WO2020217610A1 - 圧電式バルブ及び該圧電式バルブの製造方法 - Google Patents

圧電式バルブ及び該圧電式バルブの製造方法 Download PDF

Info

Publication number
WO2020217610A1
WO2020217610A1 PCT/JP2020/002126 JP2020002126W WO2020217610A1 WO 2020217610 A1 WO2020217610 A1 WO 2020217610A1 JP 2020002126 W JP2020002126 W JP 2020002126W WO 2020217610 A1 WO2020217610 A1 WO 2020217610A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
valve
laminated piezoelectric
actuator
displacement
Prior art date
Application number
PCT/JP2020/002126
Other languages
English (en)
French (fr)
Inventor
伊藤 隆文
松下 忠史
樋口 俊郎
世傑 徐
義宣 水野
Original Assignee
株式会社サタケ
有限会社メカノトランスフォーマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サタケ, 有限会社メカノトランスフォーマ filed Critical 株式会社サタケ
Priority to EP20794390.3A priority Critical patent/EP3961905A4/en
Priority to KR1020217037277A priority patent/KR102633886B1/ko
Priority to CN202080030157.2A priority patent/CN113728547B/zh
Priority to BR112021021022A priority patent/BR112021021022A2/pt
Priority to US17/605,914 priority patent/US12004430B2/en
Publication of WO2020217610A1 publication Critical patent/WO2020217610A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • H02N2/043Mechanical transmission means, e.g. for stroke amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means
    • F16K31/007Piezoelectric stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings

Definitions

  • the present disclosure relates to a piezoelectric valve that opens and closes a valve by utilizing the displacement of a laminated piezoelectric element, and a method for manufacturing the piezoelectric valve.
  • the piezoelectric valve described in Patent Document 1 utilizes the characteristics of a laminated piezoelectric element having excellent high-speed response performance, and includes a displacement expanding mechanism that expands a small displacement of the laminated piezoelectric element based on the principle of leverage. It is a thing.
  • the piezoelectric valve when a voltage is applied to the laminated piezoelectric element, the displacement of the laminated piezoelectric element in the extension direction is transmitted to the valve body via the displacement expansion mechanism, and the valve body is rapidly moved to open the valve. .. Further, in the piezoelectric valve, when the voltage applied to the laminated piezoelectric element is released, the restoring force accompanying the restoration of the laminated piezoelectric element to the original state is transmitted to the valve body via the displacement expansion mechanism, and the valve body is quickly valved. The valve is closed by contacting the seat.
  • the laminated piezoelectric element has excellent features such as low energy consumption due to operation, suitable for high-speed operation, and small size.
  • the laminated piezoelectric element has a piezoelectric ceramic layer, it is structurally fragile, and when the piezoelectric valve is used, there is a possibility that broken pieces may be ejected together with the compressed gas.
  • the laminated piezoelectric element is vulnerable to a high humidity environment, when the piezoelectric valve is used in a high humidity environment, moisture may enter the laminated piezoelectric element and shorten the life of the piezoelectric valve. There is.
  • the piezoelectric valve described in Patent Document 2 utilizes a laminated piezoelectric element covered with a polyolefin resin having a property of low Young's modulus and excellent flexibility, and having a property of low moisture permeability and excellent water resistance. To do. Therefore, when the piezoelectric valve is used, the damaged pieces of the laminated piezoelectric element are not ejected together with the compressed gas. Further, even when used in a high humidity environment, there is no possibility that moisture will enter the laminated piezoelectric element and shorten its life.
  • the ejection of damaged pieces of the laminated piezoelectric element can be prevented by thinly coating the surface of the laminated piezoelectric element with a polyolefin resin.
  • a polyolefin resin in order to prevent the insulation resistance of the laminated piezoelectric element from decreasing in a high temperature and high humidity environment, it is necessary to coat the surface of the laminated piezoelectric element with a polyolefin resin to some extent. In that case, the movement of the laminated piezoelectric element may be hindered, the stroke may be reduced, or accurate operation may not be possible.
  • the present disclosure can prevent broken pieces of the laminated piezoelectric element from being ejected together with the compressed gas during use, and can prevent moisture from entering the laminated piezoelectric element and shortening its life even when used in a high humidity environment.
  • Another object of the present invention is to provide a piezoelectric valve capable of preventing the movement of the laminated piezoelectric element from being hindered to reduce the stroke or impairing accurate operation, and a method for manufacturing the piezoelectric valve. To do.
  • a piezoelectric valve that opens and closes a valve using the displacement of a laminated piezoelectric element.
  • a valve body with a gas pressure chamber that receives compressed gas supplied from the outside It has a valve body, a laminated piezoelectric element that generates the driving force required for the operation of the valve body as a displacement, and a displacement expansion mechanism that expands the displacement of the laminated piezoelectric element and acts on the valve body, and is arranged inside the valve body.
  • a piezoelectric valve comprising an actuator to be installed
  • the laminated piezoelectric element is characterized in that its surface is coated with silicone in a state of being integrated with the actuator.
  • the surface of the laminated piezoelectric element is covered with silicone filled between a pair of ridge pieces located on both sides in the longitudinal direction of the laminated piezoelectric element with a gap.
  • This disclosure is Further comprising a plate disposed inside the valve body, the actuator is fixed to the plate and disposed inside the valve body together with the plate.
  • a pair of ridge pieces located with a gap on both sides in the longitudinal direction of the laminated piezoelectric element are provided. It is preferable that the surface of the laminated piezoelectric element is coated with silicone filled between a pair of ridge pieces while the actuator is fixed to the plate.
  • silicone means a low-viscosity silicone rubber, preferably a silicone rubber having a viscosity of 0.01 Pa ⁇ s or more and 10.0 Pa ⁇ s or less, and more preferably a silicone having a viscosity of 2.5 Pa ⁇ s. Rubber can be used. Also, in consideration of workability, it is preferable to use a one-component room temperature curing type silicone rubber. For example, it is preferable to use low-viscosity silicone rubber "KE-3475 (product name)" manufactured by Shin-Etsu Chemical Co., Ltd.
  • the plate formed of a resin material is molded with wiring for supplying power to the laminated piezoelectric element. It is preferable that the electrodes of the wiring exposed from the plate are covered with an insulating material in a state of being connected to the lead wires of the laminated piezoelectric element.
  • the displacement expansion mechanism is made of metal material, It is preferable that the lead wire of the laminated piezoelectric element is arranged on the insulating film attached to the surface of the displacement expanding mechanism.
  • a piezoelectric valve that opens and closes a valve using the displacement of a laminated piezoelectric element.
  • a valve body with a gas pressure chamber that receives compressed gas supplied from the outside It has a valve body, a laminated piezoelectric element that generates the driving force required for the operation of the valve body as a displacement, and a displacement expansion mechanism that expands the displacement of the laminated piezoelectric element and acts on the valve body, and is arranged inside the valve body.
  • Silicone is supplied onto the surface of the laminated piezoelectric element integrated with the actuator, and the surface of the laminated piezoelectric element is covered with the silicone.
  • Silicone is supplied on the surface of the laminated piezoelectric element integrated with the actuator, and the laminated piezoelectric is filled between a pair of ridge pieces located on both sides of the laminated piezoelectric element in the longitudinal direction with a gap. It is preferable to cover the surface of the element.
  • This disclosure is Further comprising a plate disposed inside the valve body, the actuator is fixed to the plate and disposed inside the valve body together with the plate.
  • a pair of ridge pieces located with a gap on both sides in the longitudinal direction of the laminated piezoelectric element are provided.
  • silicone is supplied on the surface of the laminated piezoelectric element, and the surface of the laminated piezoelectric element is filled with the silicone filled between the pair of ridge pieces. Is preferably coated.
  • the surface of the laminated piezoelectric element is coated with silicone having excellent water resistance and waterproof properties, broken pieces of the laminated piezoelectric element may be ejected together with the compressed gas during use. Even when used in a high humidity environment, it is possible to prevent moisture from entering the laminated piezoelectric element and shortening its life.
  • the surface of the laminated piezoelectric element is coated with silicone having a property of being rich in elasticity and having high compressibility as compared with the conventional polyolefin resin. Therefore, in order to prevent the insulation resistance of the laminated piezoelectric element from decreasing in a high temperature and high humidity environment, even when the surface of the laminated piezoelectric element is coated with silicone to some extent, the movement of the laminated piezoelectric element is hindered and the stroke is prevented. Can be prevented from becoming smaller or not operating correctly.
  • the surface of a laminated piezoelectric element is coated with silicone filled between a pair of ridge pieces located on both sides in the longitudinal direction of the laminated piezoelectric element with a gap. If this is the case, the entire peripheral surface of the laminated piezoelectric element can be easily covered with silicone.
  • the piezoelectric valve of the present disclosure further includes a plate disposed inside the valve body, the actuator is fixed to the plate, and is disposed together with the plate inside the valve body, on the surface of the plate. Is provided with a pair of ridge pieces located with a gap on both sides in the longitudinal direction of the laminated piezoelectric element when the actuator is fixed to the plate, and the laminated piezoelectric element is fixed to the plate. As long as the surface is covered with silicone filled between the pair of ridge pieces in the state, the entire peripheral surface of the laminated piezoelectric element can be easily covered with silicone.
  • silicone is supplied on the surface of the laminated piezoelectric element integrated with the actuator, and the surface of the laminated piezoelectric element is covered with the silicone. Therefore, other than the surface of the laminated piezoelectric element. Even if the silicone sticks out and adheres to the actuator, poor assembly does not occur when the laminated piezoelectric element is integrated with the actuator.
  • silicone is supplied on the surface of a laminated piezoelectric element integrated with an actuator, and a pair of ridge pieces located with a gap on both sides in the longitudinal direction of the laminated piezoelectric element. If the surface of the laminated piezoelectric element is covered with the silicone filled between the two, the entire peripheral surface of the laminated piezoelectric element can be easily covered with the silicone.
  • the method for manufacturing a piezoelectric valve of the present disclosure further includes a plate disposed inside the valve body, the actuator is fixed to the plate, and is disposed inside the valve body together with the plate.
  • the actuator is fixed to the plate, a pair of ridge pieces are provided on the surface of the laminated piezoelectric element with a gap on both sides in the longitudinal direction, and the laminated piezoelectric element is integrated with the actuator.
  • silicone is supplied on the surface of the laminated piezoelectric element, and the surface of the laminated piezoelectric element is covered with the silicone filled between the pair of ridge pieces. Even if silicone sticks out to the surface other than the surface of the piezoelectric element, assembly failure does not occur when the actuator with the laminated piezoelectric element integrated is fixed to the plate.
  • a pair of ridge pieces located on both sides of the laminated piezoelectric element in the longitudinal direction when the actuator is fixed to the plate are provided on the surface of the plate. Therefore, the entire peripheral surface of the laminated piezoelectric element can be easily covered with the silicone filled between the pair of ridge pieces.
  • FIG. 3 is a plan view of a state in which an actuator is fixed to a valve seat plate included in the piezoelectric valve according to the embodiment of the present disclosure.
  • FIG. 8 is a sectional view taken along the line AA of FIG. The graph which shows the ejection pressure characteristic of the air ejected from the piezoelectric valve in embodiment of this disclosure.
  • FIG. 1 is a typical example of a laminated piezoelectric element (hereinafter referred to as “piezoelectric element”) and shows a cross-sectional view.
  • the piezoelectric element 1 shown in FIG. 1 has a laminated body 4 in which a piezoelectric ceramic layer 2 and an internal electrode layer 3 are alternately laminated.
  • the internal electrode layer 3 is exposed on the side surface of the laminated body 4.
  • the side surface of each exposed internal electrode layer 3 is covered with an insulating layer 5 every other layer.
  • the laminate 4 has an external electrode 6 that covers the insulating layer 5 and conducts with the internal electrode layer 3 that is not covered by the insulating layer 5.
  • FIG. 2 is an example of a piezoelectric valve and shows a perspective view.
  • FIG. 3 shows an exploded view of the piezoelectric valve of FIG.
  • FIG. 4 shows an explanatory view of the actuator.
  • FIG. 5 shows an explanatory view of a state in which the actuator is fixed to the valve seat plate.
  • FIG. 6 is a cross-sectional view of the piezoelectric valve, showing an explanatory view of a state in which the valve seat plate is arranged inside the valve body.
  • the piezoelectric valve 10 shown in FIGS. 2 to 6 is arranged inside the valve body 20 and the valve body 20 and is fixed to the valve body 20 with screws on both sides of the valve seat plate 25 and the valve seat plate 25.
  • the actuator 30 to be fixed is provided.
  • the valve body 20 is a case in which the front surface is open, and is provided inside with a gas pressure chamber that receives a supply of compressed gas from an external compressed gas supply source (not shown). Further, a connector portion 50 is provided on the front surface of the valve body 20. A gas suction port 51 for sucking compressed gas and a gas discharge port 52 for discharging compressed gas are opened in the valve body 20 on the front surface of the connector portion 50.
  • a wiring board 55 for supplying power to the piezoelectric element 32 is arranged between the valve body 20 and the connector portion 50.
  • a wiring connector 29 for supplying power to the piezoelectric element 32 via the wiring board 55 is arranged at one side end of the connector portion 50 and at a lateral position of the valve body 20.
  • the valve seat plate 25 is provided with mounting portions for the actuator 30 on both sides, and has a valve seat 26 with which the valve body 31 described later of the actuator 30 abuts. Further, a lid member 28 for closing the opening of the case is attached to the front surface of the valve seat plate 25.
  • the lid material 28 is formed with a gas discharge path that communicates from the valve seat surface of the valve seat 26 to the discharge port 52 that opens on the front surface of the connector portion 50. Further, the lid material 28 is formed with a gas suction path that communicates with the inside of the valve body 20 from the suction port 51 that opens on the front surface of the connector portion 50.
  • the valve seat plate 25 is formed of, for example, a synthetic resin material, and the wiring from the wiring board 55 to the piezoelectric element 32 is molded. Further, at the rear position of the valve seat plate 25, the electrode 58 of the wiring connected to the lead wire 57 of the piezoelectric element 32 is exposed as will be described later with reference to FIG.
  • the actuator 30 expands the displacement of the rubber-made, preferably slippery rubber valve body 31, the piezoelectric element 32 generated by the displacement of the driving force required for the operation of the valve body 31, and the piezoelectric element 32.
  • the displacement expanding mechanism 33 that acts on the valve body 31 is provided.
  • the piezoelectric element 32 the piezoelectric element shown in FIG. 1 can be used.
  • a resin exterior type piezoelectric element in which the entire peripheral surface including the side surface on which the internal electrode layer 3 is exposed is thinly coated with epoxy resin can also be used.
  • the displacement expanding mechanism 33 has a displacement expanding unit 34 that expands the displacement of the piezoelectric element 32 and a displacement transmitting unit 35 that transmits the displacement of the piezoelectric element 32 to the displacement expanding unit 34.
  • the displacement expansion mechanism 33 is arranged symmetrically with respect to an axis in the operating direction of the valve body 31, here, a straight line connecting the valve body 31 and the longitudinal axis of the piezoelectric element 32 (hereinafter, referred to as “center line”). ..
  • the displacement transmission unit 35 has a U-shaped base substrate 36 to which one end of the piezoelectric element 32 is joined, and a cap member 37 to which the other end of the piezoelectric element 32 is joined.
  • the piezoelectric element 32 is incorporated in the space of the U-shaped base substrate 36 between the U-shaped bottom portion of the base substrate 36 and the cap member 37.
  • the piezoelectric element 32 is joined to the U-shaped bottom portion of the base substrate 36 at one end and to the cap member 37 at the other end by plastically deforming the U-shaped bottom portion of the base substrate 36.
  • the displacement expanding portion 34 is composed of first and second displacement expanding portions 34a and 34b arranged symmetrically with respect to the center line.
  • the first displacement expanding portion 34a has first and second hinges 39, 40, a first arm 41, and a first leaf spring 42.
  • One end of the first hinge 39 is integrated with one end of the U-shaped base substrate 36, and one end of the second hinge 40 is integrated with the cap member 37.
  • One end of the first leaf spring 42 is joined to the outer tip of the first arm 41, and one side end of the valve body 31 is joined to the other end of the first leaf spring 42.
  • the second displacement expanding portion 34b has third and fourth hinges 43, 44, a second arm 45, and a second leaf spring 46.
  • One end of the third hinge 43 is integrated with the other end of the U-shaped base substrate 36, and one end of the fourth hinge 44 is integrated with the cap member 37.
  • One end of the second leaf spring 46 is joined to the outer tip of the second arm 45, and the other side end of the valve body 31 is joined to the other end of the second leaf spring 46.
  • the displacement expansion mechanism 33 can punch out a metal material such as a stainless steel material including an Invar material and integrally mold it.
  • the piezoelectric element 32 When the piezoelectric element 32 is energized in the valve closed state of the actuator 30, the piezoelectric element 32 extends. Regarding the displacement caused by the extension of the piezoelectric element 32, in the displacement expanding mechanism 33, the first and third hinges 39 and 43 are fulcrums, the second and fourth hinges 40 and 44 are power points, and the first and second arms 41 and 45 are used. It is expanded by the principle of leverage with the outer tip of the first and second arms 41 and 45 as the point of action, and the outer tips of the first and second arms 41 and 45 are greatly displaced.
  • the piezoelectric element 32 contracts, and the contraction causes the valve body 31 to be seated on the valve seat 26 via the displacement expansion mechanism 33, and the gas discharge path. To close.
  • FIG. 7 shows a plan view of an actuator included in the piezoelectric valve according to the embodiment of the present disclosure.
  • the surface of the piezoelectric element 32 that is, the side surface where at least the internal electrode layer of the piezoelectric element 32 is exposed is covered with silicone 8.
  • the piezoelectric valve according to the embodiment of the present disclosure is, for example, the type of piezoelectric element shown in FIG. 1, and the piezoelectric element 32 whose surface is coated with silicone 8 can be integrally assembled with the actuator 30.
  • the silicone 8 is supplied on the surface of the piezoelectric element 32 integrated with the actuator 30 by a dispenser, a brush or the like, and the surface of the piezoelectric element 32 is covered by the silicone 8. It can also be coated.
  • the silicone 8 is supplied on the surface of the piezoelectric element 32 integrated with the actuator 30, and the surface of the piezoelectric element 32 is covered with the silicone 8. Even if the silicone 8 protrudes from the surface of the piezoelectric element 32 and adheres to it, there is no concern that assembly failure will occur when the piezoelectric element 32 is integrated with the actuator 30.
  • the piezoelectric valve according to the embodiment of the present disclosure has a surface coated with silicone 8 in a state where the piezoelectric element 32 is integrated with the actuator 30, and can be assembled by fixing the actuator 30 to the valve seat plate. ..
  • the piezoelectric element 32 it is sufficient that at least the side surface where the internal electrode layer is exposed is coated with silicone 8, and preferably, all the side surfaces (entire peripheral surface) including the side surface where the internal electrode layer is exposed are made of silicone. It suffices if it is covered with 8.
  • the piezoelectric element 32 when a resin exterior type piezoelectric element whose entire peripheral surface is thinly coated with epoxy resin is used as the piezoelectric element 32, it is preferable to cover the entire peripheral surface with silicone 8.
  • FIG. 8 shows a plan view of a state in which the actuator is fixed to the valve seat plate included in the piezoelectric valve according to the embodiment of the present disclosure.
  • FIG. 9 shows a cross-sectional view taken along the line AA of FIG.
  • the actuator 30 when the actuator 30 is fixed to the attachment portion of the actuator 30 on the surface of the valve seat plate 25 with a screw, it is between the piezoelectric element 32 and the displacement transmission portion 35.
  • a pair of ridge pieces 27 located with a gap on both sides of the piezoelectric element 32 in the longitudinal direction (expansion / contraction direction) are provided.
  • the pair of ridge pieces 27 are formed higher than the surface height of the piezoelectric element 32 of the actuator 30 fixed to the valve seat plate 25.
  • the piezoelectric valve according to the embodiment of the present disclosure is the actuator 30 shown in FIG. 7, in which the piezoelectric element 32 whose side surface is covered with the silicone 8 to expose the internal electrode layer is fixed to the valve seat plate 25 and then piezoelectric.
  • the silicone 8 on the surface of the element 32 By supplying the silicone 8 on the surface of the element 32, the entire peripheral surface of the piezoelectric element 32 can be covered with the silicone 8 filled between the pair of ridge pieces 27.
  • the piezoelectric element 32 whose surface is not covered with silicone 8 is integrated with the actuator 30, the actuator 30 is fixed to the valve seat plate 25, and then the surface of the piezoelectric element 32 is formed.
  • the silicone 8 By supplying the silicone 8 on the top, the entire peripheral surface of the piezoelectric element 32 can be covered with the silicone 8 filled between the pair of ridge pieces 27.
  • the piezoelectric element 32 whose surface is not covered with silicone 8 is integrated with the actuator 30, the actuator 30 is fixed to the valve seat plate 25, and then the surface of the piezoelectric element 32 is formed. If the silicone 8 is supplied above and the entire peripheral surface of the piezoelectric element 32 is covered with the silicone 8 filled between the pair of ridge pieces 27, the silicone 8 protrudes from the surface other than the surface of the piezoelectric element 32. Even if they adhere, there is no concern that assembly failure will occur when fixing the actuator 32 to the valve seat plate 25.
  • silicone 8 means a low-viscosity silicone rubber, preferably a silicone rubber having a viscosity of 0.01 Pa ⁇ s or more and 10.0 Pa ⁇ s or less, and more preferably 2.5 Pa ⁇ s.
  • -Silicone rubber of s can be used.
  • it is preferable to use a one-component room temperature curing type silicone rubber for example, a low-viscosity silicone rubber "KE-3475 (product name)" manufactured by Shin-Etsu Chemical Co., Ltd. is used. Is preferable.
  • the electrode 58 of the wiring molded to supply power to the piezoelectric element 32 is exposed at the rear position of the valve seat plate 25, and is connected to the lead wire 57 of the piezoelectric element 32 by soldering.
  • the electrode 58 of the wiring is covered with an insulating material (not shown) in a state of being connected to the lead wire 57.
  • an insulating resin material such as silicone can be used.
  • the actuator 30 has an insulating film 62 attached to the rear surface of the displacement transmitting portion 35 in the displacement expanding mechanism 33.
  • the valve seat plate 25 to which the actuator 30 is attached is molded with wiring from the wiring board 55 to the piezoelectric element 32.
  • the lead wire 57 of the piezoelectric element 32 is arranged on the insulating film 62 so as to prevent contact with the metal material constituting the displacement expanding mechanism 33 of the actuator 30.
  • the lead wire 57 of the piezoelectric element 32 is connected to the electrode 58 of the wiring exposed at the rear position of the valve seat plate 25 by soldering.
  • the low moisture permeability films for example, a low moisture permeability film can be used.
  • the low moisture permeability films the temperature 40 ° C. of thickness 1mm materials, moisture permeability under 95% relative humidity environment refers to the following resin film 0.5g / m 2 ⁇ 24hr.
  • a resin film made of a low moisture permeable material for example, a polyolefin resin film such as polyethylene, polypropylene, or polyethylene terephthalate can be used.
  • a resin film subjected to a low moisture permeable process such as coating with a low moisture permeable agent such as fluorine can also be used.
  • the piezoelectric valve according to the embodiment of the present disclosure is provided with a pair of ridge pieces 27 on the surface of the valve seat plate 25.
  • a pair of ridge pieces may be provided on the inner wall surface of the valve body.
  • the silicone 8 is supplied on the surface of the piezoelectric element, so that the entire peripheral surface of the piezoelectric element 32 is covered with the silicone 8 filled between the pair of ridge pieces 27. can do.
  • the surface of the piezoelectric valve of the present disclosure is coated with silicone having excellent water resistance and waterproof properties, broken pieces of the piezoelectric element may be ejected together with the compressed gas during use, or a high humidity environment may occur. Even when used underneath, it is possible to prevent moisture from entering the piezoelectric element and shortening its life.
  • the surface of the piezoelectric element is coated with silicone, which has a property of being rich in elasticity and having high compressibility as compared with the conventional polyolefin resin. Therefore, in order to prevent the insulation resistance of the piezoelectric element from decreasing in a high temperature and high humidity environment, even if the surface of the piezoelectric element is coated with silicone to some extent, the movement of the piezoelectric element is hindered and the stroke becomes small, or the stroke is accurate. It is possible to prevent the operation from stopping.
  • FIG. 10 is a graph showing the ejection pressure characteristics of the air ejected from the piezoelectric valve, in which the surface of the piezoelectric element is coated with silicone and the surface of the piezoelectric element is not covered with silicone. The graph which compares is shown.
  • the coating thickness is about 150 ⁇ m, which can prevent a decrease in insulation resistance in a high temperature and high humidity environment.
  • the broken line shows the result of the piezoelectric valve in which the surface of the piezoelectric element is covered with silicone.
  • the solid line shows the result of the piezoelectric valve in which the surface of the piezoelectric element is not covered with silicone.
  • the piezoelectric valve of the present disclosure When the piezoelectric valve of the present disclosure is used, broken pieces of the laminated piezoelectric element are ejected together with the compressed gas, and even when the piezoelectric valve is used in a high humidity environment, moisture invades the laminated piezoelectric element and the life is shortened. It is extremely useful because it can be prevented, and it is possible to prevent the movement of the laminated piezoelectric element from being hindered and the stroke from becoming small or the operation from becoming inaccurate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

使用に際し圧縮気体とともに積層型圧電素子の破損片が噴出したり、高湿環境下で使用した場合でも積層型圧電素子に湿気が侵入して寿命が短くなることを防止でき、また、積層型圧電素子の動きが妨げられてストロークが小さくなったり、正確な動作をしなくなったりすることを防止できる圧電式バルブを提供する。 積層型圧電素子の変位を利用してバルブの開閉を行う圧電式バルブであって、外部から供給される圧縮気体を受け入れる気体圧力室を有するバルブ本体と、弁体、弁体の動作に必要な駆動力を変位として発生する積層型圧電素子、積層型圧電素子の変位を拡大して弁体に作用させる変位拡大機構を有し、バルブ本体の内部に配設されるアクチュエータと、を備える圧電式バルブにおいて、積層型圧電素子は、アクチュエータに一体化された状態でシリコーンにより表面を被覆されていることを特徴とする。

Description

圧電式バルブ及び該圧電式バルブの製造方法
 本開示は、積層型圧電素子の変位を利用してバルブの開閉を行う圧電式バルブ、及び該圧電式バルブの製造方法に関する。
 従来、積層型圧電素子の変位を利用してバルブの開閉を行い、圧縮気体を噴出する圧電式バルブが知られている(特許文献1を参照。)。
 特許文献1に記載された圧電式バルブは、高速応答性能に優れる積層型圧電素子の特性を利用するものであり、積層型圧電素子の小さな変位をテコの原理に基づき拡大する変位拡大機構を備えるものである。
 圧電式バルブは、積層型圧電素子に電圧を印加すると、該積層型圧電素子の伸長方向への変位が変位拡大機構を介して弁体に伝わり、該弁体を速やかに移動させて開弁する。
 また、圧電式バルブは、積層型圧電素子への電圧印加を解除すると、該積層型圧電素子の原状復帰に伴う復帰力が変位拡大機構を介して弁体に伝わり、該弁体を速やかに弁座に当接させて閉弁する。
 ところで、積層型圧電素子は、動作に伴う消費エネルギーが少なく、高速動作に適し、小型である等の優れた特長をもつ。
 しかしながら、積層型圧電素子は、圧電セラミック層を有するために構造的に脆く、圧電式バルブの使用に際し、圧縮気体とともに破損片が噴出するおそれがある。
 また、積層型圧電素子は、高湿環境に弱いため、圧電式バルブを高湿環境下で使用する場合には、積層型圧電素子に湿気が侵入して該圧電式バルブの寿命が短くなるおそれがある。
 そこで、本発明者らは、積層型圧電素子の表面をポリオレフィン系樹脂により被覆することを提案した(特許文献2を参照。)。
 特許文献2に記載された圧電式バルブは、ヤング率が小さく柔軟性に優れる特性を有し、かつ、透湿度が小さく耐水性に優れる特性を有するポリオレフィン系樹脂により覆われる積層型圧電素子を利用する。そのため、圧電式バルブの使用に際し圧縮気体とともに積層型圧電素子の破損片が噴出することがない。また、高湿環境下で使用した場合でも積層型圧電素子に湿気が侵入して寿命が短くなるおそれがない。
 積層型圧電素子の破損片の噴出は、積層型圧電素子の表面をポリオレフィン系樹脂により薄く被覆することで防げる。しかし、積層型圧電素子の高温・高湿環境下での絶縁抵抗の低下を防ぐためには、積層型圧電素子の表面をポリオレフィン系樹脂によりある程度厚く被覆する必要がある。その場合、積層型圧電素子の動きが妨げられてストロークが小さくなったり、正確な動作をしなくなったりするおそれがある。
特開2013-124695号公報 特開2016-61412号公報
 そこで、本開示は、使用に際し圧縮気体とともに積層型圧電素子の破損片が噴出したり、高湿環境下で使用した場合でも積層型圧電素子に湿気が侵入して寿命が短くなることを防止でき、また、積層型圧電素子の動きが妨げられてストロークが小さくなったり、正確な動作をしなくなったりすることを防止できる圧電式バルブ、及び該圧電式バルブの製造方法を提供することを目的とする。
 上記目的を達成するため、本開示は、
 積層型圧電素子の変位を利用してバルブの開閉を行う圧電式バルブであって、
 外部から供給される圧縮気体を受け入れる気体圧力室を有するバルブ本体と、
 弁体、弁体の動作に必要な駆動力を変位として発生する積層型圧電素子、積層型圧電素子の変位を拡大して弁体に作用させる変位拡大機構を有し、バルブ本体の内部に配設されるアクチュエータと、を備える圧電式バルブにおいて、
 積層型圧電素子が、アクチュエータに一体化された状態でシリコーンにより表面を被覆されていることを特徴とする。
 本開示では、
 積層型圧電素子が、当該積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片の間に充填されたシリコーンにより表面を被覆されていることが好ましい。
 本開示は、
 バルブ本体の内部に配設されるプレートをさらに備え、アクチュエータはプレートに固定され、該プレートとともにバルブ本体の内部に配設されるものであって、
 プレートの表面には、アクチュエータがプレートに固定された際、積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片が設けられており、
 積層型圧電素子が、アクチュエータがプレートに固定された状態で一対の突条片の間に充填されたシリコーンにより表面を被覆されていることが好ましい。
 ここで、本開示において、シリコーンとは低粘度のシリコーンゴムを意味し、好ましくは粘度0.01Pa・s以上、10.0Pa・s以下のシリコーンゴム、より好ましくは粘度2.5Pa・sのシリコーンゴムを用いることができる。
 また、作業性を考慮して、一液型の常温硬化タイプのシリコーンゴムを用いることが好まし。例えば、信越化学工業株式会社製の低粘度シリコーンゴム「KE-3475(品名)」等を用いることが好ましい。
 本開示では、
 変位拡大機構は金属材料により形成される一方で、樹脂材料により形成されるプレートには積層型圧電素子に給電するための配線がモールドされてなり、
 プレートから露出する配線の電極が、積層型圧電素子のリード線と接続された状態で絶縁性材料により被覆されていることが好ましい。
 本開示では、
 変位拡大機構が金属材料により形成されてなり、
 積層型圧電素子のリード線が、変位拡大機構の表面に貼着される絶縁用フィルム上に配置されることが好ましい。
 また、上記目的を達成するため、本開示は、
 積層型圧電素子の変位を利用してバルブの開閉を行う圧電式バルブであって、
 外部から供給される圧縮気体を受け入れる気体圧力室を有するバルブ本体と、
 弁体、弁体の動作に必要な駆動力を変位として発生する積層型圧電素子、積層型圧電素子の変位を拡大して弁体に作用させる変位拡大機構を有し、バルブ本体の内部に配設されるアクチュエータと、を備える圧電式バルブの製造方法において、
 アクチュエータに一体化された積層型圧電素子の表面上にシリコーンを供給し、シリコーンにより積層型圧電素子の表面を被覆することを特徴とする。
 本開示では、
 アクチュエータに一体化された積層型圧電素子の表面上にシリコーンを供給し、積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片の間に充填されるシリコーンにより積層型圧電素子の表面を被覆することが好ましい。
 本開示は、
 バルブ本体の内部に配設されるプレートをさらに備え、アクチュエータはプレートに固定され、該プレートとともにバルブ本体の内部に配設されるものであって、
 プレートの表面には、アクチュエータがプレートに固定された際、積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片が設けられており、
 積層型圧電素子をアクチュエータに一体化し、アクチュエータをプレートに固定した後、積層型圧電素子の表面上にシリコーンを供給し、一対の突条片の間に充填されるシリコーンにより積層型圧電素子の表面を被覆することが好ましい。
 本開示の圧電式バルブは、積層型圧電素子が、耐水性・防水性に優れる特性を有するシリコーンにより表面を被覆されているので、使用に際し圧縮気体とともに積層型圧電素子の破損片が噴出したり、高湿環境下で使用した場合でも積層型圧電素子に湿気が侵入して寿命が短くなることを防止できる。
 また、本開示の圧電式バルブは、積層型圧電素子が、従来のポリオレフィン系樹脂と比べ弾性に富み、圧縮性が大きい特性を有するシリコーンにより表面を被覆されている。そのため、積層型圧電素子の高温・高湿環境下での絶縁抵抗の低下を防ぐために、積層型圧電素子の表面をシリコーンによりある程度厚く被覆する場合でも、積層型圧電素子の動きが妨げられてストロークが小さくなったり、正確な動作をしなくなったりすることを防止できる。
 本開示の圧電式バルブは、積層型圧電素子が、当該積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片の間に充填されたシリコーンにより表面を被覆されているものであれば、シリコーンにより積層型圧電素子の全周面を簡単に被覆することができる。
 本開示の圧電式バルブは、バルブ本体の内部に配設されるプレートをさらに備え、アクチュエータはプレートに固定され、該プレートとともにバルブ本体の内部に配設されるものであって、プレートの表面には、アクチュエータがプレートに固定された際、積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片が設けられており、積層型圧電素子が、アクチュエータがプレートに固定された状態で一対の突条片の間に充填されたシリコーンにより表面を被覆されているものであれば、シリコーンにより積層型圧電素子の全周面を簡単に被覆することができる。
 本開示の圧電式バルブの製造方法は、アクチュエータに一体化された積層型圧電素子の表面上にシリコーンを供給し、シリコーンにより積層型圧電素子の表面を被覆するので、積層型圧電素子の表面以外にシリコーンがはみ出して付着する場合でも、積層型圧電素子をアクチュエータに一体化する際の組付不良が起こらない。
 本開示の圧電式バルブの製造方法は、アクチュエータに一体化された積層型圧電素子の表面上にシリコーンを供給し、積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片の間に充填されるシリコーンにより積層型圧電素子の表面を被覆することとすれば、シリコーンにより積層型圧電素子の全周面を簡単に被覆することができる。
 本開示の圧電式バルブの製造方法は、バルブ本体の内部に配設されるプレートをさらに備え、アクチュエータはプレートに固定され、該プレートとともにバルブ本体の内部に配設されるものであって、プレートの表面には、アクチュエータがプレートに固定された際、積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片が設けられており、積層型圧電素子をアクチュエータに一体化し、アクチュエータをプレートに固定した後、積層型圧電素子の表面上にシリコーンを供給し、一対の突条片の間に充填されるシリコーンにより積層型圧電素子の表面を被覆することとすれば、積層型圧電素子の表面以外にシリコーンがはみ出して付着する場合でも、積層型圧電素子を一体化したアクチュエータをプレートに固定する際の組付不良が起こらない。
 また、本開示の圧電式バルブの製造方法は、プレートの表面に、アクチュエータがプレートに固定された際、積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片が設けられているので、一対の突条片の間に充填されるシリコーンにより積層型圧電素子の全周面を簡単に被覆することができる。
積層型圧電素子の断面図。 圧電式バルブの斜視図。 圧電式バルブの組立分解図。 アクチュエータの説明図。 弁座プレートにアクチュエータを固定した状態の説明図。 圧電式バルブの断面図であって、弁座プレートをバルブ本体内部に配設した状態の説明図。 本開示の実施の形態における圧電式バルブが備えるアクチュエータの平面図。 本開示の実施の形態における圧電式バルブが備える弁座プレートにアクチュエータを固定した状態の平面図。 図8のA-A断面図。 本開示の実施の形態における圧電式バルブから噴出するエアの噴出圧特性を示すグラフ。
 本開示の実施の形態を図面に基づいて説明する。
 図1は、積層型圧電素子(以下、「圧電素子」という)の代表例であって断面図を示す。
 図1に示す圧電素子1は、圧電セラミック層2と内部電極層3を交互に積層した積層体4を有する。積層体4の側面には内部電極層3が露出している。露出した各内部電極層3の側面は、一層おきに絶縁層5で被覆されている。さらに、積層体4は、絶縁層5を覆いかつ絶縁層5によって被覆されていない内部電極層3と導通する外部電極6を有する。
 図2は圧電式バルブの一例であって斜視図を示す。図3は図2の圧電式バルブの組立分解図を示す。図4はアクチュエータの説明図を示す。図5は弁座プレートにアクチュエータを固定した状態の説明図を示す。図6は圧電式バルブの断面図であって、弁座プレートをバルブ本体内部に配設した状態の説明図を示す。
 図2乃至図6に示す圧電式バルブ10は、バルブ本体20、バルブ本体20の内部に配設されるとともに該バルブ本体20に固定される弁座プレート25、弁座プレート25の両面にネジで固定されるアクチュエータ30を備える。
 バルブ本体20は、前面が開口するケースであって、内部には外部の圧縮気体供給源(図示せず)から圧縮気体の供給を受ける気体圧力室を備える。
 また、バルブ本体20の前面には、コネクタ部50が設けられる。コネクタ部50の前面には、該バルブ本体20内に圧縮気体を吸入する気体吸入口51及び圧縮気体を排出する気体排出口52が開口する。
 バルブ本体20とコネクタ部50の間には、圧電素子32に給電するための配線基板55が配設されている。コネクタ部50の一側端であってバルブ本体20の側方位置に、配線基板55を介して圧電素子32に給電するための配線コネクタ29が配設される。
 弁座プレート25は、アクチュエータ30の取り付け部を両面に備えるとともに、アクチュエータ30の後述する弁体31が当接する弁座26を有する。また、弁座プレート25の前面には、ケースの開口を閉鎖する蓋材28が取り付けられる。当該蓋材28には、弁座26の弁座面からコネクタ部50の前面に開口する排出口52へ連通する気体排出路が形成される。さらに、蓋材28には、コネクタ部50の前面に開口する吸入口51からバルブ本体20内に連通する気体吸入路が形成される。
 弁座プレート25は、例えば合成樹脂材料により成形され、配線基板55から圧電素子32への配線がモールドされる。
 また、弁座プレート25の後方位置には、図8を用いて後述するように圧電素子32のリード線57と接続される配線の電極58が露出する。
 アクチュエータ30は、図4に示すように、ゴム製好ましくは滑性ゴムの弁体31、該弁体31の動作に必要な駆動力を変位として発生する圧電素子32、圧電素子32の変位を拡大して弁体31に作用させる変位拡大機構33を備える。
 圧電素子32には、図1に示す圧電素子を用いることができる。また、圧電素子32には、内部電極層3が露出する側面を含む全周面がエポキシ樹脂で薄く被覆された樹脂外装型圧電素子を用いることもできる。
 変位拡大機構33は、圧電素子32の変位を拡大する変位拡大部34と、圧電素子32の変位を変位拡大部34に伝達する変位伝達部35を有する。変位拡大機構33は、弁体31の動作方向の軸線、ここでは、弁体31と圧電素子32の長手方向軸線を結ぶ直線(以下、「中心線」という。)に対して対称に配置される。
 変位伝達部35は、圧電素子32の一端が接合されるU字状のベース基板36と、圧電素子32の他端が接合されるキャップ部材37を有する。圧電素子32がU字状のベース基板36の空間内に配設されることで、変位拡大機構33は圧電素子32の長手方向軸線を中心として対称な配置とされる。
ここで、圧電素子32は、U字状のベース基板36の空間内であって該ベース基板36のU字状底部とキャップ部材37との間に組み込まれる。圧電素子32は、ベース基板36のU字状底部を塑性変形させることで、一端がベース基板36のU字状底部に接合され、他端がキャップ部材37に接合される。
 変位拡大部34は、中心線に対して対称な配置とされる第1及び第2変位拡大部34a,34bから構成される。
 第1変位拡大部34aは、第1及び第2ヒンジ39,40、第1アーム41及び第1板バネ42を有する。第1ヒンジ39の一端はU字状のベース基板36の一方側先端に対し一体とされ、第2ヒンジ40の一端はキャップ部材37に対し一体とされる。第1アーム41の外側先端部には、第1板バネ42の一端が接合され、該第1板バネ42の他端には弁体31の一方側の側端部が接合される。
 他方、第2変位拡大部34bは、第3及び第4ヒンジ43,44、第2アーム45及び第2板バネ46を有する。第3ヒンジ43の一端はU字状のベース基板36の他方側先端に対し一体とされ、第4ヒンジ44の一端はキャップ部材37に対し一体とされる。第2アーム45の外側先端部には、第2板バネ46の一端が接合され、該第2板バネ46の他端には弁体31の他方側の側端部が接合される。
 ここで、変位拡大機構33は、例えばインバー材を含むステンレス材等の金属材料を打ち抜いて一体に成形することができる。
 上記アクチュエータ30は、閉弁状態において圧電素子32に通電すると、当該圧電素子32が伸長する。当該圧電素子32の伸長に伴う変位は、変位拡大機構33において、第1及び第3ヒンジ39,43を支点、第2及び第4ヒンジ40,44を力点、第1及び第2アーム41,45の外側先端部を作用点としてテコの原理により拡大され、第1及び第2アーム41,45の外側先端部を大きく変位させる。
 そして、第1及び第2アーム41,45の外側先端部の変位は、第1及び第2板バネ42,46を介して弁体31を弁座26から離間させ、気体排出路を開放する。
 他方、上記アクチュエータ30は、圧電素子32への通電が解除されると該圧電素子32が収縮し、当該収縮が変位拡大機構33を介して弁体31を弁座26に着座させ、気体排出路を閉鎖する。
 図7は、本開示の実施の形態における圧電式バルブが備えるアクチュエータの平面図を示す。
 図7に示すアクチュエータは、圧電素子32が一体化された状態で、当該圧電素子32の表面、即ち、圧電素子32の少なくとも内部電極層が露出する側面がシリコーン8により被覆されている。
 本開示の実施の形態における圧電式バルブは、例えば、図1に示すタイプの圧電素子であって、シリコーン8により表面が被覆された圧電素子32をアクチュエータ30に一体に組み付けることができる。
 また、本開示の実施の形態における圧電式バルブは、アクチュエータ30に一体化された状態の圧電素子32の表面上にディスペンサや刷毛等によりシリコーン8を供給し、シリコーン8により圧電素子32の表面を被覆することもできる。
 本開示の実施の形態における圧電式バルブは、アクチュエータ30に一体化された状態の圧電素子32の表面上にシリコーン8を供給し、シリコーン8により圧電素子32の表面を被覆することとすれば、シリコーン8が圧電素子32の表面からはみ出して付着する場合でも、圧電素子32をアクチュエータ30に一体化する際の組付不良が起こる心配がない。
 本開示の実施の形態における圧電式バルブは、圧電素子32がアクチュエータ30に一体化された状態でシリコーン8により表面を被覆されており、アクチュエータ30を弁座プレートに固定することで組み立てることができる。
 ここで、圧電素子32は、少なくとも内部電極層が露出する側面がシリコーン8により被覆されていればよく、好ましくは、内部電極層が露出する側面を含むすべての側面(全周面)が、シリコーン8により被覆されていればよい。
 また、圧電素子32として、全周面がエポキシ樹脂で薄く被覆されている樹脂外装型圧電素子を用いる場合には、シリコーン8により全周面を被覆することが好ましい。
 図8は、本開示の実施の形態における圧電式バルブが備える弁座プレートにアクチュエータを固定した状態の平面図を示す。図9は図8のA-A断面図を示す。
 本開示の実施の形態における圧電式バルブにおいて、弁座プレート25の表面におけるアクチュエータ30の取り付け部には、アクチュエータ30がネジで固定された際、圧電素子32と変位伝達部35の間であって圧電素子32の長手方向(伸縮方向)両側に隙間を空けて位置する一対の突条片27が設けられる。
 また、図9に示すように、一対の突条片27は、弁座プレート25に固定されたアクチュエータ30の圧電素子32の表面の高さよりも高く形成されている。
 本開示の実施の形態における圧電式バルブは、図7に示すアクチュエータ30であって、シリコーン8により内部電極層が露出する側面が被覆された圧電素子32を弁座プレート25に固定した後、圧電素子32の表面上にシリコーン8を供給することで、一対の突条片27の間に充填されるシリコーン8により圧電素子32の全周面を被覆することができる。
 また、本開示の実施の形態における圧電式バルブは、シリコーン8により表面を被覆されていない圧電素子32をアクチュエータ30に一体化し、アクチュエータ30を弁座プレート25に固定した後、圧電素子32の表面上にシリコーン8を供給することで、一対の突条片27の間に充填されるシリコーン8により圧電素子32の全周面を被覆することもできる。
 本開示の実施の形態における圧電式バルブは、アクチュエータ30が弁座プレート25に固定された際、圧電素子32の長手方向両側に隙間を空けて位置する一対の突条片27が弁座プレート25の表面に設けられているので、一対の突条片27の間に充填されたシリコーン8により全周面を簡単に被覆することができる。
 なお、本開示の実施の形態における圧電式バルブは、シリコーン8により表面を被覆されていない圧電素子32をアクチュエータ30に一体化し、アクチュエータ30を弁座プレート25に固定した後、圧電素子32の表面上にシリコーン8を供給し、一対の突条片27の間に充填されるシリコーン8により圧電素子32の全周面を被覆することとすれば、シリコーン8が圧電素子32の表面以外にはみ出して付着する場合でも、アクチュエータ32を弁座プレート25に固定する際の組付不良が起こる心配がない。
 ここで、本開示において、シリコーン8とは低粘度のシリコーンゴムを意味するものであり、好ましくは粘度0.01Pa・s以上、10.0Pa・s以下のシリコーンゴム、より好ましくは粘度2.5Pa・sのシリコーンゴムを用いることができる。
 また、作業性を考慮して、一液型の常温硬化タイプのシリコーンゴムを用いることが好ましく、例えば、信越化学工業株式会社製の低粘度シリコーンゴム「KE-3475(品名)」等を用いることが好ましい。
図8において、弁座プレート25の後方位置には、圧電素子32に給電するためにモールドされた配線の電極58が露出し、圧電素子32のリード線57と半田により接続されている。配線の電極58は、リード線57と接続された状態で図示しない絶縁性材料により被覆されている。絶縁性材料には、例えばシリコーン等の絶縁性樹脂材料を用いることができる。
 また、図8に示すように、アクチュエータ30は、変位拡大機構33における変位伝達部35の表面後部位置に絶縁用フィルム62が貼着されている。
 図8において、アクチュエータ30が取り付けられる弁座プレート25には、配線基板55から圧電素子32への配線がモールドされている。圧電素子32のリード線57は、アクチュエータ30の変位拡大機構33を構成する金属材料と接触することを防ぐよう、絶縁用フィルム62上に配置されている。圧電素子32のリード線57は、弁座プレート25の後方位置に露出する配線の電極58と半田により接続される。
 ここで、絶縁用フィルム62には、例えば低透湿性フィルムを用いることができる。
 本開示において、低透湿性フィルムとは、厚み1mmの材料の温度40℃、相対湿度95%の環境下における透湿度が0.5g/m・24hr以下の樹脂フィルムをいう。
 低透湿性フィルムには、低透湿性材料からなる樹脂フィルム、例えばポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどのポリオレフィン系樹脂フィルムを用いることができる。また、低透湿性フィルムには、フッ素等の低透湿剤をコーティングする等の低透湿加工を施した樹脂フィルムを用いることもできる。
 上記本開示の実施の形態における圧電式バルブは、弁座プレート25の表面に一対の突条片27が設けられるものである。アクチュエータ20をバルブ本体20に直接取り付ける場合には、バルブ本体の内壁面に一対の突条片を設けることもできる。その場合、アクチュエータをバルブ本体に固定した後、圧電素子の表面上にシリコーン8を供給することで、一対の突条片27の間に充填されるシリコーン8により圧電素子32の全周面を被覆することができる。
 本開示の圧電式バルブは、圧電素子が、耐水性・防水性に優れる特性を有するシリコーンにより表面を被覆されているので、使用に際し圧縮気体とともに圧電素子の破損片が噴出したり、高湿環境下で使用した場合でも圧電素子に湿気が侵入して寿命が短くなることを防止できる。
 また、本開示の圧電式バルブは、圧電素子が、従来のポリオレフィン系樹脂と比べ弾性に富み、圧縮性が大きい特性を有するシリコーンにより表面を被覆されている。そのため、圧電素子の高温・高湿環境下での絶縁抵抗の低下を防ぐために、圧電素子の表面をシリコーンによりある程度厚く被覆する場合でも、圧電素子の動きが妨げられてストロークが小さくなったり、正確な動作をしなくなったりすることを防止できる。
 図10は、圧電式バルブから噴出するエアの噴出圧特性を示すグラフであって、圧電素子の表面がシリコーンにより被覆されている場合と、圧電素子の表面が被シリコーンにより覆されていない場合とを比較するグラフを示す。なお、圧電素子の表面がシリコーンにより被覆されている場合の被覆厚さは約150μmであり、高温・高湿環境下での絶縁抵抗の低下を防ぐことができるものである。
 実験は、特開2017-160973号公報の[実施例]に記載された方法に基づいて行われた。実験条件は以下のとおりである。
(1)圧縮エア供給圧力:0.15MPa(大気圧下のゲージ圧値)
(2)駆動電圧:72V
(3)圧縮エア設定流量:39L/min
(4)入力信号:第1プレパルス時間 t1=0.098ms
        第1休止時間 t2=0.08ms
        第2プレパルス時間 t3=0.6ms
        第2休止時間 t4=0.03ms
        メインパルス時間 t5=0.192ms
  (圧電素子の通電時間:1ms)
(5)エア噴出圧検出位置:気体排出路先端より2mm
 図10において、破線は、シリコーンにより圧電素子の表面が被覆されている圧電式バルブの結果を示す。また、実線は、シリコーンにより圧電素子の表面が被覆されていない圧電式バルブの結果を示す。
 両者を比較した場合、エアの噴出圧特性はほぼ一致しており、本開示の実施の形態における圧電式バルブでは、圧電素子の高温・高湿環境下での絶縁抵抗の低下を防ぐために、圧電素子の表面をシリコーンによりある程度厚く被覆する場合でも、圧電素子の動きが妨げられていないことが確認できた。
 本開示は、上記実施の形態に限るものでなく、開示の範囲を逸脱しない限りにおいてその構成を適宜変更できることはいうまでもない。
本開示の圧電式バルブは、使用に際し圧縮気体とともに積層型圧電素子の破損片が噴出したり、高湿環境下で使用した場合でも積層型圧電素子に湿気が侵入して寿命が短くなることを防止でき、また、積層型圧電素子の動きが妨げられてストロークが小さくなったり、正確な動作をしなくなったりすることを防止できるため、極めて有用である。
1   積層型圧電素子
2   セラミック層
3   内部電極層
4   積層体
5   絶縁層
6   外部電極
7   リード線
8   シリコーン
10   圧電式バルブ
20   バルブ本体
25   弁座プレート
26   弁座
27   突条片
28   蓋材
29   配線コネクタ
30   アクチュエータ
31   弁体
32   積層型圧電素子
33   変位拡大機構
34   変位拡大部
35   変位伝達部
36   ベース基板
37   キャップ部材
39   第1ヒンジ
40   第2ヒンジ
41   第1アーム
42   第1板バネ
43   第3ヒンジ
44   第4ヒンジ
45   第2アーム
46   第2板バネ
50   コネクタ部
51   気体吸入口
52   気体排出口
55   配線基板
57   リード線
58   電極
62   絶縁用フィルム

Claims (8)

  1.  積層型圧電素子の変位を利用してバルブの開閉を行う圧電式バルブであって、
     外部から供給される圧縮気体を受け入れる気体圧力室を有するバルブ本体と、
     弁体、前記弁体の動作に必要な駆動力を変位として発生する積層型圧電素子、前記積層型圧電素子の変位を拡大して前記弁体に作用させる変位拡大機構を有し、前記バルブ本体の内部に配設されるアクチュエータと、を備える圧電式バルブにおいて、
     前記積層型圧電素子は、前記アクチュエータに一体化された状態でシリコーンにより表面を被覆されていることを特徴とする圧電式バルブ。
  2.  前記積層型圧電素子は、当該積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片の間に充填されたシリコーンにより表面を被覆されている請求項1記載の圧電式バルブ。
  3.  前記バルブ本体の内部に配設されるプレートをさらに備え、前記アクチュエータは前記プレートに固定され、該プレートとともに前記バルブ本体の内部に配設されるものであって、
     前記プレートの表面には、前記アクチュエータが前記プレートに固定された際、前記積層型圧電素子の長手方向両側に隙間を空けて位置する前記一対の突条片が設けられており、
     前記積層型圧電素子は、前記アクチュエータが前記プレートに固定された状態で前記一対の突条片の間に充填されたシリコーンにより表面を被覆されている請求項2記載の圧電式バルブ。
  4.  前記変位拡大機構は金属材料により形成される一方で、前記プレートには前記積層型圧電素子に給電するための配線がモールドされてなり、
     前記プレートから露出する前記配線の電極が、前記積層型圧電素子のリード線と接続された状態で絶縁性材料により被覆されている請求項3記載の圧電式バルブ。
  5.  前記変位拡大機構は金属材料により形成されてなり、
     前記積層型圧電素子のリード線は、前記変位拡大機構の表面に貼着される絶縁用フィルム上に配置される請求項1乃至4のいずれかに記載の圧電式バルブ。
  6.  積層型圧電素子の変位を利用してバルブの開閉を行う圧電式バルブであって、
     外部から供給される圧縮気体を受け入れる気体圧力室を有するバルブ本体と、
     弁体、前記弁体の動作に必要な駆動力を変位として発生する積層型圧電素子、前記積層型圧電素子の変位を拡大して前記弁体に作用させる変位拡大機構を有し、前記バルブ本体の内部に配設されるアクチュエータと、を備える圧電式バルブの製造方法において、
     前記アクチュエータに一体化された前記積層型圧電素子の表面上にシリコーンを供給し、前記シリコーンにより前記積層型圧電素子の表面を被覆することを特徴とする圧電式バルブの製造方法。
  7.  前記アクチュエータに一体化された前記積層型圧電素子の表面上にシリコーンを供給し、前記積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片の間に充填される前記シリコーンにより前記積層型圧電素子の表面を被覆する請求項6記載の圧電式バルブの製造方法。
  8.  前記バルブ本体の内部に配設されるプレートをさらに備え、前記アクチュエータは前記プレートに固定され、該プレートとともに前記バルブ本体の内部に配設されるものであって、
     前記プレートの表面には、前記アクチュエータが前記プレートに固定された際、前記積層型圧電素子の長手方向両側に隙間を空けて位置する一対の突条片が設けられており、
     前記積層型圧電素子を前記アクチュエータに一体化し、前記アクチュエータを前記プレートに固定した後、前記積層型圧電素子の表面上にシリコーンを供給し、前記一対の突条片の間に充填される前記シリコーンにより前記積層型圧電素子の表面を被覆する請求項7記載の圧電式バルブの製造方法。
PCT/JP2020/002126 2019-04-23 2020-01-22 圧電式バルブ及び該圧電式バルブの製造方法 WO2020217610A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20794390.3A EP3961905A4 (en) 2019-04-23 2020-01-22 PIEZOELECTRIC VALVE AND METHOD FOR MANUFACTURING SAID PIEZOELECTRIC VALVE
KR1020217037277A KR102633886B1 (ko) 2019-04-23 2020-01-22 압전식 밸브 및 그 압전식 밸브의 제조 방법
CN202080030157.2A CN113728547B (zh) 2019-04-23 2020-01-22 压电式阀以及该压电式阀的制造方法
BR112021021022A BR112021021022A2 (pt) 2019-04-23 2020-01-22 Válvula piezoelétrica e método de fabricação da válvula piezoelétrica
US17/605,914 US12004430B2 (en) 2019-04-23 2020-01-22 Piezoelectric valve and method of manufacturing the piezoelectric valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019082292A JP7254285B2 (ja) 2019-04-23 2019-04-23 圧電式バルブ及び該圧電式バルブの製造方法
JP2019-082292 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020217610A1 true WO2020217610A1 (ja) 2020-10-29

Family

ID=72942433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002126 WO2020217610A1 (ja) 2019-04-23 2020-01-22 圧電式バルブ及び該圧電式バルブの製造方法

Country Status (6)

Country Link
US (1) US12004430B2 (ja)
EP (1) EP3961905A4 (ja)
JP (1) JP7254285B2 (ja)
KR (1) KR102633886B1 (ja)
BR (1) BR112021021022A2 (ja)
WO (1) WO2020217610A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022166778A (ja) * 2021-04-21 2022-11-02 有限会社メカノトランスフォーマ 圧電式バルブ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175382A (ja) * 1997-06-24 1999-03-16 Minolta Co Ltd 電気機械変換素子を使用した駆動装置
JPH1174576A (ja) * 1997-08-29 1999-03-16 Kyocera Corp 積層型圧電アクチュエータ
JP2000252534A (ja) * 1999-02-25 2000-09-14 Kyocera Corp 積層型圧電アクチュエータ
WO2009152409A1 (en) * 2008-06-13 2009-12-17 Parker Hannifin Corporation Humidity protected apparatus
JP2013124695A (ja) 2011-12-13 2013-06-24 Satake Corp 圧電式バルブ及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機
JP2016061412A (ja) 2014-09-19 2016-04-25 株式会社サタケ 圧電式バルブ及び該圧電式バルブに利用する積層型圧電素子
JP2017160973A (ja) 2016-03-08 2017-09-14 株式会社サタケ 圧電式バルブ、該圧電式バルブの駆動方法、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051396A (en) * 1974-02-28 1977-09-27 Channel Products, Inc. Encapsulation to prevent fracture of piezoelectric high voltage mechanism
US4662212A (en) * 1984-09-10 1987-05-05 Sumitomo Bakelite Company Limited Measuring instrument for concentration of gas
JPS6326476A (ja) * 1986-07-17 1988-02-04 Koganei Seisakusho:Kk 電歪素子
US5253010A (en) * 1988-05-13 1993-10-12 Minolta Camera Kabushiki Kaisha Printed circuit board
JPH0487253U (ja) * 1990-11-30 1992-07-29
US5589723A (en) * 1994-03-29 1996-12-31 Minolta Co., Ltd. Driving apparatus using transducer
US5786654A (en) * 1995-06-08 1998-07-28 Minolta Co., Ltd. Movable stage utilizing electromechanical transducer
CA2229926C (en) * 1995-08-31 2002-02-26 Alcan International Limited Ultrasonic probes for use in harsh environments
US5920145A (en) * 1996-09-09 1999-07-06 Mcdonnell Douglas Corporation Method and structure for embedding piezoelectric transducers in thermoplastic composites
US6211602B1 (en) * 1997-06-24 2001-04-03 Minolta Co., Ltd. Actuator using electromechanical transducer capable of being used in high temperature and high humidity environment and apparatus having the same
US6040643A (en) * 1997-11-20 2000-03-21 Thermotrex Corporation Linear actuator
DE19818068A1 (de) * 1998-04-22 1999-10-28 Siemens Ag Piezoelektronischer Aktor für einen Stellantrieb
DE10012751B4 (de) * 2000-03-16 2004-05-27 Carl Zeiss Jena Gmbh Verstellvorrichtung zum Verschieben einzelner Elemente von optischen Systemen oder von Meßsystemen
US6876129B2 (en) * 2001-09-26 2005-04-05 Mitsuba Corporation Rotary actuator and method of controlling an actuator
CA2405353A1 (en) * 2001-09-26 2003-03-26 Mike Trzecieski Multi axis component actuator
WO2005008796A2 (en) * 2003-07-11 2005-01-27 Bookham Technology Plc Sealed mover assembly
DE602005023129D1 (de) * 2004-03-02 2010-10-07 Piezoelectric Technology Co Lt Kleiner piezoelektrischer oder elektrostriktiver linearmotor
US7956513B2 (en) * 2007-04-20 2011-06-07 Mitsumi Electric Co., Ltd. Method of driving a driving device
CN101785125B (zh) 2007-09-27 2012-07-18 京瓷株式会社 层叠型压电元件、具有其的喷射装置及燃料喷射系统
JP4992987B2 (ja) 2010-01-29 2012-08-08 セイコーエプソン株式会社 圧電振動子の製造方法、及び圧電振動素子の周波数安定化方法
US8850892B2 (en) 2010-02-17 2014-10-07 Viking At, Llc Smart material actuator with enclosed compensator
JP5986369B2 (ja) 2011-11-21 2016-09-06 株式会社サタケ 圧電式バルブの組立方法及び圧電式バルブ、並びに該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175382A (ja) * 1997-06-24 1999-03-16 Minolta Co Ltd 電気機械変換素子を使用した駆動装置
JPH1174576A (ja) * 1997-08-29 1999-03-16 Kyocera Corp 積層型圧電アクチュエータ
JP2000252534A (ja) * 1999-02-25 2000-09-14 Kyocera Corp 積層型圧電アクチュエータ
WO2009152409A1 (en) * 2008-06-13 2009-12-17 Parker Hannifin Corporation Humidity protected apparatus
JP2013124695A (ja) 2011-12-13 2013-06-24 Satake Corp 圧電式バルブ及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機
JP2016061412A (ja) 2014-09-19 2016-04-25 株式会社サタケ 圧電式バルブ及び該圧電式バルブに利用する積層型圧電素子
JP2017160973A (ja) 2016-03-08 2017-09-14 株式会社サタケ 圧電式バルブ、該圧電式バルブの駆動方法、及び該圧電式バルブを利用した噴風手段を備える光学式粒状物選別機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961905A4

Also Published As

Publication number Publication date
EP3961905A1 (en) 2022-03-02
US12004430B2 (en) 2024-06-04
BR112021021022A2 (pt) 2021-12-14
JP7254285B2 (ja) 2023-04-10
KR102633886B1 (ko) 2024-02-05
KR20220002378A (ko) 2022-01-06
CN113728547A (zh) 2021-11-30
US20220213973A1 (en) 2022-07-07
EP3961905A4 (en) 2023-08-30
JP2020180628A (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
CN107072563B (zh) 阀、流体控制装置以及血压计
WO2018020882A1 (ja) バルブ、気体制御装置、及び血圧計
US11293427B2 (en) Valve, and fluid control device including valve
US7482733B2 (en) Piezoactuator
JP4830689B2 (ja) ダイヤフラムポンプ
JP6382658B2 (ja) 圧電式バルブ
JP2009081347A (ja) 圧電デバイスおよび液体吐出ヘッド
WO2020217610A1 (ja) 圧電式バルブ及び該圧電式バルブの製造方法
US6756551B2 (en) Piezoelectrically actuated liquid metal switch
TWI646989B (zh) 閥、流體控制裝置及血壓計
JP7181546B2 (ja) 圧電式バルブ
CN113728547B (zh) 压电式阀以及该压电式阀的制造方法
WO2020246090A1 (ja) 圧電アクチュエータ、圧電式バルブ、及び圧電アクチュエータの製造方法
WO2020261645A1 (ja) 圧電式バルブ及び該圧電式バルブの製造方法
JPH0616168Y2 (ja) 方向切換弁
JPH0314617Y2 (ja)
JP4227735B2 (ja) アクチュエータ及びインクジェットヘッド、インクジェット記録装置
JPS63190985A (ja) ノルマル・オープン型の圧電バルブおよびその駆動方法
JPH11284241A (ja) 圧電アクチュエータ
JP2007299628A (ja) 接点開閉装置
JP2007066727A (ja) 接点開閉装置
JPS62242188A (ja) 圧電バルブ
JP2007066729A (ja) 接点開閉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021021022

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217037277

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020794390

Country of ref document: EP

Effective date: 20211123

ENP Entry into the national phase

Ref document number: 112021021022

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211020