WO2020204013A1 - 電力ケーブルの接続部被覆用絶縁テープ、電力ケーブルの接続部外面への絶縁被覆形成方法および電力ケーブル - Google Patents
電力ケーブルの接続部被覆用絶縁テープ、電力ケーブルの接続部外面への絶縁被覆形成方法および電力ケーブル Download PDFInfo
- Publication number
- WO2020204013A1 WO2020204013A1 PCT/JP2020/014713 JP2020014713W WO2020204013A1 WO 2020204013 A1 WO2020204013 A1 WO 2020204013A1 JP 2020014713 W JP2020014713 W JP 2020014713W WO 2020204013 A1 WO2020204013 A1 WO 2020204013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulating
- polyethylene
- power cable
- tape
- insulating tape
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G15/00—Cable fittings
- H02G15/08—Cable junctions
- H02G15/18—Cable junctions protected by sleeves, e.g. for communication cable
- H02G15/196—Cable junctions protected by sleeves, e.g. for communication cable having lapped insulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/56—Insulating bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B9/00—Power cables
- H01B9/02—Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
- H01B9/023—Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of helicoidally wound tape-conductors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G1/00—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
- H02G1/14—Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for joining or terminating cables
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G15/00—Cable fittings
- H02G15/08—Cable junctions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
Definitions
- the present invention comprises an insulating tape used for coating a connection portion of a power cable, a method for forming an insulating coating on the outer surface of the connection portion of a power cable using the insulating tape, and an insulating coating formed using the insulating tape.
- the power cable to have.
- a CV cable As a power transmission / distribution cable for electric power, a CV cable is widely used as an insulator that covers the circumference of a conductor by extruding a resin material containing cross-linked polyethylene onto the conductor to cover the conductor.
- a resin material containing cross-linked polyethylene onto the conductor to cover the conductor.
- an internal semi-conductive layer, an insulating layer, an outer semi-conductive layer, etc. are formed on the conductor in the same manner as a normal cable portion. It is composed of.
- a method of forming an insulating layer there is a method of forming an insulating coating by winding an insulating tape made of the same resin as the insulating layer of the cable portion.
- this CV cable Since this CV cable is operated for a long period of time, it is required that dielectric breakdown does not occur due to deterioration of the resin.
- dielectric breakdown there is a water tree generated in the insulating layer.
- the water tree is a phenomenon in which the deteriorated portion of the resin spreads in a tree shape starting from voids and foreign substances existing in the insulating layer of the CV cable, and the widening of the deteriorated portion causes dielectric breakdown.
- the water tree is caused by the movement of water molecules contained in the cross-linked polyethylene by energizing the CV cable, and the water molecules gathering at singular points such as foreign substances and voids to generate a corona discharge. ing. Therefore, in order to suppress the water tree, (a) prevention of invasion of water, (b) prevention of contamination of foreign substances serving as singular points and generation of voids, (c) prevention of aggregation of water at singular points, (d) Research is underway from the perspective of increasing the strength of cross-linked polyethylene.
- Non-Patent Document 1 describes a method of adding an additive having a straight chain having good compatibility with XLPE and having a hydrophilic group capable of binding to water to a cross-linked polyethylene resin (XLPE).
- the affinity of the additive with respect to polyethylene is lowered, so that the additive tends to bleed out from the polyethylene over time.
- the insulating tape wound around the power cable connection portion has a large ratio of the surface area to the volume, so that the bleed-out to the resin surface becomes remarkable.
- Patent Document 1 describes bleed-resistant oxidation containing a polycyclic compound, p-phenylphenol cyclic compound, as an antioxidant having excellent heat resistance and bleed resistance. Inhibitors are listed. Further, Patent Document 2 describes a polymer-type antioxidant having a hindered phenol at the end of a polycarbonate molecule as an antioxidant capable of reducing bleed-out to the surface during long-term use of a molded product. Has been done.
- the additive (antioxidant) bleeding out to the surface of polyethylene may be reabsorbed by polyethylene by heating during crosslinking, but it is a polymer type as described in Patent Documents 1 and 2.
- an antioxidant was used, it was difficult to be reabsorbed by polyethylene due to heating during cross-linking, so that the antioxidant remaining on the surface caused local cracks.
- An object of the present invention is that even when the insulating coating of a power cable is formed by using a resin material containing polyethylene having high hydrophilicity, the generation of unfused portions is suppressed and the insulation coating is locally formed inside the insulating coating. It is an object of the present invention to provide an insulating tape that makes it difficult for a resin to crack, a method for forming an insulating coating on the outer surface of a connection portion of a power cable, and a power cable.
- the present inventors have found that in order to suppress cracking due to unfused in the insulating layer, it is better to include a high molecular weight additive (antioxidant) in the resin material, which is not easy to move.
- a high molecular weight additive antioxidant
- an antioxidant having a molecular weight of 190 or more and less than 1050 and keeping the content of the antioxidant within a predetermined range, the antioxidant bleeding out to the surface of the insulating tape can be used to make polyethylene. It was found that it was reabsorbed by polyethylene by heating at the time of cross-linking and preheating performed before that, and based on such findings, the present invention was completed.
- the gist structure of the present invention is as follows.
- An insulating tape for covering a connection portion of a power cable which is made of a resin material containing polyethylene, which is at least partially modified by a molecule that imparts hydrophilicity, an antioxidant, and a cross-linking agent.
- the molecular weight of the inhibitor is in the range of 190 or more and less than 1050, and the content of the antioxidant is in the range of 0.05 parts by mass or more and 0.8 parts by mass or less with respect to 100 parts by mass of the polyethylene.
- An insulating tape for covering a connection portion of a power cable having a tape thickness in the range of 50 ⁇ m or more and 250 ⁇ m or less.
- the tape winding step of forming the coating and the connection portion on which the insulating coating is formed are subjected to pressure heat treatment at a pressure of 300 kPa or more and 1000 kPa or less and a temperature of 140 ° C. or more and 280 ° C. or less to be applied to the insulating coating.
- a winding device provided with a tape guide for guiding the insulating tape to a winding position on the outer surface of the connection portion is used, and the surface of the tape guide when winding the insulating tape.
- the above (3) or (4) further includes a preheating step of heating the connection portion having the insulating coating formed at 40 ° C. or higher and 130 ° C. or lower after the tape winding step and before the cross-linking step.
- At least the insulating tape according to (1) or (2) above is wrapped around a connecting portion in which the exposed ends of a plurality of power cables are connected by conductors and the outer periphery of the connecting portion.
- a power cable comprising a connection structure having an insulating coating formed on the outer surface of the connection by turning and cross-linking.
- the antioxidant reappears during crosslinking. Since it dissolves in the resin material and does not remain between the insulating tapes, it does not interfere with the fusion or cross-linking of the insulating coating formed by winding the insulating tape. As a result, local cracks in the fused portion are unlikely to occur, and an insulating tape for covering the connection portion of the power cable, which has durability to withstand long-term use in the CV cable, and an insulating coating forming method using the same. And a power cable is obtained.
- FIG. 1A is a cross-sectional view showing the ends of two power cables with exposed conductors facing each other in a separated state.
- FIG. 1B is a cross-sectional view showing a state in which the end portions having exposed conductors are connected to each other by a conductor.
- FIG. 1 (c) is a cross-sectional view showing a state in which an internal semi-conductive layer is formed on the outer periphery of the connecting portion.
- FIG. 1A is a cross-sectional view showing the ends of two power cables with exposed conductors facing each other in a separated state.
- FIG. 1B is a cross-sectional view showing a state in which the end portions having exposed conductors are connected to each other by a conductor.
- FIG. 1 (c) is a cross-sectional view showing a state in which an internal semi-conductive layer is formed on the outer periphery of the connecting portion.
- FIG. 1A is a cross-sectional view showing the ends of two power cables with exposed conduct
- FIG. 1D is a cross-sectional view showing a state in which an insulating tape is wound around the outer periphery of the internal semi-conductive layer of the connecting portion to form an insulating coating.
- FIG. 1 (e) is a cross-sectional view showing a state in which an external semi-conductive layer is formed on the outer periphery of the insulating tape. It is a figure explaining the winding device which winds an insulating tape around the connection part of a power cable.
- FIG. 2A is a perspective view schematically showing a power cable and a winding device.
- FIG. 2B is a cross-sectional view schematically showing a power cable and a winding device.
- FIG. 3A is a cross-sectional view schematically showing the structure of the power cable and its connection portion.
- FIG. 3B is a cross-sectional view taken along the line AA'of FIG. 3A.
- FIG. 3C is a cross-sectional view taken along the line BB'of FIG. 3A.
- the insulating tape for coating the connection portion of the power cable of the present invention contains polyethylene (A), which is at least partially modified by a molecule that imparts hydrophilicity, an antioxidant (B), and a cross-linking agent (C).
- insulating tape for covering the connection portion of the power cable according to the present embodiment
- polyethylene having high hydrophilicity is used in order to suppress the generation of water trees.
- the antioxidant bleeding out to the surface of the insulating tape is reabsorbed by the polyethylene by heating when the polyethylene is crosslinked, it is possible to prevent local cracking in the fused portion.
- preheating is performed before crosslinking, so that the reabsorption of the antioxidant into polyethylene can be promoted, and local cracking in the fused portion can be made less likely to occur.
- the resin material constituting the insulating tape contains polyethylene (A), an antioxidant (B), and a cross-linking agent (C).
- Polyethylene (A) As the polyethylene (A), those that are at least partially modified by a molecule that imparts hydrophilicity may be used, and more specifically, only the modified polyethylene (A1) that has been modified by a molecule that imparts hydrophilicity may be used. Alternatively, the modified polyethylene (A1) and the unmodified polyethylene (A2) may be used in combination. As a result, the resin material can be made highly hydrophilic, so that the generation of water trees in the insulating layer formed by the insulating tape can be suppressed.
- modified polyethylene (A1) is polyethylene modified by binding molecules containing hydrophilic groups. By using such modified polyethylene (A1), it is possible to suppress the accumulation of space charges of direct current, so that dielectric breakdown in the insulating coating formed by the insulating tape can be reduced.
- examples of the molecule containing a hydrophilic group include ethers, alcohols, esters, carboxylic acids and the like. Among them, at least one selected from the group of unsaturated dicarboxylic acids, unsaturated dicarboxylic acid anhydrides and unsaturated dicarboxylic acid derivatives is preferable.
- examples of unsaturated dicarboxylic acids include maleic acid, fumaric acid, and itaconic acid.
- examples of unsaturated dicarboxylic acid anhydrides include maleic anhydride and itaconic anhydride.
- examples of derivatives of unsaturated dicarboxylic acids include monomethyl esters, monoethyl esters, diethyl esters, amides, and imides of unsaturated dicarboxylic acids.
- maleic anhydride having the highest ratio of carbonyl groups per molecular weight is most preferable because hydrophilicity can be imparted to polyethylene by adding a small amount.
- low-density polyethylene having a specific gravity of 0.900 or more and 0.940 or less and having a branched structure, or linear low-density polyethylene and an alkene It is preferable to contain a copolymer of.
- the melting point of the low-density polyethylene is preferably 90 ° C. or higher and 130 ° C. or lower, and more preferably 100 ° C. or higher and 120 ° C. or lower.
- the “melting point” in the present specification is the melting point measured by the differential scanning calorimetry method of JIS K7121-1987.
- modified polyethylene (A1) in addition to those obtained by modifying polyethylene as described above, a commercially available resin can also be used.
- Hymilan ethylene-methacrylic acid copolymer, manufactured by Mitsui-Dupont Polychemical Co., Ltd.
- Nucrel ethylene-methacrylic acid copolymer, manufactured by Dupont Co., Ltd.
- SCONA TSPE maleic anhydride-modified low-density polyethylene, BYK
- Orevac G maleic anhydride-modified low-density polyethylene, manufactured by Alchema Co., Ltd.
- Modic maleic anhydride-modified low-density polyethylene, manufactured by Mitsubishi Chemical Corporation
- the specific gravity of the modified polyethylene (A1) is preferably 0.890 or more and 0.950 or less, more preferably 0.900 or more and 0.940 or less, and more preferably 0.910 or more and 0.930 or less.
- the melting point of the modified polyethylene (A1) is preferably 90 ° C. or higher and lower than 135 ° C., more preferably 100 ° C. or higher and 120 ° C. or lower.
- the unmodified polyethylene (A2) includes low-density polyethylene, which is a polyethylene having a branched structure having a specific gravity of 0.900 or more and 0.940 or less, or a copolymer of linear low-density polyethylene and an alkene. Is preferable.
- low-density polyethylene is a polyethylene having a branched structure having a specific gravity of 0.900 or more and 0.940 or less, or a copolymer of linear low-density polyethylene and an alkene. Is preferable.
- the specific gravity of the unmodified polyethylene (A2) is preferably 0.900 or more and 0.940 or less, and more preferably 0.910 or more and 0.930 or less.
- the melting point of the unmodified polyethylene (A2) is preferably 90 ° C. or higher and 130 ° C. or lower, and more preferably 100 ° C. or higher and 120 ° C. or lower.
- the total amount of the polyethylene (A) may be the modified polyethylene (A1).
- 2 parts by mass of unmodified polyethylene (A2) is added to 1 part by mass of modified polyethylene (A1). It is preferable to mix in a proportion of 2 parts or more and 20 parts by mass or less.
- the antioxidant (B) is also called an anti-aging agent, and has an action of preventing the insulating tape and the insulating coating formed by the insulating tape from being deteriorated by heat and oxygen in the air, and has a molecular weight. Use one that is 190 or more and less than 1050.
- the molecular weight of the antioxidant (B) is preferably 190 or more, more preferably 300 or more, and even more preferably 350 or more.
- the molecular weight of the antioxidant (B) is preferably less than 1050, more preferably 800 or less, and even more preferably 700 or less.
- the antioxidant (B) includes an antioxidant belonging to one or more of phenol-based, phosphorus-based, sulfur-based, amine-based, hydrazine-based and amide-based, and derivatives thereof.
- the derivative of the antioxidant includes a chemical species after the above-mentioned antioxidant has been oxidized.
- the antioxidant (B) preferably contains a phenol-based antioxidant or an amine-based antioxidant, and a phosphoric acid-based antioxidant or a sulfur-based antioxidant.
- the phenolic antioxidant preferably contains one having a molecular weight of 190 or more, and more preferably 300 or more.
- the phenolic antioxidant preferably has a molecular weight of 800 or less, and more preferably 600 or less.
- phenolic antioxidant examples include Irganox 245 (Ethylene bis (oxyethylene) bis- (3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate), molecular weight 587), Irganox 259.
- the phosphoric acid-based antioxidant preferably contains one having a molecular weight of 300 or more, and more preferably 500 or more. On the other hand, the phosphoric acid-based antioxidant preferably contains one having a molecular weight of less than 1050.
- phosphorus-based antioxidants include Irgaphos 168 (Tris (2,4-di-tert.-butylphenyl) phosphite, molecular weight 647) and Irgaphos P-EPQ (1,1'-Biphenyl-4,4'-.
- the sulfur-based antioxidant preferably contains one having a molecular weight of 300 or more, and more preferably 400 or more.
- the sulfur-based antioxidant preferably contains one having a molecular weight of 1000 or less, and more preferably 800 or less.
- sulfur-based antioxidants include Irganox PS800FL (Didodecyl-3,3'-thiodipropionate, molecular weight 515), Irganox PS802FL (3,3'-Thiodipropionic acid dioctadecylester, molecular weight 683), (above, manufactured by BASF).
- Sumilyzer WX (4,4'-Thiobis (2-tert-butyl-5-methylphenol), molecular weight 359) (manufactured by Sumitomo Chemical Co., Ltd.), Adeka Stub AO-503 (Di (tridecyl) 3,3'-thiodipropionate, molecular weight 543), ADEKA STAB AO-23 (bis [2-methyl-4- ⁇ 3-n-alkyl (C12 or C14) thiopropionyloxy ⁇ -5tert-butylphenyl] sulfide, molecular weight about 900, manufactured by ADEKA), etc. Be done.
- antioxidant (B) two or more of these compounds may be used in combination. Further, the antioxidant (B) may be used in combination with another antioxidant having a molecular weight of less than 190 or another antioxidant having a molecular weight of 1050 or more.
- aromatic compounds are preferable, compounds having a structure in which one or more branched alkyl groups are bonded to a benzene ring in the molecule are more preferable, and one or more compounds are attached to the benzene ring.
- a compound having a structure in which a t-butyl group is bonded is more preferable.
- the lower limit of the total content of the antioxidant (B) in the resin material is 0.05 parts by mass, preferably 0.2 parts by mass, and more preferably 0 parts by mass with respect to 100 parts by mass of polyethylene (A). It is 3 parts by mass. Thereby, the generation of scorch can be reduced when the raw materials of the resin material are kneaded, and the heat aging property of the insulating layer obtained by cross-linking the insulating tape can be enhanced.
- the upper limit of the total content of the antioxidant (B) in the resin material is 0.8 parts by mass, preferably 0.6 parts by mass, based on 100 parts by mass of polyethylene (A). As a result, the amount of water generated during resin cross-linking can be reduced, and bleeding from the resin cross-linked body can also be reduced.
- the total content of the antioxidant (B) with respect to 100 parts by mass of the cross-linking agent (C) is 5 parts by mass or more and 50 parts by mass or less.
- the antioxidant (B) is preferably only an antioxidant having a molecular weight in the range of 190 or more and less than 1050, but if the mass ratio to the antioxidant is within 50%, the molecular weight is appropriate as described above. It may contain antioxidants that are out of range. Further, among the antioxidants having a molecular weight in the range of 190 or more and less than 1050, the content of the antioxidant composed of a polycyclic compound is preferably small. Since polycyclic compounds have a large steric hindrance even if they have a small molecular weight, when they are bleeded out of a resin material, they are reabsorbed into polyethylene by heating when the polyethylene is crosslinked or by preheating performed before that. Becomes difficult. Therefore, the content of the polycyclic compound is more preferably 50% or less by mass in the antioxidant.
- Cross-linking agent (C) The cross-linking agent (C) enhances the mechanical properties and heat resistance of the resin material by cross-linking polyethylene (A), and also has an action of bonding adjacent insulating tapes.
- the cross-linking agent (C) preferably contains an organic peroxide that generates radicals by thermal decomposition when heated.
- cross-linking agent (C) examples include dichloromethane (DCP), dichloromethane, dichlorobenzoyl peroxide, di-tert-butyl peroxide, butyl acetate, tert-butyl perbenzoate, 2,5-. Examples thereof include dimethyl-2,5-di (tert-butylperoxy) hexane. Among them, it is preferable to contain DCP. Further, as the cross-linking agent (C), two or more of these compounds may be contained in combination.
- the lower limit of the blending amount of the cross-linking agent (C) is preferably 0.1 part by mass or more, and more preferably 0.5 part by mass or more with respect to 100 parts by mass of polyethylene (A). As a result, the mechanical properties and heat resistance of the resin material can be improved by cross-linking the polyethylene (A).
- the upper limit of the blending amount of the cross-linking agent (C) is preferably 5 parts by mass and more preferably 3 parts by mass with respect to 100 parts by mass of polyethylene (A). As a result, it is possible to suppress a decrease in electrical characteristics due to abnormal cross-linking when the obtained resin material is kneaded or extruded.
- the resin material constituting the insulating tape according to the present embodiment may contain other components, if necessary.
- various additives such as water absorbers, heat stabilizers, light stabilizers, flame retardants, softeners, fillers, colorants, solvents, pigments, dyes, and phosphors may be added.
- the insulating tape according to this embodiment is used to cover the connection portion of the power cable. More specifically, it is used to form an insulating coating by winding the exposed ends of a plurality of power cables around the outer circumference of a connecting portion in which conductors are connected to each other.
- the tape thickness of the insulating tape according to the present embodiment is preferably 50 ⁇ m or more in order to reduce the number of windings when winding around the connection portion and to enhance the heat aging resistance of the insulating layer obtained by cross-linking the insulating tape. 70 ⁇ m or more is more preferable, and 100 ⁇ m or more is further preferable.
- the upper limit of the tape thickness of the insulating tape is preferably 250 ⁇ m or less, more preferably 150 ⁇ m or less in order to facilitate winding around the connection portion.
- the insulating tape according to the present embodiment is prone to bleed-out to the surface of the resin material, and when the tape thickness is 250 ⁇ m or less, the difference in the number of resin cracks generated from the tape having not improved reabsorption is remarkable. It becomes.
- the tape width of the insulating tape according to the present embodiment is preferably 5 mm or more and 30 mm or less in order to form a smooth wound surface.
- the method for producing the insulating tape according to the present embodiment is not particularly limited, and for example, kneading the raw materials containing the above-mentioned polyethylene (A), antioxidant (B) and cross-linking agent (C) in a predetermined ratio.
- An insulating tape can be produced by a method having a step and a molding step of extruding the resin kneaded in the kneading step to form a tape.
- examples of the kneading step performed on the raw material of the insulating tape include a step of adding an antioxidant (B) and a cross-linking agent (C) to the polyethylene (A) described above, and then melting and kneading the polyethylene (A).
- the kneading temperature in the kneading step is preferably higher than the melting point of polyethylene (A) and 135 ° C. or lower. More specifically, in order to obtain a uniform paste-like resin material, the kneading temperature is preferably higher than the melting point of polyethylene (A).
- the kneading temperature in the kneading step is preferably 135 ° C. or lower, more preferably less than 130 ° C.
- the kneading step of the present embodiment it is sufficient to obtain a resin material that is macroscopically homogeneous, and in the resin material obtained by the kneading step, a part of polyethylene (A) is dispersed in the paste without melting. You may.
- the polyethylene (A) and the antioxidant (B) are first kneaded and then molded.
- the cross-linking agent (C) is added to the obtained pellets, and the cross-linking agent (C) is melted while stirring the pellets and the cross-linking agent (C) to crosslink the polyethylene (A) in the pellets.
- the agent (C) may be absorbed.
- Examples of the molding step performed on the resin material obtained by kneading include forming a film having a predetermined thickness and then slitting the resin material so as to have a predetermined tape width.
- an extrusion molding means can be used as a means for forming a film from the resin material obtained by kneading. More specifically, the inflation method, the T-die method, the cast method, the calendar method and the like can be used, and among them, the inflation method is preferably used.
- the molding temperature in the molding step is preferably a molding temperature higher than the melting point of polyethylene (A) and 135 ° C. or lower. More specifically, from the viewpoint of enabling molding of the resin material, the molding temperature is preferably higher than the melting point of polyethylene (A). Further, in order to avoid cross-linking of polyethylene (A) due to thermal decomposition of the cross-linking agent (C), the molding temperature is preferably 135 ° C. or lower.
- the kneading step and the molding step do not have to be performed as separate steps.
- the raw material of the insulating tape is melt-kneaded and extruded using the same device, or the raw material of the insulating tape is melted and extruded. It may be done by.
- the above-mentioned insulating tape is wound around the outer periphery of a connection portion in which the exposed ends of a plurality of power cables are connected by conductors.
- the tape winding step of forming an insulating coating on the outer surface of the connecting portion and the connecting portion having the insulating coating are subjected to pressure heating treatment at a pressure of 300 kPa or more and 1000 kPa or less and a temperature of 140 ° C. or more and 280 ° C. or less.
- the antioxidant bleeding out on the surface of the insulating tape is reabsorbed by polyethylene, so that cracks are less likely to occur inside the insulating coating to be formed. Can be done.
- FIG. 1 is a diagram illustrating an insulation coating forming method according to the present invention.
- a power cable in which an inner semi-conductive layer 12a, an insulating layer 13a, an outer semi-conductive layer 14a, a metal shielding layer 15a, and a sheath 16a are laminated in this order around a conductor 11a made of a metal or alloy such as copper or aluminum.
- a power cable 10b in which an inner semi-conductive layer 12b, an insulating layer 13b, an outer semi-conductive layer 14b, a metal shielding layer 15b, and a sheath 16b are laminated in this order around 10a and a conductor 11b made of the same metal or alloy as the conductor 11a.
- the case of connecting with is shown as an example.
- the plurality of power cables 10a and 10b to be connected expose the conductors 11a and 11b at their ends, respectively.
- the total length (E1 + E2) for exposing the conductors 11a and 11b is preferably wider than the width of the insulating tape in order to facilitate winding of the insulating tape.
- the conductor 11a , 11b and the insulating layers 13a and 13b are preferably exposed.
- the adhesion between the insulating layers 13a and 13b and the insulating tape is enhanced, so that resin cracking at the interface between them is less likely to occur. it can.
- the ends of the conductors 11a and 11b are connected to each other by conductors.
- a method of conducting conductor connection for example, welding can be used, and a connecting portion (welded portion) 171 is formed by the conductor connection.
- an internal semi-conductive layer 172 may be formed on the outer periphery of the formed connecting portion 171.
- the internal semi-conductive layer 172 is formed from, for example, a semi-conductive resin composition containing a cross-linking resin, conductive carbon black, an antioxidant, and a cross-linking agent.
- a cross-linking resin for example, one or more resins selected from ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer and ethylene-butyl acrylate copolymer. Can be mentioned.
- the internal semi-conductive layer 172 can be obtained, for example, by molding a resin, and more specifically, the resin may be extruded and molded on the surfaces of the conductors 11a and 11b, and the conductors 11a and 11b are made of gold. This may be done by inserting the resin into a mold and injecting the resin into the mold, or the resin may be molded into a tape shape and wound around the surfaces of the conductors 11a and 11b. Further, a tube that shrinks by heating is inserted in advance into either of the conductors 11a and 11b before forming the connecting portion 171, and after the connecting portion 171 is formed, the tube is heated and contracted to shrink the inner half.
- the conductive layer 172 can also be formed.
- a winding device 2 provided with a tape guide 22 for guiding the insulating tape 20 to a winding position (not shown) on the outer surface of the connecting portion 171 as shown in FIG. 2 in order to wind the insulating tape with sufficient tension. Can be used.
- the insulating tape 20 drawn from the reel 21 is passed through the tape guide 22 to the internal semiconductive layer 172 formed on the outer surface of the connecting portion 171 and the exposed internal semiconductive of the power cables 10a and 10b.
- the insulating tape can be wound while applying tension by rotating the winding device 2 around the conductor 11.
- additives such as antioxidants that have adhered by bleeding out from the inside of the insulating tape 20 onto the surface due to contact between the insulating tape 20 and the tape guide 22 are removed.
- Additives that are scraped off by the tape guide 22 and adhered / accumulated on the tape guide 22 tend to adhere to the surface of the insulating tape 20 and get caught in the insulating coating 173 when the amount exceeds a certain amount.
- adhesion / accumulation of additives is likely to occur when the surface temperature of the tape guide 22 rises due to friction or the like.
- the additive attached to the tape guide 22 adheres to the surface of the insulating tape 20 passing through the tape guide 22, and is formed by winding the insulating tape 20 with the additive attached. Even if it is caught in the insulating coating 173, it can be reabsorbed by polyethylene by subsequent heating.
- adjusting the surface temperature of the tape guide 22 to 30 ° C. or lower, more preferably 25 ° C. or lower, can further reduce cracking of the insulating tape 20 in the fused portion by reducing bleeding to polyethylene. And more preferable.
- the means for adjusting the surface temperature of the tape guide 22 is not particularly limited, but for example, air cooling by applying cold air to the tape guide 22 or means such as installing a heat sink can be used.
- an external semi-conductive layer 174 may be formed around the insulating coating 173 formed by winding the insulating tape 20.
- the outer semi-conductive layer 174 is formed from a semi-conductive resin composition, like the inner semi-conductive layer 172.
- the outer semi-conductive layer 174 can be obtained, for example, by molding a resin in the same manner as the inner semi-conductive layer 172. Further, in the external semi-conductive layer 174, a tube for forming an external semi-conductive layer that shrinks by heating is inserted in advance into any of the power cables 10a and 10b before forming the connecting portion 171, and the outer semi-conductive layer 174 is formed on the outer periphery of the connecting portion 171. After the internal semi-conductive layer 172 and the insulating coating 173 are sequentially formed, the tube may be moved to the outer peripheral position of the connecting portion 171 and then heated to shrink the tube.
- thermoforming process It is preferable to perform a preheating step of heating the connecting portion 171 on which the insulating coating 173 is formed and the external semi-conductive layer 174 is formed, if necessary, to a temperature of 40 ° C. or higher and 130 ° C. or lower.
- a preheating step of heating the connecting portion 171 on which the insulating coating 173 is formed and the external semi-conductive layer 174 is formed, if necessary, to a temperature of 40 ° C. or higher and 130 ° C. or lower.
- the heating temperature in the preheating step is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, in order to promote the reabsorption of the additive into polyethylene.
- the heating temperature in the preheating step is preferably 130 ° C. or lower, more preferably 120 ° C. or lower, from the viewpoint of preventing the polyethylene from cross-linking before the bleeding additive is reabsorbed.
- the heating time in the preheating step is preferably 1 minute or more, more preferably 3 minutes or more, in consideration of the time required for the additive to be reabsorbed by polyethylene.
- the upper limit of the heating time in the preheating step is not particularly limited, but may be, for example, 10 minutes or less from the viewpoint of productivity.
- additives such as antioxidants bleeding on the surface of the insulating tape 20 are reabsorbed by the polyethylene, and the polyethylene contained in the adjacent insulating tape 20 is crosslinked by the action of the cross-linking agent. It is possible to reduce cracking in the portion of the coating 173 to which the insulating tape 20 is fused. Further, by cross-linking polyethylene, the mechanical properties and heat resistance of the resin material constituting the insulating coating 173 can be improved.
- the portion around which the insulating tape 20 is wound is sealed with a pressure vessel, and a volatile low molecular weight compound that is gasified by heating is produced by performing a pressure heat treatment in a state of being filled with gas and pressurized. Absorb in the resin material.
- the pressure at the time of performing the pressure heat treatment is preferably 300 kPa or more, more preferably 400 kPa or more. Further, from the viewpoint of preventing the seal of the sealed portion of the pressure vessel from being broken, the pressure at the time of performing the pressure heat treatment is preferably 1000 kPa or less.
- the heating temperature when performing the pressure heat treatment in the crosslinking step is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, in order to promote the crosslinking reaction due to the action of the crosslinking agent.
- the heating temperature at the time of performing the pressure heat treatment in the crosslinking step is preferably 280 ° C. or lower, more preferably 260 ° C. or lower, from the viewpoint of preventing thermal decomposition of polyethylene.
- a metal shielding layer and an anticorrosion sheath may be provided around the insulating coating 173 after cross-linking.
- the metal shielding layer for example, one made of lead, copper, or aluminum can be used.
- the anticorrosion sheath for example, one made of vinyl chloride, polyethylene or nylon can be used.
- the power cable 1 according to the present embodiment is obtained by, for example, the above-mentioned method, and as shown in FIG. 3A, the exposed ends of the conductors 11a and 11b of the plurality of power cables are connected to each other.
- the above-mentioned insulating tape is at least wound and bridged with the connected connecting portion 171 directly or indirectly via the internal semi-conductive layer 172 on the outer periphery of the connecting portion 171 to form an outer surface (side) of the connecting portion 171.
- an inner semi-conductive layer 12a, an insulating layer 13a, an outer semi-conductive layer 14a, a metal shielding layer 15a, and a sheath 16a are laminated in this order on the outer periphery of the conductor 11a.
- a plurality of power cables 10a and 10b are connected to each other.
- the inner semi-conductive layer 172, the insulating coating 173, and the outer semi-conductive layer 174 are laminated in this order on the outer periphery of the connecting portion 171, and these are connected structure portions 17 It is preferable to configure.
- the heat aging resistance of the insulating coating 173 can be enhanced, and local cracking can be made less likely to occur at the fused portion of the insulating tape, so that it can be used for a long time as a CV cable. It is possible to achieve both durability that can withstand the heat and stability of insulation.
- Example 1 (Material preparation and kneading process) As polyethylene (A), 5 parts by mass of modified polyethylene anhydride "SCONA TSPE 1112 GALL” (manufactured by Big Chemie Japan Co., Ltd., melting point 115 to 132 ° C., specific gravity 0.89 to 0.94), which is modified polyethylene (A1). And 95 parts by mass of low-density polyethylene "ZF30R” (manufactured by Japan Polyethylene Corporation, melting point 110 ° C., specific gravity 0.92), which is unmodified polyethylene (A2), and the total content of these is 100 mass by mass. It was a department.
- SCONA TSPE 1112 GALL manufactured by Big Chemie Japan Co., Ltd., melting point 115 to 132 ° C., specific gravity 0.89 to 0.94
- ZF30R low-density polyethylene
- antioxidant B
- a phosphorus-based antioxidant "Irgafos P-EPQ” tetrakis (2,4-di-tert-butylphenyl) -biphenylenediphosphonite, Molecular weight 1035, manufactured by BASF Co., Ltd.
- the obtained resin material was subjected to a molding step using an inflation method. More specifically, the resin material was extruded from the die at 130 ° C. to form a film so that the film thickness was 100 ⁇ m. Then, the obtained film was slit-processed so as to have a tape width of 20 mm to obtain an insulating tape.
- a tape made of a semi-conductive resin is wound around a portion where the conductor is exposed to form an internal semi-conductive layer 172 having a thickness of 1 mm, and around the tape is formed.
- the above-mentioned insulating tape was wound to form an insulating coating 173 having a thickness of 20 mm.
- the surface temperature of the tape guide 22 is lowered to 25 ° C. or lower by using a winding device 2 provided with the tape guide 22 as shown in FIG. 2 and blowing cold air on the tape guide 22. I tried to be.
- a tube made of a semi-conductive resin having a thickness of 1 mm and shrinking by heating is attached to one of the power cables 10a and 10b.
- An external semi-conductive layer forming tube that shrinks due to heating is inserted in advance, an internal semi-conductive layer 172 and an insulating coating 173 are sequentially formed on the outer periphery of the connecting portion 171, and then the tube is moved to the outer peripheral position of the connecting portion 171.
- the outer semi-conductive layer 174 was formed by moving and then heating to shrink the tube.
- connection portion 171 forming the insulating coating 173 and the external semi-conductive layer 174 was preheated in air at a temperature of 80 ° C. or higher and 100 ° C. or lower for 10 minutes. Then, a pressure heat treatment was carried out under a nitrogen atmosphere at a pressure of 800 kPa and a temperature of 220 ° C. for 3 hours to crosslink the polyethylene to obtain a bonded electric cable.
- Example 2 As the polyethylene (A), 30 parts by mass of the maleic anhydride-modified polyethylene "SCONA TSPE 1112 GALL” (manufactured by Big Chemie Japan Co., Ltd., melting point 115 to 132 ° C., specific gravity 0.89 to 0.94), which is modified polyethylene (A1). Except that 70 parts by mass of low-density polyethylene "ZF30R” (manufactured by Japan Polyethylene Corporation, melting point 110 ° C., specific gravity 0.92), which is unmodified polyethylene (A2), was used to make a total of 100 parts by mass. An insulating tape was produced in the same manner as in Example 1 and used for an insulating coating when joining a power cable.
- SCONA TSPE 1112 GALL manufactured by Big Chemie Japan Co., Ltd., melting point 115 to 132 ° C., specific gravity 0.89 to 0.94
- ZF30R low-density polyethylene
- unmodified polyethylene (A2) was used to make a total of
- Example 3 As polyethylene (A), ethylene-methacrylic acid copolymer "Himilan 1705Zn" which is modified polyethylene (A1) (manufactured by Mitsui-Dupont Polychemical Co., Ltd., methacrylic acid content 15% by mass, melting point 91 ° C., specific gravity 0.95 ) 5 parts by mass and 95 parts by mass of low-density polyethylene "ZF30R” (manufactured by Nippon Polyethylene Co., Ltd., melting point 110 ° C., specific gravity 0.92), which is unmodified polyethylene (A2), totaling 100 parts by mass.
- An insulating tape was produced in the same manner as in Example 1 except for the above, and used for the insulating coating when joining the power cable.
- Tables 1 and 2 show the type and content of the antioxidant (B), the content of the cross-linking agent (C), the tape thickness of the insulating tape, the maximum temperature of the tape guide surface in the insulating tape winding device, and the presence or absence of preheating.
- An insulating tape was produced in the same manner as in Example 1 except for the change as described above, and was used for the insulating coating when connecting (joining) the power cable.
- the residual aging rate was measured.
- the aging residual rate is determined by superimposing insulating tapes, pressing at a pressure of 980 kPa using a molding machine, and performing pressure heat treatment at a temperature of 220 ° C. for 30 minutes to crosslink the polyethylene.
- a 1 mm sheet was obtained, and 5 test pieces punched into dumbbell No. 3 from the obtained sheet were subjected to a tensile test at a tensile speed of 200 mm / min, and the average value of the 5 test pieces was the tensile strength before aging. (N / mm 2 ).
- the five test pieces similarly molded from the sheet were aged by heating in air at 160 ° C. for 48 hours, and then a tensile test was performed in the same manner as described above, and the average value of the five test pieces was calculated.
- the tensile strength after aging (N / mm 2 ) was used.
- the ratio of "tensile strength after aging” to "tensile strength before aging” was calculated as a percentage (%), and this ratio was defined as the "residual aging rate" indicating the degree of resin aging due to heating. It is preferable that the tensile strength of the "residual aging rate" does not decrease even with the aging of the resin, so that the value is preferably large, and more preferably 80% or more.
- the molecular weight of the antioxidant (B) was a large value of 1050 or more, so that the insulating coating formed from the insulating tape had many resin cracks, which was a passing level. Did not meet.
- the molecular weight of the antioxidant (B) was a small value of less than 190, and since the cross-linking agent (C) was not contained, the aging residual rate was low and the durability for long-term use was low. Did not meet the passing level in terms of.
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Organic Insulating Materials (AREA)
- Insulating Bodies (AREA)
- Processing Of Terminals (AREA)
- Cable Accessories (AREA)
Abstract
Description
(1)親水性を付与する分子によって少なくとも一部が変性されたポリエチレンと、酸化防止剤と、架橋剤とを含む樹脂材料からなる、電力ケーブルの接続部被覆用絶縁テープであって、前記酸化防止剤の分子量が、190以上1050未満の範囲であり、前記酸化防止剤の含有量が、前記ポリエチレン100質量部に対して、0.05質量部以上0.8質量部以下の範囲であり、テープ厚みが50μm以上250μm以下の範囲である、電力ケーブルの接続部被覆用絶縁テープ。
(2)前記親水性を付与する分子が、不飽和ジカルボン酸、不飽和ジカルボン酸無水物および不飽和ジカルボン酸の誘導体の群から選択される少なくとも1種である、上記(1)に記載の電力ケーブルの接続部被覆用絶縁テープ。
(3)複数の電力ケーブルの導体を露出させた端部同士を導体接続した接続部の外周に、上記(1)または(2)に記載の絶縁テープを巻回して前記接続部の外面に絶縁被覆を形成するテープ巻回工程と、前記絶縁被覆を形成した前記接続部に、300kPa以上1000kPa以下の圧力および140℃以上280℃以下の温度で加圧加熱処理を施して、前記絶縁被覆中のポリエチレンを架橋させる架橋工程とを含む、電力ケーブルの接続部外面への絶縁被覆形成方法。
(4)前記テープ巻回工程は、前記絶縁テープを前記接続部外面の巻回位置に案内するテープガイドを備えた巻回装置を用い、前記絶縁テープを巻回する際の前記テープガイドの表面温度を30℃以下に制御して行う、上記(3)に記載の電力ケーブルの接続部外面への絶縁被覆形成方法。
(5)前記テープ巻回工程後、前記架橋工程前に、前記絶縁被覆を形成した前記接続部を40℃以上130℃以下で加熱する予備加熱工程をさらに有する、上記(3)または(4)に記載の電力ケーブルの接続部外面への絶縁被覆形成方法。
(6)複数の電力ケーブルの導体を露出させた端部同士を導体接続した接続部と、前記接続部の外周に対して、上記(1)または(2)に記載の絶縁テープを、少なくとも巻回および架橋して、前記接続部の外面に形成してなる絶縁被覆とを有する接続構造部を備える、電力ケーブル。
本発明の電力ケーブルの接続部被覆用絶縁テープは、親水性を付与する分子によって少なくとも一部が変性されたポリエチレン(A)と、酸化防止剤(B)と、架橋剤(C)とを含む樹脂材料からなる、電力ケーブルの接続部被覆用絶縁テープであって、酸化防止剤(B)の分子量が、190以上1050未満の範囲であり、酸化防止剤(B)の含有量が、ポリエチレン(A)100質量部に対して、0.05質量部以上0.8質量部以下の範囲であり、かつテープ厚みが50μm以上250μm以下の範囲である。
絶縁テープを構成する樹脂材料は、ポリエチレン(A)と、酸化防止剤(B)と、架橋剤(C)とを含む。
ポリエチレン(A)としては、親水性を付与する分子によって少なくとも一部が変性されたものを用い、より具体的には、親水性を付与する分子によって変性された変性ポリエチレン(A1)だけでもよく、あるいは、この変性ポリエチレン(A1)と未変性のポリエチレン(A2)を併用してもよい。これにより、樹脂材料に高い親水性を持たせることができるため、絶縁テープによって形成される絶縁層への水トリーの発生を抑えることができる。
酸化防止剤(B)は、老化防止剤とも呼ばれ、絶縁テープや、絶縁テープによって形成される絶縁被覆が、熱や空気中の酸素によって劣化するのを防ぐ作用を有するものであり、分子量が190以上1050未満のものを用いる。
架橋剤(C)は、ポリエチレン(A)を架橋することで、樹脂材料の機械特性および耐熱性を高めるとともに、隣接する絶縁テープを結合する作用を有する。
本実施形態に係る絶縁テープを構成する樹脂材料には、必要に応じて、他の成分を含んでもよい。例えば、水分吸収剤、熱安定剤、光安定剤、難燃剤、軟化剤、充填剤、着色剤、溶剤、顔料、染料、蛍光体等の各種の添加剤を加えてもよい。
本実施形態に係る絶縁テープは、電力ケーブルの接続部の被覆に用いられるものである。より具体的には、複数の電力ケーブルの導体を露出させた端部同士を導体接続した接続部の外周に巻回して絶縁被覆を形成するのに用いられる。
本実施形態に係る絶縁テープの製造方法は、特に限定されないが、例えば、上述のポリエチレン(A)、酸化防止剤(B)および架橋剤(C)を所定の割合で含有する原料を混練する混練工程と、混練工程で混練された樹脂を押出成形してテープを形成する成形工程と、を有する方法により絶縁テープを作製することができる。
ここで、絶縁テープの原料について行う混練工程としては、上述したポリエチレン(A)に、酸化防止剤(B)および架橋剤(C)を添加した後に溶融させて混練する工程が挙げられる。混練工程における混練温度は、ポリエチレン(A)の融点より高く135℃以下の温度で行うことが好ましい。より具体的には、均一なペースト状の樹脂材料を得るため、混練温度は、ポリエチレン(A)の融点より高いことが好ましい。また、架橋剤(C)の熱分解によるポリエチレン(A)の架橋を避けるため、混練工程における混練温度は、135℃以下にすることが好ましく、130℃未満にすることがより好ましい。
混練により得られる樹脂材料について行う成形工程としては、例えば所定の厚さのフィルムを形成した後、所定のテープ幅になるようにスリット加工を行うことが挙げられる。混練により得られる樹脂材料からフィルムを形成する手段としては、押出成形の手段を用いることができる。より具体的には、インフレーション法、Tダイ法、キャスト法、カレンダー法などを用いることができ、その中でもインフレーション法を用いることが好ましい。
本実施形態に係る電力ケーブルの接続部外面への絶縁被覆形成方法は、複数の電力ケーブルの導体を露出させた端部同士を導体接続した接続部の外周に、上述の絶縁テープを巻回して前記接続部の外面に絶縁被覆を形成するテープ巻回工程と、前記絶縁被覆を形成した前記接続部に、300kPa以上1000kPa以下の圧力および140℃以上280℃以下の温度で加圧加熱処理を施して、前記絶縁被覆中のポリエチレンを架橋させる架橋工程とを含む。
接続させる複数の電力ケーブル10a、10bは、図1(a)に示すように、各々端部の導体11a、11bを露出させる。ここで、導体11a、11bを露出させる長さの合計寸法(E1+E2)は、絶縁テープを巻回し易くするため、絶縁テープの幅よりも広くすることが好ましい。
形成された接続部171の外周には、図1(c)に示すように、内部半導電層172を形成してもよい。内部半導電層172は、例えば、架橋性樹脂、導電性カーボンブラック、酸化防止剤、および架橋剤を含む半導電性の樹脂組成物から形成される。このうち、架橋性樹脂としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体およびエチレン-ブチルアクリレート共重合体から選択される一種以上の樹脂が挙げられる。
次いで、図1(d)に示すように、複数の電力ケーブル10a、10bの導体11a、11bを露出させた端部同士を導体接続して形成される接続部171の外周に形成した内部半導電層172の外周に、さらに上述の絶縁テープを巻回することで、接続部171および内部半導電層172の外周全体を覆う範囲にわたって絶縁被覆173を形成する。
絶縁テープ20の巻回によって形成された絶縁被覆173の周囲には、図1(e)に示すように、外部半導電層174を形成してもよい。外部半導電層174は、内部半導電層172と同様に、半導電性の樹脂組成物から形成される。
絶縁被覆173を形成し、さらに必要に応じて外部半導電層174を形成した接続部171に対して、40℃以上130℃以下の温度に加熱する予備加熱工程を行うことが好ましい。これにより、架橋前の絶縁テープ20が加熱されることで、絶縁テープ20の表面にブリードしている酸化防止剤などの添加物がポリエチレンにより再吸収され易くなるため、絶縁テープ20の融着部分への割れをより低減することができる。
次いで、絶縁被覆173を形成した接続部171に、300kPa以上1000kPa以下の圧力および140℃以上280℃以下の温度で加圧加熱処理を施して、絶縁被覆173に含まれるポリエチレンを架橋させる架橋工程を行う。これにより、絶縁テープ20の表面にブリードしている酸化防止剤などの添加物がポリエチレンに再吸収されるとともに、隣接する絶縁テープ20に含まれるポリエチレンが架橋剤の作用によって架橋されるため、絶縁被覆173のうち、特に絶縁テープ20が融着している部分への割れを低減することができる。また、ポリエチレンの架橋により、絶縁被覆173を構成している樹脂材料の機械特性および耐熱性を高めることができる。
架橋後の絶縁被覆173の周囲には、金属遮蔽層および防食シース(ともに図示せず)を設けてもよい。金属遮蔽層としては、例えば鉛や銅、アルミニウムからなるものを用いることができる。また、防食シースとしては、例えば塩化ビニルやポリエチレン、ナイロンからなるものを用いることができる。
本実施形態に係る電力ケーブル1は、例えば上述の方法によって得られるものであり、図3(a)に示されるように、複数の電力ケーブルの導体11a,11bを露出させた端部同士を導体接続した接続部171と、接続部171の外周上に対して直接または内部半導電層172を介して間接的に、上述の絶縁テープを少なくとも巻回および架橋して、接続部171の外面(側)に形成してなる絶縁被覆173とを有する接続構造部17を備えるものである。
(材料の準備および混練工程)
ポリエチレン(A)として、変性ポリエチレン(A1)である無水マレイン酸変性ポリエチレン「SCONA TSPE 1112 GALL」(ビックケミー・ジャパン株式会社製、融点115~132℃、比重0.89~0.94)5質量部と、未変性のポリエチレン(A2)である低密度ポリエチレン「ZF30R」(日本ポリエチレン株式会社製、融点110℃、比重0.92)95質量部をそれぞれ用いて、これらの含有量の合計を100質量部とした。
得られた樹脂材料について、インフレーション法を用いて成形工程を行った。より具体的には、樹脂材料をダイから130℃で押し出し、フィルム厚さが100μmとなるようにしてフィルムを形成した。その後、得られるフィルムをテープ幅20mmになるようにスリット加工を行い、絶縁テープを得た。
絶縁テープと同じ組成を有する絶縁層を有する2本の電力ケーブル10a、10b(導体断面積2000mm2、内外半導電層厚み各1mm、絶縁被覆厚み15mm)の一端部を略円錐状に切削加工した後、図1(a)に示すように、端部の導体11a、11bを露出させた。露出した導体11a、11bを互いに対向させ、導体11a、11bの端部同士を溶接により導体接続させ、図1(b)に示すように接続部171を形成した。
ポリエチレン(A)として、変性ポリエチレン(A1)である無水マレイン酸変性ポリエチレン「SCONA TSPE 1112 GALL」(ビックケミー・ジャパン株式会社製、融点115~132℃、比重0.89~0.94)30質量部と、未変性のポリエチレン(A2)である低密度ポリエチレン「ZF30R」(日本ポリエチレン株式会社製、融点110℃、比重0.92)70質量部をそれぞれ用いて合計を100質量部とした以外は、実施例1と同様にして絶縁テープを作製し、電力ケーブルを接合する際の絶縁被覆に用いた。
ポリエチレン(A)として、変性ポリエチレン(A1)であるエチレン-メタクリル酸共重合体「ハイミラン1705Zn」(三井・デュポン ポリケミカル株式会社製、メタクリル酸含有量15質量%、融点91℃、比重0.95)5質量部と、未変性のポリエチレン(A2)である低密度ポリエチレン「ZF30R」(日本ポリエチレン株式会社製、融点110℃、比重0.92)95質量部をそれぞれ用いて合計を100質量部とした以外は、実施例1と同様にして絶縁テープを作製し、電力ケーブルを接合する際の絶縁被覆に用いた。
酸化防止剤(B)の種類および含有量、架橋剤(C)の含有量、絶縁テープのテープ厚み、絶縁テープの巻回装置におけるテープガイド表面の最高温度、予備加熱の有無について表1、2のように変更した以外は、実施例1と同様にして絶縁テープを作製し、電力ケーブルを接続(接合)する際の絶縁被覆に用いた。
上記の実施例および比較例に係る絶縁テープおよび電力ケーブルを用いて、下記に示す特性評価を行った。各特性の評価条件は下記のとおりである。結果を表1および表2に示す。
絶縁テープからなる絶縁被覆の樹脂割れについては、電力ケーブルの接続構造部を10mm幅の輪切りにし、導体を取り除いて観察試料とした。この試料を130℃で1時間加熱すると、絶縁体ポリエチレンの結晶化している部分が非晶化するので透明度が高まるため、観察試料内部の樹脂割れを白い筋として目視で観察することができる。実施例および比較例の電力ケーブルについて、5個の観察試料における樹脂割れの合計個数を求めた。樹脂割れの合計個数は、5個の観察試料に対して5個以下であることが好ましい。
絶縁テープからなる絶縁被覆の長期使用に対する耐久性について調べるため、老化残率について測定を行った。ここで、老化残率は、絶縁テープを重ね合わせた後、成形機を用いて980kPaの圧力でプレスしながら、220℃の温度で30分にわたり加圧加熱処理を行ってポリエチレンを架橋させて厚さ1mmのシートを得て、得られるシートからダンベル3号に打ち抜いた5個の試験片について、引張り速度200mm/分で引張試験を行い、5個の試験片の平均値を老化前の引張り強さ(N/mm2)とした。また、同様にシートから成形した5個の試験片について、空気中において160℃で48時間にわたり加熱することで老化させた後に上記と同様に引張試験を行い、5個の試験片の平均値を老化後の引張り強さ(N/mm2)とした。そして、「老化前の引張り強さ」に対する「老化後の引張り強さ」の割合を百分率(%)にして算出し、この割合を加熱による樹脂老化の度合いを示す「老化残率」とした。この「老化残率」は、樹脂の老化によっても引張り強さは低下しないことが好ましいので、数値が大きいことが好ましく、80%以上であるとより好ましい。
・無水マレイン酸変性ポリエチレン「SCONA TSPE 1112 GALL」(ビックケミー・ジャパン株式会社製、融点115~132℃、比重0.89~0.94)
・変性ポリエチレンであるエチレン-メタクリル酸共重合体「ハイミラン1705Zn」(三井・デュポン ポリケミカル株式会社製、融点91℃、比重0.95)
・未変性のポリエチレンである低密度ポリエチレン「ZF30R」(日本ポリエチレン株式会社製、融点110℃、比重0.92)
[酸化防止剤(B)]
・リン系酸化防止剤「イルガフォスP-EPQ」(テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、分子量1035、BASF株式会社製)
・フェノール系酸化防止剤「イルガノックス1330」(2,4,6-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)メシチレン、分子量775、BASF株式会社製)
・フェノール系酸化防止剤「ノクラック300」 (4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、分子量359、大内新興化学工業株式会社製)
・フェノール系酸化防止剤「スミライザーBHT」(ブチルヒドロキシトルエン、分子量220、住友化学株式会社製)
・フェノール系酸化防止剤「イルガノックス1010」(ペンタエリトリトール=テトラキス[3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオナート]、分子量1178、BASF株式会社製)
・フェノール系酸化防止剤(ブチルヒドロキシアニソール、分子量180)
[架橋剤(C)]
・架橋剤「パークミルD」(ジクミルパーオキサイド(DCP)、日本油脂株式会社製)
11、11a、11b 導体
12、12a、12b 内部導電体層
13a、13b 絶縁層
14a、14b 外部半導電層
15a、15b 金属遮蔽層
16a、16b シース
17 接続構造部
171 接続部
172 内部半導電層
173 絶縁被覆
174 外部半導電層
2 巻回装置
20 絶縁テープ
21 リール
22 テープガイド
Claims (6)
- 親水性を付与する分子によって少なくとも一部が変性されたポリエチレンと、酸化防止剤と、架橋剤とを含む樹脂材料からなる、電力ケーブルの接続部被覆用絶縁テープであって、
前記酸化防止剤の分子量が、190以上1050未満の範囲であり、
前記酸化防止剤の含有量が、前記ポリエチレン100質量部に対して、0.05質量部以上0.8質量部以下の範囲であり、
テープ厚みが50μm以上250μm以下の範囲である、電力ケーブルの接続部被覆用絶縁テープ。 - 前記親水性を付与する分子が、不飽和ジカルボン酸、不飽和ジカルボン酸無水物および不飽和ジカルボン酸の誘導体の群から選択される少なくとも1種である、請求項1に記載の電力ケーブルの接続部被覆用絶縁テープ。
- 複数の電力ケーブルの導体を露出させた端部同士を導体接続した接続部の外周に、請求項1または2に記載の絶縁テープを巻回して前記接続部の外面に絶縁被覆を形成するテープ巻回工程と、
前記絶縁被覆を形成した前記接続部に、300kPa以上1000kPa以下の圧力および140℃以上280℃以下の温度で加圧加熱処理を施して、前記絶縁被覆中のポリエチレンを架橋させる架橋工程と
を含む、電力ケーブルの接続部外面への絶縁被覆形成方法。 - 前記テープ巻回工程は、前記絶縁テープを前記接続部外面の巻回位置に案内するテープガイドを備えた巻回装置を用い、前記絶縁テープを巻回する際の前記テープガイドの表面温度を30℃以下に制御して行う、請求項3に記載の電力ケーブルの接続部外面への絶縁被覆形成方法。
- 前記テープ巻回工程後、前記架橋工程前に、前記絶縁被覆を形成した前記接続部を、40℃以上130℃以下で加熱する予備加熱工程をさらに有する、請求項3または4に記載の電力ケーブルの接続部外面への絶縁被覆形成方法。
- 複数の電力ケーブルの導体を露出させた端部同士を導体接続した接続部と、
前記接続部の外周に対して、請求項1または2に記載の絶縁テープを、少なくとも巻回および架橋して、前記接続部の外面に形成してなる絶縁被覆と
を有する接続構造部を備える、電力ケーブル。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020544681A JP6831948B1 (ja) | 2019-03-29 | 2020-03-30 | 電力ケーブルの接続部被覆用絶縁テープ、電力ケーブルの接続部外面への絶縁被覆形成方法および電力ケーブル |
US17/599,164 US11823816B2 (en) | 2019-03-29 | 2020-03-30 | Insulating tape for coating connection portion of power cable, method for forming insulating coating on exterior surface of connection portion of power cable, and power cable |
EP20782222.2A EP3951807A4 (en) | 2019-03-29 | 2020-03-30 | INSULATING TAPE FOR COVERING A POWER CABLE CONNECTING PART, METHOD FOR FORMING AN INSULATING COATING ON THE OUTER SURFACE OF A POWER CABLE CONNECTING PART, AND POWER CABLE |
KR1020217030953A KR20210140731A (ko) | 2019-03-29 | 2020-03-30 | 전력 케이블의 접속부 피복용 절연 테이프, 전력 케이블의 접속부 외면에의 절연 피복 형성 방법 및 전력 케이블 |
CN202080022288.6A CN113614859B (zh) | 2019-03-29 | 2020-03-30 | 用于被覆电力电缆的连接部的绝缘带、在电力电缆的连接部外表面上形成绝缘外皮的方法及电力电缆 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019069323 | 2019-03-29 | ||
JP2019-069323 | 2019-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020204013A1 true WO2020204013A1 (ja) | 2020-10-08 |
Family
ID=72668524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/014713 WO2020204013A1 (ja) | 2019-03-29 | 2020-03-30 | 電力ケーブルの接続部被覆用絶縁テープ、電力ケーブルの接続部外面への絶縁被覆形成方法および電力ケーブル |
Country Status (6)
Country | Link |
---|---|
US (1) | US11823816B2 (ja) |
EP (1) | EP3951807A4 (ja) |
JP (1) | JP6831948B1 (ja) |
KR (1) | KR20210140731A (ja) |
CN (1) | CN113614859B (ja) |
WO (1) | WO2020204013A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102289092B1 (ko) * | 2021-01-13 | 2021-08-12 | 한성중공업 주식회사 | 고압전동기 고정자용 xlpe 케이블의 정비방법 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3950821A4 (en) * | 2019-03-29 | 2022-12-28 | Furukawa Electric Co., Ltd. | INSULATING RESIN COMPOSITION AND PRODUCTION METHOD THEREOF, INSULATING TAPE AND PRODUCTION METHOD THEREOF, INSULATION COATING METHOD AND ELECTRICAL WIRE AND PRODUCTION METHOD THEREOF |
JP7440557B2 (ja) * | 2022-03-09 | 2024-02-28 | Swcc株式会社 | 半導電性塗料およびその製造方法ならびに電力ケーブルの端末処理方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS625032B2 (ja) * | 1982-03-02 | 1987-02-03 | Sumitomo Jukikai Enbairotetsuku Kk | |
JPS6271115A (ja) * | 1985-09-25 | 1987-04-01 | 昭和電線電纜株式会社 | 架橋ポリオレフイン絶縁電力ケ−ブルの製造方法 |
JPS62227988A (ja) | 1986-03-28 | 1987-10-06 | Hitachi Chem Co Ltd | 耐熱.耐ブリ−ド性酸化防止剤 |
JPH0940948A (ja) | 1995-07-26 | 1997-02-10 | Mitsubishi Gas Chem Co Inc | 高分子型酸化防止剤およびその製造法 |
JPH10273553A (ja) * | 1997-03-28 | 1998-10-13 | Furukawa Electric Co Ltd:The | 架橋性樹脂組成物、それを用いた電力ケーブルおよび電力ケーブル接続部 |
JP2013026048A (ja) * | 2011-07-22 | 2013-02-04 | Viscas Corp | 直流電力ケーブル及び直流電力線路の製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2076419B (en) * | 1980-05-21 | 1984-01-25 | Furukawa Electric Co Ltd | Cross-linked polyethylene insulated power cable |
JPS59199739A (ja) * | 1983-04-27 | 1984-11-12 | Fujikura Ltd | 耐熱老化性組成物 |
DE3538527A1 (de) | 1984-11-27 | 1986-06-05 | Showa Electric Wire & Cable Co., Ltd., Kawasaki, Kanagawa | Verfahren zur herstellung eines mit vernetzten polyolefinen isolierten kabels |
TW215446B (ja) * | 1990-02-23 | 1993-11-01 | Furukawa Electric Co Ltd | |
JPH04212208A (ja) * | 1990-09-13 | 1992-08-03 | Furukawa Electric Co Ltd:The | ゴム・プラスチック絶縁電力ケーブルとその接続部、ならびに、それらの製造方法 |
JPH10283851A (ja) * | 1997-04-04 | 1998-10-23 | Furukawa Electric Co Ltd:The | 直流電力ケーブルおよびその接続部 |
JP4825654B2 (ja) | 2006-12-15 | 2011-11-30 | 芝浦メカトロニクス株式会社 | 粘着性テープの貼着装置及び貼着方法 |
US9458310B2 (en) * | 2009-10-16 | 2016-10-04 | Exxonmobil Chemical Patents Inc. | Modified polyethylene film compositions |
KR101454092B1 (ko) * | 2010-01-28 | 2014-10-22 | 가부시키가이샤 비스카스 | 가교 폴리올레핀 조성물, 직류 전력 케이블 및 직류 전력 선로의 시공 방법 |
US20160272798A1 (en) * | 2011-09-23 | 2016-09-22 | Exxonmobil Chemical Patents Inc. | Modified Polyethylene Compositions with Enhanced Melt Strength |
US20130216812A1 (en) * | 2011-09-23 | 2013-08-22 | Exxonmobil Chemical Patents Inc. | Modified Polyethylene Compositions with Enhanced Melt Strength |
US9340664B2 (en) * | 2011-09-23 | 2016-05-17 | Exxonmobil Chemical Patents Inc. | Modified polyethylene compositions for blown film |
US8629217B2 (en) * | 2011-11-22 | 2014-01-14 | Exxonmobil Chemical Patents Inc. | Modified polyethylene blown film compositions having excellent bubble stability |
US20140155553A1 (en) * | 2012-12-05 | 2014-06-05 | Exxonmobil Chemical Patents Inc. | HDPE Modified Polyethylene Blown Film Compositions Having Excellent Bubble Stability |
EP3050927B1 (en) * | 2013-09-25 | 2019-08-21 | Kuraray Co., Ltd. | Thermoplastic polymer composition, layered body, and protective film |
CN108028098A (zh) * | 2015-08-10 | 2018-05-11 | 住友电气工业株式会社 | 直流电缆、组合物以及直流电缆的制造方法 |
JP6205032B1 (ja) * | 2016-08-09 | 2017-09-27 | 株式会社Nuc | 直流電力ケーブル用絶縁性樹脂組成物、樹脂架橋体、直流電力ケーブル、直流電力ケーブル接続部の補強絶縁層形成用部材および直流電力ケーブル接続部 |
-
2020
- 2020-03-30 JP JP2020544681A patent/JP6831948B1/ja active Active
- 2020-03-30 KR KR1020217030953A patent/KR20210140731A/ko active IP Right Grant
- 2020-03-30 US US17/599,164 patent/US11823816B2/en active Active
- 2020-03-30 CN CN202080022288.6A patent/CN113614859B/zh active Active
- 2020-03-30 WO PCT/JP2020/014713 patent/WO2020204013A1/ja unknown
- 2020-03-30 EP EP20782222.2A patent/EP3951807A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS625032B2 (ja) * | 1982-03-02 | 1987-02-03 | Sumitomo Jukikai Enbairotetsuku Kk | |
JPS6271115A (ja) * | 1985-09-25 | 1987-04-01 | 昭和電線電纜株式会社 | 架橋ポリオレフイン絶縁電力ケ−ブルの製造方法 |
JPS62227988A (ja) | 1986-03-28 | 1987-10-06 | Hitachi Chem Co Ltd | 耐熱.耐ブリ−ド性酸化防止剤 |
JPH0940948A (ja) | 1995-07-26 | 1997-02-10 | Mitsubishi Gas Chem Co Inc | 高分子型酸化防止剤およびその製造法 |
JPH10273553A (ja) * | 1997-03-28 | 1998-10-13 | Furukawa Electric Co Ltd:The | 架橋性樹脂組成物、それを用いた電力ケーブルおよび電力ケーブル接続部 |
JP2013026048A (ja) * | 2011-07-22 | 2013-02-04 | Viscas Corp | 直流電力ケーブル及び直流電力線路の製造方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3951807A4 |
TERUO FUKUDA: "Water Treeing Inhibiting Material in CV Cable Insulator", JOURNAL OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, vol. 108, no. 5, 1988, pages 389 - 396 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102289092B1 (ko) * | 2021-01-13 | 2021-08-12 | 한성중공업 주식회사 | 고압전동기 고정자용 xlpe 케이블의 정비방법 |
Also Published As
Publication number | Publication date |
---|---|
EP3951807A1 (en) | 2022-02-09 |
JP6831948B1 (ja) | 2021-02-17 |
KR20210140731A (ko) | 2021-11-23 |
CN113614859A (zh) | 2021-11-05 |
CN113614859B (zh) | 2023-11-17 |
US11823816B2 (en) | 2023-11-21 |
JPWO2020204013A1 (ja) | 2021-04-30 |
EP3951807A4 (en) | 2022-11-09 |
US20220157486A1 (en) | 2022-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020204013A1 (ja) | 電力ケーブルの接続部被覆用絶縁テープ、電力ケーブルの接続部外面への絶縁被覆形成方法および電力ケーブル | |
WO2017026391A1 (ja) | 直流ケーブル、組成物及び直流ケーブルの製造方法 | |
KR102538198B1 (ko) | 2개의 전기 전력 케이블 사이의 가요성의 가황처리된 조인트와 상기 조인트를 제조하기 위한 공정 | |
JP6852229B2 (ja) | 絶縁性樹脂組成物およびその製造方法、絶縁テープおよびその製造方法、絶縁層形成方法、ならびに電力ケーブルおよびその製造方法 | |
US3935042A (en) | Method of manufacturing corona-resistant ethylene-propylene rubber insulated power cable, and the product thereof | |
CN111354507B (zh) | 耐水树电缆 | |
KR20110076983A (ko) | 전기 케이블용 반도전성 조성물 | |
CN1155969C (zh) | 带有绝缘体系的直流电缆 | |
JP5547300B2 (ja) | 走水防止型水中用電力ケーブル | |
JP7082988B2 (ja) | ポリエチレン混合組成物 | |
CN111349282A (zh) | 包括容易剥离的半导电层的线缆 | |
JP2009277580A (ja) | 水中モータ用電線 | |
WO2022163197A1 (ja) | 樹脂組成物および電力ケーブル | |
JP2001256833A (ja) | 電気絶縁組成物及び電線・ケーブル | |
JP2022098126A (ja) | 樹脂組成物および電力ケーブル | |
KR100291669B1 (ko) | 고압 내열 케이블용 반도전 재료 | |
JPH06267334A (ja) | 電気絶縁組成物及び電線・ケーブル | |
EP3671768A1 (fr) | Câble électrique résistant aux arborescences d'eau | |
JP2022098127A (ja) | 樹脂組成物および電力ケーブル | |
JP2005235629A (ja) | 電子線照射架橋用のポリエチレン絶縁組成物およびこれを用いた高周波同軸ケーブル | |
JP2007284688A (ja) | 半導電水密組成物 | |
JPH0567406A (ja) | ゴム・プラスチツク絶縁電力ケーブルの製造方法 | |
JPH11265621A (ja) | 絶縁電力ケーブルおよびその接続部 | |
JPH1064339A (ja) | 電気絶縁組成物及び電線・ケーブル | |
JP2011119167A (ja) | 電力ケーブル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020544681 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20782222 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217030953 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020782222 Country of ref document: EP Effective date: 20211029 |