WO2020206976A1 - 可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法 - Google Patents

可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法 Download PDF

Info

Publication number
WO2020206976A1
WO2020206976A1 PCT/CN2019/112570 CN2019112570W WO2020206976A1 WO 2020206976 A1 WO2020206976 A1 WO 2020206976A1 CN 2019112570 W CN2019112570 W CN 2019112570W WO 2020206976 A1 WO2020206976 A1 WO 2020206976A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic framework
porous organic
solution
loaded
noble metal
Prior art date
Application number
PCT/CN2019/112570
Other languages
English (en)
French (fr)
Inventor
丁辉
赵昊天
尚尉
赵丹
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US16/739,059 priority Critical patent/US20200324278A1/en
Publication of WO2020206976A1 publication Critical patent/WO2020206976A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Definitions

  • the invention relates to a preparation method of a porous organic framework atomic level catalyst, in particular to a preparation method of a porous organic framework atomic level catalyst that can be used for catalytic degradation of VOCs at room temperature.
  • Volatile organic compounds are an important class of air pollutants, defined by the World Health Organization as organic compounds with a boiling point of 50-260°C and a saturated vapor pressure of more than 133 Pa at room temperature, including alkanes, alkenes, aromatics and their derivatives, Alcohols, aldehydes and ketones, amines and amides, acids and anhydrides, etc. VOCs are an important class of air pollutants.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a method for preparing a noble metal-loaded porous organic framework atomic-level catalyst that can be used for catalytic degradation of VOCs at room temperature.
  • the catalyst has atomic-level active sites, has excellent catalytic performance, and can be reused. Catalytic degradation of VOCs under normal temperature conditions.
  • the preparation method of the atomic-level active site catalyst with the noble metal supported on the pyridine-amide porous organic framework of the present invention includes the following steps:
  • the porous organic framework is completely immersed in a precious metal salt solution of 0.05-0.5 mol/L, ultrasonically treated for 1-5 h, and then allowed to stand at 10-30 °C for 6-12 h to obtain a precious metal-loaded porous Organic framework; the ratio of the mass of the precious metal in the precious metal salt solution to the mass of the porous organic framework is 0.05-0.5%;
  • the completed precious metal-loaded pyridine-amide porous organic framework is taken out and placed in a horse boiling furnace at 100-600°C for 2-6 hours to obtain the precious metal-loaded pyridine-amide porous organic framework atomic-level active site catalyst.
  • the pyridine-amide porous organic framework has the advantages of simple synthesis, high stability, and easy control of active sites. And the existence of amino groups is conducive to the dispersion of atoms, and the porosity can avoid the phenomenon of agglomeration of atoms to a certain extent, and achieve a real catalyst with atomic-level active sites, thereby obtaining higher catalytic performance.
  • VOCs Due to the excellent catalytic performance of this catalyst, VOCs can be catalytically degraded at room temperature, which reduces the energy consumption of practical applications and enhances the safety of practical operations.
  • This catalyst has strong stability, can be reused many times, has a long service life, and greatly reduces the cost of industrial applications.
  • the preparation method of the precious metal-loaded porous organic framework atomic-level catalyst that can be used for catalytic degradation of VOCs at room temperature of the present invention includes the following steps:
  • the oil bath temperature is 40-60°C, and the reaction time is 4-6h. At this temperature, the reaction rate is accelerated, and the damage to the organic framework by high temperature is avoided.
  • the porous organic framework is completely immersed in a precious metal salt solution of 0.05-0.5 mol/L, ultrasonically treated for 1-5 h, and then allowed to stand at 10-30 °C for 6-12 h to obtain a precious metal-loaded porous Organic framework.
  • the mass ratio of the mass of the precious metal in the precious metal salt solution to the porous organic framework is 0.05-0.5%.
  • the noble metal salt solution is any one of HAuCl 4 and H 2 PtCl 6.
  • the noble metal salt solution is H 2 PtCl 6 solution, and the Pt atomic grade catalyst has better catalytic performance.
  • the ultrasound time is 1.5-3h, which can uniformly load the noble metal onto the pyridine-amide porous organic framework.
  • the time is too short, the dispersion is uneven, and the time is too long and time-consuming.
  • the completed precious metal-loaded pyridine-amide porous organic framework is taken out and placed in a horse boiling furnace at 100-600°C for 2-6 hours to obtain the precious metal-loaded pyridine-amide porous organic framework atomic-level active site catalyst.
  • the calcination temperature is 200-400°C, which avoids high temperature damage to the pyridine-amide porous organic framework.
  • the calcination time is 3-6 hours, so that the precious metal can be more stably supported on the porous organic framework.
  • the completed Pt metal-loaded pyridine-amide porous organic framework is taken out and placed in a horse boiling furnace at 100° C. for 6 h to obtain the Pt metal-loaded pyridine-amide porous organic framework atomic-level active site catalyst.
  • the catalyst of this example was installed in a fixed bed reactor, and methanol, toluene, ethanol, and acetone were used as the evaluation pollutants of the catalytic reaction for catalytic evaluation.
  • the catalyst is put into a quartz tube with an inner diameter of 8mm for testing.
  • the catalytic reaction device has a length of 40mm, a volatile organic compound solubility of 1000ppm, a space velocity of 25000h -1 , and a reaction temperature of 25°C.
  • the catalytic oxidation reaction is carried out under oxygen conditions. The results are shown in Table 1.
  • the completed Pt metal-loaded pyridine-amide porous organic framework is taken out and placed in a horse boiling furnace at 200° C. for 5 h to obtain the Pt metal-loaded pyridine-amide porous organic framework atomic-level active site catalyst.
  • the catalyst of this example was installed in a fixed bed reactor, and methanol, toluene, ethanol, and acetone were used as the evaluation pollutants of the catalytic reaction for catalytic evaluation.
  • the catalyst is put into a quartz tube with an inner diameter of 8mm for testing.
  • the catalytic reaction device has a length of 40mm, a volatile organic compound solubility of 1000ppm, a space velocity of 25000h -1 , and a reaction temperature of 25°C.
  • the catalytic oxidation reaction is carried out under the condition of ozone. The results are shown in Table 1.
  • the completed Pt metal-loaded pyridine-amide porous organic framework is taken out and placed in a horse boiling furnace at 300° C. for 4 hours to obtain the Pt metal-loaded pyridine-amide porous organic framework atomic-level active site catalyst.
  • the catalyst of this example was installed in a fixed bed reactor, and methanol, toluene, ethanol, and acetone were used as the evaluation pollutants of the catalytic reaction for catalytic evaluation.
  • the catalyst is put into a quartz tube with an inner diameter of 8mm for testing.
  • the catalytic reaction device has a length of 40mm, a volatile organic compound solubility of 1000ppm, a space velocity of 25000h -1 , and a reaction temperature of 25°C.
  • the catalytic oxidation reaction is carried out under oxygen conditions. The results are shown in Table 1.
  • the porous organic framework is completely immersed in a 0.4 mol/L HAuCl 4 solution, ultrasonically treated for 3 hours, and then allowed to stand at 20° C. for 8 hours to obtain a porous organic framework supporting Au metal.
  • the mass ratio of the Au element in the HAuCl 4 solution to the pyridine-amide porous organic skeleton is 0.4%.
  • the completed Au metal-loaded pyridine-amide porous organic framework is taken out and placed in a horse boiling furnace at 400° C. for 3 h to obtain the Au metal-loaded pyridine-amide porous organic framework atomic-level active site catalyst.
  • the catalyst of this example was installed in a fixed bed reactor, and methanol, toluene, ethanol, and acetone were used as the evaluation pollutants of the catalytic reaction for catalytic evaluation.
  • the catalyst is put into a quartz tube with an inner diameter of 8mm for testing.
  • the catalytic reaction device has a length of 40mm, a volatile organic compound solubility of 1000ppm, a space velocity of 25000h -1 , and a reaction temperature of 25°C.
  • the catalytic oxidation reaction is carried out under oxygen conditions. The results are shown in Table 1.
  • the porous organic framework is completely immersed in a 0.5 mol/L HAuCl 4 solution, ultrasonically treated for 5 hours, and then allowed to stand at 30° C. for 12 hours to obtain a porous organic framework supporting Au metal.
  • the mass ratio of the Au element in the HAuCl 4 solution to the pyridine-amide porous organic skeleton is 0.5%.
  • the completed Au metal-supported pyridine-amide porous organic framework was taken out, and placed in a horse boiling furnace at 600° C. for 2 h to obtain the Au metal-supported pyridine-amide porous organic framework atomic-level active site catalyst.
  • the catalyst of this example was installed in a fixed bed reactor, and methanol, toluene, ethanol, and acetone were used as the evaluation pollutants of the catalytic reaction for catalytic evaluation.
  • the catalyst is put into a quartz tube with an inner diameter of 8mm for testing.
  • the catalytic reaction device has a length of 40mm, a volatile organic compound solubility of 1000ppm, a space velocity of 25000h -1 , and a reaction temperature of 25°C.
  • the catalytic oxidation reaction is carried out under the condition of ozone. The results are shown in Table 1.
  • the pyridine-amide porous organic framework atomic-level active site catalyst loaded with Pt and Au metals has a good degradation rate for methanol, toluene, ethanol, and acetone.
  • This catalyst has good degradation rates for a variety of VOCs. Degradation effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Pyridine Compounds (AREA)

Abstract

可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法,步骤为:(a)制备载体,将2,6-二氨基吡啶和1,3,5-苯三甲酰氯加入到含三乙胺的二氯甲烷溶液并搅拌均匀,放置到油浴锅中加热反应,得到含吡啶-酰胺官能团的多孔有机骨架。(b)浸渍负载贵金属,将吡啶-酰胺多孔有机骨架完全浸渍到贵金属盐溶液中,经过超声处理并静置,然后加入硼氢化钠溶液还原贵金属,洗涤干燥后得到负载贵金属的吡啶-酰胺多孔有机骨架原子级活性位点催化剂半成品。(c)煅烧,将半成品放置马沸炉中煅烧,煅烧完成后得到成品。该催化剂原子分散度高,可形成原子级活性位点,大大提高催化效率。

Description

可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法 技术领域
本发明涉及多孔有机骨架原子级催化剂的制备方法,尤其涉及可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法。
背景技术
挥发性有机物(VOCs)是一类重要的空气污染物,世界卫生组织定义为沸点50~260℃、室温下饱和蒸气压超过133Pa的有机化合物,包括烷烃类、烯烃类、芳烃及其衍生物、醇类、醛酮类、胺和酰胺类、酸和酸酐类等。VOCs是一类重要的大气污染物。
我国当前常用的VOCs销毁方式有催化焚烧,低温等离子,紫外光催化等方法,这些方法往往需要高温条件,能耗高,且在处理易燃易爆VOCs时存在安全隐患。
发明内容
本发明的目的在于克服已有技术的缺点,提供可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法,此催化剂有原子级活性位点,催化性能优,可重复使用,可在常温条件下催化降解VOCs。
为了达到上述目的,本发明采用的技术方案是:
本发明贵金属负载在吡啶-酰胺多孔有机骨架的原子级活性位点催化剂制备方法,包括以下步骤:
(a)制备载体:
(1)将三乙胺加入到二氯甲烷溶液中,搅拌均匀得到第一溶液,所述的三乙胺与二氯甲烷体积比为1:10;
(2)将摩尔比为3:1的2,6-二氨基吡啶和1,3,5-苯三甲酰氯加入到所述的第一溶液中并搅拌均匀得到第二溶液;所述的2,6-二氨基吡啶和1,3,5-苯三甲酰氯的总体积与第一溶液的体积比为1:2;
(3)将所述的第二溶液放置在油浴锅中在20-90℃下反应2~8h,生成含有吡啶-酰胺官能团的多孔有机骨架;
(b)浸渍负载贵金属
(1)将所述的多孔有机骨架完全浸渍在0.05-0.5mol/L的贵金属盐溶液中,进行超声处理1-5h,然后在10-30℃下静置6-12h,得到负载贵金属的多孔有机骨架;所述贵金属盐溶液中贵金属的质量与多孔有机骨架的质量比为0.05-0.5%;
(2)将浓度为0.1-0.5mol/l的硼氢化钠溶液逐滴加入到静置后的浸渍有吡啶-酰胺多孔有机骨架的贵金属盐溶液中,剧烈搅拌直到不再产生氢气,使吡啶-酰胺多孔有机骨架负载的贵金属被还原;
(3)将负载了贵金属的多孔有机骨架取出,用去离子水洗涤多次,置于真空干燥箱中,在20-80℃下干燥2-6h;
(c)煅烧
将完成的负载贵金属的吡啶-酰胺多孔有机骨架取出,放置在马沸炉中在100-600℃下煅烧2-6h,得到负载贵金属的吡啶-酰胺多孔有机骨架原子级活性位点催化剂。
与已有技术相比,本发明的有益效果如下:
1.吡啶-酰胺多孔有机骨架合成简单,稳定性高,易于调控活性位点等优点。且氨基的存在有利于原子的分散,多孔在一定程度上可以避免原子团聚现象,达到真正的具有原子级活性位点的催化剂,从而获得更高的催化性能。
2.由于此催化剂优异的催化性能,使得VOCs可在常温下被催化降解,降低了实际应用的能耗,增强了实际操作的安全性。
3.此催化剂稳定性强,可多次重复使用,使用寿命长,大大降低工业应用的成本。
具体实施方式
下面将结合本发明实施案例,对本发明实施案例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法,包括以下步骤:
(a)制备载体:
(1)将三乙胺加入到二氯甲烷溶液中,搅拌均匀得到第一溶液,所述的三乙胺与二氯甲烷体积比为1:10。
(2)将摩尔比为3:1的2,6-二氨基吡啶和1,3,5-苯三甲酰氯加入到所述的第一溶液中并搅拌均匀得到第二溶液;所述的2,6-二氨基吡啶和1,3,5-苯三甲酰氯的总体积与第一溶液的体积比为1:2。
(3)将所述的第二溶液放置在油浴锅中在20-90℃下反应2~8h,生成含有吡啶-酰胺官能团的多孔有机骨架。
优选的,油浴温度为40-60℃,反应时间为4-6h。在此温度下既加快了反应速率,又避免了高温对有机骨架的破坏。
(b)浸渍负载贵金属
(1)将所述的多孔有机骨架完全浸渍在0.05-0.5mol/L的贵金属盐溶液中,进行超声处理1-5h,然后在10-30℃下静置6-12h,得到负载贵金属的多孔有机骨架。所述贵金属盐溶液中贵金属的质量与多孔有机骨架的质量比为0.05-0.5%。
所属贵金属盐溶液为HAuCl 4、H 2PtCl 6中的任意一种,优选的,贵金属盐溶液为H 2PtCl 6溶液,Pt原子级催化剂具有较好的催化性能。
优选的,超声时间为1.5-3h,可以使贵金属均匀的负载到吡啶-酰胺多孔有机骨架,时间过短,分散不均,时间过长,耗时。
(2)将浓度为0.1-0.5mol/l的硼氢化钠溶液逐滴加入到静置后的浸渍有吡啶-酰胺多孔有机骨架的贵金属盐溶液中,剧烈搅拌直到不再产生氢气,使吡啶-酰胺多孔有机骨架负载的贵金属被还原。
(3)将负载了贵金属的多孔有机骨架取出,用去离子水洗涤多次,置于真空干燥箱中,在20-80℃下干燥2-6h。
(c)煅烧
将完成的负载贵金属的吡啶-酰胺多孔有机骨架取出,放置在马沸炉中在100-600℃下煅烧2-6h,得到负载贵金属的吡啶-酰胺多孔有机骨架原子级活性位点催化剂。
优选的,煅烧温度为200-400℃,避免了高温对吡啶-酰胺多孔有机骨架的破坏。优选的,煅烧时间为3-6h,使贵金属更稳定的负载到多孔有机骨架上。
实施例1
(a)制备载体
(1)将三乙胺加入到二氯甲烷溶液中,搅拌均匀得到第一溶液,三乙胺与二氯甲烷体积比为1:10。
(2)将摩尔比为3:1的2,6-二氨基吡啶和1,3,5-苯三甲酰氯加入到所述的第一溶液中并搅拌均匀得到第二溶液;2,6-二氨基吡啶和1,3,5-苯三甲酰氯的总体积与第一溶液的体积比为1:2。
(3)将所述的第二溶液放置在油浴锅中在20℃下反应8h,生成含有吡啶-酰胺官能团的多孔有机骨架。
(b)浸渍负载Pt金属
(1)将所述的多孔有机骨架完全浸渍到0.05mol/L的H 2PtCl 6溶液中,进行超声处理1h,然后在10℃下静置6h,得到负载Pt金属的多孔有机骨架。所述的H 2PtCl 6溶液中Pt元素的质量与吡啶-酰胺多孔有机骨架的质量比为0.05%。
(2)将浓度为0.1mol/l的硼氢化钠溶液逐滴加入到静置后浸渍有吡啶-酰胺多孔有机骨架的溶液中,剧烈搅拌直到不再产生氢气,使吡啶-酰胺多孔有机骨架负载的Pt 4+被还原。
(3)将负载了Pt金属的多孔有机骨架取出,用去离子水洗涤多次,置于真空干燥箱中,在20℃下干燥6h。
(c)煅烧
将完成的负载Pt金属的吡啶-酰胺多孔有机骨架取出,放置在马沸炉中在100℃下煅烧6h,得到负载Pt金属的吡啶-酰胺多孔有机骨架原子级活性位点催化剂。
将本实例的催化剂装于固定床反应装置中,以甲醇,甲苯,乙醇,丙酮作为催化反应的评价污染物进行催化评价。催化剂放入内径为8mm的石英管进行测试,催化反应装置长度40mm,挥发性有机物溶度1000ppm,空速25000h -1,反应温度25℃,在氧气的条件下进行催化氧化反应。结果见表1。
实施例2
(a)制备载体:
(1)将三乙胺加入到二氯甲烷溶液中,搅拌均匀得到第一溶液,三乙胺与二氯甲烷体积比为1:10。
(2)将摩尔比为3:1的2,6-二氨基吡啶和1,3,5-苯三甲酰氯加入到所述的第一溶液中并搅拌均匀得到第二溶液;2,6-二氨基吡啶和1,3,5-苯三甲酰氯总体积与第一溶液的体积比为1:2。
(3)将所述的第二溶液放置在油浴锅中在40℃下反应6h,生成含有吡啶-酰胺官能团的多孔有机骨架。
(b)浸渍负载Pt金属
(1)将所述的多孔有机骨架完全浸渍到0.2mol/L的H 2PtCl 6溶液中,进行超声处理1.5h,然后在20℃下静置8h,得到负载Pt金属的多孔有机骨架。所述的H 2PtCl 6溶液中Pt元素的质量与吡啶-酰胺多孔有机骨架的质量比为0.1%。
(2)将浓度为0.2mol/l的硼氢化钠溶液逐滴加入到静置后浸渍有吡啶-酰胺多孔有机骨架的溶液中,剧烈搅拌直到不再产生氢气,使吡啶-酰胺多孔有机骨架负载的Pt 4+金属被还原。
(3)将负载了Pt金属的多孔有机骨架取出,用去离子水洗涤多次,置于真空干燥箱中,在50℃下干燥4h。
(c)煅烧
将完成的负载Pt金属的吡啶-酰胺多孔有机骨架取出,放置在马沸炉中在200℃下煅烧5h,得到负载Pt金属的吡啶-酰胺多孔有机骨架原子级活性位点催化剂。
将本实例的催化剂装于固定床反应装置中,以甲醇,甲苯,乙醇,丙酮作为催化反应的评价污染物进行催化评价。催化剂放入内径为8mm的石英管进行测试,催化反应装置长度40mm,挥发性有机物溶度1000ppm,空速25000h -1,反应温度25℃,在臭氧的条件下进行催化氧化反应。结果见表1。
实施例3
(a)制备载体:
(1)将三乙胺加入到二氯甲烷溶液中,搅拌均匀得到第一溶液,三乙胺与二氯甲烷体积比为1:10。
(2)将摩尔比为3:1的2,6-二氨基吡啶和1,3,5-苯三甲酰氯加入到所述的第一溶液中并搅拌均匀得到第二溶液;2,6-二氨基吡啶和1,3,5-苯三甲酰氯的总体积与第一溶液的体积比为1:2。
(3)将所述的第二溶液放置在油浴锅中在50℃下反应5h,生成含有吡啶-酰胺官能团的多孔有机骨架。
(b)浸渍负载Pt金属
(1)将所述的多孔有机骨架完全浸渍到0.3mol/L的H 2PtCl 6溶液中,进行超声处理2h,然后在20℃下静置8h,得到负载Pt金属的多孔有机骨架。所述的H 2PtCl 6溶液中Pt元素的质量与吡啶-酰胺多孔有机骨架的质量比为0.2%。
(2)将浓度为0.2mol/l的硼氢化钠溶液逐滴加入到静置后浸渍有吡啶-酰胺多孔有机骨架的溶液中,剧烈搅拌直到不再产生氢气,使吡啶-酰胺多孔有机骨架负载的Pt 4+金属被还原。
(3)将负载了Pt金属的多孔有机骨架取出,用去离子水洗涤多次,置于真空干燥箱中,在60℃下干燥3h。
(c)煅烧
将完成的负载Pt金属的吡啶-酰胺多孔有机骨架取出,放置在马沸炉中在300℃下煅烧4h,得到负载Pt金属的吡啶-酰胺多孔有机骨架原子级活性位点催化剂。
将本实例的催化剂装于固定床反应装置中,以甲醇,甲苯,乙醇,丙酮作为催化反应的评价污染物进行催化评价。催化剂放入内径为8mm的石英管进行测试,催化反应装置长度40mm,挥发性有机物溶度1000ppm,空速25000h -1,反应温度25℃,在氧气的条件下进行催化氧化反应。结果见表1。
实施例4
(a)制备载体:
(1)将三乙胺加入到二氯甲烷溶液中,搅拌均匀得到第一溶液,三乙胺与二氯甲烷体积比为1:10。
(2)将摩尔比为3:1的2,6-二氨基吡啶和1,3,5-苯三甲酰氯加入到所述的第一溶液中并搅拌均匀得到第二溶液;2,6-二氨基吡啶和1,3,5-苯三甲酰氯的总体积与第一溶液的体积比为1:2。
(3)将所述的第二溶液放置在油浴锅中在60℃下反应4h,生成含有吡啶-酰胺官能团的多孔有机骨架。
(b)浸渍负载Au金属
(1)将所述的多孔有机骨架完全浸渍到0.4mol/L的HAuCl 4溶液中,进行超声处理3h,然后在20℃下静置8h,得到负载Au金属的多孔有机骨架。所述的HAuCl 4溶液中Au元素的质量与吡啶-酰胺多孔有机骨架的质量比为0.4%。
(2)将浓度为0.2mol/l的硼氢化钠溶液逐滴加入到静置后浸渍有吡啶-酰胺多孔有机骨架的溶液中,剧烈搅拌直到不再产生氢气,使吡啶-酰胺多孔有机骨架负载的Au 3+金属被还原。
(3)将负载了Au金属的多孔有机骨架取出,用去离子水洗涤多次,置于真空干燥箱中,在70℃下干燥2.5h。
(c)煅烧
将完成的负载Au金属的吡啶-酰胺多孔有机骨架取出,放置在马沸炉中在400℃下煅烧3h,得到负载Au金属的吡啶-酰胺多孔有机骨架原子级活性位点催化剂。
将本实例的催化剂装于固定床反应装置中,以甲醇,甲苯,乙醇,丙酮作为催化反应的评价污染物进行催化评价。催化剂放入内径为8mm的石英管进行测试,催化反应装置长度40mm,挥发性有机物溶度1000ppm,空速 25000h -1,反应温度25℃,在氧气的条件下进行催化氧化反应。结果见表1。
实施例5
(a)制备载体:
(1)将三乙胺加入到二氯甲烷溶液中,搅拌均匀得到第一溶液,三乙胺与二氯甲烷体积比为1:10。
(2)将摩尔比为3:1的2,6-二氨基吡啶和1,3,5-苯三甲酰氯加入到所述的第一溶液中并搅拌均匀得到第二溶液;2,6-二氨基吡啶和1,3,5-苯三甲酰氯的总体积与第一溶液的体积比为1:2。
(3)将所述的第二溶液放置在油浴锅中在90℃下反应2h,生成含有吡啶-酰胺官能团的多孔有机骨架。
(b)浸渍负载Au金属
(1)将所述的多孔有机骨架完全浸渍到0.5mol/L的HAuCl 4溶液中,进行超声处理5h,然后在30℃下静置12h,得到负载Au金属的多孔有机骨架。所述的HAuCl 4溶液中Au元素的质量与吡啶-酰胺多孔有机骨架的质量比为0.5%。
(2)将浓度为0.5mol/l的硼氢化钠溶液逐滴加入到静置后浸渍有吡啶-酰胺多孔有机骨架的溶液中,剧烈搅拌直到不再产生氢气,使吡啶-酰胺多孔有机骨架负载的Au 3+金属被还原。
(3)将负载了Au金属的多孔有机骨架取出,用去离子水洗涤多次,置于真空干燥箱中,在80℃下干燥2h。
(c)煅烧
将完成的负载Au金属的吡啶-酰胺多孔有机骨架取出,放置在马沸炉中在600℃下煅烧2h,得到负载Au金属的吡啶-酰胺多孔有机骨架原子级活性位点催化剂。
将本实例的催化剂装于固定床反应装置中,以甲醇,甲苯,乙醇,丙酮作为催化反应的评价污染物进行催化评价。催化剂放入内径为8mm的石英管进行测试,催化反应装置长度40mm,挥发性有机物溶度1000ppm,空速25000h -1,反应温度25℃,在臭氧的条件下进行催化氧化反应。结果见表1。
表1.常温催化氧化评价结果
Figure PCTCN2019112570-appb-000001
从上表可以看到,负载Pt、Au金属的吡啶-酰胺多孔有机骨架原子级活性位点催化剂对甲醇、甲苯、乙醇、丙酮有很好的降解率,此催化剂对多种VOCs有较好的降解效果。

Claims (5)

  1. 可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法,其特征在于包括以下步骤:
    (a)制备载体:
    (1)将三乙胺加入到二氯甲烷溶液中,搅拌均匀得到第一溶液,所述的三乙胺与二氯甲烷体积比为1:10;
    (2)将摩尔比为3:1的2,6-二氨基吡啶和1,3,5-苯三甲酰氯加入到所述的第一溶液中并搅拌均匀得到第二溶液;所述的2,6-二氨基吡啶和1,3,5-苯三甲酰氯的总体积与第一溶液的体积比为1:2;
    (3)将所述的第二溶液放置在油浴锅中在20-90℃下反应2~8h,生成含有吡啶-酰胺官能团的多孔有机骨架;
    (b)浸渍负载贵金属
    (1)将所述的多孔有机骨架完全浸渍在0.05-0.5mol/L的贵金属盐溶液中,进行超声处理1-5h,然后在10-30℃下静置6-12h,得到负载贵金属的多孔有机骨架;所述贵金属盐溶液中贵金属的质量与多孔有机骨架的质量比为0.05-0.5%;
    (2)将浓度为0.1-0.5mol/l的硼氢化钠溶液逐滴加入到静置后的浸渍有吡啶-酰胺多孔有机骨架的贵金属盐溶液中,剧烈搅拌直到不再产生氢气,使吡啶-酰胺多孔有机骨架负载的贵金属被还原;
    (3)将负载了贵金属的多孔有机骨架取出,用去离子水洗涤多次,置于真空干燥箱中,在20-80℃下干燥2-6h;
    (c)煅烧
    将完成的负载贵金属的吡啶-酰胺多孔有机骨架取出,放置在马沸炉中在 100-600℃下煅烧2-6小时,得到负载贵金属的吡啶-酰胺多孔有机骨架原子级活性位点催化剂。
  2. 根据权利要求1所述的可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法,其特征在于:所述的步骤(a)中油浴温度为40-60℃,反应时间为4-6h。
  3. 根据权利要求1或者2所述的可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法,其特征在于:所述贵金属盐溶液为HAuCl 4或者H 2PtCl 6
  4. 根据权利要求3所述的可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法,其特征在于:所述的步骤(b)中超声时间为1.5-3h。
  5. 根据权利要求3所述的可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法,其特征在于:所述的步骤(c)中煅烧温度为200-400℃,煅烧时间为3-6h。
PCT/CN2019/112570 2019-04-12 2019-10-22 可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法 WO2020206976A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/739,059 US20200324278A1 (en) 2019-04-12 2020-01-09 Method for preparing porous organic framework-supported atomic noble metal catalystfor catalytic oxidation of vocs at room temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910294705.1 2019-04-12
CN201910294705.1A CN110026246B (zh) 2019-04-12 2019-04-12 可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/739,059 Continuation US20200324278A1 (en) 2019-04-12 2020-01-09 Method for preparing porous organic framework-supported atomic noble metal catalystfor catalytic oxidation of vocs at room temperature

Publications (1)

Publication Number Publication Date
WO2020206976A1 true WO2020206976A1 (zh) 2020-10-15

Family

ID=67238133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112570 WO2020206976A1 (zh) 2019-04-12 2019-10-22 可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法

Country Status (2)

Country Link
CN (1) CN110026246B (zh)
WO (1) WO2020206976A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026246B (zh) * 2019-04-12 2020-08-28 天津大学 可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法
CN111097407A (zh) * 2019-11-19 2020-05-05 浙江工业大学 一种负载型纳米Pt/Al2O3催化剂的制备方法
CN112387312A (zh) * 2020-11-02 2021-02-23 天津理工大学 一种基于mof限域负载金纳米颗粒催化剂的制备方法
CN114160198A (zh) * 2021-12-16 2022-03-11 中国船舶重工集团公司第七一九研究所 用于CO2催化加氢制甲醇的Pt/POP催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2502671A2 (en) * 2009-11-19 2012-09-26 Korea Research Institute Of Chemical Technology Crystalline porous organic-inorganic hybrid material and a production method therefor
CN103896832A (zh) * 2013-04-02 2014-07-02 赣南师范学院 一种对苯专一吸附的纯有机孔状材料及其制备方法
CN106238041A (zh) * 2016-07-28 2016-12-21 天津大学 一种常温下催化挥发性有机物臭氧化分解的催化剂的制备方法
CN107308983A (zh) * 2017-06-30 2017-11-03 科比环保科技(天津自贸试验区)有限公司 室温除室内voc的催化剂及其制备方法
CN108620132A (zh) * 2018-05-03 2018-10-09 华南理工大学 一种Pt NPs@MOFs光催化剂及其制备方法与应用
CN109012659A (zh) * 2018-07-19 2018-12-18 天津大学 一种用于常温催化降解VOCs的负载贵金属的活性炭纤维单原子催化剂的制备方法
CN110026246A (zh) * 2019-04-12 2019-07-19 天津大学 可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2502671A2 (en) * 2009-11-19 2012-09-26 Korea Research Institute Of Chemical Technology Crystalline porous organic-inorganic hybrid material and a production method therefor
CN103896832A (zh) * 2013-04-02 2014-07-02 赣南师范学院 一种对苯专一吸附的纯有机孔状材料及其制备方法
CN106238041A (zh) * 2016-07-28 2016-12-21 天津大学 一种常温下催化挥发性有机物臭氧化分解的催化剂的制备方法
CN107308983A (zh) * 2017-06-30 2017-11-03 科比环保科技(天津自贸试验区)有限公司 室温除室内voc的催化剂及其制备方法
CN108620132A (zh) * 2018-05-03 2018-10-09 华南理工大学 一种Pt NPs@MOFs光催化剂及其制备方法与应用
CN109012659A (zh) * 2018-07-19 2018-12-18 天津大学 一种用于常温催化降解VOCs的负载贵金属的活性炭纤维单原子催化剂的制备方法
CN110026246A (zh) * 2019-04-12 2019-07-19 天津大学 可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法

Also Published As

Publication number Publication date
CN110026246B (zh) 2020-08-28
CN110026246A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2020206976A1 (zh) 可用于常温催化降解VOCs的负载贵金属的多孔有机骨架原子级催化剂的制备方法
CN109012659B (zh) 一种用于常温催化降解VOCs的负载贵金属的活性炭纤维单原子催化剂的制备方法
CN108993499B (zh) 一种常温催化降解VOCs的负载单原子Pt的稀土金属氧化物催化剂的制备方法
JP2016533872A (ja) マイクロ波補助でscr脱硝触媒を再生する方法及びその装置
CN107362807A (zh) 一种Mn/Co基低温SCO催化剂及其制备方法
US20200324278A1 (en) Method for preparing porous organic framework-supported atomic noble metal catalystfor catalytic oxidation of vocs at room temperature
CN110813380B (zh) 一种酮铜配合物催化剂及其制备方法与在乙炔氢氯化反应中的应用
CN107731570B (zh) 一种超级电容炭表面化学基团消除的方法
CN108176396A (zh) 一种甲醛去除剂及其制备方法和应用
CN105970193A (zh) 一种高比表面积金属气凝胶及其制备方法
CN108636417A (zh) 一种脱除no的金属氧化物催化剂及其制备方法
JP5728364B2 (ja) 金属担持触媒の製造法および燃料電池の触媒層
CN108940306A (zh) 一种有序多孔PtCu/CeO2催化剂及其制备方法和应用
CN110368936A (zh) 一种纳米材料改性铜基负载型乙炔氢氯化催化剂及其制备方法
CN107834079A (zh) 一种用于提高甲酸燃料电池电氧化活性的实现方法
Gonzalez et al. Heats of Adsorption of Oxygen on Nickel, Platinum and Silver1
CN101856612B (zh) 纳米贵金属催化剂的制备方法
CN109112571A (zh) 一种基于氧化铂合金负载硼,氮掺杂金刚石的催化剂及其制备方法和应用
CN105322183A (zh) 一种二氧化碳电化学还原反应用电极的制备方法
CN102744052A (zh) 一种增加纳米TiO2/AC光催化剂活性的方法
CN108786896A (zh) 一种贵金属催化剂的制备方法
CN105664928A (zh) 一种室温降解空气中甲醛的负载铂的柚子壳活性炭催化剂的制备方法
CN102407071A (zh) 一种微波催化选择性还原反应脱硝方法
CN106732566A (zh) 一种碳纳米管负载金属钌纳米粒子催化剂的制备方法
JP5869668B2 (ja) パラジウムナノ粒子からの界面活性剤の除去

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19923875

Country of ref document: EP

Kind code of ref document: A1