WO2020204226A1 - 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법 - Google Patents

드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법 Download PDF

Info

Publication number
WO2020204226A1
WO2020204226A1 PCT/KR2019/003933 KR2019003933W WO2020204226A1 WO 2020204226 A1 WO2020204226 A1 WO 2020204226A1 KR 2019003933 W KR2019003933 W KR 2019003933W WO 2020204226 A1 WO2020204226 A1 WO 2020204226A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
mixed solution
polymer
conductive polymer
manufacturing
Prior art date
Application number
PCT/KR2019/003933
Other languages
English (en)
French (fr)
Inventor
정하철
권다혜
문진희
김영진
안진우
최원정
이승아
김아희
박하나
Original Assignee
재단법인 오송첨단의료산업진흥재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 오송첨단의료산업진흥재단 filed Critical 재단법인 오송첨단의료산업진흥재단
Priority to US17/437,340 priority Critical patent/US20220149284A1/en
Priority to JP2021557575A priority patent/JP7265033B2/ja
Priority to PCT/KR2019/003933 priority patent/WO2020204226A1/ko
Priority to EP19922839.6A priority patent/EP3923358B1/en
Publication of WO2020204226A1 publication Critical patent/WO2020204226A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/268Bioelectric electrodes therefor characterised by the electrode materials containing conductive polymers, e.g. PEDOT:PSS polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/41Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the carrier layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes

Definitions

  • the present invention relates to a method of manufacturing a conductive polymer electrode, and more particularly, a conductive polymer electrode fabrication using drop casting to fabricate a conductive polymer electrode using a conductive material (Carbon nanofiber) and polymer materials by a drop casting method. It's about how.
  • Metal electrodes used in conventional thin-film transistors have an unstable contact interface with organic semiconductors, and thus act as a factor that deteriorates the characteristics of the device.
  • To overcome these problems research to replace the existing metal electrodes with organic electrodes is actively progressing. Has become.
  • Organic electrodes currently being studied include conductive polymers such as PEDOT/PSS, polyaniline (PANI), polypyrrole (PPy), and carbon nanotubes and graphene.
  • Korean Patent Laid-Open No. 10-2012-0090594 discloses a technology for forming a polymer electrode by drying a conductive polymer aqueous solution
  • Korean Patent Laid-Open No. 10-2016-0049555 discloses graphene oxide in the electrode structure.
  • Disclosed is a technology related to a light emitting diode to be used.
  • a conductive polymer electrode it is important to evenly disperse the conductive material in a solvent.
  • a conductive material for example, when nanotubes are dispersed in a solvent, the cohesive force is high during the dispersion process, resulting in a phenomenon of agglomeration. Such a clustering phenomenon eventually increases the resistance of the conductive polymer electrode, thereby deteriorating electrical properties.
  • an object of the present invention is to produce a conductive polymer electrode using a conductive material (Carbon nanofiber) and polymer materials by a drop casting method, such as electrical conductivity. It relates to a method of manufacturing a conductive polymer electrode using drop casting with improved electrical properties.
  • a first mixed solution is prepared by dispersing a conductive material in a solvent.
  • a second mixed solution is prepared by adding and dispersing the first polymer solution to the first mixed solution.
  • a third mixed solution is prepared by adding and dispersing a second polymer solution to the second mixed solution. While the third mixed solution is dropped onto a hot plate through a pipette, the solvent mixed in the third mixed solution is evaporated to prepare a conductive polymer. Make an adhesive patch. The adhesive patch is adhered to the conductive polymer.
  • the solvent may be isopropyl alcohol (IPA)
  • the conductive material may be carbon nanofibers.
  • the first polymer solution may be a monomer type solution of EcoFlex
  • the second polymer solution may be a crosslinker solution of EcoFlex
  • the conductive material in the step of preparing the first mixed solution, may be added to the solution, dispersed using a vortex mixer, and then dispersed for a predetermined time through an ultrasonic cleaner.
  • the first polymer solution is added to the first mixed solution and dispersed using a vortex mixer, and then dispersed evenly for a predetermined time through an ultrasonic cleaner.
  • the second polymer solution in the step of preparing the third mixed solution, is added to the second mixed solution and dispersed using a vortex mixer, and then dispersed evenly for a predetermined time through an ultrasonic cleaner. have.
  • the amount of each of the first polymer solution and the second polymer solution may be 1.5 times the amount of the conductive material.
  • pipetting of the third mixed solution may include dropping and applying the solution onto a petri dish, and heating the petri dish on a hot plate.
  • a conductive polymer having a predetermined thickness may be manufactured by repeating the step of applying to the petri dish and the step of heating.
  • the step of manufacturing the adhesive patch may include coating the Sylgard 184 solution on the wafer and coating the MG7-9850 solution on the wafer coated with the Sylgard 184 solution.
  • the wafer in the step of coating the Sylgard 184 solution on a wafer, all air bubbles generated while mixing the Sylgard 184 monomer and the Sylgard 184 crosslinking agent in a ratio of 1:1 are removed using a vacuum desiccator, and After the Sylgard 184 solution from which the air bubbles have been removed is spin-coated on the wafer, the wafer may be thermally cured on a hot plate for a predetermined time.
  • MG7-9850 monomer and MG7-9850 crosslinking agent are mixed in a 1:1 ratio and then using a vacuum desiccator. All air bubbles generated during mixing are removed, and the MG7-9850 solution from which the air bubbles have been removed is spin-coated on the wafer, and then the wafer may be thermally cured on a hot plate for a predetermined time.
  • a mixed solution in which a conductive material and a polymer are mixed using a drop casting method and evaporating the solvent, aggregation between the conductive material and the polymer in the mixed solution in the conventional dispersion process.
  • the problem of increasing electrical resistance due to the phenomenon can be solved, and a polymer electrode having improved electrical properties such as conductivity can be manufactured.
  • the number of drops for the mixed solution is 5 to 10 times, and the amount of each of the monomer as the first polymer solution and the crosslinking agent as the second polymer solution is the conductive material By forming so as to be 1.5 times the amount of, it is possible to manufacture a polymer electrode with improved optimal conductivity.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a conductive polymer electrode using drop casting according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a step of manufacturing a conductive polymer in the method of manufacturing a conductive polymer electrode using drop casting of FIG. 1.
  • 3A to 3F are process diagrams illustrating steps of preparing first, second and third mixed solutions and preparing a conductive polymer in the method of manufacturing a conductive polymer electrode using drop casting of FIG. 1.
  • FIG. 1 is a flow chart illustrating a method of manufacturing a conductive polymer electrode using drop casting according to an embodiment of the present invention
  • FIG. 2 is a flowchart illustrating a step of preparing a conductive polymer in the method of manufacturing a conductive polymer electrode using drop casting of FIG. 1
  • 3A to 3F are flowcharts illustrating steps of preparing first, second and third mixed solutions and preparing a conductive polymer in the method of manufacturing a conductive polymer electrode using drop casting of FIG. 1.
  • IPA isopropyl alcohol
  • IPA isopropyl alcohol
  • the conductive material 20 may be, for example, carbon nanofibers.
  • the conductive material 20 is added to the isopropyl alcohol, and the conductive material 20 is generally dispersed using a vortex mixer.
  • the conductive material 20 is further dispersed for a predetermined time, for example, about 100 minutes using an ultrasonic cleaner, through which the conductive material 20 is transferred onto the solvent 10 It is uniformly dispersed, so that the first mixed solution 100 can be prepared.
  • the conductive material 20 is dispersed by supplying a certain amount onto the solvent 10 at a time, as shown in FIG. 3A.
  • the carbon nanofibers are nanostructures made of graphene having a diameter of 50 to 200 nm and have high electrical conductivity or thermal conductivity. It is a material that can increase its properties by mixing it with a matrix material such as plastic to have properties. In this case, it is obvious that the carbon nanofibers can be formed in the form of various nanostructures in addition to the cylindrical shape.
  • a second mixed solution 200 is prepared by adding and dispersing the first polymer solution 30 to the first mixed solution 100 (step S200).
  • the first polymer solution 30 is added to the first mixed solution 100, and the first polymer solution 30 is generally dispersed using a vortex mixer.
  • the dispersion is additionally dispersed for a predetermined time, for example, about 100 minutes using an ultrasonic cleaner, through which the first polymer solution 30 is mixed with the first It is uniformly dispersed on the solution 100, so that the second mixed solution 200 can be prepared.
  • the first polymer solution 30 may supply a required amount to the first mixed solution 100 at one time, as shown in FIG. 3B, and, unlike this, a plurality of uniform amounts at regular intervals. You can also supply sashimi.
  • the first polymer solution 30 is, for example, Smooth-On Inc. Co.'s EcoFlex 0030 or the like may be used, and in this embodiment, the first polymer solution 30 may be a monomer type solution.
  • a third mixed solution 300 is prepared by adding and dispersing the second polymer solution 40 to the second mixed solution 200 (step S300).
  • the second polymer solution 40 is added to the second mixed solution 200, and the second polymer solution 40 is generally dispersed using a vortex mixer.
  • the dispersion is further dispersed for a predetermined time, for example, about 100 minutes using an ultrasonic cleaner, through which the second polymer solution 40 is mixed with the second It is uniformly dispersed on the solution 200, so that the third mixed solution 300 can be prepared.
  • the second polymer solution 40 may supply a required amount to the second mixed solution 200 at a time, as shown in FIG. 3C, and, unlike this, a plurality of uniform amounts at regular intervals. You can also supply sashimi.
  • the second polymer solution 40 is also, for example, Smooth-On Inc. Co.'s EcoFlex 0030 or the like may be used, and in this embodiment, the second polymer solution 40 may be a solution serving as a crosslinking agent.
  • the third mixed solution 300 is dropped on a hot plate through a pipette, that is, through drop casting, the third mixed solution 300 )
  • a conductive polymer by evaporating the solvent 10, for example, isopropyl alcohol (step S400).
  • step S410 a predetermined amount of the third mixed solution 300 is pipetted and applied to a petri dish.
  • the Petri dish is placed on a hot plate and heated for a predetermined time (step S420).
  • 1 mL of the third solution 300 may be pipetted, and the Petri dish coated with the third mixed solution may be heated for 30 minutes on a hot plate at about 75°C.
  • step S410 and step S420 When the above process (step S410 and step S420) is repeated at least five times or more, a conductive polymer 50 having a sufficient thickness is manufactured as shown in FIG. 3F.
  • the third mixed solution 300 when the third mixed solution 300 is taken with a pipette and then applied to a Petri dish, the third mixed solution may be applied to a predetermined thickness by applying a so-called drop casting method. Drop (300) into Petri dish. Thus, after the dropped third mixed solution 300 is heated on the hot plate to evaporate all of the solvent 10, the third mixed solution 300 is additionally dropped onto a petri dish and applied to a predetermined thickness. , Repeat the above process.
  • the third mixed solution 300 is additionally dropped to a predetermined thickness to the solvent 10 By repeating the process of evaporating, it is possible to manufacture the conductive polymer 50 having a predetermined thickness.
  • a conductive polymer having a certain thickness is repeatedly laminated and manufactured, so that a large amount of a third mixed solution is not applied as a thin film in order to manufacture a conductive polymer having a certain thickness at once in the prior art
  • the conductive materials contained in the third mixed solution are agglomerated and aggregated, thereby increasing the resistance of the conductive polymer and reducing the electrical properties.
  • an adhesive patch is produced for the production of a conductive polymer electrode (step S500).
  • the process of manufacturing the adhesive patch includes coating a Sylgard 184 solution on a wafer and coating the MG7-9850 solution on a wafer coated with the Sylgard 184 solution.
  • Sylgard 184 monomer and Sylgard 184 crosslinking agent were mixed in a 1:1 ratio, and then all air bubbles generated while mixing using a vacuum desiccator were removed. Then, the Sylgard 184 solution from which the air bubbles have been removed is coated on the wafer at 200 rpm to 500 rpm using a spin coater, and then the wafer is thermally cured on a hot plate at 120° C. for a predetermined time.
  • the MG7-9850 monomer and the MG7-9850 crosslinking agent were mixed in a 1:1 ratio and then mixed using a vacuum desiccator. After removing all the bubbles, the MG7-9850 solution from which the bubbles have been removed is coated on the wafer at 200 rpm to 500 rpm using a spin coater, and then the wafer is thermally cured on a hot plate at 120° C. for a predetermined time.
  • step S600 the adhesive patch is adhered to the conductive polymer 50.
  • the conductive polymer is cut to fit the size of the adhesive patch so that the adhesive patch covers the entire surface of the conductive polymer 50.
  • the adhesive patch completely covers the conductive polymer and allows it to adhere to the skin.
  • [Table 1] shows the third mixed solution according to the number of drops of the third mixed solution in which the conductive material (CNF), the first polymer solution (ecoflex A), and the second polymer solution (ecoflex B) are mixed.
  • the experimental results showing the change in the resistance value of are illustrated.
  • [Table 2] shows the change in resistance value according to the amount of the conductive material (CNF), the first polymer solution (ecoflex A), and the second polymer solution (ecoflex B) according to isopropyl alcohol (IPA) fixation.
  • Example 2 or Example 5 it can be seen that when the amount of the first and second polymer solutions is 1.5 times the amount of the conductive material, the electrical properties are most excellent.
  • the conductive material and the polymer in the mixed solution are It is possible to solve the problem of an increase in electrical resistance due to the aggregation phenomenon of, and to manufacture a polymer electrode with improved electrical properties such as conductivity.
  • the number of drops for the mixed solution is 5 to 10 times, and the amount of each of the monomer as the first polymer solution and the crosslinking agent as the second polymer solution is the conductive material By forming so as to be 1.5 times the amount of, it is possible to manufacture a polymer electrode with improved optimal conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법에서, 용매에 전도성 물질을 분산시켜 제1 혼합용액을 제조한다. 상기 제1 혼합용액에 제1 폴리머 용액을 첨가하고 분산시켜 제2 혼합용액을 제조한다. 상기 제2 혼합용액에 제2 폴리머 용액을 첨가하고 분산시켜 제3 혼합용액을 제조한다. 상기 제3 혼합용액을 피펫을 통해 핫플레이트 상에 떨어뜨리면서 상기 제3 혼합용액에 혼합된 상기 용매를 증발시켜 전도성 폴리머를 제조한다. 접착성 패치를 제작한다. 상기 접착성 패치를 상기 전도성 폴리머에 접착시킨다.

Description

드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법
본 발명은 전도성 폴리머 전극 제작 방법에 관한 것으로, 더욱 상세하게는 드롭캐스팅(Drop casting) 방법으로 전도성 물질(Carbon nanofiber) 및 폴리머 재료들을 이용하여 전도성 폴리머 전극을 제작하는 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법에 관한 것이다.
기존의 박막 트랜지스터에 사용되는 금속전극은 유기반도체와의 접촉계면이 불안정하여 소자의 특성을 저하시키는 요인으로 작용하기도 하는데 이러한 문제점들을 극복하기 위하여 기존의 금속전극을 유기전극으로 대체하는 연구가 활발히 진행되고 있다.
현재 연구되고 있는 대표적인 유기전극으로는 PEDOT/PSS, 폴리아닐린(polyaniline, PANI), 폴리피롤(polypyrrole, PPy), 등의 전도성 고분자와 탄소나노튜브, 그래핀 등이 있다.
예를 들어, 대한민국 공개특허 제10-2012-0090594호에서는 전도성 고분자 수용액을 건조시켜 고분자 전극을 형성하는 기술을 개시하고 있으며, 대한민국 공개특허 제10-2016-0049555호에서는 그래핀 옥사이드를 전극구조에 이용하는 발광 다이오드에 관한 기술을 개시하고 있다.
하지만, 이러한 종래의 유기 전극의 경우 저항의 증가로 인하여 전도성이 저하되는 현상이 발생하여 제품의 품질과 수명이 떨어지는 문제점이 있다.
특히, 전도성 폴리머 전극의 제조에 있어서는, 용매에 전도성 재료를 고르게 분산시키는 것이 중요한데, 전도성 재료로서 예를 들어 나노튜브들을 용매에 분산시키는 경우 분산되는 과정에서 응집력이 높아 서로 뭉쳐지는 현상이 발생하며, 이와 같은 뭉치는 현상은 결국 전도성 폴리머 전극의 저항을 증가시켜 전기적 성질을 저하시키는 문제가 있다.
따라서, 보다 고른 분산을 위한 공정의 개발이 필요한 상황이다.
관련 선행기술로는 대한민국 공개특허 제10-2012-0090594호 및 대한민국 공개특허 제10-2016-0049555호가 있다.
이에, 본 발명의 기술적 과제는 이러한 점에서 착안된 것으로 본 발명의 목적은 드롭캐스팅(Drop casting) 방법으로 전도성 물질(Carbon nanofiber) 및 폴리머 재료들을 이용하여 전도성 폴리머 전극을 제작함으로써, 전기 전도성과 같은 전기적 특성이 향상된 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법에 관한 것이다.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법에서, 용매에 전도성 물질를 분산시켜 제1 혼합용액을 제조한다. 상기 제1 혼합용액에 제1 폴리머 용액을 첨가하고 분산시켜 제2 혼합용액을 제조한다. 상기 제2 혼합용액에 제2 폴리머 용액을 첨가하고 분산시켜 제3 혼합용액을 제조한다. 상기 제3 혼합용액을 피펫을 통해 핫플레이트 상에 떨어뜨리면서 상기 제3 혼합용액에 혼합된 상기 용매를 증발시켜 전도성 폴리머를 제조한다. 접착성 패치를 제작한다. 상기 접착성 패치를 상기 전도성 폴리머에 접착시킨다.
일 실시예에서, 상기 용매는 이소프로필알코올(IPA)이고, 상기 전도성 물질은 카본 나노섬유(Carbon nanofiber)일 수 있다.
일 실시예에서, 상기 제1 폴리머 용액은 에코플렉스(EcoFlex)의 모노머 형식의 용액이며, 상기 제2 폴리머 용액은 에코플렉스의 가교제 용액일 수 있다.
일 실시예에서, 상기 제1 혼합용액을 제조하는 단계에서, 상기 용액에 상기 전도성 물질을 첨가하고 볼텍스 믹서(vortex mixer)를 이용하여 분산시킨 후, 초음파 세정기를 통해 소정시간 동안 분산시킬 수 있다.
일 실시예에서, 상기 제2 혼합용액을 제조하는 단계에서, 상기 제1 혼합용액에 상기 제1 폴리머 용액을 첨가하고 볼텍스 믹서를 이용하여 분산시킨 후, 초음파 세정기를 통해 소정 시간 동안 고르게 분산시킬 수 있다.
일 실시예에서, 상기 제3 혼합용액을 제조하는 단계에서, 상기 제2 혼합용액에 상기 제2 폴리머 용액을 첨가하고 볼텍스 믹서를 이용하여 분산시킨 후, 초음파 세정기를 통해 소정 시간 동안 고르게 분산시킬 수 있다.
일 실시예에서, 상기 제1 폴리머 용액 및 상기 제2 폴리머 용액 각각의 양은 상기 전도성 물질의 양의 1.5배일 수 있다.
일 실시예에서, 상기 전도성 폴리머를 제조하는 단계에서, 상기 제3 혼합용액 피펫팅하여 페트리디쉬에 드롭시켜 도포하는 단계 및 상기 페트리디쉬를 핫플레이트 상에서 가열시키는 단계를 포함할 수 있다.
일 실시예에서, 상기 페트리디쉬에 도포하는 단계 및 상기 가열시키는 단계를 반복하여 소정 두께의 전도성 폴리머를 제조할 수 있다.
일 실시예에서, 상기 접착성 패치를 제작하는 단계에서, Sylgard 184 용액을 웨이퍼 상에 코팅시키는 단계 및 MG7-9850 용액을 상기 Sylgard 184 용액이 코팅된 웨이퍼 상에 코팅시키는 단계를 포함할 수 있다.
일 실시예에서, 상기 Sylgard 184 용액을 웨이퍼 상에 코팅시키는 단계에서, Sylgard 184 모노머와 Sylgard 184 가교제를 1:1 비율로 혼합한 후 진공 데시게이터를 이용하여 혼합하면서 발생된 기포들을 모두 제거하고, 상기 기포가 제거된 Sylgard 184 용액을 상기 웨이퍼에 스핀 코팅시킨 후 상기 웨이퍼를 핫플레이트 상에서 소정시간 동안 열경화시킬 수 있다.
일 실시예에서, 상기 MG7-9850 용액을 상기 sylgard 184 용액이 코팅된 웨이퍼 상에 코팅시키는 단계에서, MG7-9850 모노머와 MG7-9850 가교제를 1:1 비율로 혼합한 후 진공 데시게이터를 이용하여 혼합하면서 발생된 기포들을 모두 제거하고, 상기 기포가 제거된 MG7-9850 용액을 상기 웨이퍼에 스핀 코팅시킨 후 상기 웨이퍼를 핫플레이트 상에서 소정시간 동안 열경화시킬 수 있다.
본 발명의 실시예들에 의하면, 전도성 물질 및 폴리머가 섞인 혼합용액에 대하여 드롭캐스팅(drop casting) 방법을 이용하여 분산시키며 용매를 증발시킴으로써, 종래 분산과정에서 혼합용액 내의 전도성 물질과 폴리머 사이의 뭉침 현상으로 인해 전기적 저항이 증가되는 문제를 해결하고, 전도성과 같은 전기적 특성이 향상된 폴리머 전극을 제조할 수 있다.
특히, 전도성과 같은 전기적 특성을 최대로 향상시키기 위해, 상기 혼합 용액에 대한 드롭 횟수를 5번 내지 10번으로 구성하고,제1 폴리머 용액인 모노머와 제2 폴리머 용액인 가교제 각각의 양은 상기 전도성 물질의 양의 1.5배가 되도록 형성하여 최적의 전도성이 향상된 폴리머 전극을 제조할 수 있다.
도 1은 본 발명의 일 실시예에 의한 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법을 도시한 흐름도이다.
도 2는 도 1의 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법에서 전도성 폴리머를 제조하는 단계를 도시한 흐름도이다.
도 3a 내지 도 3f는 도 1의 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법에서 제1, 제2 및 제3 혼합용액들을 제조하는 단계 및 전도성 폴리머를 제조하는 단계를 도시한 공정도들이다.
* 부호의 설명
20 : 전도성 물질 30 : 제1 폴리머 용액
40 : 제2 폴리머 용액 50 : 전도성 폴리머
100 : 제1 혼합용액 200 : 제2 혼합용액
300 : 제3 혼합용액
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 실시예들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "이루어진다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
도 1은 본 발명의 일 실시예에 의한 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법을 도시한 흐름도이고, 도 2는 도 1의 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법에서 전도성 폴리머를 제조하는 단계를 도시한 흐름도이고, 도 3a 내지 도 3f는 도 1의 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법에서 제1, 제2 및 제3 혼합용액들을 제조하는 단계 및 전도성 폴리머를 제조하는 단계를 도시한 공정도들이다.
도 1 및 도 3a를 참조하면, 본 실시예에 의한 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법에서는, 먼저 용매(10)로서 이소프로필알코올(IPA)을 사용하며, 상기 이소프로필알코올(IPA)에 전도성 물질(20)을 분산시켜 제1 혼합용액(100)을 제조한다(단계 S100).
이 경우, 상기 전도성 물질(20)은, 예를 들어, 카본 나노섬유(carbon nanofiber)일 수 있다.
보다 구체적으로, 상기 이소프로필알코올에 상기 전도성 물질(20)을 첨가하고 볼텍스 믹서(vortex mixer)를 이용하여 상기 전도성 물질(20)을 전반적으로 분산시킨다. 또한, 상기와 같은 볼텍스 믹서를 이용한 1차적 분산 이후, 초음파 세정기를 이용하여 소정시간, 예를 들어, 100분 정도 추가로 분산시키며, 이를 통해 상기 전도성 물질(20)은 상기 용매(10) 상에 균일하게 분산되어, 제1 혼합용액(100)을 제조할 수 있게 된다.
이 경우, 상기 전도성 물질(20)은 도 3a에 도시된 바와 같이, 상기 용매(10) 상에 일정량을 한 번에 공급하여, 분산시키게 된다.
여기서, 상기 전도성 물질(20)로 카본 나노섬유가 사용되는 경우, 상기 카본 나노섬유는, 지름이 50 내지 200nm의 원통형의 그래핀(graphene)을 이용하여 만든 나노 구조물로 전기 전도성이나 열전도성이 높은 특성을 가지기 위해 플라스틱과 같은 매트릭스 재료에 혼합하여 특성을 높여 줄 수 있는 재료이다. 이 경우, 상기 카본 나노섬유는 원통형 외에도 다양한 나노 구조물의 형태로 형성될 수 있음은 자명하다.
다음, 도 1 및 도 3b를 참조하면, 상기 제1 혼합용액(100)에 제1 폴리머 용액(30)을 첨가하고 분산시켜 제2 혼합용액(200)을 제조한다(단계 S200).
보다 구체적으로, 상기 제1 혼합용액(100)에 상기 제1 폴리머 용액(30)을 첨가하고 볼텍스 믹서(vortex mixer)를 이용하여 상기 제1 폴리머 용액(30)을 전반적으로 분산시킨다. 또한, 상기와 같은 볼텍스 믹서를 이용한 1차적 분산이 후, 초음파 세정기를 이용하여 소정시간, 예를 들어, 100분 정도 추가로 분산키며, 이를 통해 상기 제1 폴리머 용액(30)은 상기 제1 혼합용액(100) 상에 균일하게 분산되어, 제2 혼합용액(200)을 제조할 수 있게 된다.
이 경우, 상기 제1 폴리머 용액(30)은 도 3b에 도시된 바와 같이, 상기 제1 혼합용액(100) 상에 필요한 양을 한 번에 공급할 수 있으며, 이와 달리 균일한 양을 일정 간격으로 복수 회 공급할 수도 있다.
한편, 상기 제1 폴리머 용액(30)은 예를 들어, Smooth-On Inc. 사의 EcoFlex 0030 등이 사용될 수 있으며, 본 실시예에서, 상기 제1 폴리머 용액(30)은 모노머 형식의 용액일 수 있다.
그 다음, 도 1 및 도 3c를 참조하면, 상기 제2 혼합용액(200)에 제2 폴리머 용액(40)을 첨가하고 분산시켜 제3 혼합용액(300)을 제조한다(단계 S300).
보다 구체적으로, 상기 제2 혼합용액(200)에 상기 제2 폴리머 용액(40)을 첨가하고 볼텍스 믹서(vortex mixer)를 이용하여 상기 제2 폴리머 용액(40)을 전반적으로 분산시킨다. 또한, 상기와 같은 볼텍스 믹서를 이용한 1차적 분산이 후, 초음파 세정기를 이용하여 소정시간, 예를 들어, 100분 정도 추가로 분산키며, 이를 통해 상기 제2 폴리머 용액(40)은 상기 제2 혼합용액(200) 상에 균일하게 분산되어, 제3 혼합용액(300)을 제조할 수 있게 된다.
이 경우, 상기 제2 폴리머 용액(40)은 도 3c에 도시된 바와 같이, 상기 제2 혼합용액(200) 상에 필요한 양을 한 번에 공급할 수 있으며, 이와 달리 균일한 양을 일정 간격으로 복수 회 공급할 수도 있다.
한편, 상기 제2 폴리머 용액(40) 역시, 예를 들어, Smooth-On Inc. 사의 EcoFlex 0030 등이 사용될 수 있으며, 본 실시예에서, 상기 제2 폴리머 용액(40)은 가교제 역할을 하는 용액일 수 있다.
그리하여, 도 3d에 도시된 바와 같이 용매(10) 상에 상기 전도성 물질(20), 상기 제1 폴리머 용액(30) 및 상기 제2 폴리머 용액(40)이 혼합된 상기 제3 혼합용액(300)의 제조가 완성된다.다음, 도 1 및 도 3e를 참조하면, 상기 제3 혼합용액(300)을 피펫을 통해 핫플레이트 상에 떨어뜨리면서, 즉, 드롭 캐스팅을 통해, 상기 제3 혼합용액(300)에 혼합된 상기 용매(10), 예를 들어 이소프로필알코올을 증발시켜 전도성 폴리머를 제조한다(단계 S400).
이 경우, 상기 전도성 폴리머를 제조하는 단계에서는, 도 2에 도시된 바와 같이, 먼저 상기 제3 혼합용액(300) 일정량을 피펫팅(pipetting)하여 페트리디쉬(petri dish)에 도포한다(단계 S410). 그 다음, 상기 페트리디쉬를 핫플레이트(hot plate) 상에 위치시켜 소정 시간 동안 가열시킨다(단계 S420).
예를 들어, 상기 제3 용액(300)은 1mL를 피펫팅할 수 있으며, 상기 제3 혼합용액이 도포된 페트리디쉬는 약 75℃의 핫플레이트 상에서, 30분 동안 가열될 수 있다.
상기와 같은 과정(단계 S410 및 단계 S420)을 적어도 5회 이상 반복하면, 도 3f에 도시된 바와 같이 충분한 두께의 전도성 폴리머(50)가 제조된다.
특히, 본 실시예에서는, 상기 제3 혼합용액(300)을 피펫으로 취한 뒤 페트리 디쉬에 도포하는 경우, 소위 드롭 캐스팅(drop casting) 방법을 적용하여 일정 두께로 도포될 수 있도록 상기 제3 혼합용액(300)을 페트리디쉬에 드롭시킨다. 그리하여 상기 드롭된 제3 혼합용액(300)이 상기 핫 플레이트 상에서 가열되어 상기 용매(10)가 모두 증발된 후, 추가적으로 상기 제3 혼합용액(300)을 다시 페트리디쉬에 드롭시켜 소정 두께로 도포하고, 상기 공정을 반복한다.
즉, 상기 제3 혼합용액(300)을 일정 두께로 드롭시켜 페트리 디쉬에 도포하여 용매(10)를 모두 증발시킨 후, 추가로 제3 혼합용액(300)을 일정 두께로 드롭시켜 용매(10)를 증발시키는 공정을 반복함으로써, 소정 두께의 전도성 폴리머(50)를 제조할 수 있게 된다.
특히, 상기 드롭 캐스팅 공정을 통해, 일정 두께의 전도성 폴리머를 반복해서 적층하여 제조함으로써, 종래기술에서 한 번에 일정 두께의 전도성 폴리머를 제조하기 위해 제3 혼합용액을 박막으로 도포하지 않고 많은 양의 혼합용액에 열을 한번에 공급하는 경우 용매의 증발 공정에서, 상기 제3 혼합용액에 포함된 전도성 물질 등이 서로 응집되어 뭉침으로써, 전도성 폴리머의 저항이 증가하여 전기적 특성이 저하되는 문제를 해결할 수 있다.
한편, 상기 전도성 폴리머의 제조와는 별도로, 전도성 폴리머 전극의 제작을 위해, 접착성 패치를 제작한다(단계 S500).
상기 접착성 패치를 제작하는 과정은 Sylgard 184 용액을 웨이퍼 상에 코팅시키는 단계와 MG7-9850 용액을 상기 Sylgard 184 용액이 코팅된 웨이퍼 상에 코팅시키는 단계로 이루어진다.
보다 구체적으로, 상기 Sylgard 184 용액을 웨이퍼 상에 코팅시키기 위해, Sylgard 184 모노머와 Sylgard 184 가교제를 1:1 비율로 혼합한 후 진공 데시게이터(desiccator)를 이용하여 혼합하면서 발생된 기포들을 모두 제거하고, 상기 기포가 제거된 Sylgard 184 용액을 스핀코터를 이용하여 200rpm 내지 500rpm으로 웨이퍼에 코팅시킨 후 상기 웨이퍼를 120℃의 핫플레이트 상에서 소정시간 동안 열경화시킨다.
다음, 상기 Sylgard 184 용액이 코팅된 웨이퍼 상에 상기 MG7-9850 용액을 코팅시키기 위해, MG7-9850 모노머와 MG7-9850 가교제를 1:1 비율로 혼합한 후 진공 데시게이터를 이용하여 혼합하면서 발생된 기포들을 모두 제거하고, 상기 기포가 제거된 MG7-9850 용액을 스핀코터를 이용하여 200rpm 내지 500rpm으로 웨이퍼에 코팅시킨 후 상기 웨이퍼를 120℃의 핫플레이트 상에서 소정시간 동안 열경화시킨다.
그리하여, 상기 접착성 패치를 완성하게 된다.
마지막으로, 상기 접착성 패치를 상기 전도성 폴리머(50)에 접착시킨다(단계 S600).
즉, 상기 접착성 패치가 상기 전도성 폴리머(50)의 전면을 커버할 수 있도록 상기 전도성 폴리머를 상기 접착성 패치의 크기에 맞춰 커팅한다. 그리하여, 상기 접착성 패치가 완전히 상기 전도성 폴리머를 커버하고 피부에 접착될 수 있도록 한다.
하기 [표 1]에는 상기 전도성 물질(CNF), 제1 폴리머 용액(ecoflex A) 및 제2 폴리머 용액(ecoflex B)이 혼합된 제3 혼합용액의 드롭(Drop) 횟수에 따른 상기 제3 혼합용액의 저항 값 변화를 나타낸 실험결과가 예시되어 있다.
Figure PCTKR2019003933-appb-T000001
상기 [표 1]을 참조하면, 드롭 횟수가 15번, 20번인 경우 상대적으로 큰 저항값을 나타내며, 드롭 횟수가 10번인 경우 상대적으로 작은 저항값을 나타내는 것을 확인할 수 있다. 즉, 드롭 횟수 10번인 경우가 가장 전기적 특성이 우수하다고 할 수 있다.
[표 2]는 이소프로필알코올(IPA) 고정에 따른 전도성 물질(CNF), 제1 폴리머 용액(ecoflex A) 및 제2 폴리머 용액(ecoflex B)의 양 변화에 따른 저항 값 변화를 나타낸다.
IPA 고정에 따른 CNF, ECOFLEX양 변화에 따른 저항 값 변화
실시예 1 2 3 4 5 6
IPA [g] 30 30 30 30 30 30
CNF [g] 0.5 0.5 0.5 1 1 1
ECOFLEX A [g] 1 0.75 0.5 2 1.5 1
ECOFLEX B [g] 1 0.75 0.5 2 1.5 1
저항[kΩ] 109 7 5 129 9 22
120 7 6 106 9 20
194 5 22 132 7 17
164 5 18 74 10 11
평균 [kΩ] 147 6 13 110 9 17.5
상기 [표 2]를 참조하면, 이소프로필알코올(IPA) 양을 30g으로 고정을 시키고 전도성 물질(CNF)을 각각 0.5g과 1g을 분산시킴으로 이소프로필알코올과 전도성 물질의 비율에 변화를 주어 실험을 진행하였으며, 제1 및 제2 폴리머 용액들(ecoflex)의 양 또한 전도성 물질의 양의 1배, 1.5배, 2배로 변화시키며 실험을 진행을 하였다.
그 결과, 실시예 2 또는 실시예 5에 도시된 바와 같이, 제1 및 제2 폴리머 용액들의 양이 전도성 물질 양의 1.5배일 때 가장 전기적 특성이 우수한 것을 보이는 것을 확인할 수 있다.
본 발명의 실시예들에 의하면, 전도성 물질전도성 물질 및 폴리머가 섞인 혼합용액에 대하여 드롭캐스팅(drop casting) 방법을 이용하여 분산시키며 용매를 증발시킴으로써, 종래 분산과정에서 혼합용액 내의 전도성 물질과 폴리머 사이의 뭉침 현상으로 인해 전기적 저항이 증가되는 문제를 해결하고, 전도성과 같은 전기적 특성이 향상된 폴리머 전극을 제조할 수 있다.
특히, 전도성과 같은 전기적 특성을 최대로 향상시키기 위해, 상기 혼합 용액에 대한 드롭 횟수를 5번 내지 10번으로 구성하고,제1 폴리머 용액인 모노머와 제2 폴리머 용액인 가교제 각각의 양은 상기 전도성 물질의 양의 1.5배가 되도록 형성하여 최적의 전도성이 향상된 폴리머 전극을 제조할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 용매에 전도성 물질를 분산시켜 제1 혼합용액을 제조하는 단계;
    상기 제1 혼합용액에 제1 폴리머 용액을 첨가하고 분산시켜 제2 혼합용액을 제조하는 단계;
    상기 제2 혼합용액에 제2 폴리머 용액을 첨가하고 분산시켜 제3 혼합용액을 제조하는 단계;
    상기 제3 혼합용액을 피펫을 통해 핫플레이트 상에 떨어뜨리면서 상기 제3 혼합용액에 혼합된 상기 용매를 증발시켜 전도성 폴리머를 제조하는 단계;
    접착성 패치를 제작하는 단계; 및
    상기 접착성 패치를 상기 전도성 폴리머에 접착시키는 단계를 포함하는 전도성 폴리머 전극 제작 방법.
  2. 제1항에 있어서,
    상기 용매는 이소프로필알코올(IPA)이고,
    상기 전도성 물질은 카본 나노섬유(Carbon nanofiber)인 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
  3. 제1항에 있어서,
    상기 제1 폴리머 용액은 에코플렉스(EcoFlex)의 모노머 형식의 용액이며,
    상기 제2 폴리머 용액은 에코플렉스의 가교제 용액인 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
  4. 제1항에 있어서, 상기 제1 혼합용액을 제조하는 단계에서,
    상기 용액에 상기 전도성 물질을 첨가하고 볼텍스 믹서(vortex mixer)를 이용하여 분산시킨 후, 초음파 세정기를 통해 소정시간 동안 분산시키는 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
  5. 제1항에 있어서, 상기 제2 혼합용액을 제조하는 단계에서,
    상기 제1 혼합용액에 상기 제1 폴리머 용액을 첨가하고 볼텍스 믹서를 이용하여 분산시킨 후, 초음파 세정기를 통해 소정 시간 동안 고르게 분산시키는 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
  6. 제1항에 있어서, 상기 제3 혼합용액을 제조하는 단계에서,
    상기 제2 혼합용액에 상기 제2 폴리머 용액을 첨가하고 볼텍스 믹서를 이용하여 분산시킨 후, 초음파 세정기를 통해 소정 시간 동안 고르게 분산시키는 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
  7. 제1항에 있어서,
    상기 제1 폴리머 용액 및 상기 제2 폴리머 용액 각각의 양은 상기 전도성 물질의 양의 1.5배인 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
  8. 제1항에 있어서, 상기 전도성 폴리머를 제조하는 단계에서,
    상기 제3 혼합용액 피펫팅하여 페트리디쉬에 드롭시켜 도포하는 단계; 및
    상기 페트리디쉬를 핫플레이트 상에서 가열시키는 단계를 포함하는 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
  9. 제8항에 있어서,
    상기 페트리디쉬에 도포하는 단계 및 상기 가열시키는 단계를 반복하여 소정 두께의 전도성 폴리머를 제조하는 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
  10. 제1항에 있어서, 상기 접착성 패치를 제작하는 단계에서,
    Sylgard 184 용액을 웨이퍼 상에 코팅시키는 단계; 및
    MG7-9850 용액을 상기 Sylgard 184 용액이 코팅된 웨이퍼 상에 코팅시키는 단계를 포함하는 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
  11. 제10항에 있어서, 상기 Sylgard 184 용액을 웨이퍼 상에 코팅시키는 단계에서,
    Sylgard 184 모노머와 Sylgard 184 가교제를 1:1 비율로 혼합한 후 진공 데시게이터를 이용하여 혼합하면서 발생된 기포들을 모두 제거하고,
    상기 기포가 제거된 Sylgard 184 용액을 상기 웨이퍼에 스핀 코팅시킨 후 상기 웨이퍼를 핫플레이트 상에서 소정시간 동안 열경화시키는 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
  12. 제10항에 있어서, 상기 MG7-9850 용액을 상기 sylgard 184 용액이 코팅된 웨이퍼 상에 코팅시키는 단계에서,
    MG7-9850 모노머와 MG7-9850 가교제를 1:1 비율로 혼합한 후 진공 데시게이터를 이용하여 혼합하면서 발생된 기포들을 모두 제거하고,
    상기 기포가 제거된 MG7-9850 용액을 상기 웨이퍼에 스핀 코팅시킨 후 상기 웨이퍼를 핫플레이트 상에서 소정시간 동안 열경화시키는 것을 특징으로 하는 전도성 폴리머 전극 제작 방법.
PCT/KR2019/003933 2019-04-03 2019-04-03 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법 WO2020204226A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/437,340 US20220149284A1 (en) 2019-04-03 2019-04-03 Method for preparing conductive polymer electrode by using drop casting
JP2021557575A JP7265033B2 (ja) 2019-04-03 2019-04-03 ドロップキャスティングを用いた導電性ポリマー電極作製方法
PCT/KR2019/003933 WO2020204226A1 (ko) 2019-04-03 2019-04-03 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법
EP19922839.6A EP3923358B1 (en) 2019-04-03 2019-04-03 Method for manufacturing conductive polymer electrode by using drop casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/003933 WO2020204226A1 (ko) 2019-04-03 2019-04-03 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법

Publications (1)

Publication Number Publication Date
WO2020204226A1 true WO2020204226A1 (ko) 2020-10-08

Family

ID=72667583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003933 WO2020204226A1 (ko) 2019-04-03 2019-04-03 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법

Country Status (4)

Country Link
US (1) US20220149284A1 (ko)
EP (1) EP3923358B1 (ko)
JP (1) JP7265033B2 (ko)
WO (1) WO2020204226A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080040632A (ko) * 2005-05-12 2008-05-08 조지아 테크 리서치 코포레이션 코팅된 금속 산화물 나노입자 및 그의 제조방법
KR20080090513A (ko) * 2006-01-20 2008-10-08 에자끼구리고가부시키가이샤 도전성 코팅용 수성조성물
KR101139927B1 (ko) * 2008-11-10 2012-04-30 한양대학교 산학협력단 금속 산화물 반도체 나노 입자 형성 방법, 이 나노 입자를 사용한 고분자 발광 소자 및 그 제조 방법
KR20120090594A (ko) 2011-02-08 2012-08-17 삼성전자주식회사 고분자 전극의 제조방법 및 고분자 전극을 채용한 고분자 구동기
JP2013122015A (ja) * 2011-12-12 2013-06-20 Nec Tokin Corp 導電性高分子組成物、導電性高分子材料、導電性基材、電極および固体電解コンデンサ
KR20160049555A (ko) 2014-10-01 2016-05-10 전북대학교산학협력단 그래핀 전극을 갖는 발광다이오드와 그 제조방법
KR101719143B1 (ko) * 2015-11-30 2017-03-24 광주과학기술원 전도성 고분자가 코팅된 전극의 제조방법
KR20190066223A (ko) * 2017-12-05 2019-06-13 재단법인 오송첨단의료산업진흥재단 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288836A (ja) 2003-03-20 2004-10-14 Toshiba Corp 有機薄膜トランジスタおよびその製造方法
KR100745193B1 (ko) * 2006-05-30 2007-08-01 충북대학교 산학협력단 수퍼캐패시터용 cnf/daaq 복합전극의 제조방법
WO2014038504A1 (ja) * 2012-09-04 2014-03-13 独立行政法人産業技術総合研究所 金ナノ粒子を担持してなる触媒担持体及びその製造方法
JP6836520B2 (ja) * 2017-02-14 2021-03-03 信越化学工業株式会社 生体電極組成物、生体電極、及び生体電極の製造方法
KR20180096248A (ko) * 2017-02-21 2018-08-29 영남대학교 산학협력단 유기박막 트랜지스터 소스-드레인 전극 형성용 조성물

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080040632A (ko) * 2005-05-12 2008-05-08 조지아 테크 리서치 코포레이션 코팅된 금속 산화물 나노입자 및 그의 제조방법
KR20080090513A (ko) * 2006-01-20 2008-10-08 에자끼구리고가부시키가이샤 도전성 코팅용 수성조성물
KR101139927B1 (ko) * 2008-11-10 2012-04-30 한양대학교 산학협력단 금속 산화물 반도체 나노 입자 형성 방법, 이 나노 입자를 사용한 고분자 발광 소자 및 그 제조 방법
KR20120090594A (ko) 2011-02-08 2012-08-17 삼성전자주식회사 고분자 전극의 제조방법 및 고분자 전극을 채용한 고분자 구동기
JP2013122015A (ja) * 2011-12-12 2013-06-20 Nec Tokin Corp 導電性高分子組成物、導電性高分子材料、導電性基材、電極および固体電解コンデンサ
KR20160049555A (ko) 2014-10-01 2016-05-10 전북대학교산학협력단 그래핀 전극을 갖는 발광다이오드와 그 제조방법
KR101719143B1 (ko) * 2015-11-30 2017-03-24 광주과학기술원 전도성 고분자가 코팅된 전극의 제조방법
KR20190066223A (ko) * 2017-12-05 2019-06-13 재단법인 오송첨단의료산업진흥재단 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법

Also Published As

Publication number Publication date
EP3923358B1 (en) 2024-05-29
US20220149284A1 (en) 2022-05-12
EP3923358A1 (en) 2021-12-15
JP7265033B2 (ja) 2023-04-25
JP2022527773A (ja) 2022-06-06
EP3923358A4 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2012015254A2 (ko) 투명 도전막의 제조방법 및 이에 의해 제조된 투명 도전막
WO2011105837A2 (ko) 연성 전극소재 및 그 제조방법
WO2019182356A1 (ko) 고강도 그래핀 복합섬유 및 이의 제조방법
WO2014163236A1 (ko) 다중수소결합에 의해 고차구조를 지니는 탄소나노소재와 금속나노소재를 하이브리드하여 형성된 고전도성 소재 및 그 제조방법
WO2013094926A1 (en) Nano wire composition and method for fabrication transparent electrode
WO2011013927A2 (ko) 저온소성용 열경화성 전극 페이스트
CN111073395A (zh) 一种透明电热油墨及其制备方法、电热膜
CN103872085A (zh) 用于柔性显示器的具有透明电极的基板及其制造方法
WO2012036538A2 (ko) 탄소나노튜브를 이용한, ntc 특성이 감소된 ptc 소자용 전도성 중합체조성물
WO2017115921A1 (ko) 그래핀 분산액 및 그래핀-고분자 복합체 제조방법, 및 이를 이용한 배리어 필름 제조방법
WO2013137673A1 (ko) 발열용 페이스트 및 이를 포함하는 발열체
Zhang et al. Scalable fabrication of metallic nanofiber network via templated electrodeposition for flexible electronics
WO2013187675A1 (ko) 탄소나노튜브 코팅막 및 상기 탄소나노튜브 코팅막을 형성하는 탄소나노튜브 용액 조성물
KR20170132728A (ko) 나노와이어, 나노와이어 네트워크 및 투명 전도성 전극을 상호연결시키는 방법
WO2014148705A1 (ko) 탄소나노튜브 복합체의 제조방법
WO2012044068A2 (en) Manufacturing method of electrode substrate
CN101582301A (zh) 高导电浆糊组合物
WO2017090835A1 (ko) 배리어 필름 제조방법 및 배리어 필름
WO2020204226A1 (ko) 드롭캐스팅을 이용한 전도성 폴리머 전극 제작 방법
TW201440277A (zh) 導電性透明電極及其製造方法
WO2011078537A2 (ko) 유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지
WO2017176003A1 (ko) 탄소나노튜브를 포함하는 반도체 잉크 조성물 및 그의 박막트랜지스터 제조 방법
WO2016159609A1 (ko) 광소결에 의한 구리 나노와이어 네트워크 형성용 조성물, 구리 나노와이어 네트워크의 제조방법 및 이를 포함하는 투명전극
WO2018182353A1 (ko) 고분자 나노무기입자 복합체 및 이를 제조하는 방법
US10555376B2 (en) Heating paste composition, and sheet heating element, heating roller, heating unit and heating module using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019922839

Country of ref document: EP

Effective date: 20210910

ENP Entry into the national phase

Ref document number: 2021557575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE