WO2023021895A1 - イオン液体およびその製造方法 - Google Patents

イオン液体およびその製造方法 Download PDF

Info

Publication number
WO2023021895A1
WO2023021895A1 PCT/JP2022/027664 JP2022027664W WO2023021895A1 WO 2023021895 A1 WO2023021895 A1 WO 2023021895A1 JP 2022027664 W JP2022027664 W JP 2022027664W WO 2023021895 A1 WO2023021895 A1 WO 2023021895A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
ions
ppb
less
elements
Prior art date
Application number
PCT/JP2022/027664
Other languages
English (en)
French (fr)
Inventor
現 増田
辰弥 落久保
Original Assignee
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社 filed Critical 日清紡ホールディングス株式会社
Priority to KR1020247005704A priority Critical patent/KR20240049805A/ko
Priority to JP2023542268A priority patent/JPWO2023021895A1/ja
Priority to CN202280053816.3A priority patent/CN117769537A/zh
Publication of WO2023021895A1 publication Critical patent/WO2023021895A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/08Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C305/00Esters of sulfuric acids
    • C07C305/02Esters of sulfuric acids having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C305/04Esters of sulfuric acids having oxygen atoms of sulfate groups bound to acyclic carbon atoms of a carbon skeleton being acyclic and saturated
    • C07C305/06Hydrogenosulfates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/06Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing halogen atoms, or nitro or nitroso groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • C07C309/30Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • C07C53/10Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/11Esters of phosphoric acids with hydroxyalkyl compounds without further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds

Definitions

  • the present invention relates to an ionic liquid and a method for producing the same, and more specifically, to a high-purity ionic liquid with a reduced metal ion content and a method for producing the same.
  • Ionic liquids which are salts composed only of ions, have excellent properties such as non-volatility, flame retardancy, and high ionic conductivity. there is Due to these properties, ionic liquids are expected to be applied as, for example, environmentally friendly solvents in green chemistry, electrolytes for electric storage devices, and the like.
  • Patent Documents 1 and 2 disclose high-purity bis(fluorosulfonyl)imide salts with a fluorine ion content reduced to 100 ppm or less, but up to now, metal ion contamination is disfavored.
  • a high-purity ionic liquid with a metal ion content so low that it can be used in semiconductor manufacturing processes and a method for producing the same have not been known.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an ionic liquid with a low metal ion content that can be used in semiconductor manufacturing processes, a method for producing the same, and a novel ionic liquid. .
  • the present invention 1. composed of cations and anions, An ionic liquid containing 100 ppb or less of metal ions of 16 elements indicated by the following elemental symbols, Li, Na, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ba and W 2. 1 ionic liquid containing metal ions of the 16 elements at 10 ppb or less; 3. 1 ionic liquid containing 100 ppb or less of metal ions of 26 elements indicated by the following elemental symbols; Li, Na, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ba, W, V, Sr, Zr, Mo, Ag, Cd, Ta, Tl, Pb and Bi 4.
  • ionic liquids each containing 10 ppb or less of metal ions of the 26 elements; 5.
  • the anion is a trialkylsilyl group-containing alkylsulfonate ion, tetrafluoroborate ion, alkyl sulfate ion, hexafluorophosphate ion, bis(trifluoromethanesulfonyl)amide ion, bis(fluorosulfonyl)amide ion, alkylsulfonic acid any one of 1 to 5 ionic liquids, which is a monovalent anion selected from ions, arylsulfonate ions, trifluoromethanesulfonate ions, acetate ions and alkylphosphate ions; 7. Any ionic liquid of 1 to 6 used in the semiconductor manufacturing process, 8.
  • a chelate resin material Li, Na, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ba and W 9.
  • 16 element metals represented by the following elemental symbols that alkylate tertiary alkylamines or N-alkylimidazoles with dialkyl sulfates, alkylsulfonates, arylsulfonates, trifluoromethanesulfonate alkyl esters, or trialkyl phosphates
  • the tertiary alkylamine or N-alkylimidazole, and the dialkyl sulfate, alkylsulfonate, arylsulfonate, trifluoromethanesulfonate alkyl ester, trifluoromethanesulfonate alkyl ester or trialkyl phosphate are represented by the following elemental symbols:
  • a method for producing an ionic liquid by neutralization of an acid and a base comprising: As the acid and salt, use those containing 100 ppb or less of metal ions of 16 elements shown by the following elemental symbols, A method for producing an ionic liquid containing 100 ppb or less of metal ions of the 16 elements, Li, Na, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ba and W 12.
  • the anion of the resulting quaternary cation salt is converted to hydroxide ions with an anion exchange resin
  • the salt converted to hydroxide ion and the proton adduct of the anion that gives the desired ionic liquid are mixed in equivalent amounts to neutralize, and each contains 100 ppb or less of the metal ions of the 16 elements shown by the following elemental symbols.
  • an ionic liquid represented by the following formula (B) (In the formula, R 9 represents an alkyl group having 1 to 3 carbon atoms, R 2 represents a methyl group or an ethyl group, R 10 represents an alkyl group having 1 to 4 carbon atoms, m is 1 or an integer of 2.) 19. 18 ionic liquids represented by the following formula (B1), (In the formula, m represents an integer of 1 or 2.) 20. an ionic liquid represented by the following formula (C), (In the formula, R 9 represents an alkyl group having 1 to 3 carbon atoms, R 2 represents a methyl group or an ethyl group, and m represents an integer of 1 or 2.) 21. Provide 20 ionic liquids wherein R 2 is a methyl group and R 9 is a methyl group or an ethyl group.
  • the ionic liquid of the present invention has a low content of predetermined metal ions and is highly pure, it can also be used in semiconductor manufacturing processes.
  • FIG. 2 shows a 1 H-NMR spectrum of the ionic liquid [3] obtained in Example 2-1.
  • FIG. 2 shows the 1 H-NMR spectrum of the ionic liquid [4] obtained in Example 2-2.
  • FIG. 10 shows a 1 H-NMR spectrum of the ionic liquid [11] obtained in Example 2-9.
  • FIG. 2 is a 1 H-NMR spectrum of the ionic liquid [12] obtained in Example 2-10.
  • the ionic liquid according to the present invention is composed of cations and anions, and is composed of 16 metal ions represented by the following elemental symbols: Li, Na, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ba, W
  • metal ions of 26 elements represented by the following element symbols Li, Na, Ca, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ba, W, V, Sr, Zr, Mo, Ag, Cd, Ta, Tl, Pb and Bi of 100 ppb or less, preferably 10 ppb or less.
  • the metal content is an analysis value by ICP-MS, as described in Examples below.
  • the ionic liquid may be an ionic liquid composed of a conventionally known cation and anion, but in particular, the cation is selected from quaternary ammonium ions, pyridinium ions, cyclic amidinium ions and quaternary phosphonium ions. Ionic liquids that are monovalent cations are preferred.
  • Examples of the quaternary ammonium ion include tetraalkylammonium ions, tetraalkylammonium ions having an alkoxy-substituted alkyl group, and the like.
  • Ammonium ions having an alkyl group and an alkoxy-substituted alkyl group on the nitrogen atom are preferred, and are represented by the formula ( Quaternary ammonium ions represented by 1) and pyrrolidinium ions represented by formula (2) are more preferable.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 3 and R 4 independently represent an alkyl group having 1 to 3 carbon atoms
  • R 2 represents a methyl group. or represents an ethyl group
  • m represents an integer of 1 or 2
  • alkyl groups having 1 to 3 carbon atoms include methyl, ethyl, n-propyl groups and the like, and ethyl and methyl groups are particularly preferred, where R 1 is methyl group, R 3 and R 4 are ethyl groups, Alternatively, R 1 and R 3 are more preferably methyl groups, and R 4 is more preferably ethyl groups.
  • Cyclic amidinium ions include imidazolium ions, diazabicycloundecene ions, diazabicyclononene ions, and the like.
  • Examples of imidazolium ions include 1-alkyl-3-alkylimidazolium ions, and imidazolium ions represented by formula (3) are preferred.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 5 represents an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms may be linear, branched or cyclic, and examples thereof include methyl, ethyl, n-propyl, i-propyl, c-propyl, n-butyl, i-butyl, s- Butyl, t-butyl, c-butyl, n-pentyl, c-pentyl, n-hexyl, c-hexyl, n-heptyl, n-octyl and the like.
  • R 6 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom, methyl, ethyl, n-propyl or n-butyl group, and R 5 is a is preferred, and methyl and ethyl groups are more preferred.
  • diazabicycloundecene ions include those represented by formula (4), and examples of diazabicyclononene ions include those represented by formula (5) below.
  • Pyridinium ions include those represented by formula (6), and specific examples thereof include N-propylpyridinium ion, N-butylpyridinium ion, 1-butyl-4-methylpyridinium ion, 1-butyl-2 , 4-dimethylpyridinium ion and the like.
  • the quaternary phosphonium ions include tetraalkylphosphonium ions, trialkylalkoxyphosphonium ions, etc., and the phosphonium ions represented by formula (7) are preferred.
  • R 7 represents an alkyl group having 1 to 30 carbon atoms
  • R 8 represents an alkyl group or alkoxy group having 1 to 30 carbon atoms.
  • the alkyl group having 1 to 30 carbon atoms may be linear, branched or cyclic, and examples thereof include methyl, ethyl, n-propyl, i-propyl, c-propyl, n-butyl, i-butyl, s- butyl, t-butyl, c-butyl, n-pentyl, c-pentyl, n-hexyl, c-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl, Examples include n-dodecyl, n-tridecyl, n-tetradecyl, Examples include
  • the alkyl group therein may be linear, branched or cyclic. butoxy, i-butoxy, s-butoxy, t-butoxy, c-butoxy, n-pentyloxy, c-pentyloxy, n-hexyloxy, c-hexyloxy, n-heptyloxy, n-octyloxy, 2- ethylhexyloxy, n-nonyloxy, n-decyloxy, n-undecyloxy, n-dodecyloxy, n-tridecyloxy, n-tetradecyloxy, n-pentadecyloxy, n-hexadecyloxy, n-heptadecyl oxy, n-octadecyloxy, n-nonadecyloxy, n-ei
  • R 7 is preferably a straight-chain alkyl group having 2 to 8 carbon atoms, more preferably a straight-chain alkyl group having 2 to 6 carbon atoms.
  • An n-butyl group and an n-hexyl group are more preferred, and among these, an n-butyl group and an n-hexyl group are particularly preferred from the viewpoint of ease of formation of an ionic liquid.
  • R 8 is preferably a linear alkyl group having 10 to 20 carbon atoms, more preferably a linear alkyl group having 12 to 20 carbon atoms.
  • the anion can also be selected from conventionally known anions capable of forming an ionic liquid with the various cations described above . 3 ⁇ , BF 3 (CF 2 CF 3 ) ⁇ , hexafluorophosphate ion (PF 6 ⁇ ), bis(trifluoromethanesulfonyl)amide ion (TFSA), bis(fluorosulfonyl)amide ion (FSA), alkylsulfonic acid ion, arylsulfonate ion, trifluoromethanesulfonate ion, trialkylsilyl group-containing alkylsulfonate ion, alkyl sulfate anion, alkyl phosphate anion, alkyl phosphite anion, amino acid anion, carboxylate anion, Cl ⁇ . _ _ _ Sulfonate, trifluoromethanesulfonate and carboxylate anions
  • alkylsulfonate ions include methanesulfonate anions and ethanesulfonate anions
  • examples of arylsulfonate ions include benzenesulfonate and p-toluenesulfonate anions.
  • alkyl sulfate ions include those represented by the following formula (8)
  • examples of alkyl phosphate ions include those represented by the following formula (9)
  • trialkylsilyl group-containing alkylsulfonate ions examples thereof include those represented by the following formula (10).
  • Carboxylate anions include formate anion, acetate anion, and the like.
  • R 10 independently represents an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group include those having 1 to 4 carbon atoms among the groups exemplified for R 6 above, but a methyl group and an ethyl group are preferred.
  • R 11 independently represents an alkyl group having 1 to 8 carbon atoms, n represents an integer of 2 to 8, preferably an integer of 2 to 6. Examples of this alkyl group include the same groups as those exemplified for R 6 above, but an alkyl group having 1 to 3 carbon atoms is preferred, and a methyl group is more preferred.
  • Each of the above ionic liquids can be produced by a conventionally known method, and some are commercially available.
  • a method for reducing the above-described various metal elements to a predetermined amount or less and purifying the ionic liquid for example, a method of contacting an ionic liquid synthesized by a conventionally known method or obtained as a commercially available product with a chelate resin material. is mentioned.
  • the chelating resin filter can be either a batch process in which the chelating resin is added to the ionic liquid, a column liquid-flow process in which the ionic liquid is passed through a column filled with a chelating resin, or a chelating resin filter.
  • a filter treatment that allows the ionic liquid to pass may be used, or a combination of these techniques may be used.
  • the number of times of contact is not particularly limited as long as the desired metal content is obtained, and it may be once or more than two times.
  • chelate resins include iminodiacetic acid-type chelate resins, aminophosphoric acid-type chelate resins, polyamine-type chelate resins, and the like, and these may be used alone or in combination of two or more.
  • These chelate resins are commercially available, for example, chelate resins ORLITE DS-22 and ORLITE DS-21 manufactured by Organo Corporation, iminodiacetic acid type chelate resin AmberSep IRC748, aminophosphoric acid type chelate resin Amber Sepp IRC747UPS; Mitsubishi Chemical Corporation iminodiacetic acid type chelate resin Diaion CR11, polyamine type chelate resin Diaion CR20 and the like.
  • a solution in which the ionic liquid is dissolved in a solvent may be used in order to increase the treatment efficiency including the improvement of handling performance due to the viscosity reduction.
  • solvents include water; alcohols such as methanol and ethanol; dibutyl ether, 1,2-dimethoxyethane, 1,2-ethoxymethoxyethane, methyldiglyme, methyltriglyme, methyltetraglyme, ethylglyme, Chain ethers such as ethyl diglyme, butyl diglyme, ethyl cellosolve, ethyl carbitol, butyl cellosolve, butyl carbitol; tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4,4-dimethyl-1 ,3-dioxane and other heterocyclic ethers; ⁇ -butyrolactone
  • the ionic liquid having the alkyl sulfate ion, alkyl sulfonate ion, arylsulfonate ion, trifluoromethanesulfonate anion, or alkyl phosphate ion described above it is purified in advance by an existing method, and the above-mentioned 16 purifying a tertiary alkylamine or N-alkylimidazole highly purified by removing the content of metal ions of elements, preferably 26 elements, to 100 ppb or less, preferably 10 ppb or less, similarly in advance by existing methods, Dialkyl sulfate, alkyl sulfonate, aryl sulfonate, and trifluoro, which are alkylating agents highly purified by removing the content of metal ions of the above-mentioned 16 elements, preferably 26 elements, to 100 ppb or less, preferably 10 ppb or less
  • the known conditions described in "Ionic Liquids - Mysterious Salts Overturning Common Sense -, pp. 8-9, 2005, Corona Publishing" can be employed. and an alkylating agent are mixed at a molar ratio of 1:1 under ice-cooling, heated to room temperature, stirred for about 2 hours, and then heated under reduced pressure for about 1 hour for purification.
  • Suitable examples of ionic liquids synthesized by the acid ester method include those represented by the following formulas, but are not limited to these.
  • R 3 , R 4 and R 9 each independently represent an alkyl group having 1 to 3 carbon atoms
  • R 10 represents an alkyl group having 1 to 4 carbon atoms
  • R 2 represents a methyl group. or an ethyl group
  • m represents an integer of 1 or 2.
  • the alkyl group having 1 to 3 carbon atoms include the same groups as those exemplified for R 1 above.
  • Examples of the group include those having 1 to 4 carbon atoms among the groups exemplified for R 6 above.
  • n represents an integer of 1 or 2, preferably 2.
  • n represents an integer of 1 or 2, preferably 2.
  • a high-purity ionic liquid can also be obtained by a method of producing an ionic liquid by neutralization of an acid and a base, that is, an ionic liquid production method using a so-called neutralization method.
  • an ionic liquid production method using a so-called neutralization method When producing a normal quaternary salt-type ionic liquid by a neutralization method, a halide salt or the like of a quaternary cation that gives the desired ionic liquid is dissolved in water or an organic solvent capable of dissolving the salt, according to a conventional method.
  • anions such as halide ions are converted to hydroxide ions using an anion exchange resin, and the resulting salt converted to hydroxide ions and the proton adduct (acid) of the desired anion as an anion source are mixed in an equivalent amount for neutralization, and water as a by-product and water as a solvent, or when an organic solvent is used as a solvent, are removed by evacuation or the like to remove the organic solvent, whereby an ionic liquid can be obtained.
  • the metal content is reduced by treating the quaternary cation halide salt or the like with the above-described chelate resin or the like in advance, and the content of metal ions of the above-described 16 elements, preferably 26 elements. may be removed to 100 ppb or less, preferably 10 ppb or less, and ion exchange may be performed using sufficiently high purity water or other solvent (eg, semiconductor grade solvent, etc.).
  • the anion exchange resin is not particularly limited, and can be appropriately selected and used from conventionally known ones.
  • neutralized salt-type ionic liquids bases such as amines and acids such as organic acids, which are raw materials, are highly purified by a known purification method such as distillation and, if necessary, by treatment with the above-described chelate resin material, The content of metal ions of the above-mentioned 16 elements, preferably 26 elements, is removed to 100 ppb or less, preferably 10 ppb or less.
  • a pure ionic liquid can be obtained.
  • the neutralized salt-type ionic liquid is an ionic liquid composed of a salt obtained by a neutralization reaction between an acid and a base (ionic liquids - the forefront of development and the future -, pp. 19-21, CMC Co., Ltd. Publishing (2003)), and refers to those having a cation formed by adding a proton.
  • the high-purity ionic liquid obtained by the acid ester method or the neutralization method may be brought into contact with the above-described chelate resin for further purification.
  • the parts of the reaction vessel, column, piping, etc. used that come into contact with the ionic liquid or the ionic liquid solution are glass, plastic, Teflon (registered trademark)-coated members, and fluororesin-coated members. and other non-metallic members.
  • plastics, Teflon (registered trademark)-coated members, and fluororesin-coated members are preferred.
  • the ionic liquid of the present invention has a predetermined metal ion content reduced to 100 ppb or less by chelate resin treatment, synthesis by the acid ester method, and synthesis by the neutralization method. It can be suitably used in the semiconductor manufacturing process that dislikes .
  • the analyzers and conditions used are as follows. (1) 1 H-NMR spectrum JNM-ECZ400S manufactured by JEOL Ltd. (2) Metal ion measurement method [pretreatment method] After the sample was wet-decomposed, the residue was dissolved in acid, and the solution was used as the measurement test solution. The sample preparation was carried out in a clean draft (class 10) installed in a clean room (class 100). ⁇ Measuring method ⁇ Measured by inductively coupled plasma mass spectrometry (ICP-MS). [Analysis value calculation method] The impurity concentration (ng/g) was calculated by dividing the elemental mass (ng) obtained by the measurement by the analyzed sample amount (g).
  • the obtained eluate was received in a sterilized polypropylene centrifugation tube mini (manufactured by IWAKI) container, vacuumed and concentrated.
  • the contents of all 26 elements in this concentrate were below the lower limit of determination (100 ppb or 10 ppb or less).
  • the ionic liquid represented by the following formula [1] contains phosphorus in its structure, and this interference cannot be sufficiently removed.
  • the lower limit of quantitative determination is 100 ppb.
  • Example 1-2 When the ionic liquid represented by the following formula [2] was subjected to ICP-MS measurement, as shown in Table 1, Na, Al, K and Zr were all contained in amounts exceeding 10 ppb.
  • 5.0 g of this compound 2 was dissolved in 5.0 g of acetonitrile (LC/MS grade manufactured by Honeywell). This solution was passed three times through a plastic column (eluent: acetonitrile) packed with 5.0 g (7.5 ml) of chelating resin ORLITE DS-22 (manufactured by Organo Corporation). The obtained eluate was received in a sterilized polypropylene centrifuge tube mini (manufactured by IWAKI) container, vacuumed and concentrated. As a result of ICP-MS measurement, this concentrate had a content of all 26 elements of 10 ppb or less.
  • FIG. 2 shows the 1 H-NMR spectrum (solvent: deuterated dimethylsulfoxide) of the ionic liquid [4].
  • Example 26 by ICP-MS measurement in the same manner as in Example 2-2 except that the raw materials were changed to N,N-diethyl-N-2-methoxyethylamine and trimethyl phosphate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • An ionic liquid [5] in which the content of each element was below the lower limit of determination (100 ppb or 10 ppb or below) was obtained.
  • the ionic liquid [5] contains phosphorus in its structure, and this interference cannot be removed sufficiently, so the lower limit of determination is 100 ppb It has become.
  • ICP-MS measurement was performed in the same manner as in Example 2-3, except that the raw material was changed to 1-butyl-imidazole (manufactured by Kanto Chemical Co., Ltd.). 10 ppb or less), an ionic liquid [6] was obtained. In addition, the ionic liquid [6] contains phosphorus in its structure, and this interference cannot be removed sufficiently, so the lower limit of determination is 100 ppb It has become.
  • Example 2-1 In the same manner as in Example 2-1, except that the raw material was changed from dimethyl sulfate to methyl trifluoromethanesulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.), the content of 26 elements was 10 ppb or less by ICP-MS measurement. An ionic liquid [7] was obtained.
  • An ionic liquid [8] having a content of 26 elements of 10 ppb or less by ICP-MS measurement was obtained in the same manner as in Example 2-2, except that the raw material was changed from dimethyl sulfate to methyl trifluoromethanesulfonate. rice field.
  • Example 2-1 except that the raw materials were changed from N,N-diethyl-N-2-methoxyethylamine to 1-ethyl-imidazole (manufactured by Kanto Kagaku Co., Ltd.) and from dimethyl sulfate to methyl trifluoromethanesulfonate.
  • An ionic liquid [9] was obtained in which the contents of all 26 elements were 10 ppb or less by ICP-MS measurement in the same manner as described above.
  • FIG. 3 shows the 1 H-NMR spectrum (solvent: deuterated dimethylsulfoxide) of ionic liquid [11].
  • FIG. 4 shows the 1 H-NMR spectrum (solvent: deuterated dimethylsulfoxide) of ionic liquid [12].
  • 1,8-diazabicyclo[5.4.0]-7-undecene manufactured by Tokyo Chemical Industry Co., Ltd.
  • acetic acid Karlo Kagaku Co., Ltd.
  • Teflon registered trademark
  • the raw material was removed to obtain an ionic liquid [12].
  • the ionic liquid [12] was a liquid at 80°C, but became a solid after standing to cool to room temperature. In this solid ionic liquid [12], the contents of all 26 elements were 10 ppb or less by ICP-MS measurement.
  • Example 3-2 In the same manner as in Example 3-2, except that the starting material was changed from 1,8-diazabicyclo[5.4.0]-7-undecene to 1,5-diazabicyclo[4.3.0]-5-nonene.
  • An ionic liquid [13] was obtained in which the contents of all 26 elements were 10 ppb or less by ICP-MS measurement. This ionic liquid [13] was also liquid at 80° C. but solid at room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

半導体製造工程に使用可能な金属イオンの含有量が低いイオン液体を提供すること。 カチオンとアニオンとから構成され、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むイオン液体。 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW

Description

イオン液体およびその製造方法
 本発明は、イオン液体およびその製造方法に関し、さらに詳述すると、金属イオンの含有量が低減された高純度イオン液体およびその製造方法に関する。
 イオン液体はイオンのみから構成される塩であり、不揮発性、難燃性、高イオン導電性等の優れた特性を有しており、また、物性や機能を様々にデザインできることから注目を集めている。これらの性質から、イオン液体は、例えば、環境にやさしいグリーンケミストリーにおける溶媒として、また、蓄電デバイスの電解質等としての応用が期待されている。
 一方、イオン液体は、その物性から蒸留や再結晶による精製が不可能であるため、高純度化が困難な物質であることが知られている。
 例えば、特許文献1および2には、フッ素イオンの含有量が100ppm以下に低減された高純度のビス(フルオロスルホニル)イミド塩が開示されているが、現在までのところ、金属イオンの混入を嫌う半導体製造工程に使用できるほど金属イオンの含有量が低い高純度イオン液体およびその製造方法は知られていない。
特開2013-199480号公報 特開2014-40369号公報
 本発明は、このような事情に鑑みてなされたものであり、半導体製造工程に使用可能な金属イオンの含有量が低いイオン液体およびその製造方法、ならびに新規イオン液体を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、特定の金属種の含有量が低いイオン液体およびその製造方法を見出し、本発明を完成した。
 すなわち、本発明は、
1. カチオンとアニオンとから構成され、
 以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むイオン液体、
 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
2. 前記16元素の金属イオンをいずれも10ppb以下で含む1のイオン液体、
3. 以下の元素記号で示す26元素の金属イオンをいずれも100ppb以下で含む1のイオン液体、
 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ba、W、V、Sr、Zr、Mo、Ag、Cd、Ta、Tl、PbおよびBi
4. 前記26元素の金属イオンをいずれも10ppb以下で含む3のイオン液体、
5. 前記カチオンが、4級アンモニウムイオン、ピリジニウムイオン、環状アミジニウムイオンおよび4級ホスホニウムイオンから選ばれる一価のカチオンである1~4のいずれかのイオン液体、
6. 前記アニオンが、トリアルキルシリル基含有アルキルスルホン酸イオン、テトラフルオロほう酸イオン、アルキル硫酸エステルイオン、ヘキサフルオロりん酸イオン、ビス(トリフルオロメタンスルホニル)アミドイオン、ビス(フルオロスルホニル)アミドイオン、アルキルスルホン酸イオン、アリールスルホン酸イオン、トリフルオロメタンスルホン酸イオン、酢酸イオンおよびアルキルりん酸エステルイオンから選ばれる一価のアニオンである1~5のいずれかのイオン液体、
7. 半導体製造工程に用いられる1~6のいずれかのイオン液体、
8. カチオンとアニオンとから構成されるイオン液体をキレート樹脂材料と接触させる、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むイオン液体の製造方法、
 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
9. 3級アルキルアミンまたはN-アルキルイミダゾールを、硫酸ジアルキル、アルキルスルホン酸エステル、アリールスルホン酸エステル、トリフルオロメタンスルホン酸アルキルエステルまたはりん酸トリアルキルでアルキル化する、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むイオン液体の製造方法、
 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
10. 前記3級アルキルアミンまたはN-アルキルイミダゾール、および硫酸ジアルキル、アルキルスルホン酸エステル、アリールスルホン酸エステル、トリフルオロメタンスルホン酸アルキルエステル、トリフルオロメタンスルホン酸アルキルエステルまたはりん酸トリアルキルとして、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むものを用いる9のイオン液体の製造方法、
 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
11. 酸と塩基の中和によりイオン液体を製造する方法であって、
 前記酸および塩として、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むものを用いる、
 当該16元素の金属イオンをいずれも100ppb以下で含むイオン液体の製造方法、
 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
12. 4級カチオンの塩を、キレート樹脂材料と接触させてそれに含まれる金属イオンを除去した後、得られた4級カチオンの塩のアニオンを、陰イオン交換樹脂により水酸化物イオンに変換した後、この水酸化物イオンに変換した塩と、所望のイオン液体を与えるアニオンのプロトン付加物とを当量混合して中和する、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むイオン液体の製造方法、
 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
13. 前記16元素の金属イオンの含有量が、いずれも10ppb以下である8~12のいずれかのイオン液体の製造方法、
14. 以下の元素記号で示す26元素の金属イオンの含有量が、いずれも100ppb以下である8~12のいずれかのイオン液体の製造方法、
 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ba、W、V、Sr、Zr、Mo、Ag、Cd、Ta、Tl、PbおよびBi
15. 前記26元素の金属イオンの含有量が、いずれも10ppb以下である14のイオン液体の製造方法、
16. 下記式(A)で示されるイオン液体、
Figure JPOXMLDOC01-appb-C000006
(式中、R3、R4、およびR9は、互いに独立して炭素数1~3のアルキル基を表し、R10は、炭素数1~4のアルキル基を表し、R2は、メチル基またはエチル基を表し、mは、1または2の整数を表す。)
17. 下記式(A1)で示される16のイオン液体、
Figure JPOXMLDOC01-appb-C000007
(式中、mは、1または2の整数を表す。)
18. 下記式(B)で示されるイオン液体、
Figure JPOXMLDOC01-appb-C000008
(式中、R9は、炭素数1~3のアルキル基を表し、R2は、メチル基またはエチル基を表し、R10は、炭素数1~4のアルキル基を表し、mは、1または2の整数を表す。)
19. 下記式(B1)で示される18のイオン液体、
Figure JPOXMLDOC01-appb-C000009
(式中、mは、1または2の整数を表す。)
20. 下記式(C)で示されるイオン液体、
Figure JPOXMLDOC01-appb-C000010
(式中、R9は、炭素数1~3のアルキル基を表し、R2は、メチル基またはエチル基を表し、mは、1または2の整数を表す。)
21. 前記R2が、メチル基であり、前記R9が、メチル基またはエチル基である20のイオン液体
を提供する。
 本発明のイオン液体は、所定の金属イオンの含有量が少なく高純度であるため、半導体製造工程にも使用できる。
実施例2-1で得られたイオン液体[3]の1H-NMRスペクトルを示す図である。 実施例2-2で得られたイオン液体[4]の1H-NMRスペクトルを示す図である。 実施例2-9で得られたイオン液体[11]の1H-NMRスペクトルを示す図である。 実施例2-10で得られたイオン液体[12]の1H-NMRスペクトルを示す図である。
 以下、本発明についてさらに詳しく説明する。
 本発明に係るイオン液体は、カチオンとアニオンとから構成され、以下の元素記号で示す16元素の金属イオン、
 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ba、W
好ましくは、以下の元素記号で示す26元素の金属イオン
 Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ba、W、V、Sr、Zr、Mo、Ag、Cd、Ta、Tl、PbおよびBi
をいずれも100ppb以下、好ましくは10ppb以下で含むものである。
 なお、金属含有量は、後述の実施例に記載のとおり、ICP-MSによる分析値である。
 上記イオン液体としては、従来公知のカチオンおよびアニオンとから構成されるイオン液体であればよいが、特に、カチオンが、4級アンモニウムイオン、ピリジニウムイオン、環状アミジニウムイオンおよび4級ホスホニウムイオンから選ばれる一価のカチオンであるイオン液体が好ましい。
 4級アンモニウムイオンとしては、テトラアルキルアンモニウムイオン、アルコキシ基置換アルキル基を有するテトラアルキルアンモニウムイオン等が挙げられるが、窒素原子上に、アルキル基およびアルコキシ置換アルキル基を有するアンモニウムイオンが好ましく、式(1)で示される4級アンモニウムイオン、式(2)で示されるピロリジニウムイオンがより好ましい。
Figure JPOXMLDOC01-appb-C000011
 各式中、R1は、水素原子または炭素数1~3のアルキル基を表し、R3およびR4は、互いに独立して炭素数1~3のアルキル基を表し、R2は、メチル基またはエチル基を表し、mは、1または2の整数を表す。
 炭素数1~3のアルキル基としては、メチル、エチル、n-プロピル基等が挙げられるが、特に、エチル基、メチル基が好ましく、R1がメチル基、R3およびR4がエチル基、またはR1およびR3がメチル基、R4がエチル基がより好ましい。
 環状アミジニウムイオンとしては、イミダゾリウムイオン、ジアザビシクロウンデセンイオン、ジアザビシクロノネンイオン等が挙げられる。
 イミダゾリウムイオンとしては、1-アルキル-3-アルキルイミダゾリウムイオン等が挙げられるが、式(3)で示されるイミダゾリウムイオンが好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(3)中、R6は、水素原子または炭素数1~8のアルキル基を表し、R5は、炭素数1~8のアルキル基を表す。
 炭素数1~8のアルキル基としては、直鎖、分岐、環状のいずれでもよく、例えば、メチル、エチル、n-プロピル、i-プロピル、c-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、c-ブチル、n-ペンチル、c-ペンチル、n-ヘキシル、c-ヘキシル、n-ヘプチル、n-オクチル等が挙げられる。
 これらの中でも、R6は、水素原子または炭素数1~4のアルキル基が好ましく、水素原子、メチル、エチル、n-プロピル、n-ブチル基がより好ましく、R5は、炭素数1~4のアルキル基が好ましく、メチル、エチル基がより好ましい。
 ジアザビシクロウンデセンイオンとしては、式(4)で示されるものが挙げられ、ジアザビシクロノネンイオンとしては、下記式(5)で示されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式中、R6は、上記と同じ意味を表す。)
 ピリジニウムイオンとしては、式(6)で示されるものが挙げられ、その具体例としては、N-プロピルピリジニウムイオン、N-ブチルピリジニウムイオン、1-ブチル-4-メチルピリジニウムイオン、1-ブチル-2,4-ジメチルピリジニウムイオンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000014
(式中、R5およびR6は、上記と同じ意味を表し、kは、1~5の整数を表す。)
 4級ホスホニウムイオンとしては、テトラアルキルホスホニウムイオン、トリアルキルアルコキシホスホニウムイオン等が挙げられるが、式(7)で示されるホスホニウムイオンが好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(4)中、R7は、炭素数1~30のアルキル基を表し、R8は、炭素数1~30のアルキル基またはアルコキシ基を表す。
 炭素数1~30のアルキル基としては、直鎖、分岐、環状のいずれでもよく、例えば、メチル、エチル、n-プロピル、i-プロピル、c-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、c-ブチル、n-ペンチル、c-ペンチル、n-ヘキシル、c-ヘキシル、n-ヘプチル、n-オクチル、2-エチルヘキシル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-ノナデシル、n-エイコシル基等が挙げられる。
 炭素数1~30のアルコキシ基としては、その中のアルキル基が直鎖、分岐、環状のいずれのものでもよく、例えば、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、c-プロポキシ、n-ブトキシ、i-ブトキシ、s-ブトキシ、t-ブトキシ、c-ブトキシ、n-ペンチルオキシ、c-ペンチルオキシ、n-ヘキシルオキシ、c-ヘキシルオキシ、n-ヘプチルオキシ、n-オクチルオキシ、2-エチルヘキシルオキシ、n-ノニルオキシ、n-デシルオキシ、n-ウンデシルオキシ、n-ドデシルオキシ、n-トリデシルオキシ、n-テトラデシルオキシ、n-ペンタデシルオキシ、n-ヘキサデシルオキシ、n-ヘプタデシルオキシ、n-オクタデシルオキシ、n-ノナデシルオキシ、n-エイコシルオキシ基等が挙げられる。
 これらの中でも、R7としては、炭素数2~8の直鎖アルキル基が好ましく、炭素数2~6の直鎖アルキル基がより好ましく、原料の入手しやすさの観点からn-エチル基、n-ブチル基、n-ヘキシル基がより好ましく、これらの中でもイオン液体の形成しやすさの観点から、n-ブチル基、n-ヘキシル基が特に好ましい。
 R8としては、炭素数10~20の直鎖アルキル基が好ましく、炭素数12~20の直鎖アルキル基がより好ましい。
 一方、アニオンとしても、上述した各種カチオンとイオン液体を形成し得る従来公知のアニオンから選択することができ、例えば、テトラフルオロほう酸イオン(BF4 -)、BF(CN)3 -、BF3CF3 -、BF3(CF2CF3-、ヘキサフルオロりん酸イオン(PF6 -)、ビス(トリフルオロメタンスルホニル)アミドイオン(TFSA)、ビス(フルオロスルホニル)アミドイオン(FSA)、アルキルスルホン酸イオン、アリールスルホン酸イオン、トリフルオロメタンスルホン酸イオン、トリアルキルシリル基含有アルキルスルホン酸イオン、アルキル硫酸エステルアニオン、アルキルリン酸エステルアニオン、アルキル亜リン酸エステルアニオン、アミノ酸アニオン、カルボン酸アニオン、Cl-、Br-、I-、硝酸アニオン、サッカリネートアニオン等が挙げられるが、これらの中でも、BF4 -、トリアルキルシリル基含有アルキルスルホン酸イオン、アルキル硫酸エステルイオン、アルキルりん酸エステルイオン、アリールスルホン酸イオン、トリフルオロメタンスルホン酸イオン、カルボン酸アニオンが好ましい。
 アルキルスルホン酸イオンとしては、メタンスルホン酸アニオン、エタンスルホン酸アニオン等が挙げられ、アリールスルホン酸イオンとしては、ベンゼンスルホン酸、p-トルエンスルホン酸アニオン等が挙げられる。
 アルキル硫酸エステルイオンとしては、下記式(8)で示されるものが挙げられ、アルキルりん酸エステルイオンとしては、下記式(9)で示されるものが挙げられ、トリアルキルシリル基含有アルキルスルホン酸イオンとしては、下記式(10)で示されるものが挙げられる。
 カルボン酸アニオンとしては、蟻酸アニオン、酢酸アニオン等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 式(8)および(9)中、R10は、互いに独立して炭素数1~4のアルキル基を表す。このアルキル基としては、上記R6で例示した基のうち、炭素数1~4のものが挙げられるが、メチル基、エチル基が好ましい。
 式(10)中、R11は、互いに独立して、炭素数1~8のアルキル基を表し、nは、2~8の整数を表し、2~6の整数が好ましい。このアルキル基としては、上記R6で例示した基と同様のものが挙げられるが、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 上記各イオン液体は、従来公知の手法で製造することができ、また市販品として入手可能なものもある。
 上述した各種金属元素を所定量以下まで減少させ、イオン液体を高純度化する手法としては、例えば、従来公知の手法で合成した、または市販品として入手したイオン液体をキレート樹脂材料と接触させる手法が挙げられる。
 イオン液体とキレート樹脂とを接触させる手法に特に制限はなく、イオン液体中にキレート樹脂を添加するバッチ処理でも、キレート樹脂を充填したカラムにイオン液体を通すカラム通液処理でも、キレート樹脂フィルターにイオン液体を通すフィルター処理でもよく、これらの手法の組み合わせでもよい。
 また、接触回数としても、所望の金属含有量になる限り特に制限はなく、1回でも2回以上の複数回でもよい。
 キレート樹脂としては、例えば、イミノジ酢酸型キレート樹脂、アミノリン酸型キレート樹脂、ポリアミン型キレート樹脂等が挙げられ、これらはそれぞれ単独で用いても、2種以上併用してもよい。
 これらのキレート樹脂は、市販品として入手することができ、例えば、オルガノ(株)製のキレート樹脂ORLITE DS-22、ORLITE DS-21、イミノジ酢酸型キレート樹脂アンバーセップIRC748、アミノリン酸型キレート樹脂アンバーセップIRC747UPS;三菱ケミカル(株)製のイミノジ酢酸型キレート樹脂ダイヤイオンCR11、ポリアミン型キレート樹脂ダイヤイオンCR20等が挙げられる。
 なお、イオン液体をキレート樹脂で処理する際には、粘度低下による取扱性能向上含め処理効率を高めるため、イオン液体を溶媒に溶かした溶液を用いて処理してもよい。
 このような溶媒としては、水;メタノール、エタノール等のアルコール類;ジブチルエーテル、1,2-ジメトキシエタン、1,2-エトキシメトキシエタン、メチルジグライム、メチルトリグライム、メチルテトラグライム、エチルグライム、エチルジグライム、ブチルジグライム、エチルセルソルブ、エチルカルビトール、ブチルセルソルブ、ブチルカルビトール等の鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4,4-ジメチル-1,3-ジオキサン等の複素環式エーテル類;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、3-メチル-1,3-オキサゾリジン-2-オン、3-エチル-1,3-オキサゾリジン-2-オン等のラクトン類;N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N-メチルピロリジノン等のアミド類;ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等のカーボネート類;1,3-ジメチル-2-イミダゾリジノン等のイミダゾリン類;アセトニトリル、プロピオニトリル等のニトリル類などの有機溶媒が挙げられ、これらは単独で、または2種以上混合して用いることができる。
 この場合、精製済みの溶液を加熱下もしくは真空下、またはその両方の条件で処理することにより使用した溶媒を除去することが可能であり、残留分として高純度なイオン液体を得ることができる。
 また、上述したアルキル硫酸エステルイオン、アルキルスルホン酸イオン、アリールスルホン酸イオン、トリフルオロメタンスルホン酸アニオン、またはアルキルりん酸エステルイオンを有するイオン液体の場合、事前に既存の方法で精製し、上述した16元素、好ましくは26元素の金属イオンの含有量を100ppb以下、好ましくは10ppb以下まで除去して高純度化した3級アルキルアミンまたはN-アルキルイミダゾールを、同様に事前に既存の方法で精製し、上述した16元素、好ましくは26元素の金属イオンの含有量を100ppb以下、好ましくは10ppb以下まで除去して高純度化したアルキル化剤である硫酸ジアルキル、アルキルスルホン酸エステル、アリールスルホン酸エステル、トリフルオロメタンスルホン酸エチル等のパーフルオロスルホン酸エステル、またはりん酸トリアルキル等を用いてアルキル化する、いわゆる酸エステル法でイオン液体を合成することで、上述した各種金属元素の金属イオンの含有量が少ない、高純度イオン液体を得ることができる。
 酸エステル法の条件としては、「イオン液体-常識を覆す不思議な塩-、8~9頁、2005年、コロナ社」等に記載された公知の条件を採用でき、例えば、3級アルキルアミン等のアミン原料と、アルキル化剤とを氷冷下モル比1:1で混合し、室温まで昇温して2時間程度撹拌後、減圧下で1時間程度加熱精製する手法を採用できる。
 酸エステル法で合成するイオン液体の好適例としては、下記式で示されるものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000017
(式中、R3、R4およびR9は、互いに独立して炭素数1~3のアルキル基を表し、R10は、炭素数1~4のアルキル基を表し、R2は、メチル基またはエチル基を表し、mは、1または2の整数を表す。炭素数1~3のアルキル基としては、上記R1で例示した基と同様のものが挙げられ、炭素数1~4のアルキル基としては、上記R6で例示した基のうち、炭素数1~4のものが挙げられる。)
Figure JPOXMLDOC01-appb-C000018
(式中、mは、1または2の整数を表すが、2が好ましい。)
Figure JPOXMLDOC01-appb-C000019
(式中、R2、R9およびmは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000020
(式中、mは、1または2の整数を表すが、2が好ましい。)
 また、酸と塩基の中和によりイオン液体を製造する方法、いわゆる中和法を用いるイオン液体製造法でも高純度イオン液体を得ることができる。
 通常の4級塩型イオン液体を中和法で製造する場合は、常法に従い、目的とするイオン液体を与える4級カチオンのハライド塩等を、水または塩を溶解可能な有機溶媒に溶解させた後、陰イオン交換樹脂を用いてハライドイオン等のアニオンを水酸化物イオンに変換し、得られた水酸化物イオンに変換した塩と、アニオン源として所望のアニオンのプロトン付加物(酸)とを当量混合して中和させ、さらに副生成物の水と溶媒の水、溶媒として有機溶媒を用いた場合は有機溶媒を真空引き等で除去することによりイオン液体を得ることができる。この手法により高純度イオン液体を製造する場合、事前に4級カチオンのハライド塩等を上述のキレート樹脂等で処理して金属分を、上述した16元素、好ましくは26元素の金属イオンの含有量を100ppb以下、好ましくは10ppb以下まで除去し、十分な高純度の水またはその他溶媒(例えば、半導体グレード溶媒等)を用いてイオン交換を実施すればよい。
 陰イオン交換樹脂に特に制限はなく、従来公知のものから適宜選択して用いることができる。
 中和塩型イオン液体の場合、原料であるアミン等の塩基および有機酸等の酸を、蒸留等の公知の精製法および必要に応じて上述のキレート樹脂材料での処理により高度に精製し、上述した16元素、好ましくは26元素の金属イオンの含有量を100ppb以下、好ましくは10ppb以下まで除去したものを用いて合成することで、上述した各種金属元素の金属イオンの含有量が少ない、高純度イオン液体を得ることができる。
 ここで、中和塩型イオン液体とは、酸-塩基の中和反応により得られる塩からなるイオン液体(イオン性液体-開発の最前線と未来-、19~21頁、(株)シーエムシー出版(2003)参照)であり、プロトンが付加してなるカチオンを有するものをいう。
 なお、酸エステル法や中和法で得られた高純度イオン液体を、上述したキレート樹脂と接触させて、さらに高純度化を図ってもよい。
 本発明のイオン液体の製造方法を実施するに際し、使用する反応容器、カラム、配管等のイオン液体やイオン液体溶液と接する部分は、ガラス、プラスチック、テフロン(登録商標)コート部材、フッ素樹脂コート部材等の非金属部材とする。特に、プラスチック、テフロン(登録商標)コート部材、フッ素樹脂コート部材が好ましい。
 以上説明したとおり、本発明のイオン液体は、キレート樹脂処理、酸エステル法による合成、中和法による合成によって、所定の金属イオン含有量が100ppb以下に低減されていているため、金属イオンの混入を嫌う半導体製造工程に好適に用いることができる。
 以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、使用した分析装置および条件は下記のとおりである。
(1)1H-NMRスペクトル
 日本電子(株)製 JNM-ECZ400S
(2)金属イオン測定法
〔前処理方法〕
 試料を湿式分解後、残渣を酸溶解した液を測定供試液とした。なお試料調製は、クリーンルーム(クラス100)内に設置したクリーンドラフト(クラス10)内で実施した。
〔測定方法〕
 誘導結合プラズマ質量分析法(ICP-MS)により測定した。
〔分析値算出方法〕
 測定で得られた元素質量(ng)を、分析した試料量(g)で除することにより、不純物濃度(ng/g)を算出した。
[1]キレート樹脂処理
[実施例1-1]
 下記式[1]で示されるイオン液体をICP-MS測定を行ったところ、表1に示されるように、Na,Ca,Zrが10ppbを超える量で含まれていた。この化合物2 5.0gをメタノール(半導体グレード、関東化学(株)製)5.0gに溶解した。この溶液をキレート樹脂ORLITE DS-22(オルガノ(株)製)5.0g(7.5ml)を充填したプラスティックカラム(溶離液 アセトニトリル)に3回通した。得られた溶離液を滅菌済みのポリプロピレン製遠沈管mini(IWAKI製)容器に受け、真空引きし、濃縮した。この濃縮物はICP-MS測定の結果、26元素の含有量はいずれも定量下限以下(100ppbまたは10ppb以下)であった。なお、下記式[1]で示されるイオン液体は構造中にリンを含有しており、この干渉除去が十分にはできないため、一部の元素(Li,K,Ti、V,Cu)については定量下限値が100ppbとなっている。
Figure JPOXMLDOC01-appb-C000021
[実施例1-2]
 下記式[2]で示されるイオン液体をICP-MS測定を行ったところ、表1に示されるように、Na,Al,K,Zrがいずれも10ppbを超える量で含まれていた。この化合物2 5.0gをアセトニトリル(LC/MSグレード ハニウエル社製)5.0gに溶解した。この溶液をキレート樹脂ORLITE DS-22(オルガノ(株)製)5.0g(7.5ml)を充填したプラスティックカラム(溶離液 アセトニトリル)に3回通した。得られた溶離液を滅菌済みのポリプロピレン製遠沈管mini(IWAKI製)容器に受け、真空引きし、濃縮した。この濃縮物はICP-MS測定の結果、26元素の含有量はいずれも10ppb以下であった。
Figure JPOXMLDOC01-appb-C000022
[2]酸エステル法
[実施例2-1]
Figure JPOXMLDOC01-appb-C000023
 既存の方法で合成したN,N-ジエチル-N-2-メトキシエチルアミンとジメチル硫酸(関東化学(株)製)を精密蒸留し、ガラス製オートクレーブ中、密封下100℃で2日間反応させた。その後、真空引きを3時間行い、未反応の原料を留去してイオン液体[3]を得た。このイオン液体のICP-MS測定を行ったところ、表1に示されるように、Na,Kがいずれも10ppbを超える量で含んでいた。実施例1-1と同様にしてキレート樹脂処理を行うことにより、ICP-MS測定にて26元素いずれも10ppb以下のイオン液体が得られた。イオン液体[3]の1H-NMRスペクトル(溶媒:重クロロホルム)を図1に示す。
Figure JPOXMLDOC01-appb-T000024
[実施例2-2]
Figure JPOXMLDOC01-appb-C000025
 既存の方法で合成したN-2-メトキシエチルピロリジンとジメチル硫酸(関東化学(株)製)を各々精密蒸留後、各々同質量のキレート樹脂ORLITE DS-22で処理し、テフロン(登録商標)コートのオートクレーブ中に当モル投入し、密封下、100℃で2日間反応させた。その後、真空引きを3時間行い、未反応の原料を留去し、イオン液体[4]を得た。このイオン液体[4]は、ICP-MS測定にて26元素の含有量がいずれも10ppb以下であった。イオン液体[4]の1H-NMRスペクトル(溶媒:重ジメチルスルホキシド)を図2に示す。
[実施例2-3]
Figure JPOXMLDOC01-appb-C000026
 原料をN,N-ジエチル-N-2-メトキシエチルアミンとトリメチルホスフェート(富士フイルム和光純薬(株)製)に代えた以外は、実施例2-2と同様にしてICP-MS測定にて26元素の含有量がいずれも定量下限以下(100ppbまたは10ppb以下)であるイオン液体[5]を得た。なお、イオン液体[5]は構造中にリンを含有しており、この干渉除去が十分にはできないため、一部の元素(Li,K,Ti、V,Cu)については定量下限値が100ppbとなっている。
[実施例2-4]
Figure JPOXMLDOC01-appb-C000027
 原料を1-ブチル-イミダゾール(関東化学(株)製)に代えた以外は、実施例2-3と同様にしてICP-MS測定にて26元素の含有量がいずれも定量下限以下(100ppbまたは10ppb以下)であるイオン液体[6]を得た。なお、イオン液体[6]は構造中にリンを含有しており、この干渉除去が十分にはできないため、一部の元素(Li,K,Ti、V,Cu)については定量下限値が100ppbとなっている。
[実施例2-5]
Figure JPOXMLDOC01-appb-C000028
 原料をジメチル硫酸からトリフルオロメタンスルホン酸メチル(東京化成工業(株)製)に代えた以外は、実施例2-1と同様にしてICP-MS測定にて26元素の含有量がいずれも10ppb以下であるイオン液体[7]を得た。
[実施例2-6]
Figure JPOXMLDOC01-appb-C000029
 原料をジメチル硫酸からトリフルオロメタンスルホン酸メチルに代えた以外は、実施例2-2と同様にしてICP-MS測定にて26元素の含有量がいずれも10ppb以下であるイオン液体[8]を得た。
[実施例2-7]
Figure JPOXMLDOC01-appb-C000030
 原料をN,N-ジエチル-N-2-メトキシエチルアミンから1-エチル-イミダゾール(関東化学(株)製)に、およびジメチル硫酸からトリフルオロメタンスルホン酸メチルに代えた以外は、実施例2-1と同様にしてICP-MS測定にて26元素の含有量がいずれも10ppb以下であるイオン液体[9]を得た。
[実施例2-8]
Figure JPOXMLDOC01-appb-C000031
 原料を1-エチル-イミダゾールから1-ブチル-イミダゾールに代えた以外は、実施例2-7と同様にしてICP-MS測定にて26元素の含有量がいずれも10ppb以下であるイオン液体[10]を得た。
[実施例2-9]
Figure JPOXMLDOC01-appb-C000032
 既存の方法で合成したN-2-メトキシエチルピロリジン3.47gとp-トルエンスルホン酸メチル(富士フイルム和光純薬(株)製)5.00gを混合し、窒素気流下80℃で1時間反応させた。ここで用いたN-2-メトキシエチルピロリジンとp-トルエンスルホン酸メチルは各々事前に精密蒸留を行ったものである。その後、この反応系に3mlの精密蒸留したアセトニトリルを加えて撹拌して均一溶液とし、この溶液を精密蒸留したトルエン中85ml中に滴下して目的物を粘性液体状の再沈物として分離させた。デカンテーションにより溶媒を取り除き、容器に残留した再沈物から真空引きにより溶媒を除去し、イオン液体[11]を7.30g(収率86%)得た。なお、このイオン液体は室温放置したところ固体となった(融点53℃)。
 このイオン液体[11]5.0gをアセトニトリル(LC/MSグレード、ハニウエル社製)5.0gに溶解した。この溶液をキレート樹脂ORLITE DS-22(オルガノ(株)製)5.0g(7.5ml)を充填したプラスティックカラム(溶離液、アセトニトリル)に通し、得られた溶離液を滅菌済みのポリプロピレン製遠沈管mini(IWAKI製)容器に受け、真空引きし、濃縮した。この濃縮物は、ICP-MS測定の結果、26元素の含有量はいずれも10ppb以下であった。
 イオン液体[11]の1H-NMRスペクトル(溶媒:重ジメチルスルホキシド)を図3に示す。
[実施例2-10]
Figure JPOXMLDOC01-appb-C000033
 既存の方法で合成したN-2-メトキシエチルピロリジン3.47gとp-トルエンスルホン酸エチル(東洋化成工業(株)製)5.00gを混合し、窒素気流下80℃で1.5時間反応させた。ここで用いたN-2-メトキシエチルピロリジンとp-トルエンスルホン酸エチルは各々事前に精密蒸留を行ったものである。その後、この反応系に3mlの精密蒸留したアセトニトリルを加えて撹拌して均一溶液とし、この溶液を精密蒸留したトルエン中85ml中に滴下して目的物を粘性液体状の再沈物として分離させた。デカンテーションにより溶媒を取り除き、容器に残留した再沈物から真空引きにより溶媒を除去し、イオン液体[12]を7.19g(収率87%)で得た。なお、このイオン液体は室温放置したところ固体となった(融点54℃)。
 このイオン液体[12]5.0gをアセトニトリル(LC/MSグレード、ハニウエル社製)5.0gに溶解した。この溶液をキレート樹脂ORLITE DS-22(オルガノ(株)製)5.0g(7.5ml)を充填したプラスティックカラム(溶離液、アセトニトリル)に通し、得られた溶離液を滅菌済みのポリプロピレン製遠沈管mini(IWAKI製)容器に受け、真空引きし、濃縮した。この濃縮物はICP-MS測定の結果、26元素の含有量はいずれも10ppb以下であった。
 イオン液体[12]の1H-NMRスペクトル(溶媒:重ジメチルスルホキシド)を図4に示す。
[3]中和法
[実施例3-1]
Figure JPOXMLDOC01-appb-C000034
 1-エチル-イミダゾール(関東化学(株)製)を精密蒸留後、同質量のキレート樹脂ORLITE DS-22で処理したものと、1,1,1-トリフルオロ-N-[(トリフルオロメチル)スルホニル]メタンスルホンアミド(関東化学(株)製)を同質量の半導体グレードメタノールに溶解させた溶液を同質量のキレート樹脂ORLITE DS-22で処理したものを事前に準備した。
 これらを1-エチル-3-メチルイミダゾールと1,1,1-トリフルオロ-N-[(トリフルオロメチル)スルホニル]メタンスルホンアミドが当モルになるように混合し、1時間撹拌した。pHが中性であることを確認した後、メタノールを真空下で留去したイオン液体[11]を得た。このイオン液体[11]はICP-MS測定にて26元素の含有量がいずれも10ppb以下であった。
[実施例3-2]
Figure JPOXMLDOC01-appb-C000035
 事前に各々精密蒸留し、その後各々同質量のキレート樹脂ORLITE DS-22で処理した1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(東京化成工業(株)製)および酢酸(関東化学(株)製)を、テフロン(登録商標)コート容器中で当モルになるように混合し、80℃まで加熱した状態で3時間撹拌した後、真空下で3時間処理して未反応の原料を除去し、イオン液体[12]を得た。イオン液体[12]は80℃では液体であるが、室温まで放冷後固体となった。この固体のイオン液体[12]はICP-MS測定にて26元素の含有量がいずれも10ppb以下であった。
[実施例3-3]
Figure JPOXMLDOC01-appb-C000036
 原料を1,8-ジアザビシクロ[5.4.0]-7-ウンデセンから1,5-ジアザビシクロ[4.3.0]-5-ノネンに代えた以外は、実施例3-2と同様にしてICP-MS測定にて26元素の含有量がいずれも10ppb以下であるイオン液体[13]を得た。なお、このイオン液体[13]も80℃では液体であるが室温では固体であった。

Claims (21)

  1.  カチオンとアニオンとから構成され、
     以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むイオン液体。
     Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
  2.  前記16元素の金属イオンをいずれも10ppb以下で含む請求項1記載のイオン液体。
  3.  以下の元素記号で示す26元素の金属イオンをいずれも100ppb以下で含む請求項1記載のイオン液体。
     Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ba、W、V、Sr、Zr、Mo、Ag、Cd、Ta、Tl、PbおよびBi
  4.  前記26元素の金属イオンをいずれも10ppb以下で含む請求項3記載のイオン液体。
  5.  前記カチオンが、4級アンモニウムイオン、ピリジニウムイオン、環状アミジニウムイオン、および4級ホスホニウムイオンから選ばれる一価のカチオンである請求項1~4のいずれか1項記載のイオン液体。
  6.  前記アニオンが、トリアルキルシリル基含有アルキルスルホン酸イオン、テトラフルオロほう酸イオン、アルキル硫酸エステルイオン、ヘキサフルオロりん酸イオン、ビス(トリフルオロメタンスルホニル)アミドイオン、ビス(フルオロスルホニル)アミドイオン、アルキルスルホン酸イオン、アリールスルホン酸イオン、トリフルオロメタンスルホン酸イオン、酢酸イオンおよびアルキルりん酸エステルイオンから選ばれる一価のアニオンである請求項1~5のいずれか1項記載のイオン液体。
  7.  半導体製造工程に用いられる請求項1~6のいずれか1項記載のイオン液体。
  8.  カチオンとアニオンとから構成されるイオン液体をキレート樹脂材料と接触させる、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むイオン液体の製造方法。
     Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
  9.  3級アルキルアミンまたはN-アルキルイミダゾールを、硫酸ジアルキル、アルキルスルホン酸エステル、アリールスルホン酸エステル、トリフルオロメタンスルホン酸アルキルエステルまたはりん酸トリアルキルでアルキル化する、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むイオン液体の製造方法。
     Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
  10.  前記3級アルキルアミンまたはN-アルキルイミダゾール、および硫酸ジアルキル、アルキルスルホン酸エステル、アリールスルホン酸エステル、トリフルオロメタンスルホン酸アルキルエステル、トリフルオロメタンスルホン酸アルキルエステルまたはりん酸トリアルキルとして、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むものを用いる請求項9記載のイオン液体の製造方法。
     Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
  11.  酸と塩基の中和によりイオン液体を製造する方法であって、
     前記酸および塩として、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むものを用いる、
     当該16元素の金属イオンをいずれも100ppb以下で含むイオン液体の製造方法。
     Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
  12.  4級カチオンの塩を、キレート樹脂材料と接触させてそれに含まれる金属イオンを除去した後、得られた4級カチオンの塩のアニオンを、陰イオン交換樹脂により水酸化物イオンに変換した後、この水酸化物イオンに変換した塩と、所望のイオン液体を与えるアニオンのプロトン付加物とを当量混合して中和する、以下の元素記号で示す16元素の金属イオンをいずれも100ppb以下で含むイオン液体の製造方法。
     Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、BaおよびW
  13.  前記16元素の金属イオンの含有量が、いずれも10ppb以下である請求項8~12のいずれか1項記載のイオン液体の製造方法。
  14.  以下の元素記号で示す26元素の金属イオンの含有量が、いずれも100ppb以下である請求項8~12のいずれか1項記載のイオン液体の製造方法。
     Li、Na、Ca、Mg、Al、K、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ba、W、V、Sr、Zr、Mo、Ag、Cd、Ta、Tl、PbおよびBi
  15.  前記26元素の金属イオンの含有量が、いずれも10ppb以下である請求項14記載のイオン液体の製造方法。
  16.  下記式(A)で示されるイオン液体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R3、R4、およびR9は、互いに独立して炭素数1~3のアルキル基を表し、R10は、炭素数1~4のアルキル基を表し、R2は、メチル基またはエチル基を表し、mは、1または2の整数を表す。)
  17.  下記式(A1)で示される請求項16記載のイオン液体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、mは、1または2の整数を表す。)
  18.  下記式(B)で示されるイオン液体。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R9は、炭素数1~3のアルキル基を表し、R2は、メチル基またはエチル基を表し、R10は、炭素数1~4のアルキル基を表し、mは、1または2の整数を表す。)
  19.  下記式(B1)で示される請求項18記載のイオン液体。
    Figure JPOXMLDOC01-appb-C000004
    (式中、mは、1または2の整数を表す。)
  20.  下記式(C)で示されるイオン液体。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R9は、炭素数1~3のアルキル基を表し、R2は、メチル基またはエチル基を表し、mは、1または2の整数を表す。)
  21.  前記R2が、メチル基であり、前記R9が、メチル基またはエチル基である請求項20記載のイオン液体。
PCT/JP2022/027664 2021-08-17 2022-07-14 イオン液体およびその製造方法 WO2023021895A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247005704A KR20240049805A (ko) 2021-08-17 2022-07-14 이온 액체 및 그 제조 방법
JP2023542268A JPWO2023021895A1 (ja) 2021-08-17 2022-07-14
CN202280053816.3A CN117769537A (zh) 2021-08-17 2022-07-14 离子液体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132896 2021-08-17
JP2021132896 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023021895A1 true WO2023021895A1 (ja) 2023-02-23

Family

ID=85240576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027664 WO2023021895A1 (ja) 2021-08-17 2022-07-14 イオン液体およびその製造方法

Country Status (4)

Country Link
JP (1) JPWO2023021895A1 (ja)
KR (1) KR20240049805A (ja)
CN (1) CN117769537A (ja)
WO (1) WO2023021895A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366663A (en) * 1964-11-09 1968-01-30 Monsanto Co Process for preparing tetraalkyl-ammonium alkyl sulfates
JP2006286257A (ja) * 2005-03-31 2006-10-19 Nisshinbo Ind Inc 電解質組成物および光電気化学電池
JP2011184421A (ja) * 2010-03-11 2011-09-22 Kaneka Corp イオン液体の製造方法
KR20190055431A (ko) * 2017-11-15 2019-05-23 한국과학기술연구원 이산화탄소의 전기화학적 환원반응을 통한 메탄생성방법
JP2019139992A (ja) * 2018-02-13 2019-08-22 日清紡ホールディングス株式会社 導電性金属ペースト
WO2020217911A1 (ja) * 2019-04-26 2020-10-29 オルガノ株式会社 有機溶媒の精製方法及び有機溶媒の精製装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377784B2 (ja) 2009-03-31 2013-12-25 三菱マテリアル株式会社 ビス(フルオロスルホニル)イミド塩及びそれを含むイオン導電材料、電解質及びイオン液体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366663A (en) * 1964-11-09 1968-01-30 Monsanto Co Process for preparing tetraalkyl-ammonium alkyl sulfates
JP2006286257A (ja) * 2005-03-31 2006-10-19 Nisshinbo Ind Inc 電解質組成物および光電気化学電池
JP2011184421A (ja) * 2010-03-11 2011-09-22 Kaneka Corp イオン液体の製造方法
KR20190055431A (ko) * 2017-11-15 2019-05-23 한국과학기술연구원 이산화탄소의 전기화학적 환원반응을 통한 메탄생성방법
JP2019139992A (ja) * 2018-02-13 2019-08-22 日清紡ホールディングス株式会社 導電性金属ペースト
WO2020217911A1 (ja) * 2019-04-26 2020-10-29 オルガノ株式会社 有機溶媒の精製方法及び有機溶媒の精製装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STOLTE STEFAN, STEUDTE STEPHANIE, AREITIOAURTENA OLATZ, PAGANO FRANCESCO, THÖMING JORG, STEPNOWSKI PIOTR, IGARTUA AMAYA: "Ionic liquids as lubricants or lubrication additives: An ecotoxicity and biodegradability assessment", CHEMOSPHERE, PERGAMON PRESS, OXFORD., GB, vol. 89, no. 9, 1 November 2012 (2012-11-01), GB , pages 1135 - 1141, XP093036380, ISSN: 0045-6535, DOI: 10.1016/j.chemosphere.2012.05.102 *

Also Published As

Publication number Publication date
KR20240049805A (ko) 2024-04-17
JPWO2023021895A1 (ja) 2023-02-23
CN117769537A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
KR100958876B1 (ko) 다양한 극성/비극성 용매 혼화성 이온성 액체 및 그의제조방법
US7253289B2 (en) One-step process for the preparation of halide-free hydrophobic salts
CN100404515C (zh) 生产纯化的1,3-取代咪唑盐的方法
US20080221353A1 (en) Novel phosphonium salt ionic liquid and reaction solvent including the same
US20090227447A1 (en) Ionic Liquids
CN107011371B (zh) 一种含硅咪唑类离子液体及其制备方法和应用
CA2839203C (en) Ionic liquid
US20120018676A1 (en) Novel Tricyanoborates
CN102718802B (zh) 芳氧基取代三聚磷腈环氧化合物及其制备方法和用途
WO2018105482A1 (ja) ケイ素含有リン酸アニオンを含む塩、及び潤滑剤
JP5647820B2 (ja) リン酸ジエステル塩の製造方法
CN110317228A (zh) 一种双酚a-双(二苯基磷酸酯)的制备方法
EP3546443B1 (en) Method for producing fluorine-containing dialkyl carbonate compounds
CN109071570B (zh) 含有硅的硫酸酯盐
WO2023021895A1 (ja) イオン液体およびその製造方法
US4394511A (en) Imidazole 4(5)-dithiocarboxylic acids or salts
KR20150124995A (ko) 페놀의 나프톨과의 전기화학적 커플링
JPS58103394A (ja) 化合物半導体材料の製造に使用しうるアダクトの製造方法
KR20150079403A (ko) 트리알킬 오르소에스테르를 이용한 무수 이온성 액체 직접 합성법 개발
Zakharov et al. Synthesis and acid-base properties of α-aminophosphoryl compounds
CN107868061A (zh) 一种室温含能离子液体及其制备方法
Poulin et al. Phosphoranes. I. Tris (trifluoromethyl) bis (dimethylamino) phosphorane,(CF3) 3P [N (CH3) 2] 2, and related chlorodimethylaminotrifluoromethylphosphoranes
Frohn et al. [(C6F5) 2IF2][BF4], the First Salt with the Electrophilic Cation [(C6F5) 2IF2]+: Synthesis, Reactivity, and Structure
WO2023176209A1 (ja) トシル酸アニオンイオン液体
Kilian et al. Novel Condensed Thionated Bis (phosphonic) Acid Salts with a Rigid Naphthalene‐1, 8‐diyl Backbone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542268

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280053816.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247005704

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE