WO2020216344A1 - 用于生产针织管的针通机的送线单元及针通机 - Google Patents

用于生产针织管的针通机的送线单元及针通机 Download PDF

Info

Publication number
WO2020216344A1
WO2020216344A1 PCT/CN2020/086790 CN2020086790W WO2020216344A1 WO 2020216344 A1 WO2020216344 A1 WO 2020216344A1 CN 2020086790 W CN2020086790 W CN 2020086790W WO 2020216344 A1 WO2020216344 A1 WO 2020216344A1
Authority
WO
WIPO (PCT)
Prior art keywords
thread
needle
tube
knitting
knitted
Prior art date
Application number
PCT/CN2020/086790
Other languages
English (en)
French (fr)
Inventor
戴恒
Original Assignee
戴恒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戴恒 filed Critical 戴恒
Publication of WO2020216344A1 publication Critical patent/WO2020216344A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B31/00Crocheting processes for the production of fabrics or articles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B33/00Crocheting tools or apparatus

Definitions

  • the present invention relates to the technical field of knitting equipment, in particular to a thread feeding unit and a needle passing machine for a needle passing machine for producing a knitted tube.
  • the needle-through machine used for the production of knitted tubes is to produce tubular knitted fabrics, in order to speed up the knitting speed of the needle-through machine, such as the circular knitting machine for hosiery or the like disclosed in the invention patent with patent publication number CN101415872B
  • a plurality of knitting needles for knitting are arranged on the outer side of the needle cylinder and extending along the axial direction thereof, and the knitting needles are driven to move through a driving mechanism, so that the knitting needles can simultaneously knit different knitting threads to realize rapid knitting.
  • the same number of knitting threads as the number of knitting needles are set, and these knitting threads are fed to different knitting needles through a yarn feeding device.
  • the utility model patent publication number CN208183212U discloses a hosiery knitting machine that discloses a yarn feeding device for feeding the knitting needles.
  • the knitting tube is a three-dimensional fabric instead of a flat fabric.
  • the yarn feeding device feeds the knitting needles, in order to prevent the knitting threads from tangling each other, only the twisted yarn can be fed to the knitting needles, which leads to the failure of the yarn feeding device.
  • the scope of use is limited.
  • the knitting thread used to produce the knitted tube must undergo a twisting process, which has low production efficiency and high production cost.
  • the present invention provides a thread feeding unit of a needle through machine for producing a knitted tube.
  • the thread feeding unit of the needle through machine for producing knitted tubes includes a support; a rotating structure provided on the support; a first thread passing reel provided on the rotating structure; The first thread passing hole of the knitting thread; the rotating structure is configured to drive the first thread passing disk to rotate.
  • the thread feeding unit is used to feed the knitting thread to the crochet needles of the needle through machine, the multiple filaments originally used to form a yarn by twisting can be directly passed through the first thread passing hole and passed through the first thread passing hole.
  • the holes are conveyed to the crochet needles of the needle-passing machine for knitting.
  • the rotating structure drives the first spool to rotate, thereby passing the first thread-passing disk Drive the knitting thread in each first thread passing hole to rotate respectively, so that the multiple fiber filaments constituting the knitting thread in each first thread passing hole transform from a loose state to a tighter state that is entangled with each other, so as to prevent the hook from hooking
  • the thread feeding unit can not only feed the twisted yarn to the crochet needle, but also During the process of conveying the untwisted loose fiber yarn, the loose fiber yarn is tightened to ensure that the fiber yarn delivered to the crochet needle is in a tightly wound state, so that the use scene of the thread feeding unit is not restricted by the quality of the knitting thread.
  • the knitting thread does not need to be twisted before passing through the thread feeding unit, the production efficiency is
  • the rotating structure is configured to be able to drive the first wire transfer disk to rotate in forward and reverse alternately. Because the rotating structure can drive the first thread passing plate to rotate in the forward and reverse directions alternately, it drives the multiple filaments in each first thread passing hole to swing in the forward and reverse alternately, and the multiple filaments are in the alternate forward direction. , In the process of reverse swing, the friction between the fiber filaments in the first threading hole is further increased, so that the multiple fiber threads in each first threading hole are more closely entangled together; and, due to the rotation The structure is set to be able to drive the first thread feeder to rotate forward and backward alternately.
  • the thread feeder unit When using the thread feeder unit, the thread feeder unit is installed on the needle passing machine and is located at the front end of the hook needle, and the thread feeder unit is set at the same time
  • the rotating shaft of the rotating structure is perpendicular to the moving direction of the crochet needle, so that the knitting threads on both sides of the crochet needle can be alternately conveyed to the crochet needle through the first spool, so as to knit the knitting tube with interlaced knitting threads through the crochet needle.
  • the knitting tube knitted by crochet can stretch.
  • the thread feeding unit of the needle-passing machine for producing knitted tubes further includes a second thread transfer reel arranged on the support; the second thread transfer reel is located at the front end of the first thread reel, and its circumference A second thread passing hole for feeding the knitting thread to the first thread passing hole is arranged upwardly at intervals.
  • this thread feeding unit set the second thread reel on the side of the first thread reel away from the hook (that is, the front end of the first thread reel), because the second thread reel is set on the bracket , And is provided with a second thread passing hole for passing the knitting thread.
  • the rotating structure drives the first thread passing disk to drive the knitting thread to swing, the multiple filaments passing through the same first thread passing hole are in the first thread passing hole.
  • the swing directions of both sides of the disk are opposite (for example, if multiple filaments in the same first threading hole swing in the positive direction between the first threading disk and the crochet hook, the multiple filaments at the same time
  • the part between a spool and the second spool oscillates in the opposite direction), and because the multiple filaments in the same first spool are between the first spool and the second spool
  • the part is based on the second threading hole and swings with the rotation of the first threading disk. Therefore, the multiple fiber threads in the same first threading hole pass through the first thread in turn before being transported to the hook.
  • the kneading of the inner wall of the second thread passing hole and the inner wall of the first thread passing hole makes the entanglement of the multiple filaments conveyed to the crochet needle closer.
  • the thread feeding unit of the needle through machine for producing knitted tubes further includes a third thread transfer disk; the first thread transfer disk is set on the rotating structure through the third thread transfer disk, and the third thread transfer disk It is arranged between the first thread passing reel and the second thread passing reel, and the third thread passing reel is provided with third thread passing holes for passing the knitting thread at intervals in the circumferential direction, so that the knitting thread passes through the second thread passing After the hole, it can pass through the third cable hole and then the first cable hole.
  • the fiber thread between the second threading reel and the third threading reel will swing based on the second threading hole, and the fiber thread between the first threading reel and the crochet hook will be based on the first threading hole.
  • the reference swings, so that when the rotating structure drives the second cable tray to drive the first cable tray to rotate, the multiple fiber threads that pass through each of the second cable hole, the third cable hole and the first cable hole in turn pass through the first cable hole.
  • the second threading hole, the third threading hole and the first threading hole are respectively rubbed by the inner walls of the second threading hole, the third threading hole and the first threading hole, the fiber thread passes through before being delivered to the crochet After three times of kneading, the mutual friction between the filaments is greater, and the winding between the multiple filaments is closer; moreover, because the first and third spools are relatively static, it can ensure that the filaments pass through the second Convey smoothly from the spool to the first spool.
  • the distances between the first and second wiring holes and the rotation axis of the first wiring board are greater than the distance between the third wiring hole and the rotation axis of the first wiring board.
  • the thread feeding unit of the needle through machine for producing knitting tubes further includes a pay-off shaft for placing the knitting thread rolls on the support; It is used to transport the knitting thread on the knitting thread roll to the wire roller in the second thread passing hole. Therefore, the knitting thread on the knitting thread roll can be smoothly conveyed to the second thread passing hole.
  • the present invention provides a needle through machine equipped with the aforementioned thread feeding unit.
  • the needle through machine includes a frame; a needle cylinder arranged on the frame, the needle cylinder having a first through hole for the knitting thread or knitting tube to penetrate the entire needle cylinder; the needle cylinder is arranged on the axis of the first through hole A moving mechanism that reciprocates in the direction; a wire feeding unit provided on the frame, the wire feeding unit is the aforementioned wire feeding unit and is provided at the front end of the first through hole; and at least two wires provided on the moving mechanism are used for knitting
  • the thread is knitted into a crochet needle of a knitted tube.
  • the crochet needles are arranged at intervals on the outer circumference of the needle cylinder, so that the crochet needles can reciprocate along the axis of the first through hole under the driving of the moving mechanism.
  • the distance between the crochet needles and the rotation axis of the first spool is less than The distance between the first wire passing hole and the shaft of the first wire passing reel.
  • the thread ends of the knitting thread for knitting are respectively and sequentially passed through the first thread passing hole, the crochet needle and the first passing hole on the first spool according to the thread number of the needle passing machine.
  • the first driving situation the first thread transfer disk is driven to rotate forward and backward alternately
  • the second driving situation the direction of driving the first thread transfer disk remains unchanged
  • the hook needle is driven by the moving mechanism to move toward the side where the thread feeding unit is located.
  • the crochet needle When the spool is rotated forward (forward rotation), the crochet needle is driven by the moving mechanism to extend from the top of the needle cylinder (the top of the needle cylinder is the end of the needle cylinder facing the thread feeding unit), and the crochet needle is closest to the thread feeding unit At this time (at this time, the crochet needle has not touched the first spool), the knitting thread on one side of each crochet needle is driven by the first spool to move to the side where the crochet is located (that is, the knitting thread and the The distance of the axis of the needle cylinder decreases due to its gradual adduction) until the knitting thread moves to fit the outside of the crochet needle; then, the crochet needle is driven by the moving mechanism to move to the side away from the thread feeding unit at the same time or after that The rotating structure continues to drive the first spool to rotate forward or reverse or stop driving the first spool to rotate through the rotating structure.
  • the crochet needle When the crochet needle moves down, it will drive the knitting thread hooked by it to move down together.
  • the crochet needle When the unit is farthest, the crochet needle is located below the top of the needle cylinder. At this time, all the crochet needles pass through the circular knitting buckle formed by the last knitting; then, the crochet needle can be manually or the external traction unit of the needle through machine
  • the knitting thread or the knitting tube is drawn toward the side away from the thread feeding unit; while or after the crochet needle is driven to move to the side where the thread feeding unit is located through the moving mechanism, the first thread feeding plate is driven to reverse (reversely) through the rotating structure.
  • the knitting thread on the crochet needle remains on the top of the needle cylinder to form a new circular knitting buckle; when the crochet needle moves to the nearest position to the thread feeding unit, the knitting thread on the other side of each crochet needle is driven by the first spool Move down to the side where the crochet needle is located until the knitting thread moves to fit the outside of the crochet needle; then, the crochet needle is driven by the moving mechanism to move to the side away from the thread feeding unit at the same time or after that, the rotation structure continues to drive The first spool rotates reversely or forwards or stops driving the first spool to rotate through the rotating structure until the crochet needle moves to the farthest distance from the thread feeding unit.
  • the knitting thread or the knitting tube in the first through hole is pulled by the manual or the external traction unit of the needle through machine toward the side away from the thread feeding unit; and then the crochet needle is driven to move toward the side where the thread feeding unit is located through the moving mechanism
  • the first spool is driven to rotate forward or reverse or stop rotating through the rotating structure, and repeat the above actions to knit a net with a set length, a set number of threads, a set diameter, and a staggered knitting thread.
  • the knitting threads of the knitted knitting tube are in a staggered grid structure, and the structure of the knitting tube is a looped knitting button formed by one knitting thread nested in another knitting thread.
  • the loop knitting button on different knitting threads can slide each other during the stretching process of the knitted tube, so that the knitted tube can Retractable.
  • the second operating method corresponding to the second driving situation is different from the first operating method in that the rotating structure drives the direction of rotation of the first spool unchanged, so that the knitting thread located on one side of the crochet needle is transported To the crochet needle, for the crochet needle to knit a knitted tube.
  • it further includes a pulling unit for pulling the knitting tube knitted out of the crochet needle from the end of the needle cylinder, and the pulling unit is provided at the rear end of the needle cylinder.
  • the needle-passing machine is also equipped with a traction unit, the working process of the needle-passing machine is slightly different from that of the aforementioned needle-passing machine. The only difference is that when all the crochet needles pass through the circular knitting button formed by the last knitting, The traction unit replaces the manual work, and drives the knitting thread or the single-layer knitting tube output from the needle cylinder to move to the side away from the thread feeding unit to make the crochet needle escape the circular knitting buckle.
  • the needle through machine further includes a feeding unit for conveying the outer elastic tube into the knitted tube knitted by crochet needles, and/or for forming the outer tube outside the knitted tube output from the needle cylinder Tube forming machine; the traction unit is located at the back end of the needle cylinder.
  • the needle through machine When the needle through machine includes a feeding unit for transporting the elastic tube into the knitted tube knitted by crochet needles, it can directly produce a double-layer telescopic water tube with an elastic tube (such as latex tube) inside, and the crochet needle is directly in the elastic tube.
  • the knitted tube is knitted outside, so that any length of expansion tube can be made according to the needs, and the knitted tube is evenly laid out on the surface of the elastic tube, which will not cause the knitted tube to form redundant folds on the elastic tube, saving the amount of knitted tube.
  • the knitting thread uses a double-layer telescopic water pipe with a diameter of 16mm of polyester yarn as an example, and the use of polyester yarn saves more than 2 grams per meter.
  • the telescopic water pipe reduces the weight of the double-layer telescopic water pipe and saves production costs; the prepared double-layer telescopic water pipe can pass water in an elastic tube such as a latex tube. Because the latex tube is elastic, it is under the pressure of the water flowing into it. , The latex tube can expand and contract. Because the knitted tube is wrapped outside the latex tube, it can expand and contract synchronously with the latex tube to avoid the latex tube from being worn out due to direct contact with the outside and improve the service life of the double-layer expansion tube.
  • this outer tube forming machine may be a needle-through machine similar to or the same as the needle-through machine of the present invention, or It is a plastic extruder commonly used in the prior art for extruding and forming plastic tubes or plastic film tubes, and it can also be a metal tube braiding and forming machine commonly used in the prior art, as long as it can be directly formed outside the knitted tube The equipment of the tube can be used.
  • the inner layer is a knitted tube and the outer layer is a knitted tube or a metal braided tube, or the inner layer is a knitted tube and the outer layer is a plastic tube or
  • the double-layer wear-resistant waterproof tube of plastic film and since the outer tube is directly produced outside the knitted tube, the length of the produced double-layer tube (double-layer wear-resistant tube, double-layer wear-resistant waterproof tube, etc.) is not limited .
  • the coating can be, for example, a wear-resistant or waterproof coating, so that a wear-resistant coating or a waterproof coating can be directly produced
  • the length of the knitted tube with coating produced is not limited; when the knitted tube, metal braided tube, plastic tube, plastic film or coating used in the outer tube is stretchable, the knitted tube produced
  • the double-layer tube with an outer tube outside the tube is a double-layer telescopic tube.
  • a general needle-through machine cannot directly produce a knitted tube with an elastic tube inside, and a three-layer telescopic tube for protecting the outer tube of the knitted tube on the outside of the knitted tube.
  • a three-layer telescopic tube for protecting the outer tube of the knitted tube on the outside of the knitted tube.
  • Separate equipment feeds the already produced double-layer telescopic tube again, and sets the outer tube on the outside of the double-layer telescopic tube, which consumes a lot of manpower and material resources.
  • the length of the produced three-layer telescopic tube is affected by the original double
  • the limitation of the length of the telescopic tube does not exceed 15 meters, which also cannot meet the needs of users who need a larger length of three-layer telescopic tube.
  • the needle through machine When the needle through machine includes a feeding unit that transports the elastic tube into the knitted tube knitted by crochet and an outer tube forming machine that directly produces the telescopic outer tube outside the knitted tube, it can directly produce three layers of any length
  • the telescopic tube does not need to be connected by a joint to form a three-layer telescopic tube with a longer length, which reduces the weight of the three-layer telescopic tube and saves production costs; because the outer tube is sleeved on the surface of the knitted tube, the knitted tube is not easily scratched, making The service life of the three-layer telescopic tube is much longer than that of the double-layer telescopic tube.
  • the outer tube forming machine is a plastic extruder for forming the elastic telescopic tube outside the knitted tube output by the needle cylinder. Because the elastic expansion tube is uniformly arranged on the surface of the knitted tube, it will not cause the elastic expansion tube to form redundant folds on the knitted tube, and the amount of the elastic expansion tube is saved, which not only reduces the weight of the product, but also greatly saves the cost of raw materials; The surface of the three-layer telescopic tube is covered with an elastic telescopic tube, and the surface of the made three-layer telescopic tube is smooth, and the knitted tube is not easily scratched, so that the service life of the three-layer telescopic tube is much longer than the double-layer telescopic tube.
  • the needle through machine further includes a knitting guide strip or a knitting guide tube arranged on the frame and arranged in the first through hole.
  • the knitting guide tube or the knitting guide strip and the needle cylinder are enclosed to form a knitting machine.
  • the conveying unit is used to transport the external elastic tube into the knitting guide tube;
  • the thread feeding unit is provided with a second through hole for the knitting guide strip or the knitting guide tube to pass through, and the first thread passing hole is provided in the second The outer circumference of the through hole.
  • the needle through machine further comprises a knitted tube knitted with crochet needles and an inner sleeve with an elastic tube, or an outer tube prepared by an outer tube forming machine with a knitted tube inside.
  • Pipe finishing unit In order to organize the pipes produced by the needle through machine, and facilitate the automatic production of the needle through machine.
  • the syringe is arranged in a vertical direction.
  • the occupied area of the needle cylinder, the wire feeding unit and the moving mechanism on the frame can be reduced, so that multiple sets of needle cylinders, the wire feeding unit and the moving mechanism can be set on the frame of the same needle through machine to make one
  • the needle-through machine can knit multiple knitting tubes at the same time, which improves the knitting efficiency of the needle-through machine.
  • Fig. 1 is a schematic structural diagram of a thread feeding unit of a needle through machine for producing a knitted tube according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of the first wire feeding tray of the wire feeding unit shown in FIG. 1;
  • FIG. 3 is a schematic structural view of an embodiment of the rotation transmission mechanism of the wire feeding unit shown in FIG. 1;
  • FIG. 4 is a schematic diagram of the motion limit position structure of the rotation transmission mechanism shown in FIG. 3;
  • Fig. 5 is a schematic structural diagram of a needle-through machine according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram of the principle structure of the needle through machine shown in Figure 5;
  • Figure 7 is a partial enlarged schematic diagram of the needle through machine shown in Figure 6;
  • Figure 8 is a schematic view of the structure of the knitting unit shown in Figure 6;
  • FIG. 9 is a schematic diagram of the structure of the crochet needle of the needle through machine shown in FIG. 6;
  • FIG. 10 is a schematic diagram of the synchronous movement and rotation structure of the needle through machine shown in FIG. 6;
  • Fig. 11 is a schematic diagram of an enlarged structure of the needle through machine shown in Fig. 5 at A;
  • Fig. 12 is a schematic diagram of an enlarged structure at B of the needle through machine shown in Fig. 6;
  • Figure 13 is a schematic structural view of a single-layer knitted tube produced by the needle through machine shown in Figure 6;
  • Figure 14 is a schematic structural view of a double-layer knitted tube produced by the needle through machine shown in Figure 6;
  • Figure 15 is a schematic structural view of another double-layer knitted tube produced by the needle through machine shown in Figure 6;
  • Figure 16 is a schematic view of another double-layer knitted tube produced by the needle through machine shown in Figure 6;
  • Figure 17 is a schematic structural view of a three-layer knitted tube produced by the needle through machine shown in Figure 6;
  • Fig. 18 is a schematic diagram of another three-layer knitted tube produced by the needle through machine shown in Fig. 6.
  • Figures 1 to 4 schematically show a thread feeding unit of a needle through machine for producing a knitted tube according to an embodiment of the present invention.
  • the thread feeding unit of the needle through machine for producing knitted tubes includes a support 100, a rotating structure 20 and a first thread passing disk 31, wherein the rotating structure 20 is provided on the support 100, and the first thread passing The disc 31 is arranged on the rotating structure 20.
  • a plurality of first thread passing holes 311 are integrally formed or processed on the first thread passing disc 31, and each first thread passing hole 311 is used to feed the knitting thread 101 to the crochet needle of the needle passing machine.
  • the rotating structure 20 is configured to be able to drive the first wire transfer disk 31 to rotate.
  • a group of fiber filaments (including multiple fiber filaments) originally used to form a yarn (commonly used knitting thread 101) through twisting can be passed through a first threading hole 311, and each first thread The thread hole 311 individually feeds a group of filaments to one hook at a time.
  • the rotating structure 20 is configured to be able to drive the first wire transfer disk 31 to rotate in forward and reverse alternately.
  • the wire feeding unit is installed on the needle through machine, and is located at the front end of the crochet needle, and at the same time, the wire feeding unit is set such that the shaft of the rotating structure 20 is perpendicular to the moving direction of the crochet needle, so that the first The spool 31 alternately conveys the knitting threads 101 on both sides of the crochet needles to the crochet needles to knit the knitting tubes interlaced with the knitting threads 101 through the crochet needles, so that the knitting tubes knitted by the crochet needles can expand and contract.
  • Figures 5 to 11 schematically show a needle-through machine for producing a knitted tube 106 according to an embodiment of the present invention.
  • the needle-through machine includes a frame 200; a knitting unit 40 for knitting a knitting thread 101 into a knitting tube 106 and a knitting unit 40 for feeding the knitting unit 40.
  • the wire feeding unit of the wire 101 wherein the wire feeding unit is the wire feeding unit shown in FIGS. 1 to 4.
  • the bracket 100 of the wire feeding unit is provided on the frame 200, and the bracket 100 can be integrally formed on the frame 200 or fixedly connected to the frame 200, as long as the bracket 100 and the frame 200 are relatively fixed.
  • a plurality of first wiring holes 311 are distributed along the circumference on the first wiring tray 31. Further, the plurality of first thread passing holes 311 are evenly distributed along the circumference on the first thread passing tray 31, so as to uniformly feed the knitting thread 101 to the crochet needle of the needle passing machine through the plurality of first thread passing holes 311.
  • the rotation axis of the first thread passing reel 31 is parallel to the axis of the first thread passing hole 311, so as to prevent the knitting threads 101 in different first thread passing holes 311 from being entangled with each other during the rotation of the first thread passing reel 31. Therefore, it is ensured that the first thread passing hole 311 can smoothly convey the knitting thread 101.
  • the thread feeding unit of the needle through machine for producing knitted tubes further includes a second thread passing reel 32 fixedly installed on the support 100; the second thread passing reel 32 is located at the first thread passing reel 32 At the front end of the disk 31, a plurality of second threading holes 321 are integrally formed or processed on the second threading disk 32, and each second threading hole 321 is used to feed the knitting thread 101 to a first threading hole 311, A plurality of second cable routing holes 321 are distributed along the circumference on the second cable routing disk 32, and the rotating structure 20 drives the first cable routing disk 31 to rotate relative to the second cable routing disk 32 and the support 100.
  • the crochet needle When the thread feeding unit is installed on the needle threading machine, the crochet needle is located at the rear end of the first thread feeding tray 31, and the multiple filaments in the same first thread threading hole 311 pass through the second thread in turn before being transported to the crochet needle.
  • the kneading of the inner wall of the hole 321 and the inner wall of the first threading hole 311 makes the multiple filaments conveyed to the crochet needle more tightly wound.
  • the axis of the second threading hole 321 is set parallel to the axis of the first threading hole 311 to ensure that the second threading hole 321 smoothly transports the knitting thread 101 to the first threading hole 311.
  • the second wire transfer reel 32 is arranged on the support 100 by a space movement mechanism, and the space movement mechanism is configured to drive the second wire transfer reel 32 to move in a plane parallel to the first wire transfer reel 31, and is also set to be able to move The second wire transfer disk 32 is driven to move in a plane perpendicular to the first wire transfer disk 31.
  • the space movement mechanism may include a first movement structure, a second movement structure, and a third movement structure that are connected in sequence.
  • the first movement structure is connected to the support 100
  • the third movement structure is connected to the second cable tray 32
  • the A moving structure drives the second moving structure and the third moving structure to reciprocate in a direction perpendicular to the first wire transfer disk 31
  • the second moving structure drives the third moving structure to move in a direction in a plane parallel to the first wire transfer disk 31
  • the third moving structure drives the second wire transfer disk 32 to reciprocate in a plane parallel to the first wire transfer disk 31 in a driving direction perpendicular to the second moving structure.
  • the first moving structure, the second moving structure, and the third moving structure can use the rail slider structure or the screw nut structure commonly used in the prior art.
  • the guide rail of the first moving structure Installed on the bracket 100
  • the guide rail of the second moving structure is installed on the sliding block of the first moving structure
  • the guide rail of the third moving structure is installed on the sliding block of the second moving structure
  • the second wire tray 32 is installed on the third On the slider of the moving structure (not shown in the figure).
  • the space movement mechanism can also adopt other implementation methods in the prior art.
  • the axis of the circle enclosed by the plurality of second cable holes 321 coincides with the axis of the circle enclosed by all the first cable holes 311, and the number of the second cable holes 321 is the same as that of the first cable holes 311.
  • the number of the second threading holes 321 and the first threading holes 311 are both uniformly distributed on the circumference, so that the knitting thread 101 is uniformly fed to the first threading hole 311 through the second threading hole 321.
  • the distance between the second wiring hole 321 and the rotation axis of the first wiring reel 31 is greater than the distance between the first wiring hole 311 and the rotation axis of the first wiring reel 31.
  • the fiber thread in each first threading hole 311 and/or the second threading hole 321 from being entangled with the fiber thread in the other first threading hole 311 and/or the second threading hole 321, thereby ensuring the fiber
  • the conveying of the silk is smooth.
  • the thread feeding unit of the needle passing machine for producing knitted tubes further includes a third thread passing disk 33; the first thread passing disk 31 is set on the rotating structure 20 through the third thread passing disk 33.
  • the third cable tray 33 is arranged between the first cable tray 31 and the second cable tray 32.
  • the third cable tray 33 is integrally formed or processed with a plurality of third cable holes 331, each The three thread passing holes 331 are used to transport the knitting thread 101 conveyed from the second thread hole 321 to the first thread hole 311.
  • a plurality of third thread holes 331 are distributed along the circumference on the third thread plate 33 and rotate
  • the structure 20 drives the third wire transfer disk 33 to drive the first wire transfer disk 31 to rotate together.
  • the rotating structure 20 drives the third thread transfer disk 33 and the first thread transfer disk 31 to rotate
  • the knitting thread 101 conveyed by the thread feeding unit to the crochet needle 42 of the needle passing machine will pass through the second thread
  • the holes 321 and the third thread-passing hole 331 and the first thread-passing hole 311 oscillate, so that the multiple filaments constituting the knitting thread 101 in each thread-passing hole are entangled with each other to form a more tightly wound knitted thread 101.
  • the axis of the third threading hole 331 is set to be parallel to the axis of the first threading hole 311 to ensure that the second threading hole 321 smoothly conveys the knitting thread 101 to the third threading hole 331, and It is ensured that the third thread passing hole 331 smoothly conveys the knitting thread 101 to the first thread passing hole 311.
  • the connection between the first cable tray 31 and the third cable tray 33 can be a fixed connection method commonly used in the prior art, for example, connecting the two through screws, or directly welding or gluing the two together.
  • the first cable tray 31 and the third cable tray 33 are connected by a first connecting rod 34, and the first connecting rod 34 is connected to the first cable tray 31 and the third cable tray.
  • the disk 33 may also adopt a fixed connection method commonly used in the prior art, which will not be repeated here.
  • the axis of the circle enclosed by the plurality of third cable holes 331 coincides with the axis of the circle enclosed by the plurality of first cable holes 311, and the number of the third cable holes 331 is the same as that of the first cable holes 311.
  • the number of the third threading holes 331 and the first threading holes 311 are both uniformly distributed on the circumference, so that the knitting thread 101 is uniformly fed to the first threading holes 311 through the third threading holes 331.
  • the second cable vias 321 can The knitting thread 101 is uniformly fed to the third thread passing hole 331, and at the same time, the third thread passing hole 331 can uniformly convey the knitting thread 101 to the first thread passing hole 311.
  • the distances between the first cable hole 311 and the second cable hole 321 and the rotating shaft of the first cable tray 31 are greater than the third cable hole 331 and the rotating shaft of the first cable tray 31
  • the fiber filaments in each third cable hole 331 and/or second cable hole 321 from being entangled with the fiber filaments in other third cable holes 331 and/or second cable holes 321, So as to ensure the smooth conveying of fiber filaments.
  • the first embodiment of the rotating structure 20 is shown in FIG. 1, the rotating structure 20 includes a first timing pulley 21, a bearing 22, a second timing pulley 23 and a first belt 24.
  • the first timing pulley 21 is provided on the support 100 via a bearing 22, and preferably, the two are coaxially connected.
  • the first cable reel 31 is fixedly installed on the first timing pulley 21, and preferably, the two are also coaxially arranged.
  • the first synchronous pulley 21 is connected to the second synchronous pulley 23 through a first belt 24.
  • the wire feeding unit may be provided with a driving device that drives the rotating structure 20 to operate, or may be driven by an external driving device to drive the rotating structure 20 to operate.
  • the driving device uses a rotating motor 26, and the second synchronous pulley 23 is driven by the rotating motor 26.
  • the driving device may also adopt other devices, as long as it can drive the rotating structure 20 to operate, and the present invention does not limit the specific implementation of the driving device.
  • the rotating motor 26 is coaxially connected with the second timing pulley 23, and the rotating motor 26 is provided on the bracket 100 or the second timing pulley 23 is pivotally provided on the bracket 100. While the rotating motor 26 drives the second timing pulley 23 to rotate, the second timing pulley 23 drives the first timing pulley 21 to rotate through the first belt 24, thereby driving the first pass fixedly mounted on the first timing pulley 21 The wire reel 31 rotates.
  • the first cable transfer disk 31 is installed on the first timing pulley 21 through the third cable transfer disk 33, and the first timing pulley 21 drives the first timing pulley 21 through the third cable transfer disk 33.
  • the spool 31 rotates.
  • the rotation direction and rotation mode of the second synchronous pulley 23 driven by the rotating motor 26 can be controlled by a control module preset with control information.
  • the rotating motor 26 can be a servo motor commonly used in the prior art, and the control module can be a commonly used PLC.
  • the present invention does not limit the specific models of the servo motor and PLC.
  • a suspension boss 105 for connecting the bearing 22 is processed or connected to the bracket 100.
  • a bearing mounting hole 1051 for mounting the bearing 22 is processed on the suspension boss 105, and the bearing 22 is mounted in the bearing mounting hole 1051.
  • the outer ring 221 of the bearing 22 is mounted on the suspension boss 105, the lower end of the inner ring 222 of the bearing 22 is connected to the upper end of the first timing pulley 21, and the lower end of the first timing pulley 21 is connected to the first passing wire
  • the disc 31 (when the third wire passing disc 33 is also provided, the first wire passing disc 31 is connected through the third wire passing disc 33).
  • the first timing pulley 21 is integrally formed or processed with an inner diameter for the knitting thread 101 to pass through .
  • the inner diameters of the first timing belt wheel 21 and the bearing 22 can be passed through by the first cable tray 31 (when the third cable tray 33 is also provided, the third cable tray 33 and/or the first cable tray can be provided.
  • the wire reel 31 passes).
  • the hole 311 is in contact with the knitting thread 101 of the third threading hole 313, causing the first timing pulley 21 and the bearing 22 to rub against the knitting thread 101 passing through the first threading hole 311 and the third threading hole 313 when rotating. Prevent the knitting thread 101 from breaking due to friction and wear.
  • the bearing 22 of the present invention can be a deep groove ball bearing or a combined bearing commonly used in the prior art, as long as the first timing pulley 21 connected to it can rotate relative to the bracket 100.
  • the bearing 22 is selected in the present invention. The type is not limited.
  • the second embodiment of the rotating structure 20 is different from the first embodiment in that the first synchronous pulley 21 and the second synchronous pulley 23 connected by a belt are replaced by gear pairs that mesh with each other, and one of the gears
  • the lower end is coaxially connected with the first cable tray 31 or coaxially connected with the first cable tray 31 through the third cable tray 33, and its upper end is coaxially connected with the inner ring of the bearing 22, and the other gear is connected to the rotating motor 26
  • the rotation of the gear driven by the rotating motor 26 drives the rotation of the first wire transfer tray 31.
  • the gear connected to the bearing 22 is integrally formed or processed with an inner diameter (not shown in the figure) for the knitting thread 101 to pass through.
  • the third embodiment of the rotating structure 20 is different from the first embodiment in that two sprockets connected to each other by a chain replace the first timing pulley 21 and the second timing pulley 23 connected by a belt, and
  • the lower end of one sprocket is coaxially connected with the first cable tray 31 or coaxially connected with the first cable tray 31 through the third cable tray 33, and its upper end is coaxially connected with the inner ring of the bearing 22, and the other chain
  • the wheel is connected with the rotating motor 26, and the rotation of the gear is driven by the rotating motor 26 to drive the rotation of the first cable tray 31.
  • the sprocket connected with the bearing 22 is integrally formed or processed with an inner diameter (not shown in the figure) for the knitting thread 101 to pass through.
  • the fourth embodiment of the rotating structure 20 is that the rotating structure 20 only includes a rotating motor 26, which is arranged on the support 100 and is coaxially connected with the first cable tray 31 or passes through the third cable tray 33 It is coaxially connected with the first wire passing disk 31, and the rotating motor 26 directly drives the first wire passing disk 31 to rotate (not shown in the figure).
  • the knitting thread 101 passing through the first thread passing hole 311 or the third thread passing hole 331 is easily wound on the rotating shaft of the rotating motor 26 during the rotation of the first thread passing reel 31 As a result, the knitting thread 101 cannot smoothly pass into the first threading hole 311 or the third threading hole 331.
  • the wire feeding unit is also provided with a rotation transmission mechanism 25, and the second synchronous pulley 23 is connected to the rotation motor 26 through the rotation transmission mechanism 25.
  • the first embodiment of the rotation transmission mechanism 25 is shown in FIGS. 1, 3, and 4, and the rotation transmission mechanism 25 is a crank and rocker structure.
  • the rotation transmission mechanism 25 includes a first pivot shaft 251, a first crank 252, a first connecting rod 253, a rocker 254, a second rotation shaft 255, and a third The rotating shaft 256 and the second pivot shaft 257, wherein the first crank 252 and the first connecting rod 253 which are pivotally connected by the first pivot shaft 251 are pivotally connected by the first pivot shaft 251, and the first connecting rod 253 and The rocker 254 is pivotally connected via the second pivot shaft 257, the first crank 252 is coaxially connected with the rotation shaft of the rotating motor 26 via the second rotation shaft 255, and the rocker 254 is connected to the second synchronous pulley 23 via the third rotation shaft 256.
  • the rotating motor 26 is mounted on the bracket 100, and the third rotating shaft 256 can be pivotally mounted on the bracket 100. Therefore, the second synchronous pulley 23 can be driven to reciprocate by the rotating motor 26 to drive the crank and rocker structure to drive the first synchronous pulley 21 to reciprocate through the first belt 24, so as to avoid directly driving the first synchronous pulley through the rotating motor 26 21 reciprocating rotation causes the problem that the rotating motor 26 is easily damaged.
  • the rotating motor 26 does not need to be controlled by a control module, and the operation is convenient.
  • the first pivot shaft 251, the second pivot shaft 255, and the third pivot shaft 256 are all parallel to the pivot shaft of the second timing pulley 23.
  • the second implementation manner of the rotation transmission mechanism 25 can also be realized by converting rotation into oscillation by a cam mechanism commonly used in the prior art to drive the first wire transfer disk 31 to reciprocate (not shown in the figure).
  • the reciprocating angle of the second timing pulley 23 (that is, the angle X of the rocker 254 swinging) can be controlled by adjusting the structure of the crank rocker.
  • the rocker 254 swings under the drive of the first crank 252 and the first connecting rod 253, and the swing position has a first limit position and a second limit position, and the rocker 254 is in the first limit position.
  • the angle between the position and the second limit position is the swing angle X of the rocker 254. More specifically, the first crank 252, the first connecting rod 253 and the rocker 254 are in the first limit position as shown in the solid line position in FIG.
  • the swing angle X of the rocker 254 can be adjusted by adjusting the following parameters: 1.
  • the distance L3, 4 between the axis of the first pivot shaft 251 of the rocker 254 and the axis of the third pivot shaft 256, and the distance L4 between the axis of the second pivot shaft 255 and the axis of the third pivot 256.
  • the second embodiment of the rotation transmission mechanism 25 can be combined with the first embodiment to form its third embodiment.
  • the cam mechanism drives the crank movement of the crank rocker structure, thereby Drive the rocker to swing.
  • the angle to be adjusted is large, it can be adjusted by the cam mechanism.
  • the angle to be adjusted is small, it can be adjusted by the crank rocker structure (not shown in the figure).
  • the bracket 100 is installed on the frame 200 of the needle-passing machine, and then, it can be used directly
  • a group of filaments (including multiple filaments) twisted to form a yarn (commonly used knitting thread 101) directly pass through one of the first thread passing holes 311 (when the second thread tray 32 is also provided, a The group of fiber filaments pass through the second threading hole 321 and the first threading hole 311 in sequence; when the third threading tray 33 is also provided, a group of fiber threads pass through the second threading hole 312 and the third threading hole in turn Hole 313, first via 311), each group of fiber filaments respectively pass through different first via 311 or second via 321 and first via 311 or second via 312, third The via 313 and the first via 311.
  • the thread holes (including the first thread hole 311 or the second thread hole 321 and the first thread hole 311 or the second thread hole 312, the third thread hole 313 and the first thread hole 311) transport the knitted thread
  • the rotating structure 20 will drive (or the rotating transmission mechanism 25 is driven by the rotating structure 20) the first threading disk 31 to rotate, thereby driving the fiber thread in the threading hole to swing, and all the fibers in each threading hole
  • the yarns oscillate with the thread passing hole as the origin, so that the multiple fiber filaments are entangled due to mutual friction when passing through the thread hole, so that all the fiber filaments in each thread passing hole form a tightly wound group of filaments
  • the thread feeding unit of the needle through machine for producing a knitted tube further includes a thread releasing mechanism provided on the support 100 for feeding the knitted thread to the thread feeding unit.
  • the pay-off mechanism includes a pay-off shaft 104 arranged on the support 100 for placing the knitting thread roll 103. It is pivotally provided on the support 100 and is used to transport the knitting thread 101 on the knitting thread roll 103 to the wire roller 102 in the second thread passing hole 321. Therefore, the knitting thread 101 on the knitting thread roll 103 can be smoothly conveyed to the second thread passing hole 321.
  • the way that the wire roller 102 is pivotally arranged on the support 100 can adopt a pivotable connection method commonly used in the prior art.
  • the support 100 is processed with a first rotation axis with the wire roller 102 1021 suitable mounting hole.
  • the bracket 100 is processed with two mounting holes (not shown in the figure) that are adapted to the two ends of the first rotating shaft 1021 of the wire roller 102. Therefore, the knitting thread 101 on the knitting thread roll 103 can be conveyed to the second thread passing hole 321 smoothly.
  • the rotating shaft of the first wire transfer reel 31 and the pay-off shaft 104 are arranged in a vertical direction, and the first rotating shaft 1021 of the wire roller 102 is arranged perpendicular to the rotating shaft of the first wire transfer reel 31, so that The knitting thread roll 103 on the pay-off shaft 104 can smoothly transport the knitting thread 101 to the wire roller 102, and it is convenient for the wire roller 102 to smoothly transport the knitting thread 101 to the first thread passing hole 311 (when the second thread hole 311 is also provided) When the second cable-passing hole 321 is used, it is transported to the second cable-passing hole 321).
  • the knitting unit 40 includes a needle cylinder 41 integrally formed or processed with a first through hole 411 for the knitting thread 101 or the knitting tube 106 to pass through.
  • the needle cylinder 41 is provided with On the frame 200; at least two crochet needles 42 for knitting the knitting thread 101 into a knitting tube 106 are arranged at intervals along the outer circumference of the needle cylinder 41.
  • the distance between the crochet needles 42 and the rotation axis of the first spool 31 is less than the first pass
  • the wire feeding unit is the aforementioned wire feeding unit and is arranged at the front end of the first through hole 411; the moving mechanism 43 is configured to drive the hook 42 to reciprocate along the axis of the first through hole 411 to approach or move away from the wire feeding unit .
  • the moving mechanism 43 is provided on the needle cylinder 41, and the needle cylinder 41 is detachably connected to the frame 200, so that the knitting unit 40 is integrated.
  • the needle cylinder 41 is detachably connected to the frame 200, so that the knitting unit 40 is integrated.
  • the tube 41 can be connected to or removed from the frame 200, so that the knitting unit 40 and the frame 200 can be quickly installed and removed.
  • the hooks 42 are distributed along the circumference.
  • the thread ends of the knitting thread 101 for knitting are respectively and sequentially passed through the first thread-passing hole 311 on the first thread-passing reel 31 according to the number of thread of the needle-passing machine.
  • a group of fiber filaments pass through the second passing hole 321 and the first passing hole 311 in sequence;
  • the third passing tray 33 is also provided, a group of fiber filaments pass through the second passing hole in turn.
  • the rotating motor 26 drives the rotating transmission mechanism 25 to drive the first wire transfer tray 31 to alternate forward and reverse rotations.
  • the rotating motor 26 directly drives The first spool 31 rotates, and the direction of rotation remains unchanged), there are two operation methods: the first operation method corresponding to the first driving situation: the moving mechanism 43 drives the hook 42 along the axis of the first through hole 411 To reciprocate once in the direction, the rotating motor 26 drives the rotating transmission mechanism 25 to drive the first spool 31 to rotate around the axis of the first through hole 411 in one of the directions (forward or reverse), and the moving mechanism 43 drives the hook 42 to be adjacent
  • the rotating motor 26 corresponding to one reciprocating movement drives the rotation transmission mechanism 25 to drive the first wire transfer disk 31 in different directions of rotation, or the rotation motor 26 is set to directly drive the first wire transfer disk 31 to alternate forward and reverse rotation;
  • the difference between the second operation method corresponding to the two driving situations and the first operation method is that the rotating motor 26 always drives the first wire transfer disk 31 to rotate around the axis of the first through hole 411 in one direction.
  • the rotating motor 26 is configured to be able to drive the first wire transfer tray 31 to rotate in a forward or reverse direction.
  • a specific implementation of the first operating method is as follows: at the same time or after the hook 42 is driven by the moving mechanism 43 to move to the side where the thread feeding unit is located, the first thread transfer disk 31 is driven by the rotating motor 26 to drive the rotating transmission mechanism 25 Forward rotation (can also be reverse or stop driving) to push the hook 42 from the top of the needle cylinder 41 under the drive of the moving mechanism 43 (the top of the needle cylinder 41 is the end of the needle cylinder 41 facing the wire feeding unit) ,
  • the crochet hook 42 is closest to the thread feeding unit (the crochet hook 42 has not touched the first thread transfer tray 31)
  • the first thread transfer tray 31 drives one side of the crochet hook 42 under the drive of the rotating motor 26 to drive the rotation transmission mechanism 25
  • the knitting thread 101 swings until the knitting thread 101 on this side is attached to the outside of the crochet needle 42; then, the crochet needle 42 is driven to move downward by the moving mechanism 43, and
  • the crochet needle 42 moves to the farthest point from the thread feeding unit, the crochet needle 42 is located below the top of the needle cylinder 41. At this time, all the crochet needles 42 pass through the last knitting formation.
  • the loop knitting buckle then, the knitting thread 101 or the knitting tube 106 in the first through hole 411 can be pulled toward the side away from the thread feeding unit by manual or the traction unit 80 outside the needle through the machine; again by the moving mechanism 43
  • the rotation motor 26 drives the rotation transmission mechanism 25 to drive the first thread transfer disk 31 to rotate in the opposite direction or in the same direction or stop rotating, and the crochet hook 42 is removed from the needle cylinder While the top of 41 stretches out, the knitting thread 101 on the crochet needle 42 is left on the top of the needle cylinder 41 to form a new circular knitting buckle.
  • the first thread transfer plate 31 is driven by the rotating motor 26 to drive the rotation transmission mechanism 25 to drive the crochet needle 42
  • the knitting thread 101 on the other side swings until the knitting thread 101 on this side is attached to the outside of the crochet needle 42; then, the crochet needle 42 is driven by the moving mechanism 43 to drive the hooked knitting thread 101 attached to the outside to move to The farthest from the thread feeding unit, at this time, all the crochet needles 42 pass through the loop knitting buckle formed by the last knitting; then, the knitting thread 101 in the first through hole 411 or The knitting tube 106 is pulled toward the side away from the thread feeding unit; the crochet needle 42 is again driven by the moving mechanism 43 to move toward the side where the thread feeding unit is located.
  • the rotating transmission mechanism 25 is driven by the rotating motor 26 to drive the first thread transfer tray 31. Rotate in the opposite direction from the previous time or rotate in the same direction or stop rotating. Repeat the above actions to knit a single-layer knitting tube 106 with a set length and knitting thread 101 in a staggered grid structure; at the same time, because of the knitting
  • the knitting thread 101 of the knitting tube 106 is in a staggered grid structure, and the structure of the knitting tube 106 is that a circular knitting buckle formed by one knitting thread 101 is nested in another knitting thread 101 to form a circular knitting buckle, so that the knitting During the stretching process of the knitting tube 106, different knitting threads 101
  • the circular knitting buttons can slide mutually, so that the knitting tube 106 can stretch.
  • the number of knitting threads 101 and crochet needles 42 can be adjusted as required, that is, it is not necessary to pass the knitting thread 101 in all the first thread passing holes 311, so that knitting can be made.
  • Knitting tube 106 with adjustable density and thread count.
  • the end of the crochet hook 42 facing the wire feeding unit is integrally formed, processed or connected to the wire hook, and the wire hook is integrally formed or processed with a crochet opening 422, which faces away from the wire feeding unit
  • the crochet needle 42 is driven by the moving mechanism 43 to move away from the thread feeding unit, so that it can hook the knitting thread 101 and move together.
  • the crochet needle 42 is further provided with a sealing rod 423, and the sealing rod 423 is pivotally connected to the crochet needle 42.
  • the sealing rod 423 is pivotally connected through the third pivot shaft 424.
  • the sealing rod 423 Connected to the side of the crochet opening 422 of the crochet hook 42 away from the thread feeding unit, the sealing rod 423 is configured to be able to rotate relative to the crochet hook 42 with the third pivot shaft 424 as a rotation axis, and when the sealing rod 423 can face the side where the thread feeding unit is located Turn until the hook opening 422 is blocked.
  • the third pivot shaft 424 is arranged perpendicular to the moving direction of the moving mechanism 43.
  • the sealing rod 423 is also set so that when it rotates to block the hook needle opening 422, the free end of the sealing rod 423 is inclined toward the side away from the hook needle 42 so that the hook needle 42 moves toward the thread feeding unit under the driving of the moving mechanism 43.
  • the circular knitting buckle can drive the sealing rod 423 to rotate toward the side away from the thread feeding unit, so that the sealing rod 423 opens the crochet opening 422.
  • the loop knit buckle knitted last time on the top of the needle cylinder 41 can smoothly drive the sealing rod 423 to rotate toward the side where the thread feeding unit is located.
  • the sealing rod 423 is made to block the crochet opening 422 to prevent the crochet 42 from hooking the loop knitting buckle on the top of the needle cylinder 41 when the crochet 42 moves to the farthest position from the thread feeding unit, and the knitting process cannot be smoothly performed.
  • An arc-shaped groove 425 is integrally formed or machined on the side of the crochet needle 42 that is far from the wire feeding unit of the third pivot shaft 424.
  • the arc-shaped groove 425 is provided on the side of the crochet needle 42 that faces away from the needle cylinder 41. When 41 is placed in the vertical direction, the arc-shaped groove 425 is located below the third pivot shaft 424, and the bottom of the arc-shaped groove 425 is located on the side of the third pivot shaft 424 close to the needle cylinder 41.
  • the side surface of the hook 42 provided with the arc-shaped groove 425 is formed with a protrusion 427 extending outward, and the third pivot shaft 424 is pivotally provided on the protrusion 427,
  • the side surface of the 427 on the same side as the crochet 42 with the arc groove 425 is integrally formed or machined with a receiving groove 426 for receiving the sealing rod 423.
  • the bottom of the receiving groove 426 is located outside the arc groove 425 (that is, away from Crochet 42 or the side of the needle cylinder 41) to ensure that when the sealing rod 423 turns away from the crochet opening 422 to the extreme position, the sealing rod 423 will not fit on the outside of the arc groove 425 (that is, away from the crochet 42 or needle The side of the cylinder 41), so that when the crochet needle 42 moves to the top of the needle cylinder 41, the loop knitting buckle on the top of the needle cylinder 41 can smoothly drive the sealing rod 423 to rotate toward the side where the thread feeding unit is located to seal The rod 423 blocks the crochet opening 422.
  • a sealing rod driving structure is provided between the needle cylinder 41 and the first threading disk 31, and the sealing rod driving structure is fixedly arranged on the support 100 or the first threading disk 31, the sealing rod driving structure is configured to drive the sealing rod 423 to rotate toward the side away from the thread feeding unit when the hook 42 is driven by the moving mechanism 43 to move toward the wire feeding unit, until the sealing rod 423 Move to the position where the distance between the free end and the wire feeding unit is the farthest to ensure that after the sealing rod 423 contacts the sealing rod driving structure, all the sealing rods 423 are opened from the hook opening 422.
  • the sealing rod driving structure is a positioning block 50.
  • the positioning block 50 is integrally formed or processed with a third through hole 51 for the crochet needle 42 to pass through, and is arranged such that when the sealing rod 423 blocks the crochet opening 422, the sealing rod The free end of 423 is located on the side of the inner wall of the third through hole 51 facing away from the barrel 41.
  • the positioning block 50 can resist the sealing rod 423 and urge the sealing rod 423 to rotate away from the thread feeding unit.
  • the positioning block 50 plays a safety function, and can ensure that the sealing rod 423 rotates to the side away from the thread feeding unit to open all the hook needle openings 422 to facilitate subsequent thread hooking.
  • the positioning block 50 is a circular ring to simplify the driving structure of the sealing rod.
  • the circular ring is fixed to the bracket 100 or the first cable tray 31 through the second connecting rod 52, and the circular ring is fixedly connected to the second connecting rod 52.
  • the two connecting rods 52 are fixedly connected to the bracket 100 or the first cable tray 31.
  • the knitting thread 101 delivered by the thread feeding unit to the crochet needle 42 passes through the third through hole 51; moreover, the knitting thread 101 before delivery to the crochet needle 42 needs to be passed through Through the third through hole 51, therefore, the knitting thread 101 between the ring and the needle cylinder 41 is located inside the crochet opening 422 of the crochet needle 42, and the crochet needle 42 will not catch the knitting thread before passing through the ring 101, and because the outside of the part where the crochet opening 422 of the crochet hook 42 is provided is located inside the third through hole 51, the crochet hook 42 can pass through the third through hole 51 under the driving of the moving mechanism 43, and then, due to the first pass
  • the distance between the thread hole 311 and the axis of the first thread reel 31 is greater than the distance between the crochet hook 42 and the axis of the first thread reel 31.
  • the first thread reel 31 can be driven by the rotating structure 20 on one side of the hook 42
  • the knitting thread 101 swings until the knitting thread 101 is attached to the outside of the crochet needle 42 passing through the third through hole 51, so that the crochet needle 42 is driven by the moving mechanism 43 to move toward the side where the needle cylinder 41 is located, and the hook The knitting thread 101 attached to the outside.
  • the outer surface of the protrusion 427 is located on the inner side of the surface in contact with the crochet 42 when the sealing rod 423 blocks the crochet opening 422 (that is, the side facing the crochet 42 or the needle barrel 41), And when the crochet needle 42 rotates away from the crochet needle opening 422 to the extreme position, the outer surface of the sealing rod 423 is located inside the outer surface of the protrusion 427. To ensure that the sealing rod 423 will not hinder the hook 42 from passing through the third through hole 51.
  • the knitting unit 40 may also use other knitting units commonly used in the prior art for knitting knitting threads out of a knitting tube.
  • the needle-through machine may also use other thread feeding units commonly used in the prior art to feed the knitting thread to the knitting unit 40.
  • the general knitting unit 40 occupies a large area because the crochet needles 42 in the general knitting unit 40 are arranged horizontally. As the crochet needles 42 are arranged horizontally, the crochet needles 42 and their The driving device and the transmission device occupy a large area, and it is not easy to install multiple sets of knitting units 40 on one needle through machine.
  • a knitting unit 40 is provided. As shown in FIGS. 5 to 7, the needle cylinder 41 of the knitting unit 40 is arranged such that the first through hole 411 thereof is arranged in a vertical direction.
  • the crochet needle 42 slides up and down under the drive of the moving mechanism 43, which reduces the occupation area of the knitting unit 40 in the horizontal direction and facilitates the passage of a needle.
  • Multiple sets of knitting units 40 are arranged on the machine, so that a technician can take care of multiple sets of knitting units 40 on a needle-through machine, which greatly saves labor costs. Moreover, technicians do not need to run around when working, and technicians can save energy.
  • one needle-through machine can produce multiple (two Three or six or ten, etc.) multiple knitting tubes 106, with high production efficiency and low production cost; it is also possible to knit different specifications and different types at the same time by setting different specifications and different types of knitting units 40 on a needle through machine ⁇ knitting tube 106.
  • the sealing rod 423 rotates to block the crochet opening 422, and the free end of the sealing rod 423 is inclined toward the side away from the crochet 42, the sealing The distance between the center of gravity of the rod 423 and the axis of the first through hole 411 is greater than the distance between the third pivot shaft 424 and the axis of the first through hole 411 to form a moment for the sealing rod 423 to rotate away from the wire feeding unit to open the crochet opening 422, Therefore, when no external force acts on the sealing rod 423, the sealing rod 423 rotates to the side away from the thread feeding unit to ensure that the crochet opening 422 is open, and it is convenient for the moving mechanism 43 to drive the crochet 42 to extend from the top of the barrel 41 At this time, the knitting thread 101 on the crochet needle 42 is removed from the crochet needle opening 422, and remains on the top of the needle cylinder 41 to form a new circular knitting button.
  • the sealing rod 423 is set to a structure with a wide pivot connection and a narrow free end to increase the sealing rod 423 when the sealing rod 423 is blocked on the hook opening 422, the sealing rod 423 rotates away from the wire feeding unit To open the crochet opening 422 trend.
  • the sealing rod 423 is arranged such that when it rotates to the position where its free end is farthest from the wire feeding unit, the distance between its side facing the crochet 42 and the axis of the first through hole 411 is from its connection with the crochet 42 Increases to the free end, so that when the crochet needle 42 moves to the top of the needle cylinder 41, the loop knitted buckle on the top of the needle cylinder 41 can smoothly drive the sealing rod 423 to rotate toward the side where the thread feeding unit is located, so that the sealing rod 423 blocks the crochet opening 422.
  • the closing lever 423 relies on its own center of gravity located at the crochet opening 422 to the side away from the needle cylinder 41, the moment formed can automatically rotate to the side away from the thread feeding unit to open the crochet opening 422, but when there is resistance (for example, When the third pivot shaft 424 does not rotate smoothly with the crochet needle 42), the crochet needle opening 422 cannot be fully opened. At this time, due to the sealing rod driving structure, it can be ensured that the crochet needle 42 has the crochet needle opening 422 before the knitting thread 101 is hooked. All are open.
  • the first embodiment of the moving mechanism 43 is shown in FIGS. 6 and 7.
  • the moving mechanism 43 includes a sliding groove 432 and a first sliding block 431 that are adapted to each other. At least two sliding grooves 432 are provided and are integrally formed or processed.
  • the sliding grooves 432 extend along the axial direction of the needle cylinder 41, all the sliding grooves 432 are arranged at intervals along the circumference of the first through hole 411 of the needle cylinder 41, and the sliding grooves 432 are facing the wire feeding unit.
  • One end communicates with the outside, and the hook 42 is provided on the first slider 431.
  • the first slider 431 and the hook 42 are integrally formed, which is convenient for processing.
  • the sliding grooves 432 are uniformly distributed on the outer circumference of the needle cylinder 41.
  • the hook 42 is adapted to the sliding groove 432, so that when the transfer mechanism drives the hook 42 to reciprocate along the extending direction of the sliding groove 432, the sliding groove 432 can limit the moving direction of the hook 42 and avoid swinging when the hook 42 moves.
  • the uniformity of the texture of the knitted tube 106 knitted by the crochet needle 42 is ensured, and the knitting quality of the knitted tube 106 is ensured.
  • the moving mechanism 43 further includes a slip ring 433 sleeved on the outer circumference of the needle cylinder 41, and all the hooks 42 or the first sliding block 431 are connected with the slip ring 433.
  • the crochet hook 42 and the slip ring 433 are detachably connected, and the detachable connection method may adopt, for example, a snap connection or a threaded connection commonly used in the prior art. Therefore, different numbers of crochet needles 42 can be arranged on the outer circumference of the needle cylinder 41 to knit the knitting tube 106 of different densities; the density of the crochet needles 42 at different positions can also be adjusted to adjust the knitting of different parts of the same knitting tube 106. density.
  • the specific snap connection method is as follows: the side of the crochet 42 is integrally formed, processed or connected with an outwardly protruding snap portion 421.
  • the slip ring 433 is integrally formed or processed with a needle barrel passage hole 4331 for passing through the needle barrel 41.
  • the axis of the needle barrel passage hole 4331 is parallel to the axis of the first through hole 411, and the slide ring 433 is provided with a needle barrel passing hole 4331.
  • the inner wall of the hole 4331 is integrally formed or processed with an annular groove 4332 that is adapted to the clamping portion 421.
  • the clamping portion 421 of the crochet 42 is fitted into the annular groove 4332 of the slip ring 433, and the clamping portion 421 and the crochet opening 422 It is arranged on the same side of the crochet needle 42 so that the crochet needle 42 fits on the slip ring 433 through the clamping part 421.
  • the crochet opening 422 of the crochet hook 42 faces away from the needle cylinder 41
  • the hook 42 can be driven to reciprocate along the axis of the needle cylinder 41.
  • the slip ring 433 can be composed of an upper slip ring 433 and a lower ring 433 that are detachably connected to each other.
  • the annular groove 4332 is provided at the junction of the upper slip ring 433 and the lower ring 433 to It is convenient to process the annular groove 4332 (not shown in the figure).
  • the slip ring 433 is a circular ring provided with a radial opening 4333.
  • An annular groove 4332 is integrally formed or machined on the inner wall of the circular ring.
  • the radial opening 4333 is along the diameter of the slip ring 433. It extends to one side of the slip ring 433.
  • the width of the radial opening of the ring is greater than the width of the hook 42 and smaller than the sum of the wall thickness between two adjacent sliding grooves 432 and the width of one of the sliding grooves 432.
  • the radial opening 4333 penetrates the slip ring along the axial direction of the barrel through hole 4331.
  • the front end of the sliding groove 432 communicates with the outside.
  • the crochet needle 42 can extend from the end of the slide groove 432 that is connected to the outside to hook the knitting thread 101 for knitting; and since the other end of the slide groove 432 is not connected to the outside, it can be avoided The hook 42 slides out of the sliding groove 432.
  • the second embodiment of the moving mechanism 43 is that the moving mechanism 43 is an oil cylinder, the cylinder of the oil cylinder is installed on the frame 200 or the needle cylinder 41, and the hook 42 (or the hook 42 through the slip ring 433) is installed on the piston rod.
  • the oil cylinder drives the hook needle 42 to reciprocate along the axis of the first through hole 411 of the needle cylinder 41 (not shown in the figure).
  • the third embodiment of the moving mechanism 43 can also be realized by converting rotation into movement by a cam mechanism commonly used in the prior art to drive the hook 42 to reciprocate (not shown in the figure).
  • the mobile driving mechanism 44 and the rotation transmission mechanism 25 are both driven by the rotation motor 26, they can be driven only by electric power without hydraulic driving.
  • the driving energy is simple and easy to control.
  • the outer circumference of the needle cylinder 41 is also sleeved with a collar, and the collar is sleeved at a position close to the top of the needle cylinder 41 to prevent the crochet hook 42 from being large during the movement. Swing to ensure the stability of knitting.
  • the needle through machine is also provided with a moving drive mechanism 44, and the slip ring 433 or sliding block is set on the frame 200 (or set on the needle cylinder through the moving drive mechanism 44).
  • the moving mechanism 43 drives the moving mechanism 43 through the moving driving mechanism 44 to drive the hook 42 to reciprocate along the axis of the first through hole 411.
  • the mobile driving mechanism 44 may also be connected with a driving device, and the driving device may be a rotating motor 26.
  • the moving drive mechanism 44 is a crank slider structure.
  • the moving drive mechanism 44 includes a second crank 441, a second connecting rod 442, and a second slider 443 that are pivotally connected in turn by a fourth pivot shaft 445; the second crank 441 is connected to the rotating shaft of the rotating motor 26
  • the fourth rotating shaft 444; the guide rail 446 adapted to the second slider 443, the guide rail 446 is arranged along the axial direction of the first through hole 411, and the guide rail 446 is fixedly arranged on the frame 200; the fourth rotating shaft 444 and the first
  • the four pivot shafts 445 are arranged perpendicular to the first through hole 411; the hook 42 is arranged on the second sliding block 443.
  • the hook 42 is connected to the second sliding block 443 through the slip ring 433.
  • the crank slider structure can be driven by the rotating motor 26 to drive the hook 42 to reciprocate along the axial direction of the first through hole 411.
  • the distance that the moving drive mechanism 44 drives the hook 42 can be adjusted by adjusting the distance between the fourth rotation shaft 444 and the fourth pivot shaft 445 connected to the second crank 441.
  • the fourth rotation shaft 444 is connected to the Two times the distance of the fourth pivot axis 445 on the two cranks 441 is the distance that the moving drive mechanism 44 drives the hook 42 to move.
  • FIG. 6 shows the fourth pivot shaft 445 connected to the second crank 441
  • the second slider 443 moves to the position farthest from the wire feeding unit (as shown in FIG. 6);
  • the fourth pivot shaft 445 connected to the second crank 441 moves to the end closest to the wire feeding unit
  • the second slider 443 moves to the position closest to the wire feeding unit (as shown in Fig. 7), as shown in Fig. 6
  • FIG. 7 shows the two movement limit positions of the hook 42 driven by the moving drive mechanism 44.
  • the guide rail 446 and the needle cylinder 41 are integrally formed, so that there is no need to additionally provide the guide rail 446, which simplifies the structure of the needle through machine.
  • the second crank 441 is also connected to the manual operating handle 45, and the connection between the two is configured to be able to drive the second crank 441 to rotate by rotating the manual operating handle 45.
  • the second crank 441 can be driven to drive the slip ring 433 to reciprocate along the axis of the first through hole 411 by rotating the manual operating handle 45, so as to manually perform operations such as testing, testing, and threading.
  • the moving mechanism 43 is connected to the manual operating handle 45 and the rotating motor 26 through the transmission mechanism 90.
  • the transmission mechanism 90 can adopt the synchronous pulley structure or the sprocket structure commonly used in the prior art, as long as the manual operating handle 45 and the rotating motor
  • the power of 26 can drive the crank slider structure to move through the transmission mechanism 90, and the present invention does not limit the specific structure of the transmission mechanism 90.
  • the needle cylinder 41 is detachably connected to the frame 200. Since the moving mechanism 43 is provided on the needle cylinder 41, that is, the knitting unit 40 includes the moving mechanism 43. When the moving drive mechanism 44 is not provided, the needle cylinder 41 can be Disassemble or connect with the frame 200 to realize the quick disassembly and connection of the knitting unit 40 and the frame 200; moreover, since multiple knitting units 40 can be set on one needle-through machine, multiple specifications can be set on one needle-through machine The specifications of the knitting unit 40 can be distinguished by the diameter of the needle cylinder 41. Specifically, it is distinguished by the distance between the crochet hook 42 and the axis of the first through hole 411 of the needle cylinder 41.
  • Knitting units 40 of different specifications are provided on the needle-through machine to realize the simultaneous knitting of knitted tubes 106 of different diameters on the same needle-through machine.
  • the needle cylinder 41 can be detached or connected to the frame 200, and the crochet hook 42 or the slip ring 433 can be detached or connected to the moving drive mechanism 44 to realize the knitting unit 40 and the frame. 200 quick disassembly and connection.
  • the connection between the needle cylinder 41 and the frame 200, and the connection between the hook 42 or the slip ring 433 and the moving drive mechanism 44 is a threaded connection, more specifically a screw connection.
  • the rotation transmission mechanism 25 and the movement drive mechanism 44 are connected through the transmission mechanism 90 to form a synchronous rotation movement unit, and the transmission mechanism 90 drives the rotation transmission mechanism 25 and the movement drive mechanism 44 to have a transmission ratio of 1:2, so that the rotation
  • the transmission mechanism 25 drives the first thread transfer disk 31 to reciprocate once
  • the moving drive mechanism 44 drives the hook 42 to reciprocate twice, thereby synchronously driving the first thread transfer disk 31 and the hook 42 to move through a rotating motor 26.
  • the manual operating handle 45 is also connected with the transmission mechanism 90, so as to manually perform operations such as testing, testing, and threading.
  • the rotating motor 26 is also connected to the rotating motor 26 to save energy and reduce production costs.
  • the needle through machine further includes a pulling unit 80 for pulling the knitting tube 106 knitted by the crochet needle 42 from the end of the needle cylinder 41, and the pulling unit 80 is arranged behind the needle cylinder 41. end. Since the needle-passing machine is also provided with a traction unit 80, the working process of the needle-passing machine is slightly different from that of the aforementioned needle-passing machine.
  • the traction unit 80 is used instead of manual labor to drive the knitting thread 101, the single-layer knitting tube 106 or the double-layer telescopic tube output by the needle cylinder 41 to move to the side away from the thread feeding unit to make the hook 42 free from the loop knitting buckle.
  • the traction unit 80 includes a driving roller 81 driven by a rotating motor 26, and a follower for pulling the knitted tube 106 that is abutted with the driving roller 81.
  • the roller 83 and several guide rollers 82 or guide shafts 84 for guiding the knitting tube 106 are arranged between the needle cylinder 41 and the driving roller 81 to guide the direction of the tube.
  • the traction unit 80 may also use other traction devices commonly used in the prior art that can traction knitting threads or single-layer knitting tubes, and these traction devices will be equipped with traction knitting threads or single-layer knitting devices.
  • the rollers or rotating shafts that the tube is removed from the needle cylinder, and these rollers or rotating shafts are driven by the power equipment to rotate around their rotating shafts.
  • a general needle through machine cannot directly produce a double-layer telescopic tube with an elastic inner tube.
  • the double-layer telescopic tube produced in the prior art needs to manually pierce the elastic tube 61 in the knitted tube 106. Due to the limited conditions, the production The longest double-layer telescopic tube does not exceed 15 meters, which brings inconvenience to users who need a larger-length double-layer telescopic tube; in addition, by manually inserting the elastic tube 61, there must be many wrinkles on the elastic tube 61 , The remaining knitted tube 106 causes a lot of waste of the knitted tube 106, and the appearance is not beautiful; sometimes in order to obtain a longer double-layer telescopic tube, it is necessary to connect the shorter-length double-layer telescopic tube through a joint.
  • the general needle-through machine cannot directly produce the wear-resistant double-layer telescopic tube of the knitted tube 106 with the elastic expansion tube used to protect the knitted tube 106.
  • the general needle-through machine cannot directly produce the inner belt of the knitted tube 106.
  • the produced wear-resistant double-layer telescopic tube Or the length of the three-layer telescopic wear-resistant water pipe is limited by the original knitted tube 106 or the double-layer telescopic water pipe, and the length is not more than 15 meters, which also cannot meet the need for longer wear-resistant double-layer telescopic pipes or three-layer telescopic wear-resistant water pipes. The needs of users.
  • the needle-passing machine also includes a needle for conveying the elastic tube 61 to the crochet hook 42.
  • the feeding unit 60 in the knitted tube 106 is knitted, and the feeding unit 60 is provided at the front end of the knitting unit 40.
  • the needle-passing machine does not provide the feeding unit 60 at the same time.
  • the needle-through machine It also includes a feeding unit 60 for transporting the elastic tube 61 into the knitting tube 106 knitted by the crochet needle 42.
  • the feeding unit 60 is provided at the front end of the knitting unit 40; and the knitting tube 106 for outputting from the needle cylinder 41
  • the outer tube forming machine 70 for forming the outer tube 107 or a coating machine for coating the outer surface of the knitted tube 106 output from the needle cylinder 41, the outer tube forming machine 70 or the coating machine is provided at the rear end of the needle cylinder 41.
  • the outer tube 107 covering the outer circumference of the knitted tube 106 can reduce friction between the knitted tube 106 and the outside, or can keep the surface of the knitted tube 106 clean.
  • the outer tube forming machine 70 can use the equipment for forming the outer tube in the prior art, and the coating machine can also use the equipment commonly used in the prior art for coating fluid on the surface of the product. Coating machine.
  • the conveying unit 60 is a support frame on which the elastic tube 61 is wound, so that the elastic tube 61 can rotate around the support frame, so that the elastic tube can be pulled by the traction unit 80. 61 is continuously input into the knitting tube 106. Further, in order to facilitate the rotation of the elastic tube 61, a rotating shaft for winding the elastic tube is pivotally connected to the support frame.
  • the feeding unit 60 is a plastic extruder commonly used in the prior art for forming the elastic tube 61.
  • the needle through machine includes a feeding unit 60 for transporting the elastic tube 61 to the knitted tube 106 knitted by the crochet needle 42
  • a double-layer telescopic water tube with an elastic tube 61 (such as a latex tube) inside can be directly produced
  • the crochet needle 42 directly knits the knitted tube 106 outside the elastic tube 61, so that a double-layer telescopic water tube of any length can be made according to the needs, and the knitted tube 106 is evenly laid out on the surface of the elastic tube 61 without causing the knitted tube 106 to become elastic. Excess wrinkles are formed on the tube 61, which saves the amount of the knitted tube 106.
  • the use of polyester yarn saves more than 2 grams per meter.
  • the outer layer had more wrinkles.
  • the length is large, using more than 10 grams of polyester yarn per meter.
  • the current product has no wrinkles and less than 8 grams of polyester yarn per meter), which not only reduces the weight of the product, but also greatly saves the cost of raw materials; at the same time, it does not need to be connected to form the length
  • the longer double-layer telescopic water pipe reduces the weight of the double-layer telescopic water pipe and saves production costs; the prepared double-layer telescopic water pipe can pass water in an elastic tube 61 such as a latex tube.
  • the latex tube Due to the elasticity of the latex tube, Under the pressure of the internal water, the latex tube can expand and contract. Because the knitted tube 106 is wrapped outside the latex tube, the water can expand and contract synchronously with the latex tube, avoiding the latex tube from being worn out due to direct contact with the outside, and improving the service life of the double-layer expansion tube .
  • this outer tube forming machine 70 may be a needle similar or the same as the needle through machine of the present invention.
  • the general machine can also be a plastic extruder commonly used in the prior art for extruding and molding plastic tubes or plastic film tubes, or a metal tube braiding molding machine commonly used in the prior art, so that it can be manufactured
  • the inner layer is a knitted tube 106
  • the outer layer is a knitted tube 106 or a double-layer wear-resistant tube of a metal braided tube, or a double-layer wear-resistant and waterproof tube with a knitted tube 106 as the inner layer and a plastic tube or plastic film as the outer layer
  • the length of the produced double-layer tube double-layer wear-resistant tube, double-layer wear-resistant waterproof tube, etc. is not limited.
  • the coating can be, for example, a wear-resistant or waterproof coating, so that a wear-resistant coating or a waterproof coating can be directly produced.
  • Coated knitted tube 106, and the length of the coated knitted tube 106 produced is not limited; when the outer tube 107 adopts knitted tube 106, metal braided tube, plastic tube, plastic film or coating, all are stretchable At this time, the double-layer tube with the outer tube 107 outside the produced knitted tube 106 is also a double-layer telescopic tube.
  • the outer tube 107 may be an elastic expansion tube or an inelastic corrugated tube.
  • a general needle through machine cannot directly produce a three-layer telescopic tube with an elastic tube 61 on the inside of the knitted tube 106 and an outer tube 107 for protecting the knitted tube 106 on the outside.
  • the produced three-layer The length of the telescopic tube is limited by the original double-layer telescopic tube, and the length does not exceed 15 meters, which also cannot meet the needs of users who need a larger length of three-layer telescopic tube.
  • the needle-through machine includes a feeding unit 60 that transports the elastic tube 61 to the knitted tube 106 knitted by the crochet needle 42 and an outer tube forming machine 70 that directly produces the telescopic outer tube 107 outside the knitted tube 106
  • a feeding unit 60 that transports the elastic tube 61 to the knitted tube 106 knitted by the crochet needle 42
  • an outer tube forming machine 70 that directly produces the telescopic outer tube 107 outside the knitted tube 106
  • Three-layer telescopic tubes of any length without joint connection to form a longer three-layer telescopic tube, reduce the weight of the three-layer telescopic tube, and save production costs; because the outer tube is sleeved on the surface of the knitted tube 106 107.
  • the knitted tube 106 is not easily scratched, so that the service life of the three-layer telescopic tube is much longer than that of the double-layer telescopic tube.
  • the outer tube forming machine 70 is a plastic extruder for forming an elastic telescopic tube outside the knitted tube 106 output by the needle cylinder 41. Since the elastic telescopic tube is uniformly arranged on the surface of the knitted tube 106, it will not cause the elastic telescopic tube to form excess wrinkles on the knitted tube 106, saving the amount of elastic telescopic tube, not only reducing the weight of the product, but also greatly saving the cost of raw materials; The surface of the knitted tube 106 is covered with an elastic telescopic tube, the surface of the three-layer telescopic tube made is smooth, and the knitted tube 106 is not easy to be scratched, so that the service life of the three-layer telescopic tube is much longer than that of the double-layer telescopic tube.
  • a tube arrangement unit 71 driven by a motor is further provided after the outer tube forming machine 70.
  • the pipe arrangement unit 71 can be driven by the rotating motor 26 to realize automated production.
  • the pipe arrangement unit 71 is a pipe gathering rack.
  • the pipe gathering rack is provided with a support frame, and the support frame is pivotally connected to the pipe (single-layer knitted tube, double-layer telescopic tube, and three-layer telescopic tube).
  • Rotating shaft which is driven by power equipment to rotate around its own central axis.
  • the pipe sorting unit 71 can also use other equipment for sorting pipes in the prior art.
  • a traction unit 80 may also be provided.
  • the traction unit 80 is used to output the knitting thread 101 and the single-layer knitting tube from the needle cylinder 41 106 or double-layer telescopic water pipe to pull out.
  • the traction unit 80 can also be arranged before or after the outer tube forming machine 70 or the coating machine for outputting the needle cylinder 41 to the knitting machine.
  • the thread 101, the single-layer knitted tube 106 or the double-layer telescopic water pipe is drawn to the outer tube forming machine 70 or the coating machine, or used to draw the outer tube forming machine 70 or the double-layer tube or the triple-layer tube output from the coating machine.
  • the traction unit 80 can also be arranged between the outer tube forming machine 70 or the coating machine and the tube finishing unit 71 for connecting the outer tube forming machine 70 or
  • the double-layer pipe or the triple-layer pipe output from the coating machine is drawn to the pipe finishing unit 71.
  • the traction unit 80 can also use other traction devices commonly used in the prior art that can tow a double-layer telescopic tube or a triple-layer telescopic tube, and these traction devices will be equipped with a double-layer telescopic tube.
  • the rollers or rotating shafts of the three-layer telescopic tube removed from the needle cylinder, and these rollers or rotating shafts are driven by the power equipment to rotate around their rotating shafts.
  • the needle through machine further includes a knitting guide strip or a knitting guide tube 201 arranged on the frame 200 and arranged in the first through hole 411, and a knitting guide tube 201 or a knitting guide
  • the strip and the needle cylinder 41 are enclosed to form a passage for the knitting tube 106 to pass through.
  • the feeding unit 60 is configured to transport the elastic tube 61 into the knitting guide tube 201; the thread feeding unit is provided with a knitting guide strip or a knitting guide tube 201 Through the second through hole 312, the first via hole 311 is provided on the outer periphery of the second through hole 312.
  • the knitting tube 106 knitted by the crochet needle 42 can be transported out through the gap between the needle cylinder 41 and the knitting guide tube 201 or the knitting guide strip.
  • the wire feeding unit only includes the first wire passing tray 31, the first wire passing tray 31 is integrally formed or processed with the second through hole 312, and the first wire passing hole 311 is along the circumference of the second through hole 312. The directional interval is provided outside the second through hole 312.
  • the wire feeding unit further includes the second wire passing reel 32 and/or the third wire passing reel 33
  • the second wire passing reel 32 and/or the third wire passing reel 33 is arranged on the away from the needle cylinder of the first wire passing reel 31
  • the second cable tray 32 and/or the third cable tray 33 are also integrally formed or machined with a second through hole 312, and the second cable hole 321 is on the second cable tray 32.
  • the outer sides of the two through holes 312 are arranged at intervals in the circumferential direction; the third wiring holes 331 are arranged at intervals in the outer circumferential direction of the second through holes 312 on the third wiring tray 33.
  • the second through hole 312 is arranged coaxially with the first passage to prevent the knitting guide tube 201 or the knitting guide strip from being twisted when conveyed from the second channel to the first channel, resulting in the knitting guide tube 201 or the knitting guide strip being distorted.
  • the knitted guide tube 201 can also be replaced by a solid wire, which is only used when the single-layer knitted tube 106 is produced.
  • the elastic tube 61 is set in the knitted tube 106 through the knitted guide tube 201 to reduce the friction between the knitted tube 106 and the elastic tube 61.
  • the knitting guide tube 201 or the knitting guide strip is away from the thread feeding unit
  • the end part is integrally formed or processed with a shrinking neck.
  • the constricted portion is set in a tapered shape so as to uniformly lead out the knitted tube 106 knitted by the needle through machine. Further, the corners of the knitting guide tube 201 or the knitting guide strip transition smoothly.
  • the rotating structure 20 and the moving mechanism 43 are connected to the same rotating motor 26 through the transmission mechanism 90 to save energy and reduce production costs.
  • the transmission mechanism 90 connects the second timing pulley 23 of the rotating structure 20 and the sliding block or slip ring 433 of the moving mechanism 43 with the rotating motor 26.
  • the transmission mechanism 90 connects the second rotation shaft 255 of the rotation transmission mechanism 25 with the rotation motor 26 (instead of connecting the second synchronous pulley 23 of the rotation structure 20 with the rotation motor 26). 26 connections).
  • the transmission mechanism 90 connects the fourth rotating shaft 444 of the moving drive mechanism 44 with the rotating motor 26 (instead of connecting the slider or slip ring 433 of the moving mechanism 43 with the rotating motor 26 connections).
  • a third synchronous belt wheel 91, a first gear and/or a first sprocket are coaxially connected to the rotating shaft of the rotating motor 26, and the third synchronous belt is provided on the rotating shaft of the rotating motor 26.
  • the total number of wheels 91, first gears and first sprocket wheels is not less than two.
  • Each third synchronous belt wheel 91 is connected to a fourth synchronous belt wheel 92 through a belt, and each first gear passes through it. The corresponding gear drives the second gear to rotate.
  • Each first sprocket is connected to a second sprocket through a chain.
  • One of the fourth timing belt wheel 92, the second gear or the second sprocket is coaxial with the fourth rotating shaft 444 Connected, the fourth rotating shaft 444 is perpendicular to the first through hole 411 of the needle cylinder 41, so that under the drive of the rotating motor 26, the third synchronous belt wheel 91, the first gear and the first sprocket pass through the fourth synchronous belt wheel 92.
  • the second gear or the second sprocket drives the moving driving mechanism 44 to move to drive the hook 42 to reciprocate through the moving mechanism 43; in order to enable the rotating structure 20 to drive the first thread reel 31 around the first through hole of the needle cylinder 41
  • the axis of 411 rotates, the rotating shafts of the rotating structure 20 and the rotating transmission mechanism 25 are arranged parallel to the axis of the first through hole 411, and the specific arrangement is as follows: on the fourth timing pulley 92, the second gear or the second sprocket
  • a first bevel gear 93 is coaxially connected
  • a second bevel gear 94 is meshed on the first bevel gear 93
  • the rotation axis of the second bevel gear 94 is parallel to the axis of the first through hole 411 of the needle cylinder 41
  • the second bevel gear 94 is coaxially connected with a second rotating shaft 255, and the rotating structure 20 or the rotating transmission mechanism 25 and the first cable tray 31 are reciprocated together through the fourth timing belt wheel 92
  • the traction unit 80 is also connected to the rotating structure 20, the moving mechanism 43 and the rotating motor 26 through a transmission mechanism.
  • the rotating shaft of the rotating motor 26 is also coaxial Connected with a third synchronous belt wheel 91, a first gear and/or a first sprocket, that is, the total number of the third synchronous belt wheel 91, the first gear and the first sprocket set on the shaft of the rotating motor 26 is quite large Yu three.
  • the transmission mechanism 90 connects the driving roller 81 of the traction unit 80 with the rotating motor 26.
  • the axis of the driving roller 81 of the pulling unit 80 is set to be perpendicular to the axis of the first through hole 411 of the needle cylinder 41 and the rotation axis of the fourth rotating shaft 444 at the same time.
  • the fourth rotating shaft 444 is also perpendicular to the first through hole 411 of the needle cylinder 41.
  • the fourth timing pulley 92, the second gear or the second sprocket is coaxially connected with a third The bevel gear 95, the third bevel gear 95 is meshed with a fourth bevel gear 96, and the rotation axis of the fourth bevel gear 96 is at the same time as the axis of the first through hole 411 of the needle cylinder 41 and the fourth rotation shaft 444
  • the shaft is vertical
  • the fourth bevel gear 96 is coaxially connected with the fifth timing pulley 97, the third gear or the third sprocket
  • the driving roller 81 of the traction unit 80 is coaxially connected with the sixth timing pulley 98 and the fourth
  • the gear or the fourth sprocket drives the sixth timing pulley 98, the fourth gear or the fourth sprocket and the driving roller 81 to rotate together through the fifth timing pulley 97, the third gear or the third sprocket.
  • the rotating shaft of the rotating motor 26 the second The rotating shaft 255 and the third rotating shaft 256 are pivotally connected to the frame 200.
  • the fourth timing belt wheel 92, the rotating shaft of the second gear or the second sprocket, the second bevel gear 94 and the fourth umbrella The rotating shaft of the shaped gear 96 is also pivotally connected to the frame 200.
  • the transmission mechanism 90 connects the pipe arrangement unit 71 with the rotating motor 26.
  • the knitting units 40 are driven by the rotating motor 26 driving the transmission mechanism 90. Since all the knitting units 40, rotating structure 20, moving mechanism 43 and traction unit 80 in the needle through machine are driven by the same rotating motor 26, energy consumption can be saved and production costs can be further reduced.
  • the rotating motor 26 adopts a servo motor commonly used in the prior art.
  • the transmission mechanism 90 connecting all the knitting units 40 is a linkage mechanism.
  • the linkage mechanism is one of the knitting units 40.
  • the gear transmission mechanism 90 or Synchronous transmission is achieved by meshing transmission with the gears or synchronizing wheels on the transmission shafts of all other knitting units 40 and the gears or synchronizing wheels on the auxiliary shafts by the timing belt, and can also be driven by sprocket or pulley.
  • the moving mechanism 43 and the traction unit 80 are respectively driven by respective servo motors, it is necessary to control the rotation speed and steering of each servo motor through a control module.
  • the servo motors drives the moving mechanism 43 to drive the hook 42 to move up and down
  • the other servo motor drives the rotating structure 20 to drive the first thread transfer disk 31 to reciprocate.
  • the following is a production method of using the aforementioned pin-through machine to produce a pipe according to an embodiment of the present invention.
  • the production method includes the following production methods:
  • Production method one the production method of single-layer knitted tube 106, includes the following steps:
  • the thread feeding unit delivers the knitting thread 101 to the crochet needle 42. Specifically, the thread feeding unit delivers the knitting thread 101 to the crochet needle 42 through the first thread passing hole 311.
  • the thread reels for knitting are respectively hung on the pay-off shaft 104 of the thread feeding unit, and the thread outlets on the thread reels are passed through the first spool in turn according to the number of threads used in each knitting unit 40.
  • step S102 while the moving mechanism 43 drives the crochet needle 42 to reciprocate along the axis of the first through hole 411, the rotating structure 20 drives the first thread reel 31 to rotate, so as to move the knitting thread 101 on the side of the crochet needle 42. Transport to the hook 42.
  • the rotating structure 20 drives the first thread transfer disk 31 to alternately rotate forward and backward to move the knitting threads on both sides of the crochet needle 42. 101 is delivered to the hook 42 alternately.
  • the more specific method is the same as the operation method of the aforementioned needle through machine, and will not be repeated here. Due to the alternating forward and reverse rotations of the first spool 31, the trajectory of the knitting thread 101 knitted by each crochet needle 42 is to hook the knitting thread 101 on one side, and then hook the knitting on the other side. The thread 101 is thus knitted into a single-layer knitted tube 106 with a certain degree of tightness as shown in FIG. 13.
  • Production method two the production method of double-layer telescopic tube, on the basis of production method one, also includes the following steps:
  • S201 The crochet needle 42 knits a knitted tube 106 on the outer periphery of the elastic tube 61 output by the feeding unit 60 to form a double-layer wear-resistant water tube.
  • step S202 pulling out the knitted tube 106 covered with the elastic tube 61 by the pulling unit 80 or the tube finishing unit 71 together to form a double-layer wear-resistant water tube as shown in FIG. 14.
  • step S201 is set before S101 or S102.
  • the unwinding tightness or unwinding speed of the elastic tube 61 is controlled, and the density of the knitted tube 106 sleeved on the elastic tube 61 or the telescopic length of the telescopic tube are adjusted.
  • step S203 ⁇ the knitted tube 106 covered with the outer tube 107 or the knitted tube 106 coated with a wear-resistant or waterproof coating is pulled out together by the pulling unit 80 or the tube finishing unit 71 to form a double Layer wear-resistant pipe or double-layer wear-resistant waterproof pipe.
  • Production method three the production method of the three-layer telescopic tube, on the basis of production method 1, further includes step S201, and includes the following steps:
  • step S302 the knitting tube 106 covered with the outer tube 107 on the outside or the knitting tube 106 covered with a wear-resistant or waterproof coating on the outside and the elastic tube 61 covered on the inside by the pulling unit 80 or the pipe finishing unit 71 106 are pulled out together to form a three-layer telescopic tube.
  • the products produced by the above-mentioned production method include single-layer knitted pipe 106 or double-layer telescopic water pipe or double-layer wear-resistant pipe or double-layer wear-resistant waterproof pipe or three-layer telescopic pipe.
  • the single-layer knitted pipe 106 only includes knitted Pipe 106;
  • double-layer telescopic pipes include double-layer telescopic water pipes, double-layer wear-resistant pipes and double-layer wear-resistant waterproof pipes.
  • Double-layer telescopic water pipes include knitted pipe 106 and elastic pipe 61 arranged in knitted pipe 106; double-layer wear-resistant The tube includes a knitted tube 106 and an outer tube 107 sheathed outside the knitted tube 106; a double-layer wear-resistant and waterproof tube includes a knitted tube 106 and a wear-resistant or waterproof coating coated on the outside of the knitted tube 106; a three-layer telescopic tube It includes a knitted tube 106, an elastic tube 61 sheathed in the knitted tube 106, and an outer tube 107 sheathed outside the knitted tube 106 or a coating coated on the outside of the knitted tube 106.
  • At least one of the single-layer knitting tube 106, the double-layer telescopic tube, and the three-layer telescopic tube can also be produced on the same needle-through machine at the same time as needed, so as to realize the diversity of the knitting tube 106 produced by the needle-through machine.
  • the single-layer knitted tube 106, double-layer telescopic tube, and three-layer telescopic tube produced by the production method of the present invention have the advantages of the corresponding knitted tube 106 described above, and will not be repeated here.
  • the above-mentioned elastic tube 61 and elastic telescopic tube are all one of latex tube, silicone tube, TPE tube, and TPV tube.
  • the above-mentioned knitting thread 101 is industrial polyester filament or nylon filament or other chemical fiber filament with high elasticity and toughness.
  • the above-mentioned fixing arrangement can be realized by non-detachable connection methods commonly used in the prior art (for example, welding, gluing), or can be realized by detachable connection (for example, buckle, threaded connection).
  • the invention does not limit the specific implementation of the fixed setting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Knitting Machines (AREA)

Abstract

本发明公开一种用于生产针织管的针通机的送线单元及针通机,该送线单元包括支架;设在支架上的转动结构;设在转动结构上的第一过线盘,第一过线盘上周向间隔设置有用于通过针织线的第一过线孔;转动结构设置成能够驱动第一过线盘转动。转动结构驱动第一过线盘带动各个第一过线孔中的针织线分别转动,以使每个第一过线孔中的构成针织线的多根纤维丝自松散状态转变为相互紧密缠绕的状态,避免钩针在钩取针织线的过程中仅钩取部分纤维丝,导致针织出的针织管的线条粗细不均;由此,该送线单元的使用场景不受针织线的质量限制;且由于针织线在经过该送线单元前无需经过加捻,生产效率提高,生产成本降低。

Description

用于生产针织管的针通机的送线单元及针通机 技术领域
本发明涉及针织设备技术领域,具体涉及一种用于生产针织管的针通机的送线单元及针通机。
背景技术
用于生产针织管的针通机由于要生产筒状的针织物,为了加快针通机的针织速度,如专利公告号为CN101415872B的发明专利公开的用于袜类或类似物的圆型针织机在针筒外侧设有沿其轴向延伸的用于针织的多根针织针,并通过驱动机构驱动针织针运动,以通过多个针织针同时对不同针织线进行针织实现快速针织。一般的,设置与针织针数量相同的针织线,这些针织线分别通过喂纱装置喂到不同的针织针上。专利公告号为CN208183212U的实用新型专利公开的一种织袜机就公开了用于给针织针喂纱的喂纱装置。但是,针织管是立体织物而不是平面织物,喂纱装置在给针织针喂线时,为了避免针织线相互缠绕,只能将经过加捻的纱线喂给针织针,进而导致喂纱装置的使用范围有限。并且用于生产针织管的针织线必须经过加捻工序,生产效率低,生产成本高。
发明内容
由于针通机是通过圆周设置的钩针钩取针织线的方式针织出针织管的,一般的针织线使用前都需要经过加捻,以将多根原本松散的纤维丝相互紧密缠绕构成纱线,从而避免钩针在钩取针织线的过程中仅钩取部分纤维丝,使针通机针织出的针织管的线条粗细不均。从而,一般的喂纱装置只能将经过加捻的纱线喂给针织针,导致一般的喂纱装置的使用范围受限,而且由于用于生产针织管的针织线必须经过加捻工序,生产效率低,生产成本高。为了解决一般的喂纱装置使用范围受针织线质量高低的限制,以及生产效率低和生产成本高的问题,本发明提供了一种用于生产针织管的针通机的送线单元。
该用于生产针织管的针通机的送线单元包括支架;设在支架上的转动结构;设在转动结构上的第一过线盘,第一过线盘上周向间隔设置有用于通过针织线的第一过线孔;转动结构设置成能够驱动第一过线盘转动。当采用该送线单元给针通机的钩针输送针织线时,可以直接将原本用于通过加捻形成一根纱线的多根纤维丝直接穿过第一过线孔,通过第一过线孔输送给针通机的钩针进行针织,由于多根纤维丝通过第一过线孔输送给针通机的钩针的过程中,转动结构驱动第一过线盘转动,从而通过第一过线盘带动各个第一过线孔中的针织线分别转动,以使每个第一过线孔中的构成针织线的多根纤维丝自松散状态转变为 相互缠绕的较紧密的状态,避免钩针在钩取针织线的过程中仅钩取部分纤维丝,导致针通机针织出的针织管的线条粗细不均;由此,该送线单元不仅可以给钩针输送经过加捻的纱线,还可以在输送未经过加捻的松散的纤维丝的过程中将松散的纤维丝拧紧,以保证输送至钩针的纤维丝呈紧密缠绕状态,从而使该送线单元的使用场景不受针织线的质量限制,而且,由于针织线在经过该送线单元前无需经过加捻,生产效率提高,生产成本降低。
在一些实施方式中,转动结构设置成能够驱动第一过线盘交替正向、反向转动。由于转动结构可以驱动第一过线盘交替正向、反向转动,从而带动每个第一过线孔中的多根纤维丝交替地正向、反向摆动,多根纤维丝在交替正向、反向摆动的过程中,进一步增加第一过线孔中的纤维丝之间的摩擦力,使每个第一过线孔中的多根纤维丝更加紧密地缠绕在一起;而且,由于转动结构设置成能够驱动第一过线盘交替正向、反向转动,在使用该送线单元时,将该送线单元安装在针通机上,且位于钩针的前端,同时将该送线单元设置成转动结构的转轴垂直于钩针的移动方向,从而,可以通过第一过线盘将钩针的两侧的针织线交替地输送到钩针上,以通过钩针针织出针织线交错设置的针织管,从而使钩针针织出的针织管能够伸缩。
在一些实施方式中,该用于生产针织管的针通机的送线单元还包括设在支架上的第二过线盘;第二过线盘位于第一过线盘的前端,且其周向上间隔设置有用于将针织线输送至第一过线孔中的第二过线孔。当使用该送线单元时,将第二过线盘设在第一过线盘的背离钩针的一侧(即第一过线盘的前端),由于第二过线盘是设在支架上的,且其上设置有用于通过针织线的第二过线孔,当转动结构驱动第一过线盘带动针织线摆动时,经过同一个第一过线孔的多根纤维丝在第一过线盘的两侧的摆动方向相反(例如,同一个第一过线孔中的多根纤维丝在第一过线盘与钩针之间的部分正向摆动,则同时该多根纤维丝的在第一过线盘与第二过线盘之间的部分反向摆动),而且,由于同一个第一过线孔中的多根纤维丝的在第一过线盘和第二过线盘之间的部分,均以第二过线孔为基准,随着第一过线盘的转动而摆动,因此,同一个第一过线孔中的多根纤维丝在输送至钩针上之前,依次经过第二过线孔的内壁和第一过线孔的内壁的揉搓,使得输送至钩针上的多根纤维丝的缠绕更加紧密。
在一些实施方式中,该用于生产针织管的针通机的送线单元还包括第三过线盘;第一过线盘通过第三过线盘设在转动结构上,第三过线盘设在第一过线盘和第二过线盘之间,且第三过线盘上周向间隔设置有用于通过针织线的第三过线孔,以使得针织线在穿过第二过线孔后,能够先穿过第三过线孔再穿过第一过线孔。由此,第二过线盘和第三过线盘之间的纤维丝会以第二过线孔为基准摆动,第一过线盘和钩针之间的纤维丝会以第一过线孔为基准摆动,从而在 转动结构驱动第二过线盘带动第一过线盘转动时,依次经过各个第二过线孔、第三过线孔和第一过线孔的多根纤维丝在经过第二过线孔、第三过线孔和第一过线孔时,分别被第二过线孔、第三过线孔和第一过线孔的内壁揉搓,即纤维线在送达钩针前经过三次揉搓,纤维丝之间的相互摩擦力更大,多根纤维丝之间的缠绕更加紧密;而且,由于第一过线盘和第三过线盘相对静止,可以保证纤维丝从第二过线盘到第一过线盘时输送顺畅。
在一些实施方式中,第一过线孔和第二过线孔与第一过线盘的转轴的距离均大于第三过线孔与第一过线盘的转轴的距离。
在一些实施方式中,该用于生产针织管的针通机的送线单元还包括设在支架上的,用于放置针织线卷的放线轴;可枢转地设在支架上的,用于将针织线卷上的针织线输送至第二过线孔中的导线辊。从而,可以顺畅地将针织线卷上的针织线输送至第二过线孔中。
为了解决一般的针通机使用范围受针织线质量高低的限制,以及生产效率低和生产成本高的问题,本发明提供了一种用于设有前述送线单元的针通机。
该针通机包括机架;设在机架上的针筒,针筒具有供针织线或针织管贯穿整个针筒的第一通孔;设在针筒上的能够沿第一通孔的轴线方向往复移动的移动机构;设在机架上的送线单元,送线单元为前述的送线单元且设在第一通孔的前端;以及设在移动机构上的至少两根用于将针织线针织成针织管的钩针,钩针在针筒的外周间隔设置,以使得钩针能够在移动机构的带动下沿第一通孔的轴线方向往复移动,钩针与第一过线盘的转轴的距离小于第一过线孔与第一过线盘的转轴的距离。
使用该针通机时,将针织用的针织线的线头按照针通机的用线根数分别且依次穿过第一过线盘上的第一过线孔、钩针、第一通孔。根据转动结构两种驱动情况(第一种驱动情况,驱动第一过线盘交替正向、反向转动,第二种驱动情况,驱动第一过线盘转动的方向不变),存在两种操作方法:与第一种驱动情况对应的第一种操作方法,通过移动机构驱动钩针朝送线单元所在的一侧运动的同时或之后,通过转动结构驱动第一过线盘转动,例如驱动第一过线盘正转(正向转动),钩针在移动机构的驱动下从针筒的顶部伸出(针筒的顶部为针筒的朝向送线单元的端部),钩针距离送线单元最近处时(此时,钩针还未接触到第一过线盘),每根钩针其中一侧的针织线在第一过线盘的带动下分别向钩针所在的一侧运动(也即针织线与针筒的轴线的距离因其逐渐内收而减小),直至针织线运动至贴合在钩针的外侧;接着,通过移动机构驱动钩针向背离送线单元的一侧移动的同时或之后,通过转动结构继续驱动第一过线盘正转或反转或通过转动结构停止驱动第一过线盘转动,钩针下移时会带动其勾住的针织线一起下移,当钩针移动至距离送线单元最远处时,钩针位于针筒顶部的下方,此时, 钩针全部穿过上次针织形成的环形针织扣;然后,可以通过人工或针通机外部的牵引单元将第一通孔内的针织线或针织管朝背离送线单元的一侧牵引;再通过移动机构驱动钩针再次朝送线单元所在的一侧移动的同时或之后,通过转动结构驱动第一过线盘反转(反向转动),钩针上的针织线留在针筒的顶部,形成新的环形针织扣;钩针移动至距离送线单元最近处时,每根钩针另一侧的针织线在第一过线盘的带动下分别向钩针所在的一侧运动,直至针织线运动至贴合在钩针的外侧后;接着,通过移动机构再次驱动钩针向背离送线单元的一侧移动的同时或之后,通过转动结构继续驱动第一过线盘反转或正转或通过转动结构停止驱动第一过线盘转动,直至钩针移动至距离送线单元最远处,此时,钩针全部穿过上次针织形成的环形针织扣;然后,通过人工或针通机外部的牵引单元将第一通孔内的针织线或针织管朝背离送线单元的一侧牵引;再通过移动机构驱动钩针朝送线单元所在的一侧移动的同时或之后,通过转动结构驱动第一过线盘正转或反转或停止转动,重复上述动作,即可针织出设定长度、设定线数、设定直径、针织线呈交错的网格结构的单层针织管;同时,由于针织出的针织管的针织线呈交错的网格结构,且针织管的结构为一根针织线形成的环形针织扣嵌套在另一根针织线形成环形针织扣中,从而使针织出的针织管在拉伸过程中,不同针织线上的环形针织扣可以相互滑动,使得针织管能够伸缩。与第二种驱动情况对应的第二种操作方法与第一种操作方法的不同之处在于,转动结构驱动第一过线盘转动的方向不变,从而将位于钩针其中一侧的针织线输送至钩针上,以供钩针针织出针织管。
在一些实施方式中,还包括用于将经由钩针针织出针织管由针筒的末端牵引出来的牵引单元,牵引单元设在针筒的后端。由于针通机还设置了牵引单元,该针通机的工作流程与前述针通机的工作流程略有不同,不同之处仅在于:当钩针全部穿过上次针织形成的环形针织扣时,通过牵引单元替代人工,带动针筒输出的针织线或单层针织管向背离送线单元的一侧移动使钩针脱离环形针织扣。
在一些实施方式中,该针通机还包括用于将外部弹性管输送至经由钩针针织出的针织管内的输料单元,和/或用于在针筒输出的针织管外成型外管的外管成型机;牵引单元设在针筒的后端。
当该针通机包括用于将弹性管输送至钩针针织出的针织管内的输料单元时,可以直接生产出内部带有弹性管(例如乳胶管)的双层伸缩水管,钩针直接在弹性管外针织出针织管,从而可以根据需要制作出任意长度的伸缩管,且针织管在弹性管的表面布局均匀,不会导致针织管在弹性管上形成多余的皱褶,节约针织管用量,以针织线采用涤纶丝的直径为16mm的双层伸缩水管为例,每米用涤纶丝节省2克多(由于原来手工穿设弹性管,外层的皱褶较多,使用的 长度大,每米用涤纶丝10多克,现在的产品没有皱褶每米用涤纶丝不到8克),不仅使得产品减重,还大大节约原料成本;同时,无需通过接头连接来形成长度较长的双层伸缩水管,减轻双层伸缩水管的重量,节约生产成本;制得的双层伸缩水管可以在例如乳胶管等弹性管内通水,由于乳胶管具有弹性,在通入其内部的水的压力作用下,乳胶管能够伸缩,由于针织管包裹在乳胶管外部,可以与乳胶管同步伸缩,避免乳胶管因与外部直接接触而磨损,提高双层伸缩管的使用寿命。
当该针通机包括用于在针筒输出的针织管外成型外管的外管成型机时,这个外管成型机可以是与本发明的针通机相似或相同的针通机,也可以是现有技术中常用的用于挤出成型塑料管或塑料薄膜管的塑料挤出机,还可以是现有技术中常用的金属管编织成型机等,只要是可以直接在针织管外成型外管的设备均可,由此,可以制得内层为针织管,外层为针织管或金属编织管的双层耐磨管,或可以制得内层为针织管,外层为塑料管或塑料薄膜的双层耐磨防水管,且由于外管是直接生产在针织管的外部的,生产出的双层管(双层耐磨管、双层耐磨防水管等)的长度不受限制。当该针通机包括用于在针筒输出的针织管外涂覆涂层的涂覆机时,涂料例如可以是耐磨或防水涂料,从而可以直接生产出具有耐磨涂层或防水涂层的针织管,且生产出的具有涂层的针织管的长度不受限制;当外管采用的针织管、金属编织管、塑料管、塑料薄膜或涂层均为可伸缩时,生产出的针织管外设有外管的双层管为双层伸缩管。
一般的针通机无法直接生产出针织管的内部带有弹性管,针织管的外部带有用于保护针织管的外管的三层伸缩管,采用现有技术生产三层伸缩管时,需要用单独的设备对已经生产出的双层伸缩管再次送料、在双层伸缩管的外侧套设外管等工序,耗费大量的人力物力,同样,生产出的三层伸缩管的长度受原有双层伸缩管的限制,长度不超过15米,同样不能满足需要更大长度的三层伸缩管的用户的需求。当该针通机同时包括将弹性管输送至钩针针织出的针织管内的输料单元和将可伸缩外管直接生产在针织管外的外管成型机时,可以直接生产出任意长度的三层伸缩管,无需通过接头连接来形成长度较长的三层伸缩管,减轻三层伸缩管的重量,节约生产成本;由于在针织管的表面套设有外管,针织管不易被刮伤,使得三层伸缩管的使用寿命远大于双层伸缩管。
在一些实施方式中,外管成型机为用于将弹性伸缩管成型在针筒输出的针织管外的塑料挤出机。由于弹性伸缩管在针织管的表面布局均匀,不会导致弹性伸缩管在针织管上形成多余的皱褶,节约弹性伸缩管用量,不仅使得产品减重,还大大节约原料成本;由于在针织管的表面套设有弹性伸缩管,制成的三层伸缩管的表面光滑,针织管不易被刮伤,使得三层伸缩管的使用寿命远大于双层伸缩管。
在一些实施方式中,该针通机还包括设在机架上且设于第一通孔内的针织导向条或针织导向管,针织导向管或针织导向条与针筒之间合围成供针织管通过的通道,输料单元用于将外部弹性管输送至针织导向管内;送线单元上设有供针织导向条或针织导向管通过的第二通孔,第一过线孔设在第二通孔的外周。由此,通过钩针针织出的针织管可以通过针筒与针织导向管或针织导向条之间的间隙输送出去。
在一些实施方式中,该针通机还包括用于收纳钩针针织出的内部套设有弹性管的针织管,或用于收纳外管成型机制备出的内部套设有针织管的外管的管材整理单元。以便于整理该针通机生产出的管材,便于该针通机的自动化生产。
在一些实施方式中,针筒沿竖直方向设置。由此,可以减少针筒、送线单元和移动机构在机架上的占用面积,以便于在同一台针通机的机架上设置多组针筒、送线单元和移动机构,使一台针通机能够同时针织多根针织管,提高针通机的针织效率。
附图说明
图1为本发明的一种实施方式的用于生产针织管的针通机的送线单元的结构示意图;
图2为图1所示送线单元的第一送线盘的结构示意图;
图3为图1所示送线单元的转动传动机构的一种实施方式的结构示意图;
图4为图3所示转动传动机构的运动极限位置结构示意图;
图5为本发明的一种实施方式的针通机的结构示意图;
图6为图5所示针通机的原理结构示意图;
图7为图6所示针通机的局部放大结构示意图;
图8为图6所示针织单元的结构示意图;
图9为图6所示针通机的钩针的结构示意图;
图10为图6所示针通机的同步移动转动结构示意图;
图11为图5所示针通机的A处放大结构示意图;
图12为图6所示针通机的B处放大结构示意图;
图13为图6所示针通机生产的单层针织管的结构示意图;
图14为图6所示针通机生产的一种双层针织管的结构示意图;
图15为图6所示针通机生产的另一种双层针织管的结构示意图;
图16为图6所示针通机生产的又一种双层针织管的机构示意图;
图17为图6所示针通机生产的一种三层针织管的结构示意图;
图18为图6所示针通机生产的另一种三层针织管的结构示意图。
具体实施方式
下面结合附图对本发明作进一步详细的说明。
图1至图4示意性地显示了根据本发明的一种实施方式的用于生产针织管的针通机的送线单元。
如图1所示,该用于生产针织管的针通机的送线单元包括支架100、转动结构20和第一过线盘31,其中,转动结构20设在支架100上,第一过线盘31设在转动结构20上,第一过线盘31上一体成型或加工有多个第一过线孔311,每个第一过线孔311用于给针通机的钩针输送针织线101,转动结构20设置成能够驱动第一过线盘31转动。由此,可以将原本用于通过加捻形成一根纱线(常用的针织线101)的一组纤维丝(包括多根纤维丝)穿过一个第一过线孔311,每个第一过线孔311每次单独给一个钩针输送一组纤维丝。
优选的,转动结构20设置成能够驱动第一过线盘31交替正向、反向转动。从而,使每个第一过线孔311中的多根纤维丝更加紧密地缠绕在一起。在使用该送线单元时,将该送线单元安装在针通机上,且位于钩针的前端,同时将该送线单元设置成转动结构20的转轴垂直于钩针的移动方向,从而可以通过第一过线盘31将钩针的两侧的针织线101交替地输送到钩针上,以通过钩针针织出针织线101交错设置的针织管,从而使钩针针织出的针织管能够伸缩。
图5至图11示意性地显示了根据本发明的一种实施方式的用于生产针织管106的针通机。
如图5至图7所示,该针通机包括机架200;均设在机架200上的用于将针织线101针织成针织管106的针织单元40和用于给针织单元40输送针织线101的送线单元,其中,送线单元为图1至图4所示的送线单元。具体的,送线单元的支架100设在机架200上,支架100可以一体成型在机架200上,也可以固定连接在机架200上,只要支架100和机架200相对固定即可。
优选的,如图2所示,多个第一过线孔311在第一过线盘31上沿圆周分布。进一步的,多个第一过线孔311在第一过线盘31上沿圆周均匀分布,以通过多个第一过线孔311均匀地给针通机的钩针输送针织线101。
优选的,第一过线盘31的转轴与第一过线孔311的轴线平行,以避免第一过线盘31转动的过程中,不同第一过线孔311中的针织线101相互缠绕,从而保证第一过线孔311能够顺畅地输送针织线101。
进一步的,如图1所示,该用于生产针织管的针通机的送线单元还包括固定安装在支架100上的第二过线盘32;第二过线盘32位于第一过线盘31的前端,第二过线盘32上一体成型或加工有多个第二过线孔321,每个第二过线孔321用于分别给一个第一过线孔311输送针织线101,多个第二过线孔321在第二过线盘32上沿圆周分布,转动结构20驱动第一过线盘31相对第二过线盘32 和支架100转动。该送线单元安装在针通机上时,钩针位于第一过线盘31的后端,同一个第一过线孔311中的多根纤维丝在输送至钩针上之前,依次经过第二过线孔321的内壁和第一过线孔311的内壁的揉搓,使得输送至钩针上的多根纤维丝的缠绕更加紧密。优选的,第二过线孔321的轴线设置成与第一过线孔311的轴线相互平行,以保证第二过线孔321顺畅地将针织线101输送至第一过线孔311中。
优选的,第二过线盘32通过空间移动机构设在支架100上,空间移动机构设置成能够驱动第二过线盘32在平行于第一过线盘31的平面内移动,还设置成能够驱动第二过线盘32在垂直于第一过线盘31的平面内移动。具体的,空间移动机构可以包括依次连接的第一移动结构、第二移动结构、第三移动结构,其中第一移动结构与支架100连接,第三移动结构与第二过线盘32连接,第一移动结构驱动第二移动结构和第三移动结构沿垂直第一过线盘31的方向往复移动,第二移动结构驱动第三移动结构在平行于第一过线盘31的平面内沿一方向往复移动,第三移动结构驱动第二过线盘32在平行于第一过线盘31的平面内沿垂直于第二移动结构的驱动方向往复移动。更具体的,第一移动结构、第二移动结构和第三移动结构可以使用现有技术中常用的导轨滑块结构或丝杆螺母结构,以导轨滑块结构为例,第一移动结构的导轨安装在支架100上,第二移动结构的导轨安装在第一移动结果的滑块上,第三移动结构的导轨安装在第二移动结构的滑块上,第二过线盘32安装在第三移动结构的滑块上(图中未视出)。空间移动机构也可以采用现有技术中的其他实现方式。
优选的,多个第二过线孔321合围成的圆周的轴线与所有的第一过线孔311合围成的圆周的轴线重合,且第二过线孔321的数量与第一过线孔311的数量相同,第二过线孔321和第一过线孔311均呈圆周均匀分布,以通过第二过线孔321均匀地给第一过线孔311输送针织线101。
优选的,第二过线孔321与第一过线盘31的转轴的距离均大于第一过线孔311与第一过线盘31的转轴的距离。以避免每个第一过线孔311和/或第二过线孔321中的纤维丝与其他第一过线孔311和/或第二过线孔321中的纤维丝相互缠绕,从而保证纤维丝的输送流畅。
进一步的,如图1所示,该用于生产针织管的针通机的送线单元还包括第三过线盘33;第一过线盘31通过第三过线盘33设在转动结构20上,第三过线盘33设在第一过线盘31和第二过线盘32之间,第三过线盘33上一体成型或加工有多个第三过线孔331,每个第三过线孔331用于将第二过线孔321输送来的针织线101输送给第一过线孔311,多个第三过线孔331在第三过线盘33上沿圆周分布,转动结构20驱动第三过线盘33带动第一过线盘31一起转动。由此,伴随着转动结构20驱动第三过线盘33和第一过线盘31转动,通过该送线 单元输送到针通机的钩针42上的针织线101会在穿入第二过线孔321和第三过线孔331以及穿出第一过线孔311时发生摆动,使每个过线孔中的组成针织线101的多根纤维丝相互缠绕,形成更加缠绕更加紧密的针织线101。
优选的,第三过线孔331的轴线设置成与第一过线孔311的轴线相互平行,以保证第二过线孔321顺畅地将针织线101输送至第三过线孔331中,并且保证第三过线孔331顺畅地将针织线101输送至第一过线孔311中。
第一过线盘31与第三过线盘33的连接方式可以采用现有技术中常用的固定连接方式,例如通过螺钉将两者连接,或两者直接焊接或胶粘在一起。在本实施例中,如图1所示,第一过线盘31与第三过线盘33通过第一连接杆34连接,第一连接杆34与第一过线盘31和第三过线盘33也可以采用现有技术中常用的固定连接方式,在此不再赘述。
优选的,多个第三过线孔331合围成的圆周的轴线与多个第一过线孔311合围成的圆周的轴线重合,且第三过线孔331的数量与第一过线孔311的数量相同,第三过线孔331和第一过线孔311均呈圆周均匀分布,以使得通过第三过线孔331均匀地给第一过线孔311输送针织线101。
当所有第一过线孔311、第二过线孔321、第三过线孔331数量相同,且分别围成的圆周的轴线相互重合,同时均圆周均匀分布时,第二过线孔321可以均匀地给第三过线孔331输送针织线101,同时,第三过线孔331可以均匀地给第一过线孔311输送针织线101。
优选的,如图1所示,第一过线孔311和第二过线孔321与第一过线盘31的转轴的距离均大于第三过线孔331与第一过线盘31的转轴的距离,以避免每个第三过线孔331和/或第二过线孔321中的纤维丝与其他第三过线孔331和/或第二过线孔321中的纤维丝相互缠绕,从而保证纤维丝的输送流畅。
转动结构20的第一种实施方式如图1所示,转动结构20包括第一同步带轮21、轴承22、第二同步带轮23和第一皮带24。第一同步带轮21通过轴承22设在支架100上,优选的,两者同轴连接。第一过线盘31固定安装在第一同步带轮21上,优选的,两者也同轴设置。第一同步带轮21通过第一皮带24与第二同步带轮23连接。该送线单元可以设置驱动转动结构20运转的驱动设备,也可以通过外部的驱动设备驱动转动结构20运转,优选的,驱动设备采用转动电机26,第二同步带轮23通过转动电机26驱动,驱动设备也可以采用其他设备,只要能够驱动转动结构20运转即可,本发明对驱动设备的具体实现方式不作限定。具体为,转动电机26与第二同步带轮23同轴连接,且转动电机26设在支架100上或第二同步带轮23可枢转地设在支架100上。转动电机26在驱动第二同步带轮23转动的同时,第二同步带轮23通过第一皮带24带动第一同步带轮21转动,进而带动固定安装在第一同步带轮21的第一过线盘31转动。 当还包括第三过线盘33时,第一过线盘31通过第三过线盘33安装在第一同步带轮21上,第一同步带轮21通过第三过线盘33带动第一过线盘31转动。转动电机26驱动第二同步带轮23的转动方向和转动方式可以通过预设有控制信息的控制模块控制,转动电机26可以采用现有技术中常用的伺服电机,控制模块可以采用常用的PLC,本发明对伺服电机和PLC的具体型号不作限定。
优选的,如图1所示,支架100上加工或连接有用于连接轴承22的悬挂凸台105。具体的,悬挂凸台105上加工有用于安装轴承22的轴承安装孔1051,轴承22安装在轴承安装孔1051中。更具体的,轴承22的外圈221安装在悬挂凸台105上,轴承22的内圈222的下端与第一同步带轮21的上端连接,第一同步带轮21的下端连接第一过线盘31(当还设有第三过线盘33时,通过第三过线盘33连接第一过线盘31),第一同步带轮21上一体成型或加工有供针织线101通过的内径。优选的,第一同步带轮21和轴承22的内径能够供第一过线盘31通过(当还设有第三过线盘33时,能够供第三过线盘33和/或第一过线盘31通过)。由于第一过线盘31和/或第三过线盘33在第一同步带轮21和轴承22的内径中通过,从而可以避免,第一同步带轮21和轴承22与通过第一过线孔311和第三过线孔313的针织线101相接触,导致第一同步带轮21和轴承22转动时与通过第一过线孔311和第三过线孔313的针织线101相互摩擦,避免针织线101因摩擦磨损而断开。本发明的轴承22可以选用现有技术中常用的深沟球轴承或组合轴承等,只要使连接在其上的第一同步带轮21能够相对支架100转动即可,本发明对轴承22选用的类型不作限定。
转动结构20的第二种实施方式与第一种实施方式的不同之处在于,通过相互啮合的齿轮副取代通过皮带连接的第一同步带轮21和第二同步带轮23,且其中一个齿轮的下端与第一过线盘31同轴连接或通过第三过线盘33与第一过线盘31同轴连接,其上端与轴承22的内圈同轴连接,另一个齿轮与转动电机26连接,通过转动电机26驱动齿轮转动带动第一过线盘31转动。优选的,与轴承22连接的齿轮上一体成型或加工有供针织线101通过的内径(图中未示出)。
转动结构20的第三种实施方式与第一种实施方式的不同之处在于,通过链条相互连接的两个链轮取代通过皮带连接的第一同步带轮21和第二同步带轮23,且其中一个链轮的下端与第一过线盘31同轴连接或通过第三过线盘33与第一过线盘31同轴连接,其上端与轴承22的内圈同轴连接,另一个链轮与转动电机26连接,通过转动电机26驱动齿轮转动带动第一过线盘31转动。优选的,与轴承22连接的链轮上一体成型或加工有供针织线101通过的内径(图中未示出)。
转动结构20的第四种实施方式为,转动结构20仅包括转动电机26,该转动电机26设在支架100上,且其与第一过线盘31同轴连接或通过第三过线盘 33与第一过线盘31同轴连接,该转动电机26直接驱动第一过线盘31转动(图中未示出)。但是,在这种实施方式中,通入第一过线孔311或通入第三过线孔331的针织线101易在第一过线盘31转动的过程中缠绕在转动电机26的转轴上,导致针织线101无法顺利地通入第一过线孔311或第三过线孔331中。
进一步的,如图1所示,该送线单元上还设有转动传动机构25,第二同步带轮23通过转动传动机构25与转动电机26连接。
优选的,转动传动机构25的第一种实施方式如图1、图3和图4所示,转动传动机构25为曲柄摇杆结构。具体的,继续参照图1、图3和图4所示,转动传动机构25包括第一枢转轴251、第一曲柄252、第一连杆253、摇杆254、第二转动轴255、第三转动轴256和第二枢转轴257,其中,通过第一枢转轴251可枢转连接的第一曲柄252和第一连杆253通过第一枢转轴251可枢转连接,第一连杆253和摇杆254通过第二枢转轴257可枢转连接,第一曲柄252通过第二转动轴255与转动电机26的转轴同轴连接,摇杆254通过第三转动轴256与第二同步带轮23同轴连接,且转动电机26安装在支架100上,第三转动轴256可枢转安装在支架100上。从而可以通过转动电机26驱动曲柄摇杆结构带动第二同步带轮23往复转动,以通过第一皮带24带动第一同步带轮21往复转动,以避免通过转动电机26直接驱动第一同步带轮21往复转动,导致转动电机26易损坏的问题。此时,转动电机26无需借助控制模块进行控制,操作方便。优选的,第一枢转轴251、第二转动轴255和第三转动轴256均与第二同步带轮23的转轴平行。
转动传动机构25的第二种实施方式也可以是通过现有技术中常用的凸轮机构将转动转换成摆动来实现,以驱动第一过线盘31往复转动(图中未示出)。
在本实施例中,优选的,第二同步带轮23往复转动的角度(也即摇杆254摆动的角度X)可以通过调整曲柄摇杆结构控制。具体的,如图4所示,摇杆254在第一曲柄252和第一连杆253的带动下摆动,摆动的位置具有第一极限位置和第二极限位置,摇杆254在第一极限位置和第二极限位置之间的夹角位置即为摇杆254的摆动角度X。更具体的,第一曲柄252、第一连杆253和摇杆254处于第一极限位置如图4所示实线位置,第一曲柄252、第一连杆253和摇杆254处于第二极限位置如图4所示虚线位置。摇杆254的摆动角度X可以通过调整以下参数进行调整:1、第二转动轴255的轴线与连接第一曲柄252和第一连杆253的第一枢转轴251的轴线的距离L1,2、连接第一曲柄252和第一连杆253的第一枢转轴251的轴线与连接摇杆254和第一连杆253的第一枢转轴251的轴线的距离L2,3、连接第一连杆253和摇杆254的第一枢转轴251的轴线与第三转动轴256的轴线的距离L3,4、第二转动轴255的轴线与第三转动轴256的轴线的距离L4。具体的,当L32-L22=L42-L12时,X具有最小值,Xmin=2arcsin (L1/L4);当L3≥L4时,X>Xmin;当L4为定值时,X随L1同步增加或减少,X随L2或L3的增大先减后增。
进一步的,可以将转动传动机构25的第二种实施方式与其第一种实施方式结合,形成其第三种实施方式,在该实施方式中,通过凸轮机构驱动曲柄摇杆结构的曲柄运动,从而带动摇杆摆动,当需要调整的角度较大时,可以通过凸轮机构调整,当需要调整的角度较小时,可以通过曲柄摇杆结构调整(图中未视出)。
如图6所示,当采用该送线单元给针通机的钩针输送针织线101时,首先,将支架100安装在针通机的机架200上,然后,可以直接将原本用于通过加捻形成一根纱线(常用的针织线101)的一组纤维丝(包括多根纤维丝)直接穿过其中一个第一过线孔311(当还设有第二过线盘32时,一组纤维丝依次穿过第二过线孔321和第一过线孔311;当还设有第三过线盘33时,一组纤维丝依次穿过第二过线孔312、第三过线孔313、第一过线孔311),每组纤维丝分别穿过不同的第一过线孔311或第二过线孔321和第一过线孔311或第二过线孔312、第三过线孔313和第一过线孔311。过线孔(包括第一过线孔311或第二过线孔321和第一过线孔311或第二过线孔312、第三过线孔313和第一过线孔311)输送针织线101的过程中,转动结构20会带动(或转动传动机构25通过转动结构20带动)第一过线盘31转动,从而带动过线孔中的纤维丝摆动,每个过线孔中的所有纤维丝均以过线孔为原点摆动,从而使多根纤维丝在经过过线孔时相互因相互摩擦而缠绕在一起,使每个过线孔中的所有纤维丝形成紧密缠绕的一组纤维丝,避免钩针在钩取第一过线孔311输送来的针织线101时,仅钩取部分纤维丝,导致钩针针织出的针织管106的线条粗细不均;由此,该送线单元不仅可以给钩针输送经过加捻的纱线,还可以在输送未经过加捻的松散的纤维丝的过程中将松散的纤维丝拧紧,以保证输送至钩针的纤维丝呈紧密缠绕状态,从而使该送线单元的使用场景不受针织线101的质量限制,而且,由于针织线101在经过该送线单元前无需经过加捻,生产效率提高,生产成本降低。
优选的,如图1所示,该用于生产针织管的针通机的送线单元还包括设在支架100上的用于给送线单元输送针织线的放线机构。具体的,放线机构包括设在支架100上的用于放置针织线卷103的放线轴104。可枢转地设在支架100上的,用于将针织线卷103上的针织线101输送至第二过线孔321中的导线辊102。从而,可以顺畅地将针织线卷103上的针织线101输送至第二过线孔321中。具体的,导线辊102可枢转地设在支架100上的方式可以采用现有技术中常用的可枢转连接方式,例如可以是:在支架100上加工有与导线辊102的第一转动轴1021适配的安装孔。优选的,支架100上加工有与导线辊102的第一转动轴1021的两端适配的两个安装孔(图中未示出)。从而,可以顺畅地将针 织线卷103上的针织线101输送至第二过线孔321中。
优选的,如图1所示,第一过线盘31的转轴和放线轴104沿竖直方向设置,导线辊102的第一转动轴1021垂直于第一过线盘31的转轴设置,以便放线轴104上的针织线卷103能够顺畅地将针织线101输送至导线辊102上,并且便于导线辊102顺畅地将针织线101输送至第一过线孔311中(当还设有第二过线孔321时输送至第二过线孔321中)。
针织单元40的一种实施方式如图5至图8所示,针织单元40包括一体成型或加工有供针织线101或针织管106通过的第一通孔411的针筒41,针筒41设在机架200上;沿针筒41的外周间隔设置的至少两根用于将针织线101针织成针织管106的钩针42,钩针42与第一过线盘31的转轴的距离小于第一过线孔311与第一过线盘31的转轴的距离;设在钩针42上的移动机构43。送线单元为前述的送线单元,且设在第一通孔411的前端;移动机构43设置成能够驱动钩针42沿第一通孔411的轴线方向往复运动,以趋近或远离送线单元。优选的,移动机构43设在针筒41上,针筒41与机架200可拆卸连接,从而使针织单元40一体集成,要将针织单元40与机架200上连接或拆卸,只需要将针筒41与机架200连接或拆卸即可,从而实现针织单元40与机架200的快速安装和拆卸。
优选的,钩针42沿圆周分布。
使用该针通机时,将针织用的针织线101的线头按照针通机的用线根数分别且依次穿过第一过线盘31上的第一过线孔311(当还设有第二过线盘32时,一组纤维丝依次穿过第二过线孔321和第一过线孔311;当还设有第三过线盘33时,一组纤维丝依次穿过第二过线孔312、第三过线孔313、第一过线孔311)、钩针42、第一通孔411。根据转动电机26的两种驱动情况(第一种驱动情况,转动电机26驱动转动传动机构25带动第一过线盘31交替正向、反向转动,第二种驱动情况,转动电机26直接驱动第一过线盘31转动,且转动的方向不变),存在两种操作方法:与第一种驱动情况对应的第一种操作方法:移动机构43驱动钩针42沿第一通孔411的轴线方向往复移动一次,转动电机26驱动转动传动机构25带动第一过线盘31以其中一个方向(正向或反向)绕第一通孔411的轴线转动,且移动机构43驱动钩针42相邻次往复移动对应的转动电机26驱动转动传动机构25带动第一过线盘31的转动方向不同,或转动电机26设置成能够直接驱动第一过线盘31交替正向、反向转动;与第二种驱动情况对应的第二种操作方法与第一种操作方法的不同之处在于,转动电机26一直驱动第一过线盘31以其中一个方向绕第一通孔411的轴线转动,此时,转动电机26设置成能够驱动第一过线盘31正向或反向转动。第一种操作方法的一种具体实施方式如下:通过移动机构43驱动钩针42朝送线单元所在的一侧运动的同时或之 后,通过转动电机26驱动转动传动机构25带动第一过线盘31正转(也可以是反转或停止驱动),以在移动机构43的带动下将钩针42从针筒41的顶部推出(针筒41的顶部为针筒41的朝向送线单元的端部),钩针42距离送线单元最近处时(钩针42还未接触到第一过线盘31),并且第一过线盘31在转动电机26驱动转动传动机构25的带动下带动钩针42其中一侧的针织线101摆动,直至该侧的针织线101贴合在钩针42的外侧;接着,通过移动机构43驱动钩针42向下移动,钩针42下移时会勾住贴合在其外侧的针织线101并带动其勾住的针织线101一起下移,当钩针42移动至距离送线单元最远处时,钩针42位于针筒41顶部的下方,此时,钩针42全部穿过上次针织形成的环形针织扣;然后,可以通过人工或针通机外部的牵引单元80将第一通孔411内的针织线101或针织管106朝背离送线单元的一侧牵引;再次通过移动机构43驱动钩针42朝送线单元所在的一侧移动的同时或之后,通过转动电机26驱动转动传动机构25带动第一过线盘31朝相反方向转动或朝相同方向转动或停止转动,钩针42从针筒41的顶部伸出的同时,钩针42上的针织线101留在针筒41的顶部形成新的环形针织扣,第一过线盘31在转动电机26驱动转动传动机构25的带动下带动钩针42的另一侧的针织线101摆动,直至该侧的针织线101贴合在钩针42的外侧;接着,通过移动机构43驱动钩针42带动其勾住的贴合在其外侧的针织线101移动至距离送线单元最远处,此时,钩针42全部穿过上次针织形成的环形针织扣;然后,通过人工或针通机外部的牵引单元80将第一通孔411内的针织线101或针织管106朝背离送线单元的一侧牵引;再次通过移动机构43驱动钩针42朝送线单元所在的一侧移动的同时或之后,通过转动电机26驱动转动传动机构25带动第一过线盘31朝与前一次相反方向转动或朝相同方向转动或停止转动,重复上述动作,即可针织出设定长度、针织线101呈交错的网格结构的单层针织管106;同时,由于针织出的针织管106的针织线101呈交错的网格结构,且针织管106的结构为一根针织线101形成的环形针织扣嵌套在另一根针织线101形成环形针织扣中,从而使针织出的针织管106在拉伸过程中,不同针织线101上的环形针织扣可以相互滑动,使得针织管106能够伸缩。而且,在使用该针通机的过程中,可以根据需要调整针织线101、钩针42的数量,即不一定使所有的第一过线孔311中均有针织线101通过,由此可以针织出设定线数,密度可调的针织管106。
优选的,如图6至图9所示,钩针42的朝向送线单元的一端一体成型、加工或连接有线钩,线钩上一体成型或加工有钩针开口422,钩针开口422朝向背离送线单元的一侧设置,以便钩针42在移动机构43的驱动下朝背离送线单元移动的时候,能够钩取针织线101一起运动。
进一步的,钩针42的具体结构如图9所示,钩针42上还设有封口杆423, 封口杆423可枢转地连接在钩针42上,封口杆423通过第三枢转轴424可枢转地连接在钩针42的钩针开口422的远离送线单元的一侧,封口杆423设置成能够以第三枢转轴424为转轴相对钩针42转动,且当封口杆423能够朝送线单元所在的一侧转动,直至封堵住钩针开口422。具体的,第三枢转轴424垂直于移动机构43的移动方向设置。封口杆423还设置成当其转动至封堵住钩针开口422时,封口杆423的自由端朝背离钩针42的一侧倾斜,以使钩针42在移动机构43的驱动下朝送线单元移动的过程中,在穿过留在针筒41的顶部的环形针织扣时,环形针织扣可以带动封口杆423朝背离送线单元的一侧转动,以使封口杆423将钩针开口422打开。
优选的,如图9所示,为了使钩针42移动至针筒41的顶部时,针筒41顶部的上次针织的环形针织扣能够顺利的带动封口杆423朝送线单元所在的一侧转动,使封口杆423封堵住钩针开口422,以避免因钩针42在移动到距离送线单元最远的位置的过程中勾住针筒41顶部的环形针织扣,而导致针织过程无法顺利进行。在钩针42的位于第三枢转轴424的远离送线单元的一侧一体成型或加工有弧形凹槽425,弧形凹槽425设在钩针42的背离针筒41的一侧,当针筒41沿竖直方向放置时,弧形凹槽425位于第三枢转轴424的下方,且弧形凹槽425的槽底位于第三枢转轴424的接近针筒41的一侧。
优选的,如图6至图9所示,钩针42的设有弧形凹槽425的侧面向外延伸形成有凸起427,第三枢转轴424可枢转地设在凸起427上,凸起427的与钩针42设有弧形凹槽425同侧的侧面上一体成型或加工有用于容纳封口杆423的容纳槽426,容纳槽426的槽底位于弧形凹槽425的外侧(即背离钩针42或针筒41的一侧),以保证封口杆423在向背离钩针开口422转动至极限位置时,封口杆423不会贴合在弧形凹槽425的外侧(即背离钩针42或针筒41的一侧),以便钩针42移动至针筒41的顶部时,针筒41顶部的上次针织的环形针织扣能够顺利的带动封口杆423朝送线单元所在的一侧转动,使封口杆423封堵住钩针开口422。
更进一步的,如图5至图7和图12所示,针筒41与第一过线盘31之间设置有封口杆驱动结构,封口杆驱动结构固定设置在支架100或第一过线盘31上,封口杆驱动结构设置成当钩针42在移动机构43的驱动下朝送线单元移动的过程中与其接触时,能够驱动封口杆423朝背离送线单元的一侧转动,直至封口杆423运动至其自由端与送线单元的距离最远的位置,以保证封口杆423与封口杆驱动结构接触后,所有的封口杆423均从钩针开口422上打开。具体的,封口杆驱动结构为定位块50,定位块50上一体成型或加工有供钩针42通过的第三通孔51,且设置成,当封口杆423封堵住钩针开口422时,封口杆423的自由端位于第三通孔51的内壁的背离针筒41的一侧。当钩针42在移动机构43 的驱动下朝送线单元运动,并穿过定位块50的第三通孔51时,定位块50可以抵挡封口杆423并促使封口杆423朝背离送线单元转动。定位块50起到保险作用,能保证封口杆423向背离送线单元的一侧转动将钩针开口422全部打开,以便于接下来勾线。优选的,定位块50为圆环,以简化封口杆驱动结构,圆环通过第二连接杆52固定在支架100或第一过线盘31上,圆环与第二连接杆52固定连接,第二连接杆52与支架100或第一过线盘31固定连接。使用时,为了避免第二连接杆52阻碍针织线101的偏转,送线单元输送至钩针42的针织线101穿过第三通孔51;而且,由于输送至钩针42前的针织线101需要穿过第三通孔51,因此,在圆环和针筒41之间的针织线101是位于钩针42的钩针开口422的内侧的,钩针42在未穿过圆环之前是不会勾到针织线101的,且由于钩针42的设有钩针开口422的部位的外侧位于第三通孔51的内侧,钩针42可以在移动机构43的驱动下穿过第三通孔51,然后,由于第一过线孔311与第一过线盘31的轴线的距离大于钩针42与第一过线盘31的轴线的距离,第一过线盘31可以在转动结构20的带动带着钩针42的其中一侧的针织线101摆动,直至该针织线101贴合在穿过第三通孔51的钩针42的外侧,以便钩针42在移动机构43的驱动下朝针筒41所在一侧移动的同时构勾取贴合在其外侧的针织线101。
优选的,如图6至图9所示,凸起427的外侧面位于封口杆423封堵钩针开口422时与钩针42接触的表面的内侧(即朝向钩针42或针筒41的一侧),且钩针42向背离钩针开口422转动至极限位置时,封口杆423的外侧面位于凸起427的外侧面的内侧。以保证,封口杆423不会阻碍钩针42穿过第三通孔51。
在其他实施方式中,针织单元40也可以使用现有技术中常用的其他的将针织线针织出针织管的针织单元。
在其他实施方式中,该针通机也可以使用现有技术中常用的给针织单元40输送针织线的其他送线单元。
发明人在生产研发过程中发现,一般的针织单元40占用面积较大是因为一般的针织单元40中的钩针42是水平设置的,由于钩针42水平设置,导致沿周向布设的钩针42及其驱动装置和传动装置占用的面积大,不易在一台针通机上设置多套针织单元40。
为了解决一般情况下一台针通机只能配套安装一套针织单元40,导致多台针通机同时工作时,每台针通机需要至少一名技术人员负责,存在生产成本高的问题;若一名技术人员负责多台针通机时,需要在多台针通机之间往复跑动,存在技术人员耗费体力大,精力分散,易导致出错的问题。根据本发明的一个方面,提供了一种针织单元40,如图5至图7所示,该针织单元40的针筒41设置成其第一通孔411沿竖直方向设置。由于该针织单元40的针筒41的第一 通孔411竖直设置,钩针42在移动机构43的驱动下上下滑动,减少了针织单元40在水平方向上的占用面积,便于在一台针通机上布设多套针织单元40,从而可以通过一名技术人员看管一台针通机上的多套针织单元40,大大节约人力成本,而且,技术人员工作时无需四处跑动,技术人员可以节省体力,集中精神工作,以减少出错概率,提高产品质量;同时,由于一台针通机上设置多套(例如6个或更多个)针织单元40,一台针通机可以同时生产多根(两根三根或六根或十根等)多根针织管106,生产效率高,生产成本低;还可以通过在一台针通机上设置不同规格、不同类型的针织单元40,同时针织出不同规格、不同类型的针织管106。
优选的,由于针筒41的第一通孔411沿竖直方向设置,当封口杆423转动至封堵住钩针开口422,且封口杆423的自由端朝背离钩针42的一侧倾斜时,封口杆423的重心与第一通孔411的轴线的距离大于第三枢转轴424与第一通孔411的轴线的距离,以形成封口杆423向背离送线单元转动以打开钩针开口422的力矩,从而在无外力作用在封口杆423上时,封口杆423向背离送线单元的一侧转动,以保证钩针开口422呈开启状态,便于在移动机构43驱动钩针42从针筒41的顶部伸出时,钩针42上的针织线101从钩针开口422移出,留在针筒41的顶部形成新的环形针织扣。具体的,如图9所示,封口杆423封堵住钩针开口422时,封口杆423的朝向钩针42的侧面抵靠在钩针42上,且钩针42的与封口杆423相接触的位置位于第三枢转轴424的背离针筒41的一侧,以使封口杆423封堵在钩针开口422上时,封口杆423具有向背离送线单元转动以打开钩针开口422的力矩。优选的,继续参照图9所示,封口杆423设置成枢转连接处宽,自由端窄的结构,以增加封口杆423封堵在钩针开口422上时,封口杆423向背离送线单元转动以打开钩针开口422的趋势。进一步的,封口杆423设置成,当其转动至其自由端距离送线单元最远的位置时,其朝向钩针42的侧面与第一通孔411的轴线的距离自其与钩针42的连接处至自由端递增,从而使钩针42移动至针筒41的顶部时,针筒41顶部的上次针织的环形针织扣能够顺利的带动封口杆423朝送线单元所在的一侧转动,使封口杆423封堵住钩针开口422。
虽然,封口杆423依靠其自身的重心位于钩针开口422朝背离针筒41一侧形成的力矩可以自动向背离送线单元的一侧转动以打开钩针开口422,但是,当有阻力时(例如,第三枢转轴424与钩针42相对转动不顺畅时),钩针开口422不能全部打开,此时,由于设置了封口杆驱动结构,可以保证,钩针42在钩取针织线101之前,其钩针开口422全部呈打开状态。
移动机构43的第一种实施方式如图6和图7所示,移动机构43包括相互适配的滑槽432和第一滑块431,滑槽432至少设有两个,且一体成型或加工在 针筒41的外周面上,滑槽432沿针筒41的轴向延伸,所有滑槽432沿针筒41的第一通孔411的周向上间隔设置,滑槽432的朝向送线单元的一端与外部连通,钩针42设在第一滑块431上。优选的,第一滑块431与钩针42一体成型,加工方便。优选的,滑槽432在针筒41的外周均布。优选的,钩针42与滑槽432适配,从而,当移送机构驱动钩针42沿滑槽432的延伸方向往复运动时,滑槽432可以限制钩针42的移动方向,避免钩针42移动时发生摆动,保证钩针42针织出的针织管106的纹理的均一性,保证针织管106的针织质量。
优选的,继续参照图6和图7所示,移动机构43还包括套设在针筒41外周上的滑环433,所有的钩针42或第一滑块431与滑环433连接。优选的,钩针42与滑环433可拆卸连接,可拆卸连接方式例如可以采用现有技术中常用的卡合连接、螺纹连接等。由此,可以根据需要在针筒41外周设置不同数量的钩针42,以针织出不同密度的针织管106;还可以调整不同位置的钩针42的密度,以调整同一针织管106上不同部位的针织密度。
具体的卡合连接方式如下:钩针42的侧部一体成型、加工或连接有向外凸起的卡接部421,在滑环433的第一种实施方式中,如图6和图7所示,滑环433上一体成型或加工有用于通过针筒41的针筒通过孔4331,针筒通过孔4331的轴线与第一通孔411的轴线平行,并在滑环433的设有针筒通过孔4331的内壁上一体成型或加工有与卡接部421适配的环形槽4332,钩针42的卡接部421适配在滑环433的环形槽4332中,且卡接部421和钩针开口422设于钩针42的同侧,以使钩针42通过卡接部421适配在滑环433上。安装时,先将钩针42卡合在滑环433上,然后将卡合有钩针42的滑环433套设在针筒41上,以将钩针42卡合在滑环433和针筒41之间,从而实现钩针42与滑环433的可拆卸连接,连接过程无需使用连接工具,操作方便快捷,滑环433套设在针筒41的外侧上时,钩针42的钩针开口422朝向背离针筒41所在的一侧设置,沿针筒41的轴线(也即第一通孔411的轴线)往复移动滑环433时,可以带动钩针42一起沿针筒41的轴线往复运动。
在滑环433的第二种实施方式中,滑环433可以通过相互可拆卸连接的上滑环433和下滑环433构成,环形槽4332设置在上滑环433和下滑环433的结合处,以方便环形槽4332的加工(图中未示出)。
在滑环433的第三种实施方式中,滑环433为设有径向开口4333的圆环,圆环的内壁上一体成型或加工有环形槽4332,径向开口4333沿滑环433的径向延伸至将滑环433的一侧贯穿,圆环的径向开口的宽度大于钩针42的宽度,且小于两相邻的滑槽432之间的壁厚与其中一个滑槽432的宽度之和。优选的,径向开口4333沿针筒通过孔4331的轴向将滑环贯穿。使用时,先将圆环套在针筒41的外周上,然后,转动圆环使其径向开口对准针筒41上的其中一个滑 槽432,接着,将钩针42经过圆环的径向开口装入滑槽432内;再转动圆环至其径向开口对准针筒41的第二个滑槽432,再装入钩针42,直至将需要安装钩针42的滑槽432中均安装有钩针42;最后,转动圆环至其径向开口与针筒41的滑槽432错开,即完成钩针42在针筒41上的安装,安装完成后,钩针42不会从圆环中滑出(图中未示出)。
优选的,如图6至图8所示,滑槽432的前端与外部连通。由此,在移动机构43的带动下,钩针42可以自滑槽432的与外部连通的一端伸出,钩取针织线101进行针织;而且由于滑槽432的另一端不与外部连通,可以避免钩针42从滑槽432中滑出。
移动机构43的第二种实施方式为,移动机构43为油缸,油缸的缸体安装在机架200或针筒41上,钩针42(或钩针42通过滑环433)安装在活塞杆上,通过油缸驱动钩针42沿针筒41的第一通孔411的轴线往复移动(图中未示出)。
移动机构43的第三种实施方式也可以是通过现有技术中常用的凸轮机构将转动转换成移动来实现,以驱动钩针42往复转动(图中未示出)。
当移动驱动机构44和转动传动机构25均用转动电机26驱动时,可以仅通过电力驱动,而无需设置液压驱动,驱动能源简单,便于管控。
优选的,如图6和图8所示,针筒41的外周还套设有套环,套环套设在接近针筒41顶部的位置,以避免钩针42在移动的过程中发生较大的摆动,保证针织的稳定性。
进一步的,如图5至图7和图11所示,该针通机上还设有移动驱动机构44,滑环433或滑块通过移动驱动机构44设在机架200上(或设在针筒41上),移动机构43通过移动驱动机构44驱动移动机构43带动钩针42沿第一通孔411的轴线方向往复运动。移动驱动机构44还可以与驱动设备连接,驱动设备可以是转动电机26。
移动驱动机构44的一种实施方式如图5至图7和图11所示,移动驱动机构44为曲柄滑块结构。具体的,移动驱动机构44包括通过第四枢转轴445依次可枢转连接的第二曲柄441、第二连杆442和第二滑块443;将第二曲柄441连接在转动电机26的转轴上的第四转动轴444;与第二滑块443适配的导轨446,导轨446沿第一通孔411的轴线方向设置,且导轨446固定设置在机架200上;第四转动轴444和第四枢转轴445与第一通孔411垂直设置;钩针42设在第二滑块443上。当该针通机还包括滑环433时,钩针42通过滑环433与第二滑块443连接。从而可以通过转动电机26驱动曲柄滑块结构带动钩针42沿第一通孔411的轴线方向往复运动。该移动驱动机构44驱动钩针42移动的距离可以通过调整第四转动轴444与连接在第二曲柄441上的第四枢转轴445的距离进行调整,具体的,第四转动轴444与连接在第二曲柄441上的第四枢转轴445的距 离的两倍,即为移动驱动机构44驱动钩针42移动的距离。当连接在第二曲柄441上的第四枢转轴445运动至背离送线单元的一端时,第二滑块443移动至距离送线单元最远的位置(如图6所示);。当连接在第二曲柄441上的第四枢转轴445运动至距离送线单元最近的一端时,第二滑块443移动至距离送线单元最近的位置(如图7所示),即图6和图7显示了在移动驱动机构44的带动下钩针42的两个移动极限位置。优选的,继续参照图6和图7所示,导轨446与针筒41一体成型,从而无需另外设置导轨446,简化该针通机的结构。
优选的,第二曲柄441还与手动操作手柄45连接,且两者的连接设置成能够通过转动手动操作手柄45带动第二曲柄441转动。从而可以通过转动手动操作手柄45,驱动第二曲柄441带动滑环433沿第一通孔411的轴线往复运动,以便通过手动进行试机、检测和穿线等操作。具体的,移动机构43通过传动机构90与手动操作手柄45和转动电机26连接,传动机构90可以采用现有技术中常用的同步带轮结构或链轮结构等,只要手动操作手柄45和转动电机26的动力能够通过传动机构90带动曲柄滑块结构运动即可,本发明对传动机构90的具体结构不作限定。
优选的,针筒41与机架200可拆卸连接,由于移动机构43设在针筒41上,也即针织单元40包括移动机构43,在未设置移动驱动机构44时,可以通过将针筒41与机架200拆开或连接,实现针织单元40与机架200的快速拆卸和连接;而且,由于一台针通机上可以设置多个针织单元40,可以在一台针通机上设置多种规格的针织单元40,针织单元40的规格可以通过针筒41的直径来区分,具体的,是通过钩针42与针筒41的第一通孔411的轴线的距离来区分,从而可以通过在同一台针通机上设置不同规格的针织单元40,来实现在同一台针通机上同时针织出不同直径的针织管106。当还设置有移动驱动机构44时,可以通过将针筒41与机架200拆开或连接,同时将钩针42或滑环433与移动驱动机构44拆开或连接,实现针织单元40与机架200的快速拆卸和连接。具体的,针筒41与机架200的连接,以及钩针42或滑环433与移动驱动机构44的连接为螺纹连接,更具体的为通过螺钉连接。
优选的,转动传动机构25和移动驱动机构44通过传动机构90连接,以构成同步转动移动单元,且传动机构90带动转动传动机构25和移动驱动机构44的传动比为1:2,从而使得转动传动机构25带动第一过线盘31往复转动一次时,移动驱动机构44带动钩针42往复移动两次,从而通过一个转动电机26同步驱动第一过线盘31和钩针42运动。进一步的,手动操作手柄45也与传动机构90连接,以便通过手动进行试机、检测和穿线等操作。更进一步的,转动电机26也与转动电机26连接,以节约能耗,降低生产成本。
优选的,如图6所示,该针通机还包括用于将经由钩针42针织出的针织管 106由针筒41的末端牵引出来的牵引单元80,牵引单元80设在针筒41的后端。由于针通机还设置了牵引单元80,该针通机的工作流程与前述针通机的工作流程略有不同,不同之处仅在于:当钩针42全部穿过上次针织形成的环形针织扣时,通过牵引单元80替代人工,带动针筒41输出的针织线101、单层针织管106或双层伸缩管向背离送线单元的一侧移动使钩针42脱离环形针织扣。
具体的,牵引单元80的一种实施方式如图6所示,牵引单元80包括通过转动电机26驱动的主动辊81、与主动辊81靠接的用于牵引针织出的针织管106的从动辊83及若干个用于引导针织管106的引导辊82或引导轴84,引导轴84和引导辊82设在针筒41与主动辊81之间,以引导管材的走向。
在其他实施方式中,牵引单元80也可以采用现有技术中常用的其他能够对针织线或单层针织管进行牵引的牵引装置,在这些牵引装置中都会设有用于牵引针织线或单层针织管从针筒中移出的辊子或转轴,且这些辊子或转轴在动力设备的驱动下绕其转轴转动。
一般的针通机无法直接生产出带有弹性内管的双层伸缩管,现有技术中生产出的双层伸缩管需要通过人工在针织管106内穿设弹性管61,由于条件限制,生产的双层伸缩管最长不超过15米,这给需要更大长度的双层伸缩管的用户带来不便;另外,通过人工穿设弹性管61,在弹性管61上必然有众多的皱褶、余存的针织管106,导致针织管106的大量浪费,而且外观也不美观;有时为了获取长度较长的双层伸缩管,需要通过接头将长度较短的双层伸缩管进行连接获得,导致生产效率低,制得的双层伸缩管生产成本高。一般的针通机也无法直接生产出针织管106的外部设有用于保护针织管106的弹性伸缩管的耐磨双层伸缩管,一般的针通机还无法直接生产出针织管106的内部带有带有弹性管61,针织管106的外部带有用于保护针织管106的弹性伸缩管的三层伸缩耐磨水管,采用现有技术生产耐磨双层伸缩管或三层伸缩耐磨水管时,需要用单独的设备对已经生产出的针织管106或双层伸缩水管再次送料、挤出成型弹性伸缩管、牵引等工序,耗费大量的人力物力,同样,生产出的耐磨双层伸缩管或三层伸缩耐磨水管的长度受原有针织管106或双层伸缩水管的限制,长度不超过15米,同样不能满足需要更大长度的耐磨双层伸缩管或三层伸缩耐磨水管的用户的需求。
为了解决一般的针通机无法直接生产出针织管106内设有弹性管61的双层伸缩水管的问题,如图6所示,该针通机还包括用于将弹性管61输送至钩针42针织出的针织管106内的输料单元60,输料单元60设在针织单元40的前端。
为了解决一般的针通机无法直接生产出针织管106外设有弹性伸缩管的耐磨双层伸缩管的问题,如图6所示,该针通机在未设置输料单元60的同时还包括用于在针筒41输出的针织管106外成型外管107的外管成型机70或用于在 针筒41输出的针织管106外涂覆涂层的涂覆机,外管成型机70或涂覆机设在针筒41的后端。
为了解决一般的针通机无法直接生产出针织管106内设有弹性管61、针织管106外设有弹性伸缩管的三层伸缩耐磨水管的问题,如图6所示,该针通机还包括用于将弹性管61输送至钩针42针织出的针织管106内的输料单元60,输料单元60设在针织单元40的前端;和用于在针筒41输出的针织管106外成型外管107的外管成型机70或用于在针筒41输出的针织管106外涂覆涂层的涂覆机,外管成型机70或涂覆机设在针筒41的后端。其中,覆盖在针织管106的外周的外管107能够减少针织管106与外部的摩擦,或能够保持针织管106的表面的清洁。
在本实施例中,外管成型机70可以采用现有现有技术中的用于成型外管的设备,涂覆机也可以使用现有技术中常用的用于将流体涂覆于产品表面的涂覆机。
具体的,在一些实施方式中,输料单元60为供弹性管61缠绕在其上的支撑架,以使弹性管61能够绕支撑架转动,从而能够在牵引单元80的牵引下,使弹性管61不断地输入针织管106中。进一步的,为了便于弹性管61的转动,支撑架上可枢转连接有供弹性管缠绕的转轴。在另一些实施方式中,输料单元60为用于成型弹性管61的现有技术中常用的塑料挤出机。
当该针通机包括用于将弹性管61输送至钩针42针织出的针织管106内的输料单元60时,可以直接生产出内部带有弹性管61(例如乳胶管)的双层伸缩水管,钩针42在弹性管61外直接针织出针织管106,从而可以根据需要制作出任意长度的双层伸缩水管,且针织管106在弹性管61的表面布局均匀,不会导致针织管106在弹性管61上形成多余的皱褶,节约针织管106用量,以16mm直径为例,每米用涤纶丝节省2克多(由于原来手工穿设弹性管61,外层的皱褶较多,使用的长度大,每米用涤纶丝10多克,现在的产品没有皱褶每米用涤纶丝不到8克),不仅使得产品减重,还大大节约原料成本;同时,无需通过接头连接来形成长度较长的双层伸缩水管,减轻双层伸缩水管的重量,节约生产成本;制得的双层伸缩水管可以在例如乳胶管等弹性管61内通水,由于乳胶管具有弹性,在通入其内部的水的压力作用下,乳胶管能够伸缩,水由于针织管106包裹在乳胶管外部,可以与乳胶管同步伸缩,避免乳胶管因与外部直接接触而磨损,提高双层伸缩管的使用寿命。
当该针通机包括用于在针筒41输出的针织管106外成型外管107的外管成型机70时,这个外管成型机70可以是与本发明的针通机相似或相同的针通机,也可以是现有技术中常用的用于挤出成型塑料管或塑料薄膜管的塑料挤出机,还可以是现有技术中常用的金属管编织成型机,由此,可以制得内层为针织管 106,外层为针织管106或金属编织管的双层耐磨管,或可以制得内层为针织管106,外层为塑料管或塑料薄膜的双层耐磨防水管,且由于外管107是直接生产在针织管106的外部的,生产出的双层管(双层耐磨管、双层耐磨防水管等)的长度不受限制。当该针通机包括用于在针筒41输出的针织管106外涂覆涂层的涂覆机时,涂料例如可以是耐磨或防水涂料,从而可以直接生产出具有耐磨涂层或防水涂层的针织管106,且生产出的具有涂层的针织管106的长度不受限制;当外管107采用的针织管106、金属编织管、塑料管、塑料薄膜或涂层均为可伸缩时,生产出的针织管106外设有外管107的双层管也为双层伸缩管。具体的,外管107可以为弹性伸缩管或非弹性褶皱管。
一般的针通机无法直接生产出针织管106的内部带有带有弹性管61,针织管106的外部带有用于保护针织管106的外管107的三层伸缩管,采用现有技术生产三层伸缩管时,需要用单独的设备对已经生产出的双层伸缩管再次送料、在双层伸缩管的外侧套设外管107等工序,耗费大量的人力物力,同样,生产出的三层伸缩管的长度受原有双层伸缩管的限制,长度不超过15米,同样不能满足需要更大长度的三层伸缩管的用户的需求。当该针通机同时包括将弹性管61输送至钩针42针织出的针织管106内的输料单元60和将可伸缩外管107直接生产在针织管106外的外管成型机70时,可以直接生产出任意长度的三层伸缩管,无需通过接头连接来形成长度较长的三层伸缩管,减轻三层伸缩管的重量,节约生产成本;由于在针织管106的表面套设有外管107,针织管106不易被刮伤,使得三层伸缩管的使用寿命远大于双层伸缩管。
在一些实施方式中,外管成型机70为用于将弹性伸缩管成型在针筒41输出的针织管106外的塑料挤出机。由于弹性伸缩管在针织管106的表面布局均匀,不会导致弹性伸缩管在针织管106上形成多余的皱褶,节约弹性伸缩管用量,不仅使得产品减重,还大大节约原料成本;由于在针织管106的表面套设有弹性伸缩管,制成的三层伸缩管的表面光滑,针织管106不易被刮伤,使得三层伸缩管的使用寿命远大于双层伸缩管。
优选的,如图6所示,在外管成型机70之后还设有通过电机驱动的管材整理单元71。以便将生产出的管材整齐收纳。优选的,管材整理单元71可以通过转动电机26驱动,以实现自动化生产。具体的,管材整理单元71为管材收拢架,管材收拢架上设有供支撑架,支撑架上可枢转连接有供管材(单层针织管、双层伸缩管、三层伸缩管)缠绕的转轴,该转轴通过动力设备驱动其绕自身中心轴转动。管材整理单元71还可以使用现有技术中其他用于整理管材的设备。
在其他实施方式中,当该针通机未设置外管成型机70或涂覆机时,也可以设置牵引单元80,牵引单元80用于将针筒41输出的针织线101、单层针织管106或双层伸缩水管牵引出来。进一步的,当该针通机还设有外管成型机70或 涂覆机时,牵引单元80也可以设置在外管成型机70或涂覆机之前或之后,用于将针筒41输出的针织线101、单层针织管106或双层伸缩水管牵引至外管成型机70或涂覆机上,或用于将外管成型机70或涂覆机输出的双层管或三层管牵引出来。更进一步的,当该针通机还设有管材整理单元71时,牵引单元80还可以设置在外管成型机70或涂覆机与管材整理单元71之间,用于将外管成型机70或涂覆机输出的双层管或三层管牵引至管材整理单元71上。
在其他实施方式中,牵引单元80也可以采用现有技术中常用的其他能够对双层伸缩管或三层伸缩管进行牵引的牵引装置,在这些牵引装置中都会设有用于牵引双层伸缩管或三层伸缩管从针筒中移出的辊子或转轴,且这些辊子或转轴在动力设备的驱动下绕其转轴转动。
优选的,如图6和图7所示,该针通机还包括设在机架200上且设于第一通孔411内的针织导向条或针织导向管201,针织导向管201或针织导向条与针筒41之间合围成供针织管106通过的通道,输料单元60设置成将弹性管61输送至针织导向管201内;送线单元上设有供针织导向条或针织导向管201通过的第二通孔312,第一过线孔311设在第二通孔312的外周。由此,通过钩针42针织出的针织管106可以通过针筒41与针织导向管201或针织导向条之间的间隙输送出去。具体的,当送线单元仅包括第一过线盘31时,第一过线盘31上一体成型或加工有第二通孔312,且第一过线孔311沿第二通孔312的周向间隔设置在第二通孔312的外侧。当送线单元还包括第二过线盘32和/或第三过线盘33时,第二过线盘32和/或第三过线盘33设在第一过线盘31的背离针筒41的一侧,第二过线盘32和/或第三过线盘33上也一体成型或加工有第二通孔312,且第二过线孔321在第二过线盘32上的第二通孔312的外侧周向间隔设置;第三过线孔331在第三过线盘33上的第二通孔312的外侧周向间隔设置。优选的,第二通孔312与第一通过同轴设置,以避免针织导向管201或针织导向条在自第二通道输送至第一通道时发生扭曲,导致针织导向管201或针织导向条的输送不顺畅,针织导向管201也可以用实心的线材代替,实心线材仅在生产单层针织管106时使用。在针织出针织管106的过程中,弹性管61就通过针织导向管201设置在针织管106中,减小针织管106与弹性管61之间的摩擦。
优选的,如图7所示,为了避免该针通机针织出的针织管106被针织导向管201或针织导向条的端部刮伤,在针织导向管201或针织导向条的背离送线单元的端部一体成型或加工有缩颈部。优选的,缩颈部设置成锥形,以便均匀地将该针通机针织出的针织管106导出。进一步的,针织导向管201或针织导向条的转角处圆滑过渡。
优选的,如图6所示,转动结构20和移动机构43通过传动机构90与同一个转动电机26连接,以节约能耗,降低生产成本。具体的,传动机构90将转 动结构20的第二同步带轮23、移动机构43的滑块或滑环433与转动电机26连接。当该针通机还设有转动传动机构25时,传动机构90将转动传动机构25的第二转动轴255与转动电机26连接(而不是将转动结构20的第二同步带轮23与转动电机26连接)。当该针通机还设有移动驱动机构44时,传动机构90将移动驱动机构44的第四转动轴444与转动电机26连接(而不是将移动机构43的滑块或滑环433与转动电机26连接)。
具体的,如图6所示,转动电机26的转轴上同轴连接有第三同步带轮91、第一齿轮和/或第一链轮,设在转动电机26的转轴上的第三同步带轮91、第一齿轮和第一链轮的总数不少于两个,其中,每个第三同步带轮91分别通过皮带连接有第四同步带轮92,每个第一齿轮分别通过与之对应的齿轮带动第二齿轮转动,每个第一链轮分别通过链条连接有第二链轮,其中一个第四同步带轮92、第二齿轮或第二链轮与第四转动轴444同轴连接,第四转动轴444与针筒41的第一通孔411相垂直,从而在转动电机26的驱动下,第三同步带轮91、第一齿轮和第一链轮通过第四同步带轮92、第二齿轮或第二链轮带动移动驱动机构44运动,以通过移动机构43带动钩针42往复移动;为了使转动结构20能够驱动第一过线盘31绕针筒41的第一通孔411的轴线转动,转动结构20和转动传动机构25的转轴设置成与第一通孔411的轴线平行,具体的设置方式为:在第四同步带轮92、第二齿轮或第二链轮上同轴连接有第一伞形齿轮93,第一伞形齿轮93上啮合有第二伞形齿轮94,且第二伞形齿轮94的转轴与针筒41的第一通孔411的轴线平行,第二伞形齿轮94同轴连接有第二转动轴255,通过第四同步带轮92、第二齿轮或第二链轮带动转动结构20或转动传动机构25和第一过线盘31一起往复转动。转动结构20、移动机构43上连接的第四同步带轮92、第二齿轮或第二链轮各不相同。
当该针通机还包括牵引单元80时,为了节省能耗,牵引单元80也通过传动机构与转动结构20、移动机构43和转动电机26连接,此时,转动电机26的转轴上还同轴连接有一个第三同步带轮91、第一齿轮和/或第一链轮,即设在转动电机26的转轴上的第三同步带轮91、第一齿轮和第一链轮的总数不少于三个。具体的,传动机构90将牵引单元80的主动辊81与转动电机26连接。为了便于牵引单元80牵引通过针织单元40针织出的针织管106,牵引单元80的主动辊81的轴线设置成同时与针筒41的第一通孔411的轴线和第四转动轴444的转轴垂直,且第四转动轴444也与针筒41的第一通孔411相垂直,具体的设置方式为:在第四同步带轮92、第二齿轮或第二链轮上同轴连接有第三伞形齿轮95,第三伞形齿轮95上啮合有第四伞形齿轮96,且第四伞形齿轮96的转轴同时与针筒41的第一通孔411的轴线和第四转动轴444的转轴垂直,第四伞形齿轮96同轴连接有第五同步带轮97、第三齿轮或第三链轮,牵引单元80的主动 辊81上同轴连接有第六同步带轮98、第四齿轮或第四链轮,通过第五同步带轮97、第三齿轮或第三链轮带动第六同步带轮98、第四齿轮或第四链轮和主动辊81一起转动。转动结构20、移动机构43和牵引单元80上连接的第四同步带轮92、第二齿轮或第二链轮各不相同。
优选的,为了保证第三同步带轮91、第一齿轮和第一链轮能够平稳驱动转动结构20、移动机构43和牵引单元80,继续参照图6所示,转动电机26的转轴、第二转动轴255和第三转动轴256可枢转地连接在机架200上,同时,第四同步带轮92、第二齿轮或第二链轮的转轴以及第二伞形齿轮94和第四伞形齿轮96的转轴也可枢转地连接在机架200上。
当该针通机还设有管材整理单元71时,传动机构90将管材整理单元71与转动电机26连接。
优选的,当针织单元40在机架200上间隔设置有1-10个(本实施例设置有6个,也可以是3个或8个或10个,也可以设置更多个针织单元40),所有的针织单元40通过的转动电机26驱动传动机构90进行带动。由于该针通机中所有的针织单元40、转动结构20、移动机构43和牵引单元80通过同一个转动电机26进行驱动,可以节约能耗,进一步降低生产成本。优选的,转动电机26采用现有技术中常用的伺服电机。具体的,将所有针织单元40连接起来的传动机构90为联动机构,联动机构就是其中的一个针织单元40的相关机构的传动轴上的齿轮用一个伺服电机驱动转动时,通过齿轮传动机构90或通过同步带与其它所有的针织单元40的传动轴上的齿轮或同步轮及辅助轴上的齿轮或同步轮啮合传动,实现同步传动,也可以通过链轮传动或带轮传动。
在其他实施例中,当转动结构20、移动机构43和牵引单元80分别用各自的伺服电机分别驱动时,需要通过控制模块控制每个伺服电机的转速及转向。当其中一个伺服电机驱动移动机构43带动钩针42上下移动时,另一个伺服电机驱动转动结构20带动第一过线盘31往复转动。
以下为本发明的一种实施方式的采用前述的针通机生产管材的生产方法。
该生产方法,包括如下生产方法:
生产方法一,单层针织管106的生产方法,包括以下步骤:
S101:送线单元将针织线101输送至钩针42。具体的,送线单元通过第一过线孔311将针织线101输送至钩针42。
具体的,将针织用的线卷分别悬挂在送线单元的放线轴104上,将线卷上的出线头按照每个针织单元40的用线根数分别且依次穿过第一过线盘31上的第一过线孔311、钩针42以及针筒41的第一通孔411至管材整理单元71或牵引单元80。
进一步的,还包括步骤S102:移动机构43驱动钩针42沿第一通孔411的 轴线方向往复运动的同时,转动结构20驱动第一过线盘31转动,以将钩针42一侧的针织线101输送至钩针42上。
优选的,移动机构43驱动钩针42沿第一通孔411的轴线方向往复运动的同时,转动结构20驱动第一过线盘31交替正向、反向转动,以将钩针42两侧的针织线101交替地输送至钩针42上。
更为具体的方法与前述针通机的操作方法一致,在此不再赘述。由于第一过线盘31的交替正向、反向转动,使得每个钩针42针织出的针织线101的轨迹均是勾住其中一侧的针织线101后,再勾住另一侧的针织线101,从而针织出如图13所示的,具有一定松紧度的单层针织管106。
生产方法二,双层伸缩管的生产方法,在生产方法一的基础上,还包括以下步骤:
S201:钩针42在输料单元60输出的弹性管61外周针织出针织管106,以形成双层耐磨水管。
进一步的,还包括步骤S202:通过牵引单元80或管材整理单元71将内部套有弹性管61的针织管106一起牵引出来,形成如图14所示的双层耐磨水管。
优选的,步骤S201设在S101或S102之前。
优选的,控制弹性管61的放料紧度或放料速度,调节针织管106套装在弹性管61上的疏密程度或伸缩管的伸缩长度。
或者还包括以下步骤:
S202`:将外管成型机70输出的外管107套在针织单元40的钩针42生产出的单层针织管106的外表面上,或将涂覆机输出的耐磨或防水涂料涂覆在S102生产出的单层针织管106的外表面上,以形成如图15和图16所示的双层耐磨管或双层耐磨防水管。
进一步的,还包括步骤S203`:通过牵引单元80或管材整理单元71将外部套有外管107的针织管106或外部涂覆有耐磨或防水涂层的针织管106一起牵引出来,形成双层耐磨管或双层耐磨防水管。
生产方法三,三层伸缩管的生产方法,在生产方法一的基础上,还包括步骤S201,以及包括以下步骤:
S301:将外管成型机70输出的外管107套在S201生产出的双层耐磨水管的外表面上,或将涂覆机输出的耐磨或防水涂料涂覆在S202生产出的双层耐磨水管的外表面上,以形成如图17和图18所示的三层伸缩管。
进一步的,还包括步骤S302:通过牵引单元80或管材整理单元71将外部套有外管107的针织管106或外部涂覆有耐磨或防水涂层,且内部套有弹性管61的针织管106一起牵引出来,形成三层伸缩管。
用上述的生产方法生产出的产品,包括单层针织管106或双层伸缩水管或 双层耐磨管或双层耐磨防水管或三层伸缩管,其中,单层针织管106仅包括针织管106;双层伸缩管包括双层伸缩水管、双层耐磨管和双层耐磨防水管,双层伸缩水管包括针织管106和设在针织管106内的弹性管61;双层耐磨管包括针织管106和套设在针织管106外的外管107;双层耐磨防水管包括针织管106和涂覆在针织管106外的耐磨涂层或防水涂层;三层伸缩管包括针织管106、套设在针织管106内的弹性管61以及套设在针织管106外的外管107或涂覆在针织管106外的涂层。还可以根据需要在同一台针通机上同时生产出单层针织管106、双层伸缩管和三层伸缩管中的至少一种,以实现针通机生产针织管106的多样性。通过本发明生产方法生产出的单层针织管106、双层伸缩管和三层伸缩管具有前述对应的针织管106的优点,在此不再赘述。
上述的弹性管61和弹性伸缩管均为乳胶管、硅胶管、TPE管、TPV管之一。
上述的针织线101为工业涤纶长丝或尼龙长丝或其它弹性及韧性较高的化纤长丝。
上述的固定设置的方式可以采用现有技术中常用的不可拆卸连接方式实现(例如焊接、胶粘的方式),也可以采用可拆卸连接的方式实现(例如卡扣、螺纹连接的方式),本发明对固定设置的具体实现方式不作限定。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案或技术特征进行类似技术的简单替换或修改,而这些简单替换或修改,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和实质,仍在本发明的保护范围之内。

Claims (12)

  1. 用于生产针织管的针通机的送线单元,其特征在于,包括:
    支架(100);
    设在所述支架(100)上的转动结构(20);
    设在所述转动结构(20)上的第一过线盘(31),所述第一过线盘(31)上周向间隔设置有用于通过针织线(101)的第一过线孔(311);
    所述转动结构(20)设置成能够驱动所述第一过线盘(31)转动。
  2. 根据权利要求1所述的用于生产针织管的针通机的送线单元,其特征在于,所述转动结构(20)设置成能够驱动所述第一过线盘(31)交替正向、反向转动。
  3. 根据权利要求2所述的用于生产针织管的针通机的送线单元,其特征在于,还包括设在所述支架(100)上的第二过线盘(32);
    所述第二过线盘(32)位于所述第一过线盘(31)的前端,且其周向上间隔设置有用于将所述针织线(101)输送至所述第一过线孔(311)中的第二过线孔(321)。
  4. 根据权利要求3所述的用于生产针织管的针通机的送线单元,其特征在于,还包括第三过线盘(33);
    所述第一过线盘(31)通过所述第三过线盘(33)设在所述转动结构(20)上,所述第三过线盘(33)设在所述第一过线盘(31)和第二过线盘(32)之间,且所述第三过线盘(33)上周向间隔设置有用于通过所述针织线(101)的第三过线孔(331),以使得所述针织线(101)在穿过所述第二过线孔(321)后,能够先穿过所述第三过线孔(331)再穿过所述第一过线孔(311)。
  5. 根据权利要求3或4所述的用于生产针织管的针通机的送线单元,其特征在于,还包括:
    设在所述支架(100)上的,用于放置针织线卷(103)的放线轴(104);
    可枢转地设在所述支架(100)上的,用于将所述针织线卷(103)上的针织线(101)输送至所述第二过线孔(321)中的导线辊(102)。
  6. 针通机,其特征在于,包括:
    机架(200);
    设在所述机架(200)上的针筒(41),所述针筒(41)具有供针织线(101)或针织管(106)贯穿整个所述针筒(41)的第一通孔(411);
    设在所述针筒(41)上的能够沿所述第一通孔(411)的轴线方向往复运动移动机构(43);
    设在所述机架(200)上的如权利要求1至5任意一项所述的送线单元,所述送线单元设在所述第一通孔(411)的前端;以及
    设在所述移动机构(43)上的至少两根用于将针织线(101)针织成针织管(106)的钩针(42),所述钩针(42)在所述针筒(41)的外周间隔设置,以使得所述钩针(42)能够在所述移动机构(43)的带动下沿所述第一通孔(411)的轴线方向往复运动,所述钩针(42)与所述第一过线盘(31)的转轴的距离小于所述第一过线孔(311)与所述第一过线盘(31)的转轴的距离。
  7. 根据权利要求6所述的针通机,其特征在于,还包括用于将经由所述钩针(42)针织出的针织管(106)由所述针筒(41)的末端牵引出来的牵引单元(80);所述牵引单元(80)设在所述针筒(41)的后端。
  8. 根据权利要求7所述的针通机,其特征在于,还包括:
    用于将外部弹性管(61)输送至经由所述钩针(42)针织出的针织管(106)内的输料单元(60),和/或
    用于在所述针筒(41)输出的针织管(106)的外周成型外管(107)的外管成型机(70);
    所述牵引单元(80)设在所述针筒(41)的后端。
  9. 根据权利要求8所述的针通机,其特征在于,所述外管成型机(70)为用于将弹性伸缩管成型在所述针筒(41)输出的针织管(106)的外周的塑料挤出机。
  10. 根据权利要求8所述的针通机,其特征在于,还包括:
    设在所述机架(200)上且设于所述第一通孔(411)内的针织导向条或针织导向管(201),所述针织导向条或针织导向管(201)与所述针筒(41)之间合围成供所述针织管(106)通过的通道,所述输料单元(60)用于将外部弹性管(61)输送至所述针织导向管(201)内;
    所述送线单元上设有供所述针织导向条或针织导向管(201)通过的第二通孔(312),所述第一过线孔(311)设在所述第二通孔(312)的外周。
  11. 根据权利要求8所述的针通机,其特征在于,还包括用于收纳所述钩针(42)针织出的内部套设有弹性管(61)的针织管(106),或用于收纳所述外管成型机(70)制备出的内部套设有针织管(106)的外管(107)的管材整理单元(71)。
  12. 根据权利要求6至11任意一项所述的针通机,其特征在于,所述针筒(41)沿竖直方向设置。
PCT/CN2020/086790 2019-04-26 2020-04-24 用于生产针织管的针通机的送线单元及针通机 WO2020216344A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910345581.5 2019-04-26
CN201910345581.5A CN110004581A (zh) 2019-04-26 2019-04-26 针织单元和含有针织单元的针通机及其生产工艺和产品
CN201910926061.3A CN110468499B (zh) 2019-04-26 2019-09-27 用于生产针织管的针通机的送线单元及针通机
CN201910926061.3 2019-09-27

Publications (1)

Publication Number Publication Date
WO2020216344A1 true WO2020216344A1 (zh) 2020-10-29

Family

ID=67174551

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/086792 WO2020216345A1 (zh) 2019-04-26 2020-04-24 用于生产针织管的针通机及针织管的生产方法
PCT/CN2020/086790 WO2020216344A1 (zh) 2019-04-26 2020-04-24 用于生产针织管的针通机的送线单元及针通机

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086792 WO2020216345A1 (zh) 2019-04-26 2020-04-24 用于生产针织管的针通机及针织管的生产方法

Country Status (2)

Country Link
CN (8) CN110004581A (zh)
WO (2) WO2020216345A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004581A (zh) * 2019-04-26 2019-07-12 浙江海伦塑胶有限公司 针织单元和含有针织单元的针通机及其生产工艺和产品
CN115161864B (zh) * 2022-06-22 2023-12-22 绍兴宽裕机械股份有限公司 一种单面小圆机针筒及加工工艺
CN115627582B (zh) * 2022-12-22 2023-04-25 瑞纳智绝缘材料(苏州)有限公司 一种针织设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU825720A1 (ru) * 1979-07-24 1981-04-30 Vnii Textil Galanterey Promy Вязаный шнур и машина для его изготовления •1
SU1490181A1 (ru) * 1987-10-06 1989-06-30 Курский Трикотажный Комбинат Круглов зальна машина
SU1551758A1 (ru) * 1988-02-15 1990-03-23 Киевский технологический институт легкой промышленности В заный шнур и машина дл его изготовлени
KR0134687Y1 (ko) * 1996-08-06 1999-01-15 박상철 끈 제조용 니트지 편직장치 및 그 끈
CN102505312A (zh) * 2011-11-02 2012-06-20 东莞百宏实业有限公司 一种表面可变化的针织绳织物的编织设备及编织方法
US20120210752A1 (en) * 2011-02-22 2012-08-23 Gary Dean Ragner Hose Reinforcement Knitting Machine and Knitting Process
CN110004581A (zh) * 2019-04-26 2019-07-12 浙江海伦塑胶有限公司 针织单元和含有针织单元的针通机及其生产工艺和产品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1972755A (en) * 1931-05-23 1934-09-04 Fidelity Machine Co Laminated article
US2422281A (en) * 1944-02-09 1947-06-17 Western Electric Co Apparatus for insulating conductors
US2445231A (en) * 1944-09-09 1948-07-13 Johns Manville Method of and apparatus for making tubular coverings
JPH0226942A (ja) * 1988-07-09 1990-01-29 Sawamoto Sangyo Kk 編地被覆糸の製造装置
FR2682129B1 (fr) * 1991-10-03 1994-01-07 Aerospatiale Procede et machine pour la realisation d'armatures fibreuses creuses.
US6834517B1 (en) * 2003-06-05 2004-12-28 Precision Products Co. Inc. Yarn feeding system
PL2422966T3 (pl) * 2010-08-30 2015-11-30 Contitech Schlauch Gmbh Sposób wytwarzania przewodów powietrza doładowującego
IT1404087B1 (it) * 2011-01-14 2013-11-08 Caneva Testa di magliatura per macchine magliatrici di tubi flessibili e macchina magliatrice comprendente la testa.
KR200478544Y1 (ko) * 2011-04-26 2015-10-16 미쯔비시 레이온 가부시끼가이샤 래치 튀어오름 방지 기구를 구비한 끈 형상물의 편기
JP2015232189A (ja) * 2014-06-10 2015-12-24 三菱レイヨン株式会社 編機及び編機を用いた紐状物の製造方法
JP5853086B1 (ja) * 2014-11-18 2016-02-09 日本ピラー工業株式会社 ヤーンの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU825720A1 (ru) * 1979-07-24 1981-04-30 Vnii Textil Galanterey Promy Вязаный шнур и машина для его изготовления •1
SU1490181A1 (ru) * 1987-10-06 1989-06-30 Курский Трикотажный Комбинат Круглов зальна машина
SU1551758A1 (ru) * 1988-02-15 1990-03-23 Киевский технологический институт легкой промышленности В заный шнур и машина дл его изготовлени
KR0134687Y1 (ko) * 1996-08-06 1999-01-15 박상철 끈 제조용 니트지 편직장치 및 그 끈
US20120210752A1 (en) * 2011-02-22 2012-08-23 Gary Dean Ragner Hose Reinforcement Knitting Machine and Knitting Process
CN102505312A (zh) * 2011-11-02 2012-06-20 东莞百宏实业有限公司 一种表面可变化的针织绳织物的编织设备及编织方法
CN110004581A (zh) * 2019-04-26 2019-07-12 浙江海伦塑胶有限公司 针织单元和含有针织单元的针通机及其生产工艺和产品
CN110468499A (zh) * 2019-04-26 2019-11-19 戴恒 用于生产针织管的针通机的送线单元及针通机
CN110629391A (zh) * 2019-04-26 2019-12-31 戴恒 用于生产针织管的针通机及针织管的生产方法

Also Published As

Publication number Publication date
CN110629391A (zh) 2019-12-31
CN211036309U (zh) 2020-07-17
CN211394849U (zh) 2020-09-01
CN110629391B (zh) 2023-12-05
CN110468499B (zh) 2023-09-19
WO2020216345A1 (zh) 2020-10-29
CN110004581A (zh) 2019-07-12
CN110468499A (zh) 2019-11-19
CN211394850U (zh) 2020-09-01
CN211394851U (zh) 2020-09-01
CN211394848U (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2020216344A1 (zh) 用于生产针织管的针通机的送线单元及针通机
US8371143B2 (en) Hose reinforcement knitting machine and knitting process
KR101772994B1 (ko) 스판덱스를 포함하는 원단 제작 장치
CN106743980A (zh) 一种线缆自动化扭绕生产线及其精确控制节距的方法
CN101195942B (zh) 提花链整经机和用于生产提花链的方法
CN201031098Y (zh) 新型摇绞纱机导纱装置
KR101039467B1 (ko) 웨이브패턴 형성장치를 구비한 경편기
KR101614838B1 (ko) 멀티 필라멘트를 이용한 멀티 기능성 장단 복합방적사 제조방법 및 제조장치
US2918777A (en) Hose making apparatus
CN103290584A (zh) 一种包覆丝机
CN114836895A (zh) 一种纤维编织管生产线
CN208776090U (zh) 纺织机械配合绕丝设备
CN105780236A (zh) 多功能纱线机械包覆机
CN205653554U (zh) 一种多功能纱线机械包覆机
JPS6321574B2 (zh)
CN106988009A (zh) 一种带有打紧和变径机构的三维筒状织机
KR100390122B1 (ko) 편성기 및 편사 패턴을 편성하는방법
CN215103844U (zh) 一种纤维编织管生产线
CN203782317U (zh) 一种包芯线编织机床
US3808840A (en) Three-strand yarn knitting machine and method of knitting
IT201700002927A1 (it) Tubo flessibile rinforzato, nonche’ apparato e metodo per la realizzazione dello stesso
CN109052033A (zh) 纺织机械配合绕丝设备
KR200462343Y1 (ko) 장식사 제조장치
CN215517878U (zh) 一种纤维编织管生产线
CN202347166U (zh) 四罗拉多层式变形覆合一体机走丝丝道

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20794806

Country of ref document: EP

Kind code of ref document: A1