WO2011078537A2 - 유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지 - Google Patents

유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지 Download PDF

Info

Publication number
WO2011078537A2
WO2011078537A2 PCT/KR2010/009118 KR2010009118W WO2011078537A2 WO 2011078537 A2 WO2011078537 A2 WO 2011078537A2 KR 2010009118 W KR2010009118 W KR 2010009118W WO 2011078537 A2 WO2011078537 A2 WO 2011078537A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
metal oxide
organic solar
carbon nanotube
type conductive
Prior art date
Application number
PCT/KR2010/009118
Other languages
English (en)
French (fr)
Other versions
WO2011078537A3 (ko
Inventor
임동찬
이규환
정용수
강재욱
박선영
박미영
김영태
심원현
최강호
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to US13/518,328 priority Critical patent/US20120255616A1/en
Publication of WO2011078537A2 publication Critical patent/WO2011078537A2/ko
Publication of WO2011078537A3 publication Critical patent/WO2011078537A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/152Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a metal oxide-carbon nanotube composite film used as a P-type conductive film of an organic solar cell, a manufacturing method thereof, and an organic solar cell having improved photoelectric conversion efficiency using the same.
  • the organic solar cell currently manufactured generally includes a photoactive layer capable of generating electrons and holes, and a PCBM that easily moves generated electrons and holes to a counter electrode, as shown in FIG. 1.
  • PEDOT PSS layer is inserted and has the same structure as substrate / electrode (ITO) / photoactive layer / charge transfer layer / electrode (Al) and is generally called an organic solar cell having a regular structure.
  • the organic solar cell of the positive structure has a problem in that the photoelectric conversion efficiency is deteriorated due to the difference in the characteristics of each layer and the interfacial properties due to the fabrication characteristics of the organic solar cell formed of several layers of the layer by layer method.
  • the PEDOT: PSS layer coated on the transparent conductive oxide has a problem of deteriorating ITO electrode properties due to oxidizing properties at the interface with the ITO layer.
  • Al electrodes are easily oxidized in air.
  • the present inventors have developed a metal oxide-carbon nanotube composite film used as a P-type conductive film of an organic solar cell using a single-walled carbon nanotube, a manufacturing method thereof, and an organic solar cell having improved photoelectric conversion efficiency using the same.
  • the present invention has been completed.
  • An object of the present invention is to provide a metal oxide-carbon nanotube composite film used as a P-type conductive film of an organic solar cell.
  • Another object of the present invention is to provide a method for producing a metal oxide-carbon nanotube composite film used as a P-type conductive film of an organic solar cell.
  • Another object of the present invention is to provide an organic solar cell having improved photoelectric conversion efficiency using a metal oxide-carbon nanotube composite film used as a P-type conductive film of an organic solar cell.
  • the present invention is prepared by dispersing a single-walled carbon nanotubes in an organic solvent and then dispersing by adding a metal oxide to prepare a composite solution and then deposited on a substrate, P-type conductive film of an organic solar cell It provides a metal oxide-carbon nanotube composite film used as.
  • the present invention comprises the steps of dispersing the single-walled carbon nanotubes in an organic solvent (step 1); Preparing a composite solution by adding and dispersing a metal oxide to the mixed solution prepared in step 1 (step 2); And it provides a method for producing a metal oxide-carbon nanotube composite film used as a P-type conductive film of an organic solar cell comprising the step (step 3) of depositing the composite solution prepared in step 2 on a substrate.
  • the present invention is an organic solar cell stacked in the order of substrate / electrode / photoactive layer / P type conductive film / electrode, the P type conductive film is a single-wall carbon nanotubes dispersed in an organic solvent and then added metal oxide
  • the present invention provides an organic photovoltaic cell having improved photoelectric conversion efficiency, which is a metal oxide-carbon nanotube composite film prepared by dispersing a composite solution and then depositing a composite solution on a substrate.
  • the metal oxide-carbon nanotube composite film used as the P-type conductive film of the organic solar cell according to the present invention improves the movement of holes generated in the photoactive layer by using single-walled carbon nanotubes, and balances the movement of electrons and holes in the entire electron and hole.
  • the method of manufacturing a metal oxide-carbon nanotube composite film according to the present invention improves the speed, and the metal oxide-carbon nanotube composite film can be deposited by various methods using a simple solution method rather than a vacuum method.
  • the organic solar cell having a metal oxide-carbon nanotube composite film is improved in photoelectric conversion efficiency, and thus can be usefully used in manufacturing a low cost and high efficiency organic solar cell.
  • FIG. 1 is a schematic view showing an embodiment of an organic solar cell having a regular structure that is generally manufactured
  • FIG. 2 is a schematic diagram showing an embodiment of an organic solar cell manufactured by a conventional method using PEDOT: PSS as a hole conducting layer;
  • FIG. 2 is a schematic diagram showing an embodiment of an organic solar cell manufactured by a conventional method using PEDOT: PSS as a hole conducting layer;
  • FIG. 3 is a schematic diagram showing an embodiment of an organic solar cell manufactured by a conventional method using CuO metal oxide nanoparticles as a hole conducting layer;
  • FIG. 4 is a schematic diagram showing an embodiment of an organic solar cell manufactured by the manufacturing method according to the present invention.
  • TEM 5 is a transmission electron microscope (TEM) photograph of a carbon nanotube-metal oxide composite membrane prepared by the production method of the present invention ((a): an enlarged view of transmission electron microscope (b): transmission electron micrograph);
  • FIG. 6 is a graph showing the photoelectric conversion efficiency of the organic solar cell manufactured by the manufacturing method of the present invention and the organic solar cell manufactured by the conventional method.
  • the present invention is a metal oxide-carbon used as a P-type conductive film of an organic solar cell prepared by dispersing a single-walled carbon nanotubes in an organic solvent and then adding a metal oxide to disperse to prepare a composite solution and then deposited on a substrate It provides a nanotube composite membrane.
  • the metal oxide-carbon nanotube composite film used as the P-type conductive film of the organic solar cell may be prepared by dispersing a single-walled carbon nanotube in an organic solvent and then adding and dispersing the metal oxide into a substrate.
  • the metal oxide used to form the metal oxide-carbon nanotube composite film preferably has an average particle size of 20 to 50 nm, and the carbon nanotube preferably has an average length of 0.1 to 1 ⁇ m.
  • the thickness of the carbon nanotube composite film is preferably in the range of 10-100 nm.
  • the thickness of the metal oxide-carbon nanotube composite film is less than 10 nm, the thickness of the conductive film is so thin that the interface property with the photoactive layer is degraded, and the carbon nanotubes may be desorbed from the metal oxide-carbon nanotube composite film. As a result, there is a problem in that it cannot perform the function of the conductive film, and when it exceeds 100 nm, the hole has a long moving distance and thus there is a problem in that the photoelectric conversion efficiency is lowered.
  • step 1 Dispersing the single-walled carbon nanotubes in the organic solvent (step 1);
  • step 2 Preparing a composite solution by adding and dispersing a metal oxide to the mixed solution prepared in step 1 (step 2);
  • It provides a method for producing a metal oxide-carbon nanotube composite film used as a P-type conductive film of an organic solar cell comprising the step (step 3) of depositing the composite solution prepared in step 2 on a substrate.
  • step 1 is a step of dispersing single-walled carbon nanotubes in an organic solvent.
  • the organic solvent of step 1 may be used isopropyl alcohol (IPA), dimethylformamide (DMF) and dimethyl sulfoxide (DMSO).
  • IPA isopropyl alcohol
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • step 2 is a step of preparing a composite solution by adding and dispersing the metal oxide in the mixed solution prepared in step 1.
  • the metal oxide of step 2 is P-type metal oxide semiconductor nanoparticles such as copper oxide (CuO), nickel oxide (NiO), tungsten oxide (WO 3 ), manganese oxide (MoO 3 ) and vanadium oxide (V 2 O 5 ) Can be used.
  • CuO copper oxide
  • NiO nickel oxide
  • WO 3 tungsten oxide
  • MoO 3 manganese oxide
  • V 2 O 5 vanadium oxide
  • step 3 is a step of depositing the composite solution prepared in step 2 on the substrate.
  • step 3 may be performed using spin coating, spray coating, roll-to-roll (R2R) coating, dip coating, or the like.
  • the P-type conductive film is dispersed by adding a metal oxide after dispersing single-walled carbon nanotubes in an organic solvent.
  • the present invention provides an organic solar cell having improved photoelectric conversion efficiency, characterized in that the metal oxide-carbon nanotube composite film is prepared by depositing on a substrate.
  • the metal oxide-carbon nanotube composite film used as the P-type conductive film of the organic solar cell according to the present invention improves the movement of holes generated in the photoactive layer by using single-walled carbon nanotubes, thereby moving the entire electrons and holes. It is possible to improve the balance and speed, and to manufacture the metal oxide-carbon nanotube composite film according to the present invention by depositing the metal oxide-carbon nanotube composite film by various methods using a simple solution method rather than a vacuum method.
  • the organic solar cell having the metal oxide-carbon nanotube composite film according to the present invention can be usefully used for manufacturing an organic solar cell having low cost and high efficiency since the photoelectric conversion efficiency is improved.
  • Single-walled carbon nanotubes were placed in isopropanol or dimethylformamide and dispersed using an ultrasonic cracker, and then copper oxide (CuO) nanoparticles were added to the solution and dispersed using an ultrasonic cracker to prepare a composite solution.
  • the temperature of the composite solution was maintained at 60 °C.
  • the composite solution was deposited on a substrate on which a photoactive layer was prepared by spin coating and heated at 150 ° C. to prepare a metal oxide-carbon nanotube composite film used as a P-type conductive film of an organic solar cell.
  • ITO Indium Tin Oxide
  • ZnO was deposited on the glass substrate as a transparent conductive oxide
  • the thickness of the ZnO film can be adjusted to the thickness and permeability of the film by controlling the applied voltage, the voltage application time, the concentration ratio of the solution for ZnO synthesis.
  • the thickness of the carbon nanotube-copper oxide composite film can be controlled by the rotational speed (rpm) of the spin coating equipment Ag electrode on the carbon nanotube-copper oxide film.
  • rpm rotational speed
  • An organic solar cell was manufactured in the same manner as in Example 2, except that copper oxide (CuO) nanoparticles were used as the P-type conductive film (see FIG. 3).
  • CuO copper oxide
  • CuO copper oxide
  • SWCNT single-walled carbon nanotube
  • the photoelectric change efficiency of the organic solar cell was measured using a solar simulator.
  • the photoactive layer area was corrected to 0.38 cm 2 using a mask, and the irradiated solar simulator was measured under conditions of AM 1.5 and 1 sun.
  • the photoelectric conversion efficiency of the organic solar cell of Example 2 is about 1.2 times higher than that of the organic solar cell of Comparative Example 1, and the photoelectric conversion efficiency The improvement is mainly due to the short circuit current (compared to Comparative Example 1, which is caused by Example 2.
  • the single-wall carbon nanotubes included in the P-type conductive layer contributed to the short circuit current and the photoelectric conversion efficiency).
  • the photoelectric conversion efficiency of the organic solar cell can be improved by optimizing processes such as heat treatment temperature, heat treatment time and film thickness using the metal oxide-carbon nanotube according to the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지에 관한 것으로, 더욱 상세하게는 단일벽 탄소나노튜브를 유기용매에 분산시킨 후 금속산화물을 첨가하여 분산시켜 복합용액을 제조한 후 기판에 증착시켜 제조되는, 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 단일벽 탄소나노튜브를 유기용매에 분산시키는 단계(단계 1); 상기 단계 1에서 제조된 혼합용액에 금속산화물을 첨가하고 분산시켜 복합용액을 제조하는 단계(단계 2); 및 상기 단계 2에서 제조된 복합용액을 기판에 증착시키는 단계(단계 3)를 포함하는 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막의 제조방법 및 기판/전극/광활성층/P형 전도막/전극의 순서로 적층되는 유기태양전지에 있어서, 상기 P형 전도막은 단일벽 탄소나노튜브를 유기용매에 분산시킨 후 금속산화물을 첨가하여 분산시켜 복합용액을 제조한 후 기판에 증착시켜 제조되는 금속산화물-탄소나노튜브 복합막인 것을 특징으로 하는 광전변환효율이 향상된 유기태양전지에 관한 것이다.

Description

유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지
본 발명은 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지에 관한 것이다.
현재 일반적으로 제조되고 있는 유기태양전지는 도 1에 도시한 바와 같이, 전자(electron)와 정공(hole)을 생성할 수 있는 광활성층, 생성된 전자와 정공이 쉽게 상대 전극으로 이동할 수 있게 해주는 PCBM이나 PEDOT:PSS 층이 삽입되어 있는 구조이며, 기판/전극(ITO)/광활성층/전하이동층/전극(Al)과 같은 구조를 가지고 있으며, 일반적으로 정구조 형태를 가진 유기태양전지라 부른다.
그러나, 최근에는 상기 정구조의 유기태양전지에서 하기와 같은 문제점이 지적되고 있다. 1) Layer by Layer 방식의 여러 층으로 형성된 유기태양전지의 제작 특성상 각 층 특성 및 계면 특성의 차이로 인하여 광전변환효율이 저하되는 문제가 있다. 또한, 2) 투명전도성 산화물 위에 코팅된 PEDOT:PSS 층의 경우 ITO 층과의 계면에서 산화특성이 나타나 ITO 전극 특성을 저하시키는 문제가 있다. 그리고, 3) Al 전극이 공기 중에서 쉽게 산화되는 문제가 있다.
상기와 같은 문제들을 해결하기 위하여 여러 가지 기술들이 개발되고 있다. 예를 들어, 광전변환효율이 저하되는 문제를 해결하기 위하여 전도성이 우수한 단일/다중벽의 탄소나노튜브를 광활성층과 혼합하는 방법이 있으나, 탄소나노튜브의 응집 특성 때문에 분산이 힘들뿐만 아니라 길이가 수마이크로까지 길고 유연성을 지니고 있어 얇은 막을 형성할 경우 다른층으로의 침투가 가능하여, 오히려 광전변환효율을 저하시키는 문제가 있다. 또한, 상기 문제들을 해결하기 위해 정구조가 아닌 역구조 형태(도 2 참조)의 유기태양전지에 대한 연구가 진행되고 있으나, 여전히 계면의 산화 특성 및 물질의 안정성, 비용 등의 문제가 있다.
이에, 본 발명자들은 단일벽 탄소나노튜브를 이용하여 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지를 개발하고, 본 발명을 완성하였다.
본 발명의 목적은 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막의 제조방법을 제공하는 데 있다.
나아가, 본 발명의 또 다른 목적은 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막을 이용한 광전변환효율이 향상된 유기태양전지를 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 단일벽 탄소나노튜브를 유기용매에 분산시킨 후 금속산화물을 첨가하여 분산시켜 복합용액을 제조한 후 기판에 증착시켜 제조되는, 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막을 제공한다.
또한, 본 발명은 단일벽 탄소나노튜브를 유기용매에 분산시키는 단계(단계 1); 상기 단계 1에서 제조된 혼합용액에 금속산화물을 첨가하고 분산시켜 복합용액을 제조하는 단계(단계 2); 및 상기 단계 2에서 제조된 복합용액을 기판에 증착시키는 단계(단계 3)를 포함하는 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막의 제조방법을 제공한다.
나아가, 본 발명은 기판/전극/광활성층/P형 전도막/전극의 순서로 적층되는 유기태양전지에 있어서, 상기 P형 전도막은 단일벽 탄소나노튜브를 유기용매에 분산시킨 후 금속산화물을 첨가하여 분산시켜 복합용액을 제조한 후 기판에 증착시켜 제조되는 금속산화물-탄소나노튜브 복합막인 것을 특징으로 하는 광전변환효율이 향상된 유기태양전지를 제공한다.
본 발명에 따른 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막은 단일벽 탄소나노튜브를 이용하여 광활성층에서 생성된 정공의 이동을 향상시켜 전체적인 전자와 정공의 이동 밸런스 및 속도를 향상시키며, 본 발명에 따른 금속산화물-탄소나노튜브 복합막의 제조방법은 진공법이 아닌 간단한 용액법을 이용하여 금속산화물-탄소나노튜브 복합막을 다양한 방법으로 증착시킬 수 있으며, 본 발명에 따른 금속산화물-탄소나노튜브 복합막을 구비한 유기태양전지는 광전변환효율이 향상되므로, 저비용, 고효율의 유기태양전지 제조에 유용하게 이용할 수 있다.
도 1은 일반적으로 제조되고 있는 정구조 형태의 유기태양전지의 일실시형태를 나타낸 모식도이고;
도 2는 PEDOT:PSS를 정공 전도층으로 사용한 종래방법으로 제조된 유기태양전지의 일실시형태를 나타낸 모식도이고;
도 3은 CuO 금속산화물 나노입자를 정공 전도층으로 사용한 종래방법으로 제조된 유기태양전지의 일실시형태를 나타낸 모식도이고;
도 4는 본 발명에 따른 제조방법으로 제조된 유기태양전지의 일실시형태를 나타낸 모식도이고;
도 5는 본 발명의 제조방법으로 제조된 탄소나노튜브-금속산화물 복합막의 투과전자현미경(TEM) 사진이고((a): 투과전자현미경 사진 확대도 (b): 투과전자현미경 사진);
도 6은 본 발명의 제조방법으로 제조된 유기태양전지와 종래방법으로 제조된 유기태양전지의 광전변환효율을 나타낸 그래프이다.
본 발명은 단일벽 탄소나노튜브를 유기용매에 분산시킨 후 금속산화물을 첨가하여 분산시켜 복합용액을 제조한 후 기판에 증착시켜 제조되는, 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막을 제공한다.
이하, 본 발명에 따른 금속산화물-탄소나노튜브 복합막을 상세히 설명한다.
유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막은 단일벽 탄소나노튜브를 유기용매에 분산시킨 후 금속산화물을 첨가하여 분산시키고 기판에 증착하여 제조할 수 있다. 이때, 상기 금속산화물-탄소나노튜브 복합막 형성시 사용되는 금속산화물은 평균 입도가 20 - 50 ㎚ 크기인 것이 바람직하며, 탄소나노튜브는 평균 0.1 - 1 ㎛ 길이인 것이 바람직하고, 상기 금속산화물-탄소나노튜브 복합막의 두께는 10 - 100 ㎚ 범위인 것이 바람직하다. 만약, 상기 금속산화물-탄소나노튜브 복합막의 두께가 10 ㎚ 미만인 경우에는 전도막의 두께가 너무 얇아 광활성층과의 계면 특성이 저하되며 금속산화물-탄소나노튜브 복합막에서 탄소나노튜브가 탈착될 가능성이 높아 전도막의 기능을 수행하지 못하는 문제가 있고, 100 ㎚를 초과하는 경우에는 정공이 이동 거리가 길어져 광전변환효율이 저하되는 문제가 있다.
또한, 본 발명은
단일벽 탄소나노튜브를 유기용매에 분산시키는 단계(단계 1);
상기 단계 1에서 제조된 혼합용액에 금속산화물을 첨가하고 분산시켜 복합용액을 제조하는 단계(단계 2); 및
상기 단계 2에서 제조된 복합용액을 기판에 증착시키는 단계(단계 3)를 포함하는 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막의 제조방법을 제공한다.
이하, 본 발명에 따른 금속산화물-탄소나노튜브 복합막의 제조방법을 단계별로 상세히 설명한다.
본 발명에 따른 금속산화물-탄소나노튜브 복합막의 제조방법에 있어서, 단계 1은 단일벽 탄소나노튜브를 유기용매에 분산시키는 단계이다.
상기 단계 1의 유기용매는 이소프로필알콜(IPA), 디메틸포름아미드(DMF) 및 디메틸설폭시드(DMSO) 등을 사용할 수 있다.
다음으로, 본 발명에 따른 금속산화물-탄소나노튜브 복합막의 제조방법에 있어서, 단계 2는 상기 단계 1에서 제조된 혼합용액에 금속산화물을 첨가하고 분산시켜 복합용액을 제조하는 단계이다.
상기 단계 2의 금속산화물은 산화구리(CuO), 산화니켈(NiO), 산화텅스텐(WO3), 산화망간(MoO3) 및 산화바나듐(V2O5) 등의 P형 금속산화물 반도체 나노입자를 사용할 수 있다.
다음으로, 본 발명에 따른 금속산화물-탄소나노튜브 복합막의 제조방법에 있어서, 단계 3은 상기 단계 2에서 제조된 복합용액을 기판에 증착시키는 단계이다.
상기 단계 3의 증착은 스핀코팅, 스프레이코팅, 롤투롤(R2R) 코팅 및 딥코팅법 등을 이용하여 수행할 수 있다.
나아가, 본 발명은
기판/전극/광활성층/P형 전도막/전극의 순서로 적층되는 유기태양전지에 있어서, 상기 P형 전도막은 단일벽 탄소나노튜브를 유기용매에 분산시킨 후 금속산화물을 첨가하여 분산시켜 복합용액을 제조한 후 기판에 증착시켜 제조되는 금속산화물-탄소나노튜브 복합막인 것을 특징으로 하는 광전변환효율이 향상된 유기태양전지를 제공한다.
따라서, 본 발명에 따른 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막은 단일벽 탄소나노튜브를 이용하여 광활성층에서 생성된 정공의 이동을 향상시켜 전체적인 전자와 정공의 이동 밸런스 및 속도를 향상시키며, 본 발명에 따른 금속산화물-탄소나노튜브 복합막의 제조방법은 진공법이 아닌 간단한 용액법을 이용하여 금속산화물-탄소나노튜브 복합막을 다양한 방법으로 증착시킬 수 있으며, 본 발명에 따른 금속산화물-탄소나노튜브 복합막을 구비한 유기태양전지는 광전변환효율이 향상되므로, 저비용, 고효율의 유기태양전지 제조에 유용하게 이용할 수 있다.
이하, 본 발명을 하기의 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 제한되는 것은 아니다.
<실시예 1> 금속산화물-탄소나노튜브 복합막의 제조
단일벽 탄소나노튜브를 이소프로판올 또는 디메틸포름아미드에 넣은 후 초음파 분쇠기를 이용하여 분산시킨 후 상기 용액에 산화구리(CuO) 나노입자를 첨가하여 초음파 분쇠기로 분산시켜 복합용액을 제조하였다. 상기 복합용액의 온도는 60 ℃로 유지되게 하였다. 광활성층이 제조된 기판에 상기 복합용액을 스핀코팅으로 증착시키고 150 ℃에서 가열하여 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막을 제조하였다.
<실시예 2> 금속산화물-탄소나노튜브 복합막을 포함하는 유기태양전지의 제조
투명전도성 산화물로 산화인듐주석(Indium Tin Oxide, ITO)을 기판인 유리에 증착시킨 후 ZnO를 전기화학적 방법 또는 졸-겔 용액을 이용한 스핀코팅법으로 투명전도성 산화물 막 위에 증착시켰다. 상기 ZnO 막의 두께는 인가전압, 전압인가시간, ZnO 합성을 위한 용액의 농도비 조절을 통해 막의 두께 및 투과도를 조절할 수 있다. 폴리(3-헥실티오팬)(poly(3-hexylthiophene, P3HT)와 6,6-페닐-C61-부티르산 메틸에스테르(6,6-phenyl-C61-butyric acid methyl ester, PCBM)을 1:1의 비율로 다이클로로벤젠(DCB) 용매에 분산시킨 후 ZnO 막 위에 스핀코팅법으로 증착시켰다. 단일벽 탄소나노튜브를 이소프로판올에 분산시킨 후 산화구리(CuO) 나노입자를 첨가하여 분산시켜 복합용액을 제조한 후 P3HT:PCBM 막 위에 스핀코팅으로 증착시켰다. 상기 탄소나노튜브-산화구리 복합막의 두께는 스핀코팅 장비의 회전속도(rpm)로 조절할 수 있다. 상기 탄소나노튜브-산화구리 복합막 위에 Ag 전극을 진공장치로 증착하여 유기태양전지를 제조하였다(도 4 참조).
<비교예 1> 산화구리를 포함하는 유기태양전지의 제조
P형 전도막으로 산화구리(CuO) 나노입자를 사용한 것을 제외하고는, 상기 실시예 2와 동일한 방법으로 유기태양전지를 제조하였다(도 3 참조).
<실험예 1> 금속산화물-탄소나노튜브 복합막의 미세구조 분석
본 발명의 제조방법으로 제조된 탄소나노튜브-금속산화물 복합막의 미세구조를 알아보기 위해 투과전자현미경(TEM, JEOL, 2010)으로 분석하고, 그 결과를 도 5에 나타내었다.
도 5에 나타난 바와 같이, 단일벽의 탄소나노튜브(SWCNT)의 엉킴 현상 없이 평균입도 50 ㎚ 이하 크기의 산화구리(CuO) 나노입자들이 고르게 분산되어 복합막을 형성하고 있는 것을 알 수 있다.
<실험예 2> 유기태양전지의 광전변환효율 분석
본 발명의 제조방법으로 제조된 유기태양전지와 종래방법으로 제조된 유기태양전지의 광전변환효율을 측정하기 위해 하기 실험을 수행하여 광전변환효율을 측정하고, 그 결과를 도 6 및 표 1에 나타내었다.
유기태양전지 셀의 광전변화효율을 태양광 시뮬레이터를 이용하여 측정하였다. 광활성층 면적은 마스크를 이용하여 0.38 ㎠으로 보정하고, 조사되는 태양광 시뮬레이터는 AM 1.5와 1 sun의 조건하에서 측정하였다.
표 1
광전변환효율(PCE) 필팩터(FF) 개방전압(Voc) 단락전류(Jsc)
실시예 2 1.645 0.374 0.554 7.937
비교예 1 1.447 0.407 0.543 6.546
도 6 및 상기 표 1에 나타난 바와 같이, 상기 실시예 2인 유기태양전지의 광전변환효율이 비교예 1인 유기태양전지의 광전변환효율보다 약 1.2 배 이상 높은 것을 알 수 있고, 상기 광전변환효율 향상은 주로 단락전류(비교예 1과 비교하여 실시예 2에 의해 기인한 것으로 볼 수 있다. 즉 P형 전도층에 포함된 단일벽 탄소나노튜브가 단락전류 향상 및 광전변환효율 향상에 기여한 것을 알 수 있다. 또한, 유기태양전지 셀의 광전변환효율은 본 발명에 따른 금속산화물-탄소나노튜브를 사용하여 열처리 온도, 열처리 시간 및 막의 두께 등의 공정을 최적화하여 향상시킬 수 있다.

Claims (7)

  1. 단일벽 탄소나노튜브를 유기용매에 분산시킨 후 금속산화물을 첨가하여 분산시켜 복합용액을 제조한 후 기판에 증착시켜 제조되는, 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막.
  2. 제1항에 있어서, 상기 금속산화물은 평균 입도가 20 - 50 ㎚이며, 상기 탄소나노튜브는 0.1 - 1 ㎛이고, 상기 금속산화물-탄소나노튜브 복합막의 두께는 10 - 100 ㎚ 범위인 것을 특징으로 하는 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막.
  3. 단일벽 탄소나노튜브를 유기용매에 분산시키는 단계(단계 1);
    상기 단계 1에서 제조된 혼합용액에 금속산화물을 첨가하고 분산시켜 복합용액을 제조하는 단계(단계 2); 및
    상기 단계 2에서 제조된 복합용액을 기판에 증착시키는 단계(단계 3)를 포함하는 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막의 제조방법.
  4. 제3항에 있어서, 상기 단계 1의 유기용매는 이소프로필알콜(IPA), 디메틸포름아미드(DMF) 및 디메틸설폭시드(DMSO)로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막의 제조방법.
  5. 제3항에 있어서, 상기 단계 2의 금속산화물은 P형 금속산화물 반도체 나노입자로서, 산화구리(CuO), 산화텅스텐(WO3), 산화망간(MoO3) 또는 산화바나듐(V2O5)인 것을 특징으로 하는 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막의 제조방법.
  6. 제3항에 있어서, 상기 단계 3의 증착은 스핀코팅, 스프레이코팅, 롤투롤(R2R) 코팅 또는 딥코팅인 것을 특징으로 하는 유기태양전지의 P형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막의 제조방법.
  7. 기판/전극/광활성층/P형 전도막/전극의 순서로 적층되는 유기태양전지에 있어서, 상기 P형 전도막은 단일벽 탄소나노튜브를 유기용매에 분산시킨 후 금속산화물을 첨가하여 분산시켜 복합용액을 제조한 후 기판에 증착시켜 제조되는 금속산화물-탄소나노튜브 복합막인 것을 특징으로 하는 광전변환효율이 향상된 유기태양전지.
PCT/KR2010/009118 2009-12-24 2010-12-20 유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지 WO2011078537A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/518,328 US20120255616A1 (en) 2009-12-24 2010-12-20 Metal-oxide/carbon-nanotube composite membrane to be used as a p-type conductive membrane for an organic solar cell, method for preparing same, and organic solar cell having improved photovoltaic conversion efficiency using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0131075 2009-12-24
KR1020090131075A KR101085101B1 (ko) 2009-12-24 2009-12-24 유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지

Publications (2)

Publication Number Publication Date
WO2011078537A2 true WO2011078537A2 (ko) 2011-06-30
WO2011078537A3 WO2011078537A3 (ko) 2011-11-03

Family

ID=44196281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009118 WO2011078537A2 (ko) 2009-12-24 2010-12-20 유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지

Country Status (3)

Country Link
US (1) US20120255616A1 (ko)
KR (1) KR101085101B1 (ko)
WO (1) WO2011078537A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101415822B1 (ko) * 2010-06-29 2014-07-09 코오롱인더스트리 주식회사 유기 태양 전지 및 이의 제조 방법
KR101131564B1 (ko) * 2010-10-27 2012-04-04 한국기계연구원 코어/쉘 금속산화물 나노입자를 이용한 효율적인 유기태양전지 및 이의 제조방법
US20130332120A1 (en) * 2012-06-06 2013-12-12 University Of Southern California System and method for aggregating reservoir connectivities
KR101679729B1 (ko) * 2015-03-13 2016-11-29 한국기계연구원 3차원 나노 리플 구조의 금속산화물 박막, 이의 제조방법 및 이를 포함하는 유기태양전지
KR102104713B1 (ko) * 2018-04-24 2020-04-24 인천대학교 산학협력단 고순도 반도체형 단일벽 탄소나노튜브와 큐빅형 인듐 산화물 기반의 이종접합 재료, 및 그 제조방법
JPWO2022181318A1 (ko) * 2021-02-24 2022-09-01

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071654A1 (ja) * 2003-02-14 2004-08-26 Bussan Nanotech Research Institute Inc. 単層カーボンナノチューブ製造用触媒金属微粒子形成方法
KR20040106947A (ko) * 2003-06-05 2004-12-20 삼성전자주식회사 금속나노입자 및 카본나노튜브를 이용한 도전성 필름 또는패턴 형성방법
JP2005008510A (ja) * 2003-05-29 2005-01-13 Institute Of Physical & Chemical Research ナノチューブ材料の製造方法およびナノチューブ材料
KR20090034823A (ko) * 2006-06-30 2009-04-08 미쓰비시 마테리알 가부시키가이샤 태양 전지의 전극 형성용 조성물 및 그 전극의 형성 방법, 그리고 그 형성 방법에 의해 얻어진 전극을 사용한 태양 전지

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6875374B1 (en) * 2003-02-26 2005-04-05 The Regents Of The University Of California Ceramic materials reinforced with single-wall carbon nanotubes as electrical conductors
JP2005158972A (ja) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd 有機太陽電池
US8127440B2 (en) * 2006-10-16 2012-03-06 Douglas Joel S Method of making bondable flexible printed circuit
US20080044651A1 (en) * 2004-06-02 2008-02-21 Mysticmd Inc. Coatings Comprising Carbon Nanotubes
US20060130890A1 (en) * 2004-12-20 2006-06-22 Palo Alto Research Center Incorporated. Heterojunction photovoltaic cell
WO2007117503A2 (en) * 2006-04-07 2007-10-18 The Trustees Of Columbia University In The City Of New York Preparing nanoparticles and carbon nanotubes
WO2008127396A2 (en) * 2006-11-02 2008-10-23 Ohio University A solution synthesis of carbon nanotube/metal-containing nanoparticle conjugated assemblies
WO2008122027A2 (en) * 2007-04-02 2008-10-09 Konarka Technologies, Inc. Novel electrode
EP2332175B1 (en) * 2008-09-09 2015-08-26 Vanguard Solar, Inc. Solar cells and photodetectors with semiconducting nanostructures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004071654A1 (ja) * 2003-02-14 2004-08-26 Bussan Nanotech Research Institute Inc. 単層カーボンナノチューブ製造用触媒金属微粒子形成方法
JP2005008510A (ja) * 2003-05-29 2005-01-13 Institute Of Physical & Chemical Research ナノチューブ材料の製造方法およびナノチューブ材料
KR20040106947A (ko) * 2003-06-05 2004-12-20 삼성전자주식회사 금속나노입자 및 카본나노튜브를 이용한 도전성 필름 또는패턴 형성방법
KR20090034823A (ko) * 2006-06-30 2009-04-08 미쓰비시 마테리알 가부시키가이샤 태양 전지의 전극 형성용 조성물 및 그 전극의 형성 방법, 그리고 그 형성 방법에 의해 얻어진 전극을 사용한 태양 전지

Also Published As

Publication number Publication date
US20120255616A1 (en) 2012-10-11
KR20110074179A (ko) 2011-06-30
KR101085101B1 (ko) 2011-11-21
WO2011078537A3 (ko) 2011-11-03

Similar Documents

Publication Publication Date Title
Mao et al. Flexible silver grid/PEDOT: PSS hybrid electrodes for large area inverted polymer solar cells
WO2011078537A2 (ko) 유기태양전지의 p형 전도막으로 사용되는 금속산화물-탄소나노튜브 복합막, 이의 제조방법 및 이를 이용한 광전변환효율이 향상된 유기태양전지
Raminafshar et al. Carbon based perovskite solar cells constructed by screen-printed components
WO2016006943A1 (ko) 그래핀으로 코팅된 코어-쉘 구조를 가지는 금속 나노와이어 및 이의 제조방법
WO2017105053A1 (ko) 페로브스카이트 태양전지의 모노리식 타입 모듈 및 이의 제조 방법
WO2011090336A2 (ko) 전기장 향상 효과에 의하여 개선된 광전환 효율을 나타내는 태양전지
US10290432B1 (en) Method for forming perovskite solar cell with printable carbon electrode
WO2012002694A4 (ko) 유기 태양 전지 및 이의 제조 방법
KR101124618B1 (ko) 탄소나노튜브가 침입된 금속산화물 복합막, 이의 제조방법 및 이를 이용한 광전변환효율 및 수명이 향상된 유기태양전지
WO2009148259A2 (ko) 전극형성용 금속 페이스트 조성물 및 이를 이용한 은-탄소 복합체 전극과 실리콘 태양전지
WO2011062457A2 (ko) 유기-무기 하이브리드 태양전지 및 그 제조방법
WO2015167230A1 (ko) 태양전지 및 이의 제조방법
Wang et al. Energy level and thickness control on PEDOT: PSS layer for efficient planar heterojunction perovskite cells
Huang et al. Efficiency enhancement of MAPbIxCl3− x based perovskite solar cell by modifying the TiO2 interface with Silver Nanowires
WO2014003294A1 (ko) 페로브스카이트 기반 메조다공 박막 태양전지 제조 기술
WO2012002723A2 (ko) 투명 전도성막, 이의 제조 방법, 및 이를 이용한 투명전극 및 소자
Li et al. Fully printable organic and perovskite solar cells with transfer-printed flexible electrodes
JP2017506815A (ja) 有機電子デバイス
Yang et al. Highest‐Efficiency Flexible Perovskite Solar Module by Interface Engineering for Efficient Charge‐Transfer
KR20180138185A (ko) 유기 솔라 모듈 및/또는 제조 방법
KR20130094719A (ko) 전기적 활성층을 포함하고 수직 분리를 갖는 공간에서의 유기 헤테로접합 태양 전지
KR101112676B1 (ko) 나노입자 및 고전도성 유무기 복합 버퍼층을 도입한 대면적 고효율 유기태양전지 및 그 제조방법
WO2020040361A1 (ko) 박막 및 그 형성 방법과 박막을 포함하는 페로브스카이트 태양전지
JP2006278582A (ja) 有機薄膜太陽電池
WO2018016886A1 (ko) 유-무기 복합 태양전지용 적층체 제조방법 및 유-무기 복합 태양전지 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13518328

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839734

Country of ref document: EP

Kind code of ref document: A2