WO2019066262A1 - 탄소나노튜브 슬러리 조성물 - Google Patents

탄소나노튜브 슬러리 조성물 Download PDF

Info

Publication number
WO2019066262A1
WO2019066262A1 PCT/KR2018/009720 KR2018009720W WO2019066262A1 WO 2019066262 A1 WO2019066262 A1 WO 2019066262A1 KR 2018009720 W KR2018009720 W KR 2018009720W WO 2019066262 A1 WO2019066262 A1 WO 2019066262A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
slurry composition
carbon nanotubes
nanotube slurry
present
Prior art date
Application number
PCT/KR2018/009720
Other languages
English (en)
French (fr)
Inventor
문영길
김종화
송세호
Original Assignee
주식회사 나노신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노신소재 filed Critical 주식회사 나노신소재
Publication of WO2019066262A1 publication Critical patent/WO2019066262A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents

Definitions

  • the present invention relates to a high-concentration carbon nanotube slurry composition.
  • Carbon nanotubes have been used for various applications such as conductive paste compositions, conductive ink compositions, radiator plate compositions, electroconductive composites, EMI shielding composites and battery conductive materials due to their excellent conductivity and mechanical properties.
  • Such carbon nanotubes are mainly synthesized by a method such as CVD, and thus synthesized carbon nanotubes generally have a length of several tens of micrometers.
  • Such carbon nanotubes have a shape of a bundle of carbon nanotubes entangled like a thread. I have.
  • methods such as ball milling, jet milling and the like are mainly used as the physical pulverizing or breaking method of the dry type.
  • physical wet grinding or disintegrating methods may include solution-based ball milling in which the carbon nanotube bundles are uniformly dispersed in a liquid medium with a dispersant, or ultrasonic waves are applied to the liquid medium And the like are used.
  • the wet-type solution-based ball milling method has a similar problem, so that the carbon nanotube bundles that are entangled with each other can not be effectively dispersed, and it is difficult to effectively use the carbon nanotubes finally produced.
  • the wet grinding or breaking effect described above is insufficient, it is necessary to carry out a long process for breaking or breaking the bundle, which is difficult to apply to mass production of carbon nanotubes.
  • Patent Document 1 Korean Patent Publication No. 10-2011-0115561
  • the present invention has been made in an effort to solve the above-mentioned problems, and it is an object of the present invention to provide a carbon nanotube slurry composition which is improved in dispersibility and maintains inherent electrical conductivity by adding a dispersant to a high concentration of carbon nanotubes .
  • a carbon nanotube slurry composition includes a carbon nanotube, an amine compound, a hydrogenated nitrile butadiene rubber, and a solvent, wherein the carbon nanotube is a carbon nanotube slurry Based on the total weight of the composition.
  • the carbon nanotube slurry composition may satisfy the following relational expression 1:
  • Vd is the viscosity (cP, @ 25 DEG C) of the carbon nanotube slurry composition.
  • the amine compound may be included in an amount of 0.5 to 60 parts by weight based on 100 parts by weight of the carbon nanotubes.
  • the hydrogenated nitrile butadiene rubber may be included in an amount of 0.5 to 60 parts by weight based on 100 parts by weight of the carbon nanotubes.
  • the amine compound may be at least one selected from the group consisting of methylamine, ethylamine, propylamine, butylamine, hexylamine, heptylamine, octylamine, dioctylamine, trioctylamine, But are not limited to, tertiary amines such as tert-octylamine, aminoethanol, aminopropanol, aminobutanol, aminopentanol, aminohexanol, dodecylamine, octadecylamine, tripropylamine, N, N-dimethylbenzylamine, Amine, and the like.
  • the carbon nanotube slurry composition according to the present invention can improve the dispersibility of a carbon nanotube slurry composition containing a high concentration of carbon nanotubes by including an amine compound and a hydrogenated nitrile butadiene rubber, Can be maintained.
  • the carbon nanotube slurry composition according to the present invention can be used for manufacturing a composition or composite having various uses such as a conductive paste composition, a conductive ink composition, a composition for forming a heat dissipation substrate, an electrically conductive composite, an EMI car composite, And the like.
  • aggregated carbon nanotubes refers to a state in which carbon nanotubes are tangled with each other, a state in which carbon nanotubes are in contact with each other, or a state in which carbon nanotubes are physically or chemically bonded to each other It can mean.
  • dispersant refers to any component for uniformly dispersing other components, such as carbon nanotubes or carbon nanotube bundles, in a liquid medium such as a water solvent, can do.
  • a dispersant and a composition in which other components to be dispersed, such as carbon nanotubes, are dispersed in a liquid medium may be referred to as a “ slurry " or " slurry composition ".
  • slurry “ or " slurry composition” is a composition used in the process of making a carbon nanotube slurry composition; A conductive material composition of a secondary battery; An electrode or conductive composition applied in a manufacturing process of various cells, displays, or devices; An active material composition such as a secondary battery;
  • the present invention can be applied to various applications such as a composition for preparing various polymers or resin complexes or an ink or paste composition applied in the production process of various electronic materials or devices and the use thereof is not particularly limited, and the "dispersant” Can be defined as belonging to the above-mentioned “ slurry “ or “ slurry composition " irrespective of their state or use, as long as they are contained together in the liquid medium.
  • the Applicant has studied for a long time to prepare a carbon nanotube slurry composition in which the above-mentioned " agglomerated carbon nanotubes " are uniformly dispersed in a solvent. It has surprisingly been found that by injecting different dispersants into a carbon nanotube mixing process, Thereby solving the above-described problem of dispersion.
  • the present invention provides a carbon nanotube slurry composition comprising carbon nanotubes, an amine compound, a hydrogenated nitrile butadiene rubber and a solvent, wherein the carbon nanotube is contained in an amount of 3 to 10 wt% .
  • the carbon nanotubes may be single wall or multiwall carbon nanotubes.
  • the aspect ratio of the carbon nanotubes may be 1:20 to 1: 10,000, preferably 1: 100 to 1: 5,000, more preferably 1: 1000 to 1: 2000, but the present invention is not limited thereto .
  • the present invention can control the ratio of the above-described dispersant to the carbon nanotubes in order to improve dispersibility of the finally prepared carbon nanotube slurry composition.
  • the amine compound in the carbon nanotube slurry composition according to an embodiment of the present invention, may be included in an amount of 0.5 to 60 parts by weight based on 100 parts by weight of the carbon nanotubes.
  • the dispersing effect is insignificant.
  • the amount is more than 60 parts by weight, the dispersing effect is not increased in proportion to the dispersant content, The electrical conductivity of the carbon nanotube slurry composition may be lowered and the purity of the carbon nanotube slurry composition due to the excessive dispersant may be lowered.
  • the hydrogenated nitrile butadiene rubber may be included in an amount of 5 to 60 parts by weight based on 100 parts by weight of the carbon nanotubes.
  • the dispersing effect is insignificant. If the amount is more than 60 parts by weight, the dispersing effect is not increased in proportion to the dispersant content, The electrical conductivity of the final product may be lowered and the purity of the carbon nanotube slurry composition due to excessive dispersant may be lowered.
  • the carbon nanotube slurry composition according to the present invention has a specific viscosity with improved dispersibility of the carbon nanotubes.
  • the carbon nanotube slurry composition may satisfy the following relational expression 1:
  • Vd is the viscosity (cP, @ 25 DEG C) of the carbon nanotube slurry composition and is not necessarily limited, but the Vd of the relational expression 1 is preferably 5,000 to 10,000 for achieving the object of the present invention.
  • the relation 1 can be controlled by the ratio of the dispersant to the carbon nanotubes described above.
  • the carbon nanotube slurry composition satisfying the relational expression 1 may include the amine compound in an amount of 3 to 60 parts by weight based on 100 parts by weight of the carbon nanotubes.
  • the carbon nanotube slurry composition satisfying the relational expression 1 may include 30 to 60 parts by weight of the hydrogenated nitrile butadiene rubber per 100 parts by weight of the carbon nanotubes.
  • the amine compound may be selected from a primary amine, a secondary amine, a tertiary amine, an aromatic amine, or a mixture thereof.
  • the types of primary amine, secondary amine, tertiary amine and aromatic amine may be those conventionally used in this field.
  • the amine compound may be at least one selected from the group consisting of methylamine, ethylamine, propylamine, butylamine, Hexylamine, heptylamine, octylamine, dioctylamine, trioctylamine, Tert-Octylamine, aminoethanol (Ethanolamine) Aminopropanol, Aminobutanol, Aminopenthaol, Aminohexanol, Dodecylamine, Octadecylamine, Tripropylamine, N, N, N, Or one or more selected from the group consisting of N, N-dimethylbenzylamine, 2-methoxyethylmaine and oleylamine.
  • the solvent according to an embodiment of the present invention may be water solvent or polar organic solvent.
  • the water solvent or the polar organic solvent include water, N-methylpyrrolidone (NMP), acetone, N, N-dimethylformamide, DMSO, ethanol, isopropyl alcohol, methanol, (2-amoxypropane), tetrahydrofuran (THF), ethylene glycol, pyridine, dimethylacetamide, N-vinylpyrrolidone, methyl ethyl ketone (butanone), alpha- Any water solvent or polar organic solvent such as at least one selected from the group consisting of phenol, formic acid, ethyl acetate and acrylonitrile may be used.
  • the carbon nanotube slurry composition according to an embodiment of the present invention can be prepared by dispersing the carbon nanotubes, the dispersant, and the solvent described above.
  • the dispersion process may be performed by dispersing the carbon nanotubes, the above-mentioned dispersant, and a mixed solution obtained by mixing the above-described solvents using a predetermined dispersing machine.
  • the dispersing device may be of any type commonly used in this field.
  • the dispersing device may be a high pressure dispersing device, a high pressure homogenizer, a bead mill or an ultrasonic dispersing device.
  • the carbon nanotube slurry composition according to an embodiment of the present invention may have 3 to 10%, 5 to 10%, or 5 to 7% of the carbon nanotubes described above so as to satisfy the relationship 1.
  • Example 1 The procedure of Example 1 was repeated except that the hydrogenated nitrile rubber (solid content: 8%, HNBR) was not used.
  • Example 1 The procedure of Example 1 was repeated except that aminoethanol (NH 2 CH 2 CH 2 OH) was not used.
  • Aminoethanol (NH 2 CH 2 CH 2 OH) as an amine dispersant was mixed with 20 g of carbon nanotubes, and the solvent was N-methylpyrrolidone (NMP), polyvinylpyrrolidone (solid content 10 (Solid content: 10%, PVP90K-molecular weight: 360,000) were dispersed and dispersed in a polyvinyl pyrrolidone (solid content 10%, PVP30K-molecular weight: 40,000) To prepare a carbon nanotube slurry composition. The detailed compositions are listed in Table 1 below.
  • the carbon nanotube slurry composition prepared in the above Examples and Comparative Examples was measured for viscosity at 12 rpm using a viscometer (Brookfield-DV2TLVT, # 64 spindle) and recorded in Table 2 below.
  • the carbon nanotube slurry composition prepared in the above Examples and Comparative Examples was coated on a PET film using Mayer bar No. 9 of a bar coater.
  • the coated PET film was dried at 120 for 10 minutes to prepare a measurement specimen.
  • the sheet resistance values were measured by Mitsubishi Chemical Corporation, Loresta-AX, and MCP-T370 using a 4 point-probe method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명에 따른 탄소나노튜브 슬러리 조성물은 탄소나노튜브, 아민계 화합물, 수소화된 니트릴 부타디엔 고무 및 용매를 포함하되, 상기 탄소나노튜브는 탄소나노튜브 슬러리 조성물 전체 중량에 대하여 3 내지 10 중량% 포함되는 것을 특징으로 한다.

Description

탄소나노튜브 슬러리 조성물
본 발명은 고농도 탄소나노튜브 슬러리 조성물에 관한 것이다.
탄소나노튜브는 우수한 전도성 및 기계적 물성으로 인해 전도성 페이스트 조성물, 전도성 잉크 조성물, 방열기판 조성물, 전기전도성 복합체, EMI 차폐용 복합체, 전지용 도전재 등의 다양한 용도로 이용되고 있다.
이러한 탄소나노튜브는 주로 CVD 등의 방법으로 합성되며, 이렇게 합성된 탄소나노튜브는 일반적으로 수십 ㎛의 길이를 가지며, 이러한 탄소나노튜브가 실타래와 같이 엉켜있는 탄소나노튜브 엔탱글 및 번들의 형태를 가지게 된다. 그런데, 탄소나노튜브의 고유한 특성인 전기적 물성, 기계적 물성 등의 우수한 특성을 온전히 이용하기 위해서는, 탄소나노튜브 엔탱글 및 번들을 분쇄 또는 해쇄함으로써 균일한 길이와 크기를 갖는 탄소나노튜브를 얻을 필요가 있다.
이전부터 탄소나노튜브 번들을 분쇄 또는 해쇄하는 방법은 다수 알려져 왔으며, 이중에서도 주로 습식 또는 건식의 물리적 방법이 사용되고 있다. 물론, 탄소나노튜브 번들의 화학적 분쇄 또는 해쇄 방법 역시 고려된 바 있지만, 이 경우 최종 형성된 탄소나노튜브 상에 다수의 결함이 발생할 수 있으며, 이는 탄소나노튜브의 고유한 물성을 저하시킬 수 있다.
일 예로, 건식의 물리적 분쇄 또는 해쇄 방법으로는 볼 밀링, 제트 밀링 등과 같은 방법이 주로 사용되고 있다.
다른 일 예로, 습식의 물리적 분쇄 또는 해쇄 방법으로는 탄소나노튜브 번들을 분산제와 함께 액상의 매질 내에 균일하게 분산시켜 용액 기반 볼 밀링(solution-based ball milling)을 하거나, 이러한 액상의 매질에 초음파를 조사하는 방법 등이 사용되고 있다.
그러나, 이러한 건식의 물리적 분쇄 또는 해쇄 방법으로는 탄소나노튜브 번들의 크기를 어느 정도 줄일 수 있지만, 엉켜있는 탄소나노튜브 번들을 풀어 해쇄시키는데 있어서는 한계가 있다. 이에 따라, 최종 제조된 탄소나노튜브에서도 서로 엉켜 있는 번들 형태의 덩어리가 다수 존재하므로, 탄소나노튜브의 우수한 전도성 등의 특성을 살리면서 효과적으로 사용하기 어렵게 된다.
또한, 상기한 습식의 용액 기반 볼 밀링 방법 역시도 유사한 문제점을 가짐에 따라 서로 엉켜 있는 탄소나노튜브 번들을 효과적으로 분산시키지 못하고, 최종적으로 제조된 탄소나노튜브를 효과적으로 사용하기 어렵게 된다. 이에 더하여, 상기한 습식의 분쇄 또는 해쇄 효과가 충분치 못하므로, 이러한 번들을 분새 또는 해쇄하기 위해 장시간의 공정 진행이 필요하며, 탄소나노튜브의 양산에 적용하기 어려운 문제점이 있다.
한편, 상기한 건식 또는 습식 방법에 분산제 등을 첨가하여 탄소나노튜브가 분산된 슬러리를 제조하더라도, 3% 이상의 고농도 탄소나노튜브 슬러리는 그 점도의 급격한 증가로 인하여 제품 양산성이 저하되는 문제가 있으며, 또한 과도한 분산제의 첨가로 인해 최종 탄소나노튜브 슬러리의 품질이 저하되는 문제가 발생할 수 있다.
이러한 종래 기술의 문제점으로 인해, 고농도이면서 실타래와 같이 엉켜있는 탄소나노튜브를 보다 효과적으로 분산시키고, 간소화된 방법으로 우수한 전기전도성을 가지는 탄소나노튜브 슬러리 조성물이 요구된다.
[선행기술문헌]
(특허문헌 1) 한국공개특허 제10-2011-0115561호
본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로, 고농도의 탄소나노튜브에 분산제를 첨가하여, 분산성이 향상되고 탄소나노튜브 고유의 전기전도성을 유지하는 탄소나노튜브 슬러리 조성물을 제공함에 있다.
한편, 본 발명의 명시되지 않은 또 다른 목적들은 하기의 상세한 설명 및 그 효과로부터 용이하게 추론할 수 있는 범위 내에서 추가로 고려될 것이다.
이와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물은 탄소나노튜브, 아민계 화합물, 수소화된 니트릴 부타디엔 고무 및 용매를 포함하되, 상기 탄소나노튜브는 탄소나노튜브 슬러리 조성물 전체 중량에 대하여 3 내지 10 중량% 포함된다.
본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물에 있어, 상기 탄소나노튜브 슬러리 조성물은 하기 관계식 1을 만족할 수 있다:
[관계식 1]
Vd ≤ 10,000
(상기 관계식 1에서, Vd는 상기 탄소나노튜브 슬러리 조성물의 점도(cP, @25℃)이다.)
본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물에 있어, 상기 아민계 화합물은 탄소나노튜브 100 중량부에 대하여 0.5 내지 60 중량부 포함될 수 있다.
본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물에 있어, 상기 수소화된 니트릴 부타디엔 고무는 탄소나노튜브 100 중량부에 대하여 0.5 내지 60 중량부 포함될 수 있다.
본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물에 있어, 상기 아민계 화합물은 메틸아민, 에틸아민, 프로필아민, 부틸아민, 헥실아민, 헵틸아민, 옥틸아민, 디옥틸아민, 트리옥틸아민, Tert-옥틸아민, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올, 아미노헥산올, 도데실아민, 옥타데실아민, 트리프로필아민, N,N-디메틸벤질아민, 2-메톡시에틸아민, 올리일아민 중에서 선택되는 하나 또는 둘 이상인 것일 수 있다.
본 발명에 따른 탄소나노튜브 슬러리 조성물은 아민계 화합물 및 수소화된 니트릴 부타디엔 고무를 포함함으로써, 탄소나노튜브가 고농도로 함유된 탄소나노튜브 슬러리 조성물의 분산성이 향상될 수 있으며, 또한 탄소나노튜브 고유의 전기전도성을 유지할 수 있다.
또한, 본 발명에 따른 탄소나노튜브 슬러리 조성물은 전도성 페이스트 조성물,전도성 잉크 조성물, 방열 기판 형성용 조성물, 전기전도성 복합체, EMI 차페용 복합체 또는 전지용 도전재 등의 다양한 용도를 갖는 조성물 또는 복합체 등을 제조하기 위해 바람직하게 사용될 수 있다.
한편, 여기에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급됨을 첨언한다.
이하 본 발명에 관하여 상세히 설명한다. 다음에 소개되는 실시예 및 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 또한, 본 발명의 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 발명을 상술함에 있어, 용어 "응집된 탄소나노튜브"는 탄소나노튜브가 서로 엉켜있거나(tangled), 탄소나노튜브가 서로 접촉된 상태이거나, 탄소나노튜브가 서로 물리적 또는 화학적으로 결합된 상태를 의미할 수 있다.
본 발명을 상술함에 있어, 용어 "분산제"는 수용매, 유기용매 등의 액상의 매질 내에 다른 성분, 예를 들어, 탄소나노튜브 또는 탄소나노튜브 번들 등을 균일하게 분산시키기 위한 임의의 성분을 지칭할 수 있다. 이러한 분산제 및 탄소나노튜브 등 분산의 대상이 되는 다른 성분이 액상 매질 내에 분산되어 있는 조성물을 "슬러리" 또는 "슬러리 조성물"로 지칭할 수 있다. 또한,이러한 "슬러리" 또는 "슬러리 조성물"은 탄소나노튜브 슬러리 조성물의 제조 과정에서 사용되는 조성물; 2차 전지의 도전재 조성물; 각종 전지,디스플레이 또는 소자 등의 제조 과정에서 적용되는 전극용 또는 전도성 조성물; 2차 전지 등의 활물질 조성물; 각종 고분자 또는 수지 복합체 제조용 조성물;또는 여러 가지 전자 소재 또는 소자 등의 제조 과정에서 적용되는 잉크 또는 페이스트 조성물 등 다양한 용도에 사용 가능한 것으로 그 용도가 별달리 제한되지 않으며,상기 "분산제" 및 분산 대상 성분이 액상 매질 내에 함께 포함되어 있기만 하면, 그 상태나 용도에 무관하게 상기 "슬러리" 또는 "슬러리 조성물"의 범주에 속하는 것으로 정의될 수 있다.
본 출원인은 상술한 "응집된 탄소나노튜브"가 용매 내에서 균일하게 분산된 탄소나노튜브 슬러리 조성물을 제조하기 위해 오랜기간 연구한 결과, 놀랍게도, 각기 다른 분산제를 탄소나노튜브 혼합공정에 주입함으로써, 상술한 분산성 문제를 해결하였다.
또한 특이하게도, 수소화된 니트릴 부타디엔 고무를 제외하고 아민계 화합물을 사용하거나, 아민계 화합물을 제외하고 수소화된 니트릴 부타디엔 고무를 사용하는 경우, 최종 제조된 탄소나노튜브 슬러리 조성물의 점도가 급격히 증가되는 문제점을 확인하였다.
상기한 문제점을 해결하기 위하여, 본 발명은 탄소나노튜브, 아민계 화합물, 수소화된 니트릴 부타디엔 고무 및 용매를 포함하되, 상기 탄소나노튜브는 탄소나노튜브 슬러리 조성물 전체 중량에 대하여 3 내지 10 중량% 포함되는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물에 있어, 상기 탄소나노튜브는 단일벽 또는 다중벽 탄소나노튜브일 수 있다. 또한, 탄소나노튜브의 종횡비는 1:20 내지 1:10,000 일 수 있으며, 좋게는 1:100 내지 1:5,000, 더 좋게는 1:1000 내지 1:2000 일 수 있으나, 본 발명이 이에 한정되지 않는다.
또한 본 발명은 최종 제조된 탄소나노튜브 슬러리 조성물의 분산성 향상을 위해, 상술한 탄소나노튜브에 대한 상술한 분산제의 비(ratio)를 조절할 수 있다.
상세하게, 본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물에 있어, 상기 아민계 화합물은 탄소나노튜브 100 중량부에 대하여 0.5 내지 60 중량부 포함될 수 있다.
상기 아민계 화합물이 탄소나노튜브 100 중량부에 대하여 0.5 중량부 미만이면 분산 효과가 미미하고, 60 중량부 초과이면 분산 효과가 분산제 함량에 비례하여 증가하지 않으며, 또한 분산제 함량이 크게 증가하므로 최종 제품의 전기전도성이 저하될 수 있고, 과도한 분산제로 인한 탄소나노튜브 슬러리 조성물의 순도가 저하될 수 있다.
또한, 본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물에 있어, 상기 수소화된 니트릴 부타디엔 고무는 탄소나노튜브 100 중량부에 대하여 5 내지 60 중량부로 포함될 수 있다.
상기 수소화된 니트릴 부타디엔 고무는 탄소나노튜브 100 중량부에 대하여 5 중량부 미만이면 분산 효과가 미미하고, 60 중량부 초과이면 분산 효과가 분산제 함량에 비례하여 증가하지 않으며, 또한 분산제 함량이 크게 증가하므로 최종 제품의 전기전도성이 저하될 수 있고, 과도한 분산제로 인한 탄소나노튜브 슬러리 조성물의 순도가 저하될 수 있다.
이와 같이, 탄소나노튜브에 대한 분산제의 비(ratio)를 만족하는 경우, 본 발명에 따른 탄소나노튜브 슬러리 조성물은 탄소나노튜브의 분산성이 향상된 특정 점도를 가지게 된다.
즉, 본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물에 있어, 상기 탄소나노튜브 슬러리 조성물은 하기 관계식 1을 만족할 수 있다:
[관계식 1]
Vd ≤ 10,000
(상기 관계식 1에서, Vd는 상기 탄소나노튜브 슬러리 조성물의 점도(cP, @25℃)이며, 반드시 한정하는 것은 아니지만, 상기 관계식 1의 Vd는 5,000 내지 10,000 인 것이 본 발명의 목적달성에 좋다.)
상세하게, 본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물에 있어, 상기 관계식 1은 상술한 탄소나노튜브에 대한 분산제의 비(ratio)에 의해 조절될 수 있다.
보다 상세하게, 상기 관계식 1을 만족하는 탄소나노튜브 슬러리 조성물은 상기 탄소나노튜브 100 중량부에 대하여 상기 아민계 화합물을 3 내지 60 중량부로 포함할 수 있다.
더불어, 상기 관계식 1을 만족하는 탄소나노튜브 슬러리 조성물은 상기 탄소나노튜브 100 중량부에 대하여 상기 수소화된 니트릴 부타디엔 고무를 30 내지 60 중량부로 포함할 수 있다.
한편, 본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물에 있어, 상기 아민계 화합물은 1차아민, 2차아민, 3차아민, 방향족아민 또는 이들의 혼합물로부터 선택되는 것일 수 있다. 1차아민, 2차아민, 3차아민 및 방향족아민의 종류는 이 분야에서 통상적으로 사용되는 것이면 족하다.
상술한 본 발명의 목적달성을 위해, 상기 아민계 화합물의 구체적인 일 예를 들자면, 상기 아민계 화합물은 메틸아민(Methylamine), 에틸아민(Ethylamine), 프로필아민(Propylamine), 부틸아민(Butylamine), 헥실아민(Hexylamine), 헵틸아민(Heptylamine), 옥틸아민(Octylamine), 디옥틸아민(Dioctylamine), 트리옥틸아민(Trioctylamine), Tert-옥틸아민(Tert-Octylamine), 아미노에탄올(Aminoethanol(Ethanolamine)), 아미노프로판올(Aminopropanol), 아미노부탄올(Aminobutanol), 아미노펜탄올(Aminopenthaol), 아미노헥산올(Aminohexanol), 도데실아민(Dodecylamine), 옥타데실아민(Octadecylamine), 트리프로필아민(Tripropylamine), N,N-디메틸벤질아민(N,N-Dimethylbenzylamine), 2-메톡시에틸아민(2-Methoxyethylmaine), 올리일아민(Oleylamine) 중에서 선택되는 하나 또는 둘 이상인 것일 수 있다.
한편, 본 발명의 일 실시예에 따른 용매는 수용매 또는 극성 유기용매일 수 있다. 상기 수용매 또는 극성 유기용매로는, 물, N-메틸피롤리돈(NMP), 아세톤, DMF(N,N-dimethylformamide), DMSO(Dimethyl sulfoxide), 에탄올, 이소프로필알코올, 메탄올, 부탄올, 2-에록시 에탄올, 2-부록시 에탄올, 2-메특시 프로판을, THF(tetrahydrofuran), 에틸렌글리콜, 피리딘, 디메틸아세트아미드, N-비닐피를리돈, 메틸에틸케톤(부탄온), 알파-터피놀, 포름산, 에틸아세테이트 및 아크릴로니트릴로 이루어진 군에서 선택된 1 종 이상과 같은 임의의 수용매 또는 극성 유기 용매를 사용할 수 있다.
또한, 본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물은 상술한 탄소나노튜브, 상술한 분산제 및 상술한 용매를 분산공정을 통하여 제조될 수 있다. 상기 분산공정은 상술한 탄소나노튜브, 상술한 분산제 및 상술한 용매가 혼합된 혼합액을 소정의 분산기를 이용하여 분산시키는 것일 수 있다.
여기서, 분산기는 이 분야에서 통상적으로 사용되는 것이면 족하나, 상술한 본 발명의 목적달성을 위해, 분산기는 고압분산기, 고압균질기, 비드밀, 초음파 분산기 등을 이용할 수 있다.
한편, 본 발명의 일 실시예에 따른 탄소나노튜브 슬러리 조성물은 상술한 관계식 1을 만족하도록 상술한 탄소나노튜브가 3 내지 10 %, 5 내지 10 %, 또는 5 내지 7 %일 수 있다.
이하 본 발명의 구체적인 설명을 위하여 하기의 실시예를 들어 상세하게 설명하겠으나, 본 발명이 다음 실시예에 한정되는 것은 아니다.
실시예 1~13, 비교예 1~4
탄소나노튜브 20g을 사용하고 용매는 N-메틸피롤리돈(NMP), 아민계 분산제로 아미노에탄올(Aminoethanol, NH2CH2CH2OH)을 니트릴계 분산제로 수소화된 니트릴 고무(고형분 8%, HNBR)을 각각 사용하여 분산한 후 최종 탄소나노튜브 슬러리 조성물을 제조하였다. 상세한 조성은 하기 표 1에 수록하였다.
실시예 14~16
탄소나노튜브 20g을 사용하고 용매는 N-메틸피롤리돈(NMP), 아민계 분산제로 Aminohexanol, Propylamine, Octylamine을 니트릴계 분산제로 수소화된 니트릴 고무(고형분 8%, HNBR)을 각각 사용하여 분산한 후 최종 탄소나노튜브 슬러리 조성물을 제조하였다. 상세한 조성은 하기 표 1에 수록하였다.
비교예 5
수소화된 니트릴 고무(고형분 8%, HNBR)을 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하였다.
비교예 6
아미노에탄올(Aminoethanol, NH2CH2CH2OH)을 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하였다.
비교예 7~9
탄소나노튜브 20g을 사용하고 용매는 N-메틸피롤리돈(NMP), 아민계 분산제로 아미노에탄올(Aminoethanol, NH2CH2CH2OH)을 피롤리돈계 분산제로 폴리비닐피롤리돈(고형분 10%, PVP15K-분자량: 10,000), 폴리비닐피롤리돈(고형분 10%, PVP30K-분자량: 40,000), 폴리비닐피롤리돈(고형분 10%, PVP90K-분자량: 360,000)을 각각 사용하여 분산한 후 최종 탄소나노튜브 슬러리 조성물을 제조하였다. 상세한 조성은 하기 표 1에 수록하였다.
아민계 분산제 니트릴계 분산제 피롤리돈계 분산제 용매
Aminoethanol (g) Aminohexaol,Propylamine,Octylamine HNBR (고형분 8%, g) PVP(고형분 10%, g) NMP (g)
실시예 1 2 - 50 - 328
실시예 2 0.2 - 50 - 329.8
실시예 3 0.6 - 50 - 329.4
실시예 4 1 - 50 - 329
실시예 5 4 - 50 - 326
실시예 6 6 - 50 - 324
실시예 7 10 - 50 - 320
실시예 8 12 - 50 - 318
실시예 9 2 - 12.5 - 365.5
실시예 10 2 - 25 - 353
실시예 11 2 - 75 - 303
실시예 12 2 - 125 - 253
실시예 13 2 - 150 - 228
실시예 14 - Aminohexaol 2g 50 - 328
실시예 15 - Propylamine 2g 50 - 328
실시예 16 - Octylamine 2g 50 - 328
비교예 1 0.02 - 50 - 329.98
비교예 2 14 - 50 - 316
비교예 3 2 - 5 - 373
비교예 4 2 - 175 - 203
비교예 5 2 - - - 378
비교예 6 - - 50 - 330
비교예 7 2 - - PVP15K: 40 g 338
비교예 8 2 - - PVP30K: 40 g 338
비교예 9 2 - - PVP90K: 40 g 338
평가예 1: 점도 측정
상기 실시예들과 비교예들에서 제조한 탄소나노튜브 슬러리 조성물을 점도계(Brookfield-DV2TLVT, #64 spindle)를 사용하여 12 rpm에서 점도를 측정하여 하기 표 2에 수록하였다.
평가예 2: 면저항 측정
상기 실시예들과 비교예들에서 제조한 탄소나노튜브 슬러리 조성물을 bar 코팅기의 Mayer bar 9번을 이용하여 PET 필름 위에 코팅하였다. 코팅된 PET 필름은 120 에서 10분 동안 건조하여 측정 시편을 제조하였다. 각각의 측정 시편은 4점범 (4 point-probe) 방식을 이용하여 Mitsubishi Chemical Corporation, Loresta-AX, MCP-T370으로 면저항값을 측정하였다.
점도(cP, @25℃) 면저항 (Ω/□)
실시예 1 6,700 100
실시예 2 16,500 88
실시예 3 9,500 90
실시예 4 7,600 95
실시예 5 6,500 110
실시예 6 5,600 120
실시예 7 5,500 150
실시예 8 5,400 170
실시예 9 25,000 90
실시예 10 20,000 95
실시예 11 5,600 130
실시예 12 4,800 155
실시예 13 4,300 180
실시예 14 6,500 105
실시예 15 7,000 100
실시예 16 6,500 100
비교예 1 30,500 240
비교예 2 5,400 230
비교예 3 32,000 250
비교예 4 4,000 255
비교예 5 분산 X, 측정 불가 측정불가
비교예 6 분산 X, 측정 불가 측정불가
비교예 7 12,000 120
비교예 8 13,500 121
비교예 9 15,700 130
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (5)

  1. 탄소나노튜브, 아민계 화합물, 수소화된 니트릴 부타디엔 고무 및 용매를 포함하되, 상기 탄소나노튜브는 탄소나노튜브 슬러리 조성물 전체 중량에 대하여 3 내지 10 중량% 포함되는 것을 특징으로 하는 탄소나노튜브 슬러리 조성물.
  2. 제 1항에 있어서,
    상기 탄소나노튜브 슬러리 조성물은 하기 관계식 1을 만족하는 것을 특징으로 하는 탄소나노튜브 슬러리 조성물:
    [관계식 1]
    Vd ≤ 10,000
    (상기 관계식 1에서, Vd는 상기 탄소나노튜브 슬러리 조성물의 점도(cP, @25℃)이다.)
  3. 제 1항에 있어서,
    상기 아민계 화합물은 탄소나노튜브 100 중량부에 대하여 0.5 내지 60 중량부 포함되는 것을 특징으로 하는 탄소나노튜브 슬러리 조성물.
  4. 제 1항에 있어서,
    상기 수소화된 니트릴 부타디엔 고무는 탄소나노튜브 100 중량부에 대하여 0.5 내지 60 중량부 포함되는 것을 특징으로 하는 탄소나노튜브 슬러리 조성물.
  5. 제 1항에 있어서,
    상기 아민계 화합물은 메틸아민, 에틸아민, 프로필아민, 부틸아민, 헥실아민, 헵틸아민, 옥틸아민, 디옥틸아민, 트리옥틸아민, Tert-옥틸아민, 아미노에탄올, 아미노프로판올, 아미노부탄올, 아미노펜탄올, 아미노헥산올, 도데실아민, 옥타데실아민, 트리프로필아민, N,N-디메틸벤질아민, 2-메톡시에틸아민, 올리일아민 중에서 선택되는 하나 또는 둘 이상인 것을 특징으로 하는 탄소나노튜브 슬러리 조성물.
PCT/KR2018/009720 2017-09-29 2018-08-23 탄소나노튜브 슬러리 조성물 WO2019066262A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170127183A KR101831562B1 (ko) 2017-09-29 2017-09-29 탄소나노튜브 슬러리 조성물
KR10-2017-0127183 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019066262A1 true WO2019066262A1 (ko) 2019-04-04

Family

ID=61387118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009720 WO2019066262A1 (ko) 2017-09-29 2018-08-23 탄소나노튜브 슬러리 조성물

Country Status (2)

Country Link
KR (1) KR101831562B1 (ko)
WO (1) WO2019066262A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388801A (zh) * 2021-12-22 2022-04-22 诺瑞(深圳)新技术有限公司 一种碳纳米管导电分散液及其制备方法和应用
US11469421B2 (en) 2020-09-03 2022-10-11 Toyo Ink Sc Holdings Co., Ltd. Conductive material dispersion, binder resin-containing conductive material dispersion, slurry for electrode film, electrode film, and non-aqueous electrolyte secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101831562B1 (ko) * 2017-09-29 2018-02-22 주식회사 나노신소재 탄소나노튜브 슬러리 조성물
JP6531926B1 (ja) * 2018-04-26 2019-06-19 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
JP7216344B2 (ja) 2020-01-31 2023-02-01 東洋インキScホールディングス株式会社 分散剤、導電材分散体、及び電極膜用スラリー
KR102513551B1 (ko) * 2021-07-21 2023-03-23 주식회사 지엔지나노텍 단일벽 탄소나노튜브를 포함하는 고투명 대전방지 점착제
KR102631434B1 (ko) * 2021-08-26 2024-01-30 주식회사 지엔지나노텍 단일벽 탄소나노튜브를 포함하는 대전방지 이형 코팅제 및 이로부터 형성된 대전방지 이형필름

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070259994A1 (en) * 2003-06-23 2007-11-08 William Marsh Rice University Elastomers Reinforced with Carbon Nanotubes
KR20110059759A (ko) * 2008-09-09 2011-06-03 썬 케미칼 코포레이션 탄소 나노튜브 분산
KR101297316B1 (ko) * 2011-08-23 2013-08-16 한국과학기술연구원 Cnt-고분자 복합체 및 이의 제조방법
KR20130111313A (ko) * 2012-03-30 2013-10-10 (주)파낙스이엠 탄소나노튜브 분산체를 이용한 탄소나노튜브의 분산방법
KR20150016852A (ko) * 2013-08-05 2015-02-13 제일모직주식회사 탄소나노튜브 분산액 및 이의 제조방법
KR101831562B1 (ko) * 2017-09-29 2018-02-22 주식회사 나노신소재 탄소나노튜브 슬러리 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070259994A1 (en) * 2003-06-23 2007-11-08 William Marsh Rice University Elastomers Reinforced with Carbon Nanotubes
KR20110059759A (ko) * 2008-09-09 2011-06-03 썬 케미칼 코포레이션 탄소 나노튜브 분산
KR101297316B1 (ko) * 2011-08-23 2013-08-16 한국과학기술연구원 Cnt-고분자 복합체 및 이의 제조방법
KR20130111313A (ko) * 2012-03-30 2013-10-10 (주)파낙스이엠 탄소나노튜브 분산체를 이용한 탄소나노튜브의 분산방법
KR20150016852A (ko) * 2013-08-05 2015-02-13 제일모직주식회사 탄소나노튜브 분산액 및 이의 제조방법
KR101831562B1 (ko) * 2017-09-29 2018-02-22 주식회사 나노신소재 탄소나노튜브 슬러리 조성물

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469421B2 (en) 2020-09-03 2022-10-11 Toyo Ink Sc Holdings Co., Ltd. Conductive material dispersion, binder resin-containing conductive material dispersion, slurry for electrode film, electrode film, and non-aqueous electrolyte secondary battery
CN114388801A (zh) * 2021-12-22 2022-04-22 诺瑞(深圳)新技术有限公司 一种碳纳米管导电分散液及其制备方法和应用
CN114388801B (zh) * 2021-12-22 2024-04-30 诺瑞(深圳)新技术有限公司 一种碳纳米管导电分散液及其制备方法和应用

Also Published As

Publication number Publication date
KR101831562B1 (ko) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2019066262A1 (ko) 탄소나노튜브 슬러리 조성물
DE69636246T2 (de) Mit polyethylenglykol behandelter russ und verbindungen desselben
KR102582093B1 (ko) 2종 이상의 아민을 포함하는 기능화 그래핀 및 그 제조방법
WO2014163236A1 (ko) 다중수소결합에 의해 고차구조를 지니는 탄소나노소재와 금속나노소재를 하이브리드하여 형성된 고전도성 소재 및 그 제조방법
WO2013137654A1 (ko) 금속-판상의 그라핀 분말 및 이를 포함하는 전자파 차폐용 코팅 조성물
WO2019146982A1 (ko) 탄소나노튜브 분산액의 제조방법
WO2015130100A1 (ko) 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법
WO2010090480A2 (ko) 탄소계 입자/구리로 된 복합재료의 제조방법
WO2011013927A2 (ko) 저온소성용 열경화성 전극 페이스트
WO2014148705A1 (ko) 탄소나노튜브 복합체의 제조방법
WO2016129733A1 (ko) 고밀도 니켈-코발트-망간 복합 전구체의 제조 방법
CN102898872B (zh) 功能化石墨烯、其制备方法及在石墨烯/非极性聚合物复合材料中的应用
CN108841157A (zh) 一种电磁屏蔽的石墨烯pc复合材料及其制备方法
WO2018008830A1 (ko) 3차원 인쇄 가능한 유연전극용 복합소재
DE112017000178T5 (de) Leitender Film und Verfahren zu dessen Herstellung
WO2017159917A1 (ko) 전기전도성 카본페이퍼의 제작방법
CN111393744B (zh) 具有抗菌导电性的tpe材料及其制备方法
CN107474520A (zh) 一种高导电石墨烯柔性复合膜及其制备方法
WO2015016490A1 (ko) 세라믹이 코팅된 흑연의 제조방법
WO2021091104A1 (ko) 하이드록시산에 의해 표면처리된 무기나노입자 및 열가소성 고분자를 이용한 유무기 나노복합물의 제조방법 및 이로부터 제조된 유무기 나노복합물
CN112646366A (zh) 长玻纤增强尼龙复合材料无卤环保阻燃母粒及其制备方法
CN117467223A (zh) 一种量子点扩散板制备方法
CN111560162A (zh) 一种增强型pc/abs合金阻燃板材的制备方法
WO2020111805A1 (ko) 신축성 페이스트 조성물
WO2022231325A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863344

Country of ref document: EP

Kind code of ref document: A1