WO2020211875A1 - 荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置 - Google Patents

荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置 Download PDF

Info

Publication number
WO2020211875A1
WO2020211875A1 PCT/CN2020/089159 CN2020089159W WO2020211875A1 WO 2020211875 A1 WO2020211875 A1 WO 2020211875A1 CN 2020089159 W CN2020089159 W CN 2020089159W WO 2020211875 A1 WO2020211875 A1 WO 2020211875A1
Authority
WO
WIPO (PCT)
Prior art keywords
red powder
powder material
fluorescent red
satisfies
light
Prior art date
Application number
PCT/CN2020/089159
Other languages
English (en)
French (fr)
Inventor
陈磊
李超
蔡济隆
冉崇高
吴春海
Original Assignee
旭宇光电(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭宇光电(深圳)股份有限公司 filed Critical 旭宇光电(深圳)股份有限公司
Publication of WO2020211875A1 publication Critical patent/WO2020211875A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7735Germanates

Definitions

  • the invention belongs to the technical field of inorganic luminescent materials, and in particular relates to a fluorescent red powder material and a preparation method thereof, and a light emitting device containing the above fluorescent red powder material.
  • White LED has the advantages of high luminous efficiency, low energy consumption, long life, no pollution, etc., and has been widely used in the field of lighting and display. With the rapid development of high-quality lighting and display, LEDs have higher and higher requirements for light efficiency while pursuing color rendering index. In the process of implementing white LEDs, phosphors play a very important role, which determines the performance indicators of white LEDs such as light efficiency, color temperature and CRI. Nitride phosphors have received important research due to their many advantages, such as good physical and chemical stability, wide excitation range, and pure and adjustable emission spectra.
  • K 2 TiF 6 and K 2 SiF 6 red phosphors have the advantages of high brightness and narrow half-value width (US 3576756, US 7497973, US 7648649).
  • the light efficiency of this type of material is higher than that of nitride red powder. But it is still relatively poor in terms of stability. If a new type of phosphor can be developed, the performance of which effectively combines the advantages of stable nitride red powder and high brightness of fluoride red powder will be of great significance to the improvement of LED light efficiency.
  • the purpose of the present invention is to provide a fluorescent red powder material and a preparation method thereof, and a light-emitting device containing the above-mentioned fluorescent red powder material, aiming to solve the problem that the stability and luminous intensity of the existing white light LED fluorescent red powder are difficult to balance.
  • the first aspect of the present invention provides a fluorescent red powder material
  • the chemical formula of the fluorescent red powder material is R x (M y , Eu z )(Si a , Ge b , Mn c) N d F e
  • R is selected from Li
  • M is selected from at least one of Ca, Sr, Mg, and Ba
  • the R x (M y ,Eu z )(Si a ,Ge b ,Mn c) N d F e has the same crystal structure as Sr 2 Si 5 N 8 ;
  • the second aspect of the present invention provides a method for preparing a fluorescent red powder material, including the following steps:
  • the first precursor, the fluoride or oxide of Mn, the nitride of M, the nitride or oxide of Si, and the nitride or oxide of Eu are mixed and reacted at a temperature of 1300 ⁇ 1500°C. 6 8 hours, the intermediate is prepared;
  • the fluorescent red powder material is collected after pickling, and the chemical formula of the fluorescent red powder material is R x (M y ,Eu z )(Si a , Ge b , Mn c) N d F e ,
  • R is selected from at least one element of Li, Na, and K
  • M is selected from at least one element of Ca, Sr, Mg, and Ba
  • the R x (M y ,Eu z )(Si a , Ge b ,Mn c) N d F e and Sr 2 Si 5 N 8 have the same crystal structure;
  • a third aspect of the present invention provides a light-emitting device, the light-emitting device comprising a luminous body and an excitation light source, the luminous body is a fluorescent red powder material, and the fluorescent red powder material is the above-mentioned fluorescent red powder material.
  • the fluorescent red powder material provided by the present invention has the same crystal structure as Sr 2 Si 5 N 8.
  • the present invention uses dual luminescence centers Mn 4+ and Eu 2+ to excite synergistically, and has both Eu 2+ broadband emission Under the premise of improving the emission intensity of fluorescent materials. Specifically, Eu 2+ exhibits broadband emission, and Mn 4+ exhibits narrow-band emission at around 650 nm, with higher intensity. Eu 2+ and Mn 4+ are co-excited to make the emission spectrum of the phosphor appear broadband, and the emission intensity is greatly improved.
  • the present invention introduces a large amount of alkali metals, fluorine elements and manganese elements to improve the luminous efficiency of the phosphor.
  • Eu 2+ mainly replaces the Sr 2+ position in the Sr 2 Si 5 N 8 crystal structure
  • Mn 4+ mainly replaces Si 4+
  • the melting point of alkali metals and fluorine elements is low, and the doping of the two can reduce the crystallization temperature of the crystal, modify the crystal surface, and act as a cosolvent to promote better crystal crystallinity and improve luminous efficiency
  • Mn The 4+ doping amount can be greatly increased, the quenching concentration is large, and the luminous efficiency can also be improved.
  • the rigidity of the matrix structure is greatly improved compared with the pure fluoride system, that is, the stability of the phosphor is improved.
  • the fluorescent red powder material provided by the invention has good thermal stability and high luminous efficiency, and can be used in combination with other fluorescent powders to finally prepare high-efficiency white light LED devices.
  • the preparation method of the fluorescent red powder material provided by the present invention firstly mixes raw materials such as silicon-containing oxide, alkali metal-containing oxide, hydrofluoric acid, acetone, etc., and prepares fluorine containing fluorine, silicon and alkali metal elements by a hydrothermal method. Further, fluoride precursors, alkali metal-containing nitrides, silicon-containing nitrides, etc. are mixed to prepare fluoronitride intermediates by a high-temperature solid phase method. Finally, after crushing and pickling treatment, a fluorescent red powder based on R x (M y , Eu z ) (Si a , Ge b , Mn c) N d F e is obtained.
  • the method is relatively simple and controllable.
  • alkali metals, fluorine and Mn 4+ are introduced into the Sr 2 Si 5 N 8 lattice, and the rigidity of the matrix structure is greatly improved compared with the pure fluoride system, that is, the stability of the phosphor Be improved.
  • the activator Mn is introduced in the high-temperature solid phase step, so that it can be evenly distributed in the solid phase sintered body, thereby giving the fluorescent red powder excellent thermal stability.
  • the fluorescent red powder material prepared by the invention has better thermal stability and luminous efficiency.
  • the light-emitting device provided by the present invention contains the above-mentioned fluorescent red powder material, so the advantages of the fluorescent red powder material of good thermal stability and high external quantum efficiency can be fully utilized, thereby improving the luminous efficiency and stability of the light-emitting device.
  • Figure 1 is an emission spectrum diagram of the fluorescent red powder material prepared in Example 1 of the present invention.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless specifically defined otherwise.
  • the weight of related components mentioned in the description of the embodiment of the present invention can not only refer to the specific content of each component, but also can indicate the proportion of the weight between the components. Therefore, as long as it is in accordance with the relevant group Enlargement or reduction in proportion to the content of fennel is within the scope disclosed in the specification of the embodiments of the present invention.
  • the weight described in the specification of the embodiment of the present invention may be a mass unit known in the chemical industry, such as ⁇ g, mg, g, and kg.
  • the first aspect of the embodiments of the present invention provides a fluorescent red powder material
  • the chemical formula of the fluorescent red powder material is R x (M y , Eu z )(Si a , Ge b , Mn c) N d F e
  • R is selected At least one of Li, Na, and K elements
  • M is selected from at least one of Ca, Sr, Mg, and Ba elements
  • the R x (M y ,Eu z )(Si a , Ge b , Mn c) N d F e and Sr 2 Si 5 N 8 have the same crystal structure
  • the present invention employs a dual emission center Eu 2+ and Mn 4+ cooperative excitation, in both Eu 2+ Under the premise of broadband emission, the emission intensity of fluorescent materials is improved. Specifically, Eu 2+ exhibits broadband emission, and Mn 4+ exhibits narrow-band emission at around 650 nm, with higher intensity. Eu 2+ and Mn 4+ are co-excited to make the emission spectrum of the phosphor appear broadband, and the emission intensity is greatly improved.
  • the present invention introduces a large amount of alkali metals, fluorine elements and manganese elements to improve the luminous efficiency of the phosphor.
  • Eu 2+ mainly replaces the Sr 2+ position in the Sr 2 Si 5 N 8 crystal structure
  • Mn 4+ mainly replaces Si 4+
  • the melting point of alkali metals and fluorine elements is low, and the doping of the two can reduce the crystallization temperature of the crystal, modify the crystal surface, and act as a cosolvent to promote better crystal crystallinity and improve luminous efficiency
  • Mn The 4+ doping amount can be greatly increased, the quenching concentration is large, and the luminous efficiency can also be improved.
  • the rigidity of the matrix structure is greatly improved compared with the pure fluoride system, that is, the stability of the phosphor is improved.
  • the fluorescent red powder material provided by the embodiment of the present invention has good thermal stability and high luminous efficiency, and can be used in combination with other fluorescent powders to finally prepare high-efficiency white light LED devices.
  • the fluorescent red powder material with the chemical formula R x (M y ,Eu z )(Si a , Ge b , Mn c) N d F e has the same crystal structure as that of Sr 2 Si 5 N 8 the same.
  • the R x (M y , Eu z ) (Si a , Ge b , Mn c) N d F e crystal structure contains three types of element sites.
  • the element sites of the first type are respectively occupied by R element, M element and Eu element (R is selected from at least one of Li, Na, and K elements, and M is selected from at least one of Ca, Sr, Mg, and Ba elements.
  • the second type of element sites are occupied by Si, Ge, and Mn elements
  • the third type of element sites are occupied by N and F elements.
  • R x (M y ,Eu z )(Si a ,Ge b ,Mn c) N d F e with this structural feature has good structural stability, so when used as a luminescent material, it has good physical stability Sexual and chemical stability.
  • the fluorescent red powder material of the embodiment of the present invention introduces alkali metal and fluorine at the same time to promote the effective entry of manganese into the nitride crystal lattice and increase the doping content of manganese. .
  • the introduction of manganese can improve the stability of the system on the one hand, and on the other hand, Mn 4+ narrow-band emission and Eu 2+ broadband emission are synergistic, which greatly improves the luminous intensity of the phosphor.
  • the introduction of alkali metals and fluorine elements can play a role as a co-solvent, which makes the phosphors more crystalline, which is beneficial to improve the luminous intensity of the phosphors.
  • the elements R, M and Eu are all at the first element site.
  • the role of the R element is to act as a cosolvent, reduce the melting point of the phosphor, and promote the increase in the crystallinity of the phosphor.
  • the introduction of the R element and the F element can provide a more excellent structural microenvironment for Mn 4+ , thereby improving Mn 4 + The emission intensity.
  • R is selected from at least one element of Li, Na, and K.
  • the R is selected from the K element, and the ionic radius of the K element is closer to the ionic radius of the Sr element, and the structural defects obtained after doping and substitution are less and the crystallinity is better.
  • R x (M y ,Eu z )(Si a ,Ge b ,Mn c) N d F e the content of the R element satisfies: 0 ⁇ x ⁇ 1.5. If the content of R element in R x (M y ,Eu z )(Si a ,Ge b ,Mn c) N d F e is too high, it will cause the phosphor to produce miscellaneous phases, resulting in poor crystallinity and lower luminous efficiency ; If the content of R element is too low, the solid solution amount of Mn 4+ doped into the crystal lattice will decrease, and the luminous efficiency will not increase significantly.
  • R x (M y , Eu z )(Si a , Ge b , Mn c) N d F e the content of R element satisfies: 1.0 ⁇ x ⁇ 1.5, at this time the phosphor crystallization effect Doping with Mn 4+ has the best effect, and the phosphor emission intensity is higher.
  • the function of the M element is to provide the position of Eu 2+ into the nitride crystal lattice.
  • M is selected from at least one element of Ca, Sr, and Ba.
  • the Sr element is selected as the M, and the radius of the Sr element and the Eu element are closer, and the structure lattice parameter change obtained after Eu replacing Sr is smaller, the crystallization is more uniform, and the structure is more stable, which is beneficial to enhance fluorescence The luminous intensity and stability of the powder.
  • R x (M y ,Eu z )(Si a , Ge b , Mn c) N d F e the content of M element satisfies: 0.5 ⁇ y ⁇ 1.9. If the content of M element in R x (M y ,Eu z )(Si a ,Ge b ,Mn c) N d F e is too much, the content of alkali metals and fluorine elements introduced is too low, and the phosphor luminous intensity The improvement is not obvious; if the content of M element is too small, the purity of the phosphor phase structure will decrease.
  • the role of Eu element is to provide a broadband red light emission as a luminescence center, and then cooperate with Mn 4+ to achieve enhanced broadband red light emission.
  • R x (M y ,Eu z )(Si a ,Ge b ,Mn c) N d F e the content of Eu element satisfies: 0.001 ⁇ z ⁇ 0.2.
  • R, M and Eu elements are selected as the first site elements.
  • the ionic radius and valence of the three are relatively similar, and mutual substitution will not cause differences in the crystal structure; moreover, because the crystal structure is relatively open, R and Eu replace M lattice sites, and Mn replace Si or Ge lattice sites.
  • the amount of doping substitution is large, and it is easy to achieve a large increase in the intensity of nitride red light emission.
  • the dual emission centers of Eu and Mn enter different lattice sites respectively, and their emission centers The influence between them is small, it will not cause cross relaxation, and it is also beneficial to synergistically increase the luminous intensity of the phosphor.
  • the R is selected from K elements; and the M is selected from Sr elements.
  • M is Sr element, the phosphor has the best crystallization effect, and the ionic radius of K element is closer to that of Sr element, and the doping substitution has fewer structural defects and better crystallinity.
  • the content of R, M and Eu elements satisfies: 2.0 ⁇ x+y+z ⁇ 2.5.
  • the phosphor has fewer defects, and excessive R and M can help Solvent function improves phosphor crystallization performance.
  • the Si element, the Ge element and the Mn element are all at the second element site.
  • the content of Si element satisfies: 4.15 ⁇ a ⁇ 4.99. If R x (M y ,Eu z )(Si a ,Ge b ,Mn c) N d F e , too much or too little Si element will cause impurity in the phosphor, which will affect the phase purity of the phosphor, and then Will cause the luminous intensity to decrease. In a preferred embodiment, in R x (M y , Eu z )(Si a , Ge b , Mn c) N d F e , the content of Si element satisfies: 4.15 ⁇ a ⁇ 4.45. At this time, Si and Ge Mixed doping can stabilize the crystal structure of the phosphor and improve the crystallization performance of the phosphor.
  • the effect of the Ge element is to cooperate with the Si element to improve the crystalline performance of the phosphor, and can help Mn 4+ enter the Ge site and increase the luminous intensity.
  • the content of Ge element satisfies: 0 ⁇ b ⁇ 0.75. If R x (M y ,Eu z )(Si a , Ge b , Mn c) N d F e , too much Ge element content will cause the phosphor structure stability to decrease. Too little will result in less Mn 4+ doping and lower Mn 4+ narrowband emission intensity.
  • the function of the Mn element is to provide a narrow-band luminous center, which cooperates with the Eu element to emit broadband to realize the enhancement of broadband emission.
  • the content of Mn element satisfies: 0.01 ⁇ c ⁇ 0.1.
  • R x (M y ,Eu z )(Si a ,Ge b ,Mn c) N d F e too much Mn content will cause the luminescence concentration to be quenched and the luminescence intensity will decrease; if the Mn content is too low, As a result, the number of luminous centers is too small and the luminous intensity is reduced.
  • the content of Mn element satisfies: 0.05 ⁇ c ⁇ 0.1, at this time phosphor Mn 4 The emission intensity of + is stronger.
  • Si element, Ge element and Mn element are selected as the second site elements, and the valence states and radii of the three elements are very similar, which can provide a stable Mn 4+ light-emitting environment.
  • the content of Si element, Ge element and Mn element satisfies: 4.8 ⁇ a+b+c ⁇ 5.2. At this time, the phase purity of the phosphor structure is higher, and the phosphor emission intensity is higher.
  • both the N element and the F element are located at the third element site.
  • the content of N element satisfies: 3.5 ⁇ d ⁇ 8.0.
  • the content of N element satisfies: 3.5 ⁇ d ⁇ 5.0.
  • the function of the F element is to compensate the charge imbalance caused by the replacement of the M site by the R element, and the addition of an appropriate amount of the F element helps to improve the crystallinity of the phosphor.
  • R x (M y ,Eu z )(Si a , Ge b , Mn c) N d F e the content of F element satisfies: 0 ⁇ e ⁇ 4.5.
  • the content of F element satisfies: 3 ⁇ e ⁇ 4.5, and the phosphor has the most Good crystallization performance, stable performance and emission intensity.
  • N element and F element are selected as the third site element.
  • the valence state and radius of the two elements are relatively similar, and replacement is easy.
  • the combination of the two can balance the phenomenon of cationic charge imbalance caused by doping, and can improve the phosphor together.
  • the content of the element N and the element F satisfies: 7.6 ⁇ d+e ⁇ 9.2, and the stability and light-emitting performance of the phosphor are better at this time.
  • R is selected from K element; and M is selected from Sr element.
  • the fluorescent red powder material of the embodiment of the present invention can be prepared by the following method.
  • the second aspect of the present invention provides a method for preparing a fluorescent red powder material, including the following steps:
  • the first precursor, the fluoride or oxide of Mn, the nitride of M, the nitride of Si, and the nitride or oxide of Eu are mixed and reacted at a temperature of 1300 ⁇ 1500°C 6-8 hours, the intermediate is prepared;
  • the fluorescent red powder material is collected after pickling, and the chemical formula of the fluorescent red powder material is R x (M y ,Eu z )(Si a , Ge b , Mn c) N d F e , wherein R is selected from at least one of Li, Na, and K, M is selected from at least one of Ca, Sr, Mg, and Ba, and the R x (M y ,Eu z )(Si a , Ge b , Mn c) N d F e and Sr 2 Si 5 N 8 have the same crystal structure;
  • the preparation method of the fluorescent red powder material provided by the embodiment of the present invention firstly mixes raw materials such as silicon-containing oxide, alkali metal-containing oxide, hydrofluoric acid, acetone, etc., and prepares fluorine, silicon and alkali metal elements by a hydrothermal method. Further, a mixture of fluoride precursors, alkali metal-containing nitrides, silicon-containing nitrides, etc., is used to prepare fluoronitride intermediates by a high-temperature solid phase method. Finally, after crushing and pickling treatment, a fluorescent red powder based on R x (M y , Eu z ) (Si a , Ge b , Mn c) N d F e is obtained.
  • the method is relatively simple and controllable.
  • alkali metals, fluorine and Mn 4+ are introduced into the Sr 2 Si 5 N 8 lattice, and the rigidity of the matrix structure is greatly improved compared with the pure fluoride system, that is, the stability of the phosphor is realized. Be improved.
  • the activator Mn is introduced in the high-temperature solid phase step, so that it can be evenly distributed in the solid phase sintered body, thereby giving the fluorescent red powder excellent thermal stability.
  • the fluorescent red powder material prepared by the invention has better thermal stability and luminous efficiency.
  • using the fluoride or oxide of R as the R source can avoid the introduction of impurity ions and interfere with the preparation of the fluorescent red powder; at the same time, the fluorine source can also be provided in this way.
  • using Ge fluoride or oxide as the Ge source can avoid the introduction of impurity ions and interfere with the preparation of the fluorescent red powder; at the same time, the fluorine source can also be provided in this way.
  • the fluoride or oxide of R and the fluoride or oxide of Ge are put into an organic solution of hydrofluoric acid, where the hydrofluoric acid is used to provide a fluorine source.
  • the ratio of hydrofluoric acid to organic solvent is controlled between 1:5 and 1:10. Under this liquid phase medium condition, it is beneficial to contain fluorine, silicon and alkali metals.
  • the organic solvent in the organic solution is selected from organic ketones or organic alcohols, preferably acetone or ethanol. The amount of substances between R element, Ge element and F element is adjusted according to the content of each element in the obtained phosphor chemical structure.
  • the fluoride or oxide of R and the fluoride or oxide of Ge are put into an organic solution of hydrofluoric acid for mixing treatment, and the mixing treatment is preferably realized by stirring.
  • the mixing treatment is carried out at a temperature of 70-80° C.
  • the first precursor is prepared by reaction.
  • the uniformly mixed at a temperature conducive to R elements, Ge element and the reaction element compound F, F E met the requirements of a fluorine-containing R x (M y, Eu z ) (Si a, Ge b, Mn c) N d,
  • the fluoride precursor of silicon and alkali metal elements, that is, the first precursor that is, the first precursor.
  • the embodiment of the present invention introduces the activator Mn element, M nitride, Si nitride, Eu nitride or oxide in the high temperature curing step.
  • the above materials By adding the above materials, a more stable lattice environment is provided around the Mn element and the Eu element, forming a fluorine nitride phosphor matrix with high light efficiency and stability.
  • the fluoride or oxide of Mn provides a source of Mn while avoiding the introduction of miscellaneous auxiliary ions; the nitride of M provides the source of M and nitrogen; the nitride of Si provides the source of Si and nitrogen; the nitride of Eu Oxides provide Eu source and nitrogen source.
  • the amount of M nitride, Si nitride, Eu nitride or oxide is adjusted according to the content of each element in the obtained phosphor chemical structure.
  • the first precursor, the fluoride or oxide of Mn, the nitride of M, the nitride of Si, and the nitride or oxide of Eu are subjected to mixing treatment, preferably in a manner of stirring and mixing. Further, the obtained mixture is reacted at a temperature of 1400-1500° C. for 6-8 hours to prepare an intermediate.
  • This temperature is the optimal phase formation temperature of the M 2 Si 5 N 8 phase structure. Under this temperature condition, the first precursor, Mn, Eu, M and Si react to form the fluorine nitrogen with the M 2 Si 5 N 8 structure. Chemical.
  • the intermediate product prepared by the method of this step has the advantages of good crystallization performance and high doping concentration of activator.
  • the above-mentioned high-temperature sintering reaction is preferably carried out by charging the raw material into a heating device such as a boron nitride crucible, and putting it into an atmospheric sintering furnace.
  • step S03 the intermediate is crushed to uniformly disperse the crystal grains. Further, the crushed sample is pickled to remove surface impurities and improve the phase purity. Finally, the fluorescent red powder material is collected.
  • a third aspect of the present invention provides a light-emitting device, the light-emitting device comprising a luminous body and an excitation light source, the luminous body is a fluorescent red powder material, and the fluorescent red powder material is the above-mentioned fluorescent red powder material.
  • the light-emitting device provided by the embodiment of the present invention contains the above-mentioned fluorescent red powder material, so that the advantages of the fluorescent red powder material of good thermal stability and high external quantum efficiency can be fully utilized, thereby improving the luminous efficiency and stability of the light-emitting device.
  • the chemical formula of the fluorescent red powder material is R x (M y , Eu z ) (Si a , Ge b , Mn c) N d F e , and the selection of each element and its preferred combination mode and preferred content are as above In order to save space, I will not repeat them here.
  • the excitation light source is an ultraviolet emission source or a blue emission source.
  • the preparation method of the fluorescent red powder material includes the following steps:
  • Precursor I, MnF 2 , Sr 3 N 2 , Si 3 N 4 and EuN are mixed uniformly and stirred according to the above chemical formula, put into a boron nitride crucible, and placed in an atmospheric sintering furnace at 1400°C After sintering for 6-8 hours, the intermediates obtained are crushed and pickled, and finally the target product is obtained.
  • a fluorescent red powder material the chemical formula is K 0.1 Ca 0.1 Sr 0.83 Eu 0.05 Al 0.9 Si 0.99 Ge 0.06 Mn 0.03 N 2.94 F 0.3 .
  • the preparation method of the fluorescent red powder material includes the following steps:
  • the metal calcium compound, the metal aluminum nitride, the metal silicon nitride, and the metal europium compound first weigh the metal calcium compound, the metal aluminum nitride, the metal silicon nitride, and the metal europium compound, and mix them evenly, and then sinter at 1600°C for 8 hours to obtain the intermediate.
  • Crushing and post-treatment as the precursor of the hydrothermal method, add potassium fluoride, metal silicon compound and metal manganese compound reagent at 80°C, hydrothermal stirring for 4 hours, and drying at 90°C to obtain the product .
  • the luminous intensity and light decay of the fluorescent red powder materials prepared in Examples 1-19 and Comparative Example 1 were tested under the following conditions: the luminous intensity was tested at room temperature and 25°C, and the luminous intensity was tested at 150°C for 10 min during the light decay test. Test the decay of luminous intensity relative to 25°C. The results are shown in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请提供了一种荧光红粉材料,所述荧光红粉材料的化学式为R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e,其中,R选自Li、Na、K元素中的至少一种,M选自Ca、Sr、Mg、Ba元素中的至少一种,且所R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e与Sr 2Si 5N 8的晶体结构相同;R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z、a、b、c、d、e的取值范围满足:0<x≤1.5,0.5≤y≤1.9,0.001≤z≤0.2,4.15≤a≤4.99,0≤b≤0.75,0.01≤c≤0.1,3.5≤d<8.0,0<e≤4.5。

Description

荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置 技术领域
本发明属于无机发光材料技术领域,尤其涉及一种荧光红粉材料及其制备方法,以及一种含有上述荧光红粉材料的发光装置。
背景技术
白光LED具有高光效、低能耗、长寿命、无污染等优点,在照明和显示领域得到了广泛的应用。随着高品质照明和显示的快速发展,LED在追求显色指数的同时,对光效的要求越来越高。在白光LED实现过程中,荧光粉起着十分重要的作用,它决定着白光LED的光效、色温和显指等性能指标。氮化物荧光粉因具有物理化学稳定性好、激发范围宽、发射光谱纯正可调等诸多优点,受到重点研究。Mn 4+激活的K 2TiF 6、K 2SiF 6红色荧光体具有亮度高、半峰宽窄等优点(US 3576756,US 7497973,US 7648649),此类材料的光效相对氮化物红粉较高,但在稳定性方面仍然相对较差。如果能开发一种新型荧光粉,其性能有效结合氮化物红粉稳定好和氟化物红粉亮度高的优点,将对LED光效提升具有非常重要的意义。
技术问题
本发明的目的在于提供一种荧光红粉材料及其制备方法,以及一种含有上述荧光红粉材料的发光装置,旨在解决现有的白光LED荧光红粉稳定性和发光强度难以兼顾的问题。
技术解决方案
为实现上述发明目的,本发明采用的技术方案如下:
本发明第一方面提供一种荧光红粉材料,所述荧光红粉材料的化学式为R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e,其中,R选自Li、Na、K元素中的至少一种,M选自Ca、Sr、Mg、Ba元素中的至少一种,且所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e与Sr 2Si 5N 8的晶体结构相同;
所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z、a、b、c、d、e的取值范围满足:0<x≤1.5,0.5≤y≤1.9,0.001≤z≤0.2,4.15≤a≤4.99,0≤b≤0.75,0.01≤c≤0.1,3.5≤d<8.0,0<e≤4.5。
本发明第二方面提供一种荧光红粉材料的制备方法,包括以下步骤:
提供R的氟化物或氧化物、Ge的氟化物或氧化物,置于氢氟酸的有机溶液中混合处理,在温度为70~80℃的条件下反应,制备得到第一前驱体;
将所述第一前驱体、Mn的氟化物或氧化物、M的氮化物、Si的氮化物、Eu的氮化物或氧化物进行混合处理,在温度为1300~1500℃的条件下反应6-8小时,制备得到中间体;
将所述中间体进行破碎处理后,酸洗后收集荧光红粉材料,所述荧光红粉材料的化学式为R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e,其中,R选自Li、Na、K元素中的至少一种,M选自Ca、Sr、Mg、Ba元素中的至少一种,且所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e与Sr 2Si 5N 8的晶体结构相同;
所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z、a、b、c、d、e的取值范围满足:0<x≤1.5,0.5≤y≤1.9,0.001≤z≤0.2,4.15≤a≤4.99,0≤b≤0.75,0.01≤c≤0.1,3.5≤d<8.0,0<e≤4.5。
本发明第三方面提供一种发光装置,所述发光装置包括发光体和激发光源,所述发光体为荧光红粉材料,所述荧光红粉材料为上述的荧光红粉材料。
本发明提供的荧光红粉材料,具有与Sr 2Si 5N 8相同的晶体结构,在此基础上,本发明采用双发光中心Mn 4+和Eu 2+协同激发,在兼具Eu 2+宽带发射的前提下,提升荧光材料的发射强度。具体的,Eu 2+呈宽带发射,Mn 4+在650nm左右处呈窄带发射,强度较高。Eu 2+和Mn 4+协同激发,使荧光粉发射谱呈宽带,发射强度大幅度提升。进一步的,由于Sr 2Si 5N 8具有层状开放式结构,因此,本发明在引入大量的碱金属、氟元素和锰元素,可以提高荧光粉的发光效率。具体的,Eu 2+主要替代Sr 2Si 5N 8晶体结构中Sr 2+位置,Mn 4+主要替代Si 4+,通过在Sr 2Si 5N 8开放式晶格中引入碱金属和氟元素,一方面碱金属和氟元素熔点较低,二者掺杂能够降低晶体的结晶温度,修饰晶体表面,能够起到助溶剂作用,促使晶体结晶性更好,能够提升发光效率;另一方面Mn 4+掺杂量能够大幅度提升,猝灭浓度大,发光效率也能够提升。本发明通过同时引进碱金属、氟及Mn 4+进入Sr 2Si 5N 8晶格中,其基质结构刚性相对单纯氟化物体系大幅度提升,即实现荧光粉稳定性得到提高。
本发明提供的荧光红粉材料,热稳定性好,且发光效率较高,可用于与其他荧光粉组合终于制备高光效白光LED器件。
本发明提供的荧光红粉材料的制备方法,先使用含硅的氧化物、含碱金属的氧化物、氢氟酸、丙酮等原料混合,采用水热法制备含氟、硅和碱金属元素的氟化物前驱体;进一步的,采用氟化物前驱体、含碱金属的氮化物,含硅的氮化物等混合,高温固相法制备氟氮化物中间体。最后,经过破碎、酸洗处理,得到基于R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e的荧光红粉。该方法相对简单可控,通过同时高温烧结引进碱金属、氟及Mn 4+进入Sr 2Si 5N 8晶格中,其基质结构刚性相对单纯氟化物体系大幅度提升,即实现荧光粉稳定性得到提高。更重要的是,激活剂Mn在高温固相的步骤引入,使其能够均匀分布在固相烧结体中,从而赋予荧光红粉优良的热稳定性。本发明制备得到的荧光红粉材料,具有较好的热稳定性和发光效率。
有益效果
本发明提供的发光装置,含有上述荧光红粉材料,因此能够充分发挥荧光红粉材料热稳定性好、外量子效率高的优势,进而提高发光装置的发光效率和稳定性。
附图说明
图1是本发明实施例1制备得到的荧光红粉材料的发射光谱图。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本发明实施例说明书相关组分的含量按比例放大或缩小均在本发明实施例说明书公开的范围之内。具体地,本发明实施例说明书中所述的重量可以是µg、mg、g、kg等化工领域公知的质量单位。
本发明实施例第一方面提供一种荧光红粉材料,所述荧光红粉材料的化学式为R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e,其中,R选自Li、Na、K元素中的至少一种,M选自Ca、Sr、Mg、Ba元素中的至少一种,且所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e与Sr 2Si 5N 8的晶体结构相同;
所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z、a、b、c、d、e的取值范围满足:0<x≤1.5,0.5≤y≤1.9,0.001≤z≤0.2,4.15≤a≤4.99,0≤b≤0.75,0.01≤c≤0.1,3.5≤d<8.0,0<e≤4.5。
本发明实施例提供的荧光红粉材料,具有与Sr 2Si 5N 8相同的晶体结构,在此基础上,本发明采用双发光中心Mn 4+和Eu 2+协同激发,在兼具Eu 2+宽带发射的前提下,提升荧光材料的发射强度。具体的,Eu 2+呈宽带发射,Mn 4+在650nm左右处呈窄带发射,强度较高。Eu 2+和Mn 4+协同激发,使荧光粉发射谱呈宽带,发射强度大幅度提升。进一步的,由于Sr 2Si 5N 8具有层状开放式结构,因此,本发明在引入大量的碱金属、氟元素和锰元素,可以提高荧光粉的发光效率。具体的,Eu 2+主要替代Sr 2Si 5N 8晶体结构中Sr 2+位置,Mn 4+主要替代Si 4+,通过在Sr 2Si 5N 8开放式晶格中引入碱金属和氟元素,一方面碱金属和氟元素熔点较低,二者掺杂能够降低晶体的结晶温度,修饰晶体表面,能够起到助溶剂作用,促使晶体结晶性更好,能够提升发光效率;另一方面Mn 4+掺杂量能够大幅度提升,猝灭浓度大,发光效率也能够提升。通过同时高温烧结引进碱金属、氟及Mn 4+进入Sr 2Si 5N 8晶格中,其基质结构刚性相对单纯氟化物体系大幅度提升,即实现荧光粉稳定性得到提高。
综上,本发明实施例提供的荧光红粉材料,热稳定性好,且发光效率较高,可用于与其他荧光粉组合终于制备高光效白光LED器件。
本发明实施例提供中,化学式为R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e的荧光红粉材料,其晶体结构与Sr 2Si 5N 8的晶体结构相同。具体的,所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e晶体结构,含有三类元素位点。其中,第一类元素位点由R元素、M元素和Eu元素分别占据(R选自Li、Na、K元素中的至少一种,M选自Ca、Sr、Mg、Ba元素中的至少一种),第二类元素位点由Si元素、Ge元素和Mn元素分别占据,第三类元素位点由N元素和F元素分别占据。具有该结构特征的R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e,具有较好的结构稳定性,从而作为发光材料使用时,具有较好的物理稳定性和化学稳定性。进一步的,在具有优异的晶体结构的前提下,本发明实施例所述荧光红粉材料通过同时引入碱金属和氟元素,促进锰元素有效进入氮化物晶格中,并提高锰元素的掺杂含量。锰元素的引入,一方面可以提升体系的稳定性,另一方面Mn 4+窄带发射和Eu 2+宽带发射协同,大幅度提升了荧光粉的发光强度。此外,碱金属和氟元素的引入能够起到助溶剂作用,使荧光粉结晶性更好,有利于提升荧光粉的发光强度。
具体的,所述荧光红粉材料R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,元素R、M和Eu均处于第一元素位点。其中,R元素的作用在于起到助溶剂作用,降低荧光粉的熔点,促进荧光粉结晶度提升,此外R元素和F元素引入能够为Mn 4+提供更优异的结构微环境,进而提升Mn 4+的发射强度。本发明实施例中,R选自Li、Na、K元素中的至少一种。在优选实施例中,所述R选自K元素,K元素的离子半径和Sr元素的离子半径更接近,掺杂替代后得到的结构缺陷较少,结晶性较好。
在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,R元素的含量满足:0<x≤1.5。若R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,R元素的含量过高,会导致荧光粉产生杂相,引起结晶度变差,发光效率降低;R元素含量过低,则会导致Mn 4+掺杂进入晶格的固溶量降低,发光效率提升不明显。在优选实施例中,在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,R元素的含量满足:1.0<x≤1.5,此时荧光粉结晶效果和Mn 4+掺杂效果最好,荧光粉发射强度较高。
本发明实施例中,M元素的作用在于提供Eu 2+进入氮化物晶格的格位。具体的,M选自Ca、Sr、Ba元素中的至少一种。在优选实施例中,所述M选Sr元素,Sr元素和Eu元素的半径更为接近,Eu替代Sr后得到的结构晶格参数变化更小,结晶更均匀,结构更稳定,有利于提升荧光粉的发光强度和稳定性。
在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,M元素的含量满足:0.5≤y≤1.9。若R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,M元素的含量过多,则会导致引入碱金属和氟元素含量过低,荧光粉发光强度提升不明显;M元素含量过少,则会导致荧光粉相结构纯度降低。在优选实施例中,在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,M元素的含量满足:0.5≤y≤0.95。
本发明实施例中,Eu元素的作用在于作为发光中心提供一种宽带红光发射,再与Mn 4+协同实现增强宽带红光发射。在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Eu元素的含量满足:0.001≤z≤0.2。若R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Eu元素的含量过多,则会导致发光中心距离过短,无辐射跃迁几率增大,产生浓度猝灭效应,发光强度降低;Eu元素含量过少,会导致发光中心数量偏少,发光强度降低。在优选实施例中,在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Eu元素的含量满足:0.05≤z≤0.1。
本发明实施例选用R、M和Eu元素作为第一位点元素,三者的离子半径和价态比较相似,相互替换不会引起晶体结构出现差异;而且,由于该晶体结构开放性较高,R、Eu替代M格位、Mn替代Si或Ge格位,掺杂替代量大,容易实现氮化物红光发射强度提升幅度较大,Eu和Mn双发光中心分别进入不同格位,其发光中心之间影响较小,不会导致交叉驰豫,也有利于协同提升荧光粉的发光强度。在一些具体优选实施例中,所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,所述R选自K元素;且所述M选Sr元素。主要是由于当M为Sr元素时,荧光粉的结晶效果最佳,且K元素的离子半径和Sr元素的离子半径更接近,掺杂替代其结构缺陷较少,结晶性较好。
在上述实施例的基础上,优选的,R、M和Eu元素的含量满足:2.0≤x+y+z≤2.5,此时荧光粉的缺陷较少,且过量的R和M能起到助溶剂作用,提升荧光粉结晶性能。作为最优实施例,所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z的取值范围满足:x+y+z=2。
所述荧光红粉材料R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Si元素、Ge元素和Mn元素均处于第二元素位点。
本发明实施例中,Si元素的含量满足:4.15≤a≤4.99。若R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Si元素过多过少均会导致荧光粉中出现杂相,影响荧光粉的相纯度,进而会导致发光强度降低。在优选实施例中,在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Si元素的含量满足:4.15≤a≤4.45,此时,Si和Ge混合掺杂能够稳定荧光粉晶体结构,提升荧光粉的结晶性能。
本发明实施例中,Ge元素的作用在于协同Si元素提升荧光粉的结晶性能,并且能够有助于Mn 4+进入Ge格位,提升发光强度。在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Ge元素的含量满足:0≤b≤0.75。若R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Ge元素的含量过多会导致荧光粉结构稳定性降低。过少会导致Mn 4+掺杂量较少,Mn 4+窄带发射强度降低。在优选实施例中,在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Ge元素的含量满足:0.5≤b≤0.75,此时荧光粉的结晶性能和Mn 4+窄带发射性能最优。
本发明实施例中,Mn元素的作用在于提供一种窄带发光中心,协同Eu元素宽带发射,共同实现宽带发射增强。在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Mn元素的含量满足:0.01≤c≤0.1。若R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Mn元素的含量过多会导致发光浓度猝灭,发光强度降低;Mn元素的含量过低会导致发光中心数量过少,发光强度降低。在优选实施例中,在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,Mn元素的含量满足:0.05≤c≤0.1,此时荧光粉Mn 4+的发射强度较强。
本发明实施例选用Si元素、Ge元素和Mn元素作为第二位点元素,三者价态和半径极为相似,能够提供Mn 4+稳定的发光环境。在一些具体优选实施例中,Si元素、Ge元素和Mn元素元素的含量满足:4.8≤a+b+c≤5.2,此时荧光粉结构相纯度较高,荧光粉发射强度较高。作为最优实施例,所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,a、b、c的取值范围满足:a+b+c=5。
所述荧光红粉材料R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,N元素和F元素均处于第三元素位点。
本发明实施例中,N元素的含量满足:3.5≤d<8.0。在优选实施例中,在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,N元素的含量满足:3.5≤d≤5.0。
本发明实施例中,F元素的作用在于补偿R元素替换M格位引起的电荷失衡,适量F元素的添加有助于提升荧光粉的结晶度。在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,F元素的含量满足:0<e≤4.5。若R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,F元素掺杂过多,会导致荧光粉出现杂相,结晶性和稳定性能变差;F元素过少的话,协同R元素共同大量引入Mn 4+效果不明显,Mn 4+发射强度过低。在优选实施例中,在R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,F元素的含量满足:3≤e≤4.5,此时荧光粉具有最好的结晶性能、稳定性能和发射强度。
本发明实施例选用N元素和F元素作为第三位点元素的,二者的价态和半径较为相似,容易实现替代,二者结合能够平衡掺杂引起阳离子电荷失衡现象,共同能提升荧光粉的结晶性能。在一些具体优选实施例中,N元素和F元素元素的含量满足:7.6≤d+e≤9.2,此时荧光粉的稳定性和发光性能较好。作为最优实施例,所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,d、e的取值范围满足:d+e=8。
作为最优选实施例,所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,R选自K元素;,且M选Sr元素。其中,x、y、z、a、b、c、d、e的取值范围满足:1.0≤x≤1.5,0.5≤y≤0.95,0.05≤z≤0.1,4.15≤a≤4.45,0.5≤b≤0.75,0.05≤c≤0.1,3.5≤d≤5.0,3≤e≤4.5;且x+y+z=2,a+b+c=5,d+e=8。
本发明实施例所述荧光红粉材料,可以通过下述方法制备获得。
本发明第二方面提供一种荧光红粉材料的制备方法,包括以下步骤:
S01.提供R的氟化物或氧化物、Ge的氟化物或氧化物,置于氢氟酸的有机溶液中混合处理,在温度为70~80℃的条件下反应,制备得到第一前驱体;
S02.将所述第一前驱体、Mn的氟化物或氧化物、M的氮化物、Si的氮化物、Eu的氮化物或氧化物进行混合处理,在温度为1300~1500℃的条件下反应6-8小时,制备得到中间体;
S03.将所述中间体进行破碎处理后,酸洗后收集荧光红粉材料,所述荧光红粉材料的化学式为R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e,其中,R选自Li、Na、K元素中的至少一种,M选自Ca、Sr、Mg、Ba元素中的至少一种,且所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e与Sr 2Si 5N 8的晶体结构相同;
所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z、a、b、c、d、e的取值范围满足:0<x≤1.5,0.5≤y≤1.9,0.001≤z≤0.2,4.15≤a≤4.99,0≤b≤0.75,0.01≤c≤0.1,3.5≤d<8.0,0<e≤4.5。
本发明实施例提供的荧光红粉材料的制备方法,先使用含硅的氧化物、含碱金属的氧化物、氢氟酸、丙酮等原料混合,采用水热法制备含氟、硅和碱金属元素的氟化物前驱体;进一步的,采用氟化物前驱体、含碱金属的氮化物,含硅的氮化物等混合,高温固相法制备氟氮化物中间体。最后,经过破碎、酸洗处理,得到基于R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e的荧光红粉。该方法相对简单可控,通过同时高温烧结引进碱金属、氟及Mn 4+进入Sr 2Si 5N 8晶格中,其基质结构刚性相对单纯氟化物体系大幅度提升,即实现荧光粉稳定性得到提高。更重要的是,激活剂Mn在高温固相的步骤引入,使其能够均匀分布在固相烧结体中,从而赋予荧光红粉优良的热稳定性。本发明制备得到的荧光红粉材料,具有较好的热稳定性和发光效率。
具体的,上述步骤S01中,以R的氟化物或氧化物作为R源,可以避免杂离子的引入,干扰荧光红粉的制备;同时也可以通过这种方式提供氟源。同样的,以Ge的氟化物或氧化物作为Ge源,可以避免杂离子的引入,干扰荧光红粉的制备;同时也可以通过这种方式提供氟源。
将R的氟化物或氧化物和Ge的氟化物或氧化物放入氢氟酸的有机溶液中,其中,氢氟酸用于提供氟源。优选的,所述氢氟酸的有机溶液中,氢氟酸和有机溶剂的比例控制在1:5至1:10之间,在此液相介质条件下,有利于含氟、硅和碱金属元素的氟化物前驱体的合成。具体的,所述有机溶液中的有机溶剂选在有机酮或有机醇,优选丙酮、乙醇。R元素、Ge元素和F元素的之间的物质的量按照得到的荧光粉化学结构中各元素的含量进行调整。
进一步的,将R的氟化物或氧化物和Ge的氟化物或氧化物放入氢氟酸的有机溶液中混合处理,所述混合处理的方式优选采用搅拌的方式实现。具体的,混合处理在温度为70~80℃的条件下进行,反应制备得到第一前驱体。该温度下均匀混合,有利于R元素、Ge元素和F元素化合物的反应,得到满足R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e要求的含氟、硅和碱金属元素的氟化物前驱体,即第一前驱体。
优选的,在反应结束后,采用去离子水或酒精清洗2-3遍,去除部分杂质,烘干得到第一前驱体。
上述步骤S02中,本发明实施例通过在高温固化步骤引入激活剂Mn元素,M的氮化物、Si的氮化物、Eu的氮化物或氧化物。通过以上物料加入,给Mn元素和Eu元素周围提供更稳定的晶格环境,形成光效和稳定性均高的氟氮化物荧光粉基质。
其中,Mn的氟化物或氧化物在避免引入杂副离子的前提下,提供Mn源;M的氮化物提供M源和氮源;Si的氮化物提供Si源和氮源;Eu的氮化物或氧化物提供Eu源和氮源。M的氮化物、Si的氮化物、Eu的氮化物或氧化物的用量按照得到的荧光粉化学结构中各元素的含量进行调整。
将所述第一前驱体、Mn的氟化物或氧化物、M的氮化物、Si的氮化物、Eu的氮化物或氧化物进行混合处理,优选采用搅拌混合的方式。进一步的,将得到的混合物在温度为1400-1500℃的条件下反应6-8小时,制备中间体。该温度是M 2Si 5N 8相结构最佳成相的温度点,在该温度条件下发生第一前驱体、Mn、Eu、M和Si反应形成具有M 2Si 5N 8结构的氟氮化物。采用该步骤方法制备中间体产品具有结晶性能好、激活剂掺杂浓度大等优点。
在具体实施例中,上述高温烧结反应优选通过将原料装入加热装置如氮化硼坩埚中,放入常压烧结炉中进行。
上述步骤S03中,将所述中间体进行破碎处理,将晶粒均匀分散,进一步的,将破碎后的样品酸洗,去除表面杂质,提升相纯度,最后,收集荧光红粉材料。
本发明第三方面提供一种发光装置,所述发光装置包括发光体和激发光源,所述发光体为荧光红粉材料,所述荧光红粉材料为上述的荧光红粉材料。
本发明实施例提供的发光装置,含有上述荧光红粉材料,因此能够充分发挥荧光红粉材料热稳定性好、外量子效率高的优势,进而提高发光装置的发光效率和稳定性。
本发明实施例中,荧光红粉材料的化学式为R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e,各元素的选择及其优选组合方式、优选含量如上所所述,为了节约篇幅,此处不再赘述。
优选的,所述激发光源为紫外发射源或蓝光发射源。
下面结合具体实施例进行说明。
实施例1
一种荧光红粉材料,化学式为 K 1.1Sr 0.8Eu 0.1Ge 0.55Si 4.44Mn 0.01N 4.7F 3.3。所述荧光红粉材料的制备方法,包括以下步骤:
按照化学计量比先称取称取一定量的KF和GeO 2放入HF酸和丙酮的溶液中混合搅拌,80℃混合搅拌1h,待反应完全后烘干,然后采用去离子水或酒精清洗2-3遍,烘干得到前驱体I。将前驱体I和含MnF 2、Sr 3N 2、Si 3N 4及含EuN按照上述化学式的比例混合均匀并搅拌,将其装入氮化硼坩埚内,放入常压烧结炉中1400℃烧结6-8h,将其获得的中间体破碎,并采用酸洗,最后得到目标产品。
实施例1制备得到的荧光红粉材料的发射光谱如图1所示
实施例2~19
一种荧光红粉材料,化学式分别如下表1所示,其制备方法与实施例1相同。
对比例1
一种荧光红粉材料,化学式为K 0.1Ca 0.1Sr 0.83Eu 0.05Al 0.9Si 0.99Ge 0.06Mn 0.03N 2.94F 0.3。所述荧光红粉材料的制备方法,包括以下步骤:
按照化学计量比先称取金属钙的化合物、金属铝的氮化物、金属硅的氮化物、金属铕的化合物,混合均匀后,在1600℃下烧结8小时得到中间体,将得到的中间体进行破碎和后处理,作为水热法前驱体,再在80℃条件下,添加金属钾的氟化物、金属硅的化合物及金属锰的化合物试剂,水热搅拌4小时,90℃烘干后得到产品。
检测实施例1-19、对比例1制备的荧光红粉材料的发光强度和光衰,检测条件如下:发光强度在室温25℃条件下测试,光衰测试时在150℃条件下恒温10min测试的发光强度相对25℃测试发光强度的衰减。结果如下表1所示。
表1
  化学式 发光强度(%) 光衰 (%)
实施例 1 K1.1Sr0.8Eu0.1Ge0.55Si4.44Mn0.01N4.7F3.3 125 3
实施例 2 K1.5Sr0.4Eu0.1Ge0.75Si4.14Mn0.01N3.5F4.5 117 3
实施例 3 K1.2Sr0.7Eu0.1Ge0.6Si4.39Mn0.01N4.4F3.6 119 4
实施例 4 K1.4Sr0.5Eu0.1Ge0.7Si4.29Mn0.01N3.8F4.2 121 3
实施例 5 K0.05Sr1.9Eu0.05Ge0.025Si4.965Mn0.01N7.85F0.15 101 5
实施例 6 K0.5Sr1.4Eu0.1Ge0.25Si4.74Mn0.01N6.5F1.5 110 4
实施例7 K1.0Sr0.9Eu0.1Ge0.5Si4.49Mn0.01N5F3 120 3
实施例 8 K1.1Sr0.75Eu0.15Ge0.55Si4.44Mn0.01N4.7F3.3 117 5
实施例 9 K1.1Sr0.7Eu0.2Ge0.55Si4.44Mn0.01N4.7F3.3 106 6
实施例 10 K1.1Sr0.85Eu0.05Ge0.55Si4.44Mn0.01N4.7F3.3 130 3
实施例 11 K1.1Sr0.899Eu0.001Ge0.55Si4.44Mn0.01N4.7F3.3 119 4
实施例 12 K1.1Sr0.8Eu0.1Ge0.55Si4.4Mn0.05N4.7F3.3 140 3
实施例 13 K1.1Sr0.8Eu0.1Ge0.55Si4.35Mn0.1N4.7F3.3 135 3
实施例 14 K1.1Sr1.0Eu0.1Ge0.55Si4.4Mn0.05N4.7F3.7 138 3
实施例 15 K1.1Sr1.3Eu0.1Ge0.55Si4.4Mn0.05N4.7F4.3 137 3
实施例 16 K1.1Sr0.8Eu0.1Ge0.55Si4.2Mn0.05N4.7F2.9 135 3
实施例 17 K1.1Sr1.0Eu0.1Ge0.55Si4.6Mn0.05N4.7F4.5 136 3
实施例 18 K1.1Sr1.0Eu0.1Ge0.55Si4.7Mn0.05N4.7F4.9 113 5
实施例 19 K1.1Sr0.8Eu0.1Ge0.55Si4.1Mn0.05N4.7F2.5 115 6
对比例1 K0.1Ca0.1Sr0.83Eu0.05Al0.9Si0.99Ge0.06Mn0.03N2.94F0.3 100 7
由上表1可见,本发明实施例提供的荧光红粉的发光强度由于对比例的荧光红粉,且光衰低于对比例的荧光红粉,可见,本发明实施例提供的荧光红粉荧光强度得到提高,且具有较好的稳定性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种荧光红粉材料,其特征在于,所述荧光红粉材料的化学式为R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e,其中,R选自Li、Na、K元素中的至少一种,M选自Ca、Sr、Mg、Ba元素中的至少一种,且所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e与Sr 2Si 5N 8的晶体结构相同;
    所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z、a、b、c、d、e的取值范围满足:0<x≤1.5,0.5≤y≤1.9,0.001≤z≤0.2,4.15≤a≤4.99,0≤b≤0.75,0.01≤c≤0.1,3.5≤d<8.0,0<e≤4.5。
  2. 如权利要求1所述的荧光红粉材料,其特征在于,所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,所述R选自K元素;和/或
    所述A xM yB zSi 5N 8:(aEr,bEu,cR)中,所述M选Sr元素。
  3. 如权利要求1或2所述的荧光红粉材料,其特征在于,所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z、a、b、c、d、e的取值范围满足:1.0≤x≤1.5,0.5≤y≤0.95,0.05≤z≤0.1,4.15≤a≤4.45,0.5≤b≤0.75,0.05≤c≤0.1,3.5≤d≤5.0,3≤e≤4.5。
  4. 如权利要求3所述的荧光红粉材料,其特征在于,所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z的取值范围满足:2.0≤x+y+z≤2.5;和/或
    所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,a、b、c的取值范围满足:4.8≤a+b+c≤5.2;和/或
    所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,d、e的取值范围满足:7.6≤d+e≤9.2。
  5. 如权利要求4所述的荧光红粉材料,其特征在于,所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z的取值范围满足:x+y+z=2。
  6. 如权利要求4所述的荧光红粉材料,其特征在于,所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,a、b、c的取值范围满足:a+b+c=5。
  7. 如权利要求4所述的荧光红粉材料,其特征在于,所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,d、e的取值范围满足:d+e=8。
  8. 一种荧光红粉材料的制备方法,其特征在于,包括以下步骤:
    提供R的氟化物或氧化物、Ge的氟化物或氧化物,置于氢氟酸的有机溶液中混合处理,在温度为70~80℃的条件下反应,制备得到第一前驱体;
    将所述第一前驱体、Mn的氟化物或氧化物、M的氮化物、Si的氮化物、Eu的氮化物或氧化物进行混合处理,在温度为1300~1500℃的条件下反应6-8小时,制备得到中间体;
    将所述中间体进行破碎处理后,酸洗后收集荧光红粉材料,所述荧光红粉材料的化学式为R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e,其中,R选自Li、Na、K元素中的至少一种,M选自Ca、Sr、Mg、Ba元素中的至少一种,且所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e与Sr 2Si 5N 8的晶体结构相同;
    所述R x(M y,Eu z)(Si a,Ge b,Mn c)N dF e中,x、y、z、a、b、c、d、e的取值范围满足:0<x≤1.5,0.5≤y≤1.9,0.001≤z≤0.2,4.15≤a≤4.99,0≤b≤0.75,0.01≤c≤0.1,3.5≤d<8.0,0<e≤4.5。
  9. 一种发光装置,所述发光装置包括发光体和激发光源,所述发光体为荧光红粉材料,其特征在于,所述荧光红粉材料为权利要求1至8任一项所述的荧光红粉材料。
  10. 根据权利要求9所述的发光装置,其中,所述激发光源为紫外发射源或蓝光发射源。
PCT/CN2020/089159 2019-07-22 2020-05-08 荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置 WO2020211875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910663152.2 2019-07-22
CN201910663152.2A CN110387236B (zh) 2019-07-22 2019-07-22 荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置

Publications (1)

Publication Number Publication Date
WO2020211875A1 true WO2020211875A1 (zh) 2020-10-22

Family

ID=68286866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089159 WO2020211875A1 (zh) 2019-07-22 2020-05-08 荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置

Country Status (2)

Country Link
CN (1) CN110387236B (zh)
WO (1) WO2020211875A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110387236B (zh) * 2019-07-22 2020-04-21 旭宇光电(深圳)股份有限公司 荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置
WO2022134045A1 (zh) * 2020-12-25 2022-06-30 苏州君诺新材科技有限公司 一种氮氧化物红色荧光粉及其制备方法和器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571235A (zh) * 2008-04-30 2009-11-04 大连路明发光科技股份有限公司 光转换发光膜及其制备方法
CN101724401A (zh) * 2008-10-21 2010-06-09 大连路明发光科技股份有限公司 一种红色发光的硅氧氮化物荧光材料、制备方法及使用其的发光装置
CN104073254A (zh) * 2013-06-24 2014-10-01 北京有色金属研究总院 荧光粉及包含其的发光装置
CN105985772A (zh) * 2015-02-11 2016-10-05 大连利德照明研发中心有限公司 固体光源用荧光材料、其制造方法及包含该荧光材料的组合物
CN108165266A (zh) * 2018-03-23 2018-06-15 旭宇光电(深圳)股份有限公司 一种氟氮化物荧光粉及包含该荧光粉的发光器件
CN110387236A (zh) * 2019-07-22 2019-10-29 旭宇光电(深圳)股份有限公司 荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571235A (zh) * 2008-04-30 2009-11-04 大连路明发光科技股份有限公司 光转换发光膜及其制备方法
CN101724401A (zh) * 2008-10-21 2010-06-09 大连路明发光科技股份有限公司 一种红色发光的硅氧氮化物荧光材料、制备方法及使用其的发光装置
CN104073254A (zh) * 2013-06-24 2014-10-01 北京有色金属研究总院 荧光粉及包含其的发光装置
CN105985772A (zh) * 2015-02-11 2016-10-05 大连利德照明研发中心有限公司 固体光源用荧光材料、其制造方法及包含该荧光材料的组合物
CN108165266A (zh) * 2018-03-23 2018-06-15 旭宇光电(深圳)股份有限公司 一种氟氮化物荧光粉及包含该荧光粉的发光器件
CN110387236A (zh) * 2019-07-22 2019-10-29 旭宇光电(深圳)股份有限公司 荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HSIN-CHENG LIN ET AL.: "Red-emission improvement of Eu2+–Mn2+ co-doped Sr2Si5N8 phosphors for white light-emitting diodes", CERAMICS INTERNATIONAL, vol. 40, no. 8, 18 April 2014 (2014-04-18), XP028862473, DOI: 20200801154628 *

Also Published As

Publication number Publication date
CN110387236B (zh) 2020-04-21
CN110387236A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
WO2020015412A1 (zh) 氮化物近红外荧光材料、含有氮化物近红外荧光材料的发光装置
WO2020211875A1 (zh) 荧光红粉材料及其制备方法、含有荧光红粉材料的发光装置
CN101928562A (zh) 一种可同时被近紫外和蓝色led光有效激发的红色荧光粉
CN106833636A (zh) 可被近紫外和蓝光激发的红色荧光粉、制备方法及应用
CN114958351A (zh) 紫外激发的蓝紫色荧光粉及制备方法、发光器件
CN101838535B (zh) 一种稀土荧光粉及其制造方法
Hong et al. Combustion synthesis and luminescent properties of red-emitting Ca4− xAl6WO16: xEu3+ phosphors and photoluminescence enhancement by Bi3+ co-doping
CN1693417A (zh) 一种新型稀土三基色荧光粉及其制备方法
CN106281322A (zh) 一种高效稳定led氮化物红色荧光粉及其制备方法
JPS6366357B2 (zh)
CN108822842B (zh) 一种红色锶镁磷酸盐荧光材料及其制备方法和应用
US10144869B2 (en) Silicate phosphor and method for producing the same
KR20000075149A (ko) 규화아연계 녹색 형광체와 이의 제조방법
CN113549458B (zh) 一种基于磷灰石结构的高显色性三价Eu离子掺杂的红色荧光材料及其制备方法
CN116376539B (zh) 一种led绿粉及其制备方法
CN1664055A (zh) 一种小粒径硅酸锌锰绿色荧光粉的制备方法
CN112877063B (zh) 一种用于高显色led照明的硅酸盐红色荧光粉及其制备方法
CN116410745B (zh) 一种荧光粉材料
CN114921244B (zh) 一种纺锤棒状MgAl2O4:Tb3+荧光粉及制备方法
CN115926792B (zh) 一种三价铕离子掺杂单一基质的荧光粉及其制备方法和应用
CN114045169B (zh) 一种能与led蓝光芯片复合成植物生长灯的红色荧光粉及其制备方法
CN109536170B (zh) 氮化物荧光粉及其制备方法、含氮化物荧光粉的发光装置
JP2012144689A (ja) シリケート蛍光体およびその製造方法
CN107603624A (zh) 一种蓝光激发的Mn4+掺杂氟镱酸盐红光材料及其制备方法
KR20130013136A (ko) 유로피움 이온을 포함한 적색 형광체 조성물의 제조방법 및 이에 따른 적색 형광체 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791683

Country of ref document: EP

Kind code of ref document: A1