual rate each time the irradiation is performed and repeat the irradiation once or more until the desired fullerene residual rate is obtained.
  • ultraviolet irradiation ordinary low-pressure mercury lamps, UV ozone lamps, ultraviolet LEDs, excimer lamps, xenon lamps and the like can be used.
  • the energy density (mW / cm 2 ) of the irradiation light of ultraviolet rays is measured in advance using an ultraviolet photometer, and then the irradiation time (seconds) and the irradiation range (cm 2 ) are specified. To do. From these things, the energy amount (J) of the ultraviolet rays to irradiate can be determined.
  • the irradiation time can be arbitrarily selected. For example, it may be 5 minutes or more and 24 hours or less. Alternatively, it may be 0.1 seconds to 1 hour, 0.2 seconds to 30 minutes, 0.3 seconds to 3 minutes, 0.5 seconds to 60 seconds, or 1 second to 30 seconds.
  • the lubricating oil composition of the present embodiment not only the frictional resistance is reduced and the wear resistance is excellent, but also the vapor pressure can be low, and the generation of volatile components due to the deterioration of the base oil is suppressed. , It is possible to suppress an increase in vapor pressure of the lubricating oil composition.
  • the lubricating oil composition of the present embodiment can be used for various purposes, but is particularly suitable for use in vacuum or in outer space.
  • Example 1 (Preparation of lubricating oil composition) First, C 60 as a raw material fullerene (manufactured by Frontier Carbon Corporation Nanomu TM purple ST) 10 g, sublimation purification apparatus (Asahi Seisakusho Co., Ltd., a small sublimation purification apparatus) by sublimation were used to obtain fullerene sublimate. Sublimation of the raw material fullerene was carried out in a three-zone system. The high temperature zone was 700 ° C., the medium temperature zone was 200 ° C., the low temperature zone was room temperature, and the pressure in each zone was 10 pascals or less. The raw material fullerene was placed in the high temperature zone to change the phase from solid to gas, and the fullerene sublimated product which changed phase from gas to solid and became solid was recovered from the medium temperature zone.
  • a high performance liquid chromatograph (1200 series manufactured by Agilent Technologies) was used to measure the concentration of the fullerene. Specifically, in this apparatus, a column YMC-Pack ODS-AM (150 mm ⁇ 4.6) manufactured by YMC Co., Ltd. is used, and a 1: 1 (volume ratio) mixture of developing solvent: toluene and methanol is used for absorbance. The amount of fullerene in the sample such as the lubricating oil composition was quantified by detecting at (wavelength 309 nm). The calibration curve was prepared from the above-mentioned raw material fullerene.
  • the abrasion resistance of the obtained lubricating oil composition was evaluated using a friction and wear tester (Ball-on-disc tribometer, manufactured by Antonio Par). First, a substrate and balls were prepared, and these materials were high carbon chrome bearing steel SUJ2. The diameter of the ball was 6 mm. The lubricating oil composition was applied to one main surface of the substrate, and the substrate was heated to 100 ° C. Next, the fixed ball was slid on one main surface of the substrate via the lubricating oil composition by rotating the substrate so that the ball would draw a circular trajectory on the substrate. The velocity of the ball on one main surface of the substrate was 5 cm / sec, and the load of the ball on one main surface of the substrate was 10 N.
  • the rubbing surface (circular) of the ball surface when the sliding distance of the ball on the one main surface of the substrate was 300 m in total was observed with an optical microscope.
  • the diameter of the rubbing surface formed on the ball was measured, and this value was taken as the wear resistance. It can be said that the smaller the diameter of the rubbing surface, the better the wear resistance.
  • Table 1 The results are shown in Table 1.
  • MAC oil to which 1 mass ppm of trimethylbenzene (TMB) (manufactured by Tokyo Kasei Co., Ltd.) was added as a volatile component.
  • TMB trimethylbenzene
  • MAC oil to which TMB was added a peak caused by TMB was detected.
  • the integrated value of this peak was set to 1 (reference value).
  • the ratio of the integrated value of the peaks caused by the desorbed gas of the measured lubricating oil composition to this reference value was defined as the desorbed gas degree. It can be said that the smaller the degree of desorption gas, the better the stability under high vacuum.
  • the degree of desorption gas was measured at two points, before the wear resistance test and after the wear resistance test.
  • the metal comes into direct contact with the metal and generates heat, which breaks the molecular chain of the base oil and deteriorates it.
  • the deterioration some of the cleaved molecules are detected as volatile components by the above method. That is, a lubricating oil having poor wear resistance is not preferable because the amount of the desorbed gas component increases because the deterioration of the base oil progresses.
  • Table 1 The results are shown in Table 1.
  • Example 1 A lubricating oil composition was obtained in the same manner as in Example 1 except that the raw material fullerene (without sublimation step) was used as it was instead of the fullerene sublimated product. Table 1 shows the results of wear resistance and desorption gas degree of the obtained lubricating oil composition.
  • Example 2 A lubricating oil composition was obtained in the same manner as in Example 1 except that fullerene was not added to the MAC oil. Table 1 shows the results of wear resistance and desorption gas degree of the obtained lubricating oil composition.
  • Example 1 when a fullerene sublimated product was dissolved in MAC oil to obtain a fullerene solution (lubricating oil composition), the diameter of the rubbing surface was 200 ⁇ m and the wear resistance was excellent. Further, the degree of degassing of the lubricating oil composition before the abrasion resistance test is 0.1, the vapor pressure of the lubricating oil composition at the initial stage of use is low, and the stability under high vacuum at the initial stage of use is excellent. Do you get it. Furthermore, it was found that the degree of degassing of the lubricating oil composition after the abrasion resistance test was 0.9, the increase in vapor pressure due to deterioration of the base oil was suppressed, and the stability under high vacuum was excellent.
  • Example 1 when Example 1 and Comparative Example 1 were compared, the abrasion resistance was the same, but in Example 1, the desorption gas degree before and after the abrasion resistance test was superior to that of Comparative Example 1. This is because the sublimated fullerene (fullerene sublimated product) does not substantially contain volatile components, and by adding the fullerene sublimated product to MAC oil, the volatile components contained in the lubricating oil composition are suppressed. As a result, it is presumed that the amount of desorbed gas could be minimized.
  • Example 1 and Comparative Example 2 were compared, the degree of degassing before the wear resistance test was as good as that, but in Comparative Example 2, the wear resistance was lowered and after the wear resistance test. The degree of degassing was significantly inferior. From this, it was found that by adding the fullerene sublimated product to the MAC oil, the wear resistance was improved, and as a result, the increase in the amount of degassing was suppressed.
  • Example 2 A lubricating oil composition was obtained in the same manner as in Example 1 except that the fullerene solution (lubricating oil composition) obtained in Example 1 was irradiated with ultraviolet rays. Table 1 shows the results of wear resistance and desorption gas degree of the obtained lubricating oil composition.
  • Example 2 The ultraviolet irradiation in Example 2 was carried out by the following procedure. First, 3 ml was taken out into a quartz cell with a septum cap (manufactured by Tokyo Glass Instruments Co., Ltd., S15-UV-10). Next, insert two injection needles into the septum cap of the quartz cell, and flow 99.99% pure nitrogen gas (partial pressure of gas other than nitrogen at normal pressure is 10 pascals or less) at 60 mL / min for 10 minutes. did. Next, the fullerene solution contained in the quartz cell was intermittently irradiated with ultraviolet rays. An ultraviolet irradiation device (Omnicure S2000 manufactured by Sanei Tech Co., Ltd.) was used for ultraviolet irradiation.
  • An ultraviolet irradiation device (Omnicure S2000 manufactured by Sanei Tech Co., Ltd.) was used for ultraviolet irradiation.
  • the filter is set to 250 nm-450 nm, the irradiation range is set to 2 cm 2, and the output is adjusted to 1 W / cm 2 while measuring using an ultraviolet luminometer (wavelength 230 nm-390 nm), and the irradiation timer is set to 1 second. It was set so that 2 J (0.7 J per 1 mL of fullerene solution) of energy could be irradiated with one irradiation.
  • m / z 750, 764, 766, 778, 780, 792, 794, 796, 808, 806, 820 are the main peaks. , 834 peaks were newly confirmed. From these facts, it was confirmed that the fullerene solution (lubricating oil composition) after the irradiation with ultraviolet rays contained the fullerene and the formed fullerene adduct. In the other Examples and Comparative Examples, the fullerene solutions before and after the heat treatment or the radiation treatment were analyzed in the same manner. As a result, no fullerene adduct was confirmed in the fullerene solution before the heat treatment or radiation treatment, but the fullerene adduct was confirmed after these treatments.
  • Example 3 Instead of irradiating with ultraviolet rays, a fullerene solution in a quartz cell was immersed in an oil bath at 200 ° C. and heated. A lubricating oil composition was obtained in the same manner as in Example 2 except that it was heated instead of ultraviolet irradiation. Table 1 shows the results of wear resistance and desorption gas degree of the obtained lubricating oil composition.
  • Example 3 In the heating of Example 3, about 0.01 ml of the fullerene solution was withdrawn from the inside of the quartz cell every 5 minutes using a syringe, and the fullerene concentration was measured by HPLC to determine the fullerene residual ratio. The fullerene residual rate was 0.2 15 minutes after the start of the measurement. To this end, the quartz cell was removed from the oil bath and cooled to room temperature to give a lubricating oil composition. As a result of measuring the fullerene concentration of the lubricating oil composition, it was 15 mass ppm, and the fullerene residual ratio was 0.15.
  • Example 2 when the fullerene sublimate was dissolved in MAC oil to obtain a fullerene solution and the fullerene solution was irradiated with ultraviolet rays twice, the diameter of the rubbing surface was 160 ⁇ m.
  • the degassing degree of the lubricating oil composition before and after the abrasion resistance test was 0.1 and 0.5, respectively. That is, it was found that the wear resistance and the stability under high vacuum were more excellent.
  • Example 3 when a fullerene sublimation product was dissolved in MAC oil to obtain a fullerene solution and the fullerene solution was heat-treated, the diameter of the rubbing surface was 155 ⁇ m, and the lubricating oil before and after the wear resistance test.
  • the degassing degree of the composition was 0.1 and 0.3, respectively. That is, it was found that the wear resistance and the stability under high vacuum were more excellent.
  • Examples 2 and 3 have abrasion resistance.
  • both the degree of desorption gas before the wear resistance test and after the wear resistance test were excellent. This means that the wear resistance is increased as a result of the fullerene adduct being generated in the fullerene solution by the above-mentioned fullerene adduct formation step, and the amount of volatile components is minimized due to the increased wear resistance. It is presumed that it was possible.
  • Example 4 A lubricating oil composition was obtained in the same manner as in Example 2 except that the fullerene solution was irradiated with ultraviolet rays eight times.
  • the fullerene residual rate was 0.25 after 8 times of ultraviolet irradiation (5.3 J per 1 mL of fullerene solution). Therefore, the ultraviolet irradiation was stopped, and the contents were taken out from the quartz cell to obtain a lubricating oil composition.
  • the fullerene concentration of the lubricating oil composition it was 25 mass ppm, and the fullerene residual ratio was 0.25. Table 1 shows the results of wear resistance and desorption gas degree of the obtained lubricating oil composition.
  • Example 4 As shown in Table 1, in Example 4, when the fullerene solution was irradiated with ultraviolet rays eight times, the diameter of the rubbing surface was 155 ⁇ m, and the degree of degassing of the lubricating oil composition before and after the wear resistance test. Were 0.1 and 0.3, respectively. That is, it was found that the wear resistance and the stability under high vacuum were more excellent.
  • Example 4 comparing Example 4 and Example 2, in Example 4, both the wear resistance and the degree of desorption gas after the wear resistance test were superior to those in Example 2.
  • the conditions of Example 2 and Example 4 are the same except that the number of times of ultraviolet irradiation is different. Therefore, in Example 2 and Example 4, it is estimated that the cleaved molecular species (addition groups of the fullerene adduct) produced are almost the same, and the difference is that Example 4 has a lower fullerene residual rate than Example 2, that is, In the fourth embodiment, more fullerene adducts are produced. Due to this difference, it is presumed that in Example 4, the wear resistance was improved, and as a result, the degree of desorbed gas after the wear resistance test was also lowered.
  • Example 5 Example 1 and Example 1 except that a low-pressure mercury UV lamp (Sen Special Light Source Co., Ltd., model UVL20PH-6, including ultraviolet rays of 185 nm and 254 nm as light wavelength components) was used as a light source of radiation, and irradiation was used for 20 seconds.
  • a lubricating oil composition was obtained.
  • the irradiation range was 5 cm 2
  • the output was 0.2 W / cm 2 . That is, the lubricating oil composition was irradiated with 20 J (7 J per 1 mL of fullerene solution) of ultraviolet rays by irradiation for 20 seconds.
  • Example 6 A lubricating oil composition was obtained in the same manner as in Example 1 except that X-ray irradiation was performed for 480 seconds using an X-ray irradiation device (RIX-250C-2, manufactured by Torrec Co., Ltd.) as a light source of radiation. It was. As a result of measuring the fullerene concentration of the obtained lubricating oil composition, it was 20 mass ppm and the fullerene residual ratio was 0.20. Table 1 shows the wear resistance of the obtained lubricating oil composition and the degree of desorption gas.
  • Example 4 Comparing Example 5 and Example 4, both were irradiated with ultraviolet rays, and as a result, the fullerene residual rate was reduced to the same extent. However, in Example 4, the degree of degassed gas after the wear resistance and the wear resistance test was superior to that of Example 5. It is presumed that this is because in Example 5, the ultraviolet rays contain light of 185 nm (far ultraviolet rays).
  • Example 6 Comparing Example 6 and Example 5, both were irradiated with radiation, and as a result, the fullerene residual rate was reduced to the same extent. However, in Example 6, the degree of degassed gas after the wear resistance and the wear resistance test was inferior to that of Example 5. It is presumed that this is because X-rays having higher energy than ultraviolet rays were used as radiation in Example 6.
  • Example 7 The lubricating oil composition was prepared in the same manner as in Example 1 except that the ionic liquid 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (LiTFSI manufactured by Tokyo Kasei Co., Ltd.) was used as the base oil. Obtained. Table 1 shows the results of wear resistance and desorption gas degree of the obtained lubricating oil composition.
  • Example 3 A lubricating oil composition was obtained in the same manner as in Example 7 except that the raw material fullerene (without sublimation step) was used as it was instead of the fullerene sublimated product. Table 1 shows the results of wear resistance and desorption gas degree of the obtained lubricating oil composition.
  • Example 7 Comparing Example 7 and Comparative Example 3, the desorption gas degree before and after the wear resistance test was superior in Example 7 using the fullerene sublimated product.
  • Example 8 A lubricating oil composition was obtained in the same manner as in Example 3 except that the ionic liquid 1-decyl-3-methyl-imidazolium bis (trifluoromethanesulfonyl) imide (manufactured by Tokyo Kasei) was used as the base oil. .. As a result of measuring the fullerene concentration of the lubricating oil composition, it was 12 mass ppm and the fullerene residual ratio was 0.12. Table 1 shows the wear resistance of the obtained lubricating oil composition and the degree of desorption gas. Table 1 shows the wear resistance of the obtained lubricating oil composition and the degree of desorption gas.
  • Example 9 A lubricating oil composition was obtained in the same manner as in Example 4 except that the ionic liquid 1-decyl-3-methyl-imidazolium bis (trifluoromethanesulfonyl) imide (manufactured by Tokyo Kasei) was used as the base oil. .. As a result of measuring the fullerene concentration of the lubricating oil composition, it was 35 mass ppm and the fullerene residual ratio was 0.35. Table 1 shows the wear resistance of the obtained lubricating oil composition and the degree of desorption gas. Table 1 shows the wear resistance of the obtained lubricating oil composition and the degree of desorption gas.
  • Examples 8 and 9 and Example 7 showed the same tendency as the comparison results of Examples 3 and 4 and Example 1 described above. That is, it was found that the ultraviolet irradiation treatment and the heat treatment are effective from the viewpoint of wear resistance effect and degassing reduction even in different base oils.
  • Example 10 A lubricating oil composition was obtained in the same manner as in Example 1 except that 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, which is an ionic liquid, was used as a base oil.
  • Table 1 shows the wear resistance of the obtained lubricating oil composition and the degree of desorption gas.
  • Example 4 A lubricating oil composition was obtained in the same manner as in Example 10 except that the raw material fullerene (without sublimation step) was used as it was instead of the fullerene sublimated product.
  • Table 1 shows the results of wear resistance and desorption gas degree of the obtained lubricating oil composition.
  • Example 11 A lubricating oil composition was obtained in the same manner as in Example 3 except that 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, which is an ionic liquid, was used as a base oil. As a result of measuring the fullerene concentration of the lubricating oil composition, it was 18 mass ppm and the fullerene residual ratio was 0.18. Table 1 shows the wear resistance of the obtained lubricating oil composition and the degree of desorption gas.
  • Example 12 A lubricating oil composition was obtained in the same manner as in Example 4 except that 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, which is an ionic liquid, was used as a base oil. As a result of measuring the fullerene concentration of the lubricating oil composition, it was 40 mass ppm and the fullerene residual ratio was 0.40. Table 1 shows the wear resistance of the obtained lubricating oil composition and the degree of desorption gas.
  • Examples 11 and 12 and Example 10 showed the same tendency as the comparison results of Examples 8 and 9 and Example 7 described above. That is, it was found that the ultraviolet irradiation treatment and the heat treatment are effective from the viewpoint of abrasion resistance effect and degassing reduction even in different ionic liquids.
  • Example 13 A lubricating oil composition was obtained in the same manner as in Example 1 except that 1-butyl-4-methyl-pyridium bis (fluorosulfonyl) imide, which is an ionic liquid, was used as a base oil.
  • Table 1 shows the wear resistance of the obtained lubricating oil composition and the degree of desorption gas.
  • Example 5 A lubricating oil composition was obtained in the same manner as in Example 13 except that the raw material fullerene (without sublimation step) was used as it was instead of the fullerene sublimated product.
  • Table 1 shows the wear resistance and the degree of degassed gas of the obtained lubricating oil composition.
  • Example 13 and Comparative Example 5 the desorption gas degree before and after the wear resistance test was superior in Example 13 using the fullerene sublimated product.
  • the present invention exhibits excellent wear resistance, has a low vapor pressure, can suppress an increase in vapor pressure due to deterioration of base oil, and maintains stable lubrication performance for a long period of time even under vacuum. It is possible to provide a lubricating oil composition capable of providing a lubricating oil composition.
  • the lubricating oil composition of the present embodiment is plastic processing such as industrial gear oil; hydraulic hydraulic oil; compressor oil; refrigerating machine oil; cutting oil; rolling oil, pressing oil, forging oil, drawing oil, drawing oil, punching oil and the like. Oil; Metal processing oil such as heat treatment oil and discharge processing oil; Sliding guide surface oil; Bearing oil; Rust preventive oil; Suitable for various oils such as heat transfer oil. In particular, it is suitable for use in a vacuum state, that is, as various oils used in a vacuum container provided in outer space or a vacuum device.
  • the lubricating oil composition of the present invention is useful for devices and equipment used in high altitude regions and outer space. For example, long-term suppression of metal parts being damaged or worn under vacuum in sliding parts of equipment or devices mounted on aircraft, spacecraft, rockets, spacecraft, space stations, satellites, etc. Extremely useful for Further, the lubricating oil composition of the present invention includes a vacuum metallurgical apparatus for forging and joining, a vacuum chemical apparatus for performing chemical reactions, a vacuum thin film forming / processing apparatus for vapor deposition and sputtering, and an analyzer such as an electron microscope. Extremely useful for long-term suppression of scratches and wear on metal parts in sliding parts in vacuum vessels provided in vacuum equipment such as vacuum test equipment that performs bending, tension, compression tests, etc. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

フラーレンと基油とを含み、前記フラーレンは、フラーレン昇華物であり、 前記基油は、多重アルキルシクロペンタン油またはイオン液体である、潤滑油組成物である。

Description

潤滑油組成物、その製造方法及び真空装置
 本発明は、潤滑油組成物、その製造方法及び真空装置に関する。
 本願は、2019年4月24日に、日本に出願された特願2019-83392号に基づき優先権を主張し、その内容をここに援用する。
 高真空下で使用できる潤滑油組成物は、低い蒸気圧を有し、揮発成分を実質的に含まないことなど、通常の潤滑油組成物と異なる特性が求められる。
 特許文献1には、蒸気圧の低いPFAE(パーフルオロアルキルエーテル)、トリス(2-オクチルドデシル)シクロペンタン等を基油とした潤滑油組成物が提案されている。
 特許文献2には、ビス(トリフルオロメタンスルホニル)イミドリチウム等のリチウム化合物、及び窒素オニウムカチオンと、弱配位性含フッ素有機アニオンまたは弱配位性含フッ素無機アニオンとからなるイオン性液体から選択された制電性物質と、を含む制電性潤滑油組成物が提案されている。
 特許文献3には、蒸気圧が低く、かつ静電防止程度の導電性を有するイオン性液体からなる半固体状潤滑油組成物が提案されている。
 特許文献4には、耐熱性及び酸化防止性を有する潤滑油組成物として、(a)25℃での蒸気圧が1×10-4Torr以下のフッ素を含有しない合成油、及びイオン性液体からなる群から選ばれる少なくとも1種の基油、及び(b)フラーレン化合物及びフラーレン製造時の副生炭素粒子からなる群から選ばれる少なくとも1種を含有する潤滑油組成物が提案されている。
特開平10-140169号公報 特開2005-89667号公報 特開2005-154755号公報 特開2005-336309号公報
 しかしこれらの提案はいずれも、例えば、宇宙空間で使用される潤滑油の用途においては、潤滑油組成物が、高真空下で宇宙線などの高エネルギー線に暴露される過酷な環境に置かれる結果、潤滑油組成物の物性が変化することが予想される。よってこれらの提案は、長期に亘って安定に潤滑性能を維持するためには十分でない。
 より詳細には、潤滑油組成物の物性変化は、潤滑油組成物を構成する基油の分子が徐々に開裂し、基油の分子鎖が短くなるために生じる。特に高真空下で使用される潤滑油組成物においては、分子量が小さい成分が生成されることに起因する潤滑油組成物の蒸気圧上昇が発生する。この蒸気圧の上昇は、後述するような様々な問題を引き起こす。この一連の基油の変化を“基油劣化”と呼ぶ。基油劣化は、高エネルギー線以外に、摺動部へ極度の力が加わった場合の摩擦摩耗による発熱などによっても引き起こされることがある。
 基油劣化による蒸気圧上昇により、使用中に基油の一部が蒸発して失われ、摺動部から潤滑油が減少する可能性がある。その結果、摺動部の摩耗が発生し、焼き付きを起こす要因にもなり得る。また、基油の一部が蒸発する際に、潤滑油も飛散し、機械装置の摺動部以外の部位にも付着し、機械装置を汚染することもある。
 また、フラーレンを含む潤滑油組成物では、潤滑の緒特性の改善がなされているものの、使用初期の蒸気圧を基油の蒸気圧と同程度まで低くすることができなかった。潤滑油組成物の使用初期の蒸気圧が高い理由は、フラーレンの製造工程では、一般に有機溶媒などの揮発成分が用いられるため、その揮発成分の残留物の影響であると考えられる。
 本発明の目的は、優れた耐摩耗性を発揮すると共に、低蒸気圧を有し且つ基油劣化による蒸気圧上昇を抑制して、真空下であっても長期に亘って安定に潤滑性能を維持することができる潤滑油組成物、及びその製造方法及び真空装置を提供することである。
 本発明の第一の態様は以下の潤滑油組成物である。
[1]フラーレンと基油とを含み、
 前記フラーレンは、フラーレン昇華物であり、
 前記基油は、多重アルキルシクロペンタン油又はイオン液体である、潤滑油組成物。
 本発明の第一の態様は、以下の[2]に述べる特徴を好ましく含む。
[2]フラーレン付加体を更に含み、
 前記フラーレン付加体は、前記基油を構成する分子構造の一部を有する付加基が前記フラーレンに付加した構造を有する、上記[1]に記載の潤滑油組成物。
 本発明の第二の態様は、以下の潤滑油組成物の製造方法である。
[3]上記[1]又は[2]に記載の潤滑油組成物の製造方法であって、
 基油にフラーレン昇華物を溶解してフラーレン溶液を得る溶解工程を有する、潤滑油組成物の製造方法。
 本発明の第二の態様は、以下の[4]~[14]に述べる特徴を好ましく含む。下記特徴は互いに組み合わせることも好ましい。
[4]前記溶解工程の前に、原料フラーレンを非酸化性雰囲気で昇華させて気体にした後、冷却して固体とすることにより、前記フラーレン昇華物を得る昇華工程を更に有する、上記[3]に記載の潤滑油組成物の製造方法。
[5]前記フラーレン昇華物は、C60、C70又はこれらの混合物を含む、上記[3]又は[4]に記載の潤滑油組成物の製造方法。
[6]前記溶解工程の後に、前記フラーレン溶液から不溶成分を除去する除去工程を更に有する、上記[3]~[5]のいずれかに記載の潤滑油組成物の製造方法。
[7]前記溶解工程の後に、前記フラーレン溶液を非酸化性雰囲気下で熱処理し、フラーレン付加体を生成させる熱処理工程を更に有する、上記[3]~[6]のいずれかに記載の潤滑油組成物の製造方法。
[8]前記熱処理工程における熱処理の温度が、前記基油の使用上限温度を超え、且つ前記使用上限温度+200℃以下の範囲である、上記[7]に記載の潤滑油組成物の製造方法。
[9]前記熱処理工程における熱処理の温度が、150℃以上300℃以下である、上記[7]に記載の潤滑油組成物の製造方法。
[10]前記溶解工程の後に、前記フラーレン溶液を非酸化性雰囲気下で、放射線の照射を行ってフラーレン付加体を生成する放射線処理工程を更に有し、
 前記放射線が、紫外線又は電離放射線である、上記[3]~[6]のいずれかに記載の潤滑油組成物の製造方法。
[11]前記放射線は、波長190nm以上365nm以下の紫外線である、上記[10]に記載の潤滑油組成物の製造方法。
[12]前記放射線処理工程で照射される放射線のエネルギー量は、前記フラーレン溶液1mLあたり1J以上100J以下である、上記[10]又は[11]に記載の潤滑油組成物の製造方法。
[13]前記非酸化性雰囲気中の酸素分圧が、10パスカル以下である、上記[7]~[12]のいずれかに記載の潤滑油組成物の製造方法。
[14]前記熱処理工程又は放射線処理工程は、前記フラーレン溶液中の前記フラーレンの濃度が、前記熱処理工程前又は前記放射線処理工程前のフラーレンの濃度に対して0.1倍以上0.7倍以下となるまで行う、上記[7]~[13]のいずれかに記載の潤滑油組成物の製造方法。
[15]前記熱処理工程又は前記放射線処理工程の処理時間が、5分以上24時間以下である、上記[14]に記載の潤滑油組成物の製造方法。
 本発明の第三の態様は、以下の真空装置である。
[16]上記[1]又は[2]に記載の潤滑油組成物を真空容器内に使用した、前記真空容器を備える真空装置。
 本発明によれば、優れた耐摩耗性を発揮すると共に、低蒸気圧を有し且つ基油劣化による蒸気圧上昇を抑制して、真空下であっても長期に亘って安定に潤滑性能を維持することができる、潤滑油組成物その製造方法及び真空装置を提供することができる。
 以下、本発明の実施形態に係る潤滑油組成物及びその製造方法を説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。本発明の趣旨を逸脱しない範囲で、数値、順番、時間、比率、材料、量、構成等について、変更、付加、省略、置換等が可能である。
(潤滑油組成物)
 本実施形態に係る潤滑油組成物は、フラーレンと基油とを含み、上記フラーレンはフラーレン昇華物であり、上記基油は、多重アルキルシクロペンタン油またはイオン液体である。また、本実施形態の潤滑油組成物は、後述するフラーレン付加体や添加剤等を含んでもよい。
(フラーレン昇華物)
 一般に、フラーレンの製造工程では、煤からトルエンなどの有機溶媒でフラーレンを抽出するなど、揮発性の有機溶媒中でフラーレンを扱う工程が含まれる。そのため、得られるフラーレンの結晶粒中には前記有機溶媒の分子が取り込まれ易い。このようなフラーレンを用いると、前記有機溶媒の分子などの揮発成分が混入してしまう。よって低蒸気圧を有する潤滑油組成物は得られない。上記揮発成分が含まれると、例えば高真空状態で潤滑油組成物を使用した場合、揮発成分は揮発する。その際には、基油やフラーレンの一部も液状で飛散する。そのため、機械装置の摺動部以外の部分が汚染される。
 混入や汚染を防止するために、本実施形態では、揮発成分を実質的に含まないフラーレンを用いる。すなわち、本実施形態の潤滑油組成物に含まれるフラーレンは、フラーレン昇華物である。「フラーレン昇華物」とは、揮発成分を実質的に含まないフラーレンを指す。なお、フラーレン昇華物の製造方法は、後述の「昇華工程」にて詳述する。
 ここで、フラーレンの結晶粒中に有機溶媒の分子が取り込まれている場合、上記揮発成分も結晶粒中に取り込まれる。このため、フラーレン中の揮発成分を定量分析することは極めて困難である。そこで本実施形態では、フラーレンの試料を基油に溶解してフラーレン溶液を作製し、基油に比べて該フラーレン溶液の後述する脱ガス度の上昇が実質的に0(例えば、0.1以下)と言える場合、この試料は揮発成分を実質的に含まないと判断することができる。
 フラーレン昇華物中のフラーレンの種類としては、例えば、C60やC70、さらに高次のフラーレン、又はそれらの混合物が挙げられる。フラーレンの中でも、潤滑油への溶解性の高さの点から、C60、C70又はこれらの混合物が好ましい。潤滑油への茶~黒色系の着色が少ない点(潤滑油組成物の劣化の判定を色でしやすい点)から、C60が50質量%以上含まれるフラーレンの混合物がより好ましい。70質量%以上100質量%以下でもよく、90質量%以上100質量%以下の量で含まれていてもよい。C60のみで構成されるフラーレン昇華物がさらに好ましい。
 潤滑油組成物中のフラーレン昇華物の濃度は任意に選択できるが、例えば必要に応じて、0.0001質量%~0.010質量%や、0.0005質量%~0.008質量%や、0.001質量%~0.005量%や、0.002質量%~0.003質量%であることも好ましい。ただしこれらの例のみに限定されない。
(フラーレン付加体)
 本実施形態の潤滑油組成物は、フラーレン付加体を含んでもよい。フラーレン付加体は、上記基油を構成する分子構造の一部を有する付加基が上記フラーレンに付加した構造を有する。
 潤滑油組成物中のフラーレン付加体の濃度は任意に選択できるが、例えば0.0001質量%~0.010質量%や、0.0005質量%~0.008質量%や、0.001質量%~0.005量%や、0.002質量%~0.003質量%であることも好ましい。ただしこれらの例のみに限定されない。フラーレン付加体の濃度は、任意に選択される方法で得てよい。例えば、後述するように熱処理前後のフラーレン濃度の差から推定してもよい。
(基油)
 本実施形態の潤滑油組成物に含まれる基油は、蒸気圧が低い油である。例えば、多重アルキルシクロペンタン油や、Dialkylpiperidin bis(trifluoromethanesulfonyl)imideなどのイオン液体、などが好ましく挙げられる。
 基油には、揮発成分が含まれていないことが好ましい。基油の蒸気圧は、具体的には、25℃の蒸気圧が1パスカル以下であることが好ましく、0.1パスカル以下であることがさらに好ましく、特に好ましくは、0.01パスカル以下であることが好ましい。
 多重アルキルシクロペンタン油(Multiply Alkylated Cyclopentane Oil,以下「MAC油」と言うことがある)の分子は、シクロペンタン環に複数のアルキル基が結合した構造を有する。これらアルキル基の総炭素数は48以上112以下が好ましい。総炭素数は、例えば、48以上60以下や、48以上80以下や、70以上112以下などであってもよい。各アルキル基の炭素数は同じであっても、異なってもよい。シクロペンタン環に結合するアルキル基の数も任意に選択でき、例えば、1~5であってもよく、2~4や、3~4であっても良い。より具体的な例としては、炭素数20のアルキル基が3つ結合ししたトリス(2-オクチルドデシル)シクロペンタン、炭素数12のアルキル基が4つ結合したテトラ(ドデシル)シクロペンタンなどが挙げられ、さらに、これらの混合物も挙げられる。ただしこれらの例のみに限定されない。
 イオン液体は、アニオン部とカチオン部とからなるイオン性化合物であり、特に室温~80℃で液体であるものが使用しやすく好ましい。
 上記アニオン部としては、ビス(トリフルオロメタンスルホニル)イミド、ビス(フルオロスルホニル)イミド、ジエチルホスフェートなどが挙げられる。
 上記カチオン部としては、リチウム、シクロヘキシルトリメチルアンモニウム、エチルジメチルフェニルエチルアンモニウム、メチルトリオクチルアンモニウム、1-アリール-3-メチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-ヘキシル-3-メチルイミダゾリウム、 1-ブチル-2、3-ジエチルイミダゾリウム、3,3‘-(ブタン-1,4-ジル)ビス(1ビニル-3-イミダゾリウム)、1-デシル-3-メチルイミダゾリウム、1-ブチル-4-メチルピリジウム、4-エチル-4-メチルモロホリニウム、テトラブチルホスホニウム、トリブチル(2-メトキシエチル)ホスホニウム、トリヘキシル(テトラデシル)ホスホニウム、ブチル-1-メチルピペリジウム、1-ブチルピリジウム、1-ブチル-メチルピロリジンニウム、トリブチルスルホニウムなどが挙げられる。
 具体的なイオン液体としては、これらカチオン部の化合物とアニオン部の化合物とを適宜組み合わせた化合物が挙げられる。なお、組合わせるカチオン部の化合物及びアニオン部の化合物はそれぞれ一種でなくても構わない。すなわち、それぞれの化合物を1種以上互いに組み合わせても良い。
 潤滑油組成物中の基油の量は任意に選択できる。例えば、90.0000質量%~99.9999質量%であってもよい。ただしこれらの例のみに限定されない。)
(添加剤)
 本実施形態の潤滑油組成物は、基油とフラーレン昇華物とフラーレン付加体以外にも、潤滑油組成物としての効果を損なわない範囲で、実質的に揮発成分を含まない添加剤を含有することができる。添加剤としては、例えば、市販の酸化防止剤、粘度指数向上剤、極圧添加剤、清浄分散剤、流動点降下剤、腐食防止剤、固体潤滑剤、油性向上剤、錆び止め添加剤、抗乳化剤、消泡剤、加水分解抑制剤等が挙げられる。これらの添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。添加剤の量は任意に選択できる。
 酸化防止剤としては、例えば、ブチルヒドロキシアニソール(BHA)、ジアルキルジフェニルアミン等が挙げられる。
 粘度指数向上剤としては、例えば、ポリアルキルスチレン、スチレン-ジエンコポリマーの水素化物添加剤等が挙げられる。
 極圧添加剤としては、例えば、ジベンジルジサルファイド、アリルリン酸エステル、アリル亜リン酸エステル、アリルリン酸エステルのアミン塩、アリルチオリン酸エステル、アリルチオリン酸エステルのアミン塩等が挙げられる。
 清浄分散剤としては、例えば、ベンジルアミンコハク酸誘導体、アルキルフェノールアミン類等が挙げられる。
 流動点降下剤としては、塩素化パラフィン―ナフタレン縮合物、塩素化パラフィンーフェノール縮合物、ポリアルキルスチレン系等が挙げられる。
 抗乳化剤としては、例えば、アルキルベンゼンスルホン酸塩等が挙げられる。
 腐食防止剤としては、例えば、ジアルキルナフタレンスルホン酸塩等が挙げられる。
(潤滑油組成物の製造方法)
 本実施形態の潤滑油組成物の製造方法は、上記基油に上記フラーレン昇華物を溶解し、フラーレン溶液を得る溶解工程を有する。この工程で得られたフラーレン溶液をそのまま潤滑油組成物としてもよいが、後述するように、さらにフラーレン溶液を加工したものを潤滑油組成物としてもよい。
 溶解工程で用いられる上記フラーレン昇華物は、上述のように、潤滑油への溶解性の高さの点から、C60、C70又はこれらの混合物を含むのが好ましい。潤滑油への着色が少ない点から、C60が50質量%以上含まれるフラーレンの混合物がより好ましい。C60で構成されるフラーレン昇華物がさらに好ましい。
 フラーレン溶液中のフラーレンの濃度は任意に選択されるが、例えば1質量ppm(0.0001質量%)以上100質量ppm(0.01質量%)以下であることが好ましく、3質量ppm(0.0003質量%)以上75質量ppm(0.0075質量%)以下であることがより好ましく、5質量ppm(0.0005質量%)以上50質量ppm(0.005質量%)以下であることがさらに好ましい。フラーレンの濃度は任意に選択される方法、例えば高速液体クロマトグラフィー(HPLC)を用いた手法により測定してよい。
 上記溶解工程における溶解は任意に選択する方法で行うことができ、好ましくは通常の機械攪拌や、超音波攪拌などで行うことができる。温度は基油が室温で低粘性の液体である場合は、室温で攪拌してよい。一方、基油が室温で高粘性の液体あるいは固体の場合は、加温し、低粘度な液体状態にして攪拌して溶解することが好ましい。攪拌時間は任意に選択してよい。
 (昇華工程)
 溶解工程で用いられる上記フラーレン昇華物は、市販品でもよいが、昇華工程を設けて通常のフラーレン(原料フラーレン)から製造してもよい。すなわち、上記潤滑油組成物の製造方法は、上記溶解工程の前に、原料フラーレンを非酸化性雰囲気で昇華させて気体にした後、冷却して固体とすることにより、上記フラーレン昇華物を得る昇華工程を更に有していてもよい。例えば、原料フラーレンを酸素ガス分圧10パスカル以下の非酸化性雰囲気で、昇華させて気体にした後、冷却して固体とすることにより、上記フラーレン昇華物を得ることができる。なお原料フラーレンは、昇華工程で得られたものではないフラーレンを意味して良く、市販品を用いても良い。
 上記昇華工程を設けることにより、昇華工程の後に連続して溶解工程を行うことができる。この方法は、得られたフラーレン昇華物の保存を避けることで、空気中などからの揮発性成分の混入等を防止する観点で好ましい。
 昇華工程では、具体的には、例えば市販の昇華精製装置を用いて原料フラーレンの昇華を行うことができる。昇華の一例を挙げると、先ず、原料フラーレンを昇華精製装置内部の加熱部に配置し、この状態で装置内を減圧し酸素ガス分圧を10パスカル以下にする。減圧の後に、加熱部を加熱することにより、加熱部の原料フラーレンは、固体から気体に相変化する。その後、冷却によって気体から固体に相変化し、フラーレン昇華物として析出する。この方法によれば、原料フラーレンは一旦気体分子状態となるために、原料フラーレンの結晶内に内包された状態の揮発成分を除去することができる。このようにして得たフラーレン昇華物は、上記揮発成分を実質的に含んでいない。よって、昇華工程を設けることにより、蒸気圧の低い潤滑油組成物を得ることができる。
 (除去工程)
 溶解工程で得られたフラーレン溶液には、不溶性のフラーレン等が含まれることがある。その場合、これら不溶成分を除去することが好ましい。すなわち、上記潤滑油組成物の製造方法は、上記溶解工程の後に、上記フラーレン溶液から不溶成分を除去する除去工程を更に有していてもよい。不溶成分を除去する方法としては任意に選択できるが、例えば、メンブランフィルターを用いて濾過する方法、遠心分離器を用いて沈降除去する方法、及びそれら方法の両方を組み合わせて用いる方法等が挙げられる。
 (熱処理工程/放射線処理工程)
 フラーレン付加体は、上記フラーレン溶液を、酸素分圧を下げるなどした非酸化性雰囲気下で熱処理または放射線処理を行うことにより得られる。すなわち、上記潤滑油組成物の製造方法は、上記溶解工程の後に、上記フラーレン溶液を非酸化性雰囲気下で熱処理し、上記フラーレン付加体を生成させる熱処理工程を更に有していてもよい。また、上記溶解工程の後に、上記フラーレン溶液を非酸化性雰囲気下で、放射線の照射を行って上記フラーレン付加体を生成する放射線処理工程を更に有していてもよい。
 なお、熱処理工程及び放射線処理工程の一方または両方を行ってフラーレン付加体を得てもよく、あるいは、熱処理工程及び放射線処理工程の両方を同時に行ってフラーレン付加体を得てもよい。
 このような処理を行うことにより、基油を構成する分子構造の一部が開裂し、その結果、反応性の高い分子(以下、「開裂分子」という。)が生成し、これがフラーレンに付加し、フラーレン付加体を生じさせる。この場合、本処理によって得られるフラーレン付加体は、上記基油を構成する分子構造の一部を有する付加基が上記フラーレンに付加した構造を有する。フラーレン付加体が生成されることによって、優れた効果を得ることができる。
 フラーレンがフラーレン付加体に変化したことは、処理前後のフラーレン溶液について質量スペクトル測定を行うことで確認することができる。例えば、フラーレン昇華物としてC60を用いた場合、熱処理または放射線処理を行う前の潤滑油組成物では、C60に相当するm/z=720のピークのみが確認される。これに対して、処理後の潤滑油組成物では、720のピークが減少し、フラーレン付加体のピークが複数出現する。主なピークとしては、鎖長が異なる複数のアルキル基が付加したC60に相当するピーク(722+2N)が確認できる。Nは60以下の自然数である。これは、基油の開裂で生じたアルキルラジカルの分子2個がC60に付加したものである。
 なお、上記基油の分子は必ずしも特定の箇所で開裂しないため、通常、フラーレン付加体は、単一種の分子にならず、その分析は難しくなる。そのため、フラーレン付加体が生成する反応の進行状況は、残存するフラーレンの濃度を測定し、下記式で表されるフラーレン残存率を目安にするとよい。
(フラーレン残存率)=[処理後のフラーレン濃度]/[処理前のフラーレン濃度]
 上記式中、処理とは、熱処理及び放射線処理の一方又は双方を示す。なお、処理中のフラーレン残存率を求める場合は、上記「処理後のフラーレン濃度」を「処理中のフラーレン濃度」に読み変えればよい。また、フラーレン濃度は、実施例に記載の高速液体クロマトグラフィー(HPLC)を用いた手法により測定することができる。
 なお、生成されるフラーレン付加体の濃度は下記式で推定してもよい。
 [フラーレン付加体濃度]≒[処理前のフラーレン濃度]-[処理後のフラーレン濃度]
 前述の式で求めたフラーレン残存率は、0.1以上0.7以下であることが好ましく、0.2以上0.5以下であることがより好ましい。上記フラーレン残存率が、0.1以上0.7以下であると、潤滑油組成物の潤滑性が使用初期からより安定に発現し、機械装置の摺動部の摩擦摩耗が抑制し、基油劣化に伴う揮発成分の発生を抑制することができる。
 よって本実施形態では、熱処理工程又は放射線処理工程中、フラーレン溶液のフラーレン濃度をモニタリングし、フラーレンの濃度が、上記熱処理工程前又は上記放射線処理工程前のフラーレンの濃度に対して0.1以上0.7以下となるまで行うことが好ましい。また、上記熱処理工程又は放射線処理工程の処理時間は任意に選択できるが、5分以上24時間以下となるようにするのが好ましく、これにより熱処理あるいは放射線処理の操作が行いやすくなる。処理時間の調整として、例えば、熱処理温度を上げるか、放射線照射強度を上げると、処理時間を短くでき、逆に、熱処理温度を下げるか、放射線照射強度を下げると、処理時間を長くすることができる。また、放射線処理工程では、放射線強度と照射時間と照射回数は任意に選択してよい。例えば、放射線をある程度高い放射線強度で短時間(0.1秒以上3分以下程度)照射することを2~10回程度繰り返すなど、照射回数を調整することにより、上記フラーレン濃度の範囲とする方法も操作しやすく好ましい。
 通常、フラーレン溶液は大気中で扱われる。このため、同溶液中の酸素ガス濃度は大気中の酸素ガスと平衡状態になっている。また、酸素分子は、開裂分子と反応してしまい、フラーレン付加体の生成を抑制する。そのため、可能な限りフラーレン溶液中の酸素分子を除去し、非酸化性雰囲気下で、熱処理または放射線処理を行うことが好ましい。熱処理工程または放射線処理工程における上記非酸化性雰囲気としては、フラーレン溶液と平衡にある気相で、上記非酸化性雰囲気中の酸素分圧が10パスカル以下であることが好ましく、5パスカル以下であることがより好ましく、2パスカル以下であることがさらに好ましい。1パスカル以下や、0.1パスカル以下であっても良い。また非酸化性雰囲気の例としては、下記に述べるような不活性ガス雰囲気が好ましく挙げられる。熱処理工程の具体例として、下記の2つの方法、放射線処理工程の具体例として、下記の1つの方法が挙げられる。
 ・熱処理工程
 上記熱処理の温度は、基油の使用温度の上限を超える温度で行うことが好ましい。基油の使用上限温度を超えることにより、開裂分子が発生しやすくなる。さらに、温度が高くなると、開裂分子がより多く発生し、その結果、熱処理時間は短くて済む。操作のしやすい熱処理時間の観点から、本熱処理工程における熱処理の温度は、基油の使用上限温度を超え、且つ基油の使用上限温度+200℃以下の範囲であることが好ましい。なお基油の使用上限温度とは、基油の製造会社のカタログなどから知ることができる。使用上限温度とは、その基油を比較的安定に使用することが可能である、基油の温度の上限を意味してよい。基油の使用上限温度が不明な場合は、目安として、熱処理温度は150℃以上300℃以下が好ましく、200℃以上250℃以下がより好ましい。熱処理工程の時間は任意に選択できるが、5分~24時間であることが好ましい。5分から30分や、30分から1時間や、1時間から5時間や、5時間から24時間などであってよい。ただしこれらの例のみに限定されない。
 非酸化性雰囲気とする方法としては、任意に選択できるが、例えば、気密可能なステンレス等の金属製容器内に、フラーレン溶液を収容した後、容器を密閉する。次いで、窒素ガスやアルゴンガス等の不活性ガスで容器内を置換するか、さらに容器内のフラーレン溶液を不活性ガスでバブリングする。このようにして、フラーレン溶液を不活性ガスと平衡状態にし、上記酸素分圧を10パスカル以下とする。
 あるいは、非酸化性雰囲気とする方法として、気密可能な容器内を減圧する方法も挙げられる。例えば、容器内を10パスカル以下に減圧すれば、気相の酸素分圧を10パスカル以下、通常2パスカル以下とすることができる。このように容器内を減圧によって非酸化性雰囲気とし、その状態を保ったまま容器を加熱することにより、フラーレン溶液を熱処理することができる。
 フラーレン溶液の加熱は、任意に選択される方法で行うことができる。例えば、外部から油浴などで加温するか、赤外線を照射するか、あるいはマイクロウェーブを照射する方法、などで行うことができる。
 また熱処理工程では、一定時間が経過する毎にフラーレン残存率を確認し、所望のフラーレン残存率が得られるまで、加熱(熱処理)を継続してもよい。
 ・放射線処理工程
 上記放射線処理に用いる放射線は、開裂分子を生成させるエネルギーを有する放射線である。具体的には紫外線又は電離放射線であり、好ましくは紫外線である。より好ましくは波長190nm以上365nm以下の紫外線であり、さらに好ましくは波長330mn以上350nm以下の紫外線である。例えば、C-C単結合は、波長341nm以下の紫外線で開裂する。また、常温で放射線照射処理を行う場合、熱振動が重畳されるため、C-C単結合は、341nmよりも多少長い波長を有する紫外線でも開裂する。よって、波長190nm以上365nm以下の紫外線を照射することで、開裂分子を十分に生成させることができる。また、開裂分子を生成させられる限り、低エネルギーの放射線の方が、基油分子中で開裂する結合個所が限られる。そのため、比較的元の基油の分子の部分形状を保った大きな開裂分子となりやすく、得られるフラーレン付加体の基油との親和性が向上すると考えられる。
 放射線処理は、上記熱処理と同様に、非酸化性雰囲気下で処理を行うことが好ましい。ただし、放射線照射する時には、容器内に紫外線ランプ等の放射線源を挿入するか、又は、容器の外部から照射する為に、容器の少なくとも一部が、使用する放射線が透過する材料で構成されているものを用いる。例えば、紫外線照射をする場合、上記記ステンレス容器の全体あるいは一部を、石英ガラス等の紫外線が透過する材料のものに置き換えることができる。
 放射線処理工程で照射される放射線のエネルギー量は任意に選択できるが、フラーレン溶液1mLあたり、1J以上100J以下が好ましく、1.5J以上60J以下がより好ましく、2J以上20J以下がさらに好ましい。1J以上10J以下や、1J以上8J以下などであってもよい。この範囲であれば、前述の式から得られる処理後のフラーレンの濃度の範囲を、すなわちフラーレン残存率を、0.1以上0.7以下に調整しやすい。上述したように、照射は例えば、1回の照射のみを行っても良いし、照射を2回以上に分けて複数回行っても良い。照射は同じ条件で行って良い。照射を複数回に分ける場合、放射線の総エネルギー量が上記範囲内にあることが好ましい。照射回数は任意に選択でき、例えば、1~10回の範囲や、2~5回の範囲であってもよい。ただしこれらの例のみに限定されない。また、照射を行う毎にフラーレン残存率を確認し、目的のフラーレン残存率が得られるまで、照射を1回以上繰り返すことも好ましい。
 紫外線照射の場合は、通常の低圧水銀ランプ、UVオゾンランプ、紫外LED、エキシマランプ、キセノンランプなど用いることができる。紫外線の照射量としては、あらかじめ紫外線光度計を用いて、紫外線の照射光のエネルギー密度(mW/cm)を測定しておき、次に照射時間(秒)と照射範囲(cm)を規定する。これらのことにより、照射する紫外線のエネルギー量(J)を決定することができる。照射時間は任意に選択できる。例えば、5分以上24時間以下であってもよい。あるいは、0.1秒~1時間や、0.2秒~30分や、0.3秒~3分や、0.5秒から60秒や、1秒から30秒であってもよい。
 本実施形態の潤滑油組成物によれば、摩擦抵抗低減や耐摩耗性に優れるだけでなく、低蒸気圧を有することができ、更には、基油劣化に伴う揮発成分の発生が抑制されて、潤滑油組成物の蒸気圧上昇を抑制することができる。本実施形態の潤滑油組成物は、各種用途に使用することができるが、特に、真空中での使用や宇宙空間での使用に適している。
 以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
(潤滑油組成物の調製)
 先ず、原料フラーレンとしてC60(フロンティアカーボン社製 ナノムTM パープルST)10gを、昇華精製装置(旭製作所社製、小型昇華精製装置)を用いて昇華し、フラーレン昇華物を得た。原料フラーレンの昇華は、3ゾーン式で行った。高温ゾーンは700℃、中温ゾーンは200℃、低温ゾーンは室温とし、各ゾーンの圧力は10パスカル以下とした。原料フラーレンを、高温ゾーンに配置して固体から気体に相変化させ、気体から固体に相変化して固体になったフラーレン昇華物を、中温ゾーンから回収した。
 昇華の操作は、室温で原料フラーレンを配置し、各ゾーンを圧力10パスカル以下となるまで減圧を行い、その後、高温ゾーンと中温ゾーンを同時に、10℃/分の速度で定温まで上昇させた。高温ゾーンの温度が600℃を超えるとフラーレンの昇華が始まり、昇華中の圧力は10パスカル以下であった。
 次に、得られたフラーレン昇華物0.001gと、基油としてMAC油であるトリス(2-オクチルドデシル)シクロペンタン(Nye Lubricants製、合成油2001A)10gとを混合した。得られた混合物を、室温でスターラーを用いて36時間撹拌した。次に、これを0.1μmメッシュのメンブランフィルターで濾過して、フラーレン溶液を得た。得られたフラーレン溶液のフラーレン濃度を測定した結果、100質量ppmであった。得られたフラーレン溶液を潤滑油組成物とした。
 なお、上記フラーレンの濃度の測定は、高速液体クロマトグラフ(アジレント・テクノロジー社製 1200シリーズ)を用いた。具体的には、この装置において、ワイエムシィ社製カラム YMC-Pack ODS-AM(150mm×4.6)を使用し、展開溶媒:トルエンとメタノールの1:1(体積比)混合物を用いて、吸光度(波長309nm)で検出することにより、潤滑油組成物等の試料中のフラーレンの量を定量した。また、検量線は、上記の原料フラーレンにより作成した。
(耐摩耗性の評価)
 得られた潤滑油組成物について、摩擦摩耗試験機(Anton Paar社製、ボールオンディスクトライボメーター)を用いて、耐摩耗性を評価した。
 先ず、基板およびボールを用意し、これらの材質は、高炭素クロム軸受鋼鋼材SUJ2とした。ボールの直径は6mmとした。基板の一主面に潤滑油組成物を塗布し、基板を100℃に加熱した。次に、潤滑油組成物を介して、基板の一主面上にて、ボールが基板上で円状の軌道を描くように、基板を回転させて、固定されたボールを摺動させた。基板の一主面上におけるボールの速度を5cm/秒、ボールによる基板の一主面に対する荷重を10Nとした。基板の前記一主面上におけるボールの摺動距離が積算300mの時のボール面の擦り面(円形)を光学顕微鏡で観察した。ボールに形成された擦り面の直径を測定し、この数値を耐摩耗性とした。擦り面の直径が小さいほど、耐摩耗性が優れるといえる。結果を表1に示す。
(安定性の評価)
 昇温脱離ガス分析装置(リガク製、TPDtype V)を用いて、高真空下での潤滑油組成物から揮発する成分の有無を測定した。潤滑油組成物0.01gについて、気圧10-5パスカルでの脱離ガス度を測定した。脱離ガス度は、炭酸ガス(分子量44)よりも分子量の小さい分子の影響を排除するため、分子量46以上200以下のピークの積算値とした。比較品として、MAC油に揮発成分としてトリメチルベンゼン(TMB)(東京化成社製)を1質量ppm添加したものを用いて、同様の測定をした。TMBを添加したMAC油では、TMBに起因するピークが検出された。このピークの積算値を1(基準値)とした。この基準値に対する、計測された潤滑油組成物の脱離ガスに起因するピークの積算値の割合を脱離ガス度とした。脱離ガス度が小さいほど、高真空下での安定性が優れるといえる。
 脱離ガス度は、耐摩耗性試験前と耐摩耗性試験後との2点を測定した。上記耐摩耗性の試験では、金属が直接接触し、また発熱し、これにより基油の分子鎖が切断され、劣化する。劣化の結果、切断された分子の一部は揮発成分として先の方法で検出される。つまり、耐摩耗性に劣る潤滑油では、基油の劣化が進行するために、脱離ガス成分の量が大きくなり、好ましくない。結果を表1に示す。
[比較例1]
 フラーレン昇華物に代えて、原料フラーレン(昇華工程無し)をそのまま用いたこと以外は、実施例1と同様にして潤滑油組成物を得た。得られた潤滑油組成物の耐摩耗性と脱離ガス度の結果を、表1に示す。
[比較例2]
 MAC油にフラーレンを添加しなかったこと以外は、実施例1と同様にして潤滑油組成物を得た。得られた潤滑油組成物の耐摩耗性と脱離ガス度の結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1では、MAC油にフラーレン昇華物を溶解してフラーレン溶液(潤滑油組成物)を得ると、擦り面の直径が200μmであり、耐摩耗性に優れることが分かった。また、耐摩耗性試験前における潤滑油組成物の脱ガス度が0.1であり、潤滑油組成物の使用初期の蒸気圧が低く、使用初期における高真空下での安定性に優れることが分かった。更に、耐摩耗性試験後における潤滑油組成物の脱ガス度が0.9であり、基油劣化による蒸気圧上昇が抑制され、高真空下での安定性に優れることが分かった。
 また、実施例1と比較例1とを比較すると、耐摩耗性は同等であったが、実施例1では、耐摩耗試験前後の脱離ガス度が比較例1よりも優れていた。これは、昇華を行ったフラーレン(フラーレン昇華物)は、実質的に揮発成分を含まず、MAC油にフラーレン昇華物を添加することにより、潤滑油組成物に含まれる揮発成分を抑制し、その結果、脱離ガス量を最小にすることができたと推察される。
 また、実施例1と比較例2とを比較すると、耐摩耗試験前の脱ガス度は同程度に優れていたが、比較例2では、耐摩耗性が低下し、また、耐摩耗試験後の脱ガス度は大きく劣った。このことから、MAC油にフラーレン昇華物を添加することにより、耐摩耗性が向上し、その結果脱ガス量の増加が抑制されることがわかった。
[実施例2]
 実施例1で得られたフラーレン溶液(潤滑油組成物)に、紫外線照射を行った以外は、実施例1と同様にして潤滑油組成物を得た。得られた潤滑油組成物の耐摩耗性と脱離ガス度の結果を、表1に示す。
 実施例2での紫外線照射は、次の手順で行った。先ず、セプタムキャップ付き石英セル(東京硝子器械社製、S15-UV-10)に3ml取り出した。
 次に、石英セルのセプタムキャップに注射針を2本差し込み、一方から純度99.99%の窒素ガス(常圧での窒素以外のガス分圧は10パスカル以下)を毎分60mLで10分間流した。次に、石英セルに入れたフラーレン溶液に間欠に紫外照射を行った。
 紫外線照射には、紫外照射装置(サンエイテック社製、オムニキュアS2000)を用いた。具体的には、フィルターを250nm-450nmとし、照射範囲2cmとし、紫外線照度計(波長230nm-390nm)を用いて計測しながら、出力を1W/cmに調整し、照射タイマーを1秒に設定し、一回の照射で2J(フラーレン溶液1mLあたり0.7J)のエネルギーを照射することができるように設定した。
 次に、紫外線照射後ごとに、注射器を用いて、石英セル内部からフラーレン溶液約0.01mlを抜き取り、高速液体クロマトグラフィー(HPLC)を用いてフラーレン濃度を測定し、フラーレン残存率を決定した。
 2回の紫外線照射(フラーレン溶液1mLあたり1.3J)でフラーレン残存率が0.55となった。このために、紫外照射を中止し、石英セルから内容物を取り出し、潤滑油組成物を得た。潤滑油組成物のフラーレン濃度を測定した結果、55質量ppmであり、フラーレン残存率は0.55であった。結果を表1に記した。
 また、紫外線照射前のフラーレン溶液(実施例1の潤滑油組成物)、及び紫外線照射後に得られた実施例2の潤滑油組成物について、質量分析装置(アジレント・テクノロジー社製、LC/MS、6120)を用いて、分子量720以上2000以下の成分分析を行った。実施例1の紫外線照射前のフラーレン溶液では、主にフラーレンのピーク720と、それ以外に基油に起因すると考えられる複数のピーク が見られた。実施例2の紫外線照射後の潤滑油組成物では、前述のピークに加え、主なピークとして、m/z=750、764、766、778、780、792、794、796、808、806、820、834のピークを新たに確認した。これらのことから、紫外線照射後のフラーレン溶液(潤滑油組成物)には、フラーレンと生成したフラーレン付加体とが存在することを確認した。なお、他の実施例・比較例でも同様に熱処理又は放射線処理前後のフラーレン溶液を分析した。その結果、熱処理又は放射線処理前のフラーレン溶液にはフラーレン付加体が確認されなかったが、これら処理後にはフラーレン付加体が確認された。
[実施例3]
 紫外線照射の代わりに、石英セルに入れたフラーレン溶液を200℃のオイルバスに浸漬して加熱した。紫外線照射の代わりに加熱した以外は、実施例2と同様にして、潤滑油組成物を得た。得られた潤滑油組成物の耐摩耗性と脱離ガス度の結果を、表1に示す。
 実施例3の加熱では、注射器を用いて、5分ごとに、石英セル内部からフラーレン溶液約0.01mlを抜き取り、HPLCを用いてフラーレン濃度を測定し、フラーレン残存率を決定した。測定開始から15分でフラーレン残存率が0.2となった。このために、石英セルを油浴から取り合出し、室温にまで冷却し、潤滑油組成物を得た。潤滑油組成物のフラーレン濃度を測定した結果、15質量ppmであり、フラーレン残存率は0.15であった。
 表1に示すように、実施例2において、MAC油にフラーレン昇華物を溶解してフラーレン溶液を得て、フラーレン溶液に2回の紫外線照射を行った場合、擦り面の直径が160μmであり、また、耐摩耗性試験前後における潤滑油組成物の脱ガス度がそれぞれ0.1、0.5であった。すなわち、耐摩耗性及び高真空下での安定性がより優れることが分かった。同様に、実施例3において、MAC油にフラーレン昇華物を溶解してフラーレン溶液を得て、フラーレン溶液を熱処理した場合、擦り面の直径が155μmであり、また、耐摩耗性試験前後における潤滑油組成物の脱ガス度がそれぞれ0.1、0.3であった。すなわち、耐摩耗性及び高真空下での安定性がより優れることが分かった。
 また、フラーレン付加体の生成工程として紫外線照射または加熱を行った実施例2、3と、上記紫外線照射または加熱を行わなかった実施例1とを比較すると、実施例2、3は、耐摩耗性、並びに耐摩耗性試験前及び耐摩耗性試験後の脱離ガス度のいずれでも優れていた。このことは、上記フラーレン付加体の生成工程により、フラーレン溶液でフラーレン付加体が生成した結果、耐摩耗性が上昇し、また、耐摩耗性が上昇したことにより揮発成分の量を最小にすることができたと推察される。
[実施例4]
 フラーレン溶液に8回の紫外線照射を行ったこと以外は、実施例2と同様にして潤滑油組成物を得た。実施例4では、8回の紫外線照射(フラーレン溶液1mLあたり5.3J)でフラーレン残存率が0.25となった。このために、紫外照射を中止し、石英セルから内容物を取り出し、潤滑油組成物を得た。潤滑油組成物のフラーレン濃度を測定した結果、25質量ppmであり、フラーレン残存率は0.25であった。得られた潤滑油組成物の耐摩耗性と脱離ガス度の結果を、表1に示す。
 表1に示すように、実施例4において、フラーレン溶液に8回の紫外線照射を行った場合、擦り面の直径が155μmであり、また、耐摩耗性試験前後における潤滑油組成物の脱ガス度がそれぞれ0.1、0.3であった。すなわち、耐摩耗性及び高真空下での安定性がより優れることが分かった。
 また、実施例4と実施例2とを比較すると、実施例4では、耐摩耗性及び耐摩耗性試験後の脱離ガス度の双方が、実施例2よりも優れていた。実施例2及び実施例4は、紫外線照射回数が異なる他は同条件である。よって実施例2及び実施例4では、生成する開裂分子種(フラーレン付加体の付加基)はほぼ同じと推定され、違いは、実施例4の方が実施例2よりフラーレン残存率が低く、すなわち実施例4ではフラーレン付加体がより多く生成していることである。この違いにより、実施例4では、耐摩耗性が改善し、その結果、耐摩耗性試験後の脱離ガス度も低下したと推察される。
[実施例5]
 放射線の光源として、低圧水銀UVランプ(セン特殊光源株式会社、型式UVL20PH-6、光波長成分として185nmと254nmの紫外線を含む)を用いて、20秒間照射を用いたこと以外は実施例1と同様にして、潤滑油組成物を得た。ここで、照射範囲は5cm、出力は0.2W/cmであった。すなわち、20秒間の照射により、潤滑油組成物に20J(フラーレン溶液1mLあたり7J)の紫外線を照射した。潤滑油組成物のフラーレン濃度を測定した結果、22質量ppmでありフラーレン残存率は0.22であった。得られた潤滑油組成物の耐摩耗性と、脱離ガス度の結果を表1に示す。
[実施例6]
 放射線の光源として、X線照射装置(トーレック社製、RIX-250C-2)を用いて、480秒間X線照射を行ったこと以外は、実施例1と同様にして、潤滑油組成物を得た。得られた潤滑油組成物のフラーレン濃度を測定した結果、20質量ppmでありフラーレン残存率は0.20であった。得られた潤滑油組成物の耐摩耗性と、脱離ガス度を表1に示す。
 実施例5と実施例4とを比較すると、共に紫外線を照射し、その結果、フラーレン残存率が同程度に低下している。しかしながら、実施例4では、耐摩耗性及び耐摩耗性試験後の脱離ガス度が、実施例5よりも優れていた。これは、実施例5では、紫外線に185nmの光(遠紫外線)が含まれているためと推察される。
 実施例6と実施例5とを比較すると、共に放射線を照射し、その結果、フラーレン残存率が同程度に低下している。しかしながら、実施例6では、耐摩耗性及び耐摩耗性試験後の脱離ガス度が、実施例5よりも劣っていた。これは、実施例6では、放射線として、紫外線よりもエネルギーの高いX線を用いたためと推察される。
[実施例7]
 イオン液体である1-ブチル -3-メチルイミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド(東京化成社製、LiTFSI)を基油としたこと以外は、実施例1と同様にして潤滑油組成物を得た。得られた潤滑油組成物の耐摩耗性と脱離ガス度の結果を、表1に示す。
[比較例3]
 フラーレン昇華物に代えて、原料フラーレン(昇華工程無し)をそのまま用いたこと以外は、実施例7と同様にして潤滑油組成物を得た。得られた潤滑油組成物の耐摩耗性と脱離ガス度の結果を、表1に示す。
 実施例7と比較例3とを比較すると、フラーレン昇華物を用いた実施例7の方が、耐摩耗性試験前後での脱離ガス度が優れていた。
[実施例8]
 イオン液体である1-デシル-3-メチル-イミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド(東京化成製)を基油としたこと以外は、実施例3と同様にして潤滑油組成物を得た。潤滑油組成物のフラーレン濃度を測定した結果、12質量ppmでありフラーレン残存率は0.12であった。得られた潤滑油組成物の耐摩耗性と、脱離ガス度を表1に示す。得られた潤滑油組成物の耐摩耗性と、脱離ガス度を表1に示す。
[実施例9]
 イオン液体である1-デシル-3-メチル-イミダゾリウム・ビス(トリフルオロメタンスルホニル)イミド(東京化成製)を基油としたこと以外は、実施例4と同様にして潤滑油組成物を得た。潤滑油組成物のフラーレン濃度を測定した結果、35質量ppmでありフラーレン残存率は0.35であった。得られた潤滑油組成物の耐摩耗性と、脱離ガス度を表1に示す。得られた潤滑油組成物の耐摩耗性と、脱離ガス度を表1に示す。
 実施例8及び9と実施例7との比較結果は、前述の実施例3及び4と実施例1との比較結果と同様の傾向を示した。すなわち、異なる基油においても、紫外線照射処理及び加熱処理は、耐摩耗性効果と脱ガス低減の観点から有効であることが分かった。
[実施例10]
 イオン液体である1-エチル-3-メチルイミダゾリウム・ビス(フルオロスルホニル)イミドを基油としたこと以外は、実施例1と同様にして潤滑油組成物を得た。得られた潤滑油組成物の耐摩耗性と、脱離ガス度を表1に示す。
[比較例4]
 フラーレン昇華物に代えて、原料フラーレン(昇華工程無し)をそのまま用いたこと以外は、実施例10と同様にして潤滑油組成物を得た。得られた潤滑油組成物の耐摩耗性と脱離ガス度の結果を、表1に示す。
 実施例10と比較例4とを比較すると、フラーレン昇華物を用いた実施例10では、耐摩耗性試験前後での脱離ガス度が、比較例5よりも優れていた。
[実施例11]
 イオン液体である1-エチル-3-メチルイミダゾリウム・ビス(フルオロスルホニル)イミドを基油としたこと以外は、実施例3と同様にして潤滑油組成物を得た。潤滑油組成物のフラーレン濃度を測定した結果、18質量ppmでありフラーレン残存率は0.18であった。得られた潤滑油組成物の耐摩耗性と、脱離ガス度を表1に示す。
[実施例12]
 イオン液体である1-エチル-3-メチルイミダゾリウム・ビス(フルオロスルホニル)イミドを基油としたこと以外は、実施例4と同様にして潤滑油組成物を得た。潤滑油組成物のフラーレン濃度を測定した結果、40質量ppmでありフラーレン残存率は0.40であった。得られた潤滑油組成物の耐摩耗性と、脱離ガス度を表1に示す。
 実施例11及び12と実施例10との比較結果は、前述の実施例8及び9と実施例7との比較結果と同様の傾向を示した。すなわち、異なるイオン液体においても、紫外線照射処理及び加熱処理は、耐摩耗性効果と脱ガス低減の観点から有効であることが分かった。
[実施例13]
 イオン液体である1-ブチル-4-メチル-ピリジウム・ビス(フルオロスルホニル)イミドを基油としたこと以外は、実施例1と同様にして潤滑油組成物を得た。得られた潤滑油組成物の耐摩耗性と、脱離ガス度を表1に示す。
[比較例5]
 フラーレン昇華物に代えて、原料フラーレン(昇華工程無し)をそのまま用いたこと以外は、実施例13と同様にして潤滑油組成物を得た。得られた潤滑油組成物の耐摩耗性と脱離ガス度を、表1に示す。
 実施例13と比較例5とを比較すると、フラーレン昇華物を用いた実施例13の方が、耐摩耗性試験前後での脱離ガス度が優れていた。これは、前述の実施例1と比較例1の比較結果及び実施例7と比較例3の比較結果と同様であった。すなわち、基油が異なっても、脱離ガス度を低下させる観点からフラーレン昇華物を用いることは有効であることが分かった。
 本発明は、優れた耐摩耗性を発揮すると共に、低蒸気圧を有し且つ基油劣化による蒸気圧上昇を抑制でき、真空下であっても長期に亘って安定に潤滑性能を維持することができる、潤滑油組成物を提供することができる。
 本実施形態の潤滑油組成物は、工業用ギヤ油;油圧作動油;圧縮機油;冷凍機油;切削油;圧延油、プレス油、鍛造油、絞り加工油、引き抜き油、打ち抜き油等の塑性加工油;熱処理油、放電加工油等の金属加工油;すべり案内面油;軸受け油;錆止め油;熱媒体油等の各種油に適している。特に、真空状態での使用、すなわち、宇宙空間や真空装置に設けられる真空容器内で使用される各種油として好適である。
 また、本発明の潤滑油組成物は、高高度領域や宇宙空間で使用される装置、機器類に有用である。例えば、航空機、宇宙機、ロケット、探査機、宇宙ステーション、衛星等に搭載される装置あるいは機器の摺動部において、真空下で金属部分が傷付いたり、摩耗したりするのを長期的に抑制するために極めて有用である。また、本発明の潤滑油組成物は、鍛造や接合などを行う真空冶金装置、化学反応などを行う真空化学装置、蒸着やスパッタリングなどを行う真空薄膜形成・加工装置、電子顕微鏡などの分析装置及び曲げ・引張り・圧縮試験などを行う真空試験装置などの真空装置に設けられる真空容器内の摺動部において、金属部分が傷付いたり、摩耗したりするのを長期的に抑制するために極めて有用である。

Claims (16)

  1.  フラーレンと基油とを含み、
     前記フラーレンは、フラーレン昇華物であり、
     前記基油は、多重アルキルシクロペンタン油またはイオン液体である、潤滑油組成物。
  2.  フラーレン付加体を更に含み、
     前記フラーレン付加体は、前記基油を構成する分子構造の一部を有する付加基が前記フラーレンに付加した構造を有する、請求項1に記載の潤滑油組成物。
  3.  請求項1又は2に記載の潤滑油組成物の製造方法であって、
     基油にフラーレン昇華物を溶解してフラーレン溶液を得る溶解工程を有する、潤滑油組成物の製造方法。
  4.  前記溶解工程の前に、原料フラーレンを非酸化性雰囲気で昇華させて気体にした後、冷却して固体とすることにより、前記フラーレン昇華物を得る昇華工程を更に有する、請求項3に記載の潤滑油組成物の製造方法。
  5.  前記フラーレン昇華物は、C60、C70又はこれらの混合物を含む、請求項3又は4に記載の潤滑油組成物の製造方法。
  6.  前記溶解工程の後に、前記フラーレン溶液から不溶成分を除去する除去工程を更に有する、請求項3~5のいずれか1項に記載の潤滑油組成物の製造方法。
  7.  前記溶解工程の後に、前記フラーレン溶液を非酸化性雰囲気下で熱処理し、フラーレン付加体を生成させる熱処理工程を更に有する、請求項3~6のいずれか1項に記載の潤滑油組成物の製造方法。
  8.  前記熱処理工程における熱処理の温度が、前記基油の使用上限温度を超え、且つ前記使用上限温度+200℃以下の範囲である、請求項7に記載の潤滑油組成物の製造方法。
  9.  前記熱処理工程における熱処理の温度が、150℃以上300℃以下である、請求項7に記載の潤滑油組成物の製造方法。
  10.  前記溶解工程の後に、前記フラーレン溶液を非酸化性雰囲気下で、放射線の照射を行ってフラーレン付加体を生成する放射線処理工程を更に有し、
     前記放射線が、紫外線又は電離放射線である、請求項3~6のいずれか1項に記載の潤滑油組成物の製造方法。
  11.  前記放射線は、波長190nm以上365nm以下の紫外線である、請求項10に記載の潤滑油組成物の製造方法。
  12.  前記放射線処理工程で照射される放射線のエネルギー量は、前記フラーレン溶液1mLあたり1J以上100J以下である、請求項10又は11に記載の潤滑油組成物の製造方法。
  13.  前記非酸化性雰囲気中の酸素ガス分圧が、10パスカル以下である、請求項7~12のいずれか1項に記載の潤滑油組成物の製造方法。
  14.  前記熱処理工程又は前記放射線処理工程は、前記フラーレン溶液中のフラーレンの濃度が、前記熱処理工程前又は前記放射線処理工程前のフラーレンの濃度に対して、0.1倍以上0.7倍以下となるまで行う、請求項7~13のいずれか1項に記載の潤滑油組成物の製造方法。
  15.  前記熱処理工程又は前記放射線処理工程の処理時間が、5分以上24時間以下である、請求項14に記載の潤滑油組成物の製造方法。
  16.  前記請求項1又は2に記載の潤滑油組成物を真空容器内に使用した、前記真空容器を備える真空装置。
PCT/JP2020/017413 2019-04-24 2020-04-23 潤滑油組成物、その製造方法及び真空装置 WO2020218386A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021516185A JP6995279B2 (ja) 2019-04-24 2020-04-23 潤滑油組成物、その製造方法及び真空装置
US17/605,282 US11795411B2 (en) 2019-04-24 2020-04-23 Lubricating oil composition, method for producing same and vacuum apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-083392 2019-04-24
JP2019083392 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020218386A1 true WO2020218386A1 (ja) 2020-10-29

Family

ID=72942059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017413 WO2020218386A1 (ja) 2019-04-24 2020-04-23 潤滑油組成物、その製造方法及び真空装置

Country Status (3)

Country Link
US (1) US11795411B2 (ja)
JP (1) JP6995279B2 (ja)
WO (1) WO2020218386A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995279B2 (ja) * 2019-04-24 2022-02-04 昭和電工株式会社 潤滑油組成物、その製造方法及び真空装置
WO2020218392A1 (ja) * 2019-04-24 2020-10-29 昭和電工株式会社 潤滑油組成物及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116922A (ja) * 1991-10-30 1993-05-14 Mitsui Eng & Shipbuild Co Ltd フラーレン類の精製方法及び装置
JPH05254815A (ja) * 1992-03-13 1993-10-05 Fuji Electric Co Ltd フラーレン系導電物質
JPH05254989A (ja) * 1992-03-12 1993-10-05 Tokyo Gas Co Ltd 炭素クラスタ−の高純度単結晶成長法
US5462680A (en) * 1994-04-19 1995-10-31 Exxon Research & Engineering Co. Free radical adducts of fullerenes with hydrocarbons and polymers
JPH0974216A (ja) * 1995-09-07 1997-03-18 Nippon Shokubai Co Ltd 有機太陽電池
JPH11515053A (ja) * 1995-10-31 1999-12-21 エクソン リサーチ アンド エンジニアリング カンパニー 酸化防止剤スラッジ抑制添加剤
JP2005336309A (ja) * 2004-05-26 2005-12-08 Kyodo Yushi Co Ltd 潤滑剤組成物

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281653A (en) 1991-11-25 1994-01-25 Exxon Research And Engineering Company Fullerene-polymer compositions
US5292444A (en) 1992-10-02 1994-03-08 Exxon Research And Engineering Company Lube oil compositions containing fullerene-grafted polymers
US5454961A (en) 1994-04-19 1995-10-03 Exxon Research & Engineering Co. Substituted fullerenes as flow improvers
JP3911052B2 (ja) 1996-11-07 2007-05-09 協同油脂株式会社 潤滑剤組成物
AU2001265215A1 (en) 2000-06-02 2001-12-17 Seagate Technology Llc Process for production of ultrathin protective overcoats
JP2004231739A (ja) 2003-01-29 2004-08-19 Mitsubishi Chemicals Corp フラーレン類を含有する組成物
JP2005089667A (ja) 2003-09-19 2005-04-07 Sanko Kagaku Kogyo Kk 制電性潤滑油組成物
JP5376746B2 (ja) 2003-11-05 2013-12-25 協同油脂株式会社 半固体状潤滑剤組成物
JP4926411B2 (ja) 2005-04-08 2012-05-09 出光興産株式会社 グリース組成物
JP2008266501A (ja) 2007-04-24 2008-11-06 Sumikou Junkatsuzai Kk エンジンオイル用添加剤組成物
WO2009059215A1 (en) 2007-10-31 2009-05-07 University Of Florida Research Foundation, Inc. Use of fullerenes in photoacoustic imaging
KR101555355B1 (ko) 2013-02-18 2015-09-23 주식회사 불스원 윤활유 첨가제 조성물 및 이의 제조방법
US9502658B2 (en) * 2013-04-22 2016-11-22 Nano-C, Inc. Fullerene derivatives and related materials, methods, and devices
JP5600202B1 (ja) * 2013-12-05 2014-10-01 昭和電工株式会社 磁気記録媒体用潤滑剤、磁気記録媒体、磁気記録媒体の製造方法、および磁気記録再生装置
EP3155079A4 (en) 2014-06-12 2017-11-22 Novvi LLC Compressor oil with biobased base oil
US20160160148A1 (en) * 2014-08-14 2016-06-09 Ues, Inc. Lubricant additive
CN104762122A (zh) 2015-04-02 2015-07-08 南京理工大学 一种石墨烯-类富勒烯二硫化钼复合润滑油添加剂及其制备方法
JP2017088757A (ja) 2015-11-11 2017-05-25 昭和電工株式会社 フラーレン含有鉱油およびその製造方法
CN105523924B (zh) 2015-12-17 2018-07-10 诺泰生物科技(合肥)有限公司 六加成[60]富勒烯衍生物及其在润滑领域中的应用
EP3418576B1 (en) 2016-02-19 2024-04-10 Panasonic Intellectual Property Management Co., Ltd. Refrigerant compressor and freezing apparatus using same
EP3617296B1 (en) * 2017-04-25 2022-06-08 Mitsubishi Gas Chemical Company, Inc. Lubricant material for assisting machining process, lubricant sheet for assisting machining process, and machining method using the same
WO2019004275A1 (ja) 2017-06-30 2019-01-03 昭和電工株式会社 有機フッ素化合物、潤滑剤および磁気記録媒体の処理方法
US11214749B2 (en) * 2017-10-25 2022-01-04 Showa Denko K.K. Lubricating oil composition and method of producing the same
EP3702433A4 (en) * 2017-10-25 2021-07-21 Showa Denko K.K. FULLEREN LUBRICATING OIL COMPOSITION AND METHOD FOR MANUFACTURING IT
CN111278956B (zh) 2017-10-25 2022-11-04 昭和电工株式会社 润滑油组合物及其制造方法
US11220652B2 (en) * 2017-12-06 2022-01-11 Showa Denko K.K. Method for inspecting lubricating oil composition and method for producing lubricating oil composition
WO2019240058A1 (ja) * 2018-06-12 2019-12-19 昭和電工株式会社 フラーレン化合物、磁気記録媒体用潤滑剤及び磁気記録媒体
CN108865347A (zh) 2018-06-12 2018-11-23 界首市皖俊轴承有限公司 一种润滑液的制备方法
CN113286761A (zh) * 2018-12-17 2021-08-20 纳米碳股份有限公司 富勒烯衍生物共混物、其制备方法和用途
WO2020218392A1 (ja) * 2019-04-24 2020-10-29 昭和電工株式会社 潤滑油組成物及びその製造方法
JP6995279B2 (ja) * 2019-04-24 2022-02-04 昭和電工株式会社 潤滑油組成物、その製造方法及び真空装置
CN113710782B (zh) * 2019-04-24 2022-11-18 昭和电工株式会社 润滑油组合物的制造方法及润滑油组合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116922A (ja) * 1991-10-30 1993-05-14 Mitsui Eng & Shipbuild Co Ltd フラーレン類の精製方法及び装置
JPH05254989A (ja) * 1992-03-12 1993-10-05 Tokyo Gas Co Ltd 炭素クラスタ−の高純度単結晶成長法
JPH05254815A (ja) * 1992-03-13 1993-10-05 Fuji Electric Co Ltd フラーレン系導電物質
US5462680A (en) * 1994-04-19 1995-10-31 Exxon Research & Engineering Co. Free radical adducts of fullerenes with hydrocarbons and polymers
JPH0974216A (ja) * 1995-09-07 1997-03-18 Nippon Shokubai Co Ltd 有機太陽電池
JPH11515053A (ja) * 1995-10-31 1999-12-21 エクソン リサーチ アンド エンジニアリング カンパニー 酸化防止剤スラッジ抑制添加剤
JP2005336309A (ja) * 2004-05-26 2005-12-08 Kyodo Yushi Co Ltd 潤滑剤組成物

Also Published As

Publication number Publication date
JPWO2020218386A1 (ja) 2021-10-28
US11795411B2 (en) 2023-10-24
US20220220409A1 (en) 2022-07-14
JP6995279B2 (ja) 2022-02-04

Similar Documents

Publication Publication Date Title
JP6995279B2 (ja) 潤滑油組成物、その製造方法及び真空装置
JP7005650B2 (ja) 潤滑油組成物及びその製造方法
US11407960B2 (en) Lubricating oil composition and method for producing same
JP6995280B2 (ja) 潤滑油組成物の製造方法及び潤滑油組成物
Pisarova et al. Insight into degradation of ammonium-based ionic liquids and comparison of tribological performance between selected intact and altered ionic liquid
Dörr et al. Five-Stage Selection Procedure of Ionic Liquids for Lubrication of Steel–Steel Contacts in Space Mechanisms
JP2022067923A (ja) 潤滑油組成物、その製造方法及び機械装置
JP6995281B2 (ja) 潤滑油組成物及びその製造方法
CA2531824A1 (fr) Procede de lutte contre la corrosion par les acides naphtheniques dans les raffineries
JP2006144007A (ja) (パー)フルオロポリエーテル添加剤
JP2022067924A (ja) 潤滑剤組成物、その製造方法及び機械装置
US20050233912A1 (en) UV-stable grease or seal substance for optical systems, manufacture thereof as well as use thereof
EP1711584B1 (fr) Procede de lutte contre la corrosion des unites de raffinage par les bruts acides
EP1756251A1 (fr) Utilisation de polysulfures organiques contre la corrosion par les bruts acides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795188

Country of ref document: EP

Kind code of ref document: A1