WO2020208884A1 - 膜形成用組成物、硬化膜及び位相差フィルム - Google Patents
膜形成用組成物、硬化膜及び位相差フィルム Download PDFInfo
- Publication number
- WO2020208884A1 WO2020208884A1 PCT/JP2020/000334 JP2020000334W WO2020208884A1 WO 2020208884 A1 WO2020208884 A1 WO 2020208884A1 JP 2020000334 W JP2020000334 W JP 2020000334W WO 2020208884 A1 WO2020208884 A1 WO 2020208884A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- film
- liquid crystal
- polymer
- carbon atoms
- Prior art date
Links
- 0 CC(OC)OC(C(CC1)CCC1c(cc1)ccc1OC(c(cc1)ccc1OC(C(C)=Cc1ccc(*)cc1)=O)=O)=O Chemical compound CC(OC)OC(C(CC1)CCC1c(cc1)ccc1OC(c(cc1)ccc1OC(C(C)=Cc1ccc(*)cc1)=O)=O)=O 0.000 description 3
- HUAFEVZUICCCDR-UBKPWBPPSA-N CC(OC)OC(CCOC(c(cc1)ccc1-c(cc1)ccc1OC(/C=C/c(cc1)ccc1[IH]C)=O)=O)=O Chemical compound CC(OC)OC(CCOC(c(cc1)ccc1-c(cc1)ccc1OC(/C=C/c(cc1)ccc1[IH]C)=O)=O)=O HUAFEVZUICCCDR-UBKPWBPPSA-N 0.000 description 1
- BWFZEMHSXQTVGI-KNTRCKAVSA-N CC(OC)OC(c(cc1)cc(cc2)c1cc2OC(c(cc1)ccc1OC(/C(/C)=C/c(cc1)ccc1I)=O)=O)=O Chemical compound CC(OC)OC(c(cc1)cc(cc2)c1cc2OC(c(cc1)ccc1OC(/C(/C)=C/c(cc1)ccc1I)=O)=O)=O BWFZEMHSXQTVGI-KNTRCKAVSA-N 0.000 description 1
- MXACBUQLKXYVQH-UHFFFAOYSA-N CC(OC)OC(c(cc1)ccc1-c(cc1)ccc1OC(CCc1ccc(C)cc1C)=O)=O Chemical compound CC(OC)OC(c(cc1)ccc1-c(cc1)ccc1OC(CCc1ccc(C)cc1C)=O)=O MXACBUQLKXYVQH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F220/30—Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/36—Amides or imides
- C08F222/40—Imides, e.g. cyclic imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
- C08G59/34—Epoxy compounds containing three or more epoxy groups obtained by epoxidation of an unsaturated polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
- C08G77/26—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
- C09D201/02—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
- C09D201/06—Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/56—Aligning agents
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Definitions
- the present disclosure relates to a film-forming composition, a cured film and a retardation film.
- Patent Document 1 discloses a polymer composition containing a polymer compound having a structure in which an alkoxyalkyl group is bonded to an oxygen atom of —COO— of a cinnamoyl group in a side chain. According to the composition described in Patent Document 1, it is described that it can be an alignment material that exhibits excellent photoreaction efficiency and can orient a polymerizable liquid crystal with high sensitivity.
- the organic film used for the optical film is required to have solvent resistance in order to prevent deterioration and quality deterioration during the manufacturing process. Further, in recent years, large-screen, high-definition liquid crystal televisions have become the mainstream, and small display terminals such as smartphones and tablet PCs have become widespread, and the demand for higher quality liquid crystal elements has increased more than before. Therefore, there is a demand for a material capable of forming an organic film having excellent liquid crystal orientation characteristics.
- the present disclosure has been made in view of the above circumstances, and a main object of the present invention is to provide a film-forming composition capable of forming an organic film having excellent solvent resistance and liquid crystal orientation and having excellent storage stability. ..
- Y 1 is a divalent group represented by the following formula (2-1) or the formula (2-2)
- Y 2 is a divalent organic group having 1 or more carbon atoms.
- R 1 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
- R 2 and R 3 are R 2 being a hydrogen atom or an alkyl group having 1 to 10 carbon atoms and R 3 being "-".
- OR 7 (where R 7 is a monovalent hydrocarbon group with 1 to 10 carbon atoms) or a monovalent hydrocarbon group with 1 to 10 carbon atoms, or with R 2 and R 3 .
- Z 1 and Z 2 are independently hydrogen atoms, halogen atoms, cyano groups, or monovalent organic groups having 1 to 6 carbon atoms.
- X 1 to X 4 are independent hydrogen atoms or substituents. “* 1 ” and “* 2 ” indicate that they are bonders. However, “* 2 ” binds to Y 2 . )
- a retardation film comprising the cured film of the above [2] or the liquid crystal alignment film of the above [3].
- the film-forming composition of the present disclosure is a polymer composition in which a polymer component is preferably dissolved in a solvent.
- a polymer component is preferably dissolved in a solvent.
- a “hydrocarbon group” means a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group.
- the “chain hydrocarbon group” means a linear hydrocarbon group and a branched hydrocarbon group which do not contain a cyclic structure in the main chain and are composed only of a chain structure. However, it may be saturated or unsaturated.
- the "alicyclic hydrocarbon group” means a hydrocarbon group containing only the alicyclic hydrocarbon structure as the ring structure and not containing the aromatic ring structure. However, it does not have to be composed only of the alicyclic hydrocarbon structure, and some of them have a chain structure.
- the "aromatic hydrocarbon group” means a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it does not have to be composed of only an aromatic ring structure, and a chain structure or an alicyclic hydrocarbon structure may be included in a part thereof.
- the "m-valent alicyclic group” (where m is an integer of 1 or more; the same applies hereinafter) means a group obtained by removing m hydrogen atoms from the ring portion of a substituted or unsubstituted aliphatic ring. ..
- the "m-valent aromatic ring group” means a group obtained by removing m hydrogen atoms from the ring portion of a substituted or unsubstituted aromatic ring.
- the "m-valent heterocyclic group” means a group obtained by removing m hydrogen atoms from the ring portion of a substituted or unsubstituted heterocycle.
- the film-forming composition contains a polymer [P] having a partial structure represented by the above formula (1).
- Y 1 is a divalent group having a synnamate structure and is represented by the above formula (2-1) or the above formula (2-2).
- examples of the halogen atoms of Z 1 and Z 2 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
- Examples of the monovalent organic group having 1 to 6 carbon atoms include an alkyl group, a cyclohexyl group, and a phenyl group.
- the monovalent organic group is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
- Z 1 and Z 2 are a hydrogen atom, a fluorine atom, preferably a cyano group or an alkyl group having 1 to 3 carbon atoms
- a Z 1 is a hydrogen atom
- X 1 to X 4 are substituents, specific examples thereof include halogen atoms, cyano groups, hydroxyl groups, amino groups, alkyl groups having 1 to 6 carbon atoms and the like.
- the number of groups that are substituents among X 1 to X 4 is preferably 0 to 2, and more preferably 0 or 1.
- X 1 ⁇ X 4, among them preferably a hydrogen atom, a fluorine atom, a cyano group, an amino group or an alkyl group having 1 to 3 carbon atoms, more preferably hydrogen It is an atom or a methyl group.
- R 1 and R 2 are alkyl groups having 1 to 10 carbon atoms
- the alkyl groups may be linear or branched.
- Specific examples of R 1 and R 2 include, for example, methyl group, ethyl group, n-propyl group, sec-butyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, sec-. Examples thereof include a pentyl group and an n-hexyl group.
- R 1 has good desorption by heating (post-baking) at the time of film formation, and the compound derived from the desorbed group does not easily remain in the film.
- hydrogen atom or carbon number Alkyl groups of 1 to 5 are preferable, alkyl groups having a hydrogen atom or 1 to 3 carbon atoms are more preferable, and hydrogen atoms or methyl groups are further preferable.
- R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, among these, a hydrogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, a hydrogen atom or a methyl group is more preferable, and a hydrogen atom is further preferable. ..
- R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms
- specific examples thereof include a chain hydrocarbon group such as an alkyl group and an alkenyl group; and an alicyclic such as a cycloalkyl group and an alkylcycloalkyl group.
- Formula hydrocarbon groups examples include aromatic hydrocarbon groups such as phenyl group, alkylphenyl group and phenylalkyl group.
- R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, among these, an alkyl group or a phenyl group having 1 to 5 carbon atoms is preferable, and a methyl group is more preferable.
- R 3 is "-OR 7 " (where R 7 is a monovalent hydrocarbon group having 1 to 10 carbon atoms), R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
- R 7 is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
- a monovalent group in which an oxygen atom is bonded to an exemplified group can be mentioned.
- R 3 is "-OR 7 ", among these, an alkoxy group or a phenyloxy group having 1 to 5 carbon atoms is preferable, and a methoxy group, an ethoxy group or a phenyloxy group is more preferable.
- R 2 and R 3 are combined with each other, as the ring structure formed together with the carbon atom to which R 2 and R 3 are attached, tetrahydrofuranyl group and a cyclic ether group such as a tetrahydropyranyl group.
- R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
- R 3 is "-OR 7 " in that a carboxyl group is more easily generated by elimination.
- R 2 and R 3 are combined with each other, it is preferable to represent the formed cyclic structure together with the carbon atom to which R 2 and R 3 are attached, R 2 is an alkyl group having a hydrogen atom or a C 1-10 It is more preferable that R 3 is "-OR 7 ".
- a divalent organic group having 1 or more carbon atoms for example, a divalent hydrocarbon group having 1 to 20 carbon atoms and at least one methylene group possessed by the hydrocarbon group are an oxygen atom or a sulfur atom. , -CO-, -COO-, -CONH-, -NH-, etc., a divalent group having 3 to 20 carbon atoms replaced by a heteroatomic group, and at least one hydrogen atom of the hydrocarbon group is a halogen. Examples thereof include a divalent group having 3 to 20 carbon atoms substituted with a substituent such as an atom or a cyano group, and a divalent group having 5 to 20 carbon atoms having a heterocyclic structure.
- Y 2 is preferably a divalent group represented by the following formula (3) in that the liquid crystal orientation regulating force of the obtained cured film can be further increased.
- X 5 , X 6 and X 7 are independently single-bonded, -COO-, -OCO-, -COS-, -SCO-, -O-, -NR 4 -,-, respectively.
- S -, - CONR 4 - or -NR 4 is CO-, R 4 is .
- a 1 and a 2 is a monovalent hydrocarbon group having a hydrogen atom or a C 1-6 each independently carbon It is a divalent hydrocarbon group having the number 1 to 12, a divalent group in which the hydrogen atom of the hydrocarbon group having 1 to 12 carbon atoms is replaced with a halogen atom, or a divalent heterocyclic group.
- N is 0 to 0 to. It is an integer of 3.
- "*" Indicates that it is a bond.
- the divalent hydrocarbon groups A 1 and A 2 are alkanediyl groups having 1 to 10 carbon atoms, substituted or unsubstituted cyclohexylene groups having 6 to 12 carbon atoms, or 6 carbon atoms. It is preferably a divalent aromatic hydrocarbon ring group of ⁇ 12 substituted or unsubstituted.
- the aromatic hydrocarbon ring group is preferably a phenylene group or a naphthalylene group.
- Examples of the substituent contained in the cyclohexylene group or the aromatic hydrocarbon ring group include a halogen atom (preferably a fluorine atom), a cyano group, and an alkyl group having 1 to 3 carbon atoms.
- a 1 and A 2 are alkanediyl groups having 1 to 10 carbon atoms, they are preferably linear, and more preferably linear alkanediyl having 2 to 6 carbon atoms.
- a 1 and A 2 are divalent heterocyclic groups, they are preferably nitrogen-containing heterocyclic groups, and specific examples thereof include a pyridinediyl group and a pyrimidinediyl group.
- R 4 is a monovalent hydrocarbon group having 1 to 6 carbon atoms, it is preferably an alkyl group having 1 to 3 carbon atoms.
- n is preferably 0 to 2, more preferably 0 or 1.
- the oxygen atom in the above formulas (2-1) and (2-2) is bonded to the aromatic ring group in that the photosensitivity of the polymer [P] can be further increased. It is preferable to do so. That is, when Y 1 is a group represented by the above formula (2-1), X 5 in the above formula (3) is a single bond, and A 1 is a substituted or unsubstituted divalent. It is preferably an aromatic ring group. In this case, it is preferable that A 1 is a substituted or unsubstituted phenylene group in that the photosensitivity of the polymer [P] can be further increased.
- Y 1 in the partial structure represented by the above formula (1) is a group represented by the above formula (2-2)
- the bond of Y 1 is a substituted or unsubstituted aromatic ring group. It is preferable that it is bonded to, and it is more preferable that it is bonded to a substituted or unsubstituted phenylene group.
- the substituent here is preferably a fluorine atom or a methyl group.
- Preferred specific examples of the partial structure represented by the above formula (1) include partial structures represented by the following formulas (1-1) to (1-51).
- "*" indicates that the hand is a connector.
- the partial structures represented by the above formula (1) have the formulas (1-16) to (1-18) and (1) in that the liquid crystal orientation of the obtained cured film can be improved. -20), formula (1-22) to formula (1-29), formula (1-32), formula (1-34) to formula (1-44), formula (1-47), formula (1-32)
- the partial structure represented by each of 48) and the formula (1-50) is preferable.
- the solubility of the polymer [P] can be further increased, and among the above, the formulas (1-24), (1-25), and (1-2). 28), Equation (1-29), Equation (1-34), Equation (1-36), Equation (1-37), Equation (1-40), Equation (1-41) and Equation (1-43). It is more preferable that the partial structure is represented by each of).
- the proportion of the partial structure represented by the above formula (1) possessed by the polymer [P] is used for the synthesis of the polymer [P] from the viewpoint of sufficiently obtaining the effect of improving the liquid crystal orientation and the solvent resistance. It is preferably 1 to 80 mol% with respect to the total amount of the monomer.
- the proportion of the partial structure represented by the above formula (1) is more preferably 3 mol% or more, still more preferably 5 mol% or more, based on the total amount of the monomers used for the synthesis of the polymer [P]. ..
- the proportion of the partial structure represented by the above formula (1) is more preferably 70 mol% or less, still more preferably 65 mol% or less, based on the total amount of the monomers used for the synthesis of the polymer [P].
- the polymer [P] may have only one type of partial structure represented by the above formula (1), or may have two or more types.
- the polymer [P] preferably has a crosslinkable group in the side chain portion.
- the crosslinkable group is preferably a group capable of forming a covalent bond between the same or different molecules by light or heat, for example, a (meth) acrylic-containing group having (meth) acrylic acid or a derivative thereof as a basic skeleton, vinyl. Examples thereof include a group having a group (alkenyl group, vinylphenyl group, vinyl ether group, etc.), ethynyl group, epoxy group (oxylanyl group, oxetanyl group), hydroxyl group, amino group and the like.
- the crosslinkable group is preferably a group capable of reacting with a carboxyl group to form a crosslinked structure, and an epoxy group is particularly preferable in that the storage stability of the film-forming composition can be further increased.
- the crosslinkable group is preferably bonded to the main chain of the polymer via a divalent linking group so that the crosslinking reaction can be sufficiently carried out.
- the divalent linking group includes an alkanediyl group having 1 to 10 carbon atoms, a group in which an alkanediyl group having 1 to 10 carbon atoms and -COO- are bonded, and an alkanediyl group having 1 to 10 carbon atoms. Examples thereof include a group having —O— between carbon bonds.
- the content ratio of the crosslinkable group in the polymer [P] is preferably 1 to 65 mol% with respect to the total amount of the monomers used for the synthesis of the polymer [P]. When it is 1 mol% or more, it is preferable in that the effect of improving the solvent resistance can be further enhanced, and when it is 65 mol% or less, the amount of the oriented group contained in the polymer [P] is sufficient. It is suitable because it can be used in many ways.
- the content ratio of the crosslinkable group is more preferably 5 mol% or more, still more preferably 10 mol% or more, based on the total amount of the monomers used for the synthesis of the polymer [P].
- the content of the crosslinkable group is more preferably 60 mol% or less, still more preferably 55 mol% or less, based on the total amount of the monomers used in the synthesis of the polymer [P].
- the polymer [P] may have one type of crosslinkable group alone, or may have two or more types.
- the main chain of the polymer [P] is not particularly limited as long as it has a partial structure represented by the above formula (1).
- the polymer [P] include polyamic acid, polyamic acid ester, polyimide, polyorganosiloxane, polyester, polyamide, polyamideimide, polybenzoxazole precursor, polybenzoxazole, cellulose derivative, polyacetal, and carbon-carbon unsaturated bond.
- examples thereof include a polymer having a main skeleton such as a polymer obtained by using a monomer having (hereinafter, also referred to as “polymer (Q)”).
- the polymer [P] is a polyamic acid, a polyamic acid ester, a polyimide, or a heavy weight from the viewpoint of affinity with the liquid crystal and mechanical strength. It is preferably at least one selected from the group consisting of coalescence (Q) and polyorganosiloxane.
- the polyamic acid can be obtained by reacting a tetracarboxylic dianhydride with a diamine compound.
- a polyamic acid having a partial structure represented by the above formula (1) hereinafter, also referred to as “polyamic acid [P]”
- P polyamic acid
- the degree of freedom in selecting a monomer is high, and the above formula (1) is used.
- Tetracarboxylic dianhydride examples of the tetracarboxylic dianhydride used for the synthesis of polyamic acid include aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, aromatic tetracarboxylic dianhydride and the like.
- 1,2,3,4-butanetetracarboxylic dianhydride as the aliphatic tetracarboxylic dianhydride
- alicyclic tetracarboxylic acid dianhydride for example, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 2,3,5-tricarboxycyclopentylacetic hydride, 5- (2,5-dioxo tetrahydrofuran-3-yl) -3a, 4,5,9b-tetrahydronaphtho [1,2-c] furan-1 , 3-Dione, 5- (2,5-dioxo tetrahydrofuran-3-yl) -8-methyl-3a, 4,5,9b-Tetrahydronaphtho [1,2-c] furan-1,3-di
- aromatic tetracarboxylic dianhydrides for example, pyromellitic dianhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride, ethylene glycol bisanhydrotrimate, 4,4'-(hexa).
- the tetracarboxylic dianhydride one type may be used alone, or two or more types may be used in combination.
- the structure of the specific diamine is not particularly limited as long as it has a partial structure represented by the above formula (1), but a diamine having a structure capable of introducing the partial structure represented by the above formula (1) into the polymer side chain. Is preferable.
- a preferable specific example of the specific diamine is a compound represented by the following formula (2).
- L 1 is a single bond or a divalent linking group, and t is 0 or 1.
- Y 1 is represented by the above formula (2-1). be a group, and .Y 1, Y 2, R 1 , R 2 and R 3 are at least one of X 1 ⁇ X 4 is a primary amino group is as defined in the above formula (1) .
- L 1 when L 1 is a divalent linking group, specific examples thereof include a divalent hydrocarbon group having 1 to 10 carbon atoms and a divalent hydrocarbon group having 1 to 10 carbon atoms. Examples thereof include a group in which -CO-, -COO- or -CONH- are bonded, and a group having -O- between carbon-carbon bonds of a divalent hydrocarbon group having 1 to 10 carbon atoms.
- the description of the partial structure represented by the above formula (1) is applied to the description and preferable examples of Y 1 , Y 2 , R 1 , R 2 and R 3 .
- the diaminophenyl group in the formula (2) is bonded to the 2,4-position or the 3,5-position with respect to another group (a monovalent group having a partial structure represented by the above formula (1)). It is preferable to do so.
- the partial structure represented by each of the above formulas (1-1) to (1-51) and the diaminophenyl group are L 1 (single bond or divalent linkage).
- Diamine compounds bonded via a group) can be mentioned.
- the specific diamine one of these may be used alone, or two or more thereof may be used in combination.
- diamine compound In the synthesis of the polyamic acid [P], only a specific diamine may be used as the diamine compound, but a diamine having no partial structure represented by the above formula (1) (hereinafter, also referred to as “other diamine”). May be used together.
- other diamines include aliphatic diamines, alicyclic diamines, aromatic diamines, and diaminoorganosiloxane. Specific examples of these diamines include, for example, metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine and the like as aliphatic diamines; for example, 1,4 as alicyclic diamines.
- aromatic diamines for example, dodecanoxy-2,4-diaminobenzene, pentadecanoxy-2,4-diaminobenzene, hexadecanoxy-2,4-diaminobenzene, octadecanoxy-2,4-diaminobenzene, pentadecanoxy-2,5-diamino Benzene, octadecanoxy-2,5-diaminobenzene, cholestanoloxy-3,5-diaminobenzene, cholestenyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestenyloxy-2, 4-Diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholesteny
- R I is an alkanediyl group having 1 to 3 carbon atoms
- R II is a single bond or an alkanediyl group having a carbon number of 1-3
- a is 0 or 1
- b is 0
- It is an integer of ⁇ 2
- c is an integer of 1 to 20
- d is 0 or 1.
- a and b cannot be 0 at the same time.
- Side chain diamines such as compounds represented by:
- the polyamic acid can be obtained by reacting the tetracarboxylic dianhydride as described above with a diamine compound, if necessary, with a molecular weight regulator.
- the ratio of the tetracarboxylic acid dianhydride used in the polyamic acid synthesis reaction to the diamine compound is 0.2 for the acid anhydride group of the tetracarboxylic acid dianhydride with respect to 1 equivalent of the amino group of the diamine compound.
- a ratio of up to 2 equivalents is preferable.
- the ratio of the specific diamine used is preferably such that the partial structure represented by the above formula (1) of the polyamic acid [P] is in the above preferable range.
- the molecular weight adjusting agent examples include acid monoanhydrides such as maleic anhydride, phthalic anhydride and itaconic anhydride, monoamine compounds such as aniline, cyclohexylamine and n-butylamine, and monoisocyanate compounds such as phenylisocyanate and naphthylisocyanate. Can be mentioned.
- the ratio of the molecular weight regulator to be used is preferably 20 parts by mass or less with respect to 100 parts by mass in total of the tetracarboxylic dianhydride and the diamine compound used.
- the polyamic acid synthesis reaction is preferably carried out in an organic solvent.
- the reaction temperature at this time is preferably ⁇ 20 ° C. to 150 ° C., and the reaction time is preferably 0.1 to 24 hours.
- the organic solvent used in the reaction include aprotic polar solvents, phenolic solvents, alcohols, ketones, esters, ethers, halogenated hydrocarbons, and hydrocarbons.
- organic solvents are N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, ⁇ -butyrolactone, tetramethylurea, hexamethylphosphortriamide, m-cresol, xylenol.
- one or more selected from the group consisting of halogenated phenol can be used as a solvent, or a mixture of one or more of these with another organic solvent (for example, butyl cellosolve, diethylene glycol diethyl ether, etc.) can be used.
- another organic solvent for example, butyl cellosolve, diethylene glycol diethyl ether, etc.
- the amount of the organic solvent used (a) is such that the total amount (b) of the tetracarboxylic dianhydride and the diamine is 0.1 to 50% by mass with respect to the total amount (a + b) of the reaction solution. Is preferable.
- the reaction solution obtained by dissolving the polyamic acid may be used as it is for the preparation of the liquid crystal alignment agent, or the polyamic acid contained in the reaction solution may be isolated and then used for the preparation of the liquid crystal alignment agent.
- the polyamic acid ester is, for example, [I] a method of reacting the polyamic acid [P] obtained by the above synthesis reaction with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine compound containing a specific diamine. It can be obtained by a method of reacting [III] a tetracarboxylic acid diester dihalide with a diamine compound containing a specific diamine, or the like.
- the polyamic acid ester contained in the liquid crystal alignment agent may have only an amic acid ester structure, or may be a partial esterified product in which the amic acid structure and the amic acid ester structure coexist.
- the reaction solution obtained by dissolving the polyamic acid ester may be used as it is for the preparation of the liquid crystal alignment agent, or the polyamic acid ester contained in the reaction solution may be isolated and then used for the preparation of the liquid crystal alignment agent. Good.
- the polyimide can be obtained, for example, by dehydrating and ring-closing the polyamic acid [P] to imidize it.
- the polyimide may be a completely imidized product in which all of the amic acid structure possessed by the precursor polyamic acid [P] is dehydrated and ring-closed, and only a part of the amic acid structure is dehydrated and ring-closed to form an amic acid. It may be a partially imidized product in which the structure and the imide ring structure coexist.
- the imidization ratio of polyimide is preferably 20 to 99%, more preferably 30 to 90%.
- This imidization ratio is the ratio of the number of imide ring structures to the total of the number of amic acid structures and the number of imide ring structures of polyimide expressed as a percentage.
- a part of the imide ring may be an isoimide ring.
- the dehydration ring closure of the polyamic acid [P] is preferably carried out by dissolving the polyamic acid [P] in an organic solvent, adding a dehydrating agent and a dehydration ring closure catalyst to this solution, and heating as necessary.
- a dehydrating agent acid anhydrides such as acetic anhydride, propionic anhydride, and trifluoroacetic anhydride can be used.
- the amount of the dehydrating agent used is preferably 0.01 to 20 mol with respect to 1 mol of the amic acid structure of the polyamic acid [P].
- the dehydration ring closure catalyst for example, tertiary amines such as pyridine, collagen, lutidine, and triethylamine can be used.
- the amount of the dehydration ring closure catalyst used is preferably 0.01 to 10 mol with respect to 1 mol of the dehydrating agent used.
- the organic solvent used for the dehydration ring closure reaction include organic solvents exemplified as those used for the synthesis of polyamic acid [P].
- the reaction temperature of the dehydration ring closure reaction is preferably 0 to 180 ° C., and the reaction time is preferably 1.0 to 120 hours.
- the reaction solution containing the polyimide may be used as it is for the preparation of the liquid crystal alignment agent, or the polyimide may be isolated and then used for the preparation of the liquid crystal alignment agent.
- Polyimide can also be obtained by imidization of polyamic acid esters.
- a polyorganosiloxane having a partial structure represented by the above formula (1) (hereinafter, also referred to as “polysiloxane [P]”) can be obtained, for example, by hydrolyzing and condensing a hydrolyzable silane compound. it can.
- the silane compound used in the polymerization includes a silane compound having a partial structure represented by the above formula (1) (hereinafter, also referred to as “specific silane compound”) and a partial structure represented by the above formula (1). Examples thereof include non-silane compounds (hereinafter, also referred to as “other silane compounds”), and it is preferable to use these in combination.
- the specific silane compound is not particularly limited as long as it has a partial structure represented by the above formula (1).
- Preferred specific examples of the specific silane compound include a silane compound represented by the following formula (5).
- R 5 and R 6 are independently monovalent hydrocarbon groups having 1 to 6 carbon atoms
- L 2 is a single bond or a divalent linking group
- r is 1 to 1. It is an integer of 3.
- Y 1 , Y 2 , R 1 , R 2 and R 3 are synonymous with the above equation (1).
- L 2 is a divalent linking group in the above formula (5)
- the description of L 1 in the above formula (2) is applied as a specific example thereof.
- the description of the partial structure represented by the above formula (1) is applied to the description and preferable examples of Y 1 , Y 2 , R 1 , R 2 and R 3 .
- R in the formula (5) is preferably 2 or 3 from the viewpoint of sufficiently proceeding the reaction to obtain a polymer having a relatively large molecular weight.
- the partial structure represented by each of the above formulas (1-1) to (1-51) and the silicon atom of the alkoxysilyl group are L 2 (single bond or divalent).
- Examples thereof include a silane compound bonded via a linking group of.
- the specific silane compound one of these may be used alone, or two or more thereof may be used in combination.
- silane compounds examples include tetramethoxysilane, methyltriethoxysilane, 3-mercaptopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropyl.
- the other silane compound one type may be used alone, or two or more types may be used in combination.
- "(Meta) acryloxy" is meant to include "acryloxy" and "methacryloxy”.
- the hydrolysis / condensation reaction is carried out by reacting one or more of the silane compounds with water, preferably in the presence of a suitable catalyst and organic solvent.
- the ratio of the specific silane compound used is preferably such that the partial structure represented by the above formula (1) of the polysiloxane [P] is in the above preferable range.
- the ratio of water used is preferably 1 to 30 mol with respect to 1 mol of the silane compound (total amount).
- the catalyst to be used include acids, alkali metal compounds, organic bases, titanium compounds, zirconium compounds and the like.
- the amount of the catalyst used varies depending on the type of catalyst, reaction conditions such as temperature, and the like, but is, for example, 0.01 to 3 times the molar amount of the total amount of the silane compound.
- the organic solvent to be used include hydrocarbons, ketones, esters, ethers, alcohols and the like, and it is preferable to use a water-insoluble or poorly water-soluble organic solvent.
- the proportion of the organic solvent used is preferably 10 to 10,000 parts by mass with respect to a total of 100 parts by mass of the silane compound used in the reaction.
- the above reaction is preferably carried out by heating in an oil bath or the like. At that time, the heating temperature is preferably 130 ° C. or lower, and the heating time is preferably 0.5 to 12 hours.
- the organic solvent layer separated from the reaction solution is dried with a desiccant if necessary, and then the solvent is removed to obtain polyorganosiloxane.
- the method for synthesizing polyorganosiloxane is not limited to the above-mentioned hydrolysis / condensation reaction, and may be, for example, a method in which a hydrolyzable silane compound is reacted in the presence of oxalic acid and alcohol.
- a method for obtaining a polyorganosiloxane having a partial structure represented by the above formula (1) in a side chain in addition to a method of polymerizing using a specific silane compound, for example, at least a part of the monomer contains an epoxy group.
- a silane compound a polyorganosiloxane having an epoxy group in the side chain is synthesized, and then the epoxy group-containing polyorganosiloxane is reacted with a carboxylic acid having a partial structure represented by the above formula (1) to cause the polysiloxane. It may be a method of obtaining [P].
- Examples of the monomer having a carbon-carbon unsaturated bond constituting the polymer (Q) include a compound having a (meth) acryloyl group, a vinyl group, a vinylphenyl group, a maleimide group and the like.
- the "maleimide group” is a monovalent group from which the -NH- hydrogen atom of maleimide has been removed.
- Examples of the compound having a carbon-carbon unsaturated bond include a compound having a partial structure represented by the above formula (1) (hereinafter, also referred to as a “specific unsaturated bond-containing compound”) and the above formula (1). Examples thereof include compounds having no partial structure (hereinafter, also referred to as “other unsaturated bond-containing compounds”), and it is preferable to use these in combination.
- the structure of the specific unsaturated bond-containing compound is not particularly limited as long as it has a partial structure represented by the above formula (1).
- a preferable specific example of the specific unsaturated bond-containing compound is a compound represented by the following formula (4).
- Z 1 is a (meth) acryloyloxy group, a (meth) acryloylamino group, a vinyl group, a vinylphenyl group or a maleimide group
- L 3 is a single-bonded or divalent linking group.
- Y 1 , Y 2 , R 1 , R 2 and R 3 are synonymous with the above equation (1).
- the description of L 1 in the above formula (2) is applied as a specific example thereof.
- the description of the partial structure represented by the above formula (1) is applied to the description and preferable examples of Y 1 , Y 2 , R 1 , R 2 and R 3 .
- the partial structure represented by each of the above formulas (1-1) to (1-51) and Z 1 are L 3 (single bond or divalent linkage). Examples thereof include compounds bonded via a group).
- the specific unsaturated bond-containing compound one of these may be used alone, or two or more thereof may be used in combination.
- unsaturated bond-containing compounds include, for example, unsaturated carboxylic acids such as (meth) acrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, and vinyl benzoic acid: alkyl (meth) acrylic acid, (meth).
- unsaturated carboxylic acids such as (meth) acrylic acid, ⁇ -ethylacrylic acid, maleic acid, fumaric acid, and vinyl benzoic acid: alkyl (meth) acrylic acid, (meth).
- Acid anhydrides such as; aromatic vinyl compounds such as styrene, methylstyrene, divinylbenzene; conjugated diene compounds such as 1,3-butadiene, 2-methyl-1,3-butadiene; N- Maleimide group-containing compounds such as methylmaleimide, N-cyclohexylmaleimide, and N-phenylmaleimide, and the like can be mentioned.
- the monomer having a carbon-carbon unsaturated bond one type can be used alone or two or more types can be used in combination.
- the polymer (Q) can be obtained by polymerizing a monomer having a carbon-carbon unsaturated bond in the presence of a polymerization initiator.
- a polymerization initiator examples include 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2). , 4-Dimethylvaleronitrile) and other azo compounds are preferred.
- the proportion of the polymerization initiator used is preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of all the monomers used in the reaction.
- the polymerization reaction is preferably carried out in an organic solvent.
- Examples of the organic solvent used in the reaction include alcohols, ethers, ketones, amides, esters, hydrocarbon compounds and the like, and diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether acetate and the like are preferable.
- the reaction temperature is preferably 30 ° C. to 120 ° C., and the reaction time is preferably 1 to 36 hours.
- the amount (a) of the organic solvent used should be such that the total amount (b) of the monomers used in the reaction is 0.1 to 60% by mass with respect to the total amount (a + b) of the reaction solution. Is preferable.
- the polymer solution obtained by the above reaction may be used as it is for the preparation of the liquid crystal alignment agent, or the polymer (Q) contained in the reaction solution may be isolated and then used for the preparation of the liquid crystal alignment agent.
- the polymer [P] used for preparing the liquid crystal alignment agent preferably has a solution viscosity of 10 to 800 mPa ⁇ s, more preferably 15 to 500 mPa ⁇ s, prepared and measured under the conditions described later.
- the solution viscosity (mPa ⁇ s) is E-type with respect to a polymer solution having a concentration of 10% by mass prepared using a good solvent ( ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.) of the polymer [P]. It is a value measured at 25 ° C. using a rotational viscometer.
- the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polymer [P] can be appropriately selected depending on the main chain of the polymer, but is preferably 1,000 to 1. It is 500,000, more preferably 2,000 to 300,000.
- the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 7 or less, more preferably 5 or less.
- the polymer [P] used for preparing the liquid crystal alignment agent may be one kind or a combination of two or more kinds.
- the film-forming composition of the present disclosure may contain only the polymer [P] as a polymer component, but is a polymer having no partial structure represented by the above formula (1) (hereinafter, “others”). (Also referred to as “polymer”) may be further contained.
- other polymers include polyorganosiloxane, (meth) acrylic polymer, polyamic acid, polyimide, cellulose derivative, polyacetal, styrene polymer, maleimide polymer, poly (styrene-phenylmaleimide) derivative and the like. Can be mentioned.
- the blending ratio is preferably 50% by mass or less, preferably 40% by mass, based on the total amount of the polymers contained in the film-forming composition. It is more preferably 70% or less, and further preferably 30% by mass or less.
- the film-forming composition may contain other components other than the polymer component as long as the purpose and effect of the present disclosure are not impaired.
- the curing agent and curing catalyst are used for the purpose of further promoting the cross-linking reaction between the epoxy structures when the polymer blended in the film-forming composition has an epoxy group.
- the curing accelerator is used for the purpose of accelerating the curing reaction by the curing agent.
- curing agent examples include cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, cyclohexane-1,3,5-tricarboxylic acid-3,5-anhydride, and 4-methyltetrahydrophthalic anhydride.
- Methylnadic acid anhydride Methylnadic acid anhydride, dodecenyl succinic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, tetracarboxylic acid dianhydride commonly used for the synthesis of polyamic acid, ⁇ -terpinene
- Examples thereof include deal-alder reaction products of maleic anhydride and alicyclic compounds having a conjugated double bond such as aloosimene, and hydrogenated products thereof.
- the curing catalyst include antimony pentafluoride compound, phosphorus hexafluoride compound, aluminum trisacetylacetonate, and sulfonic acid compound.
- curing accelerator examples include imidazole compounds, silanol group-containing compounds, quaternary phosphorus compounds, quaternary amine compounds, diazabicycloalkene, organic metal compounds (zinc octylate, tin octylate, aluminum acetylacetone complex, etc.), and boron compounds.
- Type latent curing accelerator High melting point dispersion of (boron trifluoride, triphenyl borate, etc.), metal halogen compounds (zinc chloride, ferric chloride, etc.), amine-added accelerators (dicyandiamide, adducts of amine and epoxy resin, etc.)
- Type latent curing accelerator microcapsule type latent curing accelerator whose surface is coated with a polymer such as quaternary phosphonium salt, amine salt type latent curing accelerator, high temperature dissociation type thermal cationic polymerization type latent curing accelerator (Lewis acid salt, Bronsted acid salt, etc.) and the like.
- the content ratio of each curing component is preferably 20 parts by mass or less with respect to a total of 100 parts by mass of the polymer components. It is preferably 10 parts by mass or less.
- the solvent used in preparing the film-forming composition is preferably an organic solvent.
- the solvent is at least one solvent selected from the group consisting of ether-based solvents, alcohol-based solvents, ester-based solvents, and ketone-based solvents, in that heating at the time of film formation can be performed at a lower temperature.
- Specific examples of the specific solvent include ether solvents such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol-i-propyl ether, and ethylene glycol monobutyl ether (butyl cellosolve).
- ether solvents such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol-i-propyl ether, and ethylene glycol monobutyl ether (butyl cellosolve).
- Ethylene glycol dimethyl ether diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, 3-methoxy-1-butanol, tetrahydrofuran, diisopentyl ether, etc.;
- alcohol solvents include methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclohexanol, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol, diacetone alcohol, 3-methoxy-3-methylbutanol, and benzyl alcohol.
- ester-based solvents include ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, ethylene glycol ethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, and methyl methoxypropionate.
- the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cycloheptanone, cyclopentanone, 3-methylcyclohexanone, 4-methylcyclohexanone, diisobutyl ketone and the like.
- the solvent may further contain a solvent different from the specific solvent for the purpose of increasing the solubility of the polymer component.
- a solvent include an aprotic polar solvent, a halogenated hydrocarbon solvent, a hydrocarbon solvent and the like.
- Specific examples of these solvents include aprotonic polar solvents such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, ⁇ -butyrolactone, and propylene carbonate.
- halogenated hydrocarbon solvents for example, dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, etc. , Trichloroethane and the like;
- hydrocarbon solvent include hexane, heptane, octane, benzene, toluene, xylene and the like.
- the ratio of the specific solvent used is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, based on the total amount of the solvent contained in the film-forming composition. .. Further, when preparing the film-forming composition, the ratio of the solvent used is the solid content concentration of the film-forming composition (film formation) from the viewpoint of making the film-forming composition coatable and the film thickness appropriate.
- the ratio of the total mass of all the components other than the solvent in the composition to the total mass of the film-forming composition) is preferably 0.2 to 10% by mass, and is preferably 3 to 10% by mass. It is more preferable to use a ratio.
- other components that may be contained in the film-forming composition include, for example, polyfunctional epoxy group-containing compounds (for example, N, N, N', N'-tetraglycidyl-m-xylene diamine, N. , N, N', N'-tetraglycidyl-4,4'-diaminodiphenylmethane, etc.), functional silane compounds (eg 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyl (Methyldimethoxysilane, etc.), antioxidants, surfactants, fillers, dispersants, photosensitizers, and other various additives.
- the blending ratio of these additives is appropriately selected according to each compound as long as the effects of the present disclosure are not impaired.
- the organic film having excellent liquid crystal orientation as well as solvent resistance could be formed by using the polymer [P]. That is, it is represented by the above formula (1) by the presence of Y 2 between the cinnamate structure portion (Y 1 ) and the terminal group (protective carboxyl group) in the partial structure represented by the above formula (1).
- the synnamate structure portion is present on the main chain side of the polymer with respect to the terminal group of the partial structure.
- a cured film can be produced by using the above-mentioned film-forming composition.
- the cured film formed by using the film-forming composition of the present disclosure is suitable as a liquid crystal alignment film for producing a liquid crystal coating type retardation film because it is excellent in liquid crystal orientation and solvent resistance.
- a method for producing a retardation film using the film-forming composition of the present disclosure will be described.
- the retardation film can be produced by going through the following steps (1) to (3).
- the film-forming composition is applied onto the substrate to form a coating film.
- a transparent substrate made of a synthetic resin such as triacetyl cellulose (TAC), polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polyamide, polyimide, polymethyl methacrylate, or polycarbonate is preferably exemplified.
- TAC triacetyl cellulose
- polyethylene terephthalate polybutylene terephthalate
- polyether sulfone polyamide
- polyimide polymethyl methacrylate
- polycarbonate polycarbonate
- the retardation film is often used in combination with a polarizing film. At this time, it is necessary to precisely control the angle of the polarizing film with respect to the polarization axis in a specific direction and bond the retardation film so that the desired optical characteristics can be exhibited. Therefore, by forming a cured film having a liquid crystal alignment ability in a predetermined angle direction on a substrate such as a TAC film or polymethylmethacrylate, a step of laminating a retardation film on a polarizing film while controlling the angle is performed. It can be omitted.
- a corona discharge treatment is performed on the surface of the substrate surface on which the coating film is formed.
- Conventionally known pretreatments such as plasma treatment, flame treatment, and primer treatment may be performed.
- the coating on the substrate can be performed by an appropriate coating method, for example, roll coater method, spinner method, printing method, inkjet method, bar coater method, extraction die method, direct gravure coater method, chamber doctor coater method, etc.
- an appropriate coating method for example, roll coater method, spinner method, printing method, inkjet method, bar coater method, extraction die method, direct gravure coater method, chamber doctor coater method, etc.
- the coater method, the blade coater method, the knife coater method, the impregnation coater method, the MB coater method, the MB reverse coater method and the like can be adopted.
- the coated surface is heated (baked) to form a coating film.
- the heating temperature at this time is preferably 40 to 150 ° C, more preferably 80 to 140 ° C.
- the heating time is preferably 0.1 to 15 minutes, more preferably 1 to 10 minutes.
- the film thickness of the coating film formed on the substrate is preferably 0.001 to 1 ⁇ m, more preferably 0.005 to 0.5 ⁇ m.
- Step (2) Light irradiation step Next, by irradiating the coating film formed on the substrate with light as described above, the coating film is imparted with a liquid crystal alignment ability to form a cured film (liquid crystal alignment film).
- the light to be irradiated include ultraviolet rays including light having a wavelength of 150 to 800 nm, visible light, and the like. Of these, ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
- the irradiation light may be polarized or unpolarized. As the polarized light, it is preferable to use light containing linearly polarized light.
- the light irradiation may be performed from a direction perpendicular to the substrate surface, from an oblique direction, or a combination thereof.
- the light source to be used include a low-pressure mercury lamp, a high-pressure mercury lamp, a heavy hydrogen lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, and a mercury-xenon lamp (Hg-Xe lamp).
- Polarized light can be obtained by means of using these light sources in combination with, for example, a filter or a diffraction grating.
- the dose of light is preferably set to 0.1 mJ / cm 2 or more 1,000 mJ / cm less than 2, more preferably, to 1 ⁇ 500 mJ / cm 2, it is 2 ⁇ 200 mJ / cm 2 further preferable.
- Step (3) Formation of liquid crystal layer Next, the polymerizable liquid crystal is applied and cured on the coating film after being irradiated with light as described above. As a result, a coating film (liquid crystal layer) containing a polymerizable liquid crystal is formed.
- the polymerizable liquid crystal used here is a liquid crystal compound or a liquid crystal composition that is polymerized by at least one treatment of heating and light irradiation.
- a polymerizable liquid crystal conventionally known ones can be used, and specifically, for example, Non-Patent Document 1 (“UV Cureable Liquid Crystal and Its Application”, Liquid Crystal, Vol. 3, No. 1 (1999). Year), pp34-42), nematic liquid crystal compounds can be mentioned.
- a cholesteric liquid crystal may be used.
- the polymerizable liquid crystal may be a mixture of a plurality of liquid crystal compounds.
- the polymerizable liquid crystal may be a composition further containing a known polymerization initiator, a suitable solvent, or the like.
- an appropriate coating method such as a bar coater method, a roll coater method, a spinner method, a printing method, or an inkjet method can be adopted. ..
- the coating film of the polymerizable liquid crystal formed as described above is subjected to one or more treatments selected from heating and light irradiation to cure the coating film and form a liquid crystal layer. It is preferable to perform these treatments in a superposed manner because good orientation can be obtained.
- the heating temperature of the coating film should be appropriately selected depending on the type of polymerizable liquid crystal used. For example, when using RMS03-013C manufactured by Merck & Co., Ltd., it is preferable to heat at a temperature in the range of 40 to 80 ° C.
- the heating time is preferably 0.5 to 5 minutes.
- the irradiation light unpolarized ultraviolet rays having a wavelength in the range of 200 to 500 nm can be preferably used.
- the amount of light irradiation is preferably 50 to 10,000 mJ / cm 2, and more preferably 100 to 5,000 mJ / cm 2 .
- the thickness of the formed liquid crystal layer is appropriately set according to the desired optical characteristics. For example, when manufacturing a 1/2 wave plate with visible light having a wavelength of 540 nm, a thickness is selected so that the retardation of the formed retardation film is 240 to 300 nm. A thickness is selected such that the phase difference is 120 to 150 nm.
- the thickness of the liquid crystal layer from which the desired phase difference can be obtained depends on the optical characteristics of the polymerizable liquid crystal used. For example, when using RMS03-013C manufactured by Merck, the thickness for producing a 1/4 wave plate is in the range of 0.6 to 1.5 ⁇ m.
- the retardation film obtained as described above is suitable as a retardation film for a liquid crystal display element.
- the drive system of the liquid crystal display element is not limited, and various known methods such as TN system, STN system, IPS system, FFS system, VA system (including VA-MVA system, VA-PVA system, etc.), PSA, etc. Can be assumed to be.
- a liquid crystal display element generally includes a pair of substrates on which an electrode pair and a liquid crystal alignment film are formed, and has a structure in which polarizing films are attached to both sides of a liquid crystal cell in which a liquid crystal is sandwiched between the substrates.
- the retardation film is used by attaching the surface of the retardation film on the substrate side to the outer surface of the polarizing film arranged on the visible side of the liquid crystal display element.
- a liquid crystal display element including a retardation film on which a liquid crystal alignment film is formed using the film-forming composition of the present disclosure has an advantage that excellent liquid crystal orientation is stably exhibited over a long period of time.
- the weight average molecular weight Mw of the polymer and the solution viscosity of the polymer solution were measured by the following methods.
- the required amounts of the raw material compounds and polymers used in the following examples were secured by repeating the synthesis on the synthetic scale shown in the following synthesis examples as necessary.
- the weight average molecular weight Mw is a polystyrene-equivalent value measured by GPC under the following conditions.
- Solution viscosity of polymer solution The solution viscosity (mPa ⁇ s) of the polymer solution was measured at 25 ° C. using an E-type rotational viscometer.
- the weight average molecular weight Mw of the obtained polymer was 32000.
- polyamic acid solution A small amount of the obtained polyamic acid solution was taken, NMP was added, and the solution viscosity measured as a solution having a polyamic acid concentration of 10% by mass was 126 mPa ⁇ s.
- the polyamic acid solution was then poured into a large excess of methanol to precipitate the reaction product. The precipitate was washed with methanol and dried under reduced pressure at 40 ° C. for 15 hours to obtain a polyamic acid (referred to as a polymer (P-3)).
- the weight average molecular weight Mw of the obtained polymer was 26000.
- EAA Ethyl
- liquid crystal alignment film 1 The film-forming composition obtained in 1 above was rotationally coated on non-alkali glass at 2000 rpm for 30 seconds using a spin coater, and then heated and dried on a hot plate at a temperature of 100 ° C. for 60 seconds to form an organic thin film. Formed. This organic thin film was vertically irradiated with linearly polarized light of 313 nm at an exposure amount of 10 mJ / cm 2 , and a liquid crystal alignment film was prepared.
- liquid crystal orientation Separately from the liquid crystal alignment film prepared in the above, a liquid crystal alignment film prepared in the same manner was further prepared except that the linearly polarized light at 313 nm was changed to an exposure amount of 5 mJ / cm 2 .
- a cyclopentanone solution of the polymerizable liquid crystal RMM1823 (manufactured by Merck & Co., Inc.) was applied onto two types of liquid crystal alignment films having different exposure amounts using a spin coater, and then on a hot plate at 60 ° C. for 60 seconds. And pre-baked to form a coating film having a film thickness of 1.0 ⁇ m.
- the coating film on the liquid crystal alignment film was exposed at 300 mJ / cm 2 to evaluate the liquid crystal orientation.
- the case where the liquid crystal orientation was visually observed to be good and the abnormal domain was not observed by the polarizing microscope was "good", and the case where the liquid crystal orientation was visually observed to be good was observed by the polarizing microscope.
- an abnormal domain was observed it was evaluated as "OK”, and when an abnormality in liquid crystal orientation was visually observed, it was evaluated as "Defective”.
- Example 1 when the one of the exposure amount of 5 mJ / cm 2 and 10 mJ / cm 2 was also evaluated in the liquid crystal orientation "good".
- the film-forming composition prepared in the above 2. is stored under the condition of 40 ° C. for a period from the day when the film-forming composition is prepared to the 14th day.
- a liquid crystal alignment film was prepared in the same manner as in the above.
- the storage stability of the film-forming composition was evaluated by evaluating the liquid crystal orientation of the liquid crystal alignment film produced here. At this time, when the liquid crystal orientation was visually observed to be good and no abnormal domain was observed by the polarizing microscope, the storage stability was "good", and the liquid crystal orientation was visually observed to be good, but polarization was observed. The case where an abnormal domain was observed with a microscope was evaluated as "possible", and the case where an abnormality in liquid crystal orientation was visually observed was evaluated as "poor”. As a result, the film-forming composition of Example 1 was evaluated. , The storage stability was evaluated as "good".
- Example 2 to 12 and Comparative Examples 1 and 2 Each composition (A-2) to (A-15) was prepared in the same manner as the film-forming composition (A-1) of Example 1 except that the compounding formulation was as shown in Table 2 below. did. In addition, various evaluations were carried out in the same manner as in Example 1 using the obtained film-forming composition. The results are shown in Table 3 below.
- the numerical value of the blending amount of each component other than the solvent component indicates the blending ratio (parts by mass) of each compound with respect to the total 100 parts by mass of the polymer component used for preparing the film-forming composition.
- the numerical value of the blending amount of the solvent component indicates the blending ratio (parts by mass) of each compound with respect to the total 100 parts by mass of the solvent component used for preparing the film-forming composition.
- the abbreviations of the compounds are as follows.
- B-1 Tris (acetylacetone) aluminum (aluminum chelate A (W), manufactured by Kawaken Fine Chemicals)
- R-1 p-toluenesulfonic acid
- K-1 tri (p-tolyl) silanol
- N-1 N, N, N', N'-tetraglycidyl [4,4'-methylenebisaniline]
- NMP N-methylpyrrolidone
- FGBL ⁇ -butyrolactone
- BC Ethylene glycol monobutyl ether
- BA n-butyl acetate
- MEK Methyl ethyl ketone
- PGMEA Propylene glycol monomethyl ether acetate
- EAA Ethyl acetoacetate
- EDM Diethylene glycol ethyl methyl ether
- CPN Cyclopentanone
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Liquid Crystal (AREA)
Abstract
Description
[1]下記式(1)で表される部分構造を有する重合体[P]を含有する、膜形成用組成物。
[2]上記[1]の膜形成用組成物を用いて形成された硬化膜。
[3]上記[1]の膜形成用組成物を用いて形成された液晶配向膜。
[4]上記[2]の硬化膜又は上記[3]の液晶配向膜を備える位相差フィルム。
本開示の膜形成用組成物は、重合体成分が、好ましくは溶剤に溶解されてなる重合体組成物である。以下に、膜形成用組成物に含まれる各成分、及び必要に応じて任意に配合されるその他の成分について説明する。
「m価の脂環式基」(ただし、mは1以上の整数。以下同じ。)とは、置換又は無置換の脂肪族環の環部分からm個の水素原子を取り除いた基を意味する。「m価の芳香環基」とは、置換又は無置換の芳香環の環部分からm個の水素原子を取り除いた基を意味する。「m価の複素環基」とは、置換又は無置換の複素環の環部分からm個の水素原子を取り除いた基を意味する。
膜形成用組成物は、上記式(1)で表される部分構造を有する重合体[P]を含有する。上記式(1)において、Y1は、シンナメート構造を有する2価の基であり、上記式(2-1)又は式(2-2)で表される。上記式(2-1)及び式(2-2)中、Z1及びZ2のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、好ましくはフッ素原子である。炭素数1~6の1価の有機基としては、アルキル基、シクロヘキシル基、フェニル基等が挙げられる。当該1価の有機基は、好ましくは炭素数1~3のアルキル基であり、より好ましくはメチル基である。光反応性をより高くできる点で、Z1及びZ2は、水素原子、フッ素原子、シアノ基又は炭素数1~3のアルキル基であることが好ましく、Z1が水素原子であって、Z2が、水素原子、フッ素原子、シアノ基又は炭素数1~3のアルキル基であることがより好ましい。
R3が「-OR7」(ただし、R7は炭素数1~10の1価の炭化水素基である。)である場合の具体例としては、R3が炭素数1~10の1価の炭化水素基である場合の具体例として例示した基に酸素原子が結合した1価の基が挙げられる。R3が「-OR7」である場合、これらのうち、炭素数1~5のアルコキシ基又はフェニルオキシ基が好ましく、メトキシ基、エトキシ基又はフェニルオキシ基がより好ましい。
R2とR3とが互いに合わせられて、R2及びR3が結合する炭素原子と共に構成される環構造としては、テトラヒドロフラニル基、テトラヒドロピラニル基等の環状エーテル基が挙げられる。
R2及びR3は、脱離によりカルボキシル基をより生成しやすい点で、R2が水素原子若しくは炭素数1~10のアルキル基であり、かつR3が「-OR7」であるか、又は、R2とR3とが互いに合わせられて、R2及びR3が結合する炭素原子と共に構成される環構造を表すことが好ましく、R2が水素原子若しくは炭素数1~10のアルキル基であって、かつR3が「-OR7」であることがより好ましい。
A1及びA2が2価の複素環基である場合、窒素含有複素環基であることが好ましく、その具体例としては、ピリジンジイル基、ピリミジンジイル基等が挙げられる。
R4が炭素数1~6の1価の炭化水素基である場合、好ましくは、炭素数1~3のアルキル基である。nは、0~2が好ましく、0又は1がより好ましい。
ポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物とを反応させることにより得ることができる。上記式(1)で表される部分構造を有するポリアミック酸(以下「ポリアミック酸[P]」ともいう。)を得る場合、モノマーの選択の自由度が高い点で、上記式(1)で表される部分構造を有するジアミン(以下「特定ジアミン」ともいう。)を含むジアミン化合物と、テトラカルボン酸二無水物とをモノマーに用いた重合により行うことが好ましい。
ポリアミック酸の合成に使用するテトラカルボン酸二無水物としては、例えば脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物等が挙げられる。これらの具体例としては、脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4-ブタンテトラカルボン酸二無水物等を;
脂環式テトラカルボン酸二無水物として、例えば1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラン-3-イル)-8-メチル-3a,4,5,9b-テトラヒドロナフト[1,2-c]フラン-1,3-ジオン、2,4,6,8-テトラカルボキシビシクロ[3.3.0]オクタン-2:4,6:8-二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物等を;芳香族テトラカルボン酸二無水物として、例えばピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、エチレングリコールビスアンヒドロトリメート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、p-フェニレンビス(トリメリット酸モノエステル無水物)、プロパン-1,3-ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキシレート)等を;それぞれ挙げることができるほか、特開2010-97188号公報に記載のテトラカルボン酸二無水物を用いることができる。なお、テトラカルボン酸二無水物としては、1種を単独で使用してもよく、2種以上組み合わせて使用してもよい。
特定ジアミンは、上記式(1)で表される部分構造を有する限り、その構造は特に限定されないが、上記式(1)で表される部分構造を重合体側鎖に導入可能な構造を有するジアミンであることが好ましい。特定ジアミンの好ましい具体例としては、下記式(2)で表される化合物が挙げられる。
芳香族ジアミンとして、例えば、ドデカノキシ-2,4-ジアミノベンゼン、ペンタデカノキシ-2,4-ジアミノベンゼン、ヘキサデカノキシ-2,4-ジアミノベンゼン、オクタデカノキシ-2,4-ジアミノベンゼン、ペンタデカノキシ-2,5-ジアミノベンゼン、オクタデカノキシ-2,5-ジアミノベンゼン、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、コレステニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン、3,6-ビス(4-アミノフェノキシ)コレスタン、2,4-ジアミノ-N,N-ジアリルアニリン、4-(4’-トリフルオロメトキシベンゾイロキシ)シクロヘキシル-3,5-ジアミノベンゾエート、1,1-ビス(4-((アミノフェニル)メチル)フェニル)-4-ブチルシクロヘキサン、3,5-ジアミノ安息香酸=5ξ-コレスタン-3-イル、下記式(E-1)
で表される化合物等の側鎖型ジアミン:
ポリアミック酸は、上記のようなテトラカルボン酸二無水物とジアミン化合物とを、必要に応じて分子量調整剤とともに反応させることにより得ることができる。ポリアミック酸の合成反応に供されるテトラカルボン酸二無水物とジアミン化合物との使用割合は、ジアミン化合物のアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.2~2当量となる割合が好ましい。特定ジアミンの使用割合は、ポリアミック酸[P]が有する上記式(1)で表される部分構造が上記好ましい範囲になるようにすることが好ましい。分子量調整剤としては、例えば無水マレイン酸、無水フタル酸、無水イタコン酸等の酸一無水物、アニリン、シクロヘキシルアミン、n-ブチルアミン等のモノアミン化合物、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物等が挙げられる。分子量調整剤の使用割合は、使用するテトラカルボン酸二無水物及びジアミン化合物の合計100質量部に対して、20質量部以下とすることが好ましい。
ポリアミック酸エステルは、例えば、[I]上記合成反応により得られたポリアミック酸[P]とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルと、特定ジアミンを含むジアミン化合物とを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物と、特定ジアミンを含むジアミン化合物とを反応させる方法、等によって得ることができる。液晶配向剤に含有させるポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。なお、ポリアミック酸エステルを溶解してなる反応溶液は、そのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるポリアミック酸エステルを単離したうえで液晶配向剤の調製に供してもよい。
ポリイミドは、例えば、ポリアミック酸[P]を脱水閉環してイミド化することにより得ることができる。ポリイミドは、その前駆体であるポリアミック酸[P]が有していたアミック酸構造のすべてを脱水閉環した完全イミド化物であってもよく、アミック酸構造の一部のみを脱水閉環し、アミック酸構造とイミド環構造とが併存する部分イミド化物であってもよい。ポリイミドは、そのイミド化率が20~99%であることが好ましく、30~90%であることがより好ましい。このイミド化率は、ポリイミドのアミック酸構造の数とイミド環構造の数との合計に対するイミド環構造の数の占める割合を百分率で表したものである。ここで、イミド環の一部がイソイミド環であってもよい。
上記式(1)で表される部分構造を有するポリオルガノシロキサン(以下「ポリシロキサン[P]」ともいう。)は、例えば、加水分解性のシラン化合物を加水分解・縮合することにより得ることができる。重合に際し使用するシラン化合物としては、上記式(1)で表される部分構造を有するシラン化合物(以下「特定シラン化合物」ともいう。)、上記式(1)で表される部分構造を有さないシラン化合物(以下「その他のシラン化合物」ともいう。)が挙げられ、これらを組み合わせて使用することが好ましい。
重合体(Q)を構成する炭素-炭素不飽和結合を有する単量体としては、例えば、(メタ)アクリロイル基、ビニル基、ビニルフェニル基、マレイミド基等を有する化合物が挙げられる。なお、「マレイミド基」とは、マレイミドが有する-NH-の水素原子を取り除いた1価の基である。炭素-炭素不飽和結合を有する単量体としては、上記式(1)で表される部分構造を有する化合物(以下「特定不飽和結合含有化合物」ともいう。)、上記式(1)で表される部分構造を有さない化合物(以下「その他の不飽和結合含有化合物」ともいう。)が挙げられ、これらを組み合わせて使用することが好ましい。
特定不飽和結合含有化合物の好ましい具体例としては、上記式(1-1)~式(1-51)のそれぞれで表される部分構造とZ1とがL3(単結合又は2価の連結基)を介して結合した化合物が挙げられる。なお、特定不飽和結合含有化合物としては、これらのうちの1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
膜形成用組成物は、本開示の目的及び効果を妨げない範囲内において、重合体成分以外のその他の成分を含有していてもよい。
硬化剤及び硬化触媒は、膜形成用組成物に配合される重合体がエポキシ基を有する場合に、エポキシ構造間の架橋反応を更に促進させる目的で使用される。また、硬化促進剤は、硬化剤による硬化反応を促進する目的で使用される。
膜形成用組成物の調製に際し使用する溶剤は、有機溶媒とすることが好ましい。溶剤は、膜形成時の加熱をより低温で行うことができる点で、これらのうち、エーテル系溶剤、アルコール系溶剤、エステル系溶剤及びケトン系溶剤よりなる群から選択される少なくとも一種の溶剤(以下「特定溶剤」という。)を含有することが好ましい。
アルコール系溶剤として、例えばメチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、トリエチレングリコール、ダイアセトンアルコール、3-メトキシ-3-メチルブタノール、ベンジルアルコール等を;
エステル系溶剤として、例えば乳酸エチル、乳酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、エチレングリコールエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、シュウ酸ジエチル、マロン酸ジエチル、アセト酢酸エチル、イソアミルプロピオネート、イソアミルイソブチレート等を;
ケトン系溶剤として、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロヘプタノン、シクロペンタノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、ジイソブチルケトン等を、それぞれ挙げることができる。
上記の膜形成用組成物を用いることにより硬化膜を製造することができる。本開示の膜形成用組成物を用いて形成された硬化膜は、液晶配向性及び溶剤耐性に優れていることから、液晶塗布型の位相差フィルムの製造用の液晶配向膜として好適である。以下に、本開示の膜形成用組成物を用いて位相差フィルムを製造する方法について説明する。位相差フィルムは、以下の工程(1)~(3)を経ることによって製造することができる。
先ず、膜形成用組成物を基板上に塗布して塗膜を形成する。ここで使用される基板としては、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリメチルメタクリレート、ポリカーボネートなどの合成樹脂からなる透明基板を好適に例示することができる。これらのうち、TACは、液晶表示素子における偏光フィルムの保護層として一般的に使用されている。また、ポリメチルメタクリレートは、溶媒の吸湿性が低い点、光学特性が良好である点及び低コストである点で、基板として好ましく使用される。
次いで、上記のようにして基板上に形成された塗膜に対し光を照射することにより、塗膜に液晶配向能を付与して硬化膜(液晶配向膜)とする。ここで、照射する光としては、例えば150~800nmの波長の光を含む紫外線、可視光線などを挙げることができる。これらのうち、300~400nmの波長の光を含む紫外線が好ましい。照射光は偏光であっても非偏光であってもよい。偏光としては、直線偏光を含む光を使用することが好ましい。
次いで、上記のようにして光照射した後の塗膜上に、重合性液晶を塗布して硬化させる。これにより、重合性液晶を含む塗膜(液晶層)を形成する。ここで使用される重合性液晶は、加熱および光照射のうちの少なくとも1種の処理によって重合する液晶化合物又は液晶組成物である。このような重合性液晶としては、従来公知のものを使用することができ、具体的には、例えば非特許文献1(「UVキュアラブル液晶とその応用」、液晶、第3巻第1号(1999年)、pp34~42)に記載されているネマチック液晶化合物を挙げることができる。また、コレステリック液晶;ディスコティック液晶;カイラル剤を添加されたツイストネマティック配向型液晶などであってもよい。重合性液晶は、複数の液晶化合物の混合物であってもよい。重合性液晶は、さらに、公知の重合開始剤、適当な溶媒などを含有する組成物であってもよい。形成された硬化膜(液晶配向膜)上に重合性液晶を塗布するには、例えばバーコーター法、ロールコーター法、スピンナー法、印刷法、インクジェット法などの適宜の塗布方法を採用することができる。
重量平均分子量Mwは、以下の条件におけるGPCにより測定したポリスチレン換算値である。
カラム:東ソー(株)製、TSKgelGRCXLII
溶剤:テトラヒドロフラン、又はリチウムブロミド及びリン酸含有のN,N-ジメチルホルムアミド溶液
温度:40℃
圧力:68kgf/cm2
[重合体溶液の溶液粘度]
重合体溶液の溶液粘度(mPa・s)は、E型回転粘度計を用いて25℃で測定した。
2Lのナスフラスコに、4-ヒドロキシ桂皮酸メチル(40.1g、225mmol)、2-クロロエタノール(21.7g、269mmol)、炭酸カリウム(37.2g、269mmol)、及びN-メチルピロリドン(500mL)を加え、90℃で30時間撹拌した。反応終了後、溶液に水を加え、酢酸エチルで抽出した。有機層をエバポレーターで濃縮し、酢酸エチル/ヘキサンの1:1混合物から再結晶して、化合物(a-1-1)を得た(42.5g、収率85%)。
2Lのナスフラスコに、化合物(a-1-1)(33.3g、150mmol)、水酸化カリウム(12.6g、225mmol)、メタノール(250mL)、及び水(80mL)を加え、50℃で24時間撹拌した。エバポレーターで濃縮後、氷浴に入れ冷却しながらHCl溶液を加え、2時間撹拌した。析出してきた白色固体を濾過により回収し、真空乾燥することで化合物(a-1-2)を得た(29.4g、収率94%)。
2Lのナスフラスコに、化合物(a-1-2)(25.0g、120mmol)、トリエチルアミン(36.7mL、263mmol)、及び塩化メチレン(500mL)を加えた。次いで、フラスコを氷浴に入れ、メタクリロイルクロリド(23.7mL、245mmol)を滴下しながら30分撹拌した。反応終了後、溶液に水を加え、酢酸エチルで抽出し、有機層をエバポレーターで濃縮した。さらに、アセトニトリル及びHCl溶液を加え、50℃で3時間撹拌した。有機層を抽出後、エバポレーターで濃縮し、途中で析出してきた白色固体を濾過により回収し、真空乾燥することで化合物(a-1-3)を得た(24.2g、収率73%)。
2Lのナスフラスコに、化合物(a-1-3)(20.7g、75.0mmol)、tert-ブチル-4-ヒドロキシベンゾエート(16.0g、82.5mmol)、4-ジメチルアミノピリジン(458mg、3.75mmol)、N,N'-ジシクロヘキシルカルボジイミド(16.3g、78.8mmol)、及び塩化メチレン(500mL)を加え、室温で20時間撹拌した。反応終了後、得られた生成物を、SiO2カラムを用いて抽出した後、エバポレーターで濃縮し、化合物(a-1-4)を得た(30.0g、78%)。
2Lのナスフラスコに、化合物(a-1-4)(26.7g、52.0mmol)、トリフルオロ酢酸(11.9g、104mmol)、及び塩化メチレン(500mL)を加え、室温で1時間攪拌した。その後、飽和炭酸水素ナトリウム水溶液により中和した後、酢酸エチルで抽出した。有機層をエバポレーターで濃縮し、途中で析出してきた白色固体を濾過により回収した。この白色固体を真空乾燥することにより、化合物(a-1-5)を得た(19.6g、収率95%)。
2Lのナスフラスコに、化合物(a-1-5)(15.9g、40.0mmol)、メチルビニルエーテル(2.56g、44.0mmol)、パラトルエンスルホン酸ピリジニウム(30.2g、120mmol)、及びTHF(500mL)を加え、室温で14時間撹拌した。反応終了後、溶液に水を加え、酢酸エチルで抽出した。有機層をエバポレーターで濃縮し、酢酸エチル/ヘキサンの2:1(質量比)混合物から再結晶して、目的の化合物(a-1)を得た(13.8g、収率76%)。
[合成例1:重合体(P-1)の合成]
窒素下、300mL二口フラスコに、モノマーとして、化合物(a-1)5.40g(11.8mmol)、メタクリル酸グリシジル1.48g(10.4mmol)、及び化合物(c-1)2.32g(7.42mmol)、ラジカル重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.221g(0.891mmol)、並びに溶媒としてN-メチル-2-ピロリドン120mlを加え、70℃で5時間重合した。重合終了後、n-ヘキサンに再沈殿した後、沈殿物を濾過し、室温で8時間真空乾燥することでポリメタクリレート(これを重合体(P-1)とする。)を7.28g得た。得られた重合体の重量平均分子量Mwは32000であった。
使用するモノマーの種類及び量を下記表1に記載のとおり変更した点以外は合成例1と同様にして重合体(P-2)、(P-7)~(P-16)をそれぞれ合成した。
テトラカルボン酸二無水物として化合物(c-4)をモノマー全量に対して50モル%、並びに、ジアミン化合物として化合物(a-3)をモノマー全量に対して30モル%、及び化合物(c-3)をモノマー全量に対して20モル%を、N-メチル-2-ピロリドン(NMP)に溶解し、60℃で6時間反応を行い、ポリアミック酸を15質量%含有する溶液を得た。得られたポリアミック酸溶液を少量分取し、NMPを加えてポリアミック酸濃度10質量%の溶液として測定した溶液粘度は126mPa・sであった。次いで、このポリアミック酸溶液を大過剰のメタノール中に注ぎ、反応生成物を沈殿させた。この沈殿物をメタノールで洗浄し、減圧下40℃で15時間乾燥させることにより、ポリアミック酸(これを重合体(P-3)とする。)を得た。得られた重合体の重量平均分子量Mwは26000であった。
[合成例4:重合体(P-4)の合成]
使用するテトラカルボン酸二無水物及びジアミン化合物の種類及び量を下記表1に記載のとおり変更した点以外は合成例3と同様にして、ポリアミック酸である重合体(P-4)を得た。
撹拌機、温度計、滴下漏斗及び還流冷却管を備えた反応容器に、シラン化合物として化合物(a-5)をモノマー全量に対して34モル%、化合物(b-3)をモノマー全量に対して33モル%、及び化合物(c-5)をモノマー全量に対して33モル%、をメチルイソブチルケトンに溶解し、トリエチルアミンをモノマー全量100質量部に対して7.0質量部を仕込み、室温で混合した。次いで、脱イオン水を滴下漏斗より30分かけて滴下した後、還流下で撹拌しつつ、80℃で6時間反応を行った。反応終了後、有機層を取り出し、0.2質量%硝酸アンモニウム水溶液により、洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒及び水を留去することによりポリオルガノシロキサンを粘調な液体として得た。反応終了後、反応混合物に酢酸エチルを加えて得た溶液を3回水洗し、有機層を硫酸マグネシウムを用いて乾燥した後、溶剤を留去することにより、ポリオルガノシロキサン(これを重合体(P-5)とする。)を得た。得られた重合体の重量平均分子量Mwは5500であった。
[合成例6:重合体(P-6)の合成]
使用するシラン化合物の種類及び量を下記表1に記載のとおり変更した点以外は合成例5と同様にして、ポリオルガノシロキサンである重合体(P-6)を得た。
[実施例1]
1.膜形成用組成物の調製
重合体成分として、重合体(P-1)を100質量部、触媒としてトリス(アセチルアセトネート)アルミニウム(アルミキレートA(W)、川研ファインケミカル社製)5質量部、並びに硬化促進剤としてトリ(p-トリル)シラノール1質量部を混合し、これに溶媒として、酢酸n-ブチル(BA)、メチルエチルケトン(MEK)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、及びアセト酢酸エチル(EAA)を加え、固形分濃度が5質量%、各溶媒の質量比がBA:MEK:PGMEA:EAA=40:40:15:5となるように調製した。次いで、この得られた溶液を孔径1μmのフィルターでろ過することにより、膜形成用組成物(A-1)を調製した。
上記1.で得られた膜形成用組成物を、無アルカリガラス上にスピンコーターを用いて2000rpmで30秒間、回転塗布した後、温度100℃で60秒間、ホットプレート上で加熱乾燥を行い、有機薄膜を形成した。この有機薄膜に313nmの直線偏光を10mJ/cm2の露光量で垂直に照射し、液晶配向膜を作製した。
上記2.で作製した液晶配向膜の異方性評価を行った後、この液晶配向膜をシクロペンタノンに1分間浸漬し、60℃で乾燥した後、再度異方性評価を行った。このときの浸漬前後の異方性変化により、液晶配向膜のシクロペンタノンに対する耐性評価を行った。なお、異方性評価は、MORITEX社製Layscan(LYS-LH30S-1B)を用いて、23℃の環境下にて、1mm間隔で縦5点×横5点(合計25点)の測定値を取得し、その平均値を求めることにより行った。シクロペンタノン耐性の評価は、浸漬後の異方性変化が20%以下である場合を「良好」、20%よりも大きく35%未満である場合を「可」、35%以上である場合を「不良」とした。その結果、実施例1の液晶配向膜においては、浸漬後の異方性変化率は5%であり、「良好」の評価であった。
上記2.で作製した液晶配向膜とは別に、313nmの直線偏光を5mJ/cm2の露光量に変更した以外は同様にして作製した液晶配向膜を更に準備した。露光量が異なる2種類の液晶配向膜上に、重合性液晶RMM1823(メルク株式会社製)のシクロペンタノン溶液を、スピンコーターを用いてそれぞれ塗布し、次いで、60℃で60秒間ホットプレート上にてプレベークを行い、膜厚1.0μmの塗膜を形成した。続いて、液晶配向膜上の塗膜を300mJ/cm2で露光し、液晶配向性を評価した。このとき、目視により液晶配向性が良好であると観察され、かつ偏光顕微鏡にて異常ドメインが観察されなかった場合を「良好」、目視では液晶配向性が良好と観察されたが、偏光顕微鏡にて異常ドメインが観察された場合を「可」、目視にて液晶配向性の異常が観察された場合を「不良」と評価した。その結果、実施例1では、露光量を5mJ/cm2及び10mJ/cm2のいずれとした場合にも、液晶配向性「良好」の評価であった。
上記1.で調製した膜形成用組成物を調製した日から14日目までの期間、40℃の条件で膜形成用組成物を保管し、上記2.と同様にして液晶配向膜を作製した。また、ここで作製した液晶配向膜の液晶配向性を評価することにより、膜形成用組成物の保存安定性を評価した。このとき、目視にて液晶配向性が良好と観察され、かつ偏光顕微鏡にて異常ドメインが観察されなかった場合を保存安定性「良好」、目視では液晶配向性が良好と観察されたが、偏光顕微鏡にて異常ドメインが観察された場合を「可 」、目視にて液晶配向性の異常が観察された場合を「不良」と評価し、その結果、実施例1の膜形成用組成物においては、保存安定性「良好」の評価であった。
配合処方を下記表2に示すとおりとした点以外は、実施例1の膜形成用組成物(A-1)と同様にして、各組成物(A-2)~(A-15)を調製した。また、得られた膜形成用組成物を用いて、実施例1と同様にして各種評価を行った。それらの結果を下記表3に示した。
表2中、化合物の略号は以下の通りである。
B-1:トリス(アセチルアセトネート)アルミニウム(アルミキレートA(W)、川研ファインケミカル製)
R-1:p-トルエンスルホン酸
K-1:トリ(p-トリル)シラノール
N-1:N,N,N’,N’-テトラグリシジル[4,4’-メチレンビスアニリン]
NMP:N-メチルピロリドン
FGBL:γ-ブチロラクトン
BC:エチレングリコールモノブチルエーテル
BA:酢酸n-ブチル
MEK:メチルエチルケトン
PGMEA:プロピレングリコールモノメチルエーテルアセテート
EAA:アセト酢酸エチル
EDM:ジエチレングリコールエチルメチルエーテル
CPN:シクロペンタノン
以上の結果から、重合体[P]を含有する膜形成用組成物は保存安定性が良好であり、また当該組成物を用いることにより、溶剤耐性及び液晶配向性に優れた硬化膜を作製できることが明らかとなった。
Claims (7)
- 下記式(1)で表される部分構造を有する重合体[P]を含有する、膜形成用組成物。
- 前記重合体[P]は、ポリアミック酸、ポリアミック酸エステル、ポリイミド、炭素-炭素不飽和結合を有する単量体を用いて得られる重合体、及びポリオルガノシロキサンよりなる群から選ばれる少なくとも一種である、請求項1に記載の膜形成用組成物。
- 前記重合体[P]は、架橋性基を更に有する、請求項1又は2に記載の膜形成用組成物。
- 請求項1~4のいずれか一項に記載の膜形成用組成物を用いて形成された硬化膜。
- 請求項1~4のいずれか一項に記載の膜形成用組成物を用いて形成された液晶配向膜。
- 請求項5に記載の硬化膜又は請求項6に記載の液晶配向膜を備える位相差フィルム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217027964A KR102663141B1 (ko) | 2019-04-10 | 2020-01-08 | 막 형성용 조성물, 경화막, 액정 배향막 및 위상차 필름 |
CN202080019675.4A CN113544184B (zh) | 2019-04-10 | 2020-01-08 | 膜形成用组合物、硬化膜、液晶取向膜及相位差膜 |
JP2021513168A JP7363891B2 (ja) | 2019-04-10 | 2020-01-08 | 膜形成用組成物、硬化膜及び位相差フィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019075178 | 2019-04-10 | ||
JP2019-075178 | 2019-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020208884A1 true WO2020208884A1 (ja) | 2020-10-15 |
Family
ID=72751632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/000334 WO2020208884A1 (ja) | 2019-04-10 | 2020-01-08 | 膜形成用組成物、硬化膜及び位相差フィルム |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7363891B2 (ja) |
KR (1) | KR102663141B1 (ja) |
CN (1) | CN113544184B (ja) |
WO (1) | WO2020208884A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113782914A (zh) * | 2021-09-09 | 2021-12-10 | 陆金良 | 一种蓄电池agm隔膜材料及其制备方法 |
WO2023136269A1 (ja) * | 2022-01-13 | 2023-07-20 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230067726A (ko) * | 2021-11-08 | 2023-05-17 | 주식회사 클랩 | 광배향 화합물, 이의 제조방법, 이를 이용한 액정 광배향제 및 이를 포함하는 위상차 필름 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998035931A1 (en) * | 1997-02-14 | 1998-08-20 | The University Court Of Napier University | Ferroelectric liquid crystal mixtures and molecular additives for applications over wide temperature ranges in display devices |
JP3877357B2 (ja) * | 1996-10-29 | 2007-02-07 | 三井化学株式会社 | ナフタレン化合物、液晶組成物および液晶素子 |
JP2013080193A (ja) * | 2011-03-30 | 2013-05-02 | Jsr Corp | 液晶配向剤、液晶配向膜及び液晶表示素子 |
JP2013148883A (ja) * | 2011-12-20 | 2013-08-01 | Sumitomo Chemical Co Ltd | 偏光膜形成用組成物及び偏光膜 |
WO2016143860A1 (ja) * | 2015-03-11 | 2016-09-15 | 日産化学工業株式会社 | 硬化膜形成組成物、配向材および位相差材 |
JP2016200797A (ja) * | 2015-04-09 | 2016-12-01 | Jsr株式会社 | 液晶配向剤、液晶配向膜及び液晶素子 |
WO2019017181A1 (ja) * | 2017-07-19 | 2019-01-24 | Jsr株式会社 | 積層体、液晶配向剤及び液晶表示素子 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6449016B2 (ja) | 2012-10-05 | 2019-01-09 | 日産化学株式会社 | 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法 |
JP6492564B2 (ja) * | 2014-02-13 | 2019-04-03 | Jsr株式会社 | 液晶配向剤、液晶配向膜、液晶表示素子、位相差フィルム、位相差フィルムの製造方法、重合体及び化合物 |
JP6686298B2 (ja) * | 2014-08-25 | 2020-04-22 | Jsr株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
US10696795B2 (en) * | 2015-11-11 | 2020-06-30 | Rolic Technologies AG | Photoaligning materials |
-
2020
- 2020-01-08 JP JP2021513168A patent/JP7363891B2/ja active Active
- 2020-01-08 WO PCT/JP2020/000334 patent/WO2020208884A1/ja active Application Filing
- 2020-01-08 CN CN202080019675.4A patent/CN113544184B/zh active Active
- 2020-01-08 KR KR1020217027964A patent/KR102663141B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3877357B2 (ja) * | 1996-10-29 | 2007-02-07 | 三井化学株式会社 | ナフタレン化合物、液晶組成物および液晶素子 |
WO1998035931A1 (en) * | 1997-02-14 | 1998-08-20 | The University Court Of Napier University | Ferroelectric liquid crystal mixtures and molecular additives for applications over wide temperature ranges in display devices |
JP2013080193A (ja) * | 2011-03-30 | 2013-05-02 | Jsr Corp | 液晶配向剤、液晶配向膜及び液晶表示素子 |
JP2013148883A (ja) * | 2011-12-20 | 2013-08-01 | Sumitomo Chemical Co Ltd | 偏光膜形成用組成物及び偏光膜 |
WO2016143860A1 (ja) * | 2015-03-11 | 2016-09-15 | 日産化学工業株式会社 | 硬化膜形成組成物、配向材および位相差材 |
JP2016200797A (ja) * | 2015-04-09 | 2016-12-01 | Jsr株式会社 | 液晶配向剤、液晶配向膜及び液晶素子 |
WO2019017181A1 (ja) * | 2017-07-19 | 2019-01-24 | Jsr株式会社 | 積層体、液晶配向剤及び液晶表示素子 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113782914A (zh) * | 2021-09-09 | 2021-12-10 | 陆金良 | 一种蓄电池agm隔膜材料及其制备方法 |
CN113782914B (zh) * | 2021-09-09 | 2023-09-29 | 鸿能(山东)能源集团有限公司 | 一种蓄电池agm隔膜材料及其制备方法 |
WO2023136269A1 (ja) * | 2022-01-13 | 2023-07-20 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
Also Published As
Publication number | Publication date |
---|---|
KR102663141B1 (ko) | 2024-05-03 |
KR20210123354A (ko) | 2021-10-13 |
CN113544184A (zh) | 2021-10-22 |
JP7363891B2 (ja) | 2023-10-18 |
JPWO2020208884A1 (ja) | 2020-10-15 |
CN113544184B (zh) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6146135B2 (ja) | 液晶配向剤、液晶配向膜、液晶配向膜の製造方法及び液晶表示素子 | |
JP5556482B2 (ja) | 液晶配向剤、液晶配向膜および液晶表示素子 | |
JP5170468B2 (ja) | 液晶配向剤、液晶配向膜およびその形成方法ならびに液晶表示素子 | |
JP6911885B2 (ja) | 液晶配向膜の製造方法及び液晶素子の製造方法 | |
TW201443157A (zh) | 液晶配向劑及液晶配向劑的製造方法、液晶配向膜、液晶顯示元件、液晶配向膜的製造方法、相位差膜以及相位差膜的製造方法 | |
TWI567109B (zh) | 液晶配向劑、液晶配向膜、液晶顯示元件、相位差膜及其製造方法、聚合物以及化合物 | |
JP7363891B2 (ja) | 膜形成用組成物、硬化膜及び位相差フィルム | |
JP6617634B2 (ja) | 液晶配向剤、液晶配向膜、液晶素子及び液晶配向膜の製造方法 | |
KR102282111B1 (ko) | 액정 배향제, 액정 배향막, 액정 배향막의 제조 방법 및 액정 표시 소자 | |
JP6350795B2 (ja) | 液晶配向剤 | |
JP2014059545A (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP5541454B2 (ja) | 液晶配向剤および液晶表示素子 | |
JP2023143921A (ja) | 液晶配向剤 | |
JP5708914B2 (ja) | 液晶表示素子の製造方法 | |
JPWO2019230091A1 (ja) | 液晶配向剤、液晶配向膜及び液晶素子 | |
CN106947498B (zh) | 液晶取向剂、液晶取向膜、液晶元件、以及液晶取向膜及液晶元件的制造方法 | |
JP5590304B2 (ja) | 液晶配向剤および液晶表示素子 | |
JP6891975B2 (ja) | 液晶配向剤、液晶配向膜及び液晶素子 | |
JP2022162467A (ja) | 液晶配向剤、液晶配向膜、液晶素子及び化合物 | |
TWI785018B (zh) | 液晶配向劑、液晶配向膜、液晶元件及聚有機矽氧烷 | |
JP2016095478A (ja) | 液晶配向剤および液晶表示素子 | |
JP2023170991A (ja) | 液晶配向剤、液晶配向膜及び液晶素子 | |
JP2014178378A (ja) | 光配向剤、液晶配向膜の製造方法、液晶配向膜及び液晶表示素子 | |
KR20220076312A (ko) | 액정 배향제, 액정 배향막 및 액정 소자, 그리고 중합체 | |
TW202405140A (zh) | 液晶配向劑、液晶配向膜及其製造方法、及液晶元件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20787219 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021513168 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217027964 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20787219 Country of ref document: EP Kind code of ref document: A1 |