WO2020217911A1 - 有機溶媒の精製方法及び有機溶媒の精製装置 - Google Patents

有機溶媒の精製方法及び有機溶媒の精製装置 Download PDF

Info

Publication number
WO2020217911A1
WO2020217911A1 PCT/JP2020/015101 JP2020015101W WO2020217911A1 WO 2020217911 A1 WO2020217911 A1 WO 2020217911A1 JP 2020015101 W JP2020015101 W JP 2020015101W WO 2020217911 A1 WO2020217911 A1 WO 2020217911A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchanger
type
organic solvent
strongly acidic
acidic cation
Prior art date
Application number
PCT/JP2020/015101
Other languages
English (en)
French (fr)
Inventor
智子 高田
治雄 横田
惟 塩谷
康博 吉村
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to US17/606,213 priority Critical patent/US20220234037A1/en
Priority to KR1020217031031A priority patent/KR20210130218A/ko
Priority to CN202080017330.5A priority patent/CN113490658B/zh
Priority to JP2021515931A priority patent/JPWO2020217911A1/ja
Publication of WO2020217911A1 publication Critical patent/WO2020217911A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/19Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J45/00Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • B01J47/028Column or bed processes using columns or beds of different ion exchange materials in series with alternately arranged cationic and anionic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/10Monohydroxylic acyclic alcohols containing three carbon atoms

Definitions

  • the present invention relates to a method for purifying an organic solvent for obtaining a high-purity organic solvent having a reduced impurity metal content, and a device for purifying the organic solvent for carrying out the method.
  • IPA isopropyl alcohol
  • Examples of a method for purifying an organic solvent by removing metal impurities in an organic solvent include a method using an ion exchanger, which is organic by using an ion exchanger having a strongly acidic cation exchange group such as an ion exchange resin or an ion adsorption film. It is known that metal impurities in the solvent can be reduced to the ppt level.
  • Patent Document 1 describes a method for producing high-purity isopropanol having a metal content of less than 1 ppb and a water content of less than 100 ppm, wherein (a) isopropyl alcohol is contained in at least 99.9% by weight and 200 to 500 ppm is organic.
  • a step of not high-purity isopropyl alcohol having a metal content of less than 1 ppb and a water content of less than 100 ppm (c) a step of obtaining the high-purity isopropyl alcohol as a steam side flow at the following points, (i) the feed flow. Is below the point where is flowing into the separation tower and above the bottom flow, or (ii) above where the supply flow is flowing into the separation tower and is above the head flow. Methods are disclosed that include points below.
  • the diffusion rate of metal impurities is low in an organic solvent and the reaction rate of the ion exchange reaction with an ion exchange resin is also low, when removing ionic impurities in an organic solvent, ionic impurities in an aqueous solution are used.
  • the liquid passing rate to the ion exchange resin is set to be smaller than that in the case of removing. For example, in the case of treatment using a strongly acidic cation exchange resin, it is difficult to obtain the same metal removal rate at the same flow velocity as in water.
  • the present inventors have found that it is difficult to reduce all the metals in a solvent such as IPA by using a strongly acidic cation exchanger, and in particular, there are metals having a poor removal rate such as Cr and As. confirmed.
  • an object of the present invention is to provide a purification method and a purification apparatus for an organic solvent having excellent removability of metal impurities for both monovalent and polyvalent metal species in the organic solvent.
  • metals having a valence of 2 or more such as Cr have a poor removal rate with a strongly acidic cation exchange resin, and these metals are further examined. Some of them may have an anionic morphology in an organic solvent, and it is effective to use an H-type chelate exchanger to remove these metals.
  • H-type chelate exchanger When the H-type chelate exchanger is used, a small amount of mineral acid such as hydrochloric acid present in the H-type chelate exchanger is transferred to the treatment liquid, and the treatment liquid contains the mineral acid derived from the H-type chelate exchanger.
  • the monovalent and divalent or higher valent metals in the organic solvent are removed with an H-type strongly acidic cation exchanger, and then further treated with an anion exchanger and an H-type strongly acidic ion exchanger.
  • metals such as Cr having an anionic morphology with an anion exchanger and bringing them into contact with a strongly acidic ion exchanger again, monovalent and divalent or higher valent metals that could not be completely removed in the previous stage can be effectively removed.
  • the present invention was completed by finding that it can be removed.
  • the present invention (1) includes a first treatment step of bringing the organic solvent to be treated into contact with the H-type cation exchanger (1).
  • the second treatment step of bringing the treatment liquid of the first treatment step into contact with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3),
  • the present invention provides a method for purifying an organic solvent, which is characterized by having.
  • the treatment liquid of the first treatment step is passed through a mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3).
  • the present invention provides a method for purifying an organic solvent according to (1), which comprises performing a treatment step.
  • the treatment liquid of the first treatment step is first contacted with the anion exchanger (2) and then with the H-type strongly acidic cation exchanger (3).
  • the present invention provides the method for purifying an organic solvent according to (1), which comprises performing the second treatment step.
  • the present invention (4) provides a method for purifying an organic solvent according to any one of (1) to (3), wherein the H-type cation exchanger (1) is an H-type chelate exchanger. It is a thing.
  • the present invention (5) is a method for purifying an organic solvent according to any one of (1) to (3), wherein the H-type cation exchanger (1) is an H-type strongly acidic cation exchanger. It is to provide.
  • the present invention (6) has a treatment step of bringing the organic solvent to be treated into contact with a mixed bed of an H-type chelate exchanger, an anion exchanger (2) and an H-type strongly acidic cation exchanger (3). It provides a method for purifying a characteristic organic solvent.
  • the present invention (7) is characterized in that the functional group of the H-type chelate exchanger is an iminodiacetic acid group, an aminomethylphosphate group or an iminopropionic acid group, which is the organic substance of (4) or (6). It provides a method for purifying a solvent.
  • the present invention (8) is characterized in that the ratio of the volume of the anion exchanger to the volume of the H-type chelate exchanger is 0.1 to 99.0% by volume (4), (6). ) And (7) for purifying the organic solvent.
  • the present invention (9) is characterized in that the ratio of the volume of the cation exchanger (2) to the volume of the H-type chelate exchanger is 0.1 to 99.0% by volume (4).
  • (6) to (8) provide a method for purifying an organic solvent.
  • the present invention provides a method for purifying an organic solvent according to any one of (1) to (9), wherein the organic solvent is a polar organic solvent.
  • the single bed of the H-type cation exchanger (1) through which the organic solvent to be treated is passed and the treatment liquid of the single bed of the H-type cation exchanger (1) are passed.
  • an apparatus for purifying an organic solvent which comprises a mixed bed of an anion exchanger (2) and an H-type strongly acidic cation exchanger (3).
  • the single bed of the H-type cation exchanger (1) through which the organic solvent to be treated is passed and the treatment liquid of the single bed of the H-type cation exchanger (1) are passed. It is characterized by having a single bed of the anion exchanger (2) and a single bed of the H-type strongly acidic cation exchanger (3) through which the treatment liquid of the single bed of the anion exchanger (2) is passed.
  • an apparatus for purifying an organic solvent is provided.
  • the present invention (13) is characterized by having a mixed bed of an H-type chelate exchanger, an anion exchanger (2) and an H-type strongly acidic cation exchanger (3) through which an organic solvent to be treated is passed.
  • an apparatus for purifying an organic solvent is provided.
  • the method for purifying an organic solvent according to the first aspect of the present invention includes a first treatment step of bringing the organic solvent to be treated into contact with the H-type chelate exchanger (1a).
  • the first treatment step according to the method for purifying an organic solvent according to the first aspect of the present invention is a step of bringing the organic solvent to be treated into contact with the H-type chelate exchanger (1a).
  • the organic solvent to be treated according to the method for purifying an organic solvent according to the first aspect of the present invention is not particularly limited, and is, for example, alcohols such as isopropyl alcohol, methanol and ethanol, cyclohexanenon, methylisobutylketone, acetone and methylethylketone. Ketones such as 2,4-diphenyl-4-methyl-1-pentene, 2-phenyl-1-propene and other alkene-based organic solvents, N-methylpyrrolidone and mixed organic solvents thereof.
  • the organic solvent to be treated may be either a polar organic solvent or a non-polar organic solvent, and a polar organic solvent is preferable. Further, the polar organic solvent may be a protonic polar organic solvent and may be an aprotonic organic solvent.
  • the organic solvent to be treated is a monovalent metal such as Na, K or Li as a metal impurity and a divalent or higher valent metal such as Cr, As, Ca, Cu, Fe, Mg, Mn, Ni, Pb or Zn. It contains both a metal that is easy to remove with a chelate resin.
  • the content of each metal impurity in the organic solvent to be treated is not particularly limited, but is usually about 100 mass ppb to 20 mass ppt.
  • the H-type cation exchanger (1) according to the method for purifying an organic solvent according to the first aspect of the present invention is an H-type chelate exchanger (1a).
  • the H-type chelate exchanger (1a) is obtained by subjecting a metal ion-type chelate exchanger such as Na-type, Ca-type, or Mg-type to contact with a mineral acid to be acid-treated and converted into H-type. is there. That is, the H-type chelate exchanger (1a) is a mineral acid contact-treated product of the metal ion-type chelate exchanger.
  • a metal ion-type chelate exchanger such as Na-type, Ca-type, or Mg-type
  • the functional group of the H-type chelate exchanger (1a) is not particularly limited as long as it can coordinate with a metal ion to form a chelate, and for example, an iminodiacetic acid group, an aminomethylphosphate group, and the like.
  • examples thereof include a functional group having an amino group such as an iminopropionic acid group, a thiol group and the like.
  • a functional group having an amino group is preferable in that a large number of polyvalent metal ions can be easily removed, and an iminodiacetic acid group, an aminomethylphosphate group, and an iminopropionic acid are used. Groups are particularly preferred.
  • H-type chelate exchanger (1a) examples include granular H-type chelate exchange resins.
  • the substrate of the H-type chelate exchange resin include a styrene-divinylbenzene copolymer.
  • the H-type chelate exchange resin may have any of a gel-type structure, a macroporous-type structure, and a porous-type structure.
  • the exchange capacity of the H-type chelate exchange resin is preferably 0.5 to 2.5 eq / LR, particularly preferably 1.0 to 2.5 eq / LR.
  • the average particle size (harmonic mean diameter) of the H-type chelate exchange resin is not particularly limited, but is preferably 300 to 1000 ⁇ m, and particularly preferably 500 to 800 ⁇ m.
  • the average particle size of the H-type chelate exchange resin is a value measured by a laser diffraction type particle size distribution measuring device.
  • the H-type organic porous chelate exchanger is an organic porous body into which a functional group having a chelating ability, for example, a functional group having a chelating ability listed above is introduced.
  • the exchange capacity in the H-shaped organic porous chelate exchanger is preferably 0.3 to 2 mg equivalent / mL (water-wet state), and particularly preferably 1 to 2 mg equivalent / mL (water-wet state).
  • the H-type chelate exchanger (1a) is obtained by contacting a metal ion-type chelate exchanger such as Na-type, Ca-type, or Mg-type with a mineral acid and treating it with an acid.
  • a metal ion-type chelate exchanger such as Na-type, Ca-type, or Mg-type
  • the mineral acid to be brought into contact with the metal ion-type chelate exchanger include hydrochloric acid, sulfuric acid, and nitric acid. Of these, hydrochloric acid and sulfuric acid are preferable as the mineral acid from the viewpoint of safety. Further, in the case of conversion from Ca form, hydrochloric acid is preferable because there is a risk of precipitation of calcium sulfate.
  • the concentration of mineral acid is preferably 0.1 to 6N, particularly preferably 1 to 4N.
  • the method of contacting the mineral acid with the metal ion type chelate exchanger is not particularly limited, and the contact mode, contact temperature, contact time, etc. are appropriately selected.
  • the H-form chelate exchanger converted to H-form is washed with water to remove excess mineral acid, but the functional groups in the chelate exchanger are Since it is bonded by hydrogen bonds with mineral acids, excess mineral acids cannot be completely removed by washing with water. Therefore, the mineral acid used for the acid treatment remains in the H-type chelate exchanger.
  • metal ion type chelate exchange resins CR-10 and CR-11 manufactured by Mitsubishi Chemical Corporation, Duolite C-467 manufactured by Sumika Chemtex Co., Ltd., MC-700 manufactured by Sumitomo Chemical Corporation, and Lanxess Co., Ltd.
  • metal ion type chelate exchange resins CR-10 and CR-11 manufactured by Mitsubishi Chemical Corporation, Duolite C-467 manufactured by Sumika Chemtex Co., Ltd., MC-700 manufactured by Sumitomo Chemical Corporation, and Lanxess Co., Ltd.
  • the organic solvent to be treated is brought into contact with the H-type chelate exchanger (1a) to treat the organic solvent to be treated with the H-type chelate exchanger (1a), and the organic solvent to be treated is contained in the organic solvent to be treated. It mainly removes divalent or higher valent metals and some monovalent metals.
  • the flow rate (SV) when the organic solvent to be treated is passed through the H-type chelate exchanger (1a) is not particularly limited and is appropriately selected, but is preferably 0.1 to 1. It is 100h -1 , particularly preferably 2 to 30h -1 , and even more preferably 4 to 25h -1 .
  • the temperature at which the organic solvent to be treated is passed through the H-type chelate exchanger (1a) is not particularly limited and is appropriately selected, but is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, the organic solvent to be treated may be passed through the H-type chelate exchanger (1a) at 0 to 80 ° C. in the first treatment step.
  • the treatment liquid of the first treatment step is brought into contact with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3). It is a process.
  • the anion exchanger (2) according to the method for purifying an organic solvent according to the first aspect of the present invention includes a strongly basic anion exchanger (2a) having a strongly basic anion exchange group as an anion exchange group and as an anion exchange group. There is a weakly basic anion exchanger (2b) having a weakly basic anion exchanger.
  • Examples of the strongly basic anion exchanging group according to the strongly basic anion exchanger (2a) include an OH-type quaternary ammonium group and the like.
  • examples of the weakly basic anion exchanger related to the weakly basic anion exchanger (2b) include a tertiary amino group, a secondary amino group, a primary amino group, a polyamine group and the like.
  • Examples of the anion exchange body (2) according to the method for purifying an organic solvent according to the first aspect of the present invention include granular anion exchange resins.
  • the substrate of the anion exchange resin is a styrene-divinylbenzene copolymer.
  • the anion exchange resin may have any of a gel structure, a macroporous structure, and a porous structure.
  • the wet ion exchange capacity of the anion exchange resin is preferably 0.5 to 2 (eq / LR), particularly preferably 0.9 to 2 (eq / LR).
  • the harmonic mean diameter of the anion exchange resin is preferably 400 to 900 ⁇ m, particularly preferably 500 to 800 ⁇ m.
  • anion exchange resin examples include Amberlite IRA900, 402, 96SB, 98, Amberjet 4400, 4002, 4010 manufactured by Dow Chemical Corporation, Diaion UBA120, PA306S, PA308, PA312, PA316, PA318L manufactured by Mitsubishi Chemical Corporation. WA21J, WA30, DS-2, DS-5, DS-6 manufactured by Organo Corporation, A400, A600, SGA550, A500, A501P, A502PS, A503, A100, A103S, A110, A111S, A133S, Rebatit Co., Ltd. manufactured by Purolite. Monoplus M500, M800, MP62WS, MP64, etc.
  • an organic porous anion exchanger is an organic porous body into which an anion exchange group, for example, the strongly basic anion exchange group or the weak basic anion exchange group mentioned above is introduced.
  • the exchange capacity in the organic porous anion exchanger is preferably 1 to 6 mg equivalent / mL (dry state), particularly preferably 2 to 5 mg equivalent / mL (dry state).
  • the H-type strongly acidic cation exchanger (3) according to the method for purifying an organic solvent according to the first aspect of the present invention is obtained by converting a strongly acidic cation exchange group such as a sulfonic acid group into an H-type.
  • H-type strongly acidic cation exchange resin (3) examples include granular strongly acidic cation exchange resins.
  • the substrate of the H-type strongly acidic cation exchange resin is a styrene-divinylbenzene copolymer.
  • the H-type strongly acidic cation exchange resin may have any of a gel-type structure, a macroporous-type structure, and a porous-type structure.
  • the wet ion exchange capacity of the H-type strongly acidic cation exchange resin is preferably 1.5 to 3.0 (eq / LR), particularly preferably 1.7 to 2.7 (eq / LR). Is.
  • the harmonic mean diameter of the H-type strongly acidic cation exchange resin is preferably 400 to 900 ⁇ m, particularly preferably 500 to 800 ⁇ m.
  • the H-type strongly acidic cation exchange resin include Amberlite IR120B, IR124, 200CT252, Amberjet 1020, 1024, 1060, 1220 manufactured by Dow Chemical Co., Ltd., and Diaion SK104, SK1B, SK110, SK112 manufactured by Mitsubishi Chemical Co., Ltd.
  • the H-type organic porous strongly acidic cation exchanger (3) an H-type organic porous strongly acidic cation exchanger can be mentioned.
  • the H-type organic porous strong acid cation exchanger is an organic porous body into which a strongly acidic cation exchange group, for example, the strongly acidic cation exchange group mentioned above is introduced.
  • the exchange capacity in the H-shaped organic porous strongly acidic cation exchanger is preferably 1 to 3 mg equivalent / mL (dry state), and particularly preferably 1.5 to 3 mg equivalent / mL (dry state).
  • the treatment liquid of the first treatment step is brought into contact with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) to bring the organic solvent to be treated to the anion exchanger (2). And the remainder of the monovalent metal that could not be completely removed by the H-type chelate exchanger (1a) in the first treatment step after treatment with the H-type strongly acidic cation exchanger (3), and the H-type chelate exchanger (1a). ) And the mineral acid released from) are removed. Further, although NaOH is used as a regenerating agent for the regeneration of the anion exchanger, if it is thoroughly washed after the regeneration, NaOH hardly remains in the anion exchanger.
  • the H-type strongly acidic cation exchanger (3) in the second treatment step can remove Na.
  • the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) to be brought into contact with the liquid to be treated in the second treatment step the above-mentioned cation exchanger and anion exchanger are mixed and used in an arbitrary ratio.
  • an ion exchanger sold as a mixture of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) may be used.
  • Examples of the mixed product of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) include DS-3, DS-7, MSPS2-1 / DRY, EG-4A-HG, and EG- manufactured by Organo. Examples thereof include 5A-HG, ESP-1, ESP-2, AmberTec UP6040 manufactured by DUPONT, MB378, MB378LT, MB400, MB424, MB46, MB47 / 4914 and MB478 manufactured by Purple.
  • the flow rate (SV) when the treatment liquid in the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited. , But it is preferably 0.1 to 100h -1 , particularly preferably 2 to 50h -1 .
  • the temperature at which the treatment liquid in the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited and is appropriately selected. However, it is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, in the second treatment step, the treatment liquid of the first treatment step is applied to the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) at 0 to 80 ° C. Liquid may be passed.
  • the anion exchanger (2) when the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) at 60 to 80 ° C., the anion exchanger (2) ),
  • the strongly basic anion exchanger (2a) when the strongly basic anion exchanger (2a) is used, the strongly basic anion exchanger (2a) is easily decomposed. Therefore, the weakly basic anion exchanger (2b) is used as the anion exchanger (2). ..
  • the method for purifying an organic solvent according to the second aspect of the present invention includes a first treatment step of bringing the organic solvent to be treated into contact with the H-type strongly acidic cation exchanger (1b).
  • the second treatment step of contacting the treatment liquid of the first treatment step with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), It is a method for purifying an organic solvent, which is characterized by having.
  • the first treatment step according to the method for purifying an organic solvent according to the second aspect of the present invention is a step of bringing the organic solvent to be treated into contact with the H-type strongly acidic cation exchanger (1b).
  • the organic solvent to be treated according to the method for purifying an organic solvent according to the second aspect of the present invention is the same as the organic solvent to be treated according to the method for purifying an organic solvent according to the first aspect of the present invention.
  • the H-type cation exchanger (1) according to the method for purifying an organic solvent according to the second aspect of the present invention is an H-type strongly acidic cation exchanger (1b).
  • the H-type strongly acidic cation exchanger (1b) according to the method for purifying an organic solvent according to the second aspect of the present invention is an H-type strongly acidic cation exchanger (1b) according to the method for purifying an organic solvent according to the first aspect of the present invention. It is the same as 3).
  • the organic solvent to be treated is brought into contact with the H-type strongly acidic cation exchanger (1b), so that the organic solvent to be treated is treated with the H-type strongly acidic cation exchanger (1b) and treated.
  • a part of the divalent or higher valent metal and a part of the monovalent metal in the organic solvent are removed.
  • the flow rate (SV) when the organic solvent to be treated is passed through the H-type strongly acidic cation exchanger (1b) is not particularly limited and is appropriately selected, but is preferably 0. It is 1 to 100 h -1 , particularly preferably 2 to 30 h -1 .
  • the temperature at which the organic solvent to be treated is passed through the H-type strongly acidic cation exchanger (1b) is not particularly limited and is appropriately selected, but is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, the organic solvent to be treated may be passed through the H-type strongly acidic cation exchanger (1b) at 0 to 80 ° C. in the first treatment step.
  • the treatment liquid of the first treatment step is brought into contact with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3). It is a process.
  • the anion exchanger (2) according to the method for purifying an organic solvent according to the second aspect of the present invention is the same as the anion exchanger (2) according to the method for purifying an organic solvent according to the first aspect of the present invention.
  • the H-type strongly acidic cation exchanger (3) according to the method for purifying an organic solvent according to the second aspect of the present invention is an H-type strongly acidic cation exchanger according to the method for purifying an organic solvent according to the first aspect of the present invention. It is the same as the body (3).
  • the H-type strongly acidic cation exchanger (1b) used in the first treatment step and the H-type strongly acidic cation exchanger (3) used in the second treatment step are ,
  • the same H-type strongly acidic cation exchanger may be used, or different H-type strongly acidic cation exchangers may be used.
  • the treatment liquid of the first treatment step is brought into contact with the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) to bring the organic solvent to be treated to the anion exchanger (2). And the remainder of the divalent or higher valent metal and the monovalent metal that could not be completely removed by the H-type strongly acidic cation exchanger (1b) in the first treatment step after treatment with the H-type strongly acidic cation exchanger (3). Remove the rest. Further, in the second treatment step, the anion exchanger removes metals that may have metal ions in the anion form such as Cr and As, and acids such as mineral acids and organic acids.
  • the organic solvent to be treated is once brought into contact with the H-type strongly acidic cation exchanger and then brought into contact with the H-type strongly acidic cation exchanger again.
  • the removal rate of the divalent or higher metal becomes higher than in the case where the organic solvent to be treated is brought into contact with the same amount of the H-type strongly acidic cation exchanger.
  • the flow rate (SV) when the treatment liquid in the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited. , But it is preferably 0.1 to 100 h -1 , particularly preferably 2 to 30 h -1 .
  • the temperature at which the treatment liquid in the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is not particularly limited and is appropriately selected. However, it is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, in the second treatment step, the treatment liquid of the first treatment step is applied to the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) at 0 to 80 ° C. Liquid may be passed.
  • the anion exchanger (2) when the treatment liquid of the first treatment step is passed through the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) at 0 to 80 ° C., the anion exchanger (2) ),
  • the strongly basic anion exchanger (2a) when used, the strongly basic anion exchanger (2a) is easily decomposed. Therefore, the weakly basic anion exchanger (2b) is used as the anion exchanger (2). ..
  • Examples of the second treatment step according to the method for purifying an organic solvent according to the first embodiment of the present invention and the second treatment step according to the method for purifying an organic solvent according to the second embodiment of the present invention include the following. ..
  • the treatment liquid of the first treatment step is passed through a mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3), whereby the second treatment step I do.
  • the mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) is composed of a mixture of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3).
  • the anion exchanger (2) is an organic porous anion exchanger, a cubic organic porous anion exchanger having a shape cut out to an arbitrary size, for example, a side of about 3 mm to about 10 mm is used.
  • the H-type strongly acidic cation exchanger (3) is an organic porous strongly acidic cation exchanger, it has a shape cut out to an arbitrary size, for example, a cubic organic porous strong acid having a side of about 3 mm to about 10 mm.
  • a sex cation exchanger is used.
  • FIG. 1 An example in which the second treatment step of the method for purifying an organic solvent according to the first embodiment of the present invention or the method for purifying an organic solvent according to the second embodiment of the present invention is the first embodiment is shown in FIG.
  • the organic solvent 20 to be treated is first filled with an H-type cation exchanger (H-type chelate exchanger (1a) or H-type strongly acidic cation exchanger (1b)).
  • a method of passing the liquid through 2 to obtain the purified organic solvent 23 can be mentioned.
  • the range indicated by reference numeral 21 is the first processing step
  • the range indicated by reference numeral 22 is the second processing step.
  • the treatment liquid of the first treatment step is passed through the single bed of the anion exchanger (2) in the first stage, and then the H-type strongly acidic cation exchanger (3) in the second stage.
  • the second treatment step is performed by passing the liquid through a single bed.
  • FIG. 2 An example in which the second treatment step of the method for purifying an organic solvent according to the first embodiment of the present invention or the method for purifying an organic solvent according to the second embodiment of the present invention is the second form is shown in FIG. 2, for example.
  • the organic solvent 20 to be treated is first filled with an H-type cation exchanger (H-type chelate exchanger (1a) or H-type strongly acidic cation exchanger (1b)). Pass the liquid through 1 and then pass the treatment liquid treated in the H-type cation exchanger filling tower 1 through the anion exchanger filling tower 3 filled with the anion exchanger (2), and then pass the anion exchange.
  • H-type cation exchanger H-type chelate exchanger (1a) or H-type strongly acidic cation exchanger (1b)
  • a method of passing the treatment liquid treated in the body filling tower 3 through the strongly acidic cation exchanger filling tower 4 filled with the strongly acidic cation exchanger (3) to obtain the purified organic solvent 23 can be mentioned.
  • the range indicated by reference numeral 21 is the first processing step
  • the range indicated by reference numeral 22 is the second processing step.
  • the treatment liquid of the first treatment step is composed of a layer of the anion exchanger (2) in the first stage and a layer of the H-type strongly acidic cation exchanger (3) in the second stage.
  • the second treatment step is performed by passing the liquid through the floor.
  • the anion exchanger (2) is an organic porous anion exchanger
  • the filled container or column is filled with the organic porous anion exchanger cut out to the desired thickness according to the inner diameter of the filling container or column.
  • the H-type strongly acidic cation exchanger (3) is an H-type organic porous cation exchanger
  • the H-type organic porous cation exchanger is cut out at a desired thickness according to the inner diameter of the filling container or column.
  • the body is filled in a filling container or column.
  • the organic solvent 20 to be treated is first filled with an H-type cation exchanger (H-type chelate exchanger (1a) or H-type strongly acidic cation exchanger (1b)).
  • H-type chelate exchanger (1a) or H-type strongly acidic cation exchanger (1b) The treatment liquid that was passed through 1 and then treated in the H-type cation exchanger packing tower 1 was applied to the layer 5 of the anion exchanger (2) in the first stage and the H-type strongly acidic cation exchanger (3) in the second stage.
  • Examples thereof include a method of obtaining a purified organic solvent 23 by passing a liquid through a double bed filling tower 7 filled with the double bed 7 composed of the layer 6.
  • the range indicated by reference numeral 21 is the first processing step
  • the range indicated by reference numeral 22 is the second processing step.
  • the treatment liquid of the first treatment step is a repeating unit of a single bed of the anion exchanger (2) in the first stage and a single bed of the H-type strongly acidic cation exchanger (3) in the second stage.
  • the second treatment step is performed by passing the liquid through two or more sets of repeated beds.
  • FIG. 4 An example in which the second treatment step of the method for purifying an organic solvent according to the first embodiment of the present invention or the method for purifying an organic solvent according to the second embodiment of the present invention is the fourth form is shown in FIG. 4, for example.
  • the organic solvent 20 to be treated is first filled with an H-type cation exchanger (H-type chelate exchanger (1a) or H-type strongly acidic cation exchanger (1b)).
  • the treatment liquid that was passed through 1 and then treated in the H-type cation exchanger packing tower 1 was "filled with the anion exchanger (2) in the first stage 8a and the H-type strongly acidic cation exchanger (3) in the latter stage.
  • a method of obtaining the purified organic solvent 23 by passing the liquid in the order of "the second repeating unit 10b" is mentioned.
  • the range indicated by reference numeral 21 is the first processing step
  • the range indicated by reference numeral 22 is the second processing step.
  • two repeating units including a filling tower of the anion exchanger (2) in the first stage and a filling tower of the H-type strongly acidic cation exchanger (3) in the second stage are repeated.
  • the example is shown, even if the number of repeating units including the filling tower of the anion exchanger (2) in the first stage and the filling tower of the H-type strongly acidic cation exchanger (3) in the second stage is 3 or more. Good.
  • the treatment liquid of the first treatment step is subjected to the repeating unit of the layer of the anion exchanger (2) in the first stage and the layer of the H-type strongly acidic cation exchanger (3) in the second stage.
  • the second treatment step is performed by passing the liquid through a double bed in which two or more sets are laminated.
  • FIG. 5 An example in which the second treatment step of the method for purifying an organic solvent according to the first embodiment of the present invention or the method for purifying an organic solvent according to the second embodiment of the present invention is the fifth form is shown in FIG. 5, for example.
  • the organic solvent 20 to be treated is first filled with an H-type cation exchanger (H-type chelate exchanger (1a) or H-type strongly acidic cation exchanger (1b)).
  • the treatment liquid that was passed through 1 and then treated in the H-type cation exchanger packing tower 1 was subjected to "the layer 11a of the anion exchanger (2) in the first stage and the H-type strongly acidic cation exchanger (3) in the second stage.
  • the first repeating unit 13a composed of the layer 12a and the second repeating unit 13b composed of the layer 11b of the anion exchanger (2) in the first stage and the layer 12b of the H-type strongly acidic cation exchanger (3) in the second stage.
  • a method of obtaining a purified organic solvent 23 by passing a liquid through a double-bed filling tower 14 in which the above-mentioned substances are sequentially laminated and filled can be mentioned.
  • the range indicated by reference numeral 21 is the first processing step
  • the range indicated by reference numeral 22 is the second processing step.
  • two repeating units consisting of a layer of the anion exchanger (2) in the first stage and a layer of the H-type strongly acidic cation exchanger (3) in the second stage are repeated.
  • the number of repeating units including the layer of the anion exchanger (2) in the first stage and the layer of the H-type strongly acidic cation exchanger (3) in the second stage may be 3 or more.
  • the organic solvent to be treated is a mixed bed of an H-type chelate exchanger (1a), an anion exchanger (2) and an H-type strongly acidic cation exchanger (3). It is a method for purifying an organic solvent, which comprises a treatment step (3) of contacting with.
  • the organic solvent to be treated is exchanged with an H-type chelate exchanger (1a), an anion exchanger (2) and an H-type strongly acidic cation exchanger. This is a step of contacting the mixed bed of the body (3).
  • the organic solvent to be treated, the H-type chelate exchanger (1a), the anion exchanger (2), and the H-type strongly acidic cation exchanger (3) according to the method for purifying an organic solvent according to the third aspect of the present invention are the present invention. This is the same as the organic solvent to be treated, the H-type chelate exchanger (1a), the anion exchanger (2), and the H-type strongly acidic cation exchanger (3) according to the method for purifying the organic solvent of the first embodiment.
  • the mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2), and the H-type strongly acidic cation exchanger (3) according to the method for purifying the organic solvent of the third embodiment of the present invention is an H-type chelate exchanger. It consists of a mixture of the body (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3).
  • the H-type chelate exchanger (1a) is an H-type organic porous chelate exchanger, it has a shape cut out to an arbitrary size, for example, a cubic H-shaped organic porous body having a side of about 3 mm to about 10 mm. A strong acid chelate exchanger is used.
  • the anion exchanger (2) is an organic porous anion exchanger
  • a cubic organic porous anion exchanger having a shape cut out to an arbitrary size, for example, a side of about 3 mm to about 10 mm is used.
  • the H-type strongly acidic cation exchanger (3) is an organic porous strongly acidic cation exchanger, it has a shape cut out to an arbitrary size, for example, a cubic organic porous strong acid having a side of about 3 mm to about 10 mm.
  • a sex cation exchanger is used.
  • the organic solvent to be treated is brought into contact with a mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) to be treated.
  • the organic solvent is treated with a mixed bed of an H-type chelate exchanger (1a), an anion exchanger (2) and an H-type strongly acidic cation exchanger (3), and a divalent or higher valent metal in the organic solvent to be treated is used. Remove the monovalent metal.
  • the anion exchanger (2) removes the mineral acid released from the H-type chelate exchanger (1a) into the organic solvent to be treated.
  • the liquid to be treated is passed through the mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3).
  • the speed (SV) is not particularly limited and is appropriately selected, but is preferably 0.1 to 100 h -1 , particularly preferably 2 to 30 h -1 , and even more preferably 4 to 25 h -1 .
  • the organic solvent to be treated is passed through the mixed bed (3) of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) in the treatment step (3).
  • the temperature of the above is not particularly limited and is appropriately selected, but is usually 0 to 50 ° C. Further, depending on the type of the organic solvent to be treated, in the treatment step (3), at 0 to 80 ° C., an H-type chelate exchanger (1a), an anion exchanger (2) and an H-type strongly acidic cation exchanger (3) The organic solvent to be treated may be passed through the mixed bed.
  • the organic solvent to be treated is passed through a mixed bed of the H-type chelate exchanger (1a), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) at 0 to 80 ° C.
  • the anion exchanger (2) is easily decomposed, so that the anion exchanger (2) is weak.
  • a basic anion exchanger (2b) is used.
  • the organic solvent 20 to be treated is an H-type chelate exchanger (1a), an anion exchanger (2) and an H-type.
  • examples thereof include a method of obtaining a purified organic solvent 23 by passing the liquid through a mixed bed filling tower 24 filled with a mixture of the strongly acidic cation exchanger (3).
  • the range indicated by reference numeral 25 is the processing step (3).
  • the ratio of the volume of the anion exchanger (2) to the volume of the H-type chelate exchanger (1a). ((Volume of anion exchanger (2) / Volume of H-type chelate exchanger (1a)) ⁇ 100) is preferably 0.1 to 99.0% by volume, more preferably 0.1 to 70.0 volumes. %, Especially preferably 0.1 to 50.0% by volume.
  • the volume of the strongly acidic cation exchanger (3) relative to the volume of the H-type chelate exchanger (1a). ((Volume of strongly acidic cation exchanger (3) / Volume of H-type chelate exchanger (1a)) ⁇ 100) is preferably 0.1 to 99.0% by volume, more preferably 0.1 to It is 70.0% by volume, particularly preferably 0.1 to 50.0% by volume.
  • Ion exchangers are introduced as the H-type cation exchanger (H-type chelate exchanger (1a), strongly acidic cation exchanger (1b)), anion exchanger (2) and H-type strongly acidic cation exchanger (3).
  • the substrate to be formed may be an organic porous body.
  • the organic porous material according to the present invention will be described below.
  • An H-type chelate exchange group, a strongly acidic cation group or an anion exchange group is introduced into the organic porous ion exchanger. That is, the one in which the H-type chelate exchange group is introduced into the organic porous body is the H-type organic porous chelate exchanger (1a), and the H-type strongly acidic cation exchange group is introduced into the organic porous body.
  • the H-type organic porous strongly acidic cation exchanger (1b) or (3) Is an H-type organic porous strongly acidic cation exchanger (1b) or (3), and an organic porous body having an anion exchange group introduced is organic porous. It is an anion exchanger.
  • the functional groups introduced into the organic porous ion exchanger are the above-mentioned (H-type chelate exchanger (1a), strongly acidic cation exchanger (1b)), anion exchanger (2) or H-type strongly acidic. It is the same as the functional group introduced into the cation exchanger (3).
  • the organic porous ion exchanger is composed of, for example, a continuous skeleton phase and a continuous pore phase, the thickness of the continuous skeleton is 1 to 100 ⁇ m, the average diameter of the continuous pores is 1 to 1000 ⁇ m, and the total pore volume is 0.5. It is ⁇ 50 mL / g, an ion exchange group (chelate exchange group, H-type strongly acidic cation exchange group or anion exchange group) is introduced, and the ion exchange capacity per weight in the dry state is 1 to 6 mg equivalent / g.
  • examples thereof include an organic porous ion exchanger in which ion exchange groups are uniformly distributed in the organic porous ion exchanger (hereinafter, also referred to as an organic porous ion exchanger of the first form).
  • the organic porous ion exchanger of the first form has an open cell structure in which bubble-shaped macropores overlap each other and the overlapping portion has an opening with an average diameter of 1 to 1000 ⁇ m, and the total pore volume is 1 to 50 mL. / G, the ion exchange group is introduced, the ion exchange capacity per weight in the dry state is 1 to 6 mg equivalent / g, and the ion exchange group is uniformly distributed in the organic porous ion exchanger. Examples thereof include organic porous ion exchangers.
  • the organic porous ion exchanger of the first form is a continuous macropore structure in which bubble-shaped macropores overlap each other and the overlapping portion has an opening with an average diameter of 30 to 300 ⁇ m, and the total pore volume is 0. .5 to 10 ml / g, cation exchange group or anion exchange group is introduced, the ion exchange capacity per weight in the dry state is 1 to 6 mg equivalent / g, and the ion exchange group is an organic porous ion exchanger.
  • organic porous ion exchanger of the first form all of the organic porous ion exchangers into which ion exchange groups (chelate exchange groups, H-type strongly acidic cation exchange groups or anion exchange groups) have been introduced.
  • a three-dimensionally continuous skeleton composed of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of crosslinked structural units in the structural units and having an average thickness of 1 to 60 ⁇ m, and an average diameter of 10 between the skeletons. It is a co-continuous structure consisting of three-dimensionally continuous pores of up to 200 ⁇ m, has a total pore volume of 0.5 to 10 mL / g, has a cation exchange group introduced, and weighs in a dry state. Examples thereof include an organic porous ion exchanger in which the ion exchange capacity per unit is 1 to 6 mg equivalent / g and the ion exchange groups are uniformly distributed in the organic porous ion exchanger.
  • the purified organic solvent obtained by performing the method for purifying an organic solvent according to the first embodiment of the present invention the method for purifying an organic solvent according to the second embodiment of the present invention, and the method for purifying an organic solvent according to the third embodiment of the present invention.
  • the content of each metal is appropriately selected depending on the use of the organic solvent after purification, and all of them are preferably 10 mass ppt or less. That is, a purified organic solvent obtained by performing the method for purifying an organic solvent according to the first embodiment of the present invention, the method for purifying an organic solvent according to the second embodiment of the present invention, and the method for purifying an organic solvent according to the third embodiment of the present invention.
  • each metal having a valence of 2 or more is appropriately selected depending on the use of the organic solvent after purification, and all of them are preferably 10 mass ppt or less, and the content of the monovalent metal is after purification. It is appropriately selected depending on the use of the organic solvent, and all of them are preferably 10 mass ppt or less.
  • the method for purifying the organic solvent of the first embodiment of the present invention, the method for purifying the organic solvent of the second embodiment of the present invention, and the method for purifying the organic solvent of the third embodiment of the present invention 1 mass ppt Since the following impurity levels can be purified, the method for purifying the organic solvent of the first embodiment of the present invention, the method for purifying the organic solvent of the second embodiment of the present invention, and the organic solvent of the third embodiment of the present invention can be performed.
  • the purified organic solvent obtained by the purification method of is the solvent for diluting the standard solution (blank solution for calibration line) used for preparing the calibration line for trace metal analysis, the solvent for diluting the sample, and the instruments and analyzers. It is preferably used as a cleaning solvent.
  • the organic solvent purification apparatus of the first aspect of the present invention comprises a single bed of the H-type cation exchanger (1) through which the organic solvent to be treated is passed and a single bed of the H-type cation exchanger (1). It is an organic solvent purification apparatus characterized by having a mixed bed of an anion exchanger (2) and an H-type strongly acidic cation exchanger (3) through which a treatment liquid is passed.
  • Examples of the flow of the organic solvent purification apparatus of the first aspect of the present invention include the embodiment shown in FIG.
  • the organic solvent purification apparatus of the second embodiment of the present invention comprises a single bed of the H-type cation exchanger (1) through which the organic solvent to be treated is passed and a single bed of the H-type cation exchanger (1).
  • Examples of the flow of the organic solvent purification apparatus of the second aspect of the present invention include the embodiment shown in FIG.
  • the organic solvent purification apparatus of the third aspect of the present invention comprises a single bed of the H-type cation exchanger (1) through which the organic solvent to be treated is passed and a single bed of the H-type cation exchanger (1).
  • An organic solvent purification apparatus characterized by having a double bed composed of a layer of an anion exchanger (2) in the first stage and a layer of an H-type strongly acidic cation exchanger (3) in the second stage through which the treatment liquid is passed. Is.
  • Examples of the flow of the organic solvent purification apparatus of the third aspect of the present invention include the embodiment shown in FIG.
  • Examples of the organic solvent purification apparatus of the first to third embodiments of the present invention include an organic solvent purification apparatus in which the H-type cation exchanger (1) is an H-type chelate exchanger.
  • examples of the organic solvent purification apparatus of the first to third embodiments of the present invention include an organic solvent purification apparatus in which the H-type cation exchanger (1) is an H-type strongly acidic cation exchanger.
  • the organic solvent purification apparatus of the fourth aspect of the present invention is a mixed bed of an H-type chelate exchanger, an anion exchanger (2), and an H-type strongly acidic cation exchanger (3) through which the organic solvent to be treated is passed. It is an organic solvent purification apparatus characterized by having.
  • Examples of the flow of the organic solvent purification apparatus according to the fourth aspect of the present invention include the example shown in FIG.
  • Examples of the organic solvent purification apparatus according to the fourth aspect of the present invention include an organic solvent purification apparatus in which the H-type cation exchanger (1) is an H-type chelate exchanger.
  • the H-type cation exchanger (1), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) according to the organic solvent purification apparatus of the first to fourth aspects of the present invention are the first of the present invention. This is the same as the H-type cation exchanger (1), the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) according to the methods for purifying the organic solvent of the first to third forms.
  • the H-type cation exchanger (1) is an H-type chelate exchanger
  • anion exchange with respect to the volume of the H-type chelate exchanger (1a) is preferably 0.1 to 99.0% by volume, more preferably. It is 0.1 to 70.0% by volume, particularly preferably 0.1 to 50.0% by volume.
  • the H-type cation exchanger (1) when the H-type cation exchanger (1) is an H-type chelate exchanger, it is strongly acidic with respect to the volume of the H-type chelate exchanger (1a).
  • the volume ratio of the cation exchanger (3) ((volume of the strongly acidic cation exchanger (3) / volume of the H-type chelate exchanger (1a)) ⁇ 100) is preferably 0.1 to 99.0% by volume. , More preferably 0.1 to 70.0% by volume, and particularly preferably 0.1 to 50.0% by volume.
  • the first treatment step and the second treatment step are carried out using two or more connected filling towers, but the floor on which the first treatment step is performed is filled in the previous stage and then.
  • a double bed filled with a floor to be subjected to the second treatment step may be formed on the stage, and the first treatment step and the second treatment step may be carried out using one filling tower.
  • An example of a form consisting of a floor can be mentioned.
  • the first treatment step is carried out on the bed of the H-type chelate exchanger (1a) in the first stage
  • the second treatment is carried out on the mixed bed of the anion exchanger (2) and the H-type strongly acidic cation exchanger (3) in the second stage. The process is carried out.
  • the metal content of the obtained treatment liquid was measured with an Agilent 8900 ICP-QQQ (manufactured by Agilent). The results are shown in Table 2.
  • the water content of the IPA simulated solution and the treatment solution was measured, and it was confirmed that both were 30 mass ppm or less. Further, in the same manner, the liquid was passed using the IPA simulated liquid 2. The results are shown in Table 2.
  • H-type chelate exchange resin H-type aminophosphate-type chelate resin (manufactured by Organo Corporation, Orlite DS-21 (cation exchange capacity 1.8 eq / L-resin, harmonic mean diameter 500 ⁇ m))
  • IPA simulation solution A paraffin oil-based organometallic standard solution Conostan (manufactured by CONOSTAN) was added to IPA XE (manufactured by Tokuyama Corporation) as a standard solution for ICP-AES / ICP-MS to prepare an IPA simulated solution 1 having a mass of 1000 mass. .. Further, in the same manner, a 100 mass ppt IPA simulated solution 2 was prepared. Table 1 shows the content of each metal in the IPA simulated solution.
  • Example 1 H-type chelate exchange resin (DS-21), OH-type strongly basic anion exchange resin (DS-2), and H-type strongly acidic cation exchange resin (DS-1) in a volume ratio of 3: 1: 1.
  • 50 mL of the mixed mixture was packed in a column having an inner diameter of 16 mm and a height of 300 mm (H-type C / OH-type A / H-type K mixed bed 1).
  • the IPA simulated liquid 2 was passed through the H-type C / OH-type A / H-type K mixed bed 1 with SV5h- 1 , and when 20 BV (20 times the resin volume) was passed, the treatment liquid was sampled. Then, the metal content of the obtained treatment liquid was measured.
  • Table 3 The results are shown in Table 3.
  • DS-2 -OH type strongly basic anion exchange resin
  • DS-1 -H-type strongly acidic cation exchange resin
  • DS-1 manufactured by Organo Corporation (cation exchange capacity 2.0 eq / L-resin)
  • Example 2 30 mL of H-type chelate exchange resin (DS-21) was filled in a column having an inner diameter of 16 mm and a height of 300 mm (H-type C single bed 1). Further, on a column having an inner diameter of 16 mm and a height of 300 mm, an OH-type strongly basic anion exchange resin (DS-2) is placed in the first stage and an H-type strongly acidic cation exchange resin (DS-1) is placed in the second stage, and the layer thickness ratio is 1: 1. In No. 1, a total of 20 mL was filled (OH type A / H type K double bed 1).
  • the H-type C single floor 1 in the front stage and the OH-type A / H-type K double floor 1 in the rear stage were connected.
  • the IPA simulated solution 2 was passed through the H-type C single bed 1 in the first stage and the OH-type A / H-K double bed 1 in the second stage with SV5h- 1 , and 20 BV (20 times the resin volume) was passed.
  • the treatment liquid was sampled.
  • the metal content of the obtained treatment liquid was measured. The results are shown in Table 3.
  • H-type C single bed 1 30 mL of H-type chelate exchange resin (DS-21) was filled in a column having an inner diameter of 16 mm and a height of 300 mm (H-type C single bed 1). Further, 20 mL of an OH type strongly basic anion exchange resin (DS-2) was filled in a column having an inner diameter of 16 mm and a height of 300 mm (OH type A single bed 1). Next, the H-type C single bed 1 in the front stage and the OH-type A single bed 1 in the rear stage were connected.
  • DS-21 H-type chelate exchange resin
  • DS-2 an OH type strongly basic anion exchange resin
  • the IPA simulated solution 2 was passed through the H-type C single bed 1 in the first stage and the OH-type A single bed 1 in the second stage with SV5h- 1 , and when 20 BV (20 times the resin volume) was passed, the treatment liquid was passed. Sampled. Then, the metal content of the obtained treatment liquid was measured. The results are shown in Table 3.
  • Examples 3 to 6 The same procedure as in Example 1 was carried out except that the SV shown in Table 4 was used instead of the SV5h- 1 . The results are shown in Table 4.
  • Example 7 On a column with an inner diameter of 16 mm and a height of 300 mm, 18 ml of H-type strong acid cation exchange resin (DS-1) is exchanged in the first stage, and 9 mL of H-type strongly acidic cation exchange resin (DS-1) is exchanged with OH-type strongly basic anion exchange in the second stage. 18 ml of a mixed bed of 9 ml of a resin mixed resin (DS-2) was filled with a layer thickness ratio of 1: 1 in a total of 36 mL (H-type K / H-type, OH-type mixed bed 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

被処理有機溶媒を、H形カチオン交換体(1)に接触させる第一処理工程と、該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、を有することを特徴とする有機溶媒の精製方法。本発明によれば、有機溶媒中の1価及び多価の両方の金属種について金属不純物の除去性に優れる有機溶媒の精製方法及び精製装置を提供することができる。

Description

有機溶媒の精製方法及び有機溶媒の精製装置
 本発明は、不純物金属含有量が低減された高純度の有機溶媒を得るための有機溶媒の精製方法及びそれを実施するための有機溶媒の精製装置に関する。
 半導体製造工程では、洗浄に使用されるイソプロピルアルコール(IPA)に含まれている金属不純物は、ウェハー上で悪影響を及ぼす可能性が高いため、IPA中の不純物含有量をpptレベルまで低減する必要がある。
 有機溶媒中の金属不純物を除去し、有機溶媒を精製する方法としては、イオン交換体を用いる方法が挙げられ、イオン交換樹脂やイオン吸着膜など強酸性カチオン交換基を有するイオン交換体によって、有機溶媒中の金属不純物をpptレベルまで低減できることが知られている。
 例えば、特許文献1には、金属含有量が1ppb未満で含水量が100ppm未満の高純度イソプロパノールの製造方法であって、(a)イソプロピルアルコールを少なくとも99.9重量%含み、200乃至500ppmの有機不純物を含み100ppm以下の含水量の供給物流れを分離塔に供給する工程、(b)前記供給物流れを、前記分離塔の上部から捕集され、イソプロピルアルコールよりも低い沸点の濃縮された成分を含む頭部流れ、及び前記分離塔の底部から捕集され、イソプロピルアルコールよりも高い沸点の濃縮された成分を含む底部流れに分離し、前記頭部流れおよび前記底部流れに含まれるイソプロピルアルコールは、金属含有量が1ppb未満で含水量が100ppm未満の高純度イソプロピルアルコールではない工程、(c)以下の地点において前記高純度イソプロピルアルコールを蒸気側部流れとして得る工程、(i)前記供給物流れが前記分離塔に流入するところよりも下方であり、前記底部流れよりも上方である地点、又は(ii)前記供給物流れが前記分離塔に流入するところよりも上方であり、前記頭部流れよりも下方である地点、を含む方法が開示されている。
特表2003-535836号公報
 ところが、有機溶媒中では金属不純物の拡散速度が小さく、またイオン交換樹脂とのイオン交換反応の反応速度も小さいため、有機溶媒中のイオン性不純物除去を行う場合においては、水溶液中のイオン性不純物を除去する場合に比べ、イオン交換樹脂に対する通液速度を小さく設定する。例えば、強酸性カチオン交換樹脂を用いた処理の場合、水中と同じ流速で同じ金属除去率を得ることは難しい。
 そして、本発明者らは、IPAなどの溶媒中の金属の全てを、強酸性カチオン交換体を用いて低減するのは難しく、特に、Cr、As等の除去率の悪い金属が存在することを確認した。
 従って、本発明の目的は、有機溶媒中の1価及び多価の両方の金属種について金属不純物の除去性に優れる有機溶媒の精製方法及び精製装置を提供することにある。
 このような技術背景のもと、本発明者らは、鋭意検討を重ねた結果、(1)Cr等の2価以上の金属は、強酸性カチオン交換樹脂では除去率が悪く、さらにこれらの金属の内、一部は有機溶媒中で陰イオン形態を有している可能性があり、これらの金属を除去するためには、H形キレート交換体を用いることが効果的であること、更に、H形キレート交換体を用いると、H形キレート交換体中に存在する微量の塩酸等の鉱酸が処理液に移行し、処理液中にH形キレート交換体由来の鉱酸が含まれてしまうという新たな問題が起こること、そして、その問題を解決するためには、H形キレート交換体の処理液を、アニオン交換体及び強酸性イオン交換体で処理することが有効であること、また、(2)先に、H形強酸性カチオン交換体で、有機溶媒中の1価及び2価以上の金属を除去した後、更に、アニオン交換体及びH形強酸性イオン交換体で処理することにより、陰イオン形態を有しているCr等の金属をアニオン交換体で除去し、強酸性イオン交換体に再度接触させることで前段で除去しきれなかった1価及び2価以上の金属を有効に除去できること等を見出し、本発明を完成させた。
 すなわち、本発明(1)は、被処理有機溶媒を、H形カチオン交換体(1)に接触させる第一処理工程と、
 該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、
を有することを特徴とする有機溶媒の精製方法を提供するものである。
 また、本発明(2)は、前記第一処理工程の処理液を、前記アニオン交換体(2)と前記H形強酸性カチオン交換体(3)の混床に通液することより、前記第二処理工程を行うことを特徴とする(1)の有機溶剤の精製方法を提供するものである。
 また、本発明(3)は、前記第一処理工程の処理液を、先に、前記アニオン交換体(2)に接触させ、次いで、前記H形強酸性カチオン交換体(3)に接触させることにより、前記第二処理工程を行うことを特徴とする(1)の有機溶剤の精製方法を提供するものである。
 また、本発明(4)は、前記H形カチオン交換体(1)が、H形キレート交換体であることを特徴とする(1)~(3)いずれかの有機溶媒の精製方法を提供するものである。
 また、本発明(5)は、前記H形カチオン交換体(1)が、H形強酸性カチオン交換体であることを特徴とする(1)~(3)いずれかの有機溶媒の精製方法を提供するものである。
 また、本発明(6)は、被処理有機溶媒を、H形キレート交換体とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させる処理工程を有することを特徴とする有機溶媒の精製方法を提供するものである。
 また、本発明(7)は、前記H形キレート交換体の官能基が、イミノジ酢酸基、アミノメチルリン酸基又はイミノプロピオン酸基であることを特徴とする(4)又は(6)の有機溶媒の精製方法を提供するものである。
 また、本発明(8)は、前記H形キレート交換体の体積に対する前記アニオン交換体の体積の割合が、0.1~99.0体積%であることを特徴とする(4)、(6)及び(7)のいずれかの有機溶媒の精製方法を提供するものである。
 また、本発明(9)は、前記H形キレート交換体の体積に対する前記カチオン交換体(2)の体積の割合が、0.1~99.0体積%であることを特徴とする(4)、(6)~(8)のいずれかの有機溶媒の精製方法を提供するものである。
 また、本発明(10)は、前記有機溶媒が、極性有機溶媒であること特徴とする(1)~(9)いずれかの有機溶媒の精製方法を提供するものである。
 また、本発明(11)は、被処理有機溶媒が通液されるH形カチオン交換体(1)の単床と、該H形カチオン交換体(1)の単床の処理液が通液されるアニオン交換体(2)及びH形強酸性カチオン交換体(3)の混床と、を有することを特徴とする有機溶媒の精製装置を提供するものである。
 また、本発明(12)は、被処理有機溶媒が通液されるH形カチオン交換体(1)の単床と、該H形カチオン交換体(1)の単床の処理液が通液されるアニオン交換体(2)の単床と、該アニオン交換体(2)の単床の処理液が通液されるH形強酸性カチオン交換体(3)の単床と、を有することを特徴とする有機溶剤の精製装置を提供するものである。
 また、本発明(13)は、被処理有機溶媒が通液されるH形キレート交換体とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床を有することを特徴とする有機溶媒の精製装置を提供するものである。
 本発明によれば、有機溶媒中の1価及び多価の両方の金属種について金属不純物の除去性に優れる精製方法及び精製装置を提供することができる。
本発明の第一の形態又は第二の形態の有機溶媒の精製方法の第二処理工程の第一形態を示す模式的なフロー図である。 本発明の第一の形態又は第二の形態の有機溶媒の精製方法の第二処理工程の第二形態を示す模式的なフロー図である。 本発明の第一の形態又は第二の形態の有機溶媒の精製方法の第二処理工程の第三形態を示す模式的なフロー図である。 本発明の第一の形態又は第二の形態の有機溶媒の精製方法の第二処理工程の第四形態を示す模式的なフロー図である。 本発明の第一の形態又は第二の形態の有機溶媒の精製方法の第二処理工程の第五形態を示す模式的なフロー図である。 本発明の第三の形態の有機溶媒の精製方法を示す模式的なフロー図である。
 本発明の第一の形態の有機溶媒の精製方法は、被処理有機溶媒を、H形キレート交換体(1a)に接触させる第一処理工程と、
 該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、
を有することを特徴とする有機溶媒の精製方法である。
 本発明の第一の形態の有機溶媒の精製方法に係る第一処理工程は、被処理有機溶媒を、H形キレート交換体(1a)に接触させる工程である。
 本発明の第一の形態の有機溶媒の精製方法に係る被処理有機溶媒としては、特に制限されないが、例えば、イソプロピルアルコール、メタノール、エタノール等のアルコール類、シクロヘキサンノン、メチルイソブチルケトン、アセトン、メチルエチルケトン等のケトン類、2,4-ジフェニル-4-メチル-1-ペンテン、2-フェニル-1-プロペン等のアルケン系有機溶媒、N-メチルピロリドン及びこれらの混合有機溶媒が挙げられる。被処理有機溶媒としては、極性有機溶媒及び非極性有機溶媒のいずれであってもよく、極性有機溶媒が好ましい。また、極性有機溶媒としては、プロトン性の極性有機溶媒であって、非プロトン性の有機溶媒であってもよい。
 被処理有機溶媒は、金属不純物として、Na、K、Li等の1価の金属と、Cr、As、Ca、Cu、Fe、Mg、Mn、Ni、Pb、Zn等の2価以上の金属であり、キレート樹脂で除去し易い金属と、の両方を含有する。
 被処理有機溶媒中の各金属不純物の含有量は、特に制限されないが、通常、100質量ppb~20質量ppt程度である。
 本発明の第一の形態の有機溶媒の精製方法に係るH形カチオン交換体(1)は、H形キレート交換体(1a)である。
 H形キレート交換体(1a)は、Na形、Ca形、Mg形等の金属イオン形のキレート交換体を、鉱酸と接触させることにより、酸処理されて、H形に変換されたものである。つまり、H形キレート交換体(1a)は、金属イオン形のキレート交換体の鉱酸接触処理物である。
 H形キレート交換体(1a)が有する官能基は、金属イオンに配位してキレートを形成することができるものであれば、特に制限されず、例えば、イミノジ酢酸基、アミノメチルリン酸基、イミノプロピオン酸基等のアミノ基を有する官能基、チオール基等が挙げられる。これらのうち、キレート交換体の官能基としては、多数の多価金属イオンの除去性が高くなる点で、アミノ基を有する官能基が好ましく、イミノジ酢酸基、アミノメチルリン酸基、イミノプロピオン酸基が特に好ましい。
 H形キレート交換体(1a)としては、粒状のH形キレート交換樹脂が挙げられる。H形キレート交換樹脂の基体としては、スチレン-ジビニルベンゼン共重合体が挙げられる。H形キレート交換樹脂は、ゲル形構造、マクロポーラス形構造、ポーラス形構造のいずれの構造でもよい。H形キレート交換樹脂の交換容量は、好ましくは0.5~2.5eq/L-R、特に好ましくは1.0~2.5eq/L-Rである。H形キレート交換樹脂の平均粒径(調和平均径)は、特に制限されないが、好ましくは300~1000μm、特に好ましくは500~800μmである。なお、H形キレート交換樹脂の平均粒径は、レーザ回折式粒度分布測定装置により測定される値である。
 また、H形キレート交換体(1a)としては、H形の有機多孔質キレート交換体が挙げられる。H形の有機多孔質キレート交換体は、キレート能有する官能基、例えば、上記に挙げられているキレート能を有する官能基が導入されている有機多孔質体である。H形の有機多孔質キレート交換体中の交換容量は、好ましくは0.3~2mg当量/mL(水湿潤状態)、特に好ましくは1~2mg当量/mL(水湿潤状態)である。
 H形キレート交換体(1a)は、Na形、Ca形、Mg形等の金属イオン形のキレート交換体を鉱酸と接触させて酸処理することにより、得られる。金属イオン形のキレート交換体に接触させる鉱酸としては、塩酸、硫酸、硝酸が挙げられる。これらのうち、鉱酸としては、安全性の点で、塩酸、硫酸が好ましい。また、Ca形からの変換の場合は、硫酸カルシウムの析出の恐れがあるので塩酸が好ましい。鉱酸の濃度は、好ましくは0.1~6N、特に好ましくは1~4Nである。
 金属イオン形のキレート交換体に鉱酸を接触させる方法としては、特に制限されず、接触様式、接触温度、接触時間等は適宜選択される。
 金属イオン形のキレート交換体に鉱酸を接触させた後、H形に変換されたH形キレート交換体を水洗し、余分な鉱酸の除去を行うが、キレート交換体中の官能基が、鉱酸との水素結合等により結合しているため、水洗では余分な鉱酸を完全に除去することができない。そのため、H形キレート交換体中には、酸処理に用いた鉱酸が残留している。
 例えば、金属イオン形のキレート交換樹脂としては、三菱化学社製のCR-10、CR-11、住化ケムテックス社製のデュオライトC-467、住友化学社製のMC-700、ランクセス社製のレバチットTP207、レバチットTP208、レバチットTP260、ピュロライト社製のS930、S950、オルガノ製のDS-21、DS-22が挙げられる。
 第一処理工程では、被処理有機溶媒を、H形キレート交換体(1a)に接触させることにより、被処理有機溶媒を、H形キレート交換体(1a)で処理し、被処理有機溶媒中の主に2価以上の金属と、1価の金属の一部を除去する。
 第一処理工程において、H形キレート交換体(1a)に被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~30h-1、更に好ましくは4~25h-1である。
 第一処理工程において、H形キレート交換体(1a)に被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第一処理工程において、0~80℃で、H形キレート交換体(1a)に被処理有機溶媒を通液することもある。
 本発明の第一の形態の有機溶媒の精製方法に係る第二処理工程は、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる工程である。
 本発明の第一の形態の有機溶媒の精製方法に係るアニオン交換体(2)は、アニオン交換基として強塩基性アニオン交換基を有する強塩基性アニオン交換体(2a)と、アニオン交換基として弱塩基性アニオン交換基を有する弱塩基性アニオン交換体(2b)とがある。
 強塩基性アニオン交換体(2a)に係る強塩基性アニオン交換基としては、OH形の四級アンモニウム基等が挙げられる。また、弱塩基性アニオン交換体(2b)に係る弱塩基性アニオン交換基としては、三級アミノ基、二級アミノ基、一級アミノ基、ポリアミン基等が挙げられる。
 本発明の第一の形態の有機溶媒の精製方法に係るアニオン交換体(2)としては、粒状のアニオン交換樹脂が挙げられる。アニオン交換樹脂の基体は、スチレン-ジビニルベンゼン共重合体である。アニオン交換樹脂は、ゲル形構造、マクロポーラス形構造、ポーラス形構造のいずれの構造でもよい。アニオン交換樹脂の湿潤状態のイオン交換容量は、好ましくは0.5~2(eq/L-R)、特に好ましくは0.9~2(eq/L-R)である。アニオン交換樹脂の調和平均径は、好ましくは400~900μm、特に好ましくは500~800μmである。アニオン交換樹脂としては、例えば、ダウケミカル社製のアンバーライトIRA900、402、96SB、98、アンバージェット4400、4002、4010、三菱ケミカル社製のダイヤイオンUBA120、PA306S、PA308、PA312、PA316、PA318L、WA21J、WA30、オルガノ社製のDS-2、DS-5、DS-6、ピュロライト社製のA400、A600、SGA550、A500、A501P、A502PS、A503、A100、A103S、A110、A111S、A133S、レバチット社製のモノプラスM500、M800、MP62WS、MP64等が挙げられる。
 また、アニオン交換体(2)としては、有機多孔質アニオン交換体が挙げられる。有機多孔質アニオン交換体は、アニオン交換基、例えば、上記に挙げられている強塩基性アニオン交換基や弱塩基性アニオン交換基が導入されている有機多孔質体である。有機多孔質アニオン交換体中の交換容量は、好ましくは1~6mg当量/mL(乾燥状態)、特に好ましくは2~5mg当量/mL(乾燥状態)である。
 本発明の第一の形態の有機溶媒の精製方法に係るH形強酸性カチオン交換体(3)は、スルホン酸基等の強酸性カチオン交換基がH形に変換されたものである。
 H形強酸性カチオン交換体(3)としては、粒状の強酸性カチオン交換樹脂が挙げられる。H形強酸性カチオン交換樹脂の基体は、スチレン-ジビニルベンゼン共重合体である。H形強酸性カチオン交換樹脂は、ゲル形構造、マクロポーラス形構造、ポーラス形構造のいずれの構造でもよい。H形強酸性カチオン交換樹脂の湿潤状態のイオン交換容量は、好ましくは1.5~3.0(eq/L-R)、特に好ましくは1.7~2.7(eq/L-R)である。H形強酸性カチオン交換樹脂の調和平均径は、好ましくは400~900μm、特に好ましくは500~800μmである。H形強酸性カチオン交換樹脂としては、例えば、ダウケミカル社製のアンバーライトIR120B、IR124、200CT252、アンバージェット1020、1024、1060、1220、三菱ケミカル社製のダイヤイオンSK104、SK1B、SK110、SK112、PK208、PK212L、PK216、PK218、PK220、PK228、UBK08、UBK10、UBK12、オルガノ製のDS-1、DS-4、ピュロライト社製のC100、C100E、C120E、C100x10、C100x12MB、C150、C160、SGC650、レバチット社製のモノプラスS108H、SP112、S1668等が挙げられる。
 また、H形強酸性カチオン交換体(3)としては、H形の有機多孔質強酸性カチオン交換体が挙げられる。H形の有機多孔質強酸性カチオン交換体は、強酸性カチオン交換基、例えば、上記で挙げられている強酸性カチオン交換基が導入されている有機多孔質体である。H形の有機多孔質強酸性カチオン交換体中の交換容量は、好ましくは1~3mg当量/mL(乾燥状態)、特に好ましくは1.5~3mg当量/mL(乾燥状態)である。
 第二処理工程では、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させることにより、被処理有機溶媒を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)で処理し、第一処理工程で、H形キレート交換体(1a)で除去しきれなかった1価の金属の残部と、H形キレート交換体(1a)から放出される鉱酸と、を除去する。また、アニオン交換体の再生には、再生剤としてNaOHが用いられるが、再生後十分に洗浄すれば、アニオン交換体中に、NaOHが残留するようなことはほとんどない。第二処理工程では、もし、アニオン交換体(2)の再生後の洗浄が悪く、再生剤に使用したNaOHの残留物が、アニオン交換体(2)から溶出するようなことがあったとしても、第二処理工程におけるH形強酸性カチオン交換体(3)が、Naを除去することができる。
 第二処理工程において被処理液を接触させるアニオン交換体(2)及びH形強酸性カチオン交換体(3)として、前記に挙げたカチオン交換体及びアニオン交換体を任意の割合で混合して使ってもよいし、また、アニオン交換体(2)及びH形強酸性カチオン交換体(3)の混合品として販売されているイオン交換体を用いてもよい。アニオン交換体(2)及びH形強酸性カチオン交換体(3)の混合品としては、例えば、オルガノ製のDS-3、DS-7、MSPS2-1・DRY、EG-4A-HG、EG-5A-HG、ESP-1、ESP-2、DUPONT製のAmberTec UP6040、Purolite製MB378、MB378LT、MB400、MB424、MB46、MB47/4914、MB478が挙げられる。
 第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~50h-1である。
 第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第二処理工程において、0~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液することもある。第二処理工程において、60~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液する場合は、アニオン交換体(2)として、強塩基性アニオン交換体(2a)を用いると、強塩基性アニオン交換体(2a)が分解し易いため、アニオン交換体(2)として、弱塩基性アニオン交換体(2b)を用いる。
 本発明の第二の形態の有機溶媒の精製方法は、被処理有機溶媒を、H形強酸性カチオン交換体(1b)に接触させる第一処理工程と、
 該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、
を有することを特徴とする有機溶媒の精製方法である。
 本発明の第二の形態の有機溶媒の精製方法に係る第一処理工程は、被処理有機溶媒を、H形強酸性カチオン交換体(1b)に接触させる工程である。
 本発明の第二の形態の有機溶媒の精製方法に係る被処理有機溶媒は、本発明の第一の形態の有機溶媒の精製方法に係る被処理有機溶媒と同様である。
 本発明の第二の形態の有機溶媒の精製方法に係るH形カチオン交換体(1)は、H形強酸性カチオン交換体(1b)である。本発明の第二の形態の有機溶媒の精製方法に係るH形強酸性カチオン交換体(1b)は、本発明の第一の形態の有機溶媒の精製方法に係るH形強酸性カチオン交換体(3)と同様である。
 第一処理工程では、被処理有機溶媒を、H形強酸性カチオン交換体(1b)に接触させることにより、被処理有機溶媒を、H形強酸性カチオン交換体(1b)で処理し、被処理有機溶媒中の2価以上の金属の一部と、1価の金属の一部を除去する。
 第一処理工程において、H形強酸性カチオン交換体(1b)に被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~30h-1である。
 第一処理工程において、H形強酸性カチオン交換体(1b)に被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第一処理工程において、0~80℃で、H形強酸性カチオン交換体(1b)に被処理有機溶媒を通液することもある。
 本発明の第二の形態の有機溶媒の精製方法に係る第二処理工程は、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる工程である。
 本発明の第二の形態の有機溶媒の精製方法に係るアニオン交換体(2)は、本発明の第一の形態の有機溶媒の精製方法に係るアニオン交換体(2)と同様であある。また、本発明の第二の形態の有機溶媒の精製方法に係るH形強酸性カチオン交換体(3)は、本発明の第一の形態の有機溶媒の精製方法に係るH形強酸性カチオン交換体(3)と同様である。
 本発明の第二の形態の有機溶媒の精製方法では、第一処理工程で用いるH形強酸性カチオン交換体(1b)と、第二処理工程で用いるH形強酸性カチオン交換体(3)は、同じH形強酸性カチオン交換体であってもよいし、異なるH形強酸性カチオン交換体であってもよい。
 第二処理工程では、第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させることにより、被処理有機溶媒を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)で処理し、第一処理工程で、H形強酸性カチオン交換体(1b)で除去しきれなかった2価以上の金属の残部と1価の金属の残部とを除去する。また、第二処理工程において、アニオン交換体は、CrやAsなどのアニオン形態の金属イオンを有する可能性のある金属や、鉱酸や有機酸などの酸を除去する。
 そして、本発明の第二の形態の有機溶媒の精製方法では、被処理有機溶媒を、一旦、H形強酸性カチオン交換体に接触させた後、再度、H形強酸性カチオン交換体に接触させるという2段階以上の接触を行うことにより、被処理有機溶媒を、同じ量のH形強酸性カチオン交換体に接触させた場合に比べ、2価以上の金属の除去率が高くなる。
 第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~30h-1である。
 第二処理工程において、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、第二処理工程において、0~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液することもある。第二処理工程において、0~80℃で、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に、第一処理工程の処理液を通液する場合は、アニオン交換体(2)として、強塩基性アニオン交換体(2a)を用いると、強塩基性アニオン交換体(2a)が分解し易いため、アニオン交換体(2)として、弱塩基性アニオン交換体(2b)を用いる。
 本発明の第一の形態の有機溶媒の精製方法に係る第二処理工程及び本発明の第二の形態の有機溶媒の精製方法に係る第二処理工程の形態としては、以下のものが挙げられる。
 第二処理工程の第一形態では、第一処理工程の処理液を、アニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に通液することより、第二処理工程を行う。アニオン交換体(2)とH形強酸性カチオン交換体(3)の混床は、アニオン交換体(2)とH形強酸性カチオン交換体(3)の混合物からなる。アニオン交換体(2)が有機多孔質アニオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質アニオン交換体を用いる。また、H形強酸性カチオン交換体(3)が有機多孔質強酸性カチオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質強酸性カチオン交換体を用いる。
 本発明の第一の形態の有機溶媒の精製方法又は本発明の第二の形態の有機溶媒の精製方法の第二処理工程が、第一形態である形態例としては、例えば、図1に示すように、被処理有機溶媒20を、先ず、H形カチオン交換体(H形キレート交換体(1a)又はH形強酸性カチオン交換体(1b))が充填されているH形カチオン交換体充填塔1に通液し、次いで、H形カチオン交換体充填塔1で処理された処理液を、アニオン交換樹脂(2)及び強酸性カチオン交換樹脂(3)の混合物が充填されている混床充填塔2に通液し、精製有機溶媒23を得る方法が挙げられる。図1に示す形態例では、符号21で示す範囲が第一処理工程であり、符号22で示す範囲が第二処理工程である。
 第二処理工程の第二形態では、第一処理工程の処理液を、前段のアニオン交換体(2)の単床に通液し、次いで、後段のH形強酸性カチオン交換体(3)の単床に通液することより、第二処理工程を行う。
 本発明の第一の形態の有機溶媒の精製方法又は本発明の第二の形態の有機溶媒の精製方法の第二処理工程が、第二形態である形態例としては、例えば、図2に示すように、被処理有機溶媒20を、先ず、H形カチオン交換体(H形キレート交換体(1a)又はH形強酸性カチオン交換体(1b))が充填されているH形カチオン交換体充填塔1に通液し、次いで、H形カチオン交換体充填塔1で処理された処理液を、アニオン交換体(2)が充填されているアニオン交換体充填塔3に通液し、次いで、アニオン交換体充填塔3で処理された処理液を、強酸性カチオン交換体(3)が充填されている強酸性カチオン交換体充填塔4に通液し、精製有機溶媒23を得る方法が挙げられる。図2に示す形態例では、符号21で示す範囲が第一処理工程であり、符号22で示す範囲が第二処理工程である。
 第二処理工程の第三形態では、第一処理工程の処理液を、前段のアニオン交換体(2)の層と、後段のH形強酸性カチオン交換体(3)の層と、からなる複床に通液することより、第二処理工程を行う。アニオン交換体(2)が有機多孔質アニオン交換体の場合は、所望の厚みで充填容器又はカラムの内径に合わせて切り出された有機多孔質アニオン交換体が、充填容器又はカラムに充填される。また、H形強酸性カチオン交換体(3)がH形の有機多孔質カチオン交換体の場合は、所望の厚みで充填容器又はカラムの内径に合わせて切り出されたH形の有機多孔質カチオン交換体が、充填容器又はカラムに充填される。
 本発明の第一の形態の有機溶媒の精製方法又は本発明の第二の形態の有機溶媒の精製方法の第二処理工程が、第三形態である形態例としては、例えば、図3に示すように、被処理有機溶媒20を、先ず、H形カチオン交換体(H形キレート交換体(1a)又はH形強酸性カチオン交換体(1b))が充填されているH形カチオン交換体充填塔1に通液し、次いで、H形カチオン交換体充填塔1で処理された処理液を、前段のアニオン交換体(2)の層5と、後段のH形強酸性カチオン交換体(3)の層6と、からなる複床7が充填されている複床充填塔7に通液し、精製有機溶媒23を得る方法が挙げられる。図3に示す形態例では、符号21で示す範囲が第一処理工程であり、符号22で示す範囲が第二処理工程である。
 第二処理工程の第四形態では、第一処理工程の処理液を、前段のアニオン交換体(2)の単床及び後段のH形強酸性カチオン交換体(3)の単床の繰り返し単位が2組以上繰り返されている複床に通液することより、第二処理工程を行う。
 本発明の第一の形態の有機溶媒の精製方法又は本発明の第二の形態の有機溶媒の精製方法の第二処理工程が、第四形態である形態例としては、例えば、図4に示すように、被処理有機溶媒20を、先ず、H形カチオン交換体(H形キレート交換体(1a)又はH形強酸性カチオン交換体(1b))が充填されているH形カチオン交換体充填塔1に通液し、次いで、H形カチオン交換体充填塔1で処理された処理液を、「前段のアニオン交換体(2)の充填塔8aと、後段のH形強酸性カチオン交換体(3)の充填塔9aと、からなる第一繰り返し単位10a」、「前段のアニオン交換体(2)の充填塔8bと、後段のH形強酸性カチオン交換体(3)の充填塔9bと、からなる第二繰り返し単位10b」の順に通液し、精製有機溶媒23を得る方法が挙げられる。図4に示す形態例では、符号21で示す範囲が第一処理工程であり、符号22で示す範囲が第二処理工程である。なお、図4に示す形態例では、前段のアニオン交換体(2)の充填塔と、後段のH形強酸性カチオン交換体(3)の充填塔と、からなる繰り返し単位が2つ繰り返されている例を示したが、前段のアニオン交換体(2)の充填塔と、後段のH形強酸性カチオン交換体(3)の充填塔と、からなる繰り返し単位の数は3以上であってもよい。
 第二処理工程の第五形態では、第一処理工程の処理液を、前段の前記アニオン交換体(2)の層及び後段の前記H形強酸性カチオン交換体(3)の層の繰り返し単位が2組以上積層されている複床に通液することより、第二処理工程を行う。
 本発明の第一の形態の有機溶媒の精製方法又は本発明の第二の形態の有機溶媒の精製方法の第二処理工程が、第五形態である形態例としては、例えば、図5に示すように、被処理有機溶媒20を、先ず、H形カチオン交換体(H形キレート交換体(1a)又はH形強酸性カチオン交換体(1b))が充填されているH形カチオン交換体充填塔1に通液し、次いで、H形カチオン交換体充填塔1で処理された処理液を、「前段のアニオン交換体(2)の層11a及び後段のH形強酸性カチオン交換体(3)の層12aからなる第一繰り返し単位13a」と、「前段のアニオン交換体(2)の層11bと、後段のH形強酸性カチオン交換体(3)の層12bからなる第二繰り返し単位13b」とが順に積層されて充填されている複床充填塔14に通液し、精製有機溶媒23を得る方法が挙げられる。図5に示す形態例では、符号21で示す範囲が第一処理工程であり、符号22で示す範囲が第二処理工程である。なお、図5に示す形態例では、前段のアニオン交換体(2)の層及び後段のH形強酸性カチオン交換体(3)の層からなる繰り返し単位が2つ繰り返されている例を示したが、前段のアニオン交換体(2)の層及び後段のH形強酸性カチオン交換体(3)の層からなる繰り返し単位の数は3以上であってもよい。
 本発明の第三の形態の有機溶媒の精製方法は、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させる処理工程(3)を有することを特徴とする有機溶媒の精製方法である。
 本発明の第三の形態の有機溶媒の精製方法に係る処理工程(3)は、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させる工程である。
 本発明の第三の形態の有機溶媒の精製方法に係る被処理有機溶媒、H形キレート交換体(1a)、アニオン交換体(2)、H形強酸性カチオン交換体(3)は、本発明の第一の形態の有機溶媒の精製方法に係る被処理有機溶媒、H形キレート交換体(1a)、アニオン交換体(2)、H形強酸性カチオン交換体(3)と同様である。
 本発明の第三の形態の有機溶媒の精製方法に係るH形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床は、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混合物からなる。なお、H形キレート交換体(1a)がH形の有機多孔質キレート交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体のH形の有機多孔質強酸性キレート交換体を用いる。アニオン交換体(2)が有機多孔質アニオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質アニオン交換体を用いる。また、H形強酸性カチオン交換体(3)が有機多孔質強酸性カチオン交換体の場合は、任意の大きさに切り出された形状、例えば、一辺3mm程度から10mm程度の立方体の有機多孔質強酸性カチオン交換体を用いる。
 処理工程(3)では、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させることにより、被処理有機溶媒を、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床で処理し、被処理有機溶媒中の2価以上の金属と、1価の金属と、を除去する。また、処理工程(3)では、被処理有機溶媒に、H形キレート交換体(1a)から放出される鉱酸を、アニオン交換体(2)が除去する。
 処理工程(3)において、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に、被処理有機溶媒を通液するときの通液速度(SV)は、特に制限されず、適宜選択されるが、好ましくは0.1~100h-1、特に好ましくは2~30h-1、更に好ましくは4~25h-1である。
 処理工程(3)において、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床(3)に、被処理有機溶媒を通液するときの温度は、特に制限されず、適宜選択されるが、通常、0~50℃である。また、被処理有機溶媒の種類によっては、処理工程(3)において、0~80℃で、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に、被処理有機溶媒を通液することもある。処理工程(3)において、0~80℃で、H形キレート交換体(1a)とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に、被処理有機溶媒を通液する場合は、アニオン交換体(2)として、強塩基性アニオン交換体(2a)を用いると、強塩基性アニオン交換体(2a)が分解し易いため、アニオン交換体(2)として、弱塩基性アニオン交換体(2b)を用いる。
 本発明の第三の形態の有機溶媒の精製方法としては、例えば、図6に示すように、被処理有機溶媒20を、H形キレート交換体(1a)、アニオン交換体(2)及びH形強酸性カチオン交換体(3)の混合物が充填されている混床充填塔24に通液し、精製有機溶媒23を得る方法が挙げられる。図6に示す形態例では、符号25で示す範囲が処理工程(3)である。
 本発明の第一の形態の有機溶媒の精製方法又は本発明の第三の形態の有機溶媒の精製方法では、H形キレート交換体(1a)の体積に対するアニオン交換体(2)の体積の割合((アニオン交換体(2)の体積/H形キレート交換体(1a)の体積)×100)は、好ましくは0.1~99.0体積%、より好ましくは0.1~70.0体積%、特に好ましくは0.1~50.0体積%である。
 本発明の第一の形態の有機溶媒の精製方法又は本発明の第三の形態の有機溶媒の精製方法では、H形キレート交換体(1a)の体積に対する強酸性カチオン交換体(3)の体積の割合((強酸性カチオン交換体(3)の体積/H形キレート交換体(1a)の体積)×100)は、好ましくは0.1~99.0体積%、より好ましくは0.1~70.0体積%、特に好ましくは0.1~50.0体積%である。
 H形カチオン交換体(H形キレート交換体(1a)、強酸性カチオン交換体(1b))、アニオン交換体(2)及びH形強酸性カチオン交換体(3)としては、イオン交換基が導入される基体が、有機多孔質体であってもよい。本発明に係る有機多孔質体を以下に説明する。
 有機多孔質イオン交換体には、H形キレート交換基、強酸性カチオン基又はアニオン交換基が導入されている。つまり、有機多孔質体にH形キレート交換基が導入されているものは、H形の有機多孔質キレート交換体(1a)であり、また、有機多孔質体にH形の強酸性カチオン交換基が導入されているものは、H形の有機多孔質強酸性カチオン交換体(1b)又は(3)であり、また、有機多孔質体にアニオン交換基が導入されているものは、有機多孔質アニオン交換体である。なお、有機多孔質イオン交換体に導入されている官能基は、上述した(H形キレート交換体(1a)、強酸性カチオン交換体(1b))、アニオン交換体(2)又はH形強酸性カチオン交換体(3)に導入されている官能基と同様である。
 有機多孔質イオン交換体としては、例えば、連続骨格相と連続空孔相からなり、連続骨格の厚みは1~100μm、連続空孔の平均直径は1~1000μm、全細孔容積は0.5~50mL/gであり、イオン交換基(キレート交換基、H形強酸性カチオン交換基又はアニオン交換基)が導入されており、乾燥状態での重量当たりのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体(以下、第一の形態の有機多孔質イオン交換体とも記載する。)が挙げられる。
 第一の形態の有機多孔質イオン交換体としては、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径1~1000μmの開口となる連続気泡構造を有し、全細孔容積が1~50mL/gであり、イオン交換基が導入されており、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体が挙げられる。
 また、第一の形態の有機多孔質イオン交換体としては、気泡状のマクロポア同士が重なり合い、この重なる部分が平均直径30~300μmの開口となる連続マクロポア構造体であり、全細孔容積が0.5~10ml/g、カチオン交換基又はアニオン交換基が導入されており、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しており、且つ、連続マクロポア構造体(乾燥体)の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中25~50%である有機多孔質イオン交換体が挙げられる。
 また、第一の形態の有機多孔質イオン交換体としては、前記有機多孔質イオン交換体が、イオン交換基(キレート交換基、H形強酸性カチオン交換基又はアニオン交換基)が導入された全構成単位中、架橋構造単位を0.1~5.0モル%含有する芳香族ビニルポリマーからなる平均太さが1~60μmの三次元的に連続した骨格と、その骨格間に平均直径が10~200μmの三次元的に連続した空孔とからなる共連続構造体であり、全細孔容積が0.5~10mL/gであり、カチオン交換基が導入されており、乾燥状態での重量当りのイオン交換容量が1~6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布している有機多孔質イオン交換体が挙げられる。
 本発明の第一の形態の有機溶媒の精製方法、本発明の第二の形態の有機溶媒の精製方法及び本発明の第三の形態の有機溶媒の精製方法を行い得られる精製有機溶媒中の各金属含有量は、精製後の有機溶媒の用途により適宜選択され、好ましくはいずれも10質量ppt以下である。つまり、本発明の第一の形態の有機溶媒の精製方法、本発明の第二の形態の有機溶媒の精製方法及び本発明の第三の形態の有機溶媒の精製方法を行い得られる精製有機溶媒中の2価以上の各金属の含有量は、精製後の有機溶媒の用途により適宜選択され、好ましくはいずれも10質量ppt以下であり、且つ、1価の金属の含有量は、精製後の有機溶媒の用途により適宜選択され、好ましくはいずれも10質量ppt以下である。本発明の第一の形態の有機溶媒の精製方法、本発明の第二の形態の有機溶媒の精製方法及び本発明の第三の形態の有機溶媒の精製方法を行い得られる精製有機溶媒の用途としては、半導体製造工程における希釈用溶媒、溶解用溶媒、洗浄用溶媒、乾燥用溶媒などが挙げられる。更に、本発明の第一の形態の有機溶媒の精製方法、本発明の第二の形態の有機溶媒の精製方法及び本発明の第三の形態の有機溶媒の精製方法によれば、1質量ppt以下の不純物レベルの精製が可能となるので、本発明の第一の形態の有機溶媒の精製方法、本発明の第二の形態の有機溶媒の精製方法及び本発明の第三の形態の有機溶媒の精製方法を行い得られる精製有機溶媒は、微量金属分析のための検量線調製のために用いる標準液の希釈用溶媒(検量線用ブランク液)、サンプルの希釈用溶媒、器具や分析装置の洗浄用溶媒として、好適に用いられる。
 本発明の第一の形態の有機溶媒の精製装置は、被処理有機溶媒が通液されるH形カチオン交換体(1)の単床と、該H形カチオン交換体(1)の単床の処理液が通液されるアニオン交換体(2)及びH形強酸性カチオン交換体(3)の混床と、を有することを特徴とする有機溶媒の精製装置である。
 本発明の第一の形態の有機溶媒の精製装置のフローとしては、図1に示す形態例が挙げられる。
 本発明の第二の形態の有機溶媒の精製装置は、被処理有機溶媒が通液されるH形カチオン交換体(1)の単床と、該H形カチオン交換体(1)の単床の処理液が通液されるアニオン交換体(2)の単床と、該アニオン交換体(2)の単床の処理液が通液されるH形強酸性カチオン交換体(3)の単床と、を有することを特徴とする有機溶剤の精製装置である。
 本発明の第二の形態の有機溶媒の精製装置のフローとしては、図2に示す形態例が挙げられる。
 本発明の第三の形態の有機溶媒の精製装置は、被処理有機溶媒が通液されるH形カチオン交換体(1)の単床と、該H形カチオン交換体(1)の単床の処理液が通液され、前段のアニオン交換体(2)の層及び後段のH形強酸性カチオン交換体(3)の層からなる複床と、を有することを特徴とする有機溶剤の精製装置である。
 本発明の第三の形態の有機溶媒の精製装置のフローとしては、図3に示す形態例が挙げられる。
 本発明の第一~第三の形態の有機溶媒の精製装置としては、H形カチオン交換体(1)が、H形キレート交換体である有機溶媒の精製装置が挙げられる。また、本発明の第一~第三の形態の有機溶媒の精製装置としては、H形カチオン交換体(1)が、H形強酸性カチオン交換体である有機溶媒の精製装置が挙げられる。
 本発明の第四の形態の有機溶媒の精製装置は、被処理有機溶媒が通液されるH形キレート交換体とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床を有することを特徴とする有機溶媒の精製装置である。
 本発明の第四の形態の有機溶媒の精製装置のフローとしては、図6に示す形態例が挙げられる。
 本発明の第四の形態の有機溶媒の精製装置としては、H形カチオン交換体(1)が、H形キレート交換体である有機溶媒の精製装置が挙げられる。
 本発明の第一~第四の形態の有機溶媒の精製装置に係るH形カチオン交換体(1)、アニオン交換体(2)及びH形強酸性カチオン交換体(3)は、本発明の第一~第三の形態の有機溶媒の精製方法に係るH形カチオン交換体(1)、アニオン交換体(2)及びH形強酸性カチオン交換体(3)と同様である。
 本発明の第一~第四の形態の有機溶媒の精製装置において、H形カチオン交換体(1)が、H形キレート交換体である場合、H形キレート交換体(1a)の体積に対するアニオン交換体(2)の体積の割合((アニオン交換体(2)の体積/H形キレート交換体(1a)の体積)×100)は、好ましくは0.1~99.0体積%、より好ましくは0.1~70.0体積%、特に好ましくは0.1~50.0体積%である。
 本発明の第一~第四の形態の有機溶媒の精製装置において、H形カチオン交換体(1)が、H形キレート交換体である場合、H形キレート交換体(1a)の体積に対する強酸性カチオン交換体(3)の体積の割合((強酸性カチオン交換体(3)の体積/H形キレート交換体(1a)の体積)×100)は、好ましくは0.1~99.0体積%、より好ましくは0.1~70.0体積%、特に好ましくは0.1~50.0体積%である。
 以上、発明の形態を説明したが、本発明はこれらに限定されるものではなく、発明の趣旨を逸脱しない範囲内において、種々の変更、追加等が可能である。例えば、図1~図5では連結された2以上の充填塔を用いて第1処理工程及び第2処理工程を実施するものであるが、前段に第1処理工程を行う床を充填し且つその後段に第2処理工程を行う床を充填した複床を形成させ、1つの充填塔を用いて、第1処理工程及び第2処理工程を実施しても良い。例えば、1つの充填塔の前段にH形キレート交換体(1a)の床を充填し、その後段にアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床を充填する複床からなる形態例が挙げられる。この場合、前段のH形キレート交換体(1a)の床で第1処理工程が実施され、後段のアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床で第2処理工程が実施される。
 以下、本発明を実施例に基づき詳細に説明する。ただし、本発明は、以下の実施例に制限されるものではない。
(参考例1)
 H形キレート交換樹脂(DS-21)(50mL)を、内径16mm、高さ300mmのカラムに充填した。次いで、水分含有量20質量ppm以下のイソプロピルアルコール(IPA)をカラムの上部から下部へ向けて通液し、出口の水分量が30質量ppm以下に低下するまで、通液を続けて、樹脂内部の水分をIPAに置換した。
 次いで、カラムにIPA模擬液1をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液をサンプリングした。
 次いで、得られた処理液を、Agilent 8900 ICP-QQQ(Agilent社製)で金属含有量を測定した。その結果を表2に示す。また、IPA模擬液と処理液の水分含有量を測定し、いずれも、30質量ppm以下であることを確認した。
 また、同様にして、IPA模擬液2を用いて通液を行った。その結果を表2に示す。
・H形キレート交換樹脂:H形のアミノリン酸形キレート樹脂(オルガノ社製、オルライトDS-21(カチオン交換容量1.8eq/L-樹脂、調和平均径500μm))
<IPA模擬液>
 IPA XE(トクヤマ社製)に、ICP-AES/ICP-MS用標準液でパラフィンオイルベースの有機金属標準液Conostan(CONOSTAN社製)を添加して、1000質量pptのIPA模擬液1を調製した。また、同様にして、100質量pptのIPA模擬液2を調製した。IPA模擬液中の各金属含有量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<水分測定>
 Aquacounter AQ-2200(平沼産業株式会社製)を用いて、水分含有量を測定した。
Figure JPOXMLDOC01-appb-T000002
(実施例1) 
 H形キレート交換樹脂(DS-21)と、OH形強塩基性アニオン交換樹脂(DS-2)と、H形強酸性カチオン交換樹脂(DS-1)を、体積割合で3:1:1で混合した混合物50mLを、内径16mm、高さ300mmのカラムに充填した(H形C/OH形A/H型K混床1)。
 次いで、H形C/OH形A/H型K混床1にIPA模擬液2をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液をサンプリングした。
 次いで、得られた処理液の金属含有量を測定した。その結果を表3に示す。
・OH形強塩基性アニオン交換樹脂(DS-2):オルガノ社製(アニオン交換容量1.0eq/L-樹脂)
・H形強酸性カチオン交換樹脂(DS-1):オルガノ社製、(カチオン交換容量2.0eq/L-樹脂)
(実施例2) 
 H形キレート交換樹脂(DS-21)30mLを、内径16mm、高さ300mmのカラムに充填した(H形C単床1)。また、内径16mm、高さ300mmのカラムに、前段にOH形強塩基性アニオン交換樹脂(DS-2)を、後段にH形強酸性カチオン交換樹脂(DS-1)を、層厚比1:1で、合計で20mL充填した(OH形A/H型K複床1)。次いで、前段のH形C単床1と後段のOH形A/H型K複床1を連結した。
 次いで、前段のH形C単床1及び後段のOH形A/H型K複床1にIPA模擬液2をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液をサンプリングした。
 次いで、得られた処理液の金属含有量を測定した。その結果を表3に示す。
(比較例1)
 H形強酸性カチオン交換樹脂(DS-1)50mLを、内径16mm、高さ300mmのカラムに充填した(H形K単床1)。
 次いで、H形K単床1にIPA模擬液1をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液をサンプリングした。
 次いで、得られた処理液の金属含有量を測定した。その結果を表3に示す。
(比較例2) 
 OH形強塩基性アニオン交換樹脂(DS-2)と、H形強酸性カチオン交換樹脂(DS-1)を、体積割合で1:1で混合した混合物50mLを、内径16mm、高さ300mmのカラムに充填した(OH形A/H型K混床1)。
 次いで、OH形A/H型K混床1にIPA模擬液1をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液をサンプリングした。
 次いで、得られた処理液の金属含有量を測定した。その結果を表3に示す。
(比較例3) 
 H形キレート交換樹脂(DS-21)30mLを、内径16mm、高さ300mmのカラムに充填した(H形C単床1)。また、OH形強塩基性アニオン交換樹脂(DS-2)20mLを、内径16mm、高さ300mmのカラムに充填した(OH形A単床1)。次いで、前段のH形C単床1と後段のOH形A単床1を連結した。
 次いで、前段のH形C単床1及び後段のOH形A単床1にIPA模擬液2をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液をサンプリングした。
 次いで、得られた処理液の金属含有量を測定した。その結果を表3に示す。
(比較例4) 
 OH形強塩基性アニオン交換樹脂(DS-2)50mLを、内径16mm、高さ300mmのカラムに充填した(OH形A単床1)。
 次いで、OH形A単床1にIPA模擬液1をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液をサンプリングした。
 次いで、得られた処理液の金属含有量を測定した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(実施例3~6)
 SV5h-1で通液することに代えて、表4に示すSVで通液すること以外は、実施例1と同様に行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(比較例5)
 H形強酸性カチオン交換樹脂(DS-1)36mLを、内径16mm、高さ300mmのカラムに充填した(H形K単床1)。次いでIPA模擬液3(表5に示す。)をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液をサンプリングした。
次いで、得られた処理液の金属含有量を測定した。その結果を表6に示す。
(実施例7)
内径16mm、高さ300mmのカラムに、前段にH形強酸性カチオン交換樹脂(DS-1)18mlを、後段にH形強酸性カチオン交換樹脂(DS-1)9mLとOH形強塩基性アニオン交換樹脂の混合樹脂(DS-2)9mlの混床18mlを、層厚比1:1で、合計で36mL充填した(H型K/H形、OH形混床1)。
 次いで、H型K/H形、OH形混床1にIPA模擬液4(表5に示す。)をSV5h-1で通液し、20BV(樹脂体積の20倍量)通液したところで、処理液をサンプリングした。
 次いで、得られた処理液の金属含有量を測定した。その結果を表6に示す。
・H形強酸性カチオン交換樹脂(DS-1):オルガノ社製(カチオン交換容量≧2.1eq/L-樹脂)
・OH形強塩基性アニオン交換樹脂(DS-2):オルガノ社製(アニオン交換容量≧1.0eq/L-樹脂)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
1     H形カチオン交換体充填塔
2、24  混床充填塔
3、8a、8b アニオン交換体充填塔
4、9a、9b 強酸性カチオン交換体充填塔
5、11a、11b アニオン交換体の層
6、12a、12b H形強酸性カチオン交換体の層
7、14  複床充填塔
10a、10b、13a、13b 繰り返し単位
20    被処理有機溶媒
21    第一処理工程
22    第二処理工程
23    処理液
25    処理工程(3)

Claims (13)

  1.  被処理有機溶媒を、H形カチオン交換体(1)に接触させる第一処理工程と、
     該第一処理工程の処理液を、アニオン交換体(2)及びH形強酸性カチオン交換体(3)に接触させる第二処理工程と、
    を有することを特徴とする有機溶媒の精製方法。
  2.  前記第一処理工程の処理液を、前記アニオン交換体(2)と前記H形強酸性カチオン交換体(3)の混床に通液することより、前記第二処理工程を行うことを特徴とする請求項1記載の有機溶剤の精製方法。
  3.  前記第一処理工程の処理液を、先に、前記アニオン交換体(2)に接触させ、次いで、前記H形強酸性カチオン交換体(3)に接触させることにより、前記第二処理工程を行うことを特徴とする請求項1記載の有機溶剤の精製方法。
  4.  前記H形カチオン交換体(1)が、H形キレート交換体であることを特徴とする請求項1~3いずれか1項記載の有機溶媒の精製方法。
  5.  前記H形カチオン交換体(1)が、H形強酸性カチオン交換体であることを特徴とする請求項1~3いずれか1項記載の有機溶媒の精製方法。
  6.  被処理有機溶媒を、H形キレート交換体とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床に接触させる処理工程を有することを特徴とする有機溶媒の精製方法。
  7.  前記H形キレート交換体の官能基が、イミノジ酢酸基、アミノメチルリン酸基又はイミノプロピオン酸基であることを特徴とする請求項4又は6記載の有機溶媒の精製方法。
  8.  前記H形キレート交換体の体積に対する前記アニオン交換体の体積の割合が、0.1~99.0体積%であることを特徴とする請求項4、6及び7のいずれか1項記載の有機溶媒の精製方法。
  9.  前記H形キレート交換体の体積に対する前記カチオン交換体(2)の体積の割合が、0.1~99.0体積%であることを特徴とする請求項4及び6~8のいずれか1項記載の有機溶媒の精製方法。
  10.  前記有機溶媒が、極性有機溶媒であること特徴とする請求項1~9いずれか1項記載の有機溶媒の精製方法。
  11.  被処理有機溶媒が通液されるH形カチオン交換体(1)の単床と、該H形カチオン交換体(1)の単床の処理液が通液されるアニオン交換体(2)及びH形強酸性カチオン交換体(3)の混床と、を有することを特徴とする有機溶媒の精製装置。
  12.  被処理有機溶媒が通液されるH形カチオン交換体(1)の単床と、該H形カチオン交換体(1)の単床の処理液が通液されるアニオン交換体(2)の単床と、該アニオン交換体(2)の単床の処理液が通液されるH形強酸性カチオン交換体(3)の単床と、を有することを特徴とする有機溶剤の精製装置。
  13.  被処理有機溶媒が通液されるH形キレート交換体とアニオン交換体(2)とH形強酸性カチオン交換体(3)の混床を有することを特徴とする有機溶媒の精製装置。
PCT/JP2020/015101 2019-04-26 2020-04-01 有機溶媒の精製方法及び有機溶媒の精製装置 WO2020217911A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/606,213 US20220234037A1 (en) 2019-04-26 2020-04-01 Method for purifying organic solvent and apparatus for purifying organic solvent
KR1020217031031A KR20210130218A (ko) 2019-04-26 2020-04-01 유기용매의 정제방법 및 유기용매의 정제장치
CN202080017330.5A CN113490658B (zh) 2019-04-26 2020-04-01 有机溶剂的精制方法
JP2021515931A JPWO2020217911A1 (ja) 2019-04-26 2020-04-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-085989 2019-04-26
JP2019085989 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020217911A1 true WO2020217911A1 (ja) 2020-10-29

Family

ID=72942356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015101 WO2020217911A1 (ja) 2019-04-26 2020-04-01 有機溶媒の精製方法及び有機溶媒の精製装置

Country Status (6)

Country Link
US (1) US20220234037A1 (ja)
JP (1) JPWO2020217911A1 (ja)
KR (1) KR20210130218A (ja)
CN (1) CN113490658B (ja)
TW (1) TW202103792A (ja)
WO (1) WO2020217911A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842958A (zh) * 2021-10-15 2021-12-28 太仓沪试试剂有限公司 一种高纯度有机溶剂的制备方法
WO2023021895A1 (ja) * 2021-08-17 2023-02-23 日清紡ホールディングス株式会社 イオン液体およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208166A (ja) * 1994-01-11 1995-08-08 Tokyo Kaken:Kk エンジン冷却排液の回生方法
JPH1025256A (ja) * 1996-07-09 1998-01-27 Mitsubishi Chem Corp 極性有機溶剤の精製方法および不凍液含有冷却液の再生装置
JP2005232093A (ja) * 2004-02-20 2005-09-02 Ever Clean Kk 高純度エチレングリコールの回収方法
JP2013023442A (ja) * 2011-07-15 2013-02-04 Japan Organo Co Ltd アルコールの精製方法及び装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733637B1 (en) 2000-06-02 2004-05-11 Exxonmobil Chemical Patents Inc. Process for producing ultra-high purity isopropanol
CN105849038B (zh) * 2013-12-26 2018-11-16 奥加诺株式会社 阴离子交换体和阳离子交换体混合物及混合床的生产方法和过氧化氢水溶液的精制方法
JP2017119233A (ja) * 2015-12-28 2017-07-06 オルガノ株式会社 有機溶剤の精製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208166A (ja) * 1994-01-11 1995-08-08 Tokyo Kaken:Kk エンジン冷却排液の回生方法
JPH1025256A (ja) * 1996-07-09 1998-01-27 Mitsubishi Chem Corp 極性有機溶剤の精製方法および不凍液含有冷却液の再生装置
JP2005232093A (ja) * 2004-02-20 2005-09-02 Ever Clean Kk 高純度エチレングリコールの回収方法
JP2013023442A (ja) * 2011-07-15 2013-02-04 Japan Organo Co Ltd アルコールの精製方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021895A1 (ja) * 2021-08-17 2023-02-23 日清紡ホールディングス株式会社 イオン液体およびその製造方法
CN113842958A (zh) * 2021-10-15 2021-12-28 太仓沪试试剂有限公司 一种高纯度有机溶剂的制备方法

Also Published As

Publication number Publication date
JPWO2020217911A1 (ja) 2020-10-29
CN113490658B (zh) 2023-12-05
US20220234037A1 (en) 2022-07-28
TW202103792A (zh) 2021-02-01
CN113490658A (zh) 2021-10-08
KR20210130218A (ko) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2020217911A1 (ja) 有機溶媒の精製方法及び有機溶媒の精製装置
WO2022091605A1 (ja) 有機溶媒の精製方法
US8861670B2 (en) Method and apparatus for condensate demineralization
JP7213023B2 (ja) 液体中の金属除去方法及びアニオン交換樹脂混合h型キレート樹脂
JP2021001124A (ja) 非水溶媒の精製方法
JP2001215294A (ja) 復水脱塩装置
JP4467488B2 (ja) 復水脱塩方法及び復水脱塩装置
JP4943377B2 (ja) 復水脱塩方法及び復水脱塩装置
CN102019212B (zh) 改性双树脂离子交换剂、制备方法及其用途
JP2013023442A (ja) アルコールの精製方法及び装置
TWI732106B (zh) 含四氟硼酸之廢水的處理方法
JP7379170B2 (ja) 非水溶媒の精製方法及び非水溶媒の精製用のイオン交換樹脂の前処理方法
JPH054051A (ja) 超純水製造用イオン交換樹脂、その製造法、及びこれを用いる超純水の製造法
TW202311217A (zh) 用於純化二醇醚之方法
CN110804111A (zh) 一种除氟高分子材料、其合成方法及其在市政水处理中的应用
CN105130761B (zh) 一种减轻水洗及回收系统腐蚀的mtbe生产装置及方法
JP4383091B2 (ja) 復水脱塩方法及び装置
TW202212305A (zh) 極性有機溶劑之精製方法、極性有機溶劑之精製裝置、分析方法及精製極性有機溶劑之製造方法
CN114072232A (zh) 纯化有机溶剂的方法
TW202306646A (zh) 非水液體的精製方法及精製裝置,以及離子交換樹脂的製造方法及前處理裝置
JP2023009490A (ja) 陽イオン交換樹脂の調整方法
WO2023210370A1 (ja) 有機溶媒の精製方法及び精製装置
JP2003119008A (ja) 精製過酸化水素水の製造方法
TW202311226A (zh) 純化有機胺的方法
JP2023137717A (ja) 過酸化水素水精製用混合床イオン交換体の調製方法および過酸化水素水の精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515931

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217031031

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795850

Country of ref document: EP

Kind code of ref document: A1