WO2014148705A1 - 탄소나노튜브 복합체의 제조방법 - Google Patents

탄소나노튜브 복합체의 제조방법 Download PDF

Info

Publication number
WO2014148705A1
WO2014148705A1 PCT/KR2013/008113 KR2013008113W WO2014148705A1 WO 2014148705 A1 WO2014148705 A1 WO 2014148705A1 KR 2013008113 W KR2013008113 W KR 2013008113W WO 2014148705 A1 WO2014148705 A1 WO 2014148705A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
suspension
carbon nanotubes
nanotube composite
producing
Prior art date
Application number
PCT/KR2013/008113
Other languages
English (en)
French (fr)
Inventor
홍정숙
이재희
Original Assignee
숭실대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교 산학협력단 filed Critical 숭실대학교 산학협력단
Publication of WO2014148705A1 publication Critical patent/WO2014148705A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a method for producing a carbon nanotube composite having improved dispersibility.
  • carbon nanotubes Since carbon nanotubes were discovered in 1991, the carbon nanotubes exhibit excellent properties in various applications due to physical and chemical properties not found in conventional materials. In particular, carbon nanotubes show excellent mechanical and electrical properties compared to conventional conductive materials, and research on these is being actively conducted.
  • Carbon nanotubes are used as components of various composite materials due to their high electrical conductivity, thermal stability and mechanical strength. However, due to the long length of the carbon nanotubes and the strong attraction between the carbon nanotubes, they have a low dispersion degree in the polymer material, thereby limiting their applicability and productivity.
  • One way to solve this dispersibility problem of carbon nanotubes is to improve the dispersibility of carbon nanotubes by oxidizing the surface by impregnating carbon nanotubes in an aqueous acid solution such as nitric acid, sulfuric acid or a mixed solution thereof. .
  • an aqueous acid solution such as nitric acid, sulfuric acid or a mixed solution thereof.
  • carboxyl functional groups are formed on the surface of the carbon nanotubes to overcome the electrostatic attraction between the carbon nanotubes, thereby improving dispersibility.
  • acid treatment has a problem of deteriorating the surface of the carbon nanotubes, thereby deteriorating the physical properties of the carbon nanotubes.
  • the acid treatment process introduces another problem, as it entails environmental problems such as operational stability problems and treatment of contaminants.
  • Korean Unexamined Patent Publication No. 10-2010-0113823 discloses a dispersible carbon nanotube, a dispersible carbon nanotube-polymer composite, and a method of manufacturing the same.
  • the conventional method for producing a carbon nanotube composite is characterized in that it comprises one or more organic moieties including a C 6 -C 14 aromatic functional group having a carbon nanotube backbone and one or more hydroxyl groups.
  • the conventional method for producing a carbon nanotube composite has a problem of environmental pollution and energy waste due to the use of chemical modifiers because of the chemical modification.
  • the present invention is to provide a method for producing a carbon nanotube composite having improved electrical properties by uniformly dispersing carbon nanotubes through a simple preservation method in an existing processing process without using a chemical modifier.
  • the present invention comprises the steps of preparing a suspension in which the carbon nanotubes are dispersed by mixing a carbon nanotube and a solvent (step a); Preserving the suspension (step b); Separating the solvent in the suspension to prepare wet carbon nanotubes (step c); And preparing a carbon nanotube composite by mixing the wet carbon nanotube and the polymer melt (step d).
  • the carbon nanotubes are uniformly dispersed in a hydrophilic and hydrophobic fluid through a simple preservation step without adding a chemical modifier, thereby improving the electrical properties of the carbon nanotubes.
  • FIG. 1 is a schematic diagram showing a method for producing a carbon nanotube composite according to the present invention.
  • Figure 2 is a method of manufacturing a carbon nanotube composite through an embodiment of the present invention.
  • Figure 3 is a method of manufacturing a carbon nanotube composite through another embodiment of the present invention.
  • Figure 4 is a method of producing a carbon nanotube composite through another embodiment of the present invention.
  • the present invention comprises the steps of preparing a suspension in which the carbon nanotubes are dispersed by mixing a carbon nanotube and a solvent (step a); Preserving the suspension (step b); Separating the solvent in the suspension to prepare wet carbon nanotubes (step c); And preparing a carbon nanotube composite by mixing the wet carbon nanotube and the polymer melt (step d).
  • the temperature at the time of mixing the carbon nanotubes and the solvent of step a may be 20 to 60 °C, 25 to 60 °C or 25 to 50 °C, the time is a minimum of 10 hours to a maximum of 10 days Can be.
  • the carbon nanotube of step a may be 3 to 50% by weight, 3 to 45% by weight or 5 to 50% by weight relative to 100% by weight of the suspension, and the solvent may be an alcohol selected from ethanol, methanol or butanol; Organic solvents selected from hexane, propane, toluene or phenol; Ionic surfactants selected from sodium dodecyl sulfate (SDS) or cetyl trimethyl ammonium bromide (C-TAB); Nonionic surfactants including Tween; Liquid plasticizers; Liquid flame retardants; Polydimethylsiloxanes; A polymer aqueous solution selected from an aqueous polyacrylic acid solution or an aqueous polyalginic acid solution; And silicone oil may be one or two or more selected from the group consisting of.
  • the solvent may be an alcohol selected from ethanol, methanol or butanol
  • Organic solvents selected from hexane, propane, toluene or phenol
  • the suspension retention time of step b may be 12 hours to 30 days, 14 hours to 30 days, or 16 hours to 30 days, and the step of preserving the suspension is a tumbling machine, stirrer or It may be characterized by using a milling machine.
  • the temperature may be 20 to 50 °C, 20 to 45 °C, 25 to 45 °C, time may be 100 to 200 minutes, 120 to 200 minutes or 120 to 180 minutes. .
  • the step d uniaxially extruded 0.3 to 20% by weight, 0.3 to 15% by weight or 0.5 to 20% by weight and 80 to 99.7% by weight, 80 to 99.5% by weight or 85 to 99.7% by weight of the polymer melt, It may be characterized by producing a carbon nanotube composite by mixing with a twin-screw extrusion, compounding mixer or mill.
  • after the step b may include the step of cooling the suspension after cooling.
  • the cooling temperature of the step of thawing the suspension after cooling may be minus 5 to minus 30 ° C, minus 10 to minus 30 ° C or minus 10 to minus 25 ° C and the time is 150 to 400 minutes, 180 to 400 minutes or 180 to It can be 300 minutes.
  • the thawing temperature of the step of cooling and then thawing the suspension may be 20 to 50 °C, 20 to 45 °C or 25 to 45 °C, time may be 50 to 150 minutes, 60 to 150 minutes or 60 to 120 minutes. .
  • step b may comprise the step of pressurizing and vacuum the suspension.
  • the pressurizing pressure of the step of pressurizing and vacuuming the suspension may be 5 to 10 bar (gauge pressure), 5 to 9 bar (gauge pressure), or 6 to 9 bar (gauge pressure).
  • the vacuum pressure of the step of pressurizing and vacuum the suspension may be 0 to 3 bar (gauge pressure), 0 to 2 bar (gauge pressure), or 1 to 2 bar (gauge pressure).
  • the manufacturing method according to the present invention provides carbon nanotubes having improved electrical properties by uniformly dispersing carbon nanotubes in a hydrophilic and hydrophobic fluid without adding a chemical modifier.
  • FIG. 1 is a schematic view showing a method of manufacturing a carbon nanotube composite according to the present invention.
  • a carbon nanotube (CNT) is mixed with a solvent to prepare a suspension in which carbon nanotubes are dispersed.
  • the solvent may be selected from the group consisting of deionized water, ethanol, hexane, polydimethylsiloxane (PDMS), and the content of carbon nanotubes in the suspension in which the carbon nanotubes are dispersed. It may be 1 to 4% by weight.
  • a twin-screw internal mixer, a stirrer and a vortex mixer can be used as equipment for preparing the suspension.
  • the suspension prepared in this manner is cooled for 150 to 400 minutes at minus 5 ° C to minus 30 ° C. Once the suspension has cooled, the cooled suspension is thawed at 20-50 ° C. for 50-150 minutes.
  • the thawed suspension is evaporated at 20 to 50 ° C. for 100 to 200 minutes to separate the solvent.
  • the resulting wet carbon nanotubes may have a content of carbon nanotubes of 3 to 80% by weight, and when 60 to 70% by weight, the greatest effect is obtained.
  • the wet carbon nanotubes prepared in this way are mixed with the polymer melt.
  • the polymer melt may be selected from the group consisting of polydimethylsiloxane, polydimethylsiloxane elastomer, alginic acid suspension, and polypropylene, but is not limited thereto.
  • the content of alginic acid contained in the alginic acid suspension may be 1 to 3% by weight.
  • Carbon nanotube composites using the wet carbon nanotubes according to the embodiment of the present invention is more excellent in dispersibility than carbon nanotube composites without using the wet carbon nanotubes.
  • wet carbon nanotubes consisting of multi-walled carbon nanotubes (C & T Co. LTD, 10-20 nm diameter, 93% purity) and ionized deionized water were prepared.
  • wet carbon nanotubes consisting of multi-walled carbon nanotubes (C & T Co. LTD, 10-20nm diameter, 93% purity) and polydimethylsiloxane (100cSt-7Pas) were prepared.
  • Polydimethylsiloxane-carbon nanotube composites were prepared using the wet carbon nanotubes prepared in Example 1. First 1.3 wt% wet carbon nanotubes and 98.7 wt% polydimethylsiloxane (viscosity: 7 Pas) were mixed and the mixture was dispersed for 300 minutes using a stirrer. The speed of the disperser was set to 250 RPM. In this manner, a polydimethylsiloxane-carbon nanotube composite containing 1.3 wt% carbon nanotubes was prepared using wet carbon nanotubes. Meanwhile, the prepared polydimethylsiloxane-carbon nanotube composite was molded by spin coating to prepare a conductive polydimethylsiloxane film having a thickness of 300 ⁇ m.
  • An alginic acid suspension-carbon nanotube composite was prepared using the wet carbon nanotubes prepared in Example 1.
  • an alginic acid suspension was prepared. 2 wt% alginic acid and 98 wt% deionized water were mixed and the mixture was dispersed for 120 minutes using a stirrer to prepare an alginic acid suspension.
  • the alginic acid suspension thus prepared and the wet carbon nanotubes prepared in Example 1 were mixed at 98.7 wt% and 1.3 wt%, respectively.
  • the dispersion was carried out for 300 minutes using a stirrer and the speed was set at 250 RPM.
  • an alginic acid suspension-carbon nanotube composite containing 1.3 wt% carbon nanotubes was prepared using wet carbon nanotubes. Meanwhile, the prepared alginic acid suspension-carbon nanotube complex was mixed with an aqueous calcium chloride solution to prepare a conductive alginic acid gel (gel) having a thickness of 500 ⁇ m.
  • Polydimethylsiloxane-carbon nanotube composites were prepared using the wet carbon nanotubes prepared in Example 2. First 1.3 wt% wet carbon nanotubes and 98.7 wt% polydimethylsiloxane (viscosity: 7 Pas) were mixed and the mixture was dispersed for 300 minutes using a stirrer. The speed of the disperser was set to 250 RPM. In this manner, a polydimethylsiloxane-carbon nanotube composite containing 1.3 wt% carbon nanotubes was prepared using wet carbon nanotubes. Meanwhile, the prepared polydimethylsiloxane-carbon nanotube composite was molded by spin coating to prepare a conductive polydimethylsiloxane film having a thickness of 300 ⁇ m.
  • Polydimethylsiloxane-carbon nanotube composites were prepared using the wet carbon nanotubes prepared in Example 3. First 1.3 wt% wet carbon nanotubes and 98.7 wt% polydimethylsiloxane (viscosity: 7 Pas) were mixed and the mixture was dispersed for 300 minutes using a stirrer. The speed of the disperser was set to 250 RPM. In this manner, a polydimethylsiloxane-carbon nanotube composite containing 1.3 wt% carbon nanotubes was prepared using wet carbon nanotubes. Meanwhile, the prepared polydimethylsiloxane-carbon nanotube composite was molded by spin coating to prepare a conductive polydimethylsiloxane film having a thickness of 300 ⁇ m.
  • Polydimethylsiloxane-carbon nanotube composites were prepared using the wet carbon nanotubes prepared in Example 4. First 1.3 wt% wet carbon nanotubes and 98.7 wt% polydimethylsiloxane (viscosity: 7 Pas) were mixed and the mixture was dispersed for 300 minutes using a stirrer. The speed of the disperser was set to 250 RPM. In this manner, a polydimethylsiloxane-carbon nanotube composite containing 1.3 wt% carbon nanotubes was prepared using wet carbon nanotubes. Meanwhile, the prepared polydimethylsiloxane-carbon nanotube composite was molded by spin coating to prepare a conductive polydimethylsiloxane film having a thickness of 300 ⁇ m.
  • the carbon nanotube composites prepared according to Example 5 and Example 6 were repeated five times, and the surface resistance and electrical conductivity of the molded product were measured by a 4 point probe electrical property measurement method, respectively.
  • the electrical properties maintained the electrical conductivity of 10 4 Ohm / sq or less of surface resistance
  • the conductive alginic acid suspension gel of Example 6 10 2 Ohm / sq or less The electrical conductivity was maintained.
  • Table 1 shows the surface resistance values of the carbon nanotube composites prepared by Examples 5 and 6, and the surface resistance values of the carbon nanotube composites prepared by Comparative Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 탄소나노튜브와 용매를 혼합하여 상기 탄소나노튜브가 분산된 현탁액을 제조하는 단계(a단계); 상기 현탁액을 보존하는 단계(b단계); 상기 현탁액 중 상기 용매를 분리시켜 습윤 탄소나노튜브를 제조하는 단계(c단계); 및 상기 습윤 탄소나노튜브와 고분자 용융체를 혼합하여 탄소나노튜브 복합체를 제조하는 단계(d단계)를 포함하는 탄소나노튜브 복합체의 제조방법을 제공한다. 본 발명에 따르면, 화학적 개질제를 첨가하지 않고 단순 보존 단계 과정을 통해 탄소나노튜브를 친수성, 소수성 유체에 균일하게 분산시켜 탄소나노튜브의 전기적 물성이 향상되는 효과가 있다.

Description

탄소나노튜브 복합체의 제조방법
본 발명은 분산성이 향상된 탄소나노튜브 복합체의 제조방법에 관한 것이다.
탄소나노튜브는 1991년에 발견된 이래, 종래의 물질에서 볼 수 없었던 물리화학적 특성에 의해 다양한 응용분야에서 우수한 특성을 보이고 있다. 특히 탄소나노튜브는 종래의 전도성 재료에 비하여 우수한 기계적 특성과 전기적 특성을 보이고 있으며, 이에 대한 연구가 활발하게 진행되고 있다.
탄소나노튜브는 높은 전기 전도성, 열적 안정성 및 기계적 강도로 인하여 다양한 복합 재료의 성분으로 활용되고 있다. 그러나 탄소나노튜브가 갖는 긴 길이 및 탄소나노튜브 상호 간의 강한 인력으로 인하여, 고분자 재료 내에서 낮은 분산도를 가져 그 응용성 및 생산성 면에서 한계를 나타내고 있다.
탄소나노튜브의 이러한 분산성 문제를 해결하기 위한 방법 중 하나는, 질산, 황산 또는 이들의 혼합 용액과 같은 산 수용액에 탄소나노튜브를 함침시켜 표면을 산화시킴으로써 탄소나노튜브의 분산성을 향상시키는 것이다. 탄소나노튜브를 산처리 하면, 탄소나노튜브의 표면에 카르복시기의 작용기가 형성되어 탄소나노튜브 상호 간의 정전기적 인력을 극복할 수 있어 분산성이 향상된다. 다만 이러한 산 처리는 탄소나노튜브의 표면을 손상시켜 탄소나노튜브의 물성을 저하시키는 문제점을 갖고 있다. 또한, 산 처리 공정은 작업의 안정성 문제와 오염물의 처리 문제와 같은 환경 문제를 수반하므로 또 다른 문제점을 야기하고 있다.
대한민국 공개특허공보 제 10-2010-0113823호는 분산성 탄소나노튜브, 분산성 탄소나노튜브-고분자 복합체 및 이의 제조방법이 개시되어 있다.
종래의 탄소나노튜브 복합체의 제조방법은 탄소나노튜브 백본(backbone) 및 하나 이상의 히드록실기를 갖는 C6-C14 방향족 작용기를 포함한 유기 모이어티를 하나 이상 포함하는 것을 특징으로 한다.
그런데 종래의 탄소나노튜브 복합체의 제조방법은 화학적 개질이 필요하여 화학적 개질제의 사용으로 인한 환경적 오염과 에너지 낭비의 문제점이 있었다.
따라서 본 발명은 화학적 개질제를 이용하지 않고 기존의 가공 공정에 단순 보존 방법을 통해 탄소나노튜브를 균일하게 분산시켜 전기적 물성이 향상된 탄소나노튜브 복합체를 제조하는 방법을 제공하고자 한다.
본 발명은 탄소나노튜브와 용매를 혼합하여 상기 탄소나노튜브가 분산된 현탁액을 제조하는 단계(a단계); 상기 현탁액을 보존하는 단계(b단계); 상기 현탁액 중 상기 용매를 분리시켜 습윤 탄소나노튜브를 제조하는 단계(c단계); 및 상기 습윤 탄소나노튜브와 고분자 용융체를 혼합하여 탄소나노튜브 복합체를 제조하는 단계(d단계)를 포함하는 탄소나노튜브 복합체의 제조방법을 제공한다.
본 발명에 따르면, 화학적 개질제를 첨가하지 않고 단순 보존 단계 과정을 통해 탄소나노튜브를 친수성, 소수성 유체에 균일하게 분산시켜 탄소나노튜브의 전기적 물성이 향상되는 효과가 있다.
도 1은 본 발명에 따른 탄소나노튜브 복합체의 제조방법을 나타낸 모식도이다.
도 2는 본 발명의 일 실시예를 통한 탄소나노튜브 복합체의 제조방법이다.
도 3은 본 발명의 다른 실시예를 통한 탄소나노튜브 복합체의 제조방법이다.
도 4는 본 발명의 또 다른 실시예를 통한 탄소나노튜브 복합체의 제조방법이다.
본 발명은 탄소나노튜브와 용매를 혼합하여 상기 탄소나노튜브가 분산된 현탁액을 제조하는 단계(a단계); 상기 현탁액을 보존하는 단계(b단계); 상기 현탁액 중 상기 용매를 분리시켜 습윤 탄소나노튜브를 제조하는 단계(c단계); 및 상기 습윤 탄소나노튜브와 고분자 용융체를 혼합하여 탄소나노튜브 복합체를 제조하는 단계(d단계)를 포함하는 탄소나노튜브 복합체의 제조방법을 제공한다.
본 발명의 한 구체예에서, 상기 a단계의 탄소나노튜브와 용매의 혼합 시 온도는 20 내지 60℃, 25 내지 60℃ 또는 25 내지 50℃ 일 수 있고, 시간은 최소 10시간에서 최대 10일 일 수 있다.
상기 a단계의 탄소나노튜브는 현탁액 100 중량%에 대하여 3 내지 50 중량%, 3 내지 45 중량% 또는 5 내지 50 중량% 일 수 있고, 용매는 에탄올, 메탄올 또는 부탄올에서 선택된 알코올; 헥세인, 프로페인, 톨루엔 또는 페놀에서 선택된 유기용매; SDS(sodium dodecyl sulfate) 또는 C-TAB(cetyl trimethyl ammonium bromide)에서 선택된 이온계 계면활성제; 트윈(Tween)을 포함한 비이온계 계면활성제; 액상 가소제; 액상 난연제; 폴리디메틸실록세인; 폴리아크릴산 수용액 또는 폴리알긴산 수용액에서 선택된 고분자수용액; 및 실리콘 오일로 이루어진 군에서 선택된 하나 또는 둘 이상일 수 있다.
상기 b단계의 현탁액 보존 시간은 12시간 내지 30일, 14시간 내지 30일 또는 16시간 내지 30일일 수 있고, 현탁액을 보존하는 단계는 탄소나노튜브의 습윤의 효율 향상을 위해 텀블링기, 스터러 또는 밀링기(milling machine)를 사용하는 것을 특징으로 할 수 있다.
상기 c단계의 현탁액과 용매를 분리할 때 온도는 20 내지 50℃, 20내지 45℃, 25 내지 45℃ 일 수 있고, 시간은 100 내지 200분, 120 내지 200분 또는 120 내지 180분 일 수 있다.
상기 d단계는, 습윤 탄소나노튜브 0.3 내지 20 중량%, 0.3 내지 15 중량% 또는 0.5 내지 20 중량%와 고분자 용융체 80 내지 99.7 중량%, 80 내지 99.5 중량% 또는 85 내지 99.7 중량%를 일축압출, 이축압출, 컴파운딩 혼합기 또는 밀링기로 혼합하여 탄소나노튜브 복합체를 제조하는 것을 특징으로 할 수 있다.
본 발명의 다른 구체예에서, 상기 b단계 이후 상기 현탁액을 냉각 후 해동하는 단계를 포함할 수 있다. 상기 현탁액을 냉각 후 해동하는 단계의 냉각 온도는 영하 5 내지 영하 30℃, 영하 10 내지 영하 30℃ 또는 영하 10 내지 영하 25℃ 일 수 있고, 시간은 150 내지 400분, 180 내지 400분 또는 180 내지 300분 일 수 있다. 또한 상기 현탁액을 냉각 후 해동하는 단계의 해동 온도는 20 내지 50℃, 20내지 45℃ 또는 25 내지 45℃ 일 수 있고, 시간은 50내지 150분, 60 내지 150분 또는 60 내지 120분 일 수 있다.
본 발명의 또 다른 구체예에서, 상기 b단계 이후 상기 현탁액을 가압 및 진공하는 단계를 포함할 수 있다. 상기 현탁액을 가압 및 진공하는 단계의 가압 압력은 5 내지 10 bar(게이지압), 5 내지 9 bar(게이지압), 또는 6 내지 9 bar(게이지압) 일 수 있다. 또한 상기 현탁액을 가압 및 진공하는 단계의 진공 압력은 0 내지 3 bar(게이지압), 0 내지 2 bar(게이지압), 또는 1 내지 2 bar(게이지압) 일 수 있다.
따라서 본 발명에 따른 제조방법은 화학적 개질제를 첨가하지 않고 탄소나노튜브를 친수성, 소수성 유체에 균일하게 분산시켜 전기적 물성이 향상된 탄소나노튜브를 제공한다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
도 1은 본 발명에 따른 탄소나노튜브 복합체의 제조방법을 모식도로 나타낸 것이다.
도 1을 참조하면, 탄소나노튜브 복합체 제조방법은 우선, 탄소나노튜브(carbon nanotube, CNT)를 용매와 혼합하여 탄소나노튜브가 분산된 현탁액을 제조한다. 상기 용매는 탈이온수(deionized water), 에탄올, 헥세인(Hexane) 또는 폴리디메틸실록산(polydimethylsiloxane, PDMS)으로 이루어진 군에서 선택될 수 있고, 상기 탄소나노튜브가 분산된 현탁액의 탄소나노튜브의 함량은 1 내지 4 중량%일 수 있다. 상기 현탁액 제조를 위한 장비로 혼합기(twin-screw internal mixer), 분산기(stirrer) 및 와류 발생기(vortex mixer)가 이용될 수 있다.
이와 같은 방법으로 제조된 현탁액을 영하 5℃ 내지 영하 30℃에서 150 내지 400분간 냉각한다. 현탁액이 냉각되면, 냉각된 현탁액을 20 내지 50℃에서 50 내지 150분간 해동시킨다.
상기 현탁액의 용매가 냉각되면서 상기 용매분자간의 수소결합으로 인해 분자가 비효율적으로 나열되어 탄소나노튜브가 효율적으로 분산된다.
상기 냉각 후 해동된 현탁액을 20 내지 50℃에서 100 내지 200분간 기화시켜 용매를 분리시킨다.
상기 과정 후, 생성된 습윤 탄소나노튜브는 탄소나노튜브의 함량이 3 내지 80 중량%일 수 있으며, 60 내지 70 중량%일 때, 가장 큰 효과를 얻는다.
이와 같은 방법으로 제조된 습윤 탄소나노튜브를 고분자 용융체와 혼합한다.
상기 고분자 용융체는 폴리디메틸실록산, 폴리디메틸실록산 중합체(polydimethylsiloxane elastomer), 알긴산(alginic acid) 현탁액 및 폴리프로필렌으로 이루어진 군에서 선택될 수 있지만, 이에 한정되는 것은 아니다.
특히 고분자 용융체가 알긴산 현탁액인 경우, 알긴산 현탁액에 함유되는 알긴산의 함량은 1 내지 3 중량% 일 수 있다.
본 발명의 실시예에 따른 습윤 탄소나노튜브를 사용한 탄소나노튜브 복합체는 습윤 탄소나노튜브를 사용하지 않은 탄소나노튜브 복합체 보다 분산성이 뛰어나다.
<실시예 1> 탈이온수를 용매로 사용하는 습윤 탄소나노튜브의 제조
다중벽탄소나노튜브 (C&T Co. LTD, 10~20nm 직경, 93%순도)와 이온화된 탈이온수(deionized water)로 구성된 습윤 탄소나노튜브를 제조하였다.
먼저 3 중량% 탄소나노튜브를 25℃에서 97 중량% 탈이온수와 혼합하고 이러한 혼합물을 와류 발생기(vortex mixer)로 25℃에서 15분간 교반하였다. 교반 후 탄소나노튜브 내에 탈이온수 분자의 침투를 위해서 24시간 동안 상온에 방치하여 현탁액을 제조하였다. 그 다음 상기 현탁액을 -10℃에서 240분간 냉각하였다. 현탁액이 냉각되고, 냉각된 현탁액을 120분간 상온 방치하여 해동하였다. 해동된 현탁액을 25℃에서 150분간 기화 시켜 용매인 탈이온수를 분리하였다. 이와 같은 방법을 통해 탄소나노튜브가 1.3 중량% 함유된 습윤 탄소나노튜브를 제조하였다.
<실시예 2> 에탄올을 용매로 사용하는 습윤 탄소나노튜브의 제조
다중벽탄소나노튜브 (C&T Co. LTD, 10~20nm 직경, 93%순도)와 에탄올로 구성된 습윤 탄소나노튜브를 제조하였다.
먼저 50 중량% 탄소나노튜브를 25℃에서 50 중량% 에탄올과 10분간 혼합(hand-mixing)하였다. 혼합 후 탄소나노튜브 내에 에탄올의 침투를 위해서 24시간 동안 상온에 방치하였다. 상기 에탄올의 휘발을 방지하기 위해 용기 막음(sealing)을 하여 현탁액을 제조하였다. 그 다음 상기 현탁액을 -10℃에서 1일 동안 냉각하였다. 현탁액이 냉각되고, 냉각된 현탁액을 120분간 상온 방치하여 해동하였다. 해동된 현탁액을 25℃에서 150분간 기화 시켜 용매인 에탄올을 분리하였다. 이와 같은 방법을 통해 탄소나노튜브가 80 중량% 함유된 습윤 탄소나노튜브를 제조하였다.
<실시예 3> 헥세인을 용매로 사용하는 습윤 탄소나노튜브의 제조
다중벽탄소나노튜브 (C&T Co. LTD, 10~20nm 직경, 93%순도)와 헥세인으로 구성된 습윤 탄소나노튜브를 제조하였다.
먼저 50 중량% 탄소나노튜브를 25℃에서 50 중량% 헥세인과 10분간 혼합(hand-mixing)하였다. 혼합 후 탄소나노튜브 내에 헥세인의 침투를 위해서 24시간 동안 상온에 방치하였다. 상기 헥세인의 휘발을 방지하기 위해 용기 막음(sealing)을 하여 현탁액을 제조하였다. 그 다음 상기 현탁액을 -10℃에서 240분간 냉각하였다. 현탁액이 냉각되고, 냉각된 현탁액을 120분간 상온 방치하여 해동하였다. 해동된 현탁액을 25℃에서 150분간 기화 시켜 용매인 에탄올을 분리하였다. 이와 같은 방법을 통해 탄소나노튜브가 80 중량% 함유된 습윤 탄소나노튜브를 제조하였다.
<실시예 4> 폴리디메틸실록산을 용매로 사용하는 습윤 탄소나노튜브의 제조
다중벽탄소나노튜브 (C&T Co. LTD, 10~20nm 직경, 93%순도)와 폴리디메틸실록산(100cSt~7Pas)으로 구성된 습윤 탄소나노튜브를 제조하였다.
먼저 50 중량% 탄소나노튜브를 25℃에서 50 중량% 폴리디메틸실록산 과 10분간 혼합(hand-mixing)하였다. 혼합 후 탄소나노튜브 내에 폴리디메틸실록산 의 침투를 위해서 24시간 동안 상온에 방치하였다. 상기 폴리디메틸실록산 의 휘발을 방지하기 위해 용기 막음(sealing)을 하여 현탁액을 제조하였다. 그 다음 상기 현탁액을 -10℃에서 240분간 냉각하였다. 현탁액이 냉각되고, 냉각된 현탁액을 120분간 상온 방치하여 해동하였다. 해동된 현탁액을 25℃에서 150분간 기화 시켜 용매인 에탄올을 분리하였다. 이와 같은 방법을 통해 탄소나노튜브가 80 중량% 함유된 습윤 탄소나노튜브를 제조하였다.
<실시예 5> 습윤 탄소나노튜브를 이용한 1.3 중량% 탄소나노튜브가 함유된 폴리디메틸실록산 - 탄소나노튜브 복합체의 제조
상기 실시예 1에 의해 제조된 습윤 탄소나노튜브를 이용하여 폴리디메틸실록산 - 탄소나노튜브 복합체를 만들었다. 먼저 1.3 중량% 습윤 탄소나노튜브와 98.7 중량% 폴리디메틸실록산(점도: 7Pas)을 혼합하고 이러한 혼합물을 분산기(stirrer)를 이용해 300분간 분산하였다. 분산기의 속도를 250RPM으로 설정하였다. 이와 같은 방법으로 습윤 탄소나노튜브를 이용한, 1.3 중량% 탄소나노튜브가 함유된 폴리디메틸실록산 - 탄소나노튜브 복합체를 제조하였다. 한편, 상기 제조된 폴리디메틸실록산 - 탄소나노튜브 복합체를 스핀코팅 방법으로 성형하여 300㎛ 두께의 전도성 폴리디메틸실록산 필름을 제작하였다.
<실시예 6> 습윤 탄소나노튜브를 이용한 1.3 중량% 탄소나노튜브를 포함하는 알긴산 현탁액 - 탄소나노튜브 복합체의 제조
상기 실시예 1에 의해 제조된 습윤 탄소나노튜브를 이용하여 알긴산 현탁액 - 탄소나노튜브 복합체를 제조하였다. 우선, 알긴산 현탁액을 제조하였다. 2 중량% 알긴산과 98 중량% 탈이온수를 혼합하고 이러한 혼합물을 분산기(stirrer)를 이용해 120분간 분산하여 알긴산 현탁액을 제조하였다. 이렇게 제조된 알긴산 현탁액과 실시예 1에 의해 제조된 습윤 탄소나노튜브를 각각 98.7 중량%와 1.3 중량%로 혼합하였다. 분산기(stirrer)를 이용해 300분간 분산하였으며 속도는 250RPM으로 설정하였다. 이와 같은 방법으로 습윤 탄소나노튜브를 이용한, 1.3 중량% 탄소나노튜브가 함유된 알긴산 현탁액 - 탄소나노튜브 복합체를 제조하였다. 한편, 상기 제조된 알긴산 현탁액 - 탄소나노튜브 복합체를 염화칼슘 수용액과 혼합하여 500㎛ 두께의 전도성 알긴산 겔 (gel)을 제작하였다.
<실시예 7> 습윤 탄소나노튜브를 이용한 1.3 중량% 탄소나노튜브가 함유된 폴리디메틸실록산 - 탄소나노튜브 복합체의 제조
상기 실시예 2에 의해 제조된 습윤 탄소나노튜브를 이용하여 폴리디메틸실록산 - 탄소나노튜브 복합체를 만들었다. 먼저 1.3 중량% 습윤 탄소나노튜브와 98.7 중량% 폴리디메틸실록산(점도: 7Pas)을 혼합하고 이러한 혼합물을 분산기(stirrer)를 이용해 300분간 분산하였다. 분산기의 속도를 250RPM으로 설정하였다. 이와 같은 방법으로 습윤 탄소나노튜브를 이용한, 1.3 중량% 탄소나노튜브가 함유된 폴리디메틸실록산 - 탄소나노튜브 복합체를 제조하였다. 한편, 상기 제조된 폴리디메틸실록산 - 탄소나노튜브 복합체를 스핀코팅 방법으로 성형하여 300㎛ 두께의 전도성 폴리디메틸실록산 필름을 제작하였다.
<실시예 8> 습윤 탄소나노튜브를 이용한 1.3 중량% 탄소나노튜브가 함유된 폴리디메틸실록산 - 탄소나노튜브 복합체의 제조
상기 실시예 3에 의해 제조된 습윤 탄소나노튜브를 이용하여 폴리디메틸실록산 - 탄소나노튜브 복합체를 만들었다. 먼저 1.3 중량% 습윤 탄소나노튜브와 98.7 중량% 폴리디메틸실록산(점도: 7Pas)을 혼합하고 이러한 혼합물을 분산기(stirrer)를 이용해 300분간 분산하였다. 분산기의 속도를 250RPM으로 설정하였다. 이와 같은 방법으로 습윤 탄소나노튜브를 이용한, 1.3 중량% 탄소나노튜브가 함유된 폴리디메틸실록산 - 탄소나노튜브 복합체를 제조하였다. 한편, 상기 제조된 폴리디메틸실록산 - 탄소나노튜브 복합체를 스핀코팅 방법으로 성형하여 300㎛ 두께의 전도성 폴리디메틸실록산 필름을 제작하였다.
<실시예 9> 습윤 탄소나노튜브를 이용한 1.3 중량% 탄소나노튜브가 함유된 폴리디메틸실록산 - 탄소나노튜브 복합체의 제조
상기 실시예 4에 의해 제조된 습윤 탄소나노튜브를 이용하여 폴리디메틸실록산 - 탄소나노튜브 복합체를 만들었다. 먼저 1.3 중량% 습윤 탄소나노튜브와 98.7 중량% 폴리디메틸실록산(점도: 7Pas)을 혼합하고 이러한 혼합물을 분산기(stirrer)를 이용해 300분간 분산하였다. 분산기의 속도를 250RPM으로 설정하였다. 이와 같은 방법으로 습윤 탄소나노튜브를 이용한, 1.3 중량% 탄소나노튜브가 함유된 폴리디메틸실록산 - 탄소나노튜브 복합체를 제조하였다. 한편, 상기 제조된 폴리디메틸실록산 - 탄소나노튜브 복합체를 스핀코팅 방법으로 성형하여 300㎛ 두께의 전도성 폴리디메틸실록산 필름을 제작하였다.
<비교예 1> 1.3 중량% 탄소나노튜브를 포함하는 폴리디메틸실록산 - 탄소나노튜브 복합체의 제조
습윤 탄소나노튜브의 제조 없이 바로 1.3중량% 탄소나노튜브와 98.7 중량% 폴리디메틸실록산을 5시간 동안 교반하였다. 습윤 탄소나노튜브의 사용 이외에는 실시예 5와 동일하다.
<비교예 2> 1.3 중량% 탄소나노튜브를 포함하는 알긴산 현탁액 - 탄소나노튜브 복합체의 제조
습윤 탄소나노튜브의 제조 없이 바로 1.3중량% 탄소나노튜브와 98.7 중량% 알긴산 현탁액을 5시간 동안 교반하였다. 습윤 탄소나노튜브의 사용 이외에는 실시예 6과 동일하다.
<실험예 1> 전도성 매질 복합체의 전기물성 평가
실시예 5 및 실시예 6에 의해 제작된 탄소나노튜브 복합체를 5회 반복하여 성형물의 표면저항 및 전기전도도를 각각 4 point probe 전기물성측정 방법으로 측정하였다. 실시예 5에 의한 전도성 폴리디메틸실록산 필름의 경우, 전기물성은 표면저항 104 Ohm/sq 이하의 전기전도성을 유지하였고, 실시예 6에 의한 전도성 알긴산 현탁액 겔의 경우, 102 Ohm/sq 이하의 전기전도성을 유지하였다.
실시예 5 및 실시예 6에 의해 제조된 탄소나노튜브 복합체의 표면저항값과, 상기 비교예 1 및 비교예 2에 의해 제조된 탄소나노튜브 복합체의 표면저항값을 표 1에 나타내었다.
표 1
습윤 탄소나노튜브를 사용하는 단계 적용 시 표면저항(Ω/sq) 습윤 탄소나노튜브를 사용하는 단계 미적용 시 표면저항(Ω/sq)
1.3 중량% 탄소나노튜브를 함유한 전도성 폴리디메틸실록산 필름 104~105 106~108
1.3 중량% 탄소나노튜브를 함유한 전도성 알긴산 겔 102 103~104
또한 실시예 7, 실시예 8 및 실시예 9에 의해 제조된 탄소나노튜브 복합체의 표면저항값과, 상기 비교예 1 에 의해 제조된 탄소나노튜브 복합체의 표면저항값을 표 2에 나타내었다.
표 2
용매 표면저항(Ω/sq)
1.3 중량% 탄소나노튜브를 함유한 전도성 폴리디메틸실록산 필름 비교예 1 - 8.0x105
실시예 2 탈이온수 2.0x105
실시예 7 에탄올 2.4x104
실시예 8 헥세인 4.5x104
실시예 9 폴리디메틸실록산 6.1x104
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (13)

  1. 탄소나노튜브와 용매를 혼합하여 상기 탄소나노튜브가 분산된 현탁액을 제조하는 단계(a단계);
    상기 현탁액을 보존하는 단계(b단계);
    상기 현탁액 중 상기 용매를 분리시켜 습윤 탄소나노튜브를 제조하는 단계(c단계); 및
    상기 습윤 탄소나노튜브와 고분자 용융체를 혼합하여 탄소나노튜브 복합체를 제조하는 단계(d단계)를 포함하는 탄소나노튜브 복합체의 제조방법.
  2. 제1항에 있어서,
    상기 a단계의 탄소나노튜브는,
    20 내지 60℃에서 10시간 내지 10일 동안 용매에 담구어 혼합하는 것을 특징으로 하는 탄소나노튜브 복합체의 제조방법.
  3. 제1항에 있어서,
    상기 a단계의 탄소나노튜브는 현탁액 100 중량%에 대하여 3 내지 50 중량%로 포함되는 것인, 탄소나노튜브 복합체의 제조방법.
  4. 제1항에 있어서,
    상기 a단계의 용매는 에탄올, 메탄올 또는 부탄올에서 선택된 알코올; 헥세인, 프로페인, 톨루엔 또는 페놀에서 선택된 유기용매; SDS(sodium dodecyl sulfate) 또는 C-TAB(cetyl trimethyl ammonium bromide)에서 선택된 이온계 계면활성제; 트윈(Tween)을 포함한 비이온계 계면활성제; 액상 가소제; 액상 난연제; 폴리디메틸실록세인; 폴리아크릴산 수용액 또는 폴리알긴산 수용액에서 선택된 고분자수용액; 및 실리콘 오일로 이루어진 군에서 선택된 하나 또는 둘 이상인 것인, 탄소나노튜브 복합체의 제조방법.
  5. 제1항에 있어서,
    상기 b단계의 현탁액 보존 시간은 12시간 내지 30일인 것인, 탄소나노튜브 복합체의 제조방법.
  6. 제1항에 있어서,
    상기 b단계의 현탁액을 보존하는 단계는 탄소나노튜브의 습윤의 효율 향상을 위해 텀블링기, 스터러 또는 밀링기(milling machine)를 사용하는 것을 특징으로 하는 탄소나노튜브 복합체의 제조방법.
  7. 제1항에 있어서,
    상기 c단계는, 20 내지 50℃에서 상기 현탁액 중 상기 용매를 20 내지 200분간 분리시켜 습윤 탄소나노튜브를 제조하는 것을 특징으로 하는 탄소나노튜브 복합체의 제조방법.
  8. 제1항에 있어서,
    상기 c단계에서 분리된 용매를 a단계에 재사용하는 것을 특징으로 하는 탄소나노튜브 복합체의 제조방법.
  9. 제1항에 있어서,
    상기 d단계는, 습윤 탄소나노튜브 0.3 내지 20 중량%와 고분자 용융체 80 내지 99.7 중량%를 일축압출, 이축압출, 컴파운딩 혼합기 또는 밀링기로 혼합하여 탄소나노튜브 복합체를 제조하는 것을 특징으로 하는 탄소나노튜브 복합체의 제조방법.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 b단계 이후 상기 현탁액을 냉각 후 해동하는 단계를 포함하는 탄소나노튜브 복합체의 제조방법.
  11. 제10항에 있어서,
    상기 현탁액을 냉각 후 해동하는 단계는,
    영하 5 내지 영하 30℃의 온도에서 150 내지 400분간 냉각시키고 20 내지 50℃의 온도에서 50 내지 150분간 해동시키는 것을 특징으로 하는 탄소나노튜브 복합체의 제조방법.
  12. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 b단계 이후 현탁액을 가압 및 진공하는 단계를 포함하는 탄소나노튜브 복합체의 제조방법.
  13. 제12항에 있어서,
    상기 현탁액을 가압 및 진공하는 단계는,
    상온에서 5 내지 10 bar(게이지)에서 가압하고 상온에서 0 내지 3 bar(게이지)에서 진공하는 것을 특징으로 하는 탄소나노튜브 복합체의 제조방법.
PCT/KR2013/008113 2013-03-19 2013-09-09 탄소나노튜브 복합체의 제조방법 WO2014148705A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0029175 2013-03-19
KR20130029175 2013-03-19
KR10-2013-0072387 2013-06-24
KR20130072387A KR101400406B1 (ko) 2013-03-19 2013-06-24 탄소나노튜브 복합체의 제조방법

Publications (1)

Publication Number Publication Date
WO2014148705A1 true WO2014148705A1 (ko) 2014-09-25

Family

ID=50895534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008113 WO2014148705A1 (ko) 2013-03-19 2013-09-09 탄소나노튜브 복합체의 제조방법

Country Status (2)

Country Link
KR (1) KR101400406B1 (ko)
WO (1) WO2014148705A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337925A (zh) * 2021-06-09 2021-09-03 哈尔滨工程大学 一种碳纳米管/石墨烯复合纤维的制备方法
CZ309923B6 (cs) * 2020-11-05 2024-02-07 AG CHEMI GROUP s.r.o. Způsob výroby kompozitního materiálu na bázi polymeru a uhlíkových nanotrubic

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101753845B1 (ko) * 2015-03-06 2017-07-04 고려대학교 산학협력단 전도성 고분자 복합재료의 제조방법 및 이에 따라 제조된 전도성 고분자 복합재료
WO2016144043A1 (ko) * 2015-03-06 2016-09-15 고려대학교 산학협력단 전도성 고분자 복합재료 및 이의 제조방법
KR102082913B1 (ko) * 2016-06-10 2020-02-28 주식회사 엘지화학 카본나노튜브 구조체 및 이의 제조방법
KR102519895B1 (ko) * 2021-01-13 2023-04-10 고려대학교 산학협력단 이산화탄소 포집을 위한 액체 흡착제 및 그 제조 방법
KR102582801B1 (ko) 2021-06-18 2023-09-26 동의대학교 산학협력단 탄소 나노 튜브를 포함하는 복합 재료 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538353A (ja) * 2001-08-17 2004-12-24 ユニバーシティ・オブ・デイトン 伝導性高分子ナノ複合材料を形成する方法及びそれによって製造された材料
KR20090090738A (ko) * 2008-02-22 2009-08-26 주식회사 엘지화학 전도성이 향상된 탄소나노튜브-고분자 나노복합체 및 그제조방법
KR20090095766A (ko) * 2008-03-06 2009-09-10 주식회사 엘지화학 전도성이 향상된 탄소나노튜브-고분자 나노복합체 및 그제조방법
KR20110061259A (ko) * 2009-12-01 2011-06-09 한국생산기술연구원 탄소나노튜브 현탁액 및 상기 현탁액이 분산된 나노 복합체의 제조방법
KR20110087456A (ko) * 2010-01-26 2011-08-03 숭실대학교산학협력단 전도성이 향상된 고분자-탄소나노튜브 복합체 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538353A (ja) * 2001-08-17 2004-12-24 ユニバーシティ・オブ・デイトン 伝導性高分子ナノ複合材料を形成する方法及びそれによって製造された材料
KR20090090738A (ko) * 2008-02-22 2009-08-26 주식회사 엘지화학 전도성이 향상된 탄소나노튜브-고분자 나노복합체 및 그제조방법
KR20090095766A (ko) * 2008-03-06 2009-09-10 주식회사 엘지화학 전도성이 향상된 탄소나노튜브-고분자 나노복합체 및 그제조방법
KR20110061259A (ko) * 2009-12-01 2011-06-09 한국생산기술연구원 탄소나노튜브 현탁액 및 상기 현탁액이 분산된 나노 복합체의 제조방법
KR20110087456A (ko) * 2010-01-26 2011-08-03 숭실대학교산학협력단 전도성이 향상된 고분자-탄소나노튜브 복합체 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ309923B6 (cs) * 2020-11-05 2024-02-07 AG CHEMI GROUP s.r.o. Způsob výroby kompozitního materiálu na bázi polymeru a uhlíkových nanotrubic
CN113337925A (zh) * 2021-06-09 2021-09-03 哈尔滨工程大学 一种碳纳米管/石墨烯复合纤维的制备方法

Also Published As

Publication number Publication date
KR101400406B1 (ko) 2014-05-27

Similar Documents

Publication Publication Date Title
WO2014148705A1 (ko) 탄소나노튜브 복합체의 제조방법
Carey et al. MXene polymer nanocomposites: a review
WO2011122901A2 (ko) 폴리이미드 나노복합체 및 그 제조방법
WO2017191887A1 (ko) 습식 방사공정을 이용한 그래핀산화물/탄소나노튜브 복합섬유, 그래핀산화물/그래핀 복합섬유 또는 그래핀산화물/그래핀/탄소나노튜브 복합섬유의 제조 방법
WO2017188564A1 (ko) 전계유도 습식 방사 공정을 이용한 그래핀산화물 섬유, 그래핀 섬유, 그래핀 또는 그래핀(산화물) 복합 섬유의 제조방법
WO2015163595A1 (ko) 층간 자기조립을 이용한 그래핀 기반 나노탄소 섬유 제조 방법
CN1263596C (zh) 形成导电聚合物纳米复合材料的方法和由其生产的材料
US20050127329A1 (en) Method of forming nanocomposite materials
CN104672502B (zh) 氰乙基纤维素基高介电柔性纳米复合膜及其制备方法
WO2014163236A1 (ko) 다중수소결합에 의해 고차구조를 지니는 탄소나노소재와 금속나노소재를 하이브리드하여 형성된 고전도성 소재 및 그 제조방법
WO2017115921A1 (ko) 그래핀 분산액 및 그래핀-고분자 복합체 제조방법, 및 이를 이용한 배리어 필름 제조방법
JP2004538353A5 (ko)
WO2011078585A2 (ko) 전기화학 장치
WO2019146982A1 (ko) 탄소나노튜브 분산액의 제조방법
CN102690426B (zh) 基于红外线辐照的石墨烯/聚合物复合材料的制备方法
WO2019182356A1 (ko) 고강도 그래핀 복합섬유 및 이의 제조방법
WO2019066262A1 (ko) 탄소나노튜브 슬러리 조성물
WO2018236023A1 (ko) 탄소 나노튜브 섬유 집합체의 인장강도 향상 방법
KR20120077647A (ko) 고분자/탄소나노튜브 복합체 및 이의 제조방법
Zhu et al. Nacre-like composite films with a conductive interconnected network consisting of graphene oxide, polyvinyl alcohol and single-walled carbon nanotubes
WO2018190645A1 (ko) 나노 셀룰로오스 복합체 및 이의 제조방법
WO2016159510A1 (ko) 고열전도 복합소재
KR20140081997A (ko) 개질화된 탄소나노튜브를 포함하는 기계적 물성과 전기 전도성이 우수한 고분자 나노복합재 및 이의 제조방법
CN105906846A (zh) 一种氰乙基纤维素基高介电纳米复合膜及其制备方法
WO2016171486A1 (ko) 술폰화된 폴리에테르-에테르-케톤으로 기능화된 그래핀 옥사이드/고분자 복합재료 및 이를 포함하는 가스차단막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879125

Country of ref document: EP

Kind code of ref document: A1