WO2020202548A1 - ヒートポンプシステムの室外ユニット - Google Patents

ヒートポンプシステムの室外ユニット Download PDF

Info

Publication number
WO2020202548A1
WO2020202548A1 PCT/JP2019/015132 JP2019015132W WO2020202548A1 WO 2020202548 A1 WO2020202548 A1 WO 2020202548A1 JP 2019015132 W JP2019015132 W JP 2019015132W WO 2020202548 A1 WO2020202548 A1 WO 2020202548A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
shutoff valve
side shutoff
liquid
gas
Prior art date
Application number
PCT/JP2019/015132
Other languages
English (en)
French (fr)
Inventor
裕一 庄司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/015132 priority Critical patent/WO2020202548A1/ja
Priority to JP2021511050A priority patent/JP7204892B2/ja
Publication of WO2020202548A1 publication Critical patent/WO2020202548A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an outdoor unit of a heat pump system provided with a shutoff valve that shuts off when a refrigerant leaks.
  • Patent Document 1 is a prior art provided with a mechanism for shutting off a refrigerant circuit.
  • Patent Document 1 has a configuration in which a liquid side shutoff valve and a gas pipe side shutoff valve are provided in a liquid pipe and a gas pipe connecting the outdoor unit and the indoor unit.
  • the liquid side shutoff valve and the gas pipe side shutoff valve are closed to prevent the refrigerant from flowing from the outdoor unit side to the indoor unit side, thereby suppressing the leakage of the refrigerant from the indoor unit. There is.
  • an airtightness check is performed to check the airtightness of the refrigerant circuit.
  • the air in the refrigerant circuit is evacuated by using a vacuum pump, and then the refrigerant pre-filled in the outdoor unit is released to the indoor unit.
  • Patent Document 1 includes a liquid-side shutoff valve and a gas pipe-side shutoff valve, but for safety reasons, these shutoff valves are closed when the power is off. Since the airtightness check and evacuation are performed with the power breaker turned off, when the airtightness check and evacuation are performed in Patent Document 1, the liquid side shutoff valve and the gas pipe side shutoff valve are closed.
  • the airtightness check is performed by enclosing the airtightness check gas in the refrigerant circuit from the charge port provided in the outdoor unit. Therefore, when the liquid side shutoff valve and the gas pipe side shutoff valve are closed, there is a problem that the airtightness check gas does not flow into the indoor unit and the airtightness check cannot be completed properly.
  • a vacuum pump is connected to the charge port provided in the outdoor unit, so if the liquid side shutoff valve and gas pipe side shutoff valve are closed, the vacuum on the indoor unit side cannot be evacuated. , There is a problem that evacuation cannot be completed properly.
  • the power breaker should be turned on, and the liquid side shutoff valve and gas pipe side shutoff valve should be energized and opened to perform airtightness check and vacuuming.
  • the following Problems arise.
  • the power breaker is turned on, the outdoor unit is ready to accept remote control operations. Therefore, when the remote controller instructs the start of operation such as the heating mode, the compressor starts operating even though the refrigerant circuit is not yet filled with the refrigerant, and air is mixed in the compressor. It may be damaged.
  • the present invention has been made in view of these points, and has a configuration including a liquid-side shutoff valve and a gas pipe-side shutoff valve that close when a refrigerant leaks, and at the same time, air is introduced into the compressor during airtightness check and vacuuming. It is an object of the present invention to provide an outdoor unit of a heat pump system capable of preventing contamination.
  • the outdoor unit of the heat pump system includes an outdoor unit having a compressor, a gas pipe valve and a liquid pipe valve, an indoor unit, a gas pipe connecting the gas pipe valve and the indoor unit, a liquid pipe valve and an indoor unit.
  • a heat pump system including a liquid pipe connecting the unit, a gas side shutoff valve provided in the gas pipe and shut off when a refrigerant leaks, and a liquid side shutoff valve provided in the liquid pipe and shut off when a refrigerant leaks.
  • the liquid side shutoff valve and the gas pipe side shutoff valve that are closed when the refrigerant leaks are provided, and the installation mode is executed when a specific operation including the operation of turning on the power breaker BK is performed. ..
  • the installation mode is a mode in which the gas side shutoff valve and the liquid side shutoff valve are set to OPEN and the operation instruction to the compressor is invalidated.
  • FIG. It is a figure which shows the structure of the heat pump system which concerns on Embodiment 1.
  • FIG. It is the schematic perspective view which looked at the outdoor unit and the blocking box of FIG. 1 from the side. It is an operation explanatory view at the time of a heating operation in the heat pump system which concerns on Embodiment 1.
  • FIG. It is operation explanatory drawing at the time of the cooling operation in the heat pump system which concerns on Embodiment 1.
  • FIG. It is operation explanatory drawing at the time of refrigerant leakage in the heat pump system which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the flow of the process at the time of the refrigerant leakage in the heat pump system which concerns on Embodiment 1.
  • FIG. It is operation explanatory drawing at the time of the airtightness check in the heat pump system which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the flow of the process at the time of the airtightness check in the heat pump system which concerns on Embodiment 1.
  • FIG. It is operation explanatory drawing at the time of evacuation in the heat pump system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the table which summarized the energization control of the shutoff valve for each operation mode in the heat pump system which concerns on Embodiment 2.
  • FIG. 1 is a diagram showing a configuration of a heat pump system according to the first embodiment.
  • FIG. 2 is a schematic perspective view of the outdoor unit and the blocking box of FIG. 1 as viewed from the side. In FIG. 2, the left side is the front side and the right side is the back side.
  • the heat pump system includes an outdoor unit 10, an indoor unit 20, and a shutoff valve box 30. Power is supplied to the outdoor unit 10, the indoor unit 20, and the shutoff valve box 30 from the commercial power supply EP via the power breaker BK.
  • the outdoor unit 10 includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a fan 4, an expansion valve 5, a gas pipe valve 6, and a liquid pipe valve 8.
  • the gas pipe valve 6 and the liquid pipe valve 8 are valves that open and close the gas pipe 40 and the liquid pipe 41, which will be described later.
  • the gas pipe valve 6 is provided with a charge port 7. Further, the liquid pipe valve 8 is provided with a charge port 9.
  • the indoor unit 20 includes an indoor heat exchanger 21 and a refrigerant leak sensor 22 for detecting a refrigerant leak.
  • the indoor heat exchanger 21 is composed of a plate heat exchanger. In the plate heat exchanger, the water circuit inlet pipe 23 and the water circuit outlet pipe 24 are connected to form a water circuit.
  • the indoor heat exchanger 21 is not limited to the plate heat exchanger, but may be a fin tube heat exchanger or the like.
  • the outdoor unit 10 and the indoor unit 20 are connected by a gas pipe 40 and a liquid pipe 41.
  • the gas pipe valve 6 of the outdoor unit 10 and the indoor heat exchanger 21 of the indoor unit 20 are connected by a gas pipe 40
  • the liquid pipe valve 8 of the outdoor unit 10 and the indoor heat exchanger 21 of the indoor unit 20 are connected. Is connected by a liquid pipe 41.
  • the shutoff valve box 30 includes a gas side shutoff valve 31 provided in the gas pipe 40 and shut off when the refrigerant leaks, and a liquid side shutoff valve 32 provided in the liquid pipe 41 and shut off when the refrigerant leaks. As shown in FIG. 2, the shutoff valve box 30 is arranged, for example, on the back side of the outdoor unit 10. For safety reasons, both the gas side shutoff valve 31 and the liquid side shutoff valve 32 are CLOSE when energization is stopped (hereinafter referred to as energization OFF) and OPEN when energization is performed (hereinafter referred to as energization ON). This is because it is necessary to make it possible to prevent the refrigerant from leaking into the living space whenever the system is stopped.
  • the gas side shutoff valve 31 and the liquid side shutoff valve 32 are composed of, for example, an electric expansion valve.
  • the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 5, and the indoor heat exchanger 21 are connected by a connecting pipe to form a refrigerant circuit.
  • the heat pump system is further equipped with a control device 50 that controls the entire heat pump system.
  • the control device 50 is provided in the outdoor unit 10 as shown in FIG.
  • the control device 50 is composed of, for example, a microprocessor unit or the like.
  • the configuration of the control device 50 is not limited to this.
  • the control device 50 may be configured by an updatable device such as firmware.
  • the control device 50 may be a program module that is executed by a command from a CPU or the like (not shown).
  • the control device 50 controls the compressor 1, the four-way valve 2, the fan 4, the gas pipe valve 6, and the liquid pipe valve 8. Further, the control device 50 controls the gas side shutoff valve 31 and the liquid side shutoff valve 32 based on the leak signal from the refrigerant leak sensor 22. Further, the control device 50 operates the heating mode and the cooling mode as normal operation by switching the four-way valve 2.
  • control device 50 has an installation mode in which the gas side shutoff valve 31 and the liquid side shutoff valve 32 are set to OPEN and the operation instruction to the compressor 1 is invalidated.
  • the operation instruction for the compressor 1 is, for example, an operation start instruction for a heating mode or a cooling mode using a remote controller (not shown), an operation instruction for forcibly operating the compressor 1, and the like. That is, during the installation mode, the compressor 1 maintains the stopped state even if the remote controller instructs, for example, to start operation.
  • the installation mode is a mode set by the user when performing an airtightness check and evacuation performed when installing the heat pump system on site.
  • the control device 50 includes a control board 51.
  • the control board 51 is equipped with a changeover switch 52 for switching between setting and canceling the installation mode.
  • the control device 50 starts the installation mode when the power breaker BK is turned on by the user while the changeover switch 52 is turned on.
  • the operation as a trigger for starting the installation mode is not limited to this operation, and in short, it may be a specific operation including at least an operation of turning on the power breaker BK.
  • FIG. 3 is an operation explanatory view during a heating operation in the heat pump system according to the first embodiment.
  • the arrows indicate the flow of the refrigerant.
  • a high-temperature and high-pressure gas refrigerant is discharged from the compressor 1.
  • the gas refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 21 through the four-way valve 2, the gas pipe valve 6, and the gas side shutoff valve 31.
  • the refrigerant flowing into the indoor heat exchanger 21 exchanges heat with the water flowing through the water circuit of the indoor heat exchanger 21 and liquefies by radiating heat.
  • the liquefied refrigerant is decompressed by the expansion valve 5 controlled to an appropriate opening degree to be in a gas-liquid two-phase state, and flows into the outdoor heat exchanger 3. .
  • the heating mode is performed by circulating the refrigerant in the refrigerant circuit as described above.
  • the liquid side shutoff valve 32 has a small diameter at the time of OPEN, and a throttle is generated when the refrigerant passes through. Therefore, when controlling the expansion valve 5, the control device 50 controls to increase the opening degree of the expansion valve 5 by the amount of the throttle when the refrigerant passes through the liquid side shutoff valve 32. This makes it possible to stabilize the control of the refrigerant circuit. This control is the same in the cooling mode described later. If the liquid-side shutoff valve 32 is a valve that does not cause throttle when the refrigerant passes during OPEN, this control is not necessary.
  • FIG. 4 is an operation explanatory view during a cooling operation in the heat pump system according to the first embodiment.
  • the arrows indicate the flow of the refrigerant.
  • a high temperature and high pressure gas refrigerant is discharged from the compressor 1.
  • the gas refrigerant compressed by the compressor 1 passes through the four-way valve 2 and flows into the outdoor heat exchanger 3.
  • the refrigerant flowing into the outdoor heat exchanger 3 exchanges heat with the outdoor air conveyed by the fan 4 and liquefies by dissipating heat.
  • the liquefied refrigerant is decompressed by the expansion valve 5 adjusted to an appropriate opening degree to be in a gas-liquid two-phase state, passes through the liquid pipe valve 8 and the liquid side shutoff valve 32, and then flows into the indoor heat exchanger 21. ..
  • the refrigerant flowing into the indoor heat exchanger 21 exchanges heat with the water flowing through the water circuit of the indoor heat exchanger 21 and absorbs heat to gasify.
  • the gasified refrigerant passes through the gas side shutoff valve 31 and the gas pipe valve 6 and then is returned to the compressor 1.
  • the cooling mode is performed by circulating the refrigerant in the refrigerant circuit as described above.
  • FIG. 5 is an operation explanatory view at the time of refrigerant leakage in the heat pump system according to the first embodiment.
  • the arrows indicate the flow of the refrigerant.
  • FIG. 6 is a flowchart showing a processing flow at the time of refrigerant leakage in the heat pump system according to the first embodiment.
  • the power breaker BK is ON
  • the power of the heat pump system is ON
  • the gas pipe valve 6, the liquid pipe valve 8, the gas side shutoff valve 31 and the liquid side shutoff valve 32 are all OPEN. It has become.
  • the refrigerant leakage sensor 22 mounted on the indoor unit 20 detects the leakage, and the refrigerant leakage signal is sent outdoors. It is sent to the control device 50 of the unit 10.
  • the control device 50 receives the refrigerant leakage signal (step S1-1)
  • the compressor 1 is stopped, and at the same time, the gas side shutoff valve 31 and the liquid side shutoff valve 32 are CLOSEd (step S1-2).
  • the refrigerant is sealed in the outdoor unit 10, the outflow of the refrigerant to the indoor unit 20 side can be prevented, and the amount of the refrigerant leaking into the living space can be reduced as much as possible.
  • the first embodiment is characterized by an operation when performing an airtightness check and vacuuming.
  • FIG. 7 is an operation explanatory view at the time of airtightness check in the heat pump system according to the first embodiment.
  • the arrow indicates the flow of the airtightness check gas.
  • FIG. 8 is a flowchart showing a processing flow at the time of airtightness check in the heat pump system according to the first embodiment.
  • step S2-1 When the control device 50 recognizes that the operation of turning on the power breaker BK is performed with the changeover switch 52 turned on (step S2-1), the installation mode is started. That is, the control device 50 sets the gas side shutoff valve 31 and the liquid side shutoff valve 32 to OPEN, and invalidates the operation instruction to the compressor 1 in the installation mode (step S2-2).
  • the control device 50 When the power breaker BK is turned on, power is supplied to the heat pump system, and the compressor 1 is in an operable state. However, in the installation mode, the control device 50 invalidates the operation instruction to the compressor 1, so that the compressor 1 is stopped even if the remote controller erroneously instructs the start of operation in the installation mode. maintain. This makes it possible to prevent the inconvenience that the compressor 1 operates during the airtightness check and air is mixed into the compressor 1.
  • the gas side shutoff valve 31 and the liquid side shutoff valve 32 are OPEN, the gas pipe valve 6, the gas side shutoff valve 31, the indoor heat exchanger 21, and the liquid side shutoff valve 32 are on the indoor unit 20 side of the refrigerant circuit. And a closed circuit of the liquid pipe valve 8 is formed.
  • the user fills the airtightness check gas from the charge port 7 of the gas pipe valve 6.
  • the sealed gas for airtightness check is distributed in the closed circuit, and the airtightness check is performed.
  • the user turns off the changeover switch 52 and the power breaker BK in order to cancel the installation mode.
  • step S2-3) When the control device 50 recognizes that the changeover switch 52 and the power breaker BK have been turned off (step S2-3), the installation mode is released. That is, the control device 50 returns the gas side shutoff valve 31 and the liquid side shutoff valve 32 to CLOSE (step S2-4).
  • the airtightness check gas is filled from the charge port 7 of the gas pipe valve 6, but the airtightness check gas is filled from the charge port 9 of the liquid pipe valve 8 and the airtightness check gas is closed from the opposite direction. It may be distributed in the circuit.
  • FIG. 9 is an operation explanatory view at the time of evacuation in the heat pump system according to the first embodiment.
  • the arrow indicates the flow of air in the pipe during evacuation.
  • the flowchart showing the flow of processing at the time of evacuation is the same as that of FIG. 8, and the step numbers in the following description should be referred to FIG..
  • step S2-1 When the control device 50 recognizes that the operation of turning on the power breaker BK is performed with the changeover switch 52 turned on (step S2-1), the installation mode is started. That is, the control device 50 sets the gas side shutoff valve 31 and the liquid side shutoff valve 32 to OPEN, and invalidates the operation instruction to the compressor 1 in the installation mode (step S2-2).
  • the control device 50 When the power breaker BK is turned on, power is supplied to the heat pump system, and the compressor 1 is in an operable state. However, in the installation mode, the control device 50 invalidates the operation instruction to the compressor 1, so that the compressor 1 is stopped even if the remote controller erroneously instructs the start of operation in the installation mode. maintain. This makes it possible to prevent the inconvenience that the compressor 1 operates during the airtightness check and air is mixed into the compressor 1.
  • the gas side shutoff valve 31 and the liquid side shutoff valve 32 are OPEN, the gas pipe valve 6, the gas side shutoff valve 31, the indoor heat exchanger 21, and the liquid side shutoff valve 32 are on the indoor unit 20 side of the refrigerant circuit. And a closed circuit of the liquid pipe valve 8 is formed.
  • the control device 50 recognizes that the changeover switch 52 and the power breaker BK have been turned off (step S2-3), the control device 50 releases the installation mode. That is, the control device 50 returns the gas side shutoff valve 31 and the liquid side shutoff valve 32 to CLOSE (step S2-4).
  • the vacuum pump may be connected to the charge port 7 of the gas pipe valve 6.
  • the first embodiment includes the "outdoor unit 10 having the compressor 1, the gas pipe valve 6 and the liquid pipe valve 8", the “indoor unit 20", and the “gas pipe valve 6 and the indoor unit 20".
  • a gas pipe 40 for connecting the gas pipe 40 and a liquid pipe 41 for connecting the liquid pipe valve 8 and the indoor unit 20 are provided.
  • Embodiment 1 further includes “a gas-side shutoff valve 31 provided in the gas pipe 40 and shut off when the refrigerant leaks” and "a liquid-side shutoff valve 32 provided in the liquid pipe 41 and shut off when the refrigerant leaks”. And.
  • the gas side shutoff valve 31 and the liquid side shutoff valve 32 are opened and the compressor is operated.
  • a control device 50 for executing an installation mode that invalidates the operation instruction for 1 is provided.
  • the gas side shutoff valve 31 and the liquid side shutoff valve 32 become OPEN. Therefore, the airtightness check and the vacuuming can be performed while the configuration is provided with the liquid side shutoff valve 32 and the gas pipe side shutoff valve that are closed when the refrigerant leaks. Further, when the installation mode is executed, the operation instruction to the compressor 1 is invalidated. Therefore, even if the operation instruction to the compressor 1 is mistakenly given from the remote controller, the operation instruction is invalidated and the compressor 1 is invalidated. Keeps stopped. Therefore, it is possible to prevent air from being mixed into the compressor 1.
  • the specific operation is an operation of turning on the power breaker BK with the changeover switch 52 provided in the control device 50 turned on. By performing such an operation, the installation mode can be started.
  • the gas pipe valve 6 and the liquid pipe valve 8 are each provided with a charge port.
  • the airtightness check and the vacuum check can be performed from either the gas pipe 40 side or the liquid pipe 41 side.
  • Embodiment 2 In the first embodiment, an electric expansion valve is used for the gas side shutoff valve 31 and the liquid side shutoff valve 32, but in the second embodiment, an electromagnetic valve is used for the gas side shutoff valve 31 and the liquid side shutoff valve 32. The point is different from the first embodiment.
  • the electric expansion valve In the electric expansion valve, the refrigerant flows in both directions from the shutoff valve toward the indoor unit 20 in the "forward direction” and in the opposite "reverse direction” without any problem.
  • the shutoff valves especially when the liquid side shutoff valve 32 through which the liquid refrigerant flows is composed of a solenoid valve, the refrigerant pulsation is transmitted to the valve when the liquid refrigerant flows in a certain direction, which may cause a chattering phenomenon due to valve vibration. There is sex.
  • the solenoid valve has a disadvantage that chattering occurs depending on the method of use, it is cheaper than the electric expansion valve that can be used in both directions, so that both the gas side shutoff valve 31 and the liquid side shutoff valve 32 are solenoided. It is required to use a valve.
  • the gas side shutoff valve 31 and the liquid side shutoff valve 32 are composed of solenoid valves, and the energization control of the liquid side shutoff valve 32 is different from that of the first embodiment.
  • the configuration and the like are the same as those in the first embodiment.
  • the second embodiment will be described focusing on the differences from the first embodiment.
  • the solenoid valve is a valve that becomes OPEN when the energization is ON and becomes CLOSE when the energization is OFF.
  • a reverse pressure difference acts on the solenoid valve, and with respect to the forward pressure difference.
  • the reverse pressure difference is a pressure difference when the pressure acting on the port on the indoor unit 20 side of the liquid side shutoff valve 32 is higher than the pressure acting on the port on the outdoor unit 10 side of the liquid side shutoff valve 32. ..
  • the positive pressure difference is a pressure difference when the pressure acting on the port on the outdoor unit 10 side of the liquid side shutoff valve 32 is higher than the pressure acting on the port on the indoor unit 20 side of the liquid side shutoff valve 32.
  • the gas side shutoff valve 31 and the liquid side shutoff valve 32 are configured by using a solenoid valve having such characteristics.
  • FIG. 10 is a diagram showing a table summarizing the energization control of the shutoff valve for each operation mode in the heat pump system according to the second embodiment.
  • the part indicated by a dot indicates the state of the shutoff valve in the corresponding operation mode.
  • the gas side shutoff valve 31 is turned on and opened in the heating mode and the cooling mode.
  • the liquid-side shutoff valve 32 is turned on and opened.
  • chattering occurs with respect to the refrigerant flowing in the opposite direction, so that the power is turned off.
  • the liquid side shutoff valve 32 becomes CLOSE when the energization is turned off, but in the heating mode, a pressure difference due to the liquid refrigerant acts on the liquid side shutoff valve 32 from the opposite direction, so that a reverse pressure difference acts. Therefore, in the heating mode, the liquid side shutoff valve 32 is OPEN even when the power is turned off. Chattering does not occur during OPEN due to this reverse pressure difference. Therefore, in the heating mode, the liquid side shutoff valve 32 is turned off, the liquid refrigerant is opened by the pressure difference in the reverse direction, and the liquid refrigerant flows in the reverse direction, so that chattering occurs even if an electromagnetic valve is used for the liquid side shutoff valve 32.
  • the refrigerant can be smoothly distributed without any problem.
  • the liquid side shutoff valve 32 becomes OPEN due to the pressure difference in the reverse direction even when the energization is off. Therefore, even during the airtightness check and vacuuming, when the airtightness check gas is filled from the charge port 7 as shown in FIG. 7, the liquid side shutoff valve 32 is opened due to the pressure difference in the reverse direction. Become. Similarly, in the case of evacuation, the liquid side shutoff valve 32 becomes OPEN due to the reverse pressure difference even when the energization is turned off.
  • the control device 50 turns on only the gas side shutoff valve 31 to OPEN, and the liquid side shutoff valve 32 remains energized off. And. Even when the energization is turned off, the liquid side shutoff valve 32 is opened due to the pressure difference in the reverse direction, so that the same operation as in the first embodiment can be realized.
  • the liquid side shutoff valve 32 is a valve that opens when the power is turned on and becomes a refrigerant when the power is turned off, and is out of a forward direction toward the indoor unit 20 from the liquid side shutoff valve 32 or 32 and the opposite direction.
  • It is a solenoid valve that opens even when the power is turned off for the flow of the refrigerant in the opposite direction.
  • the control device 50 turns off the liquid side shutoff valve 32 in the heating mode. As a result, even if the liquid side shutoff valve 32 is composed of a solenoid valve, chattering can be prevented and the refrigerant can be smoothly passed through, and stable operation can be obtained.
  • the liquid side shutoff valve 32 is OPEN even when the energization is turned off due to the pressure difference acting on the liquid side shutoff valve 32.
  • the liquid side shutoff valve 32 can be configured by using a solenoid valve having such characteristics.
  • charge ports are provided in each of the gas pipe valve 6 and the liquid pipe valve 8.
  • the liquid side shutoff valve 32 is composed of a solenoid valve, airtightness check and vacuuming can be performed. That is, if there is no charge port 7 and only the charge port 9 is filled, the airtightness check gas is filled from the charge port 9, so that a positive pressure difference acts on the liquid side shutoff valve 32, but the liquid side shutoff.
  • the valve 32 is CLOSE with respect to the positive pressure difference as described above. Therefore, the airtightness check gas does not flow before the liquid side shutoff valve 32, and the airtightness check cannot be performed.
  • the airtightness check can be performed even if an electromagnetic valve is used for the liquid side shutoff valve 32. It can be performed. The same applies to vacuuming, and by connecting a vacuum pump to the charge port 9, vacuuming can be performed even if an electromagnetic valve is used for the liquid side shutoff valve 32.
  • the liquid-side shutoff valve 32 does not necessarily have to be turned off during the airtightness check and vacuuming, and may be turned on and turned on and used as OPEN in the same manner as the gas-side shutoff valve 31.
  • the second embodiment is particularly effective in the configuration in which the expansion valve 5 is provided in the outdoor unit 10.
  • the second embodiment can also be applied to a configuration in which the expansion valve 5 is provided in the indoor unit 20.
  • 1 Compressor 2 4-way valve, 3 outdoor heat exchanger, 4 fan, 5 expansion valve, 6 gas pipe valve, 7 charge port, 8 liquid pipe valve, 9 charge port, 10 outdoor unit, 20 indoor unit, 21 indoor heat Exchanger, 22 refrigerant leak sensor, 23 water circuit inlet piping, 24 water circuit outlet piping, 30 shutoff valve box, 31 gas side shutoff valve, 32 liquid side shutoff valve, 40 gas pipe, 41 liquid pipe, 50 control device, 51 Control board, 52 changeover switch, BK power breaker, EP commercial power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

ヒートポンプシステムの室外ユニットは、圧縮機、ガス管バルブおよび液管バルブを有する室外ユニットと、室内ユニットと、ガス管バルブと室内ユニットとを接続するガス管と、液管バルブと室内ユニットとを接続する液管と、ガス管に設けられ、冷媒漏洩時に遮断されるガス側遮断弁と、液管に設けられ、冷媒漏洩時に遮断される液側遮断弁と、を備えた。ヒートポンプシステムはさらに、電源を供給する電源ブレーカをONにする動作を含む特定の動作が行われると、ガス側遮断弁および液側遮断弁をOPENにすると共に、圧縮機に対する動作指示を無効とする据付モードを実行する制御装置を備えた。

Description

ヒートポンプシステムの室外ユニット
 本発明は、冷媒漏洩時に遮断される遮断弁を備えたヒートポンプシステムの室外ユニットに関する。
 従来のヒートポンプシステムの室外ユニットでは、不燃性のR410A冷媒が使用されてきたが、欧州Fガス規制の強化により、温暖化係数がより小さいR32などの燃性冷媒へ移行する必要がある。燃性冷媒をある一定量超えて室外ユニットに封入する場合、居住空間への冷媒漏洩時のリスクを減らすために、冷媒回路を遮断する機構を設ける必要がある。
 冷媒回路を遮断する機構を備えた先行技術として、例えば、特許文献1がある。特許文献1では、室外ユニットと室内ユニットとを接続する液管およびガス管に、液側遮断弁およびガス管側遮断弁を設けた構成を有する。特許文献1では、冷媒漏洩時に液側遮断弁およびガス管側遮断弁を閉止し、室外ユニット側から室内ユニット側への冷媒の流入を防いで、室内ユニットからの冷媒の漏洩を抑えるようにしている。
特開2018-77040号公報
 ところで、ヒートポンプシステムの現地への設置時には、冷媒回路の気密性を確認する気密チェックが行われる。気密チェックの後は、冷媒回路内の空気を真空ポンプを用いて排出する真空引きが行われ、その後、室外ユニット内に予め充填された冷媒が室内ユニットに開放される。
 特許文献1では、液側遮断弁およびガス管側遮断弁を備えているが、これらの遮断弁は、安全上、通電OFF時は閉止される。気密チェックおよび真空引きは、電源ブレーカをOFFにした状態で行われるため、特許文献1において気密チェックおよび真空引きを行うとした場合、液側遮断弁およびガス管側遮断弁は閉止状態となる。
 気密チェックの際には、室外ユニットに設けたチャージポートから気密チェック用ガスを冷媒回路内に封入して気密チェックが行われる。このため、液側遮断弁およびガス管側遮断弁が閉止していると、気密チェック用ガスが室内ユニットに流入せず、気密チェックを適切に完了できないという問題がある。また、真空引きの際には、室外ユニットに設けたチャージポートに真空ポンプが接続されるため、液側遮断弁およびガス管側遮断弁が閉止していると、室内ユニット側の真空が引けず、真空引きを適切に完了できないという問題がある。
 これらの問題を解決するには、電源ブレーカをONにし、液側遮断弁およびガス管側遮断弁に通電して開放した状態で気密チェックおよび真空引きを実施すればよいが、この場合、以下の問題が生じる。電源ブレーカをONにすると、室外ユニットがリモコン操作を受け付け可能な状態となる。このため、リモコンから例えば暖房モードなどの運転開始が指示されると、冷媒回路にはまだ冷媒が充填されていないにもかかわらず、圧縮機が動作を開始してしまい、圧縮機内に空気が混入して破損する可能性がある。
 本発明はこのような点を鑑みなされたもので、冷媒漏洩時に閉止する液側遮断弁およびガス管側遮断弁を備えた構成としつつ、気密チェックおよび真空引きの際に圧縮機内への空気の混入を防ぐことが可能なヒートポンプシステムの室外ユニットを提供することを目的とする。
 本発明に係るヒートポンプシステムの室外ユニットは、圧縮機、ガス管バルブおよび液管バルブを有する室外ユニットと、室内ユニットと、ガス管バルブと室内ユニットとを接続するガス管と、液管バルブと室内ユニットとを接続する液管と、ガス管に設けられ、冷媒漏洩時に遮断されるガス側遮断弁と、液管に設けられ、冷媒漏洩時に遮断される液側遮断弁と、を備えたヒートポンプシステムの室外ユニットであって、ヒートポンプシステムに電源を供給する電源ブレーカをONにする動作を含む特定の動作が行われると、ガス側遮断弁および液側遮断弁をOPENにすると共に、圧縮機に対する動作指示を無効とする据付モードを実行する制御装置を備えたものである。
 本発明によれば、冷媒漏洩時に閉止する液側遮断弁およびガス管側遮断弁を備えており、電源ブレーカBKをONにする動作を含む特定の動作が行われると、据付モードが実行される。据付モードは、ガス側遮断弁および液側遮断弁をOPENにすると共に、圧縮機に対する動作指示を無効とするモードである。これにより、冷媒漏洩時に閉止する液側遮断弁およびガス管側遮断弁を備えた構成としつつ、気密チェックおよび真空引きの際に据付モードが実行されることで、圧縮機内への空気の混入を防ぐことが可能である。
実施の形態1に係るヒートポンプシステムの構成を示す図である。 図1の室外ユニットおよび遮断箱を側方から見た概略斜視図である。 実施の形態1に係るヒートポンプシステムにおける暖房動作時の動作説明図である。 実施の形態1に係るヒートポンプシステムにおける冷房動作時の動作説明図である。 実施の形態1に係るヒートポンプシステムにおける冷媒漏洩時の動作説明図である。 実施の形態1に係るヒートポンプシステムにおける冷媒漏洩時の処理の流れを示すフローチャートである。 実施の形態1に係るヒートポンプシステムにおける気密チェック時の動作説明図である。 実施の形態1に係るヒートポンプシステムにおける気密チェック時の処理の流れを示すフローチャートである。 実施の形態1に係るヒートポンプシステムにおける真空引き時の動作説明図である。 実施の形態2に係るヒートポンプシステムにおける運転モードごとの遮断弁の通電制御をまとめた表を示す図である。
 以下に実施の形態を添付図面に基づいて説明する。
実施の形態1.
 図1は、実施の形態1に係るヒートポンプシステムの構成を示す図である。図2は、図1の室外ユニットおよび遮断箱を側方から見た概略斜視図である。図2において左側が正面側、右側が背面側である。
 ヒートポンプシステムは、室外ユニット10と、室内ユニット20と、遮断弁箱30とを備えている。室外ユニット10と、室内ユニット20と、遮断弁箱30とには、商用電源EPから電源ブレーカBKを介して電源が供給される。
 室外ユニット10は、圧縮機1と、四方弁2と、室外熱交換器3と、ファン4と、膨張弁5と、ガス管バルブ6と、液管バルブ8とを有する。ガス管バルブ6および液管バルブ8は、後述のガス管40および液管41を開閉するバルブである。ガス管バルブ6には、チャージポート7が設けられている。また、液管バルブ8には、チャージポート9が設けられている。
 室内ユニット20は、室内熱交換器21と、冷媒漏洩を検知する冷媒漏洩センサ22とを備えている。室内熱交換器21は、プレート式熱交換器で構成されている。プレート式熱交換器には、水回路入口配管23と水回路出口配管24とが接続されて水回路が形成されている。なお、室内熱交換器21は、プレート式熱交換器に限るものではなく、フィンチューブ熱交換器などでもよい。
 室外ユニット10と室内ユニット20とはガス管40と液管41とで接続されている。具体的には、室外ユニット10のガス管バルブ6と室内ユニット20の室内熱交換器21とがガス管40で接続され、室外ユニット10の液管バルブ8と室内ユニット20の室内熱交換器21とが液管41で接続されている。
 遮断弁箱30は、ガス管40に設けられ、冷媒漏洩時に遮断されるガス側遮断弁31と、液管41に設けられ、冷媒漏洩時に遮断される液側遮断弁32とを備えている。遮断弁箱30は、図2に示すように、例えば室外ユニット10の背面側に配置されている。ガス側遮断弁31および液側遮断弁32はどちらも、安全上、通電停止(以下、通電OFFという)でCLOSE、通電実施(以下、通電ONという)でOPENとなる。これは、システム停止時には常に、居住空間への冷媒漏洩を防ぐことが可能な状態にする必要があるためである。ガス側遮断弁31および液側遮断弁32は、例えば電動膨張弁で構成されている。
 ヒートポンプシステムは、圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁5と、室内熱交換器21とが接続配管で接続されて冷媒回路を構成している。
 ヒートポンプシステムはさらに、ヒートポンプシステム全体を制御する制御装置50を備えている。制御装置50は、図2に示すように室外ユニット10内に設けられている。制御装置50は、例えば、マイクロプロセッサユニットなどで構成される。なお、制御装置50の構成については、これに限定するものではない。例えば、制御装置50は、ファームウェアなどの更新可能なもので構成されていてもよい。また、制御装置50は、プログラムモジュールであって、図示しないCPUなどからの指令により、実行されるものでもよい。
 制御装置50は、圧縮機1、四方弁2、ファン4、ガス管バルブ6および液管バルブ8の制御を行う。また、制御装置50は、冷媒漏洩センサ22からの漏洩信号に基づいてガス側遮断弁31および液側遮断弁32の制御を行う。また、制御装置50は、四方弁2の切り替えにより、通常運転としての暖房モードおよび冷房モードの運転を行う。
 また、制御装置50は、ガス側遮断弁31および液側遮断弁32をOPENにすると共に、圧縮機1に対する動作指示を無効とする据付モードを有する。圧縮機1に対する動作指示とは、例えば、リモコン(図示せず)を用いた暖房モードまたは冷房モードの運転開始指示、または、強制的に圧縮機1を動作させる動作指示などである。つまり、据付モード中は、リモコンから例えば運転開始が指示されたとしても、圧縮機1は停止状態を維持する。据付モードは、ヒートポンプシステムを現地へ据え付ける際に行われる、気密チェックおよび真空引きを実施する際にユーザにより設定されるモードである。
 制御装置50は、制御基板51を備えている。制御基板51には、据付モードの設定および解除を切り替える切替スイッチ52が搭載されている。制御装置50は、切替スイッチ52がONとなっている状態で、ユーザにより電源ブレーカBKがONされると、据付モードを開始する。据付モードを開始させるトリガーとしての動作は、この動作に限られたものではなく、要するに少なくとも電源ブレーカBKをONにする動作を含む特定の動作であればよい。
<ヒートポンプシステムの基本動作>
 以下、冷媒回路に冷媒が充填された状態でのヒートポンプシステムの基本動作について説明する。この状態では、電源ブレーカBKがON、ヒートポンプシステムの電源がONの状態であり、ガス管バルブ6、液管バルブ8、ガス側遮断弁31および液側遮断弁32は、いずれもOPENとなっている。
(暖房モード)
 図3は、実施の形態1に係るヒートポンプシステムにおける暖房動作時の動作説明図である。図3において矢印は、冷媒の流れを示している。
 制御装置50は、ユーザによってリモコンから暖房モードが指示されたことを認識すると、四方弁2を実線側に切り替えると共に、圧縮機1を駆動させる。
 圧縮機1が駆動すると、圧縮機1から高温高圧のガス冷媒が吐出される。圧縮機1から吐出されたガス冷媒は、四方弁2、ガス管バルブ6およびガス側遮断弁31を通り室内熱交換器21に流入する。室内熱交換器21に流入した冷媒は、室内熱交換器21の水回路を流れる水と熱交換し、放熱することにより液化する。液化した冷媒は、液側遮断弁32および液管バルブ8を通った後、適切な開度に制御された膨張弁5で減圧されて気液二相状態となり、室外熱交換器3に流入する。室外熱交換器3に流入した冷媒は、ファン4で搬送される室外空気と熱交換し、吸熱することによりガス化し、圧縮機1へ戻される。以上のように冷媒が冷媒回路を循環することにより暖房モードを行う。
 ところで、液側遮断弁32は、OPEN時の口径が小さく、冷媒通過時に絞りが発生する。このため、制御装置50は、膨張弁5の制御に際し、液側遮断弁32に冷媒が通過する際の絞りの分、膨張弁5の開度を大きくする制御を行う。これにより、冷媒回路の制御を安定させることが可能となる。この制御は、後述の冷房モードでも同様である。なお、液側遮断弁32が、OPEN時の冷媒通過の際に絞りが発生しない弁である場合は、この制御は不要である。
(冷房モード)
 図4は、実施の形態1に係るヒートポンプシステムにおける冷房動作時の動作説明図である。図4において矢印は、冷媒の流れを示している。
 制御装置50は、ユーザによってリモコンから冷房モードが指示されたことを認識すると、四方弁2を点線側に切り替えると共に、圧縮機1を駆動させる。
 圧縮機1が駆動すると、圧縮機1から高温高圧のガス冷媒が吐出される。圧縮機1で圧縮されたガス冷媒は、四方弁2を通り室外熱交換器3に流入する。室外熱交換器3に流入した冷媒は、ファン4で搬送される室外空気と熱交換し、放熱することにより液化する。液化した冷媒は、適切な開度に調整された膨張弁5で減圧されて気液二相状態となり、液管バルブ8および液側遮断弁32を通った後、室内熱交換器21に流入する。室内熱交換器21に流入した冷媒は、室内熱交換器21の水回路を流れる水と熱交換し、吸熱することによりガス化する。ガス化した冷媒は、ガス側遮断弁31およびガス管バルブ6を通った後、圧縮機1へ戻される。以上のように冷媒が冷媒回路を循環することにより冷房モードを行う。
(冷媒漏洩時)
 図5は、実施の形態1に係るヒートポンプシステムにおける冷媒漏洩時の動作説明図である。図5において矢印は、冷媒の流れを示している。図6は、実施の形態1に係るヒートポンプシステムにおける冷媒漏洩時の処理の流れを示すフローチャートである。冷媒漏洩前の状態では、電源ブレーカBKがON、ヒートポンプシステムの電源がONの状態であり、ガス管バルブ6、液管バルブ8、ガス側遮断弁31および液側遮断弁32は、いずれもOPENとなっている。
 室内熱交換器21を通過する水の凍結などによる破壊が発生し、破壊箇所から冷媒漏洩が発生した際、室内ユニット20に搭載された冷媒漏洩センサ22が漏洩を検知し、冷媒漏洩信号が室外ユニット10の制御装置50へ送られる。制御装置50は、冷媒漏洩信号を受信する(ステップS1-1)と、圧縮機1を停止させると同時に、ガス側遮断弁31および液側遮断弁32をCLOSEする(ステップS1-2)。これにより、冷媒が室外ユニット10内に封止され、室内ユニット20側への冷媒流出を防ぎ、居住空間への冷媒漏洩量を極力低減できる。
 以上により、ヒートポンプシステムの基本動作が明かになったところで、本実施の形態1の特徴について説明する。
<ヒートポンプシステムの動作および特徴>
 本実施の形態1は、気密チェックおよび真空引きを行う際の動作に特徴がある。
(気密チェック)
 図7は、実施の形態1に係るヒートポンプシステムにおける気密チェック時の動作説明図である。図7において矢印は、気密チェック用ガスの流れを示している。図8は、実施の形態1に係るヒートポンプシステムにおける気密チェック時の処理の流れを示すフローチャートである。
 現地にてヒートポンプシステムの据え付けが完了した状態では、ガス管バルブ6、液管バルブ8、ガス側遮断弁31および液側遮断弁32はいずれもCLOSEとなっている。そして、気密チェックを開始する際、ユーザは、据付モードの開始を指示する。つまり、切替スイッチ52をONにした状態で電源ブレーカBKをONにする動作を行う。
 制御装置50は、切替スイッチ52をONにした状態で電源ブレーカBKをONにする動作が行われたことを認識すると(ステップS2-1)、据付モードを開始する。すなわち、制御装置50は、ガス側遮断弁31および液側遮断弁32をOPENにすると共に、据付モード中の圧縮機1に対する動作指示を無効にする(ステップS2-2)。電源ブレーカBKがONにされることで、ヒートポンプシステムに電源が供給され、圧縮機1は運転可能な状態となる。しかし、据付モード中であれば、制御装置50は、圧縮機1に対する動作指示を無効とするため、据付モード中にリモコンから誤って運転開始が指示されたとしても、圧縮機1は停止状態を維持する。これにより、気密チェック時に圧縮機1が動作して圧縮機1内に空気が混入する不都合を防止できる。
 ガス側遮断弁31および液側遮断弁32がOPENとなることで、冷媒回路の室内ユニット20側には、ガス管バルブ6、ガス側遮断弁31、室内熱交換器21、液側遮断弁32および液管バルブ8の閉回路が形成される。
 ユーザは、ガス管バルブ6のチャージポート7より気密チェック用ガスを封入する。封入された気密チェック用ガスは、閉回路内に行き渡り、気密チェックが行われる。気密チェック完了後、ユーザは、据付モードを解除するため、切替スイッチ52および電源ブレーカBKをOFFにする。
 制御装置50は、切替スイッチ52および電源ブレーカBKをOFFされたことを認識すると(ステップS2-3)、据付モードを解除する。すなわち、制御装置50は、ガス側遮断弁31および液側遮断弁32をCLOSEに戻す(ステップS2-4)。なお、ここでは、ガス管バルブ6のチャージポート7より気密チェック用ガスを封入するとしたが、液管バルブ8のチャージポート9より気密チェック用ガスを封入し、気密チェック用ガスを逆方向から閉回路に行き渡らせるようにしてもよい。
(真空引き)
 図9は、実施の形態1に係るヒートポンプシステムにおける真空引き時の動作説明図である。図9において矢印は、真空引き時の配管内の空気の流れを示している。真空引き時の処理の流れを示すフローチャートは図8と同様であり、以下の説明におけるステップ番号は図8を参照されたい。
 気密チェックが完了し、閉回路内から気密チェック用ガスの排出が行われた後、真空引きが行われる。気密チェック完了後、上述したように切替スイッチ52および電源ブレーカBKはOFFとなっている。このため、ユーザは、真空引きを行う際、改めて切替スイッチ52をONした状態で、電源ブレーカBKをONにする。また、ユーザは、液管バルブ8のチャージポート9に真空ポンプ(図示せず)を接続する。
 制御装置50は、切替スイッチ52をONにした状態で電源ブレーカBKをONにする動作が行われたことを認識すると(ステップS2-1)、据付モードを開始する。すなわち、制御装置50は、ガス側遮断弁31および液側遮断弁32をOPENにすると共に、据付モード中の圧縮機1に対する動作指示を無効にする(ステップS2-2)。電源ブレーカBKがONにされることで、ヒートポンプシステムに電源が供給され、圧縮機1は運転可能な状態となる。しかし、据付モード中であれば、制御装置50は、圧縮機1に対する動作指示を無効とするため、据付モード中にリモコンから誤って運転開始が指示されたとしても、圧縮機1は停止状態を維持する。これにより、気密チェック時に圧縮機1が動作して圧縮機1内に空気が混入する不都合を防止できる。
 ガス側遮断弁31および液側遮断弁32がOPENとなることで、冷媒回路の室内ユニット20側には、ガス管バルブ6、ガス側遮断弁31、室内熱交換器21、液側遮断弁32および液管バルブ8の閉回路が形成される。
 そして、真空ポンプが作動することで、液管バルブ8のチャージポート9から閉回路内の空気が抜かれ、閉回路内が真空状態となり、真空引きが完了する。真空引き完了後、ユーザは、据付モードを解除するため、切替スイッチ52および電源ブレーカBKをOFFする。制御装置50は、切替スイッチ52および電源ブレーカBKをOFFされたことを認識すると(ステップS2-3)、据付モードを解除する。すなわち、制御装置50は、ガス側遮断弁31および液側遮断弁32をCLOSEに戻す(ステップS2-4)。なお、ここでは、液管バルブ8のチャージポート9に真空ポンプを接続するとしたが、ガス管バルブ6のチャージポート7に真空ポンプを接続してもよい。
 以上説明したように、実施の形態1は、「圧縮機1、ガス管バルブ6および液管バルブ8を有する室外ユニット10」と、「室内ユニット20」と、「ガス管バルブ6と室内ユニット20とを接続するガス管40」と、「液管バルブ8と室内ユニット20とを接続する液管41」とを備える。実施の形態1は、さらに、「ガス管40に設けられ、冷媒漏洩時に遮断されるガス側遮断弁31」と、「液管41に設けられ、冷媒漏洩時に遮断される液側遮断弁32」とを備える。実施の形態1は、ヒートポンプシステムに電源を供給する電源ブレーカBKをONにする動作を含む特定の動作が行われると、ガス側遮断弁31および液側遮断弁32をOPENにすると共に、圧縮機1に対する動作指示を無効とする据付モードを実行する制御装置50を備えた。
 これにより、ヒートポンプシステムの据付時に据付モードが実行されると、ガス側遮断弁31および液側遮断弁32がOPENとなる。このため、冷媒漏洩時に閉止する液側遮断弁32およびガス管側遮断弁を備えた構成としつつ、気密チェックおよび真空引きを実施可能となる。また、据付モードが実行されると、圧縮機1に対する動作指示が無効とされるため、リモコンから誤って圧縮機1に対する動作指示がされたとしても、その動作指示は無効とされ、圧縮機1は停止を維持する。したがって、圧縮機1への空気の混入を防ぐことができる。
 実施の形態1において、特定の動作は、制御装置50に設けられた切替スイッチ52をONにした状態で電源ブレーカBKをONにする動作である。このような動作を行うことで、据付モードを開始させることができる。
 実施の形態1では、ガス管バルブ6および液管バルブ8のそれぞれにはチャージポートが設けられている。これにより、ガス管40側および液管41側のどちら側からでも気密チェックおよび真空チェックを行える。
実施の形態2.
 実施の形態1では、ガス側遮断弁31および液側遮断弁32に電動膨張弁を用いるとしたが、実施の形態2では、ガス側遮断弁31および液側遮断弁32に電磁弁を用いた点が実施の形態1と異なる。電動膨張弁は、遮断弁から室内ユニット20に向かう「正方向」とその反対の「逆方向」との双方向で、冷媒が問題なく流れる。しかし、遮断弁のうち、特に液冷媒が流れる液側遮断弁32を電磁弁で構成した場合、ある方向に液冷媒が流れた際に冷媒脈動が弁へ伝わり、弁振動によるチャタリング現象を引き起こす可能性がある。このように電磁弁は、使用方法によってチャタリングが生じる不都合があるものの、双方向で使用可能な電動膨張弁に比べて安価であるため、ガス側遮断弁31および液側遮断弁32の両方に電磁弁を用いることが求められている。
 以上の点を踏まえ、本実施の形態2では、電磁弁を用いてガス側遮断弁31および液側遮断弁32を構成しつつも、チャタリングを防止することが可能な形態について説明する。
 実施の形態2は、ガス側遮断弁31および液側遮断弁32を電磁弁で構成したことと、液側遮断弁32の通電制御が実施の形態1と異なっており、それ以外のヒートポンプシステムの構成などは実施の形態1と同様である。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。
 ここで、電磁弁は、通電ONでOPENとなり、通電OFFでCLOSEとなる弁であるが、通電OFFでも、電磁弁に逆方向圧力差が作用する場合にはOPENとなり、正方向圧力差に対してはCLOSEとなる特性を有する弁である。逆方向圧力差とは、液側遮断弁32の室内ユニット20側のポートに作用する圧力が、液側遮断弁32の室外ユニット10側のポートに作用する圧力よりも高い場合の圧力差である。なお、正方向圧力差とは、液側遮断弁32の室外ユニット10側のポートに作用する圧力が、液側遮断弁32の室内ユニット20側のポートに作用する圧力よりも高い場合の圧力差である。本実施の形態2は、このような特性を有する電磁弁を用いてガス側遮断弁31および液側遮断弁32を構成している。
(冷房モードおよび暖房モード)
 図10は、実施の形態2に係るヒートポンプシステムにおける運転モードごとの遮断弁の通電制御をまとめた表を示す図である。図10において、ドットで示した部分は、対応の運転モードでの遮断弁の状態を示している。
 図10に示すように、ガス側遮断弁31は、暖房モード時および冷房モード時に、通電ONにしてOPENとされる。液側遮断弁32は、冷房モード時には、通電ONにしてOPENとされる。しかし、液側遮断弁32は、暖房モード時には、通電ONとすると、逆方向に流れる冷媒に対してチャタリングが生じることから、通電OFFとされる。
 液側遮断弁32は、通電OFFでCLOSEとなるが、暖房モード時には液側遮断弁32に対して逆方向から液冷媒による圧力が加わることで、逆方向圧力差が作用する。このため、暖房モード時には、液側遮断弁32は通電OFFでもOPENとなる。この逆方向圧力差によるOPEN時にはチャタリングは生じない。よって、暖房モード時には、液側遮断弁32を通電OFFとし、逆方向圧力差によるOPENにして液冷媒を逆方向に流すことで、液側遮断弁32に電磁弁を用いても、チャタリングを生じることなく冷媒をスムーズに流通させることができる。
 ここで、液側遮断弁32を暖房モードの際に通電ONすると、上述したように逆方向に流れる液冷媒に対してチャタリングが生じるが、正方向に流れる液冷媒に対してはチャタリングは生じない。よって、液側遮断弁32の取付方向を逆向きにすれば、逆方向の流れに対してチャタリングが生じないという考えに至る。しかし、液側遮断弁32を逆向きに取り付けた場合、通電OFF時に冷媒漏洩した際に、圧力差で液側遮断弁32が開いて室内ユニット20から室外ユニット10へ冷媒が流れてしまう。したがって、液側遮断弁32を逆向きに取り付けて用いることはできない。故に、暖房モードの際に液側遮断弁32を通電ONにすることはできず、通電OFFにしている。
(気密チェックおよび真空チェック)
 液側遮断弁32は、上述したように通電OFFであっても逆方向圧力差によってOPENとなる。このため、気密チェックおよび真空引きの際にも、図7に示したようにチャージポート7から気密チェック用ガスが封入された場合には、液側遮断弁32は、逆方向圧力差によってOPENとなる。真空引きの場合も同様に、液側遮断弁32は、通電OFFでも逆方向圧力差によってOPENとなる。したがって、液側遮断弁32を電磁弁で構成する場合には、据付モードにおいて、制御装置50は、ガス側遮断弁31のみを通電ONにしてOPENにし、液側遮断弁32は通電OFFのままとする。通電OFFにしても、液側遮断弁32は、逆方向圧力差によってOPENとなるため、実施の形態1と同様の動作を実現できる。
 実施の形態2によれば、実施の形態1と同様の効果が得られると共に、以下の効果が得られる。液側遮断弁32は、通電ONでOPEN、通電OFFでCLOSEとなる弁であって、且つ、液側遮断弁32か32ら室内ユニット20に向かう正方向と、その反対の逆方向とのうち、逆方向の冷媒の流れに対しては、通電OFFでもOPENとなる電磁弁である。制御装置50は、液側遮断弁32を、暖房モードにおいて通電OFFとする。これにより、液側遮断弁32を電磁弁で構成しても、チャタリングを防止してスムーズに冷媒を通すことができ、安定した動作を得ることができる。
 実施の形態2において、液側遮断弁32は、液側遮断弁32に作用する圧力差により通電OFFでもOPENとなる。このような特性を有する電磁弁を用いて液側遮断弁32を構成できる。
 実施の形態2では、ガス管バルブ6および液管バルブ8のそれぞれにチャージポートが設けられている。これにより、液側遮断弁32が電磁弁で構成されている場合でも、気密チェックおよび真空引きが実施可能となる。つまり、仮にチャージポート7が無く、チャージポート9だけの場合、チャージポート9から気密チェック用ガスが封入されることで、液側遮断弁32には正方向圧力差が作用するが、液側遮断弁32は、上述したように正方向圧力差に対してはCLOSEとなる。よって、気密チェック用ガスが液側遮断弁32より先に流れず、気密チェックを行えない。
 しかし、ガス管バルブ6および液管バルブ8のそれぞれにチャージポートが設けられ、チャージポート7から気密チェック用ガスが封入されることで、液側遮断弁32に電磁弁を用いても、気密チェックを行うことができる。真空引きにおいても同様であり、チャージポート9に真空ポンプが接続されることで、液側遮断弁32に電磁弁を用いても、真空引きを行うことができる。
 なお、気密チェックおよび真空引きの際は、液側遮断弁32に流れる流体は暖房モードの場合のように液冷媒ではない。このため、液側遮断弁32は、気密チェックおよび真空引きの際に必ずしも通電OFFとされる必要はなく、ガス側遮断弁31と同様に通電ONにし、OPENにして用いても良い。
 ところで、実施の形態2のヒートポンプシステムでは、膨張弁5が室外ユニット10に設けられているため、暖房モード時に液側遮断弁32に液冷媒が流れる。このため、チャタリングを考慮する必要が生じている。しかし、膨張弁5が室内ユニット20に設けられていれば、暖房モードおよび冷房モードのいずれの場合にも、液側遮断弁32には二相冷媒またはガス冷媒が流れることから、チャタリングは生じない。よって、実施の形態2は、膨張弁5が室外ユニット10に設けられている構成において特に効果的である。ただし、実施の形態2は、膨張弁5が室内ユニット20に設けられている構成にも適用できる。
 1 圧縮機、2 四方弁、3 室外熱交換器、4 ファン、5 膨張弁、6 ガス管バルブ、7 チャージポート、8 液管バルブ、9 チャージポート、10 室外ユニット、20 室内ユニット、21 室内熱交換器、22 冷媒漏洩センサ、23 水回路入口配管、24 水回路出口配管、30 遮断弁箱、31 ガス側遮断弁、32 液側遮断弁、40 ガス管、41 液管、50 制御装置、51 制御基板、52 切替スイッチ、BK 電源ブレーカ、EP 商用電源。

Claims (6)

  1.  圧縮機、ガス管バルブおよび液管バルブを有する室外ユニットと、室内ユニットと、前記ガス管バルブと前記室内ユニットとを接続するガス管と、前記液管バルブと前記室内ユニットとを接続する液管と、前記ガス管に設けられ、冷媒漏洩時に遮断されるガス側遮断弁と、前記液管に設けられ、冷媒漏洩時に遮断される液側遮断弁と、を備えたヒートポンプシステムの室外ユニットであって、
     前記ヒートポンプシステムに電源を供給する電源ブレーカをONにする動作を含む特定の動作が行われると、前記ガス側遮断弁および前記液側遮断弁をOPENにすると共に、前記圧縮機に対する動作指示を無効とする据付モードを実行する制御装置を備えたヒートポンプシステムの室外ユニット。
  2.  前記特定の動作は、前記制御装置に設けられた切替スイッチをONにした状態で前記電源ブレーカをONにする動作である請求項1記載のヒートポンプシステムの室外ユニット。
  3.  前記ガス管バルブおよび前記液管バルブのそれぞれにはチャージポートが設けられている請求項1または請求項2記載のヒートポンプシステムの室外ユニット。
  4.  前記液側遮断弁は、通電ONでOPEN、通電OFFでCLOSEとなる弁であって、且つ、前記液側遮断弁から前記室内ユニットに向かう正方向と、その反対の逆方向とのうち、前記逆方向の冷媒の流れに対しては、通電OFFでもOPENとなる電磁弁であり、
     前記制御装置は、前記液側遮断弁を、暖房モードにおいて通電OFFとする請求項1~請求項3のいずれか一項に記載のヒートポンプシステムの室外ユニット。
  5.  前記液側遮断弁は、前記液側遮断弁に作用する圧力差により通電OFFでもOPENとなる請求項4記載のヒートポンプシステムの室外ユニット。
  6.  膨張弁を備え、
     前記制御装置は、前記膨張弁を制御する際、前記液側遮断弁に冷媒が通過する際の前記液側遮断弁の絞りの分、前記膨張弁の開度を大きくする制御を行う請求項1~請求項5のいずれか一項に記載のヒートポンプシステムの室外ユニット。
PCT/JP2019/015132 2019-04-05 2019-04-05 ヒートポンプシステムの室外ユニット WO2020202548A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/015132 WO2020202548A1 (ja) 2019-04-05 2019-04-05 ヒートポンプシステムの室外ユニット
JP2021511050A JP7204892B2 (ja) 2019-04-05 2019-04-05 ヒートポンプシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/015132 WO2020202548A1 (ja) 2019-04-05 2019-04-05 ヒートポンプシステムの室外ユニット

Publications (1)

Publication Number Publication Date
WO2020202548A1 true WO2020202548A1 (ja) 2020-10-08

Family

ID=72667286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015132 WO2020202548A1 (ja) 2019-04-05 2019-04-05 ヒートポンプシステムの室外ユニット

Country Status (2)

Country Link
JP (1) JP7204892B2 (ja)
WO (1) WO2020202548A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127345A1 (ja) * 2021-12-28 2023-07-06 三菱重工サーマルシステムズ株式会社 遮断ユニット及びこれを備えた空気調和装置並びに真空引き方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293967A (ja) * 1994-04-26 1995-11-10 Sanyo Electric Co Ltd 空気調和機の試運転チェック装置
JP2003222369A (ja) * 2002-01-29 2003-08-08 Mitsubishi Heavy Ind Ltd 空気調和装置
US20030213254A1 (en) * 2002-05-17 2003-11-20 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
JP2011247491A (ja) * 2010-05-27 2011-12-08 Fujitsu General Ltd 空気調和機
JP2013113456A (ja) * 2011-11-25 2013-06-10 Mitsubishi Heavy Ind Ltd マルチ型空気調和システムの油回収方法
WO2017187562A1 (ja) * 2016-04-27 2017-11-02 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11159924A (ja) * 1997-11-28 1999-06-15 Matsushita Electric Ind Co Ltd 空気調和機の配管接続方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293967A (ja) * 1994-04-26 1995-11-10 Sanyo Electric Co Ltd 空気調和機の試運転チェック装置
JP2003222369A (ja) * 2002-01-29 2003-08-08 Mitsubishi Heavy Ind Ltd 空気調和装置
US20030213254A1 (en) * 2002-05-17 2003-11-20 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
JP2011247491A (ja) * 2010-05-27 2011-12-08 Fujitsu General Ltd 空気調和機
JP2013113456A (ja) * 2011-11-25 2013-06-10 Mitsubishi Heavy Ind Ltd マルチ型空気調和システムの油回収方法
WO2017187562A1 (ja) * 2016-04-27 2017-11-02 三菱電機株式会社 冷凍サイクル装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127345A1 (ja) * 2021-12-28 2023-07-06 三菱重工サーマルシステムズ株式会社 遮断ユニット及びこれを備えた空気調和装置並びに真空引き方法

Also Published As

Publication number Publication date
JP7204892B2 (ja) 2023-01-16
JPWO2020202548A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
US11118821B2 (en) Refrigeration cycle apparatus
JP3109500B2 (ja) 冷凍装置
US8156752B2 (en) Air conditioning system
JP4797727B2 (ja) 冷凍装置
US11879650B2 (en) Air conditioning system
JP2010007998A (ja) 空気調和機の室内ユニットおよびそれを備えた空気調和機
WO2018116404A1 (ja) ヒートポンプ利用機器
WO2020202548A1 (ja) ヒートポンプシステムの室外ユニット
JP2009264715A (ja) ヒートポンプ温水システム
CN111868455B (zh) 热水供给装置
JP2000097527A (ja) 空気調和機およびその制御方法
EP3693670B1 (en) Heat pump system
JP5827210B2 (ja) ヒートポンプシステム
WO2021044548A1 (ja) 圧縮機ユニット及び冷凍装置
EP4184083A1 (en) Heat pump and control method therefor
JP2003222393A (ja) 給湯装置
JP7448775B2 (ja) 冷凍サイクル装置
JP7211913B2 (ja) ヒートポンプ装置
JP2001330313A (ja) 複合給湯機
JP2022106400A (ja) 遮断弁キット、空気調和装置および室内機
JP4450576B2 (ja) 温水暖房付エアコンの室外機
JPH11270933A (ja) 非共沸混合冷媒の充填方法、冷凍装置及び空気調和装置
WO2018158860A1 (ja) ヒートポンプ利用機器
JP2020056513A (ja) 冷房排熱貯湯装置
WO2017195294A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922381

Country of ref document: EP

Kind code of ref document: A1