WO2020203493A1 - 機器ネットワークシステム - Google Patents

機器ネットワークシステム Download PDF

Info

Publication number
WO2020203493A1
WO2020203493A1 PCT/JP2020/013127 JP2020013127W WO2020203493A1 WO 2020203493 A1 WO2020203493 A1 WO 2020203493A1 JP 2020013127 W JP2020013127 W JP 2020013127W WO 2020203493 A1 WO2020203493 A1 WO 2020203493A1
Authority
WO
WIPO (PCT)
Prior art keywords
recognition
group
network
refrigerant
role
Prior art date
Application number
PCT/JP2020/013127
Other languages
English (en)
French (fr)
Inventor
伸 東山
浩 堂前
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to SG11202109730X priority Critical patent/SG11202109730XA/en
Priority to CN202080023514.2A priority patent/CN113615131B/zh
Priority to EP20782193.5A priority patent/EP3952225B1/en
Priority to ES20782193T priority patent/ES2956939T3/es
Priority to AU2020251261A priority patent/AU2020251261B2/en
Priority to US17/599,222 priority patent/US11588565B2/en
Publication of WO2020203493A1 publication Critical patent/WO2020203493A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/12Arrangements for reducing cross-talk between channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the indoor unit / outdoor unit connection wiring and the inter-system connection wiring are connected separately, and when the indoor unit / outdoor unit system is recognized, the inter-system is connected. It is identified by disconnecting the connection wiring side with a relay and creating a state in which only indoor and outdoor units of the same system exist on the network.
  • the device network system of the first viewpoint includes a first network and a second network.
  • the first network includes a first device group having a plurality of devices and a first wiring group connected to the plurality of devices.
  • the second network has a second device that is physically separated from the first network and a second wiring that is connected to the second device.
  • a state in which the first device group is set in advance as a physically connected group or a state in which the first device group is recognized as a physically connected group a state in which the second device is recognized as belonging to the group has occurred.
  • the first device group or the second device detects this, the first device group or the second device treats the second device as not belonging to the group.
  • the device when it is recognized that a device that should not belong to a group belongs to the group, the device is treated as not belonging to the group, so even if it is high frequency communication. System recognition is performed properly.
  • the device network system of the second viewpoint is the device network system of the first viewpoint, and in the first device group, the main engine selected from a plurality of devices recognizes that the second device belongs to the group. It is judged whether or not the state to be performed has occurred.
  • the device network system of the third viewpoint is a device network system of the first viewpoint or the second viewpoint.
  • a main engine selected from a plurality of devices is used for a plurality of other devices by low frequency communication. Determine if the device belongs to a physically connected group.
  • the device network system of the fourth viewpoint is a device network system of any one of the first to third viewpoints, and the first device group or the second device processes the device as if the second device does not belong to the group. Acts include the act of refusing to belong to a group.
  • the device network system of the fifth viewpoint is the device network system of the fourth viewpoint, and in the first device group, the main engine selected from a plurality of devices refuses the second device to belong to the group. To do.
  • FIG. 6 is a configuration diagram in which a network between devices is normally formed in an air conditioning system composed of two refrigerant systems.
  • FIG. 9 is a configuration diagram of a state in which the two networks of FIG. 9A are combined to form one network.
  • FIG. 9 is a configuration diagram showing a state in which a part of the device of FIG. 9A is combined with another network to form two networks having a configuration different from the original configuration.
  • FIG. 1A is a conceptual diagram of system recognition.
  • devices A1, A2, B1, B2, B3, B4, C1, C2 exist, and all the devices belong to one communication network and can communicate with each other.
  • System 1 is a system to which devices A1, B1, B2, B3 and B4 belong
  • system 2 is a system to which devices A2, C1 and C2 belong.
  • each device does not know which system it belongs to, and it is necessary to identify the system to which it belongs by system recognition.
  • Devices on the network have an "recognition" role and a "recognized” role as initial roles.
  • the "recognition" role corresponds to the outdoor unit and the centralized controller
  • the "recognized” role corresponds to the indoor unit.
  • FIG. 1B is a flowchart of system recognition. Hereinafter, the procedure of system recognition will be described with reference to FIGS. 1A and 1B.
  • FIG. 1A there are two devices A1 and B1 in the system 1 that can serve as "recognition" on the recognition side.
  • the system 2 there is one device A2 that can serve as a "recognition”.
  • Step S1 One "recognition" role is selected by communication from these three devices A1, B1 and A2.
  • a selection method for example, there is a method of referring to a unique ID or communication address of each device and using the one with the smallest value as a "recognition" role.
  • the devices B1 and A2 that are not selected as the “recognition” role temporarily transition to the "recognized” role (see the lower part of FIG. 1A).
  • Step S2 When the transition of the devices B1 and A2 to the "recognized” role is completed, the device A1 which is the "recognition” role sends a detection signal for system recognition to the devices B1, B2, B3, and B4 which are the "recognized” roles. To do.
  • the detection signal must not be propagated to the devices A2, C1 and C2 of the system 2 which is a separate system, and the detection signal is propagated only to the devices B1, B2, B3 and B4 of the system 1 which is the same system. To do so.
  • Step S3 Upon receiving the detection signal, the devices B1, B2, B3, and B4 acting as "recognized” return a response by communication.
  • Step S4 The device A1 that serves as the "recognition” recognizes that the devices B1, B2, B3, and B4 that play the role of "recognized” that have responded are devices belonging to the same system, and stores the information.
  • Step S5 The device A1 already selected as the "recognition” role and the B1 recognized by transitioning to the "recognized” role are excluded from the candidates for the next "recognition” role. Then, the processes from step S1 to step S4 are repeated until there are no candidates for the next "recognition” combination. As a result, the device configuration of each system is grasped.
  • FIG. 2 is a conceptual diagram of system recognition when systems are connected in multiple stages.
  • FIG. 3 is a system list created based on the form of FIG.
  • This device has a "recognized” role for the upstream side and a "recognition” role for the downstream side.
  • the system referred to here is not limited to the refrigerant system.
  • the device A1 connects the system S and the system 1
  • the device A2 connects the system S and the system 2.
  • the system 1 and the system 3 are connected by the device B4, and the system 2 and the system 4 are connected by the device C2.
  • FIG. 4 is a configuration diagram of an air conditioning system composed of a plurality of refrigerant systems.
  • the air conditioning system is composed of an outdoor unit, an indoor unit, and a centralized controller, and a system unit physically connected by a refrigerant pipe is called a refrigerant system.
  • the outdoor units 101, 102, 103 and the indoor units 104, 105, 106 as equipment are connected by wirings 111a, 111b, 112, 113, 114, and are connected by the wiring group 110.
  • the outdoor units 201, 202 and the indoor units 203, 204, 205 as equipment are connected by wirings 211, 212, 213, 214, and are connected by the wiring group 210.
  • the outdoor units 301 and the indoor units 302, 303, 304 as equipment are connected by the wirings 311, 312, 313, and are connected by the wiring group 310.
  • the refrigerant systems A, B, and C are connected by inter-system connection wiring, and the centralized controller 5 is connected.
  • One communication network is formed between all devices, and communication between each device is performed at a high frequency of 100 kHz or more.
  • System recognition identifies which of the systems A, B, C, and D each outdoor unit, indoor unit, and centralized controller belongs to.
  • the recognition of the equipment in the systems A, B, and C will be described.
  • the recognition of the system T to which the centralized controller and the outdoor unit belong is not different from the recognition process of the systems A to C.
  • One "recognition” role is selected from all the outdoor units of the three refrigerant systems A, B, and C.
  • the refrigerant system A has three outdoor units 101, 102, and 103 that can serve as “recognition”.
  • the refrigerant system B there are two outdoor units 201 and 202 that can serve as "recognition”. Further, there is one outdoor unit 301 that can serve as a "recognition" in the refrigerant system C.
  • System recognition may start from any system, but for convenience, the refrigerant system A will be described in order.
  • the outdoor unit 101 which plays the role of "recognition" transmits a detection signal for system recognition.
  • a detection signal a low frequency recognition signal of 10 kHz or less is used.
  • the low frequency recognition signal includes a DC (0 Hz) signal.
  • the detection signal is propagated only to the outdoor units 102, 103 and the indoor units 104, 105, 106 of the refrigerant system A, which is the same system, and the outdoor units 201, 202 of the refrigerant systems B, C, which are different systems.
  • 301, indoor units 203, 204, 205, 302, 303, 304 shall not propagate the detection signal.
  • a high-frequency transmission filter for example, a capacitor is inserted on the inter-system connection wiring side of the outdoor unit to insulate at a low frequency so that the detection signal does not propagate to other systems.
  • the outdoor unit 101 that plays the "recognition” role recognizes that the outdoor units 102, 103 and the indoor units 104, 105, 106 that have responded to the "recognized” role belong to the same system.
  • the outdoor unit 101 that plays the "recognition” role recognizes that the outdoor units 102, 103 and the indoor units 104, 105, 106 that have responded to the "recognized” role belong to the same system.
  • the outdoor unit 201 when the outdoor unit 201 is selected as the "recognition” role, the outdoor units 202 and 301 that are not selected as the “recognition” role temporarily transition to the "recognized” role.
  • the outdoor unit 201 which plays the role of "recognition" transmits a detection signal for system recognition.
  • a detection signal a low frequency recognition signal of 10 kHz or less is used.
  • the low frequency recognition signal includes a DC (0 Hz) signal.
  • the detection signal is propagated only to the outdoor units 202 and the indoor units 203, 204, 205 of the refrigerant system B which is the same system, and the outdoor units 101, 102, 103 of the refrigerant systems A and C which are different systems. , 301, indoor units 104, 105, 106, 302, 303, 304 shall not propagate the detection signal.
  • the outdoor units 202 and indoor units 203, 204, and 205 that have received the detection signal and serve as "recognized" return a response by communication.
  • the outdoor unit 201 that serves as the "recognition” recognizes that the outdoor unit 202 and the indoor units 203, 204, and 205 that have responded as the "recognized” role belong to the same system, and the information thereof.
  • the outdoor unit 201 that serves as the “recognition” recognizes that the outdoor unit 202 and the indoor units 203, 204, and 205 that have responded as the "recognized” role belong to the same system, and the information thereof.
  • the outdoor unit 301 which plays the role of "recognition" transmits a detection signal for system recognition.
  • a detection signal a low frequency recognition signal of 10 kHz or less is used.
  • the low frequency recognition signal includes a DC (0 Hz) signal.
  • the detection signal is propagated only to the indoor units 302, 303, 304 of the refrigerant system C which is the same system, and the outdoor units 101, 102, 103, 201, 202 of the refrigerant systems A and B which are different systems.
  • the detection signal shall not be propagated to the indoor units 104, 105, 106, 203, 204, 205.
  • the indoor units 302, 303, and 304 that act as "recognized" that received the detection signal return a response by communication.
  • the outdoor unit 301 that plays the role of "recognition” recognizes that the indoor units 302, 303, and 304 that play the role of "recognized” that have responded are devices belonging to the same system, and stores the information.
  • FIG. 5 is a configuration diagram of a cooling / heating simultaneous operation air conditioning system.
  • the simultaneous cooling / heating operation air conditioning system includes an outdoor unit, an indoor unit, and a refrigerant circuit switching unit for switching a refrigerant circuit between the outdoor unit and the indoor unit.
  • FIG. 5 shows one refrigerant system, but since it is necessary to specify the indoor unit connected to the refrigerant circuit switching unit and below for refrigerant control, the system is recognized by dividing it into three small systems D, E, and F. Need to be done.
  • the outdoor unit 401, the indoor unit 402, and the refrigerant circuit switching units 403A and 403B as equipment are connected by wirings 411 and 412.
  • the refrigerant circuit switching unit 403A as equipment and the indoor units 404, 405, and 406 are connected by wirings 413, 414, and 415.
  • the refrigerant circuit switching unit 403B as equipment and the indoor units 407, 408, and 409 are connected by wirings 416, 417, and 418.
  • System D and system E are connected by the refrigerant circuit switching unit 403A, and system D and system F are connected by the refrigerant circuit switching unit 403B.
  • One communication network is formed between all devices, and communication between each device is performed at a high frequency of 100 kHz or more.
  • FIG. 5 it is the outdoor unit 401 of the system D, the refrigerant circuit switching unit 403A of the system E, and the refrigerant circuit switching unit 403B of the system F that can serve as "recognition" in this refrigerant system.
  • One “recognition” is selected from this one outdoor unit 401 and the two refrigerant circuit switching units 403A and 403B.
  • the system recognition may be started from any system, but for convenience, the system D, the system E, and the system F will be described in this order.
  • the outdoor unit 401 which plays the role of "recognition" transmits a detection signal for system recognition.
  • a detection signal a low frequency recognition signal of 10 kHz or less is used.
  • the low frequency recognition signal includes a DC (0 Hz) signal.
  • the detection signal is propagated only to the indoor unit 402, the refrigerant circuit switching units 403A, and 403B, which are the same system, and the refrigerant circuit switching unit 403A or less, the indoor units 404, 405, 406, and the refrigerant circuit switching unit 403B or less.
  • the detection signal must not be propagated to the indoor units 407, 408, and 409.
  • the indoor unit 402 and the refrigerant circuit switching units 403A and 403B which act as "recognized", receive the detection signal and return a response by communication.
  • the outdoor unit 401 that serves as the "recognition” recognizes that the indoor unit 402 and the refrigerant circuit switching units 403A and 403B that have responded as the "recognized” role belong to the same system, and the information thereof.
  • the indoor unit 402 and the refrigerant circuit switching units 403A and 403B that have responded as the "recognized” role belong to the same system, and the information thereof.
  • the refrigerant circuit switching unit 403A when the refrigerant circuit switching unit 403A is selected for the "recognition" role, the refrigerant circuit switching unit 403B that is not selected for the "recognition” role temporarily transitions to the "recognized” role.
  • the refrigerant circuit switching unit 403A which plays the role of "recognition" transmits a detection signal for system recognition.
  • a detection signal a low frequency recognition signal of 10 kHz or less is used.
  • the low frequency recognition signal includes a DC (0 Hz) signal.
  • the detection signal should be propagated only to the indoor units 404, 405, and 406 of the same system, and the detection signal should not be propagated to the refrigerant circuit switching unit 403B and below and the indoor units 407, 408, and 409.
  • the indoor units 404, 405, and 406, which act as "recognized" receive the detection signal and return a response by communication.
  • the refrigerant circuit switching unit 403A which plays the role of "recognition”, recognizes that the indoor units 404, 405, and 406 of the role of "recognized” that have responded are devices belonging to the same system, and stores the information. To do.
  • the refrigerant circuit switching unit 403B which plays the role of "recognition" transmits a detection signal for system recognition to the indoor units 407, 408, and 409, which play the role of "recognized”.
  • a detection signal a low frequency recognition signal of 10 kHz or less is used.
  • the low frequency recognition signal includes a DC (0 Hz) signal.
  • the detection signal should be propagated only to the indoor units 407, 408, and 409 of the same system, and the detection signal should not be propagated to the refrigerant circuit switching unit 403A and below and the indoor units 404, 405, and 406.
  • the indoor units 407, 408, and 409 that act as "recognized" that received the detection signal return a response by communication.
  • the refrigerant circuit switching unit 403B which plays the role of "recognition", recognizes that the indoor units 407, 408, and 409 of the role of "recognized” that have responded are devices belonging to the same system, and stores the information. To do.
  • FIG. 6 is a circuit block diagram of a low frequency signal detection method.
  • One device for example, an outdoor unit
  • two low-frequency signal transmission circuits PS and two low-frequency signal reception circuits PD are provided with two low-frequency signal transmission circuits PS and two low-frequency signal reception circuits PD, a high-frequency transmission filter HPF that inhibits the propagation of low-frequency signals and transmits high-frequency signals, and the other.
  • a low frequency signal receiving circuit PD is provided with a low frequency signal receiving circuit PD.
  • the same refrigerant system is used by coordinating the timing of low-frequency signal transmission of the outdoor unit and the timing of low-frequency signal reception of the indoor unit and notifying the outdoor unit that the indoor unit is able to detect the low-frequency signal. Can be recognized.
  • FIG. 7 is a circuit block diagram of the air conditioning system shown in FIG. For convenience, the description is up to the middle of the refrigerant system A and the refrigerant system B.
  • the inter-system connection wiring transmits high-frequency communication signals by inserting a high-frequency transmission filter HPF, but prevents low-frequency signals from propagating to other systems.
  • FIG. 8 is a flowchart of system recognition. Hereinafter, the procedure of system recognition will be described with reference to FIGS. 7 and 8.
  • Step S11 In FIGS. 7 and 8, the power is turned on in step S11.
  • Step S12 Next, a network is established by high-frequency communication.
  • Each device (outdoor unit, indoor unit) has a high-frequency communication circuit (see FIG. 1), and after the power is turned on, a network is established by communication.
  • Step S13 Next, in order to recognize the outdoor unit / indoor unit of the same system, all the outdoor units cooperate by communication, select one outdoor unit on the network, and use it as a "recognition" role.
  • Step S14 The selected outdoor unit 101 notifies all the devices (outdoor units 102, 103, 201, indoor units 104, 105, 106, 203) that the low frequency signal is transmitted, and is low from the low frequency signal transmission circuit PS. Send a frequency signal.
  • the selected outdoor unit 101 also notifies its own unique ID and communication address at the time of notification.
  • Step S15 After the notification from the selected outdoor unit 101, the outdoor units 102, 103 and the indoor units 104, 105, 106 that have detected the low frequency signal send their own ID or communication address to the ID or communication address notified in advance. Notify.
  • Step S16 The selected outdoor unit 101 adds the notified ID or communication address to the same system list.
  • Step S17 The selected outdoor unit 101 notifies the entire network that the system recognition is completed.
  • Step S18 If there is an outdoor unit for which system recognition has not been completed, the process returns to step S13, the outdoor unit for executing the next system recognition is cooperatively selected, and the processes from step S13 to step S17 are performed.
  • steps S11 to S12 are the same as those described in "(4-1) In the case of an air conditioning system", the description is omitted, and the contents corresponding to steps S13 to S18 are described in steps S13B. It is described as step S18B.
  • Step S13B In FIG. 5, since one outdoor unit 401 and two refrigerant circuit switching units 403A and 403B exist in the system D, a device serving as a “recognition” is selected from among them. Hereinafter, the outdoor unit 401 will be described as being elected as the first "recognition" role.
  • Step S14B the selected outdoor unit 401 notifies all the devices (indoor units 402, 404, 405, 406, 407, 408, 409, refrigerant circuit switching units 403A, 403B) to transmit the low frequency signal.
  • Low frequency signal transmission circuit A low frequency signal is transmitted from PS.
  • the selected outdoor unit 401 also notifies its own unique ID or communication address at the time of notification.
  • Step S15B After the notification from the selected outdoor unit 401, the indoor unit 402, the refrigerant circuit switching units 403A, and 403B that have detected the low frequency signal notify their own ID or communication address to the ID or communication address notified in advance. To do.
  • Step S16B The selected outdoor unit 401 adds the notified ID or communication address to the same system list.
  • Step S17B The selected outdoor unit 401 notifies the entire network that the system recognition is completed.
  • Step S18B If there is a device (refrigerant circuit switching unit) for which system recognition has not been completed, the process returns to step S13B, the device for executing the next system recognition is cooperatively selected, and the processes from step S13B to step S17B are performed.
  • FIG. 9A is a configuration diagram of a state in which a network between devices is normally formed in an air conditioning system composed of two refrigerant systems.
  • the outdoor units 101, 102 and the indoor units 104, 105, 106 are connected by wirings 111, 112, 113, 114, and the first device is connected between the devices connected by these wiring groups.
  • the network 10 is formed.
  • the outdoor units 201 and 202 and the indoor units 203, 204 and 205 are connected by wirings 211, 212, 213 and 214, and a second network 20 is formed between the devices connected by these wiring groups. Has been done.
  • FIG. 9B is a configuration diagram of a state in which the two networks of FIG. 9A are combined to form one network.
  • the proximity of the wiring between the refrigerant system A and the refrigerant system B causes capacitive or inductive coupling, and the communication signal propagates to the networks of other systems by crosstalk.
  • the first network The second network 20 is coupled to the ten, and one first network 10'is formed.
  • the equipment of the refrigerant system A can also communicate with the equipment of the refrigerant system B. If it is possible to set which system the device belongs to or to detect it by the detection means, it is equivalent to connecting with the inter-system connection wiring, so there is no problem in controlling the air-conditioning device. However, if the crosstalk coupling is weak, the signal attenuation is large, so that the communication quality deteriorates at the coupling portion due to the crosstalk, which leads to a decrease in the processing capacity per unit time of the entire network.
  • FIG. 9C shows a state in which a part of the device of FIG. 9A is combined with another network to form two networks having a configuration different from the original configuration. It is a block diagram.
  • the proximity of the wiring between the refrigerant system A and the refrigerant system B causes a capacitive or inductive coupling, and the communication signal propagates to the network of the other system by crosstalk.
  • Some devices (indoor units 204 and 205) on the network 20 are connected to the first network 10, and two virtual first networks 10 ′′ and a virtual second network have a configuration different from the initial connection configuration of the refrigerant system. 20 ′′ is formed.
  • Such a network is formed when communication employs a master / slave protocol, and occurs when multiple masters compete for slaves due to the restriction that there is only one master on one network. there is a possibility.
  • each outdoor unit / indoor unit has a high-frequency communication circuit, and a network is established after the power is turned on.
  • Devices participating in the network can acquire a unique ID and communication address by communication.
  • a list of system recognized devices can be obtained.
  • a device that exists on the communication network but is not recognized by system recognition and does not exist on the list is separated from or removed from the communication network.
  • the device selected as the “recognition” role For example, the outdoor unit 101) performs system recognition and notifies the entire network that the system recognition is completed. Therefore, at that time, the indoor units 204 and 205 recognize that they have not been recognized and leave.
  • the devices not registered in the list may be removed after the system recognition again.
  • a main unit for example, an outdoor unit selected from a plurality of devices is recognized as belonging to a second device (for example, an indoor unit) outside the system in its own system. Judge whether or not has occurred.
  • the main unit for example, an outdoor unit
  • the main unit for example, an outdoor unit selected from a plurality of devices belongs to the same system in which a plurality of other devices are physically connected by a low frequency signal. ..
  • the act of the first device group or the second device treating the second device as not belonging to the same system includes an act of refusing to belong to the same system.
  • the main engine for example, an outdoor unit selected from a plurality of devices rejects that the second device outside the system belongs to the same system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
  • Small-Scale Networks (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

高周波通信において他の系統の機器を同一系統として認識することなく、同一の系統に接続されている機器に対して適切に系統認識を行う手段を確立する。機器ネットワークシステムでは、第1機器群が、予め物理的に繋がる系統として設定されている状態、または物理的に繋がる系統として認識された状態において、当該系統に系統外の第2機器が所属していると認識される状態が発生したことを第1機器群または第2機器が検出した場合、第1機器群または第2機器は第2機器を当該系統から離脱させる。その結果、高周波通信であってもネットワークを正常に維持することができる。

Description

機器ネットワークシステム
 高周波通信を行う機器ネットワークシステムに関する。
 従来、ビル用マルチエアコンでは、同一系統の室外機・室内機を認識するために、室内機・室外機接続配線と系統間接続配線を分けて接続し、室内機・室外機系統認識時には系統間接続配線側をリレーにより切断し、ネットワーク上に同一系統の室内機・室外機しか存在しない状態を作り出すことで識別している。
 しかしながら、通信速度を向上させるために、より高周波信号を使う通信方式に変更し、通信を行うことになると、従来のリレーによる切断では、リレーの接点間や基板パターン間の寄生容量により信号が相互に漏洩するクロストークが発生し、リレーで分断したネットワークが結合してしまう虞があり、高周波通信においてリレーは機能を果たすことができない。また、物理配線で接続されていない異なるネットワーク間で通信配線が並走し、配線間の寄生容量・相互誘導により信号が相互に漏洩しクロストークが発生すると、物理的に接続されていないネットワーク同士が結合してしまう虞がある。このようにクロストークが発生すると、従来の手法のように、通信によりネットワークの系統認識を行う処理では、物理的に繋がっていない他のネットワークの機器までも同一系統として認識する可能性がある。
 そこで、高周波通信において他の系統の機器を同一系統として認識することなく、同一の系統に接続されている機器に対して適切に系統認識を行う手段を確立する、という課題が存在する。
 第1観点の機器ネットワークシステムは、第1ネットワークと、第2ネットワークとを備えている。第1ネットワークは、複数の機器を有する第1機器群および複数の機器に接続される第1配線群を含んでいる。第2ネットワークは、第1ネットワークと物理的に分離された第2機器および第2機器に接続される第2配線を有する。第1機器群が、予め物理的に繋がるグループとして設定されている状態、または物理的に繋がるグループとして認識された状態において、グループに第2機器が所属していると認識される状態が発生したことを第1機器群または第2機器が検出した場合、第1機器群または第2機器は第2機器がグループに所属しないものとして処理する。
 この機器ネットワークシステムでは、グループに所属すべきでない機器が当該グループに所属していることが認識された場合、該機器を当該グループに所属していないものと処理するので、高周波通信であっても系統認識が適切に行われる。
 第2観点の機器ネットワークシステムは、第1観点の機器ネットワークシステムであって、第1機器群では、複数の機器の中から選択された主機が、グループに第2機器が所属していると認識される状態が発生したか否かの判断を行う。
 第3観点の機器ネットワークシステムは、第1観点又は第2観点の機器ネットワークシステムであって、第1機器群では、複数の機器の中から選択された主機が、低周波通信によって他の複数の機器が物理的に繋がるグループに所属するか否かの判断を行う。
 第4観点の機器ネットワークシステムは、第1観点から第3観点のいずれか1つの機器ネットワークシステムであって、第1機器群または第2機器が、第2機器がグループに所属しないものとして処理する行為には、グループに所属することを拒絶する行為が含まれる。
 第5観点の機器ネットワークシステムは、第4観点の機器ネットワークシステムであって、第1機器群では、複数の機器の中から選択された主機が、第2機器が前記グループに所属することを拒絶する。
系統認識の概念図。 系統認識のフローチャート。 多段に系統を接続した場合の系統認識の概念図。 図2の形態を基に作成した系統リスト。 複数の冷媒系統から成る空調システムの構成図。 冷暖同時運転空調システムの構成図。 低周波信号検知方式の回路ブロック図。 図4に記載の空調システムの回路ブロック図。 系統認識のフローチャート。 2の冷媒系統から成る空調システムにおいて機器間のネットワークが正常に形成された状態の構成図。 図9Aの2つのネットワークが結合して1つのネットワークが形成された状態の構成図。 図9Aの機器の一部が他のネットワークに結合して、元の構成とは異なる構成の2つのネットワークが形成された状態の構成図。
 (1)機器ネットワークシステムの概要
 図1Aは、系統認識の概念図である。図1Aにおいて、機器A1,A2,B1,B2,B3,B4,C1,C2が存在し、全ての機器は1つの通信ネットワークに属しており、相互に通信可能である。系統1は機器A1,B1,B2,B3,B4が属する系統であり、系統2は機器A2,C1,C2が属する系統である。初期状態においては、各機器は自身がどの系統に属しているか把握できておらず、系統認識により属する系統を特定する必要がある。系統認識を実現するためには、認識対象とする機器のネットワーク上の役割を定める必要がある。ネットワーク上の機器には、初期の役割として、「認識」役と「被認識」役とが存在する。例えば、「認識」役は室外機、集中コントローラが該当し、「被認識」役は室内機が該当する。
 (1-1)系統認識の手順
 図1Bは、系統認識のフローチャートである。以下、図1Aおよび図1Bを参照しながら系統認識の手順を説明する。図1Aの上段に示すように、系統1には、認識する側である「認識」役になり得る2つの機器A1、B1が存在している。一方、系統2には、「認識」役になり得る1つの機器A2が存在している。
 (ステップS1)
 この3つの機器A1、B1およびA2の中のから1台の「認識」役を通信により選出する。選出方法は、例えば、各機器が持つ固有のIDや通信アドレスを参照し、最も値が小さいものを「認識」役とする方法がある。
 機器A1が「認識」役に選出された場合、「認識」役に選出されなかった機器B1、A2は、一時的に「被認識」役に遷移する(図1Aの下段参照)。
 (ステップS2)
 機器B1、A2の「被認識」役への遷移が完了すると、「認識」役である機器A1が系統認識のための検知信号を「被認識」役の機器B1、B2、B3、B4へ発信する。
 このとき、別系統である系統2の機器A2、C1、C2に検知信号を伝搬してはならず、同一系統である系統1の機器B1、B2、B3、B4にのみに検知信号が伝搬するようにする。
 (ステップS3)
 その検知信号を受け取った「被認識」役の機器B1、B2、B3、B4は通信にて応答を返す。
 (ステップS4)
 「認識」役である機器A1は、応答があった「被認識」役の機器B1、B2、B3、B4を同一系統に所属する機器であると認識して、その情報を記憶する。
 (ステップS5)
 既に「認識」役に選出された機器A1と「被認識」役に遷移して認識されたB1は、次の「認識」役の候補から除外される。そして、次の「認識」役の候補がなくなるまで、ステップS1からステップS4までの処理が繰り返される。その結果、各系統の機器構成が把握される。
 (1-2)多段系統接続の認識
 図2は、多段に系統を接続した場合の系統認識の概念図である。また、図3は、図2の形態を基に作成した系統リストである。図2において、役割は「認識」と「被認識」の2種類であるが、機器の形態として機器A1,A2,B4,C2のように「認識」役および「被認識」役の両方の役割を持つ機器によって系統間を接続する。この機器は、上流側に対しては「被認識」役、下流側に対しては「認識」役を持つ。ここでいう系統は、冷媒系統に限られるものではない。
 具体的には、機器A1によって系統Sと系統1を接続し、機器A2によって系統Sと系統2を接続する。また、機器B4によって系統1と系統3を接続し、機器C2によって系統2と系統4を接続する。
 接続できる系統は、上流側は一点のみであり、下流側は複数の系統との結合が可能である。
 (2)空調システムへの適用
 図4は、複数の冷媒系統から成る空調システムの構成図である。図4において、空調システムは、室外機と室内機、集中コントローラで構成され、冷媒配管で物理的に接続されたシステム単位を冷媒系統と呼ぶ。
 冷媒系統Aでは、機器としての室外機101、102、103、室内機104、105、106が配線111a、111b、112、113、114によって接続されており、当該配線群110で接続されている。
 冷媒系統Bでは、機器としての室外機201、202、室内機203、204、205が配線211、212、213、214によって接続されており、当該配線群210で接続されている。
 冷媒系統Cでは、機器としての室外機301、室内機302、303、304が配線311、312、313によって接続されており、当該配線群310で接続されている。
 系統Tでは、複数の冷媒系統A,B,Cに跨って制御するために、冷媒系統A,B,C間を系統間接続配線にて接続し、集中コントローラ5を接続している。
 全ての機器間で1つの通信ネットワークを形成しており、各機器間の通信は、周波数が100kHz以上の高周波で行われる。
 系統認識は、それぞれの室外機、室内機及び集中コントローラが系統A,B,C,Dのいずれに属するかの特定を行う。ここでは、説明の簡略化のために系統A,B,Cにおける機器の認識について説明する。ただし、集中コントローラと室外機の属する系統Tの認識においても系統A~Cの認識処理と違いは無い。
 3つの冷媒系統A,B,Cの全ての室外機の中から1台の「認識」役が選出される。例えば、図4において、冷媒系統Aには「認識」役になり得る3つの室外機101、102、103が存在する。
 また、冷媒系統Bには「認識」役になり得る2つの室外機201、202が存在する。さらに、冷媒系統Cには「認識」役になり得る1つの室外機301が存在する。
 この6つの室外機の中のから1台の「認識」が選出される。系統認識はどの系統から始めてもよいが、便宜上、冷媒系統Aから順に説明する。
 (2-1)冷媒系統Aにおける系統認識
 例えば、室外機101が「認識」役に選出された場合、「認識」役に選出されなかった室外機102、103、201、202、301は、一時的に「被認識」役に遷移する。
 次に、「認識」役である室外機101が系統認識のための検知信号を発信する。検知信号には、10kHz以下の低周波の認識用信号が用いられる。なお、低周波の認識用信号は、DC(0Hz)信号を含む。
 このとき、同一系統である冷媒系統Aの室外機102、103、室内機104、105、106にのみに検知信号が伝搬するようにし、別系統である冷媒系統B、Cの室外機201、202、301、室内機203,204,205,302,303,304には検知信号は伝搬してはならない。具体的には、室外機の系統間接続配線側に高周波透過フィルタ、例えばキャパシタが挿入されることによって低周波的に絶縁し、検知信号が他系統に伝搬しないようにしている。
 次に、その検知信号を受け取った「被認識」役の室外機102、103、室内機104、105、106は通信にて応答を返す。
 そして、「認識」役である室外機101は、応答があった「被認識」役の室外機102、103、室内機104、105、106を同一系統に所属する機器であると認識して、その情報を記憶する。
 (2-2)冷媒系統Bにおける系統認識
 既に「認識」役に選出された冷媒系統Aの室外機101、および冷媒系統Aに所属すると認識された室外機102、103は、次の「認識」役の候補から除外されるので、2つの冷媒系統B,Cの室外機201、202、301の中のから1台の「認識」役が選出される。
 例えば、室外機201が「認識」役に選出された場合、「認識」役に選出されなかった室外機202、301は、一時的に「被認識」役に遷移する。
 次に、「認識」役である室外機201が系統認識のための検知信号を発信する。検知信号には、10kHz以下の低周波の認識用信号が用いられる。なお、低周波の認識用信号は、DC(0Hz)信号を含む。
 このとき、同一系統である冷媒系統Bの室外機202、室内機203、204、205にのみに検知信号が伝搬するようにし、別系統である冷媒系統A、Cの室外機101、102、103、301、室内機104,105,106,302,303,304には検知信号を伝搬してはならない。
 次に、その検知信号を受け取った「被認識」役の室外機202、室内機203、204、205は通信にて応答を返す。
 そして、「認識」役である室外機201は、応答があった「被認識」役の室外機202、室内機203、204、205を同一系統に所属する機器であると認識して、その情報を記憶する。
 (2-3)冷媒系統Cにおける系統認識
 既に「認識」役に選出された冷媒系統Aの室外機101および冷媒系統Bの室外機201と、冷媒系統Aに所属すると認識された室外機102、103および冷媒系統Bに所属すると認識された室外機202は、次の「認識」役の候補から除外されるので、冷媒系統Cの室外機301が「認識」役となる。
 次に、「認識」役である室外機301が系統認識のための検知信号を発信する。検知信号には、10kHz以下の低周波の認識用信号が用いられる。なお、低周波の認識用信号は、DC(0Hz)信号を含む。
 このとき、同一系統である冷媒系統Cの室内機302、303、304にのみに検知信号が伝搬するようにし、別系統である冷媒系統A、Bの室外機101、102、103、201、202、室内機104,105,106,203,204,205には検知信号を伝搬してはならない。
 次に、その検知信号を受け取った「被認識」役の室内機302、303、304は通信にて応答を返す。
 そして、「認識」役である室外機301は、応答があった「被認識」役の室内機302、303、304を同一系統に所属する機器であると認識して、その情報を記憶する。
 (3)冷暖同時運転空調システムへの適用
 図5は、冷暖同時運転空調システムの構成図である。図5において、冷暖同時運転空調システムは、室外機、室内機、および室外機と室内機間の冷媒回路を切り替えるための冷媒回路切替ユニットで構成されている。図5は、1つの冷媒系統であるが、冷媒制御上、冷媒回路切替ユニット以下に接続されている室内機を特定する必要があるため、3つの小系統D、E、Fに分けて系統認識を行う必要がある。
 系統Dでは、機器としての室外機401、室内機402、冷媒回路切替ユニット403A、403Bが配線411、412によって接続されている。
 系統Eでは、機器としての冷媒回路切替ユニット403A、室内機404、405、406が配線413、414、415によって接続されている。
 系統Fでは、機器としての冷媒回路切替ユニット403B、室内機407、408、409が配線416、417、418によって接続されている。
 冷媒回路切替ユニット403Aによって系統Dと系統Eを接続し、冷媒回路切替ユニット403Bによって系統Dと系統Fを接続している。
 全ての機器間で1つの通信ネットワークを形成しており、各機器間の通信は、周波数が100kHz以上の高周波で行われる。
 図5において、この冷媒系統には「認識」役になり得るのは、系統Dの室外機401と、系統Eの冷媒回路切替ユニット403Aと、系統Fの冷媒回路切替ユニット403Bである。
 この1つの室外機401と、2つの冷媒回路切替ユニット403A、403Bの中のから1台の「認識」が選出される。系統認識は、どの系統から始めてもよいが、便宜上、系統D、系統E、系統Fの順で説明する。
 (3-1)系統D
 例えば、室外機401が「認識」役に選出されたとする。かかる場合、「認識」役に選出されなかった冷媒回路切替ユニット403A、403Bは、一時的に「被認識」役に遷移する。
 次に、「認識」役である室外機401が系統認識のための検知信号を発信する。検知信号には、10kHz以下の低周波の認識用信号が用いられる。なお、低周波の認識用信号は、DC(0Hz)信号を含む。
 このとき、同一系統である室内機402、冷媒回路切替ユニット403A、403Bにのみに検知信号が伝搬するようにし、冷媒回路切替ユニット403A以下、室内機404、405、406、冷媒回路切替ユニット403B以下、室内機407、408、409には検知信号を伝搬してはならない。
 次に、その検知信号を受け取った「被認識」役の室内機402、冷媒回路切替ユニット403A、403Bは通信にて応答を返す。
 そして、「認識」役である室外機401は、応答があった「被認識」役の室内機402、冷媒回路切替ユニット403A、403Bを同一系統に所属する機器であると認識して、その情報を記憶する。
 (3-2)系統E
 既に「認識」役に選出された室外機401は、次の「認識」役の候補から除外されるので、2つの冷媒回路切替ユニット403A、403Bの中のから1台の「認識」役が選出される。
 例えば、冷媒回路切替ユニット403Aが「認識」役に選出された場合、「認識」役に選出されなかった冷媒回路切替ユニット403Bは、一時的に「被認識」役に遷移する。
 次に、「認識」役である冷媒回路切替ユニット403Aが系統認識のための検知信号を発信する。検知信号には、10kHz以下の低周波の認識用信号が用いられる。なお、低周波の認識用信号は、DC(0Hz)信号を含む。
 このとき、同一系統である室内機404、405、406にのみに検知信号が伝搬するようにし、冷媒回路切替ユニット403B以下、室内機407、408、409には検知信号を伝搬してはならない。
 次に、その検知信号を受け取った「被認識」役の室内機404、405、406は通信にて応答を返す。
 そして、「認識」役である冷媒回路切替ユニット403Aは、応答があった「被認識」役の室内機404、405、406を同一系統に所属する機器であると認識して、その情報を記憶する。
 (3-3)系統F
 既に「認識」役に選出された室外機401および冷媒回路切替ユニット403Aは、次の「認識」役の候補から除外されるので、冷媒回路切替ユニット403Bが「認識」役となる。
 次に、「認識」役である冷媒回路切替ユニット403Bが系統認識のための検知信号を「被認識」役の室内機407、408、409へ発信する。検知信号には、10kHz以下の低周波の認識用信号が用いられる。なお、低周波の認識用信号は、DC(0Hz)信号を含む。
 このとき、同一系統である室内機407、408、409にのみに検知信号が伝搬するようにし、冷媒回路切替ユニット403A以下、室内機404、405、406には検知信号を伝搬してはならない。
 次に、その検知信号を受け取った「被認識」役の室内機407、408、409は通信にて応答を返す。
 そして、「認識」役である冷媒回路切替ユニット403Bは、応答があった「被認識」役の室内機407、408、409を同一系統に所属する機器であると認識して、その情報を記憶する。
 (4)系統認識の方法
 本願では、通信に高周波通信を採用し、系統認識のための信号は通信で使用する周波数よりも十分周波数的に離れた低周波信号を使用する。これを、低周波信号検知方式とする。同一冷媒系統内の機器にのみ低周波信号が伝搬するようにし、これを検知することによって同一系統の機器を認識する方法である。
 図6は、低周波信号検知方式の回路ブロック図である。一方の機器(例えば、室外機)には低周波信号送信回路PSと低周波信号受信回路PDが2回路、低周波信号の伝搬を阻害し高周波信号を透過する高周波透過フィルタHPFが設けられ、他方の機器(例えば、室内機)には低周波信号受信回路PDが設けられている。
 室外機の低周波信号送信のタイミングと、室内機の低周波信号受信のタイミングを協調し、室内機が低周波信号を検知できていることを室外機に通知することによって、同一冷媒系統であると認識することができる。
 (4-1)空調システムの場合
 図7は、図4に記載の空調システムの回路ブロック図である。便宜上、冷媒系統Aと冷媒系統Bの途中までの記載となっている。図7において、系統間接続配線は高周波透過フィルタHPFが挿入されることによって高周波の通信信号は透過するが、低周波信号は他系統に伝搬しないようにしている。
 図8は、系統認識のフローチャートである。以下、系統認識の手順を、図7及び図8を参照しながら説明する。
 (ステップS11)
 図7及び図8において、ステップS11で電源が投入される。
 (ステップS12)
 次に、高周波通信によりネットワークを確立する。各機器(室外機、室内機)は高周波通信の回路を持っており(図1参照)、電源投入されたあと、通信によりネットワークを確立する。
 (ステップS13)
 次に、同一系統の室外機・室内機の認識を行うため、全ての室外機は、通信により協調し、ネットワーク上の1台の室外機を選出し、「認識」役とする。
 (ステップS14)
 選出された室外機101は、低周波信号を送信することを全ての機器(室外機102、103、201、室内機104、105、106、203)に通知し、低周波信号送信回路PSから低周波信号を送信する。なお、選出された室外機101は、通知時に自己の固有のIDや通信アドレスも通知する。
 (ステップS15)
 選出された室外機101からの通知後に、低周波信号を検知した室外機102、103や室内機104、105、106は、事前に通知されたIDまたは通信アドレス宛に、自己のIDまたは通信アドレスを通知する。
 (ステップS16)
 選出された室外機101は、通知されたIDまたは通信アドレスを同一系統リストに追加する。
 (ステップS17)
 選出された室外機101は、系統認識が完了したことをネットワーク全体に通知する。
 (ステップS18)
 系統認識未完了の室外機が存在する場合は、ステップS13に戻り、次の系統認識を実行する室外機を協調的に選出し、ステップS13~ステップS17までの処理を行う。
 (4-2)冷暖同時運転空調システムの場合
 冷暖同時運転空調システムの場合も図7を兼用して説明することができる。なお、ステップS11~ステップS12の内容は、「(4-1)空調システムの場合」で説明した内容と同じであるので、説明を省略し、ステップS13~ステップS18に対応する内容を、ステップS13B~ステップS18Bとして記載する。
 (ステップS13B)
 図5において、系統Dには1台の室外機401と2台の冷媒回路切替ユニット403A、403Bが存在しているので、その中から「認識」役となる機器が選出される。以下、室外機401が最初の「認識」役に選出されたものとして説明する。
 (ステップS14B)
 次に、選出された室外機401は、低周波信号を送信することを全ての機器(室内機402、404,405,406,407,408,409、冷媒回路切替ユニット403A、403B)に通知し、低周波信号送信回路PSから低周波信号を送信する。なお、選出された室外機401は、通知時に自己の固有のID、又は通信アドレスも通知する。
 (ステップS15B)
 選出された室外機401からの通知後に、低周波信号を検知した室内機402、冷媒回路切替ユニット403A、403Bは、事前に通知されたIDまたは通信アドレス宛に、自己のIDまたは通信アドレスを通知する。
 (ステップS16B)
 選出された室外機401は、通知されたIDまたは通信アドレスを同一系統リストに追加する。
 (ステップS17B)
 選出された室外機401は、系統認識が完了したことをネットワーク全体に通知する。
 (ステップS18B)
 系統認識未完了の機器(冷媒回路切替ユニット)が存在する場合は、ステップS13Bに戻り、次の系統認識を実行する機器を協調的に選出し、ステップS13B~ステップS17Bまでの処理を行う。
 (5)系統認識時に系統外の機器の存在を確認した場合の処理
 ここでは、系統間の容量性、または誘導性結合が発生し、系統認識時に系統外の機器の存在を確認した場合の処理方法について説明する。便宜上、2つの冷媒系統と、冷媒系統ごとに形成されているネットワークとを想定して説明する。
 図9Aは、2の冷媒系統から成る空調システムにおいて機器間のネットワークが正常に形成された状態の構成図である。
 図9Aにおいて、冷媒系統Aでは、室外機101、102、室内機104、105、106が配線111、112、113、114によって接続されており、これら配線群で接続されている機器間で第1ネットワーク10が形成されている。
 冷媒系統Bでは、室外機201、202、室内機203、204、205が配線211、212、213、214によって接続されており、これら配線群で接続されている機器間で第2ネットワーク20が形成されている。
 (5-1)クロストークが発生する第1状態
 図9Bは、図9Aの2つのネットワークが結合して1つのネットワークが形成された状態の構成図である。
 図9Bにおいて、冷媒系統Aと冷媒系統B間の配線が近接していることで容量性、または誘導性結合が発生し、通信信号がクロストークにより他系統のネットワークに伝搬した結果、第1ネットワーク10に第2ネットワーク20が結合し、1つの第1ネットワーク10´が形成された状態となっている。
 このような状態では、冷媒系統Aの機器は冷媒系統Bの機器とも通信が可能となる。機器がどの系統に所属しているかを設定、もしくは検出手段により検出することができれば系統間接続配線で繋いでいることと同等であるため空調機器の制御上は問題ない。ただし、クロストークの結合が弱いと信号の減衰が大きいため、クロストークによる結合部で通信品質が低下し、ネットワーク全体の単位時間当たりの処理能力の低下を招来する。
 (5-2)クロストークが発生する第2状態
 図9Cは、図9Aの機器の一部が他のネットワークに結合して、元の構成とは異なる構成の2つのネットワークが形成された状態の構成図である。
 図9Cにおいて、冷媒系統Aおよびと冷媒系統B間の配線が近接していることで容量性、または誘導性結合が発生し、通信信号がクロストークにより他系統のネットワークに伝搬した結果、第2ネットワーク20上の一部の機器(室内機204、205)が第1ネットワーク10に結合し、当初の冷媒系統の接続構成とは異なる構成で2つの仮想第1ネットワーク10´´と仮想第2ネットワーク20´´が形成される状態となっている。
 このようなネットワークが形成されるのは、通信がマスター/スレーブプロトコルを採用している場合であり、1つのネットワーク上にマスターは1台のみという制約から、複数のマスターがスレーブを奪い合うことにより起こる可能性がある。
 かかる場合、冷媒系統Bで室外機201,202と室内機204、205間で通信が不能となり制御できなくなる。
 (5-3)ネットワークの結合の解消
 クロストークによる上記のようなネットワークの結合を解消するためには、ネットワークと冷媒系統とが不整合状態であることを判別し、不整合状態となっている機器を所属しているネットワークから離脱させて、別のネットワークを探索し接続する必要がある。
 その手段として、機器がどの系統に所属しているかを設定しておく方法、および検出手段により不整合状態を検出する方法の2種類が考えられる。
 (5-3-1)不整合状態を検出する方法
 系統認識では、同一系統にある機器に低周波の検知信号が送信され、検知信号を受信した機器は高周波通信で応答するので、系統認識は通信ネットワークが確立した後で行われる。
 「(4)系統認識の方法」で説明したように、各室外機・室内機は高周波通信回路を有しており、電源投入後、ネットワークを確立する。
 ネットワークに参加している機器は、通信により固有のIDや通信アドレスを取得することが可能である。
 全ての系統認識が完了すると、系統認識した機器のリストが得られる。通信ネットワーク上では存在するが、系統認識により認識されずリスト上に存在していない機器は、通信ネットワークから離脱する、もしくは離脱させられる。
 例えば、図9Cにおいて、冷媒系統2の室内機204、205が容量性または誘導性結合によって冷媒系統1のネットワークにいると認識される状態が発生したとしても、「認識」役に選出された機器(例えば、室外機101)が系統認識を行い、系統認識が完了したことをネットワーク全体に通知するので、その時点で室内機204、205は自分が認識されなかったことを認識して離脱する。
 (5-3-2)機器がどの系統に所属しているかを設定しておく方法
 クロストークは、ネットワーク構築時には発生しなくても、その後の配線の移動等によって発生することがある。例えば、配線が寄せられて途中からクロストークが発生するようになった場合、ネットワークが再構築される。
 かかる場合、直近の系統認識によって同一系統リストが作成されているので、再度の系統認識後に、当該リストに登録されていない機器を離脱させればよい。
 (6)特徴
 (6-1)
 機器ネットワークシステムでは、第1機器群が、予め物理的に繋がる系統として設定されている状態、または物理的に繋がる系統として認識された状態において、当該系統に系統外の第2機器が所属していると認識される状態が発生したことを第1機器群または第2機器が検出した場合、第1機器群または第2機器は第2機器を当該系統から離脱させる。その結果、高周波通信であってもネットワークを正常に維持することができる。
 (6-2)
 第1機器群では、複数の機器の中から選択された主機(例えば、室外機)が、自己の系統に系統外の第2機器(例えば、室内機)が所属していると認識される状態が発生したか否かの判断を行う。
 (6-3)
 第1機器群では、複数の機器の中から選択された主機(例えば、室外機)が、低周波信号によって他の複数の機器が物理的に繋がる同一系統に所属するか否かの判断を行う。
 (6-4)
 第1機器群または第2機器が、第2機器が同一系統に所属しないものとして処理する行為には、同一に所属することを拒絶する行為が含まれる。
 (6-5)
 第1機器群では、複数の機器の中から選択された主機(例えば、室外機)が、系統外の第2機器が同一系統に所属することを拒絶する。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
10            第1ネットワーク
101、102、103   室外機(第1機器)
104、105、106   室内機(第1機器)
100           第1機器群
110           第1配線群
20            第2ネットワーク
201、202       室外機(第2機器)
203、204、205   室内機(第2機器)
200           第2機器群
212、213、214   第2配線
特開2016-219983号公報

Claims (5)

  1.  複数の機器(101,・・・,106)を有する第1機器群(100)および前記複数の機器に接続される第1配線群(110)を含む第1ネットワーク(10)と、
     前記第1ネットワークと物理的に分離された第2機器(203,204)および前記第2機器に接続される第2配線(213)を有する第2ネットワーク(20)と、
    を備える機器ネットワークシステムにおいて、
     前記第1機器群が、予め物理的に繋がるグループとして設定されている状態、または物理的に繋がるグループとして認識された状態において、前記グループに前記第2機器が所属していると認識される状態が発生したことを前記第1機器群または前記第2機器が検出した場合、前記第1機器群または前記第2機器は前記第2機器が前記グループに所属しないものとして処理する、
    機器ネットワークシステム。
  2.  前記第1機器群では、前記複数の機器の中から選択された主機が、前記グループに前記第2機器が所属していると認識される状態が発生したか否かの判断を行う、
    請求項1に記載の機器ネットワークシステム。
  3.  前記第1機器群では、前記複数の機器の中から選択された主機が、低周波通信によって他の前記複数の機器が物理的に繋がるグループに所属するか否かの判断を行う、
    請求項1又は請求項2に記載の機器ネットワークシステム。
  4.  前記第1機器群または前記第2機器が、前記第2機器が前記グループに所属しないものとして処理する行為には、前記グループに所属することを拒絶する行為が含まれる、
    請求項1から請求項3のいずれか1項に記載の機器ネットワークシステム。
  5.  前記第1機器群では、前記複数の機器の中から選択された主機が、前記第2機器が前記グループに所属することを拒絶する、
    請求項4に記載の機器ネットワークシステム。
     
PCT/JP2020/013127 2019-03-29 2020-03-24 機器ネットワークシステム WO2020203493A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11202109730X SG11202109730XA (en) 2019-03-29 2020-03-24 Device network system
CN202080023514.2A CN113615131B (zh) 2019-03-29 2020-03-24 设备网络系统
EP20782193.5A EP3952225B1 (en) 2019-03-29 2020-03-24 Apparatus network system
ES20782193T ES2956939T3 (es) 2019-03-29 2020-03-24 Sistema de red de aparatos
AU2020251261A AU2020251261B2 (en) 2019-03-29 2020-03-24 Device network system
US17/599,222 US11588565B2 (en) 2019-03-29 2020-03-24 Network system that facilitates device recognition in a high-frequency communication environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067793 2019-03-29
JP2019067793A JP6733768B1 (ja) 2019-03-29 2019-03-29 機器ネットワークシステム

Publications (1)

Publication Number Publication Date
WO2020203493A1 true WO2020203493A1 (ja) 2020-10-08

Family

ID=71892456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013127 WO2020203493A1 (ja) 2019-03-29 2020-03-24 機器ネットワークシステム

Country Status (8)

Country Link
US (1) US11588565B2 (ja)
EP (1) EP3952225B1 (ja)
JP (1) JP6733768B1 (ja)
CN (1) CN113615131B (ja)
AU (1) AU2020251261B2 (ja)
ES (1) ES2956939T3 (ja)
SG (1) SG11202109730XA (ja)
WO (1) WO2020203493A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116762316A (zh) * 2021-02-10 2023-09-15 大金工业株式会社 设备网络系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023148942A1 (ja) * 2022-02-04 2023-08-10 三菱電機株式会社 ネットワークシステム、及び、ネットワーク認識方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052706A (ja) * 2010-08-31 2012-03-15 Daikin Industries Ltd 設備機器制御装置
JP2016219983A (ja) 2015-05-19 2016-12-22 ダイキン工業株式会社 リンク確立方法及び伝送装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4333995B2 (ja) 2004-07-14 2009-09-16 日立アプライアンス株式会社 空気調和機
JP4910306B2 (ja) * 2005-05-16 2012-04-04 パナソニック株式会社 電気機器及び遠隔制御装置
US9166650B2 (en) * 2008-07-02 2015-10-20 Rambus Inc. Capacitive-coupled crosstalk cancellation
JP5523473B2 (ja) * 2008-12-23 2014-06-18 コーニンクレッカ フィリップス エヌ ヴェ 周波数帯域を共有する2つ又はこれ以上の無線ネットワークを含む柔軟な無線システムにおけるデバイスの自己共存
US8117483B2 (en) * 2009-05-13 2012-02-14 Freescale Semiconductor, Inc. Method to calibrate start values for write leveling in a memory system
CN105210323B (zh) 2013-03-15 2019-05-17 阿里斯企业有限责任公司 区域化组播服务的方法、网关和系统
CN103607222B (zh) * 2013-11-27 2016-01-20 国家电网公司 一种跨频带电力线通信频率的自学习方法
JP5949832B2 (ja) * 2014-05-30 2016-07-13 ダイキン工業株式会社 空調システム
US9325522B2 (en) * 2014-06-16 2016-04-26 Qualcomm Incorporated Minimizing interference between communication networks
JP6833318B2 (ja) * 2016-02-01 2021-02-24 株式会社東芝 制御システム、通信方法、通信装置及び端末装置
US10382976B2 (en) * 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
KR101908306B1 (ko) * 2017-01-05 2018-10-16 엘지전자 주식회사 공기조화기 및 그 제어방법
US20190342172A1 (en) * 2018-05-01 2019-11-07 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Sending predefined configuration information from a first computer to a second computer in a management network group
US11108640B2 (en) * 2018-12-20 2021-08-31 Advantest Corporation Controlling devices in a decentralized storage environment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052706A (ja) * 2010-08-31 2012-03-15 Daikin Industries Ltd 設備機器制御装置
JP2016219983A (ja) 2015-05-19 2016-12-22 ダイキン工業株式会社 リンク確立方法及び伝送装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116762316A (zh) * 2021-02-10 2023-09-15 大金工业株式会社 设备网络系统

Also Published As

Publication number Publication date
EP3952225A1 (en) 2022-02-09
CN113615131B (zh) 2022-03-15
US11588565B2 (en) 2023-02-21
CN113615131A (zh) 2021-11-05
JP2020167577A (ja) 2020-10-08
US20220103275A1 (en) 2022-03-31
ES2956939T3 (es) 2024-01-05
AU2020251261B2 (en) 2021-11-25
AU2020251261A1 (en) 2021-11-11
EP3952225B1 (en) 2023-08-30
JP6733768B1 (ja) 2020-08-05
SG11202109730XA (en) 2021-10-28
EP3952225A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
JP2021119326A (ja) 機器ネットワークシステム
WO2020203493A1 (ja) 機器ネットワークシステム
CN106034038B (zh) 防止多冲突堆叠的方法和装置
JP2020167580A (ja) 物理的な接続関係を認識するための認識方法
WO2020203575A1 (ja) 機器ネットワークシステム
CN113325689B (zh) 一种基于数据同步的控制系统全时域热备方法
US11902045B2 (en) Device network system
JP2009224978A (ja) 無線通信装置、無線通信システム、および無線通信装置のネットワーク再構築方法
CN106028294A (zh) 一种设备连接方法及装置
JP2022185207A (ja) 機器ネットワークシステム、およびその機器ネットワークシステムの系統認識方法
US20130007318A1 (en) Methods and structure for selective propagation of sas broadcast(change) primitives
JP2713041B2 (ja) 空気調和装置の制御方法及び該方法を用いる装置
JP2023045560A (ja) 接続制御方法
JP2000092100A (ja) 光二重ループ型伝送装置
JP6637287B2 (ja) 防災監視システム
JP2021013127A (ja) ネットワーク構成検出方法及び通信システム
CN111865739A (zh) 用于显示家电状态的方法和装置
JP2011066722A (ja) 差動型伝送装置
JPH11177595A (ja) トポロジー修正方式
JP2001238240A (ja) 移動無線通信システム及び移動無線通信基地局制御装置
JPH04270434A (ja) 2重化システム
JPS59188244A (ja) 系切替え方式
JP2002094602A (ja) 通信機器の伝送方式自動選択システム、網終端装置の伝送方式自動選択システム、及び通信回線の伝送方式自動切換方法と伝送方式自動判定方法
JPH07193543A (ja) 光多分岐通信における伝送方式
JPH01288135A (ja) ローカルエリアネットワークの回線試験方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020782193

Country of ref document: EP

Effective date: 20211029

ENP Entry into the national phase

Ref document number: 2020251261

Country of ref document: AU

Date of ref document: 20200324

Kind code of ref document: A