WO2015130100A1 - 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법 - Google Patents

아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법 Download PDF

Info

Publication number
WO2015130100A1
WO2015130100A1 PCT/KR2015/001869 KR2015001869W WO2015130100A1 WO 2015130100 A1 WO2015130100 A1 WO 2015130100A1 KR 2015001869 W KR2015001869 W KR 2015001869W WO 2015130100 A1 WO2015130100 A1 WO 2015130100A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
group
carbon
subcritical
supercritical fluid
Prior art date
Application number
PCT/KR2015/001869
Other languages
English (en)
French (fr)
Inventor
신규순
장화명
박선찬
이정훈
최현성
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN201580010229.6A priority Critical patent/CN106102889B/zh
Publication of WO2015130100A1 publication Critical patent/WO2015130100A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing a carbon material using a subcritical or supercritical fluid, and more particularly, graphene dispersed efficiently in a short time by using a subcritical or supercritical fluid in a process of grinding a carbon material.
  • the present invention relates to a method for producing a carbon material using a subcritical or supercritical fluid capable of producing a back and the like.
  • Graphene is a carbon crystal in which carbon atoms are connected in a hexagonal honeycomb shape to have a two-dimensional sheet shape. A plurality of plate-shaped graphenes are stacked to form graphite. . Therefore, when the graphite is exfoliated, plate-like graphene composed of a single layer or a plurality of layers can be obtained.
  • Graphene is a material having both metal properties and nonmetal properties. As a metal property, graphene has higher electrical / electronic conductivity than copper and higher thermal conductivity than diamond, and has high thermal stability and chemical inertness as a nonmetal property. In addition, since graphene has higher mechanical strength and elasticity than steel, it can be applied to various applications such as special materials and electronic materials.
  • Graphene is typically manufactured in a top down manner by oxidatively expanding impression graphite or natural graphite using an oxidizing agent or an intercalating agent, thereby providing epoxy (eg, epoxy) on the edges and surfaces of the graphene.
  • Oxygen (O) atoms such as epoxy group, hydroxyl group, carbonyl group, carboxylic acid group, ester group, and formyl group are contained or amino It will contain a number of functional groups (or functional groups), including nitro, sulfur, and the like, which are well dispersed in various polar organic solvents including water.
  • functional groups or functional groups
  • An object of the present invention is to provide a functional group capable of extending the interlayer spacing of carbon by pulverizing a carbon material in an atmosphere of a subcritical or supercritical fluid so that the supercritical fluid reacts on the surface of the carbon and the pulverized surface produced by the pulverization.
  • a functional group capable of extending the interlayer spacing of carbon by pulverizing a carbon material in an atmosphere of a subcritical or supercritical fluid so that the supercritical fluid reacts on the surface of the carbon and the pulverized surface produced by the pulverization.
  • a subcritical or supercritical fluid that can be formed, as well as a supercritical fluid is supplied to the interlayer space of the expanded carbon to further expand the interlayer spacing, thereby efficiently exfoliating or dispersing graphene from the carbon material. It is to provide a method for producing.
  • Another object of the present invention is to provide a method for producing a carbon material using a subcritical or supercritical fluid capable of mass production of graphene and the like in a short time.
  • Still another object of the present invention is to disperse a carbon material having no layered structure such as activated carbon, carbon nanotubes, and amorphous carbon in a subcritical or supercritical fluid atmosphere to form functional groups on the pulverized surface, thereby dispersing the carbon material. It is to provide a method for producing a carbon material using a subcritical or supercritical fluid that can improve.
  • the present invention comprises the steps of physically pulverizing a carbon material formed by covalent bonding of carbon atoms; Subcritical or supercritical fluid is introduced into the pulverized carbon material to increase the carbon spacing inside the carbon material and react the pulverized carbon material with the subcritical or supercritical fluid to form functional groups in the carbon material. Making a step; And it provides a method of producing a carbon material using a subcritical or supercritical fluid comprising the step of dispersing the carbon material in which the functional group is formed in a solvent.
  • the present invention also provides a carbon material layer comprising a carbon material prepared by the above method, the carbon material layer may be used as an antistatic layer, a filler of a heat dissipation product, and an electrode material of a secondary battery.
  • the functional group in addition to the surface including the edge of the carbon material, the functional group can be formed in the interlayer space of the carbon material, etc., grinding by high energy ball milling Since the functional group formation reaction is carried out in the process and in the subcritical or supercritical fluid atmosphere, the activated reaction sites such as the crushed surface and the carbon material internal defects generated in the layered and non-layered carbon materials are increased, By reacting the fluid in a subcritical or supercritical state, the functional groups are efficiently formed in the interlayer space in the case of the layered carbon material as well as the surface or the crushed surface including the edge of the carbon material, and the interlayer space in which the functional groups are formed.
  • Supercritical fluids can be supplied to maximize the interlayer spacing.
  • the reaction by the grinding process and the supply of the subcritical or supercritical fluid may occur at the same time, and also the intercalation effect between the graphite layers due to the inflow of the subcritical or supercritical fluid into the carbon layered space. It can be expected, and mass production of graphene etc. can be carried out by peeling or disperse
  • FIG. 1 is a view for explaining a method of manufacturing a carbon material using a subcritical or supercritical fluid according to an embodiment of the present invention.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 1 is a view for explaining a method of manufacturing a carbon material using a subcritical or supercritical fluid according to an embodiment of the present invention.
  • a carbon material formed by pulverizing and covalently bonding carbon atoms in the reactor 10 is physically processed.
  • a subcritical or supercritical fluid by pressurizing and heating the fluid such as CO 2 supplied from the fluid supply unit 30 and the pressurizing and heating unit 20 to form a subcritical or supercritical fluid. It is pulverized and fed to the reactor 10 to react with the pulverized carbon material. Therefore, the manufacturing method of the carbon raw material which concerns on this invention can also be specifically seen as a processing method or dispersion method of a carbon raw material.
  • the carbon material used as the raw material of the present invention is a layered or non-layered carbon material formed by covalent bonding of carbon atoms, for example, graphite having a layer structure, activated carbon having a non-layered structure, carbon nanotubes, Amorphous carbons and mixtures thereof and the like.
  • the graphite may be graphene by separating several layers of carbon, and the activated carbon, carbon nanotubes, and amorphous carbon do not have a layered structure.
  • the graphite may have physical properties such as reactivity, chemical properties, electrical conductivity, and the like. Properties can be improved.
  • Physical pulverization of the carbon material is to increase the area of the carbon material selected from the group consisting of graphite of the layered structure, activated carbon of the non-layered structure, carbon nanotubes and amorphous carbon reacts with subcritical or supercritical fluids.
  • the carbon material can be finely pulverized as long as it can be used without limitation, for example, it can be carried out by methods such as bead mill (jet mill), attrition mill and stirring ball mill, metal or ceramic It is preferable to use the bead mill which consists of materials, such as these.
  • a carbon material and a solvent are mixed and mixed for about 20 to 40 minutes to prepare a uniform carbon material solution, and then beads or beads are added to the solution.
  • a grinding medium such as a ball, should be fed and ground for about 70 to 90 minutes to crush and disperse the solution.
  • the flow rate of the carbonaceous solution to which the grinding medium is added should be about 10 to 30 m / sec, preferably about 15 to 25 m / sec. May not be made properly.
  • the addition amount of the grinding media may be added in a volume ratio of 2/5 to 5/1, for example, a volume ratio of about 1/1 with respect to the carbonaceous solution.
  • the amount of the carbon material is preferably 0.001 to 20 parts by weight, more preferably 0.01 to 10 parts by weight based on 100 parts by weight of the solvent.
  • a solvent capable of dispersing a carbon material may be used without particular limitation, and for example, methanol, ethanol, isopropyl alcohol, isobutyl alcohol, acetone, methyl ethyl ketone, diethyl ketone, and methyl isobutyl ketone , Diethyl ether, petroleum ether, tetrabutylmethyl ether, ethyl acetate, tetrahydrofuran, dichloromethane, N-methylpyrrolidone, dimethylformamide, water (H 2 O), mixtures thereof and the like can be used.
  • a surfactant or a dispersant having a hydrophilic-lipophilic balance (HLB) coefficient of 10 or more may be added to the carbon material solution, if necessary.
  • the content may be 1 to 150 parts by weight, preferably 10 to 100 parts by weight based on 100 parts by weight of the carbon material.
  • the surfactants and dispersants include Tween 80 (sigma Aldrich), Sodium dodecyl sulfate (SDS), Hexadecyltrimethyl ammonium bromide (CTAB), and acetylene glycol.
  • the dispersant is included in the category of the surfactant, the form is attached to a substituent that can have a pigment affinity to the backbone of the polymer, such as acetylene glycol in the industry usually nonionic surfactants.
  • a subcritical or supercritical fluid is introduced into the pulverized (dispersed) carbon material (solution) to increase the carbon spacing inside the carbon material and react the pulverized carbon material with the subcritical or supercritical fluid.
  • the subcritical or supercritical fluid may form functional groups on the crushed surface generated by the carbon material being pulverized and internal defects of the carbon material, and the like, thereby improving dispersibility of the carbon material. Defects on the surface including the edges of graphite, crushed surfaces and interlayer spaces produced by pulverization, or crushed surfaces and internal defects produced by pulverizing carbon materials having a non-laminar structure such as activated carbon, carbon nanotubes, or crystalline carbon It is formed on the back.
  • the pulverized carbon material is a layered structure
  • the interlayer spacing is extended by a functional group formed in the carbon material
  • the subcritical or supercritical fluid is supplied to the interlayer space of the carbon material with the interlayer spacing
  • the carbon The interlayer spacing of the material can be further extended.
  • the pulverized layered carbon material can be separated only by the interlayer spacing extended by the functional groups formed by the subcritical or supercritical fluid, but for easier layer separation, the interlayer spacing needs to be further extended.
  • the subcritical or supercritical fluid may be introduced into the interlayer space of the carbon material having already extended the interlayer space, thereby further extending the interlayer space of the carbon material.
  • the amount (dosage) of the subcritical or supercritical fluid is 0.1 to 1,000 parts by weight, preferably 1 to 100 parts by weight.
  • the amount of the subcritical or supercritical fluid used is too small, the number of functional groups attached to the carbon material may be too small, resulting in insufficient expansion of the interlayer spacing of the carbon material. It is only disadvantaged.
  • a subcritical or supercritical fluid examples thereof include carbon dioxide, methane, propane, ethylene, propylene, methanol, ethanol, acetone and water (H 2 O) in a subcritical or supercritical state, and the subcritical or Most preferably, supercritical carbon dioxide is used.
  • a substance which may be a subcritical or supercritical fluid for example, carbon dioxide, methane, propane, ethylene, propylene, methanol, ethanol, acetone, water and the like Heat and pressure must be applied to the material of choice, and the heat and pressure to be applied for each of the above-described materials may be different.
  • the supercritical carbon dioxide when using conventional carbon dioxide, a temperature of 25 to 300 °C, preferably 30 to 200 °C, more preferably 35 to 100 °C, 50 to 300 bar, preferably 50 to 200 bar, more
  • the supercritical carbon dioxide may be manufactured using a high pressure vessel for supercritical manufacturing, which may apply a pressure of 75 to 150 bar, and when it is out of the above range, it is difficult to apply the supercritical fluid due to the pressure problem of the reactor. In addition, process costs may also rise dramatically.
  • the critical point that is, the critical temperature and the critical pressure of the various supercritical fluids are as shown in Table 1 below, and the wide range of the critical temperature and the critical pressure as described above means that the supercritical fluid is used in the supercritical fluid production tank. This is because a problem such as a drop in pressure occurs when moving to the reactor.
  • the supercritical fluid is a material that exists at a high temperature and a high pressure state above the critical point of each material, and means a fluid in a state where a gas and a liquid cannot be distinguished because a liquid evaporation process does not occur.
  • Subcritical fluid also refers to materials that exist at temperatures and pressures slightly below the supercritical point of each material.
  • the subcritical or supercritical fluid is preferably supplied to the step of pulverizing the carbon material so as to occur simultaneously with the pulverization of the carbon material (ie, physically pulverizing the carbon material and the pulverized
  • the step of introducing the subcritical or supercritical fluid into the carbon material is preferably carried out simultaneously), if necessary, may be supplied after the carbon material is ground.
  • the process of milling the carbon material finely (milling process) is continued.
  • the flow rate of the solution is about 10 to 30 m / sec, preferably about 15 to 25 m / sec.
  • the subcritical or supercritical fluid reacts with the carbon material to form functional groups in the process of increasing the carbon gap inside the carbon material and in the crushed surface and internal defects of the carbon material generated by the carbon material being pulverized.
  • the functional group is formed after the carbon gap inside the carbon material is increased or the carbon material is formed after the functional group is formed. Internal carbon spacing is increased.
  • the functional group may be a surface including an edge of a layered carbon material such as graphite, a crushed surface and interlaminar space generated by grinding, or grinding of non-layered carbon material such as activated carbon, carbon nanotubes and amorphous carbon.
  • the subcritical or supercritical fluid is formed by reaction with activated reaction sites such as the crushed surface and internal defects generated by the same.
  • the functional groups formed on the carbonaceous material of the layered structure extends the interlayer spacing due to the property of repulsion between the functional groups.
  • the functional group may vary depending on the type of the subcritical or supercritical fluid used in the reaction, for example, an epoxy group, a carboxy group (-COOH), a formyl group (-CHO), a hydroxyl group (-OH), an ester group (-COO-), carbonyl group (-CO-), ether group (-O-), amide group, imide group, nitro group, nitroso group, sulfonic group and sulfonic acid group and the like, and the subcritical or supercritical fluid Most preferred is a carboxyl group formed when carbon dioxide is used.
  • the reaction is to be carried out in a closed vessel such that the subcritical or supercritical fluid to be supplied is kept in a subcritical or supercritical state
  • the reactor in which the reaction is carried out comprises: the carbon material and the material or tool used for grinding Opening and closing ports for supplying or discharging the product are formed, but when the subcritical or supercritical fluid is supplied, or when the subcritical or supercritical fluid and the carbon material react, it should be able to create a closed environment.
  • the reaction may be performed for 0.1 to 20 hours, preferably 0.5 to 10 hours, more preferably 0.5 to 5 hours, under the condition that the subcritical or supercritical fluid is continuously supplied.
  • the carbon material on which the functional group is formed is dispersed and peeled off in a solvent.
  • the solvent is more quickly and effectively cause dispersion and peeling of the carbon material to obtain graphene, which is a peeling product of the carbon material, and is obtained from the carbon material.
  • Solvents that do not modify the like can be used without limitation, and examples thereof include methanol, ethanol, isopropyl alcohol, isobutyl alcohol, acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, diethyl ether and petroleum ether.
  • the amount of the solvent used is 1 to 1,000 parts by weight, preferably 10 to 100 parts by weight.
  • the amount of the solvent used is too small, there is a fear that the carbon material may not be uniformly dispersed. If the amount is too high, excessive energy is required for the operation without additional effects, which is economically undesirable.
  • the carbon material such as graphene prepared as described above has excellent electrical conductivity and heat transfer characteristics
  • the carbon material prepared according to the present invention is suitable for forming an antistatic layer, a filler of a heat dissipation product, an electrode material of a secondary battery, and the like. It can be usefully used.
  • the carbon material dispersion solution may further include a conventional film forming component such as a polymer binder, if necessary, the amount of the polymer binder is usually 1 to 400 parts by weight, based on 100 parts by weight of the carbon material, Preferably it is 10-200 weight part.
  • Graphene powder was prepared in the same manner as in Example 1 except for using physically exfoliated graphene (XG, USA) instead of the graphite used in Step 1.
  • Graphene powder was prepared in the same manner as in Example 1, except that only the supercritical fluid was used alone without using the beads added in Step 2.
  • a graphene powder was prepared in the same manner as in Example 1, except that the supercritical fluid supplied to the reactor was not used in Step 3.
  • Example 2 After stirring for 10 minutes by adding 3% by weight of graphene prepared in Example 1 and Comparative Examples 1 to 3, 8% by weight of polyester resin and 89% by weight of methanol, a bead was added to shaker (LAU, DAS 200) was dispersed for 80 minutes to prepare an ink. Subsequently, the prepared ink was applied to a PET film using a film applicator, placed in a hot air oven and dried at 100 ° C. for 3 minutes, and then surface resistance was measured using a 4-point probe. Is shown in Table 2 below.
  • FIG. 2 is an XPS analysis graph of a carbon material (graphene) manufactured according to Examples and Comparative Examples of the present invention.
  • FIG. 2B is an enlarged view of the dotted red portion of FIG.
  • the method for dispersing a carbon material using a subcritical or supercritical fluid according to the present invention is that in addition to the surface including the edge of the carbon material, a functional group can be formed in the interlayer space of the carbon material, and all processes are subcritical or supercritical. Because it is carried out in a critical fluid atmosphere, there is an advantage in that reaction sites are increased in the carbon material, and functional groups are efficiently formed. In addition, the reaction by the grinding process and the supply of the subcritical or supercritical fluid may occur at the same time, and also the intercalation effect between the graphite layers due to the inflow of the subcritical or supercritical fluid into the carbon layered space. It can be expected, and mass production of graphene etc. can be carried out by peeling or disperse

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)

Abstract

탄소 소재를 분쇄하는 공정에 아임계 또는 초임계 유체를 사용함으로써, 단시간에 효율적으로 분산된 그래핀 등을 제조할 수 있는 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법이 개시된다. 상기 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법은, 탄소 원자가 공유 결합되어 형성된 탄소 소재를 물리적으로 분쇄시키는 단계; 상기 분쇄된 탄소 소재에 아임계 또는 초임계 유체를 유입시켜, 상기 탄소 소재 내부의 탄소 간격을 증가시키고, 상기 분쇄된 탄소 소재와 아임계 또는 초임계 유체를 반응시켜, 상기 탄소 소재에 작용기를 형성시키는 단계; 및 상기 작용기가 형성된 탄소 소재를 용매에 분산시키는 단계를 포함한다.

Description

아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법
본 발명은 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법에 관한 것으로서, 더욱 상세하게는, 탄소 소재를 분쇄하는 공정에 아임계 또는 초임계 유체를 사용함으로써, 단시간에 효율적으로 분산된 그래핀 등을 제조할 수 있는 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법에 관한 것이다.
그래핀(graphene)은 탄소 원자가 6각형 벌집 모양으로 연결되어 2차원 시이트(sheet) 형상을 가지는 탄소 결정으로서, 다수의 판상(plate-shape) 그래핀이 적층되어 그래파이트(graphite, 흑연)를 형성한다. 따라서, 그래파이트를 박리(exfoliation)시키면, 단일 또는 복수의 층으로 이루어진 판상 그래핀을 얻을 수 있다. 그래핀은 금속의 성질 및 비금속의 성질을 모두 가지는 물질이며, 금속의 성질로서 구리보다 높은 전기/전자 전도성 및 다이아몬드보다 높은 열 전도성을 가지며, 비금속의 성질로서 높은 열적 안정성 및 화학적 불활성을 가진다. 뿐만 아니라, 그래핀은 강철보다 높은 기계적 강도 및 신축성까지 가지기 때문에, 특수 소재 및 전자 재료 등의 다양한 용도에 적용될 수 있다.
그래핀은 통상적으로 산화제 또는 층간삽입제를 이용하여 인상 흑연 또는 천연 흑연을 산화 팽창시킴으로써 박리시키는 톱 다운(top down) 방식으로 제조되어, 그래핀의 가장자리(edge) 및 면(面)에 에폭시(epoxy)기, 수산(hydroxyl)기, 카르보닐(carbonyl)기, 카르복실산(carboxylic acid)기, 에스터(ester)기, 포르밀(formyl)기 등 산소(O) 원자가 포함되거나 아미노(amino), 니트로(nitro), 설퍼(sulfur), 등이 포함된 다수의 기능기(functional group, 또는 작용기)를 포함하게 되고, 이러한 기능기들은 물을 비롯한 여러 종류의 극성 유기 용매에 잘 분산된다. 하지만, 그래핀을 제조하는 데에는 많은 비용과 시간이 소요되어 상업적 이용에 제약이 있으며, 물리적 또는 화학적으로 그래핀을 제조할 시에는, 대량 생산에 어려움이 있다. 또한, 산화제와 환원제를 함께 사용할 경우, 제조 공정이 복잡해지게 된다. 따라서, 성능이 우수한 그래핀을 다양한 분야에서 상업적으로 응용하기 위해서는, 보다 저렴하고 효율적이며, 또한, 간단한 공정으로 대량 생산이 가능하고 제조 시간을 단축할 수 있는 제조법이 요구되고 있다.
이와 같은 단점을 보완하기 위하여 다양한 그래핀의 제조방법이 알려져 있는데, 그 중, 그래파이트를 드라이아이스와 함께 분쇄기에 넣고 볼 밀링(ball-milling) 및 반응시켜 카르복시기를 형성한 후, 용매에 분산시킴으로서 그래핀을 제조하는 방법(논문명: Edge-carboxylated graphene nanosheets via ball milling, 백종범(울산과학기술대), 게재: 미국립과학원회보(PNAS), 2012.03.27, 109(15), 5588-5593p)은, 볼 밀링 시간이 48 시간으로 길고, 반응기 내부의 라디칼(radical)이 잔존하여, 반응 종료 후 공기와 접촉 시 스파크 등의 불꽃이 발생하여 폭발의 위험성이 있다. 또한, 고분자가 인터컬레이션(intercalation)된 탄소에 초임계 CO2를 유입시켜, 탄소의 층간 간격을 확장시킨 후, 용매에 분산시켜 그래핀을 제조하는 방법(X.Zheng, RSC Advances, 2012, 2, 10632-10638p)도 알려져 있으나, 상기 방법에서는, 초임계 CO2가 단순히 탄소의 층간 간격을 확장하는 역할만을 수행하며, 탄소의 가장자리에 카르복시기 등의 작용기를 형성시키기 위해서는, 별도의 산(acid) 처리 공정을 추가로 수행하여야 한다.
본 발명의 목적은, 아임계 또는 초임계 유체의 분위기에서 탄소 소재를 분쇄함으로써, 탄소의 표면 및 분쇄에 의해 생성된 분쇄면에 초임계 유체가 반응하여, 탄소의 층간 간격을 확장시킬 수 있는 작용기가 형성됨은 물론, 확장된 탄소의 층간 공간에 초임계 유체가 공급되어 층간 간격을 더욱 확장시켜, 탄소 소재로부터 그래핀을 효율적으로 박리 또는 분산시킬 수 있는, 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은, 그래핀 등을 단시간에 대량 생산할 수 있는, 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 활성탄, 탄소나노튜브 및 비정질 탄소 등의 층상 구조를 갖지 않는 탄소 소재를 아임계 또는 초임계 유체 분위기에서 분쇄하여, 분쇄면에 작용기가 형성됨으로써, 탄소 소재의 분산성을 향상시킬 수 있는, 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 탄소 원자가 공유 결합되어 형성된 탄소 소재를 물리적으로 분쇄시키는 단계; 상기 분쇄된 탄소 소재에 아임계 또는 초임계 유체를 유입시켜, 상기 탄소 소재 내부의 탄소 간격을 증가시키고, 상기 분쇄된 탄소 소재와 아임계 또는 초임계 유체를 반응시켜, 상기 탄소 소재에 작용기를 형성시키는 단계; 및 상기 작용기가 형성된 탄소 소재를 용매에 분산시키는 단계를 포함하는 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법을 제공한다.
본 발명은 또한, 상기 방법으로 제조한 탄소 소재를 포함하는 탄소 소재층을 제공하며, 상기 탄소 소재층은 대전방지층, 방열 제품의 필러, 및 이차전지의 전극 재료 등으로 사용될 수 있다.
본 발명에 따른 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법은, 탄소 소재의 가장자리를 포함한 표면 외에, 탄소 소재의 층간 공간 등에도 작용기를 형성할 수 있는 것으로서, 고에너지 볼 밀링 등에 의한 분쇄 공정과 아임계 또는 초임계 상태의 유체 분위기에서 작용기 형성 반응이 수행되기 때문에, 층상 구조 및 비층상 구조의 탄소 소재에 생성되는 분쇄면 및 탄소 소재 내부 결함부 등의 활성화된 반응 사이트가 증가되고, 여기에 아임계 또는 초임계 상태의 유체를 반응시켜, 상기 탄소 소재의 가장자리를 포함한 표면이나 분쇄면은 물론, 층상 구조 탄소 소재의 경우, 층간 공간에까지 작용기가 효율적으로 형성되고, 작용기가 형성된 층간 공간에 초임계 유체를 공급하여 층간 간격의 확장을 극대화 할 수 있다. 뿐만 아니라, 분쇄 공정과 아임계 또는 초임계 유체의 공급에 의한 반응이 동시에 일어날 수 있고, 또한, 탄소의 층상 공간에 아임계 또는 초임계 유체가 유입되어 그래파이트 층간의 인터컬레이션(intercalation) 효과도 기대할 수 있어, 단시간에 효율적으로 탄소 소재를 박리 또는 분산시켜 그래핀 등을 대량 생산할 수 있다.
도 1은 본 발명의 일 실시예에 따른 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법을 설명하기 위한 도면.
도 2는 본 발명의 실시예 및 비교예에 따라 제조된 그래핀의 X선 광전자 분광(XPS) 분석 그래프.
이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법을 설명하기 위한 도면이다. 도 1에 도시된 바와 같이, 본 발명에 따라, 아임계 또는 초임계 유체를 이용하여 분산된 탄소 소재를 제조하기 위해서는, 먼저, 분쇄 및 반응기(10)에서 탄소 원자가 공유 결합되어 형성된 탄소 소재를 물리적으로 분쇄시키고, 유체 공급부(30)에서 공급된 CO2 등의 유체를 가압 및 가열부(20)에서 가압 및 가열하여 아임계 또는 초임계 유체를 형성한 다음, 형성된 아임계 또는 초임계 유체를 상기 분쇄 및 반응기(10)로 공급하여, 분쇄된 탄소 소재와 반응시킨다. 따라서, 본 발명에 따른 탄소 소재의 제조 방법은 구체적으로는 탄소 소재의 가공 방법 또는 분산 방법으로 볼 수도 있다.
본 발명의 원료로서 사용되는 상기 탄소 소재는 탄소 원자가 공유 결합되어 형성된 층상 또는 비층상의 탄소 물질로서, 예를 들면, 층상 구조의 그래파이트(graphite, 흑연), 비층상 구조의 활성탄, 탄소나노튜브, 비정질 탄소 및 이들의 혼합물 등을 포함한다. 상기 그래파이트는 여러 겹의 탄소 층이 분리되어 그래핀이 될 수 있으며, 상기 활성탄, 탄소나노튜브 및 비정질 탄소는 층상 구조를 갖지 않는 것으로서, 균일하게 분산되면 반응성 등의 화학적 특성이나 전기 전도성 등의 물리적 특성이 향상될 수 있다.
상기 탄소 소재의 물리적 분쇄는, 상기 층상 구조의 그래파이트, 비층상 구조의 활성탄, 탄소나노튜브 및 비정질 탄소로 이루어진 군으로부터 선택되는 탄소 소재가, 아임계 또는 초임계 유체와 반응하는 면적을 증가시키기 위한 것으로서, 상기 탄소 소재를 잘게 분쇄할 수 있는 것이라면 제한 없이 사용할 수 있고, 예를 들면, 비드밀(bead mill), 제트밀, 어트리션밀 및 교반볼밀 등의 방법으로 수행될 수 있으며, 금속 또는 세라믹 등의 재질로 이루어진 비드밀을 사용하는 것이 바람직하다. 상기 탄소 소재를 물리적으로 분쇄시키기 위해서는, 예를 들면, 탄소 소재와 용매를 혼합하고 약 20 내지 40 분 동안 교반하여(mixing) 균일한 탄소 소재 용액을 제조한 후, 상기 용액에 비드(bead) 또는 볼(ball) 등, 분쇄 매질을 공급하고 약 70 내지 90 분 동안 분쇄하여, 상기 용액을 분쇄 및 분산시켜야 한다. 상기 분산 시에는, 상기 분쇄 매질이 첨가된 탄소 소재 용액의 유속이 약 10 내지 30 m/sec, 바람직하게는 약 15 내지 25 m/sec가 되도록 해야 하며, 상기 범위를 벗어날 경우에는, 분산 및 파쇄가 적절히 이루어지지 않을 수 있다. 상기 분쇄 매질의 첨가량은, 상기 탄소 소재 용액에 대하여 2/5 내지 5/1의 부피비, 예를 들면 약 1/1의 부피비로 첨가될 수 있다.
상기 용매 100 중량부에 대하여, 탄소 소재의 사용량은 바람직하게는 0.001 내지 20 중량부, 더욱 바람직하게는 0.01 내지 10 중량부이다. 상기 용매로는 탄소 소재를 분산시킬 수 있는 용매를 특별한 제한 없이 사용할 수 있으며, 예를 들면, 메탄올, 에탄올, 이소프로필 알코올, 이소부틸 알코올, 아세톤, 메틸에틸케톤, 디에틸케톤, 메틸이소부틸케톤, 디에틸 에테르, 석유 에테르, 테트라부틸메틸에테르, 에틸 아세테이트, 테트라히드로퓨란, 디클로로메탄, N-메틸피롤리돈, 디메틸포름아미드, 물(H2O), 이들의 혼합물 등을 사용할 수 있고, 바람직하게는 메탄올(Methanol)을 사용할 수 있다. 한편, 상기 탄소 소재 및 용매의 젖음성 향상을 위하여, 필요에 따라, 친수성-친유성 평형(Hydrophilic-lipophilic balance, HLB) 계수가 10 이상인 계면활성제 또는 분산제를 상기 탄소 소재 용액에 첨가할 수 있으며, 그 함량은 상기 탄소 소재 100 중량부에 대하여 1 내지 150 중량부, 바람직하게는 10 내지 100 중량부일 수 있다. 상기 계면활성제 및 분산제의 예로는 Tween 80(sigma Aldrich), Sodium dodecyl sulfate(SDS), Hexadecyltrimethyl ammonium bromide(CTAB) 및 아세틸렌 글리콜(Acetylene glycol) 등이 있다. 한편, 상기 분산제는 상기 계면활성제의 범주 내에 포함되는 것으로서, 업계 통상 비이온계 계면활성제 중 아세틸렌 글리콜과 같이, 고분자의 backbone에 안료 친화성을 가질 수 있는 치환기가 부착된 형태를 분산제라고 한다.
다음으로, 상기 분쇄(분산)된 탄소 소재(용액)에 아임계 또는 초임계 유체를 유입시켜, 상기 탄소 소재 내부의 탄소 간격을 증가시키고, 상기 분쇄된 탄소 소재와 아임계 또는 초임계 유체를 반응시켜, 상기 탄소 소재에 작용기를 형성시킨다. 상기 아임계 또는 초임계 유체는, 상기 탄소 소재가 분쇄됨으로써 생성되는 분쇄면 및 탄소 소재의 내부 결함부 등에 작용기를 형성시켜, 상기 탄소 소재의 분산성을 향상시킬 수 있는 것으로서, 상기 작용기는, 상기 그래파이트의 가장자리를 포함한 표면, 분쇄에 의해 생성된 분쇄면 및 층간 공간의 결함부나, 상기 활성탄, 탄소나노튜브 또는 결정질 탄소 등 비층상 구조를 가지는 탄소 소재의 분쇄에 의해 생성되는 분쇄면 및 내부 결함부 등에 형성된다.
한편, 상기 분쇄된 탄소 소재가 층상 구조이면, 상기 탄소 소재에 형성된 작용기에 의해 층간 간격이 확장되고, 상기 층간 간격이 확장된 탄소 소재의 층간 공간에 아임계 또는 초임계 유체를 공급하여, 상기 탄소 소재의 층간 간격을 더욱 확장시킬 수 있다. 상기 분쇄된 층상 구조의 탄소 소재는, 상기 아임계 또는 초임계 유체에 의해 형성되는 작용기에 의해 확장되는 층간 간격만으로도 층의 분리가 가능하지만, 보다 수월한 층 분리를 위하여, 층간 간격을 더욱 확장시킬 필요가 있다. 본 발명에 있어서, 이미 층간 간격이 확장된 탄소 소재의 층간 공간에 상기 아임계 또는 초임계 유체를 유입시켜, 상기 탄소 소재의 층간 간격을 더욱 확장시킬 수 있다. 상기 탄소 소재 용액 100 중량부에 대하여, 상기 아임계 또는 초임계 유체의 사용량(투입량)은 0.1 내지 1,000 중량부, 바람직하게는 1 내지 100 중량부이다. 여기서, 상기 아임계 또는 초임계 유체의 사용량이 너무 작으면, 탄소 소재에 부착되는 작용기의 수가 너무 적어, 탄소 소재의 층간 간격 확장이 불충분하게 될 우려가 있고, 너무 많으면, 추가적인 효과가 없이, 경제적으로 불리할 뿐이다.
이와 같이, 상기 탄소 소재 내부의 탄소 간격을 증가시키고, 또한, 상기 탄소 소재가 분쇄됨으로써 생성되는 분쇄면 및 탄소 소재의 내부 결함부 등에 작용기를 형성시키기 위해서는, 아임계 또는 초임계 상태의 유체를 사용해야 하는 것으로서, 그 예로는, 아임계(subcritical) 또는 초임계(supercritical) 상태의 이산화탄소, 메탄, 프로판, 에틸렌, 프로필렌, 메탄올, 에탄올, 아세톤 및 물(H2O) 등이 있으며, 상기 아임계 또는 초임계 이산화탄소를 사용하는 것이 가장 바람직하다. 상기 아임계 또는 초임계 유체를 제조하기 위해서는, 아임계 또는 초임계 유체가 될 수 있는 물질, 예를 들면, 이산화탄소, 메탄, 프로판, 에틸렌, 프로필렌, 메탄올, 에탄올, 아세톤 및 물 등으로 이루어진 군으로부터 선택되는 물질에, 열(heat) 및 압력(pressure)을 가해주어야 하는 것으로서, 상기 예시한 각각의 물질마다 가해주어야 하는 열 및 압력은 상이할 수 있다. 예를 들어, 통상의 이산화탄소를 사용할 경우, 25 내지 300 ℃, 바람직하게는 30 내지 200 ℃, 더욱 바람직하게는 35 내지 100 ℃의 온도와, 50 내지 300 bar, 바람직하게는 50 내지 200 bar, 더욱 바람직하게는 75 내지 150 bar의 압력을 가할 수 있는 초임계 제조용 고압용기를 이용하여 초임계 이산화탄소를 제조할 수 있으며, 상기 범위를 벗어날 경우에는, 반응기의 압력 문제로 인하여 초임계 유체의 적용이 어려우며, 공정 비용 또한 급격히 상승할 우려가 있다.
한편, 여러 초임계 유체의 임계점, 즉, 임계온도 및 임계압력은 하기 표 1과 같은 것으로서, 상기한 바와 같이 임계온도 및 임계압력 범위를 넓게 설정한 것은, 초임계 유체를 초임계 유체 제조 탱크에서 반응기로 이동시킬 때 압력이 저하되는 등의 문제가 발생하기 때문이다.
표 1
초임계 유체 임계온도(℃) 임계압력(bar)
이산화탄소 31.1 73.8
373.1 220.5
메탄 -87.75 46
에탄 32.4 48.8
프로판 96.8 42.5
에틸렌 9.4 50.4
프로필렌 91.75 46
메탄올 239.45 80.9
에탄올 240.9 61.4
아세톤 235.1 47.0
상기 초임계 유체는 각 물질의 임계점(supercritical point) 이상의 고온 및 고압 상태에서 존재하는 물질로서, 액체의 증발 과정이 일어나지 않아서 기체와 액체의 구별을 할 수 없는 상태, 즉 임계 상태의 유체를 의미한다. 또한, 아임계(subcritical) 유체는 각 물질의 임계점(supercritical point)보다 약간 낮은 온도 및 압력 상태에서 존재하는 물질을 의미한다.
한편, 상기 아임계 또는 초임계 유체는, 상기 탄소 소재의 분쇄와 동시에 이루어지도록, 상기 탄소 소재가 분쇄되는 단계에 공급되는 것이 바람직하지만(즉, 상기 탄소 소재를 물리적으로 분쇄시키는 단계와 상기 분쇄된 탄소 소재에 아임계 또는 초임계 유체를 유입시키는 단계는 동시에 수행되는 것이 바람직하다), 필요에 따라, 상기 탄소 소재가 분쇄된 이후에 공급될 수도 있다. 한편, 상기 아임계 또는 초임계 유체의 공급이, 상기 탄소 소재의 분쇄와 동시에 이루어지거나, 상기 탄소 소재가 분쇄된 이후에 이루어짐에 상관 없이, 상기 탄소 소재를 잘게 분쇄하는 공정(밀링 공정)은 지속적으로 수행될 수 있는 것으로서, 이 때, 용액의 유속은 약 10 내지 30 m/sec, 바람직하게는 약 15 내지 25 m/sec가 되도록 한다.
한편, 상기 아임계 또는 초임계 유체가 상기 탄소 소재와 반응하여, 상기 탄소 소재 내부의 탄소 간격을 증가시키는 과정 및 상기 탄소 소재가 분쇄됨으로써 생성되는 분쇄면 및 탄소 소재의 내부 결함부 등에 작용기를 형성시키는 과정은, 동시에 일어나거나, 또는, 순서를 다르게 하여 일어날 수 있는 것으로서, 후자의 경우, 상기 탄소 소재 내부의 탄소 간격이 증가된 이후에 상기 작용기가 형성되거나, 상기 작용기가 형성된 이후에 상기 탄소 소재 내부의 탄소 간격이 증가된다. 상기 작용기는, 상기 그래파이트와 같은 층상 구조 탄소 소재의 가장자리를 포함한 표면, 분쇄에 의해 생성된 분쇄면 및 층간 공간의 결함부나, 상기 활성탄, 탄소나노튜브 및 비정질 탄소와 같은 비층상 구조 탄소 소재의 분쇄에 의해 생성된 분쇄면 및 내부 결함부 등의 활성화된 반응 사이트(site)에, 상기 아임계 또는 초임계 유체가 반응하여 형성된다. 한편, 상기 층상 구조의 탄소 소재에 형성되는 작용기는, 작용기 간 서로 반발하는 성질에 의해 층간 간격을 확장시키게 된다. 상기 작용기는 상기 반응에 사용되는 아임계 또는 초임계 유체의 종류에 따라 달라질 수 있는 것으로서, 예를 들면, 에폭시기, 카르복시기(-COOH), 포르밀기(-CHO), 히드록시기(-OH), 에스터기(-COO-), 카보닐기(-CO-), 에테르기(-O-), 아마이드기, 이미드기, 니트로기, 니트로소기, 술폰기 및 술폰산기 등일 수 있으며, 상기 아임계 또는 초임계 유체로서 이산화탄소를 사용할 경우에 형성되는 카르복시기가 가장 바람직하다.
상기 반응은, 상기 공급되는 아임계 또는 초임계 유체가 아임계 또는 초임계 상태를 유지하도록 밀폐된 용기에서 이루어져야 하는 것으로서, 상기 반응이 이루어지는 반응기는, 상기 탄소 소재 및 분쇄에 이용되는 재료 또는 도구를 공급하거나 생성물을 배출할 수 있는 개폐구가 형성되어 있지만, 상기 아임계 또는 초임계 유체가 공급되거나, 상기 아임계 또는 초임계 유체와 탄소 소재가 반응할 시에는 밀폐된 환경을 조성할 수 있어야 한다. 또한, 상기 반응은, 상기 아임계 또는 초임계 유체가 지속적으로 공급되는 조건 하에서, 0.1 내지 20 시간, 바람직하게는 0.5 내지 10 시간, 더욱 바람직하게는 0.5 내지 5 시간 동안 이루어질 수 있다.
마지막으로, 상기 작용기가 형성된 탄소 소재를 용매에 분산 및 박리시킨다. 상기 용매는, 상기 탄소 소재에 형성된 작용기 간의 반발력에 더하여, 상기 탄소 소재의 분산 및 박리를 더욱 빠르고 효과적으로 일으켜, 상기 탄소 소재의 박리 생성물인 그래핀 등을 얻기 위한 것으로서, 상기 탄소 소재로부터 얻어지는 그래핀 등을 변형시키지 않는 용매를 제한 없이 사용할 수 있으며, 그 예로는, 메탄올, 에탄올, 이소프로필 알코올, 이소부틸 알코올, 아세톤, 메틸에틸케톤, 디에틸케톤, 메틸이소부틸케톤, 디에틸 에테르, 석유 에테르, 테트라부틸메틸에테르, 에틸 아세테이트, 테트라히드로퓨란, 디클로로메탄, N-메틸피롤리돈, 디메틸포름아미드, 물(H2O) 및 이들의 혼합물 등이 있다. 이와 같은 박리 및 분산 공정에 의하여, 상기 탄소 소재가 층상 구조의 그래파이트이면 판상의 그래핀이 얻어지고, 상기 탄소 소재가 비층상 구조의 탄소 소재이면, 균일하게 분산된 탄소 소재가 얻어진다. 상기 탄소 소재 100 중량부에 대하여, 상기 용매의 사용량은 1 내지 1,000 중량부, 바람직하게는 10 내지 100 중량부이다. 여기서, 상기 용매의 사용량이 너무 작으면, 탄소 소재가 균일하게 분산되지 못할 우려가 있고, 너무 많으면, 추가적인 효과가 없이, 작업에 과도한 에너지가 소요되어 경제적으로 바람직하지 못하다.
이와 같이 제조된 그래핀 등의 탄소 소재는 전기 전도성, 열 전달 특성이 우수하므로, 본 발명에 따라 제조한 탄소 소재는 대전방지층, 방열 제품의 필러(filler), 이차전지의 전극 재료 등의 형성에 유용하게 사용될 수 있다. 여기서, 상기 탄소 소재 분산 용액은, 필요에 따라, 고분자 바인더 등 통상의 필름 형성 성분을 더욱 포함할 수 있으며, 상기 고분자 바인더의 사용량은, 탄소 소재 100 중량부에 대하여, 통상 1 내지 400 중량부, 바람직하게는 10 내지 200 중량부이다.
이하, 구체적인 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[실시예 1] 초임계 유체를 이용한 탄소 소재의 분산 및 그래핀의 제조
500 중량부의 메탄올에 그래파이트(Timcal사, 스위스) 15 중량부를 첨가하여 반응기에 공급한 후, 메탄올 및 그래파이트의 젖음성 향상을 위해 분산제인 아세틸렌 글리콜(Acetylene glycol)을 1.5 중량부 추가로 첨가하고, 30 분간 혼합하여 그래파이트 용액을 제조하였다(Step 1). 이어서, 상기 제조된 용액에 비드(bead)를 부피비로 2/3만큼 첨가한 후, 용액의 속도가 18 m/sec의 유속을 유지할 수 있도록 rpm을 조절하며 80 분간 분산시켜 분산용액을 제조하였으며(Step 2), 35 ℃ 및 100 bar 조건의 초임계 제조용 고압용기에 CO2 가스를 공급하여 초임계 유체로 제조한 후, 상기 분산용액이 들어있는 반응기로 유체를 이송하였다(Step 3). 마지막으로, 상기 초임계 유체와 혼합된 분산용액의 유속이 18 m/sec를 유지하도록 rpm을 조절하며 220 분간 밀링(milling)을 진행한 후, 18,000 rpm의 속도로 원심분리하여 상등액을 제거하고, 이어서, 동결 건조기로 건조시켜, 박리된 그래핀 파우더를 제조하였다(Step 4).
[비교예 1] 초임계 유체를 이용한 탄소 소재의 분산 및 그래핀의 제조
Step 1에서 사용한 그래파이트 대신 물리적으로 박리된 그래핀(XG사, 미국)을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 그래핀 파우더를 제조하였다.
[비교예 2] 초임계 유체를 이용한 탄소 소재의 분산 및 그래핀의 제조
Step 2에서 첨가하는 비드(bead)를 사용하지 않고, 초임계 유체만을 단독 적용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 그래핀 파우더를 제조하였다.
[비교예 3] 탄소 소재의 분산 및 그래핀의 제조
Step 3에서 반응기에 공급한 초임계 유체를 사용하지 않은 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 그래핀 파우더를 제조하였다.
그래핀의 전기적 특성 평가
실시예 1 및 비교예 1 내지 3에서 제조된 그래핀 3 중량%, 폴리에스테르 수지(Polyester resin) 8 중량% 및 메탄올 89 중량%를 첨가하여 10 분간 교반시킨 후, 비드(bead)를 첨가하여 shaker(LAU사, DAS 200)로 80 분간 분산시켜 잉크를 제조하였다. 이어서, 제조된 잉크를 필름 어플리케이터(film applicator)를 이용하여 PET film에 도포하고, 열풍식 오븐에 넣어 100 ℃에서 3 분간 건조시킨 후, 4-point probe를 이용하여 표면저항을 측정하였으며, 그 결과를 하기 표 2에 나타내었다.
표 2
표면저항(Ω/sq) 비고
실시예 1 1.58×105 초임계 유체 + 밀링(18 m/sec)
비교예 1 3.39×105 물리적으로 박리된 그래핀 사용
비교예 2 1.26×1012 초임계 유체 단독 적용
비교예 3 1.20×108 초임계 유체 미사용(밀링 단독 적용)
그래파이트의 박리 정도를 면저항으로 대체하여 평가한 결과, 상기 표 2에 나타낸 바와 같이, 초임계 유체 또는 밀링 공정의 단독 적용 시(비교예 2 및 3)에는 박리 효과가 적었으며, 초임계 유체 및 밀링 공정을 동시에 적용한 경우(밀링 시 용액의 선속이 18 m/sec, 실시예 1)에는, 상용화되는 기존의 그래핀(예를 들어, 비교예 1)과 유사한 성능(동등 또는 다소 우위의 성능)으로 제조되었다.
그래핀의 XPS 분석 및 평가
실시예 1 및 비교예 1 내지 3에서 제조된 그래핀의 기능화 여부를 확인하기 위하여, X선 광전자 분광법(XPS(X-ray photoelectron spectroscopy), VG Microtech사, ESCA-2000)에 의한 분석을 실시하였다. 도 2는 본 발명의 실시예 및 비교예에 따라 제조된 탄소 소재(그래핀)의 XPS 분석 그래프로서, 도 2의 B는 도 2-A의 붉은 점선 부분을 확대한 모습이다. XPS 분석 결과, 도 2에 도시된 바와 같이, O=C-O 결합(bonding)인 289 eV(shift를 고려하여 넓게 표기) 부근에서 피크(peak)가 확인되며, O=C-O 결합의 강도(Intensity)를 비교한 결과, 원소재인 그래파이트(graphite)가 가장 낮았고, 그 다음으로 낮은 비교예 1(기능화되지 않은 그래핀)에서 제조된 그래핀 파우더에도 일부 기능화가 가능한 것을 확인하였다. 마지막으로, 실시예 1(초임계 유체 + 18 m/sec의 고속밀링)에서 제조된 그래핀 파우더는, O=C-O 결합의 강도가 가장 높아, 다른 경우들에 비하여 기능화 정도가 우수함을 알 수 있다.
본 발명에 따른 아임계 또는 초임계 유체를 이용한 탄소 소재의 분산 방법은, 탄소 소재의 가장자리를 포함한 표면 이외에, 탄소 소재의 층간 공간 등에도 작용기를 형성할 수 있는 것으로서, 모든 공정이 아임계 또는 초임계 상태의 유체 분위기에서 수행되기 때문에, 탄소 소재에 반응 사이트가 증가되고, 작용기가 효율적으로 형성되는 장점이 있다. 뿐만 아니라, 분쇄 공정과 아임계 또는 초임계 유체의 공급에 의한 반응이 동시에 일어날 수 있고, 또한, 탄소의 층상 공간에 아임계 또는 초임계 유체가 유입되어 그래파이트 층간의 인터컬레이션(intercalation) 효과도 기대할 수 있어, 단시간에 효율적으로 탄소 소재를 박리 또는 분산시켜 그래핀 등을 대량 생산할 수 있다.

Claims (14)

  1. 탄소 원자가 공유 결합되어 형성된 탄소 소재를 물리적으로 분쇄시키는 단계; 및
    상기 분쇄된 탄소 소재에 아임계 또는 초임계 유체를 유입시켜, 상기 탄소 소재 내부의 탄소 간격을 증가시키고, 상기 분쇄된 탄소 소재와 아임계 또는 초임계 유체를 반응시켜, 상기 탄소 소재에 작용기를 형성시키는 단계를 포함하는 탄소 소재의 제조 방법.
  2. 청구항 1에 있어서, 상기 작용기가 형성된 탄소 소재를 용매에 분산시키는 단계를 더욱 포함하는 탄소 소재의 제조 방법.
  3. 청구항 1에 있어서, 상기 탄소 소재는 층상 구조의 그래파이트, 비층상 구조의 활성탄, 탄소나노튜브, 비정질 탄소 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 탄소 소재의 제조 방법.
  4. 청구항 1에 있어서, 상기 탄소 소재는 층상 구조의 그래파이트이고, 상기 탄소 소재의 박리 생성물은 그래핀인 것인, 탄소 소재의 제조 방법.
  5. 청구항 1에 있어서, 상기 탄소 소재를 물리적으로 분쇄시키는 단계와 상기 분쇄된 탄소 소재에 아임계 또는 초임계 유체를 유입시키는 단계는 동시에 수행되는 것인, 탄소 소재의 제조 방법.
  6. 청구항 1에 있어서, 상기 작용기는, 그래파이트의 가장자리를 포함한 표면, 분쇄에 의해 생성된 분쇄면 및 층간 공간의 결함부나, 활성탄, 탄소나노튜브 또는 결정질 탄소의 분쇄에 의해 생성된 분쇄면 및 내부 결함부에 형성되는 것인, 탄소 소재의 제조 방법.
  7. 청구항 1에 있어서, 상기 탄소 소재는 분쇄 전 용매와 혼합되어 탄소 소재 용액을 구성하며, 상기 탄소 소재 용액은, 상기 탄소 소재 및 용매의 젖음성 향상을 위하여, 친수성-친유성 평형(HLB) 계수가 10 이상인 계면활성제 또는 분산제를 더욱 포함하는 것인, 탄소 소재의 제조 방법.
  8. 청구항 1에 있어서, 상기 탄소 소재의 물리적 분쇄는, 비드밀, 제트밀, 어트리션밀 및 교반볼밀로 이루어진 군으로부터 선택되는 방법으로 수행되는 것인, 탄소 소재의 제조 방법.
  9. 청구항 1에 있어서, 상기 아임계 또는 초임계 유체는, 아임계 또는 초임계 상태의 이산화탄소, 메탄, 프로판, 에틸렌, 프로필렌, 메탄올, 에탄올, 아세톤 및 물로 이루어진 군으로부터 선택되는 것인, 탄소 소재의 제조 방법.
  10. 청구항 1에 있어서, 상기 반응은 상기 아임계 또는 초임계 유체가 지속적으로 공급되는 조건 하에서, 0.1 내지 20 시간 동안 이루어지는 것인, 탄소 소재의 제조 방법.
  11. 청구항 1에 있어서, 상기 작용기는 에폭시기, 카르복시기, 포르밀기, 히드록시기, 에스터기, 카보닐기, 에테르기, 아마이드기, 이미드기, 니트로기, 니트로소기, 술폰기 및 술폰산기로 이루어진 군으로부터 선택되는 것인, 탄소 소재의 제조 방법.
  12. 청구항 2에 있어서, 상기 용매는 메탄올, 에탄올, 이소프로필 알코올, 이소부틸 알코올, 아세톤, 메틸에틸케톤, 디에틸케톤, 메틸이소부틸케톤, 디에틸 에테르, 석유 에테르, 테트라부틸메틸에테르, 에틸 아세테이트, 테트라히드로퓨란, 디클로로메탄, N-메틸피롤리돈, 디메틸포름아미드, 물(H2O) 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 탄소 소재의 제조 방법.
  13. 청구항 1 내지 12의 어느 한 항에 따른 방법으로 제조한 탄소 소재를 포함하는 탄소 소재층.
  14. 청구항 13에 있어서, 상기 탄소 소재층은 대전방지층, 방열 제품의 필러 및 이차전지의 전극 재료로 이루어진 군으로부터 선택되는 것인 탄소 소재층.
PCT/KR2015/001869 2014-02-26 2015-02-26 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법 WO2015130100A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580010229.6A CN106102889B (zh) 2014-02-26 2015-02-26 利用亚临界或超临界流体的碳材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0022838 2014-02-26
KR20140022838 2014-02-26

Publications (1)

Publication Number Publication Date
WO2015130100A1 true WO2015130100A1 (ko) 2015-09-03

Family

ID=54009353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001869 WO2015130100A1 (ko) 2014-02-26 2015-02-26 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법

Country Status (3)

Country Link
KR (1) KR102416980B1 (ko)
CN (1) CN106102889B (ko)
WO (1) WO2015130100A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772666A (zh) * 2021-10-25 2021-12-10 大连元晶科技有限公司 一种利用超临界二氧化碳剥离制备油溶性氟化石墨烯的方法
WO2021253009A3 (en) * 2020-06-12 2022-01-20 Cornell University Polymerizations in supercritical carbon dioxide, products of same, and uses thereof
CN114426269A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 一种石墨烯及其制备方法
CN114479399A (zh) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 一种抗静电pc/abs组合物及其制备方法和成型体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20155920A1 (it) * 2015-11-26 2017-05-26 Fondazione St Italiano Tecnologia Esfoliazione di materiali stratificati mediante tecniche di wet-jet milling.
CN106938843B (zh) * 2017-05-16 2019-01-25 侯梦斌 一种介入亚临界水的生产石墨烯设备与工艺
CN108298530A (zh) * 2018-01-17 2018-07-20 中国石油大学(北京) 一种寡层石墨烯及其制备方法与应用
CN109110749A (zh) * 2018-09-09 2019-01-01 宁波诺丁汉新材料研究院有限公司 一种边缘羧基化石墨烯和基于超临界流体剪切制备其的方法
CN110065940A (zh) * 2019-06-19 2019-07-30 侯梦斌 一种介入亚临界溶剂变压力剥离碳材料的设备与工艺
KR102296102B1 (ko) * 2019-12-11 2021-09-01 한국기계연구원 지속적으로 발전가능한 해수 연료전지
CN114538419B (zh) * 2020-11-26 2023-08-18 江苏天奈科技股份有限公司 一种分散性碳纳米管粉末的制备方法及设备
KR102530524B1 (ko) * 2022-08-19 2023-05-10 이승민 건식 박리를 통한 2차원 물질의 제조방법 및 이를 이용하여 제조된 2차원 물질
CN116534846B (zh) * 2023-04-10 2023-12-19 重庆中润新材料股份有限公司 一种碳纳米管浆料的制备装置及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100222482A1 (en) * 2006-09-26 2010-09-02 Jang Bor Z Mass production of nano-scaled platelets and products
KR101256123B1 (ko) * 2011-09-20 2013-04-23 주식회사 제이오 탄소나노튜브(또는 그래파이트) 회수 장치 및 이 장치를 포함하는 초임계 공정을 이용한 탄소나노튜브(또는 그래파이트)의 기능화-회수 장치
KR20130137839A (ko) * 2012-06-08 2013-12-18 (주) 시온텍 그래핀의 제조방법
KR20140017082A (ko) * 2012-07-30 2014-02-11 주식회사 포스코 제철 공정 부산물로부터 키쉬 흑연 분리방법 및 이를 이용한 그래핀 혹은 유사 그래핀 제조 공정
KR20140022266A (ko) * 2012-08-14 2014-02-24 엠더스 주식회사 그레핀 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219761B1 (ko) * 2009-01-09 2013-01-10 세종대학교산학협력단 탄소나노튜브의 정제 방법 및 분산 방법
WO2011156599A2 (en) * 2010-06-09 2011-12-15 Georgia-Pacific Chemicals Llc Methods for producing precursor solutions and sol-gels for nano-engineered carbon materials and non-engineered carbon materials created therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100222482A1 (en) * 2006-09-26 2010-09-02 Jang Bor Z Mass production of nano-scaled platelets and products
KR101256123B1 (ko) * 2011-09-20 2013-04-23 주식회사 제이오 탄소나노튜브(또는 그래파이트) 회수 장치 및 이 장치를 포함하는 초임계 공정을 이용한 탄소나노튜브(또는 그래파이트)의 기능화-회수 장치
KR20130137839A (ko) * 2012-06-08 2013-12-18 (주) 시온텍 그래핀의 제조방법
KR20140017082A (ko) * 2012-07-30 2014-02-11 주식회사 포스코 제철 공정 부산물로부터 키쉬 흑연 분리방법 및 이를 이용한 그래핀 혹은 유사 그래핀 제조 공정
KR20140022266A (ko) * 2012-08-14 2014-02-24 엠더스 주식회사 그레핀 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021253009A3 (en) * 2020-06-12 2022-01-20 Cornell University Polymerizations in supercritical carbon dioxide, products of same, and uses thereof
CN114426269A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 一种石墨烯及其制备方法
CN114426269B (zh) * 2020-10-13 2023-10-10 中国石油化工股份有限公司 一种石墨烯及其制备方法
CN114479399A (zh) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 一种抗静电pc/abs组合物及其制备方法和成型体
CN113772666A (zh) * 2021-10-25 2021-12-10 大连元晶科技有限公司 一种利用超临界二氧化碳剥离制备油溶性氟化石墨烯的方法

Also Published As

Publication number Publication date
KR102416980B1 (ko) 2022-07-05
CN106102889B (zh) 2020-02-21
KR20150101426A (ko) 2015-09-03
CN106102889A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2015130100A1 (ko) 아임계 또는 초임계 유체를 이용한 탄소 소재의 제조 방법
KR101666478B1 (ko) 그래핀의 제조 방법과, 그래핀의 분산 조성물
KR101581363B1 (ko) 복합 전도 소재체, 축전 디바이스, 도전성 분산액, 도전 디바이스, 도전성 컴포지트 및 열전도성 컴포지트 및 복합 전도 소재의 제조 방법
TWI517774B (zh) 製造多層石墨烯被覆基板之方法
KR101682007B1 (ko) 그래핀의 제조 방법
Teng et al. Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets
CN109650892B (zh) 一种高导热石墨烯膜及其制备方法
Quan et al. Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites
EP3157865B1 (en) Process for preparing graphene nanoplatelets
KR101700355B1 (ko) 탄소 나노 튜브의 제조 방법과, 탄소 나노 튜브의 분산 조성물
WO2017095512A1 (en) Chemical-free production of graphene materials
US20060148966A1 (en) Expanded graphite and products produced therefrom
CN102321379A (zh) 导电性石墨烯/聚合物复合材料
Luo et al. Melamine resin/graphite nanoflakes hybrids and its vacuum-assisted prepared epoxy composites with anisotropic thermal conductivity and improved flame retardancy
KR101838853B1 (ko) 혼합 그래파이트를 이용한 방열재 및 그의 제조방법
CN105778571B (zh) 一种石墨烯复合浆料及其制备方法
WO2019066262A1 (ko) 탄소나노튜브 슬러리 조성물
JP2017088792A (ja) 複合粒子およびその製造方法、複合材料シートおよびその製造方法、並びに、熱伝導シートの製造方法
CN110203913A (zh) 一种制备石墨烯的方法
WO2017081867A1 (ja) 複合材料シートおよび熱伝導シートの製造方法
CN115850968A (zh) 一种MXene基高导热防火复合薄膜及其制备方法与应用
US20170233621A1 (en) Graphene-containing epoxy adhesives
Lima et al. Polymer Nanocomposites of Surface‐Modified Graphene. I: Thermal and Electrical Properties of Poly (Vinyl Alcohol)/Aminoacid‐Functionalized Graphene
WO2024096397A1 (ko) 실리콘-그래핀 복합 음극재 및 그 제조방법
KR20160101556A (ko) 고농도 그래핀 분산액의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755548

Country of ref document: EP

Kind code of ref document: A1