WO2020202271A1 - オゾン供給装置およびオゾン供給方法 - Google Patents

オゾン供給装置およびオゾン供給方法 Download PDF

Info

Publication number
WO2020202271A1
WO2020202271A1 PCT/JP2019/014057 JP2019014057W WO2020202271A1 WO 2020202271 A1 WO2020202271 A1 WO 2020202271A1 JP 2019014057 W JP2019014057 W JP 2019014057W WO 2020202271 A1 WO2020202271 A1 WO 2020202271A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
ozone
desorption tower
gas circuit
circuit
Prior art date
Application number
PCT/JP2019/014057
Other languages
English (en)
French (fr)
Inventor
洋航 松浦
昇 和田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/014057 priority Critical patent/WO2020202271A1/ja
Priority to CN201980094536.5A priority patent/CN113614031A/zh
Priority to SG11202108536UA priority patent/SG11202108536UA/en
Priority to JP2019546936A priority patent/JP6667730B1/ja
Priority to EP19922375.1A priority patent/EP3950580A4/en
Publication of WO2020202271A1 publication Critical patent/WO2020202271A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/106Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption

Definitions

  • This application relates to an ozone supply device and an ozone supply method.
  • Ozone is used as a powerful oxidant in a wide range of fields such as water environment purification and semiconductor cleaning.
  • the upper limit of the ozone concentration of the ozone generator that generates ozone is a volume fraction of about 20%. Therefore, it is possible to obtain a high concentration of ozone by adsorbing, concentrating, and desorbing the mixed gas (oxygen and ozone) generated by the ozone generator using an adsorption / desorption tower filled with an adsorbent. It is done.
  • the ozone supply device it is desired to control the amount of ozone supplied to the ozone supply target.
  • the ozone utilization side for example, in wastewater treatment, the inflow amount and water quality of the inflowing wastewater generally change from moment to moment. Therefore, the optimum amount of ozone required for wastewater treatment changes from moment to moment. Therefore, when a certain amount of ozone is supplied, a state may occur in which the ozone supply amount is excessive or too small with respect to the wastewater treatment amount. If the ozone supply is excessive, it is uneconomical, and if the ozone supply is too small, the treatment may be insufficient. Therefore, in the ozone supply device, it is required to control the supply amount according to the fluctuation of the demand for ozone.
  • Patent Document 1 A technique has been proposed (Patent Document 1) that makes it possible to use ozone that is discarded during adsorption by adsorbing and recovering ozone leaked from the adsorption / desorption tower when adsorbing and storing ozone in another adsorption / desorption tower. ..
  • the present application discloses a technique for solving the above-mentioned problems, and an object of the present application is to provide an ozone supply device and an ozone supply method that realize an improvement in ozone utilization rate.
  • the ozone supply device disclosed in the present application is an ozone supply device that concentrates and supplies ozone gas by a first adsorption / desorption tower and a second adsorption / desorption tower containing an adsorbent, and is discharged from the first adsorption / desorption tower. Unlike the exhaust gas circuit that discharges the gas to the outside of the device, the gas discharged from the first suction / desorption tower is passed through the second suction / desorption tower and then discharged to the outside of the device for adsorption recovery.
  • the gas circuit the circuit switch for switching the flow paths of the exhaust gas circuit and the adsorption / recovery gas circuit, and the circuit switching according to the state of the first suction / desorption tower and the state of the second suction / desorption tower. It is equipped with a control unit that controls the opening and closing of the vessel.
  • ozone gas of the first suction / desorption tower is exhausted or passed through the second suction / desorption tower according to the result of comparing the state of the first suction / desorption tower with the state of the second suction / desorption tower. Since it is controlled by selecting, it is possible to suppress the leakage of high-concentration ozone gas generated in the adsorption process of the first adsorption / desorption tower and remaining in the supply process, and the ozone utilization rate is improved. Can be realized.
  • FIG. 5 is a gas circuit diagram showing a path for discharging gas from the first suction / desorption tower to the outside of the device in the first adsorption step of the ozone supply device of the first embodiment.
  • FIG. 5 is a gas circuit diagram showing a path for passing gas discharged from a first adsorption / desorption tower in a first adsorption step of the ozone supply device of the first embodiment through a second adsorption / desorption tower and then discharging the gas to the outside of the device.
  • FIG. 5 is a gas circuit diagram showing a path for supplying gas from a first suction / desorption tower to a supply target in the first supply step of the ozone supply device of the first embodiment.
  • FIG. 5 is a gas circuit diagram showing a path for discharging gas discharged from the first suction / desorption tower to the outside of the device in the second adsorption step of the ozone supply device of the first embodiment.
  • FIG. 5 is a gas circuit diagram showing a path for passing gas discharged from a first adsorption / desorption tower in the second adsorption step of the ozone supply device of the first embodiment through the second adsorption / desorption tower and then discharging the gas to the outside of the device.
  • FIG. 5 is a gas circuit diagram showing a path for supplying gas from a first suction / desorption tower to a supply target in the first supply step of the ozone supply device of the first embodiment.
  • FIG. 5 is a gas circuit diagram showing a path for
  • FIG. 5 is a gas circuit diagram showing a path for supplying gas from a first suction / desorption tower to a supply target in the second supply step of the ozone supply device of the first embodiment. It is a characteristic diagram which shows the time-dependent change of the ozone concentration of the ozone gas discharged to the outside in the adsorption process of the ozone supply apparatus of Embodiment 1 in comparison with Comparative Example 1. It is a characteristic diagram which shows the time-dependent change of the ozone concentration of the ozone gas discharged to the outside in the adsorption process of the ozone supply apparatus of Embodiment 1 in comparison with Comparative Example 2.
  • FIG. 1 is a configuration diagram showing an ozone supply device according to a first embodiment of the present application.
  • the ozone supply device 100 of the first embodiment includes a raw material gas source 1, an ozone generating unit 2, a first adsorption / desorption tower 3a, and a second adsorption / desorption tower 3b.
  • the insides of the first suction / desorption tower 3a and the second suction / desorption tower 3b are filled with the adsorbents 4a and 4b.
  • a gas circuit for circulating gas is provided.
  • a circuit switch 5 is provided in each gas circuit. The opening and closing of the circuit switch 5 is controlled by the control unit 6.
  • the control unit 6 performs a control operation based on the measured value measured by the first concentration measuring unit 7a and the measured value measured by the second concentration measuring unit 7b. In the figure, the display of the signal line from the control unit 6 to the circuit switch 5 is omitted.
  • the circuit switch 5 opens and closes a gas circuit installed to connect each component, thereby opening and closing the exhaust gas circuits R0a and R0b, the adsorption and recovery gas circuits R1a and R1b, and the supply gas circuits R2a and R2b. Can be selectively formed.
  • the one installed in the middle of the gas circuit connecting the ozone generating section 2 and the first inlet / outlet 3a1 of the first suction / desorption tower 3a is the first circuit switch 5a1, the ozone generating section 2 and the second suction / desorption.
  • the one installed in the middle of the gas circuit connecting the first inlet / outlet 3b1 of the tower 3b is installed in the middle of the gas circuit opened to the outside from the fifth circuit switch 5b1 and the first concentration measuring unit 7a.
  • the one installed in the middle of the gas circuit connecting with is the third circuit switch 5a3, and the one installed in the middle of the gas circuit connecting the second concentration measuring unit 7b to the first suction / desorption tower 3a is the seventh.
  • the one installed in the middle of the gas circuit opened to the outside from the first inlet / outlet 3a1 of the circuit switch 5b3 and the first suction / detachment tower 3a is the first entry of the fourth circuit switch 5a4 and the second suction / detachment tower 3b.
  • Those installed in the middle of the gas circuit opened to the outside from the outlet 3b1 shall be referred to as the eighth circuit switch 5b4, respectively.
  • reference numerals 5 are used simply as circuit switchers.
  • a gas other than ozone such as oxygen, nitrogen and nitrogen oxides
  • a mixture of the raw material gas and ozone gas will be referred to as an ozonized gas.
  • the raw material gas source 1 for example, a cylinder, a PSA (Pressure Swing Adsorption) device, or the like is used, and the raw material gas source 1 supplies the raw material gas to the ozone generating unit 2. Further, the ozone generation unit 2 generates an ozone-containing gas containing ozone by using the raw material gas supplied from the raw material gas source 1.
  • a PSA Pressure Swing Adsorption
  • the first suction / desorption tower 3a and the second suction / desorption tower 3b are provided with inlets / outlets for introducing and discharging gas, and the inlets / outlets installed at the lower part of the first suction / desorption tower 3a are the first inlet / outlet 3a1 and the first. 1
  • the inlet / outlet installed on the upper part of the suction / desorption tower 3a is on the second inlet / outlet 3a2
  • the inlet / outlet installed on the lower part of the second suction / desorption tower 3b is on the upper part of the first inlet / outlet 3b1 and the second suction / desorption tower 3b.
  • the installed inlet / outlet shall be referred to as the second inlet / outlet 3b2, respectively.
  • the adsorbents 4a and 4b of the first adsorption / desorption tower 3a and the second adsorption / desorption tower 3b use ozone contained in the ozone-ized gas introduced into the first adsorption / desorption tower 3a or the second adsorption / desorption tower 3b from the ozone generating unit 2.
  • a material that preferentially adsorbs is preferably used.
  • the adsorbents 4a and 4b may be of the same type or different types from each other.
  • the adsorbents 4a and 4b for example, silica gel is used. Due to the adsorption characteristics of the adsorbents 4a and 4b, the ozone concentration on the surface of the adsorbents 4a and 4b is higher than the ozone concentration in the ozone-forming gas.
  • the control unit 6 is composed of, for example, a microcomputer or the like, and controls its opening / closing operation by giving a control command to the circuit switch 5.
  • the opening / closing operation of the circuit switch 5 can be manually operated as well as the control command from the control unit 6.
  • a first concentration measuring unit 7a and a second circuit switch 5a2 are arranged in the middle of the gas circuit opened to the outside from the second inlet / outlet 3a2 of the first suction / desorption tower 3a, and the second suction / desorption tower 3b
  • a second concentration measuring unit 7b and a sixth circuit switch 5b2 are arranged in the middle of the gas circuit opened to the outside from the 2 inlet / outlet 3b2.
  • the first concentration measuring unit 7a is installed between the branch point between the suction recovery gas circuit R1 and the exhaust gas circuit R0 and the first suction / desorption tower 3a
  • the second concentration measuring unit 7b is suction recovery. It is installed between the branch point between the gas circuit R1 for exhaust gas and the gas circuit R0 for exhaust gas and the second suction / desorption tower 3b.
  • the first concentration measuring unit 7a and the second concentration measuring unit 7b measure the concentration of ozone or oxygen discharged from the first adsorption / desorption tower 3a and the second adsorption / desorption tower 3b, and the measurement method and configuration are not limited. Absent.
  • the exhaust gas circuit R0, the adsorption recovery gas circuit R1, and the supply gas circuit are operated by opening and closing the circuit switch 5 in response to a control command from the control unit 6.
  • R2 is selectively formed.
  • the configurations and actions of the exhaust gas circuit R0, the adsorption recovery gas circuit R1, and the supply gas circuit R2 will be described in more detail with reference to FIGS. 2 to 7.
  • the gas treatment step in the exhaust gas circuit R0 and the adsorption recovery gas circuit R1 is referred to as an adsorption step
  • the gas treatment step in the supply gas circuit R2 is referred to as a supply step.
  • the mixed gas generated by the ozone generating unit 2 is introduced into the first adsorption / desorption tower 3a.
  • the mixed gas is adsorbed on the adsorbent 4a of the first adsorption / desorption tower 3a at a predetermined pressure. Since ozone is more likely to be adsorbed by the adsorbent 4a preferentially than oxygen, the unadsorbed oxygen is preferentially leaked from the first adsorption / desorption tower 3a. After that, by utilizing the property that ozone is less likely to be desorbed from the adsorbent 4a, oxygen is preferentially and selectively extracted by gradually lowering the pressure of the first adsorption / desorption tower 3a.
  • the ozone concentration in the first adsorption / desorption tower 3a is increased, and when the concentration reaches a predetermined concentration, the outlet of the first adsorption / desorption tower 3a is used as the supply gas circuit R2 for ozone. Switch to the supply target of the supply destination and send out high-concentration ozone.
  • the exhaust gas circuit R0 is a circuit in which the first suction / desorption tower 3a and the second suction / desorption tower 3b are used for ozone adsorption.
  • the first adsorption / desorption tower 3a is used for adsorbing ozone
  • the second adsorption / desorption tower 3b is used for adsorption / recovery of ozone leaked from the first adsorption / desorption tower 3a
  • the second This is a circuit when the adsorption / desorption tower 3b is used for adsorbing ozone and the first adsorption / desorption tower 3a is used for adsorbing and recovering ozone leaked from the second adsorption / desorption tower 3b.
  • the supply gas circuit R2 is a circuit that delivers high-concentration ozone from the first suction / desorption tower 3a and the second suction / desorption tower 3b to the supply
  • the first exhaust gas circuit R0a shown in FIG. 2 and the first adsorption recovery gas circuit R1a shown in FIG. 3 refer to the gas concentration discharged from the suction / desorption tower 3 and are used as an apparatus.
  • the circuit is selected so that the amount of ozone emitted to the outside is small.
  • both the first circuit switch 5a1 and the second circuit switch 5a2 are opened by a control command from the control unit 6, and the third circuit switch 5a3,
  • the fourth circuit switch 5a4, the fifth circuit switch 5b1, the sixth circuit switch 5b2, the seventh circuit switch 5b3, and the eighth circuit switch 5b4 are all formed by closing them.
  • the raw material gas containing oxygen is introduced into the ozone generating unit 2 from the raw material gas source 1, and the ozone generating unit 2 ozone the raw material gas.
  • the ozonized gas generated by the ozone generating unit 2 passes through the first circuit switch 5a1 in the direction from the first inlet / outlet 3a1 to the second inlet / outlet 3a2 of the first suction / desorption tower 3a, and is adsorbed therein. Ozone is adsorbed on the agent 4a.
  • the ozone-forming gas that has not been adsorbed in the first adsorption / desorption tower 3a is discharged to the outside through the first concentration measuring unit 7a and the second circuit switch 5a2.
  • the first circuit switch 5a1, the third circuit switch 5a3, and the sixth circuit switch 5b2 are opened by a control command from the control unit 6.
  • the second circuit switch 5a2, the fourth circuit switch 5a4, the fifth circuit switch 5b1, the seventh circuit switch 5b3, and the eighth circuit switch 5b4 are closed.
  • a raw material gas containing oxygen is introduced from the raw material gas source 1 into the ozone generating unit 2, and the ozone generating unit 2 ozone the raw material gas.
  • the ozone gas generated by the ozone generating unit 2 passes through the first circuit switch 5a1 in the direction from the first inlet / outlet 3a1 to the second inlet / outlet 3a2 of the first suction / desorption tower 3a, and ozone is transferred to the adsorbent 4a. Be adsorbed.
  • the ozonized gas that was not adsorbed in the first adsorption / desorption tower 3a is passed through the first concentration measuring unit 7a and the third circuit switch 5a3 from the first inlet / outlet 3b1 to the second inlet / outlet 3b2 of the second adsorption / desorption tower 3b. It passes in the direction and ozone is adsorbed on the adsorbent 4b.
  • the gas discharged from the second inlet / outlet 3b2 of the second suction / desorption tower 3b is discharged to the outside through the second concentration measuring unit 7b and the sixth circuit switch 5b2.
  • the control unit 6 refers to the measured values of the first concentration measuring unit 7a and the second concentration measuring unit 7b input to the control unit 6, and when the measured gas is ozone, the first When the measured value of the 1 concentration measuring unit 7a is equal to or less than the measured value of the 2nd concentration measuring unit 7b, the first exhaust gas circuit R0a is selected. When the measured value of the first concentration measuring unit 7a is larger than the measured value of the second concentration measuring unit 7b, the first adsorption recovery gas circuit R1a is selected.
  • the case where the measurement gas of the first concentration measurement unit 7a and the second concentration measurement unit 7b is ozone is shown, but when the measurement gas is oxygen, the result is different and is as follows. That is, when the measurement gas is oxygen and the measured value of the first concentration measuring unit 7a is lower than the measured value of the second concentration measuring unit 7b, the first adsorption recovery gas circuit R1a is selected and the first When the measured value of the 1 concentration measuring unit 7a is equal to or higher than the measured value of the 2nd concentration measuring unit 7b, the first exhaust gas circuit R0a is selected.
  • the control unit 6 switches the gas flow path according to the difference between the measured value of the first concentration measuring unit 7a and the measured value of the second concentration measuring unit 7b, thereby forming a gas circuit in which the amount of ozone emitted to the outside is small. You can choose.
  • the gas to be measured by the first concentration measuring unit 7a and the second concentration measuring unit 7b has been described as to whether ozone or oxygen is used. This is because the main component of the raw material gas is oxygen.
  • the main gas components introduced into the first concentration measuring unit 7a and the second concentration measuring unit 7b are ozone and oxygen. Therefore, the ozone concentration can be indirectly detected by measuring the oxygen concentration, and the magnitude relationship of the measurement conditions is reversed by changing the measurement gas.
  • the control unit 6 operates when the amount of ozone adsorbed on the adsorbent 4a housed in the first adsorption / desorption tower 3a reaches a certain amount, or when the time required for adsorption elapses for a predetermined time, or when the control unit 6 operates.
  • the process shifts to the first supply process by controlling the circuit switch 5.
  • the first supply gas circuit R2a shown in FIG. 4 is formed.
  • the fourth circuit switch 5a4 is opened by the control command from the control unit 6, and the first circuit switch 5a1 and the second circuit switch 5a2 are opened.
  • 3rd circuit switch 5a3, 5th circuit switch 5b1, 6th circuit switch 5b2, 7th circuit switch 5b3, and 8th circuit switch 5b4 are all formed by being closed.
  • the gas in the first suction / desorption tower 3a is directed from the first inlet / outlet 3a1 to the external supply target, that is, the demand destination requiring ozone gas through the fourth circuit switch 5a4. It is discharged.
  • the control unit 6 grasps the difference from the steady request as the amount of change, and changes the amount of ozone that is constantly desorbed.
  • the optimum amount of ozone can be supplied by changing the switching time of the circuit switch 5 according to the above. When the calculated switching time is reached, the control unit 6 controls the circuit switch 5 to shift to the second suction step.
  • the second adsorption step is carried out with a part of the ozone gas remaining in the adsorbent 4a contained in the first adsorption / desorption tower 3a. Will move to.
  • the control unit 6 refers to the gas concentration discharged from the first suction / desorption tower 3a and the gas concentration discharged from the second suction / desorption tower 3b, and is for the second exhaust shown in FIG.
  • the circuit is selected so that the amount of ozone emitted to the outside of the apparatus is reduced.
  • the fifth circuit switch 5b1 and the sixth circuit switch 5b2 are both opened by the control command from the control unit 6, and the first circuit switch is opened.
  • 5a1, 2nd circuit switch 5a2, 3rd circuit switch 5a3, 4th circuit switch 5a4, 7th circuit switch 5b3, and 8th circuit switch 5b4 are all formed by being closed. ..
  • the raw material gas containing oxygen is introduced from the raw material gas source 1 into the ozone generating unit 2, and the ozone generating unit 2 ozone the raw material gas.
  • the ozone gas generated by the ozone generating unit 2 passes through the fifth circuit switch 5b1 in the direction from the first inlet / outlet 3b1 to the second inlet / outlet 3b2 of the second adsorption / desorption tower 3b, and is of the ozone gas.
  • Ozone is adsorbed by the adsorbent 4b.
  • the ozonized gas not adsorbed in the second adsorption / desorption tower 3b is discharged to the outside through the second concentration measuring unit 7b and the sixth circuit switch 5b2.
  • the fifth circuit switch 5b1, the seventh circuit switch 5b3, and the second circuit switch 5a2 are all in response to a control command from the control unit 6.
  • the first circuit switch 5a1, the third circuit switch 5a3, the fourth circuit switch 5a4, the sixth circuit switch 5b2, and the eighth circuit switch 5b4 are all closed. It is formed.
  • a raw material gas containing oxygen is introduced from the raw material gas source 1 into the ozone generating unit 2, and the ozone generating unit 2 ozone the raw material gas.
  • the ozone gas generated by the ozone generating unit 2 passes through the fifth circuit switch 5b1 in the direction from the first inlet / outlet 3b1 to the second inlet / outlet 3b2 of the second adsorption / desorption tower 3b, and is of the ozone gas. Ozone is adsorbed by the adsorbent 4b.
  • the ozonized gas that was not adsorbed in the second adsorption / desorption tower 3b is passed through the second concentration measuring unit 7b and the seventh circuit switch 5b3 from the first inlet / outlet 3a1 to the second inlet / outlet 3a2 of the first adsorption / desorption tower 3a. It passes in the direction, and ozone is adsorbed on the adsorbent 4a inside.
  • the gas discharged from the second inlet / outlet 3a2 of the first suction / desorption tower 3a is discharged to the outside through the first concentration measuring unit 7a and the second circuit switch 5a2.
  • the high-concentration ozone remaining in the first adsorption / desorption tower 3a in the first supply step introduces the ozone-ized gas that was not adsorbed in the second adsorption / desorption tower 3b into the first inlet / outlet 3a1 of the first adsorption / desorption tower 3a.
  • the gas is pushed out toward the second inlet / outlet 3a2 of the first suction / desorption tower 3a, and is discharged to the outside of the device from the second inlet / outlet 3a2 after a predetermined time.
  • the gas circuit during the adsorption step is determined by the control unit 6 under the following conditions with reference to the measured values of the first concentration measuring unit 7a and the measured values of the second concentration measuring unit 7b input to the control unit 6.
  • the second exhaust gas circuit R0b is selected and the second exhaust gas circuit R0b is selected.
  • the second adsorption recovery gas circuit R1b is selected.
  • the second adsorption recovery gas circuit R1b is selected and the second is used. 1
  • the second exhaust gas circuit R0b is selected.
  • a gas circuit having a small amount of ozone discharged to the outside can be selected, and the amount of high-concentration ozone leaked from the first adsorption / desorption tower 3a in the first supply step and the second In the adsorption step, it is possible to minimize the amount of ozone leaked from the second adsorption / desorption tower 3b without being adsorbed.
  • the control unit 6 operates when the amount of ozone adsorbed on the adsorbent 4b housed in the second adsorption / desorption tower 3b reaches a certain amount, or when the adsorbing time elapses for a predetermined time.
  • the control unit 6 holds information on the relationship between the adsorption time and the adsorption amount of the adsorbents 4a and 4b of the first adsorption / desorption tower 3a and the second adsorption / desorption tower 3b.
  • the second supply gas circuit R2b shown in FIG. 7 is formed.
  • the eighth circuit switch 5b4 is opened by the control command from the control unit 6, and the first circuit switch 5a1 and the second circuit switch 5a2 are opened.
  • 3rd circuit switch 5a3, 4th circuit switch 5a4, 5th circuit switch 5b1, 6th circuit switch 5b2, and 7th circuit switch 5b3 are all formed by being closed.
  • the gas circuit R2b is sent from the first inlet / outlet 3b1 of the second suction / desorption tower 3b to an external supply target, that is, a demand destination that requires ozone, through the eighth circuit switch 5b4.
  • the control unit 6 makes a difference from the steady requirement when the required amount of ozone gas is requested from the demand destination of ozone gas.
  • the amount of ozone that is constantly desorbed is the optimum amount of ozone according to the required injection amount of the supply target. Can be supplied.
  • the control unit 6 is issued in response to fluctuations in the required injection amount in a region where the proportion of ozone desorbed from the adsorbent 4b contained in the second adsorption / desorption tower 3b is 95% or less of the adsorbed ozone amount.
  • the circuit switch 5 is controlled to shift to the first suction step again.
  • Comparative Example 1 takes up a case where the first exhaust gas circuit R0a and the second exhaust gas circuit R0b, which are gas circuits directly discharged to the outside from the suction / desorption tower 3 for adsorption, are not provided. That is, this is an example in which the gas circuit in the adsorption step is limited to the first adsorption / recovery gas circuit R1a and the second adsorption / recovery gas circuit R1b.
  • FIG. 8 shows the concentration of ozone contained in the ozone gas discharged from the suction / desorption tower 3 to the outside in the exhaust gas circuit R0 and the adsorption / recovery gas circuit R1 formed by the ozone supply device 100 of the first embodiment.
  • It is a characteristic diagram which shows the change with elapsed time T in comparison with the case of the adsorption recovery gas circuit R1 formed in Comparative Example 1.
  • the vertical axis represents the emitted ozone concentration
  • the horizontal axis represents the elapsed time.
  • the solid line A represents the change in the ozone emission concentration according to the first embodiment over time.
  • the dotted curve B represents the change in the ozone emission concentration according to Comparative Example 1 with the passage of time.
  • the upper arrow indicates the state of only the gas circuit R1 according to Comparative Example 1
  • the lower arrow indicates the switching state of the gas circuit R0 and the gas circuit R1 according to the first embodiment. Represents.
  • the high-concentration ozone remaining at the end of the supply process in the previous cycle is discharged from the second inlet / outlet of the adsorption / desorption tower for adsorption recovery, and is discharged to the outside as shown by the broken line.
  • the ozone gas concentration is very high. Therefore, most of the produced ozone is discharged to the outside, and the ozone utilization rate is significantly reduced.
  • the exhaust gas circuit R0 or The adsorption recovery gas circuit R1 is selected. Therefore, in the early stage of the adsorption process, most of the gas discharged from the second inlet / outlet of the adsorption / desorption tower is oxygen gas, and as shown by the solid line, the concentration of ozone gas discharged to the outside is low. ..
  • the control unit 6 controls the exhaust gas circuit R0. Since the gas circuit is switched to the adsorption / recovery gas circuit R1, as shown by the solid line, the concentration of ozone gas discharged to the outside can be maintained low even at the end of the adsorption process. Therefore, most of the produced ozone can be stored in the adsorption / desorption tower, so that the ozone utilization rate can be maintained high. As described above, the ozone supply device 100 of the first embodiment can maintain a lower ozone gas concentration emitted to the outside of the device as compared with Comparative Example 1, so that a high ozone utilization rate can be realized.
  • Comparative Example 2 will be taken. It is assumed that the ozone supply device of Comparative Example 2 is not provided with a control for switching from the adsorption recovery gas circuit R1 to the exhaust gas circuit R0 in the switching of the gas circuit in the adsorption step. That is, the gas circuit switching in the adsorption step is a case where only the adsorption recovery gas circuit R1 is used from the exhaust gas circuit R0.
  • the first exhaust gas circuit R0a and the second exhaust gas are controlled by opening and closing the circuit switch 5 according to the control command from the control unit 6.
  • the circuit R0b, the first adsorption / recovery gas circuit R1a and the second adsorption / recovery gas circuit R1b, the first supply gas circuit R2a and the second supply gas circuit R2b are formed.
  • FIG. 9 shows that the gas is discharged to the outside from the suction / desorption tower when the operation of switching between the exhaust gas circuit R0 and the adsorption / recovery gas circuit R1 formed by the ozone supply device 100 of the first embodiment in both directions is performed.
  • the operation of switching the change of the concentration of ozone contained in the ozone gas containing the elapsed time from the exhaust gas circuit R0 formed by the ozone supply device of Comparative Example 2 to the adsorption recovery gas circuit R1 in one direction is carried out.
  • It is a characteristic diagram which shows in comparison with the case of.
  • the vertical axis represents the emitted ozone concentration
  • the horizontal axis represents the elapsed time.
  • the solid line A represents the change in the ozone emission concentration according to the first embodiment over time.
  • the dotted curve C represents the change in the ozone emission concentration according to Comparative Example 2 over time.
  • the upper arrow indicates the switching state of the gas circuit R0 and the gas circuit R1 according to Comparative Example 2
  • the lower arrow indicates the gas circuit R0 to the gas circuit R1 according to the first embodiment. It shows the state of switching to and further switching from the gas circuit R1 to the gas circuit R0.
  • the first embodiment and the second comparative example are related to the time dependence of the ozone concentration discharged to the outside. Shows the same tendency, and therefore detailed description thereof is omitted here.
  • the ozone gas concentration is high. Therefore, most of the produced ozone is discharged to the outside, and the ozone utilization rate is lowered.
  • the exhaust gas circuit R0 or the adsorption recovery is performed depending on the concentration of the gas discharged from the adsorption / desorption tower for adsorption and the adsorption / desorption tower for adsorption recovery during the adsorption step.
  • the gas circuit R1 is selected.
  • the ozone supply device 100 of the first embodiment can maintain a lower ozone gas concentration emitted to the outside of the device as compared with Comparative Example 2, so that a high ozone utilization rate can be realized.
  • the ozone supply device 100 of the first embodiment An improved example of the ozone supply device 100 of the first embodiment will be described.
  • the time until the gas concentration discharged from the adsorption / desorption tower for adsorption reaches the preset concentration is the exhaust gas.
  • the circuit R0 is selected, and then the gas circuit is switched according to the concentration of the gas discharged from the adsorption / desorption tower for adsorption and the adsorption / desorption tower for recovery. Therefore, the configuration of the ozone supply device is the same as that of the first embodiment.
  • the operation of the ozone supply device of the improved example will be described. Also in the ozone supply device of this improved example, as in the case of the first embodiment, the first exhaust gas circuit R0a and the second exhaust gas circuit R0a and the second exhaust gas circuit R0a and the second exhaust gas circuit R0a and the second The exhaust gas circuit R0b, the first adsorption / recovery gas circuit R1a and the second adsorption / recovery gas circuit R1b, the first supply gas circuit R2a and the second supply gas circuit R2b are formed.
  • first exhaust gas circuit R0a and the second exhaust gas circuit R0b the first adsorption recovery gas circuit R1a and the second adsorption recovery gas circuit R1b, and the first supply gas circuit of the ozone supply device of this improved example
  • the switching operation of R2a and the second supply gas circuit R2b will be described.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the first exhaust gas circuit R0a shown in FIG.
  • the operation and effect of the first exhaust gas circuit R0a formed in this case are the same as in the case of the first embodiment (FIG. 2).
  • the first exhaust is performed until the time preset in the control unit 6 or the time until the gas concentration discharged from the adsorption / desorption tower for adsorption reaches the concentration preset in the control unit 6. Continue to form the gas circuit R0a.
  • the first exhaust gas circuit R0a depends on the relationship between the gas concentration discharged from the adsorption / desorption tower for adsorption and the gas concentration discharged from the adsorption / desorption tower for adsorption recovery when either the time or concentration condition is satisfied.
  • the control unit 6 starts control for switching the gas circuit of the adsorption / recovery gas circuit R1a.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the first adsorption recovery gas circuit R1a shown in FIG.
  • the operation and effect of the first adsorption / recovery gas circuit R1a formed in this case are the same as in the case of the first embodiment (FIG. 3).
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the first supply gas circuit R2a shown in FIG.
  • the operation and effect of the first supply gas circuit R2a formed in this case are the same as in the case of the first embodiment (FIG. 4).
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the second exhaust gas circuit R0b shown in FIG.
  • the operation and effect of the second exhaust gas circuit R0b formed in this case are the same as in the case of the first embodiment (FIG. 5).
  • the second exhaust is performed until the time preset in the control unit 6 or the time until the gas concentration discharged from the adsorption / desorption tower for adsorption reaches the concentration preset in the control unit 6 has elapsed. Continue to form the gas circuit R0b.
  • the second exhaust gas circuit R0b depends on the relationship between the gas concentration discharged from the adsorption / desorption tower for adsorption and the gas concentration discharged from the adsorption / desorption tower for adsorption recovery when either the time or concentration condition is satisfied.
  • the control unit 6 starts the control of switching the gas circuit of the second adsorption recovery gas circuit R1b.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the second adsorption recovery gas circuit R1b shown in FIG.
  • the operation and effect of the second adsorption recovery gas circuit R1b formed in this case are the same as in the case of the first embodiment (FIG. 6).
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the second supply gas circuit R2b shown in FIG. 7.
  • the operation and effect of the second supply gas circuit R2b formed in this case are the same as in the case of the first embodiment.
  • FIG. 10 shows the outside from the suction / desorption tower 3 when the operation of switching the exhaust gas circuit R0 and the adsorption / recovery gas circuit R1 formed in the ozone supply device 100 of the first embodiment and the improved example in both directions is performed. It is a characteristic diagram which shows the change with respect to the elapsed time of the concentration of ozone contained in the ozone gas discharged in.
  • the vertical axis represents the emitted ozone concentration
  • the horizontal axis represents the elapsed time.
  • the solid line A represents the change in the ozone emission concentration according to the first embodiment over time.
  • the dotted curve D represents the change in the ozone emission concentration over time according to the improved example.
  • the upper arrow indicates the switching state of the gas circuit R0 and the gas circuit R1 according to the improved example
  • the lower arrow indicates the state of switching from the gas circuit R0 to the gas circuit R1 according to the first embodiment.
  • the state of switching from the gas circuit R1 to the gas circuit R0 is shown.
  • the ozone supply device 100 and the improved example of the first embodiment are the ozone concentrations emitted to the outside. Time dependence shows a similar tendency.
  • the exhaust gas circuit R0 or the adsorption recovery is always performed during the adsorption step, depending on the concentration of the gas discharged from the adsorption / desorption tower for adsorption and the adsorption / desorption tower for adsorption recovery.
  • the gas circuit R1 is selected. In the middle of the adsorption process, the gas circuit switching is performed even when the concentration of ozone gas discharged from the adsorption / desorption tower for adsorption and the adsorption / desorption tower for adsorption recovery are both small.
  • the formation of the adsorption recovery gas circuit R1 causes the high-concentration ozone remaining at the end of the supply process in the previous cycle to be pushed out toward the second inlet / outlet of the adsorption / desorption tower by gas replacement. It can be discharged to the outside of the device.
  • the gas circuit is switched from the adsorption / recovery gas circuit R1 to the exhaust gas circuit R0, the concentration of ozone gas discharged to the outside is maintained low even at the end of the adsorption process, as shown by the broken line in FIG. it can.
  • the produced ozone can be stored in the adsorption / desorption tower, so that the ozone utilization rate can be maintained high. That is, when the ozone desorption is completed, the amount of supplied ozone can be limited by leaving the adsorbed ozone in the adsorption / desorption tower. In other words, the supply amount can be controlled according to the required amount of the supply destination.
  • the exhaust gas circuit R0 is selected.
  • the maximum value of the ozone concentration discharged is lower than that of the supply device 100, and the ozone utilization efficiency can be further improved.
  • the concentration of ozone gas discharged to the outside of the device can be kept low, so that a high ozone utilization rate can be realized.
  • Embodiment 2 The ozone supply device 200 of the second embodiment will be described with reference to FIG.
  • the difference between the ozone supply device 200 of the second embodiment and the ozone supply device 100 of the first embodiment is a reference value for gas circuit switching in the adsorption step.
  • the first concentration measuring unit 7a and the second concentration In contrast to the ozone concentration and oxygen concentration measured by the measuring unit 7b, in the second embodiment, the first temperature measuring unit 8a installed above the first adsorbent 4a in the first adsorption / desorption tower 3a.
  • the point is to refer to the temperature measured by the second temperature measuring unit 8b installed above the second adsorbent 4b in the second adsorption / desorption tower 3b.
  • the same reference numerals are given to the components corresponding to or corresponding to the first embodiment shown in FIG. 1, and detailed description thereof will be omitted here.
  • the operation of the ozone supply device 200 will be described.
  • the first exhaust gas circuit R0a is controlled by opening and closing the circuit switch 5 by a control command from the control unit 6.
  • a second exhaust gas circuit R0b, a first adsorption / recovery gas circuit R1a and a second adsorption / recovery gas circuit R1b, a first supply gas circuit R2a, and a second supply gas circuit R2b are formed.
  • the first exhaust gas circuit R0a and the second exhaust gas circuit R0b, the first adsorption recovery gas circuit R1a and the second adsorption recovery gas circuit R1b, the first supply gas circuit R2a and the ozone supply device 200 The configuration of the second supply gas circuit R2b and its operation will be described in more detail.
  • the first adsorption step by controlling the opening and closing of the circuit switch 5 by a control command from the control unit 6, the first exhaust gas circuit R0a shown in FIG. 2 and the first adsorption recovery gas circuit R1a shown in FIG. To form.
  • the control unit 6 refers to the measured values of the first temperature measuring unit 8a and the second temperature measuring unit 8b input to the control unit 6, and the first temperature.
  • the first exhaust gas circuit R0a is selected.
  • the first adsorption recovery gas circuit R1a is controlled to be selected.
  • the control unit 6 By controlling the circuit switch so that the control unit 6 switches the gas circuit, it is possible to select a gas circuit having a small amount of ozone emitted to the outside.
  • the control unit 6 receives an operation transition signal when the amount of ozone adsorbed on the adsorbent 4a housed in the first adsorption / desorption tower 3a reaches a certain amount, or when the time required for adsorption reaches a predetermined time, or when a predetermined time elapses.
  • the process shifts to the first supply process by controlling the circuit switch 5.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the first supply gas circuit R2a shown in FIG.
  • the operation and effect of the first supply gas circuit R2a formed in this case are the same as those in the first embodiment.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the second exhaust gas circuit R0b shown in FIG.
  • the operation and effect of the second exhaust gas circuit R0b formed in this case are the same as those in the first embodiment.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the second adsorption recovery gas circuit R1b shown in FIG.
  • the operation and effect of the second adsorption recovery gas circuit R1b formed in this case are the same as those in the first embodiment.
  • the control unit 6 refers to the measured values of the first temperature measuring unit 8a and the second temperature measuring unit 8b input to the control unit 6, and the measured value of the first temperature measuring unit 8a is calculated. If it is lower than the measured value of the second temperature measuring unit 8b, the second adsorption recovery gas circuit R1b is set to be selected, and the measured value of the first temperature measuring unit 8a is set to the second temperature measuring unit 8b. If it is equal to or higher than the measured value, the second exhaust gas circuit R0b is set to be selected.
  • the circuit switch 5 By controlling the circuit switch 5 by the control unit 6, a gas circuit having a small amount of ozone emitted to the outside can be selected, and the amount of high-concentration ozone leaked from the adsorption / desorption tower 3a in the first supply step and the first 2 It is possible to minimize the amount of ozone leaked from the adsorption / desorption tower 3b without being adsorbed in the adsorption step.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the second supply gas circuit R2b shown in FIG. 7.
  • the operation and effect of the second supply gas circuit R2b formed in this case are the same as in the case of the first embodiment.
  • the ozone supply device 200 of the second embodiment includes the temperature measuring unit 8, and by switching the gas circuit with reference to the measured temperature, even in a configuration without the concentration measuring unit 7. Similar to the ozone supply device 100 of the first embodiment, a high ozone utilization rate can be realized.
  • Embodiment 3 The ozone supply device 300 of the third embodiment will be described with reference to FIG.
  • the difference between the ozone supply device 300 of the third embodiment and the ozone supply device 100 of the first embodiment is discharged from the ozone decomposition facility 9 and the ozone decomposition facility 9 that decompose the ozone gas discharged from the adsorption / desorption tower 3.
  • a third temperature measuring unit 8c for measuring the gas temperature is provided, and the temperature measured by the third temperature measuring unit 8c is referred to as a reference value for switching the gas circuit in the adsorption step.
  • the ozone decomposition facility 9 decomposes the introduced ozone gas and converts it into oxygen gas.
  • a thermal decomposition method that decomposes ozone gas by heating or a catalyst method that decomposes ozone gas using a decomposition catalyst such as manganese is used.
  • the equipment used can be mentioned.
  • the third temperature measuring unit 8c measures the gas temperature after ozone is decomposed by the ozone decomposition facility 9. Ozone decomposition heat is generated according to the amount of ozone introduced into the ozone decomposition facility 9, and the gas temperature rises. Therefore, the amount of ozone gas introduced is estimated by measuring the outlet gas temperature of the ozone decomposition facility 9. can do. Therefore, it is possible to detect that the temperature of the gas has reached a predetermined value and perform control.
  • the same reference numerals are given to the components corresponding to or corresponding to the first embodiment shown in FIG. 1, and detailed description thereof will be omitted here.
  • the first exhaust gas circuit R0a is controlled by opening and closing the circuit switch 5 by a control command from the control unit 6.
  • a second exhaust gas circuit R0b, a first adsorption / recovery gas circuit R1a and a second adsorption / recovery gas circuit R1b, a first supply gas circuit R2a, and a second supply gas circuit R2b are formed.
  • the first exhaust gas circuit R0a and the second exhaust gas circuit R0b, the first adsorption recovery gas circuit R1a and the second adsorption recovery gas circuit R1b, the first supply gas circuit R2a and the ozone supply device 300 The configuration of the second supply gas circuit R2b and its operation will be described.
  • the first adsorption step by controlling the opening and closing of the circuit switch 5 by the control command from the control unit 6, the first exhaust gas circuit R0a shown in FIG. 2 and the first adsorption recovery gas shown in FIG.
  • the circuit R1a is formed.
  • the operations and effects of the first exhaust gas circuit R0a and the first adsorption / recovery gas circuit R1a formed in this case are the same as in the case of the first embodiment (FIGS. 2 and 3).
  • the control unit 6 switches the circuit when the measured value of the third temperature measuring unit 8c input to the control unit 6 meets the following conditions. That is, when the measured value of the third temperature measuring unit 8c is equal to or less than the first temperature set value A, the first exhaust gas circuit R0a is selected, and the measured value of the third temperature measuring unit 8c is the first temperature.
  • the first adsorption recovery gas circuit R1a When the value is between the set value A and the second temperature set value B, the first adsorption recovery gas circuit R1a is selected, and the measured value of the third temperature measuring unit 8c is equal to or higher than the second temperature set value B. In this case, the first exhaust gas circuit R0a is selected.
  • the control unit 6 By controlling the control unit 6 according to the measured value of the third temperature measuring unit 8c, the amount of ozone emitted to the outside can be reduced from the ozone concentration estimated from the measured value of the third temperature measuring unit 8c. You can select the gas circuit that can be used.
  • the control unit 6 operates when the amount of ozone adsorbed on the adsorbent 4a housed in the first adsorption / desorption tower 3a reaches a predetermined amount, or when the adsorbing time elapses for a predetermined time. When it is determined that the preset conditions are satisfied, such as when the transition signal is input from the outside, the process shifts to the first supply process by controlling the circuit switch 5.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the first supply gas circuit R2a shown in FIG.
  • the operation and effect of the first supply gas circuit R2a formed in this case are the same as those in the first embodiment.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the second exhaust gas circuit R0b shown in FIG.
  • the operation and effect of the second exhaust gas circuit R0b formed in this case are the same as those in the first embodiment.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, whereby the second adsorption recovery gas circuit R1b shown in FIG. 6 is formed.
  • the operation and effect of the second adsorption recovery gas circuit R1b formed in this case are the same as in the case of the first embodiment.
  • the control unit 6 switches the circuit when the measured value of the third temperature measuring unit 8c input to the control unit 6 meets the following conditions. That is, when the measured value of the third temperature measuring unit 8c is equal to or less than the first temperature set value A, the second exhaust gas circuit R0b is selected, and the measured value of the third temperature measuring unit 8c is the first temperature.
  • the second adsorption recovery gas circuit R1b is selected, and the measured value of the third temperature measuring unit 8c is equal to or higher than the second temperature set value B.
  • the second exhaust gas circuit R0b is selected.
  • the amount of high-concentration ozone remaining in the adsorption / desorption tower 3a in the first supply step and the amount of ozone leaked without being adsorbed from the adsorption / desorption tower 3b in the second adsorption step are minimized. It becomes possible.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the second supply gas circuit R2b shown in FIG. 7.
  • the ozone supply device 300 of the third embodiment includes the ozone decomposition facility 9 and the third temperature measuring unit 8c, and by switching the gas circuit with reference to the measured temperature, the concentration measuring unit Even in the configuration without 7, it is possible to realize a high ozone utilization rate as in the ozone supply device 100 of the first embodiment.
  • Embodiment 4 The ozone supply device 400 of the fourth embodiment will be described with reference to FIG.
  • the difference between the ozone supply device 400 of the fourth embodiment and the ozone supply device 100 of the first embodiment is that the concentration of ozone gas supplied from the suction / desorption tower 3 to the gas circuit on the flow path for supplying ozone gas to the supply target is measured.
  • a third concentration measuring unit 7c and a flow rate measuring unit 10 for measuring the flow rate are provided, and the ozone concentration and the flow rate measured by the third concentration measuring unit 7c are measured as reference values for gas circuit switching in the adsorption process.
  • the point is to refer to the ozone supply amount calculated by the control unit 6 from the ozone flow rate.
  • the operation of the ozone supply device 400 will be described. Also in the ozone supply device 400 of the fourth embodiment, as in the case of the first embodiment, the first exhaust gas circuit R0a is controlled by opening and closing the circuit switch 5 by a control command from the control unit 6. A second exhaust gas circuit R0b, a first adsorption / recovery gas circuit R1a and a second adsorption / recovery gas circuit R1b, a first supply gas circuit R2a, and a second supply gas circuit R2b are formed.
  • the first exhaust gas circuit R0a and the second exhaust gas circuit R0b, the first adsorption recovery gas circuit R1a and the second adsorption recovery gas circuit R1b, the first supply gas circuit R2a and the ozone supply device 400 The configuration of the second supply gas circuit R2b and its operation will be described.
  • the first adsorption step by controlling the opening and closing of the circuit switch 5 by a control command from the control unit 6, the first exhaust gas circuit R0a shown in FIG. 2 and the first adsorption recovery gas circuit R1a shown in FIG. To form.
  • the operations and effects of the first exhaust gas circuit R0a and the first adsorption / recovery gas circuit R1a formed in this case are the same as in the case of the first embodiment (FIGS. 2 and 3).
  • the first ozone residual set value A and the second ozone residual set value B (however, the first ozone residual set value A) set in advance in the control unit 6 are set.
  • the control unit 6 switches the circuit when the ozone residual amount Q3 calculated by the control unit 6 is the following condition with respect to the second ozone residual set value B).
  • the first adsorption recovery gas circuit R1a is selected and the gas circuit is not switched.
  • the first 1 The gas circuit is switched from the exhaust gas circuit R0a to the first adsorption recovery gas circuit R1a. Further, when the ozone residual amount Q3 is equal to or higher than the second ozone residual set value B, the first exhaust gas circuit R0a is selected and the gas circuit is not switched.
  • the control unit 6 can select a gas circuit having a small amount of ozone discharged to the outside from the calculated residual ozone amount Q3.
  • the control unit 6 operates when the amount of ozone adsorbed on the adsorbent 4a housed in the first adsorption / desorption tower 3a reaches a certain amount, or when the adsorbing time elapses for a predetermined time.
  • the process shifts to the first supply process by controlling the circuit switch 5.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the first supply gas circuit R2a shown in FIG. Since the operation and operation / effect of the first supply gas circuit R2a formed in this case are the same as those in the case of the first embodiment (FIG. 4), detailed description thereof will be omitted here.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the second exhaust gas circuit R0b shown in FIG. Since the operation and the effect of the second exhaust gas circuit R0b formed in this case are the same as those in the case of the first embodiment (FIG. 5), detailed description thereof will be omitted here.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, whereby the second adsorption recovery gas circuit R1b shown in FIG. 6 is formed. Since the operation and effect of the second adsorption recovery gas circuit R1b formed in this case are the same as those in the case of the first embodiment (FIG. 6), detailed description thereof will be omitted here.
  • the first ozone residual set value A and the second ozone residual set value B (however, the first ozone residual set value A) set in advance in the control unit 6 are set. If the ozone residual amount Q3 calculated by the control unit 6 meets the following conditions with respect to the second ozone residual set value B), the control unit 6 circuits according to the following conditions. Controls switching. First, when the ozone residual amount Q3 is equal to or less than the first ozone residual set value A, the second adsorption recovery gas circuit R1b is selected and the gas circuit is not switched.
  • the first 2 The gas circuit is switched from the exhaust gas circuit R0b to the second adsorption recovery gas circuit R1b. Further, when the ozone residual amount Q3 is equal to or higher than the second ozone residual set value B, the second exhaust gas circuit R0b is selected and the gas circuit is not switched.
  • the control unit 6 can select a gas circuit with a small amount of ozone discharged to the outside based on the calculated ozone residual amount Q3, and the adsorption / desorption tower 3a can be selected in the first supply step. It is possible to minimize the amount of leaked high-concentration ozone remaining in the ozone and the amount of ozone discharged without being adsorbed from the adsorption / desorption tower 3b in the second adsorption step.
  • the circuit switch 5 is opened and closed by a control command from the control unit 6, thereby forming the second supply gas circuit R2b shown in FIG. 7.
  • the operation and effect of the second supply gas circuit R2b formed in this case are the same as in the case of the first embodiment.
  • the ozone supply device 400 of the fourth embodiment includes the third concentration measuring unit 7c and the flow rate measuring unit 10, and the ozone concentration and flow rate measuring unit 10 measured by the third concentration measuring unit 7c.
  • control unit 6 is composed of a processor 600 and a storage device 601 as shown in FIG. 14 as an example of hardware.
  • the storage device includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory.
  • the processor 600 executes the program input from the storage device 601. In this case, a program is input from the auxiliary storage device to the processor 600 via the volatile storage device. Further, the processor 600 may output data such as a calculation result to the volatile storage device of the storage device 601 or may store the data in the auxiliary storage device via the volatile storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

前の供給工程時に残留した高濃度オゾンが、次の吸着工程時に漏出し廃棄されていた。このため、第1吸脱着塔(3a)および第2吸脱着塔(3b)と、第1吸脱着塔(3a)から排出されるガスを装置外へ排出する排気用ガス回路(R0)と、前記第1吸脱着塔(3a)から排出したガスを第2吸脱着塔(3b)に通してから装置外部へ排出する吸着回収用ガス回路(R1)と、排気用ガス回路(R0)と吸着回収用ガス回路(R1)の流路を切り替える回路切替器(5)と、第1吸脱着塔(3a)の状態と第2吸脱着塔(3b)の状態とに応じて回路切替器(5)の開閉を制御する制御部(6)とを備えた。

Description

オゾン供給装置およびオゾン供給方法
 本願は、オゾン供給装置およびオゾン供給方法に関するものである。
 オゾンは強力な酸化剤として水環境浄化、半導体洗浄等、多岐に渡る分野で利用されている。オゾンを発生させるオゾン発生装置のオゾン濃度の上限値は体積分率20%程度である。このため、吸着剤が充填された吸脱着塔を使用して、オゾン発生装置で生成された混合ガス(酸素とオゾン)を、吸着、濃縮、脱着を行うことによって高濃度のオゾンを得ることが行われている。
 オゾン供給装置においては、オゾン供給対象にオゾンを供給する量を変更可能な制御が望まれる。
 一方、オゾンを利用する側(需要側)、例えば廃水処置においては、一般的に、流入する廃水の流入量および水質が時々刻々と変化する。そのため、廃水処理に必要なオゾンの最適な供給量も時々刻々と変化する。したがって、一定量のオゾンが供給される場合には、廃水処理量に対してオゾン供給量が過剰又は過小となる状態が生じ得る。オゾンの供給量が過剰であれば不経済であり、オゾンの供給量が過小であれば、処理が不十分になる恐れが生じる。そのため、オゾン供給装置においては、オゾンの需要の変動に応じた供給量とする制御が求められる。
 しかし、オゾンを供給する側としては、オゾンを効率良く製造することおよび安定して供給することが必要である。そのため、従来技術として、複数の吸脱着塔を備え、吸脱着搭によりオゾンが吸着された後のガスをオゾン発生器に戻す循環配管と、吸脱着搭からオゾンを取り出すオゾン放出手段とを備え、オゾンを吸着貯蔵する際に吸脱着塔から漏れ出たオゾンを別の吸脱着塔で吸着回収することにより、吸着時に廃棄されるオゾンを利用可能とする技術(特許文献1)が提案されている。
特開平09‐235104号公報
 しかし、従来技術においては、オゾンを供給した後の吸脱着塔を次サイクルの吸着回収用として使用するため、前のオゾンを供給する工程時に残留した高濃度オゾンが、吸着の工程の開始の際に吸脱着塔に導入される酸素および低濃度のオゾンによって吸脱着塔出口に押し出され、吸脱着塔から漏出させられる。このため高濃度のオゾンが廃棄され、製造したオゾンを有効に利用できる割合(オゾン利用率)が低下し、装置のランニングコストが増加するという問題が生じていた。
 本願は、前述のような課題を解決するための技術を開示するものであり、オゾン利用率の向上を実現するオゾン供給装置およびオゾン供給方法を提供することを目的とする。
 本願に開示されるオゾン供給装置は、吸着剤が収容された第1吸脱着塔および第2吸脱着塔によりオゾンガスを濃縮して供給するオゾン供給装置において、前記第1吸脱着塔から排出されるガスを装置外へ排出する排気用ガス回路と、前記排気用ガス回路とは異なり前記第1吸脱着塔から排出したガスを前記第2吸脱着塔に通してから装置外部へ排出する吸着回収用ガス回路と、前記排気用ガス回路と前記吸着回収用ガス回路の流路を切り替える回路切替器と、前記第1吸脱着塔の状態と前記第2吸脱着塔の状態とに応じて前記回路切替器の開閉を制御する制御部を備えたものである。
 本願は、第1吸脱着塔の状態と、第2吸脱着塔の状態とを比較した結果に応じて、第1吸脱着塔のオゾンガスを排気するか、第2吸脱着塔に通すようにするかを選択して制御するようにしたので、第1吸脱着塔の吸着工程において生成され、供給工程時に残留した高濃度のオゾンガスが漏出することを抑制することが可能となり、オゾン利用率の向上を実現することができる。
実施の形態1によるオゾン供給装置を示す構成図である。 実施の形態1のオゾン供給装置の第1吸着工程において第1吸脱着塔からガスを装置外へ排出する経路を示すガス回路図である。 実施の形態1のオゾン供給装置の第1吸着工程において第1吸脱着塔から排出したガスを第2吸脱着塔に通してから装置外部へ排出する経路を示すガス回路図である。 実施の形態1のオゾン供給装置の第1供給工程において第1吸脱着塔から供給対象へガスを供給する経路を示すガス回路図である。 実施の形態1のオゾン供給装置の第2吸着工程において第1吸脱着塔から排出されるガスを装置外へ排出する経路を示すガス回路図である。 実施の形態1のオゾン供給装置の第2吸着工程において第1吸脱着塔から排出したガスを第2吸脱着塔に通してから装置外部へ排出する経路を示すガス回路図である。 実施の形態1のオゾン供給装置の第2供給工程において第1吸脱着塔から供給対象へガスを供給する経路を示すガス回路図である。 実施の形態1のオゾン供給装置の吸着工程における外部に排出されるオゾン化ガスのオゾン濃度の経時変化を、比較例1と比較して示す特性図である。 実施の形態1のオゾン供給装置の吸着工程における外部に排出されるオゾン化ガスのオゾン濃度の経時変化を、比較例2と比較して示す特性図である。 実施の形態1のオゾン供給装置の改良例の吸着工程における外部に排出されるオゾン化ガスのオゾン濃度の経時変化を、実施の形態1のオゾン供給装置と比較して示す特性図である。 実施の形態2によるオゾン供給装置を示す構成図である。 実施の形態3によるオゾン供給装置を示す構成図である。 実施の形態4によるオゾン供給装置を示す構成図である。 実施の形態の制御部の構成を示すブロック図である。
実施の形態1.
 図1は本願の実施の形態1のオゾン供給装置を示す構成図である。
 この実施の形態1のオゾン供給装置100は、原料ガス源1、オゾン発生部2、第1吸脱着塔3a、第2吸脱着塔3bを備えている。第1吸脱着塔3aおよび第2吸脱着塔3bの内部には、吸着剤4a、4bが充填されている。オゾン発生部2と第1吸脱着塔3aとの間、オゾン発生部2と第2吸脱着塔3bとの間、第1吸脱着塔3aと第2吸脱着塔3bとの間には、それぞれガスを流通させるガス回路が設けられている。それぞれのガス回路には回路切替器5が設けられている。この回路切替器5は、制御部6によって開閉が制御されている。制御部6は、第1濃度計測部7aによって計測された測定値と第2濃度計測部7bによって計測された測定値に基づいて制御操作を行う。なお、図において、制御部6から回路切替器5への信号線の表示は、省略されている。
 回路切替器5は、各構成要素間を接続するために設置されたガス回路を開閉することにより、排気用ガス回路R0a、R0b、吸着回収用ガス回路R1a、R1b、供給用ガス回路R2a、R2bをそれぞれ選択的に形成することができる。
 ここでは、オゾン発生部2と第1吸脱着塔3aの第1入出口3a1とを接続するガス回路の途中に設置されたものを第1回路切替器5a1、オゾン発生部2と第2吸脱着塔3bの第1入出口3b1とを接続するガス回路の途中に設置されたものを第5回路切替器5b1、第1濃度計測部7aから外部に開口されたガス回路の途中に設置されたものを第2回路切替器5a2、第2濃度計測部7bから外部に開口されたガス回路の途中に設置されたものを第6回路切替器5b2、第1濃度計測部7aから第2吸脱着塔3bとを接続するガス回路の途中に設置されたものを第3回路切替器5a3、第2濃度計測部7bから第1吸脱着塔3aとを接続するガス回路の途中に設置されたものを第7回路切替器5b3、第1吸脱着塔3aの第1入出口3a1から外部に開口されたガス回路の途中に設置されたものを第4回路切替器5a4、第2吸脱着塔3bの第1入出口3b1から外部に開口されたガス回路の途中に設置されたものを第8回路切替器5b4、とそれぞれ称するものとする。
 なお、ここで、第1~第4回路切替器5a1~5a4、第5~第8回路切替器5b1~5b4を総称するときには単に回路切替器と称して符号5を用いている。
 また、以下において、酸素、窒素、窒素酸化物等のオゾン以外のガスを原料ガスと称するものとし、また、原料ガスとオゾンガスとの混合体をオゾン化ガスと称するものとする。
 原料ガス源1は、例えばボンベ、PSA(Pressure Swing Adsorption)装置などが使用され、原料ガス源1はオゾン発生部2に原料ガスを供給する。また、オゾン発生部2は、原料ガス源1から供給される原料ガスを利用してオゾンを含むオゾン化ガスを生成する。
 第1吸脱着塔3aおよび第2吸脱着塔3bは、ガスを導入および排出する入出口を備えており、第1吸脱着塔3aの下部に設置された入出口を第1入出口3a1、第1吸脱着塔3aの上部に設置された入出口を第2入出口3a2、第2吸脱着塔3bの下部に設置された入出口を第1入出口3b1、第2吸脱着塔3bの上部に設置された入出口を第2入出口3b2、とそれぞれ称するものとする。なお、ここで、「上部」、「下部」として表現しているが、これは、図面上の説明であって、上下左右の配置は、適宜任意に変更できる。
 第1吸脱着塔3aおよび第2吸脱着塔3bの吸着剤4a、4bは、オゾン発生部2から第1吸脱着塔3aまたは第2吸脱着塔3bに導入したオゾン化ガスに含まれるオゾンを優先的に吸着する材料が好適に使用される。この場合の吸着剤4a、4bとしては、共に同じ種類のものであっても、あるいは互いに異なる種類のものであってもよい。吸着剤4a、4bの具体例としては、例えばシリカゲルが使用される。吸着剤4a、4bの吸着特性によって、吸着剤4a、4bの表面でのオゾン濃度はオゾン化ガス中のオゾン濃度よりも高くなる。
 制御部6は、例えばマイクロコンピュータ等で構成され、回路切替器5に制御指令を与えることによりその開閉動作を制御する。なお、回路切替器5の開閉動作は、制御部6からの制御指令だけでなく、手動によって動作させることも可能である。
 第1吸脱着塔3aの第2入出口3a2から外部に開口されたガス回路の途中には、第1濃度計測部7aと第2回路切替器5a2が配置され、第2吸脱着塔3bの第2入出口3b2から外部に開口されたガス回路の途中には、第2濃度計測部7bと第6回路切替器5b2が配置されている。すなわち、第1濃度計測部7aは、吸着回収用ガス回路R1と排気用ガス回路R0との分岐点と第1吸脱着塔3aとの間に設置され、第2濃度計測部7bは、吸着回収用ガス回路R1と排気用ガス回路R0との分岐点と第2吸脱着塔3bとの間に設置されている。第1濃度計測部7aおよび第2濃度計測部7bは、第1吸脱着塔3aおよび第2吸脱着塔3bから排出されるオゾンもしくは酸素の濃度を計測するもので、計測の方式および構成は問わない。
 次に、上記構成を備えたオゾン供給装置100の動作について説明する。
 この実施の形態1のオゾン供給装置100は、制御部6からの制御指令により、回路切替器5を開閉動作させることにより、排気用ガス回路R0、吸着回収用ガス回路R1、および供給用ガス回路R2を選択的に形成する。
 以下、排気用ガス回路R0、吸着回収用ガス回路R1、および供給用ガス回路R2の構成およびその作用について、図2から図7を用いてさらに詳述する。なお、ここでは排気用ガス回路R0および吸着回収用ガス回路R1におけるガス処理工程を吸着工程と称し、供給用ガス回路R2におけるガス処理工程を供給工程と称する。
 まずは、オゾン発生部2で生成された混合ガスを第1吸脱着塔3aに導入する。混合ガスは、第1吸脱着塔3aの吸着剤4aに所定の圧力で吸着される。オゾンの方が酸素より優先的に吸着剤4aに吸着され易い性質のため、吸着されなかった酸素が優先的に第1吸脱着塔3aから漏れ出される。その後、オゾンの方が吸着剤4aから脱着されにくい性質を利用して、第1吸脱着塔3aの圧力を徐々に低下させることによって酸素を優先的に選択的に引き抜く。そして大半の酸素が引き抜かれることによって第1吸脱着塔3aの内のオゾン濃度が高められ、所定濃度になった段階で、第1吸脱着塔3aの出口を、供給用ガス回路R2として、オゾンを供給する先の供給対象に切り替え、高濃度のオゾンを送出する。
 また、排気用ガス回路R0は、第1吸脱着塔3aおよび第2吸脱着塔3bをオゾン吸着用として使用している回路である。吸着回収用ガス回路R1は、第1吸脱着塔3aをオゾン吸着用として使用し、第2吸脱着塔3bを第1吸脱着塔3aから漏出したオゾンの吸着回収用とした場合、および第2吸脱着塔3bをオゾン吸着用として使用し、第1吸脱着塔3aを第2吸脱着塔3bから漏出したオゾンの吸着回収用とした場合の回路である。さらに、供給用ガス回路R2は、第1吸脱着塔3aおよび第2吸脱着塔3bから高濃度のオゾンを供給先に送出する回路である。
 第1吸着工程においては、図2に示す第1排気用ガス回路R0aと、図3に示す第1吸着回収用ガス回路R1aとが、吸脱着塔3から排出されるガス濃度を参照し、装置外に排出されるオゾン量が少なくなるように回路が選択される。
 第1排気用ガス回路R0aは、図2に示すように、制御部6からの制御指令により、第1回路切替器5a1および第2回路切替器5a2を共に開状態、第3回路切替器5a3、第4回路切替器5a4、第5回路切替器5b1、第6回路切替器5b2、第7回路切替器5b3、および第8回路切替器5b4がいずれも閉状態にすることにより形成される。
 この第1排気用ガス回路R0aでは、原料ガス源1から酸素を含む原料ガスがオゾン発生部2へ導入され、オゾン発生部2は原料ガスをオゾン化する。オゾン発生部2で発生されたオゾン化ガスは、第1回路切替器5a1を通じて第1吸脱着塔3aの第1入出口3a1から第2入出口3a2の方向で通過し、内に収容された吸着剤4aにオゾンが吸着される。
 第1吸脱着塔3a内で吸着されなかったオゾン化ガスは、第1濃度計測部7a、第2回路切替器5a2を通じて外部に排出される。
 第1吸着回収用ガス回路R1aは、図3に示すように、制御部6からの制御指令により、第1回路切替器5a1、第3回路切替器5a3、および第6回路切替器5b2が開状態にされ、第2回路切替器5a2、第4回路切替器5a4、第5回路切替器5b1、第7回路切替器5b3、および第8回路切替器5b4が閉状態にされることにより形成される。
 この第1吸着回収用ガス回路R1aでは、原料ガス源1から酸素を含む原料ガスがオゾン発生部2へ導入され、オゾン発生部2は原料ガスをオゾン化する。オゾン発生部2で発生されたオゾン化ガスは、第1回路切替器5a1を通じて第1吸脱着塔3aの第1入出口3a1から第2入出口3a2の方向で通過し、吸着剤4aにオゾンが吸着される。
 第1吸脱着塔3a内で吸着されなかったオゾン化ガスは、第1濃度計測部7a、第3回路切替器5a3を通じて第2吸脱着塔3bの第1入出口3b1から第2入出口3b2の方向で通過し、吸着剤4bにオゾンが吸着される。第2吸脱着塔3bの第2入出口3b2から排出されたガスは、第2濃度計測部7b、第6回路切替器5b2を通じて外部に排出される。
 吸着工程中のガス回路は、制御部6が、制御部6に入力された第1濃度計測部7aおよび第2濃度計測部7bの測定値を参照し、計測ガスがオゾンの場合には、第1濃度計測部7aの測定値が、第2濃度計測部7bの測定値以下の場合は、第1排気用ガス回路R0aを選択する。また、第1濃度計測部7aの測定値が、第2濃度計測部7bの測定値よりも大きい場合は、第1吸着回収用ガス回路R1aを選択する。
 ここで、第1濃度計測部7aおよび第2濃度計測部7bの計測ガスがオゾンの場合を示したが、この計測ガスが酸素の場合には、結果が異なり、次のようになる。すなわち、計測ガスが酸素の場合には、第1濃度計測部7aの測定値が、第2濃度計測部7bの測定値よりも低い場合は、第1吸着回収用ガス回路R1aを選択し、第1濃度計測部7aの測定値が、第2濃度計測部7bの測定値以上の場合は、第1排気用ガス回路R0aを選択することになる。
 制御部6が、第1濃度計測部7aの測定値と第2濃度計測部7bの測定値の相違に応じてガスの流路を切り換えることにより、外部に排出されるオゾン量が少ないガス回路を選択できる。なお、第1濃度計測部7aおよび第2濃度計測部7bにおいて測定する対象のガスをオゾンとするのか酸素とするのかについて説明したが、これは、原料ガスの主成分が酸素であることから、第1濃度計測部7aおよび第2濃度計測部7bに導入される主要なガス成分はオゾンと酸素である。そのため、酸素の濃度を計測することで、間接的にオゾンの濃度を検知することができ、計測ガスを変えることによって、測定条件の大小関係が反対となる。
 制御部6は、第1吸脱着塔3aのうちに収容されている吸着剤4aへのオゾンの吸着量が一定量に達した場合、または吸着に係る時間が所定時間を経過した場合、あるいは動作移行信号が外部より入力される場合など、予め設定した条件を満たしたと判断すると、回路切替器5を制御することにより、第1供給工程に移行する。
 第1供給工程においては、図4に示す第1供給用ガス回路R2aの形成を行う。
 第1供給用ガス回路R2aは、図4に示すように、制御部6からの制御指令により、第4回路切替器5a4が開状態にされ、第1回路切替器5a1、第2回路切替器5a2、第3回路切替器5a3、第5回路切替器5b1、第6回路切替器5b2、第7回路切替器5b3、および第8回路切替器5b4がいずれも閉状態にされることにより形成される。
 この第1供給用ガス回路R2aでは、第1吸脱着塔3aの中のガスが、第1入出口3a1から第4回路切替器5a4を通じて外部の供給対象すなわちオゾンガスを必要とする需要先に向けて排出される。
 制御部6は、オゾンガスの需要先から、オゾンガスの必要量の要求が寄せられた場合、定常的な要求との差を変化量として把握して、定常的に脱着しているオゾン量を変化量に応じて、回路切替器5の切り替えの時間を変更することによって、最適なオゾン量を供給することができる。制御部6は、算出された切り替えの時間に到達した際に、回路切替器5を制御することにより、第2吸着工程に移行する。需要先から要求されたオゾンガスの必要量が最大値以外である場合、第1吸脱着塔3aの内に収容されている吸着剤4aには一部のオゾンガスが残留した状態で、第2吸着工程に移行することになる。
 第2吸着工程においては、制御部6において、第1吸脱着塔3aから排出されるガス濃度と第2吸脱着塔3bから排出されるガス濃度とを参照し、図5に示す第2排気用ガス回路R0bと図6に示す第2吸着回収用ガス回路R1bのうち、装置外に排出されるオゾン量が少なくなるように回路が選択される。
 第2排気用ガス回路R0bは、図5に示すように、制御部6からの制御指令により、第5回路切替器5b1および第6回路切替器5b2が共に開状態とされ、第1回路切替器5a1、第2回路切替器5a2、第3回路切替器5a3、第4回路切替器5a4、第7回路切替器5b3、および第8回路切替器5b4がいずれも閉状態にされることにより形成される。
 この第2排気用ガス回路R0bでは、原料ガス源1から酸素を含む原料ガスがオゾン発生部2へ導入され、オゾン発生部2は原料ガスをオゾン化する。オゾン発生部2で発生されたオゾン化ガスは、第5回路切替器5b1を通じて第2吸脱着塔3bの第1入出口3b1から第2入出口3b2の方向で通過し、オゾン化ガスのうちのオゾンが、吸着剤4bによって吸着される。
 第2吸脱着塔3b内で吸着されなかったオゾン化ガスは、第2濃度計測部7b、第6回路切替器5b2を通じて外部に排出される。
 第2吸着回収用ガス回路R1bは、図6に示すように、制御部6からの制御指令により、第5回路切替器5b1、第7回路切替器5b3、および第2回路切替器5a2がいずれも開状態とされ、第1回路切替器5a1、第3回路切替器5a3、第4回路切替器5a4、第6回路切替器5b2、および第8回路切替器5b4がいずれも閉状態にされることにより形成される。
 この第2吸着回収用ガス回路R1bでは、原料ガス源1から酸素を含む原料ガスがオゾン発生部2へ導入され、オゾン発生部2は原料ガスをオゾン化する。オゾン発生部2で発生されたオゾン化ガスは、第5回路切替器5b1を通じて第2吸脱着塔3bの第1入出口3b1から第2入出口3b2の方向で通過し、オゾン化ガスのうちのオゾンが、吸着剤4bによって吸着される。
 第2吸脱着塔3b内で吸着されなかったオゾン化ガスは、第2濃度計測部7b、第7回路切替器5b3を通じて第1吸脱着塔3aの第1入出口3a1から第2入出口3a2の方向で通過し、内の吸着剤4aにオゾンが吸着される。第1吸脱着塔3aの第2入出口3a2から排出されたガスは、第1濃度計測部7a、第2回路切替器5a2を通じて外部に排出される。
 第1供給工程において第1吸脱着塔3aに残留した高濃度オゾンは、第2吸脱着塔3b内で吸着されなかったオゾン化ガスを第1吸脱着塔3aの第1入出口3a1に導入することにより、ガス置換によって第1吸脱着塔3aの第2入出口3a2に向けて押し出され、所定時間後に第2入出口3a2から装置外部に排出される。
 吸着工程中のガス回路は、制御部6が、制御部6に入力された第1濃度計測部7aの測定値および第2濃度計測部7bの測定値を参照し、以下の条件で決定する。
 すなわち、計測ガスがオゾンである場合では、第1濃度計測部7aの測定値が、第2濃度計測部7bの測定値よりも低い場合には、第2排気用ガス回路R0bを選択し、第1濃度計測部7aの測定値が、第2濃度計測部7bの測定値以上の場合は、第2吸着回収用ガス回路R1bを選択する。
 また、計測ガスが酸素である場合では、第1濃度計測部7aの測定値が第2濃度計測部7bの測定値以下である場合には、第2吸着回収用ガス回路R1bを選択し、第1濃度計測部7aの測定値が第2濃度計測部7bの測定値のよりも高い場合には、第2排気用ガス回路R0bを選択する。
 この制御を制御部6が行うことによって、外部に排出されるオゾン量が少ないガス回路を選択でき、第1供給工程において第1吸脱着塔3aに残留した高濃度オゾンの漏出量、および第2吸着工程において第2吸脱着塔3bから吸着されずに排気されるオゾンの漏出量を最小限に抑えることが可能となる。
 制御部6は、第2吸脱着塔3bの内に収容されている吸着剤4bへのオゾンの吸着量が一定量に達した場合、または吸着に係る時間が所定時間を経過した場合、あるいは動作移行信号が外部より入力される場合など、予め設定した条件を満たしたと判断すると、回路切替器5を制御することにより、第2供給工程に移行する。そのため、制御部6には、第1吸脱着塔3aおよび第2吸脱着塔3bの吸着剤4a、4bの吸着時間と吸着量との関係の情報を保有している。
 第2供給工程においては、図7に示す第2供給用ガス回路R2bの形成を行う。
 第2供給用ガス回路R2bは、図7に示すように、制御部6からの制御指令により、第8回路切替器5b4が開状態にされ、第1回路切替器5a1、第2回路切替器5a2、第3回路切替器5a3、第4回路切替器5a4、第5回路切替器5b1、第6回路切替器5b2、および第7回路切替器5b3がいずれも閉状態にされることにより形成される。
 この第2供給用ガス回路R2bでは、第2吸脱着塔3bの第1入出口3b1から第8回路切替器5b4を通じて外部の供給対象すなわちオゾンを必要とする需要先に向けて送出される。
 この第2供給工程においても、第1供給用ガス回路R2aと同様に、制御部6は、オゾンガスの需要先から、オゾンガスの必要量の要求が寄せられた場合、定常的な要求との差を変化量として把握して、定常的に脱着しているオゾン量を変化量に応じて、回路切替器5の切り替えの時間を変更することによって、供給対象の必要注入量に応じた最適なオゾン量を供給することができる。
 制御部6は、第2吸脱着塔3bの内に収容されている吸着剤4bから脱着したオゾンの割合が吸着したオゾン量の95%以下の領域において、必要注入量の変動に応じて発令される動作移行信号が外部より入力されたと判断すると、回路切替器5を制御することにより、再度、第1吸着工程に移行する。
 次に、この実施の形態1のオゾン供給装置100の有利性を理解するために、比較例1を説明する。
 比較例1は、吸着用の吸脱着塔3から直接外部に排出されるガス回路である第1排気用ガス回路R0aおよび第2排気用ガス回路R0bが設けられていない場合を取り上げている。すなわち、吸着工程におけるガス回路を第1吸着回収用ガス回路R1aおよび第2吸着回収用ガス回路R1bのみとした場合の事例である。
 比較例1は、吸着工程におけるガス回路が吸着回収用ガス回路R1のみであるため、工程中は常に吸着用の吸脱着塔から漏出するガスが吸着回収用吸脱着塔に導入される。そのため、前サイクルの供給工程終了時において残留した高濃度オゾンが、ガス置換によって第1吸脱着塔の第2入出口に向けて押し出される時間が長くなり、装置外部に排出されるリスクが高まる。
 次に、実施の形態1のオゾン供給装置100と比較例1のオゾン供給装置とのオゾンの吸着工程におけるガス回路切替に伴う作用効果の相違点について、さら詳しく説明する。
 図8は、実施の形態1のオゾン供給装置100で形成される排気用ガス回路R0と吸着回収用ガス回路R1において吸脱着塔3から外部に排出されるオゾン化ガスに含まれるオゾンの濃度の経過時間Tに伴う変化を、比較例1で形成される吸着回収用ガス回路R1の場合と対比して示す特性図である。
 図8において、縦軸は、排出オゾン濃度を表し、横軸は経過時間を表している。この図中、実線Aは、実施の形態1による排出オゾン濃度の時間経過による変化を表している。そして、点線の曲線Bは、比較例1による排出オゾン濃度の時間経過による変化を表している。また、図中の矢印のうち、上段の矢印は比較例1による、ガス回路R1のみの状態を表し、下段の矢印は、実施の形態1による、ガス回路R0とガス回路R1の切替の状態を表している。
 比較例1の場合には、吸着工程中においては吸着回収用ガス回路R1のみが形成されるため、吸着用の吸脱着塔から漏出するガスが吸着回収用の吸脱着塔に導入される。そのため、吸着工程の序盤においては、吸着回収用の吸脱着塔の第2入出口から排出されるガスのほとんどは酸素ガスであり、破線で示すように、外部に排出されるオゾンガス濃度は低い状態となる。しかし、吸着工程の終盤においては、前サイクルの供給工程終了時において残留した高濃度オゾンが、吸着回収用の吸脱着塔の第2入出口から排出され、破線で示すように、外部に排出されるオゾンガス濃度は非常に高い状態となる。そのため、製造したオゾンの多くを外部に排出することとなり、オゾン利用率が大幅に低下する。
 これに対して、実施の形態1のオゾン供給装置100では、吸着工程中においては吸着用の吸脱着塔および吸着回収用の吸脱着塔から排出されるガスの濃度により、排気用ガス回路R0もしくは吸着回収用ガス回路R1が選択される。そのため、吸着工程の序盤においては、吸着用吸脱着塔の第2入出口から排出されるガスのほとんどは酸素ガスであり、実線で示すように、外部に排出されるオゾンガス濃度は低い状態となる。吸着工程の中盤において、吸着用の吸脱着塔から排出されるガス濃度と吸着回収用の吸脱着塔から排出されるガス濃度の関係が変化した際に、制御部6によって、排気用ガス回路R0から吸着回収用ガス回路R1にガス回路を切り替えるため、実線で示すように、吸着工程の終盤においても外部に排出されるオゾンガス濃度が低い状態を維持できる。そのため、製造したオゾンの多くを吸脱着塔に貯蔵することができるため、オゾン利用率を高く維持することができる。
 以上説明したように、この実施の形態1のオゾン供給装置100は、比較例1に比べて、装置外部に排出されるオゾンガス濃度を低く維持できるため、高いオゾン利用率を実現することができる。
 更に、この実施の形態1のオゾン供給装置100の有利性を説明するために、比較例2を採りあげる。
 比較例2のオゾン供給装置は、吸着工程におけるガス回路の切替において、吸着回収用ガス回路R1から排気用ガス回路R0に切り替える制御が設けられていない場合を想定する。すなわち、吸着工程におけるガス回路切替は、排気用ガス回路R0から吸着回収用ガス回路R1のみである場合である。
 この比較例2においても、実施の形態1の場合と同様に、制御部6からの制御指令により、回路切替器5を開閉制御することにより、第1排気用ガス回路R0aおよび第2排気用ガス回路R0b、第1吸着回収用ガス回路R1aおよび第2吸着回収用ガス回路R1b、第1供給用ガス回路R2aおよび第2供給用ガス回路R2bが形成される。
 比較例2においては、吸着工程におけるガス回路切替は、排気用ガス回路R0から吸着回収用ガス回路R1のみであるため、吸着回収用ガス回路R1にガス回路を切り替えた後は、吸着工程終了まで吸着用吸脱着塔から漏出するガスが吸着回収用吸脱着塔に導入される。そのため、実施の形態1と比較して、前サイクルの供給工程終了時において残留した高濃度オゾンが、ガス置換によって吸脱着塔の第2入出口に向けて押し出される時間が長くなり、装置外部に排出されるリスクが高まる。
 次に、実施の形態1のオゾン供給装置100と比較例2とのオゾンの吸着工程におけるガス回路切替に伴う作用効果の相違点について、さら詳しく説明する。
 図9は、実施の形態1のオゾン供給装置100で形成される排気用ガス回路R0と吸着回収用ガス回路R1を双方向に切り替えた運転を実施した場合の、吸脱着塔から外部に排出されるオゾン化ガスに含まれるオゾンの濃度の経過時間に伴う変化を、比較例2のオゾン供給装置で形成される排気用ガス回路R0から吸着回収用ガス回路R1に一方向に切り替えた運転を実施した場合と対比して示す特性図である。
 図9において、縦軸は、排出オゾン濃度を表し、横軸は経過時間を表している。この図中、実線Aは、実施の形態1による排出オゾン濃度の時間経過による変化を表している。そして、点線の曲線Cは、比較例2による排出オゾン濃度の時間経過による変化を表している。また、図中の矢印のうち、上段の矢印は比較例2による、ガス回路R0とガス回路R1の切替の状態を表し、下段の矢印は、実施の形態1による、ガス回路R0からガス回路R1への切替と、更にガス回路R1からガス回路R0への切替の状態を表している。
 吸着工程の序盤から中盤における排気用ガス回路R0から吸着回収用ガス回路R1に切り替えるまでの運転においては、実施の形態1と比較例2とは、外部に排出されるオゾン濃度の時間依存性については同様の傾向を示すため、ここでの詳しい説明は省略する。
 比較例2は、吸着工程の終盤において、吸着回収用吸脱着塔から排出されるオゾン濃度に関わらず、吸着回収用ガス回路R1を形成し続けるため、吸着回収用吸脱着塔に常に吸着用吸脱着塔から漏出するガスが吸着回収用吸脱着塔に導入される。そのため、前サイクルの供給工程終了時において残留した高濃度オゾンが、ガス置換によって吸脱着塔の第2入出口に向けて押し出されることにより装置外部に排出され、破線で示すように、外部に排出されるオゾンガス濃度は高い状態となる。そのため、製造したオゾンの多くを外部に排出することとなり、オゾン利用率が低下する。
 これに対して、実施の形態1のオゾン供給装置100では、吸着工程中においては吸着用吸脱着塔および吸着回収用吸脱着塔から排出されるガスの濃度により、排気用ガス回路R0もしくは吸着回収用ガス回路R1が選択される。吸着工程の終盤においても、前サイクルの供給工程終了時において残留した高濃度オゾンが、ガス置換によって吸脱着塔の第2入出口に向けて押し出されることにより装置外部に排出されそうな場合、ガス回路を吸着回収用ガス回路R1から排気用ガス回路R0に切り替えるため、実線で示すように、吸着工程の終盤においても外部に排出されるオゾンガス濃度が低い状態を維持できる。そのため、製造したオゾンの多くを吸脱着塔に貯蔵することができるため、オゾン利用率を高く維持することができる。
 以上説明したように、この実施の形態1のオゾン供給装置100は、比較例2に比べて、装置外部に排出されるオゾンガス濃度を低く維持できるため、高いオゾン利用率を実現することができる。
 実施の形態1のオゾン供給装置100の改良例について説明する。
 この改良例は、実施の形態1のオゾン供給装置100の吸着工程において、あらかじめ設定した時間、もしくは吸着用吸脱着塔から排出されるガス濃度があらかじめ設定した濃度に達するまでの時間は排気用ガス回路R0を選択し、その後に吸着用吸脱着塔および吸着回収用吸脱着塔から排出されるガス濃度に応じたガス回路切替に移行させるというものである。したがってオゾン供給装置の構成は実施の形態1の構成と同じである。
 次に改良例のオゾン供給装置の動作について説明する。
 この改良例のオゾン供給装置においても、実施の形態1の場合と同様に、制御部6からの制御指令により、回路切替器5を開閉制御することにより、第1排気用ガス回路R0aおよび第2排気用ガス回路R0b、第1吸着回収用ガス回路R1aおよび第2吸着回収用ガス回路R1b、第1供給用ガス回路R2aおよび第2供給用ガス回路R2bが形成される。
 以下、この改良例のオゾン供給装置の第1排気用ガス回路R0aおよび第2排気用ガス回路R0b、第1吸着回収用ガス回路R1aおよび第2吸着回収用ガス回路R1b、第1供給用ガス回路R2aおよび第2供給用ガス回路R2bの切替動作について説明する。
 第1吸着工程の序盤においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図2で示す第1排気用ガス回路R0aを形成する。この場合に形成される第1排気用ガス回路R0aの動作および作用効果は、実施の形態1の場合(図2)と同じである。
 オゾン供給装置においては、制御部6にあらかじめ設定した時間、もしくは吸着用吸脱着塔から排出されるガス濃度が制御部6にあらかじめ設定した濃度に達するまでの時間が経過するまでは、第1排気用ガス回路R0aを形成し続ける。時間または濃度についての条件のいずれかを満たした際に、吸着用吸脱着塔から排出されるガス濃度と吸着回収用吸脱着塔から排出されるガス濃度の関係により、第1排気用ガス回路R0aと吸着回収用ガス回路R1aのガス回路を切り替える制御を制御部6が開始する。
 第1吸着工程の中盤においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図3で示す第1吸着回収用ガス回路R1aを形成する。この場合に形成される第1吸着回収用ガス回路R1aの動作および作用効果は、実施の形態1の場合(図3)と同じである。
 第1供給工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図4で示す第1供給用ガス回路R2aを形成する。この場合に形成される第1供給用ガス回路R2aの動作および作用効果は、実施の形態1の場合(図4)と同じである。
 第2吸着工程の序盤においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図5で示す第2排気用ガス回路R0bを形成する。この場合に形成される第2排気用ガス回路R0bの動作および作用効果は、実施の形態1の場合(図5)と同じである。
 この改良例においては、制御部6にあらかじめ設定した時間、もしくは吸着用吸脱着塔から排出されるガス濃度が制御部6にあらかじめ設定した濃度に達するまでの時間が経過するまでは、第2排気用ガス回路R0bを形成し続ける。時間または濃度についての条件のいずれかを満たした際に、吸着用吸脱着塔から排出されるガス濃度と吸着回収用吸脱着塔から排出されるガス濃度の関係により、第2排気用ガス回路R0bと第2吸着回収用ガス回路R1bのガス回路を切り替える制御を制御部6が開始する。
 第2吸着工程の中盤においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図6で示す第2吸着回収用ガス回路R1bを形成する。この場合に形成される第2吸着回収用ガス回路R1bの動作および作用効果は、実施の形態1の場合(図6)と同じである。
 第2供給工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図7で示す第2供給用ガス回路R2bを形成する。この場合に形成される第2供給用ガス回路R2bの動作および作用効果は、実施の形態1の場合と同じである。
 次に、実施の形態1のオゾン供給装置100と改良例とのオゾンの吸着工程におけるガス回路切替に伴う作用効果の相違点について説明する。
 図10は、実施の形態1のオゾン供給装置100および改良例において形成される排気用ガス回路R0と吸着回収用ガス回路R1を双方向に切り替えた運転を実施した場合の吸脱着塔3から外部に排出されるオゾン化ガスに含まれるオゾンの濃度の、経過時間に伴う変化を示す特性図である。
 図10において、縦軸は、排出オゾン濃度を表し、横軸は経過時間を表している。この図中、実線Aは、実施の形態1による排出オゾン濃度の時間経過による変化を表している。そして、点線の曲線Dは、改良例による排出オゾン濃度の時間経過による変化を表している。また、図中の矢印のうち、上段の矢印は改良例による、ガス回路R0とガス回路R1の切替の状態を表し、下段の矢印は、実施の形態1による、ガス回路R0からガス回路R1への切替と、更にガス回路R1からガス回路R0への切替の状態を表している。
 吸着工程の序盤から中盤における排気用ガス回路R0から吸着回収用ガス回路R1に切り替えるまでの運転においては、実施の形態1のオゾン供給装置100と改良例とは、外部に排出されるオゾン濃度の時間依存性は同様の傾向を示す。
 実施の形態1のオゾン供給装置100においては、吸着工程中は常に、吸着用の吸脱着塔および吸着回収用の吸脱着塔から排出されるガスの濃度により、排気用ガス回路R0もしくは吸着回収用ガス回路R1が選択される。吸着工程の中盤において、吸着用の吸脱着塔および吸着回収用の吸脱着塔から排出されるオゾンガス濃度がともに小さい場合においても、ガス回路切替が実施される。そのため、吸着工程の終盤において、吸着回収用ガス回路R1の形成により、前サイクルの供給工程終了時に残留した高濃度オゾンが、ガス置換によって吸脱着塔の第2入出口に向けて押し出されることにより装置外部に排出され得る。その場合、ガス回路を吸着回収用ガス回路R1から排気用ガス回路R0に切り替えるため、図10中の破線で示すように、吸着工程の終盤においても外部に排出されるオゾンガス濃度が低い状態を維持できる。そのため、製造したオゾンの多くを吸脱着塔に貯蔵することができるため、オゾン利用率を高く維持することができる。すなわち、オゾン脱着が終了した時に、吸着したオゾンを吸脱着塔内に残留させることで供給する量を制限することができることになる。言い換えれば、供給先の必要量に応じて供給量をコントロールできるようになるということである。
 改良例の場合のオゾン供給装置においては、制御部6にあらかじめ設定した時間、もしくは吸着用吸脱着塔から排出されるガス濃度が制御部6にあらかじめ設定した濃度に達するまでの時間が経過するまでは、第2排気用ガス回路R0bを形成し続け、その後、すなわち所定時間が経過した後に吸着用吸脱着塔と吸着回収用吸着塔から排出されるガス濃度を参照したガス回路切替に移行する。そのため、吸着工程の中盤において、吸着用吸脱着塔および吸着回収用吸脱着塔から排出されるオゾンガス濃度がともに小さい場合には、排気用ガス回路R0を選択することになる。ガス回路切替のタイミングを終盤側にシフトすることにより、吸着工程の終盤における前サイクルの供給工程終了時において残留した高濃度オゾンの外部への漏出を遅らせることができるため、実施の形態1のオゾン供給装置100に比べて排出されるオゾン濃度の最大値が低下し、オゾン利用効率を更に向上することができる。
 以上説明したように、この実施の形態1のオゾン供給装置100においては、装置外部に排出されるオゾンガス濃度を低く維持できるため、高いオゾン利用率を実現することができる。
実施の形態2.
 実施の形態2のオゾン供給装置200を図11に基づいて説明する。
 実施の形態2のオゾン供給装置200と実施の形態1のオゾン供給装置100との差異は、吸着工程におけるガス回路切替の参照値として、実施の形態1では第1濃度計測部7aおよび第2濃度計測部7bで計測されるオゾン濃度および酸素濃度であったのに対して、実施の形態2では、第1吸脱着塔3a内の第1吸着剤4a上部に設置された第1温度計測部8aおよび第2吸脱着塔3b内の第2吸着剤4b上部に設置された第2温度計測部8bで計測された温度を参照する点である。
 その他の構成は実施の形態1の場合と同じであるので、図1に示した実施の形態1と対応もしくは相当する構成部分には、同一の符号を付してここでは詳しい説明は省略する。
 次にオゾン供給装置200の動作に関して説明する。
 この実施の形態2のオゾン供給装置200においては、実施の形態1の場合と同様に、制御部6からの制御指令により、回路切替器5を開閉制御することにより、第1排気用ガス回路R0aおよび第2排気用ガス回路R0b、第1吸着回収用ガス回路R1aおよび第2吸着回収用ガス回路R1b、第1供給用ガス回路R2aおよび第2供給用ガス回路R2bが形成される。
 以下、このオゾン供給装置200の第1排気用ガス回路R0aおよび第2排気用ガス回路R0b、第1吸着回収用ガス回路R1aおよび第2吸着回収用ガス回路R1b、第1供給用ガス回路R2aおよび第2供給用ガス回路R2bの構成およびその作用について、さらに詳述する。
 第1吸着工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図2で示す第1排気用ガス回路R0aおよび図3で示す第1吸着回収用ガス回路R1aを形成する。この場合に形成される第1排気用ガス回路R0aおよび第1吸着回収用ガス回路R1aの動作および作用効果は、実施の形態1の場合(図2および図3)と同じである。
 オゾン供給装置200においては、吸着工程中のガス回路は、制御部6が、制御部6に入力された第1温度計測部8aおよび第2温度計測部8bの測定値を参照し、第1温度計測部8aの測定値が、第2温度計測部8bの測定値以下である場合は、第1排気用ガス回路R0aを選択する。また、第1温度計測部8aの測定値が第2温度計測部8bの測定値よりも高い場合は、第1吸着回収用ガス回路R1aを選択するように制御する。
 制御部6がガス回路を切り替えるように回路切替器を制御することにより、外部に排出されるオゾン量が少ないガス回路を選択できる。
 制御部6は、第1吸脱着塔3aに収容されている吸着剤4aへのオゾンの吸着量が一定量に達した場合、または吸着に係る時間が所定時間を経過した場合、あるいは動作移行信号が外部より入力される場合など、予め設定した条件を満たしたと判断すると、回路切替器5を制御することにより、第1供給工程に移行する。
 第1供給工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図4で示す第1供給用ガス回路R2aを形成する。この場合に形成される第1供給用ガス回路R2aの動作および作用効果は、実施の形態1と同じである。
 第2吸着工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図5で示す第2排気用ガス回路R0bを形成する。この場合に形成される第2排気用ガス回路R0bの動作および作用効果は、実施の形態1と同じである。
 第2吸着工程の中盤においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図6で示す第2吸着回収用ガス回路R1bを形成する。この場合に形成される第2吸着回収用ガス回路R1bの動作および作用効果は、実施の形態1と同じである。
 吸着工程中のガス回路は、制御部6が、制御部6に入力された第1温度計測部8aおよび第2温度計測部8bの測定値を参照し、第1温度計測部8aの測定値が、第2温度計測部8bの測定値よりも低い場合は、第2吸着回収用ガス回路R1bを選択するように設定し、第1温度計測部8aの測定値が、第2温度計測部8bの測定値以上の場合は、第2排気用ガス回路R0bを選択するように設定する。
 制御部6が回路切替器5を制御することにより、外部に排出されるオゾン量が少ないガス回路を選択でき、第1供給工程において吸脱着塔3aに残留した高濃度オゾンの漏出量、および第2吸着工程において吸脱着塔3bから吸着されずに排気されるオゾンの漏出量を最小限に抑えることが可能となる。
 第2供給工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図7で示す第2供給用ガス回路R2bを形成する。この場合に形成される第2供給用ガス回路R2bの動作および作用効果は、実施の形態1の場合と同じである。
 以上説明したように、この実施の形態2のオゾン供給装置200は、温度計測部8を備え、計測される温度を参照したガス回路切替を行うことにより、濃度計測部7が無い構成においても、実施の形態1のオゾン供給装置100と同様に高いオゾン利用率を実現することができる。
実施の形態3.
 実施の形態3のオゾン供給装置300について図12に基づいて説明する。
 この実施の形態3のオゾン供給装置300と実施の形態1のオゾン供給装置100との差異は、吸脱着塔3から排出されたオゾンガスを分解するオゾン分解設備9およびオゾン分解設備9から排出されるガス温度を計測する第3温度計測部8cを備え、吸着工程におけるガス回路切替の参照値として、第3温度計測部8cで計測される温度を参照するところにある。
 オゾン分解設備9は、導入されるオゾンガスを分解し、酸素ガスに変換するもので、加熱によりオゾンガスを分解する熱分解方式あるいはマンガンなどを始めとした分解触媒を用いてオゾンガスを分解する触媒方式を用いた設備が挙げられる。
 第3温度計測部8cは、オゾン分解設備9にてオゾンが分解された後のガス温度を計測する。オゾン分解設備9に導入されたオゾン量に応じて、オゾンの分解熱が発生し、ガス温度が上昇するため、オゾン分解設備9の出口ガス温度を計測することで、導入されるオゾンガス量を推定することができる。したがって、ガスの温度が所定値になったことを検出して、制御を行うことができる。
 その他の構成は実施の形態1の場合と同じであるので、図1に示した実施の形態1と対応もしくは相当する構成部分には、同一の符号を付してここでは詳しい説明は省略する。
 次にオゾン供給装置300の動作に関して説明する。
 この実施の形態3のオゾン供給装置300においても、実施の形態1の場合と同様に、制御部6からの制御指令により、回路切替器5を開閉制御することにより、第1排気用ガス回路R0aおよび第2排気用ガス回路R0b、第1吸着回収用ガス回路R1aおよび第2吸着回収用ガス回路R1b、第1供給用ガス回路R2aおよび第2供給用ガス回路R2bが形成される。
 以下、このオゾン供給装置300の第1排気用ガス回路R0aおよび第2排気用ガス回路R0b、第1吸着回収用ガス回路R1aおよび第2吸着回収用ガス回路R1b、第1供給用ガス回路R2aおよび第2供給用ガス回路R2bの構成およびその作用について説明する。
 第1吸着工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図2に示した第1排気用ガス回路R0aおよび図3に示した第1吸着回収用ガス回路R1aを形成する。この場合に形成される第1排気用ガス回路R0aおよび第1吸着回収用ガス回路R1aの動作および作用効果は、実施の形態1の場合(図2および図3)と同じである。
 オゾン供給装置300においては、吸着工程中のガス回路は、制御部6にあらかじめ設定された第1温度設定値Aおよび第2温度設定値B(ただし、第1温度設定値Aは第2温度設定値Bよりも低いものとする)に対して、制御部6に入力された第3温度計測部8cの測定値が次に示す条件となった際に、制御部6が回路切替を行う。
 すなわち、第3温度計測部8cの測定値が、第1温度設定値A以下の場合には、第1排気用ガス回路R0aを選択し、第3温度計測部8cの測定値が、第1温度設定値Aと第2温度設定値Bの間の値である場合には、第1吸着回収用ガス回路R1aを選択し、第3温度計測部8cの測定値が第2温度設定値B以上の場合には、第1排気用ガス回路R0aを選択するというものである。
 制御部6が第3温度計測部8cの測定値に応じた制御を行うことにより、第3温度計測部8cの測定値から推定されるオゾン濃度から、外部に排出されるオゾン量を少なくすることのできるガス回路を選択できる。
 制御部6は、第1吸脱着塔3aの内に収容されている吸着剤4aへのオゾンの吸着量が所定量に達した場合、または吸着に係る時間が所定時間を経過した場合、あるいは動作移行信号が外部より入力される場合など、予め設定した条件を満たしたと判断すると、回路切替器5を制御することにより、第1供給工程に移行する。
 第1供給工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図4で示す第1供給用ガス回路R2aを形成する。この場合に形成される第1供給用ガス回路R2aの動作および作用効果は、実施の形態1の場合と同じである。
 第2吸着工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図5で示す第2排気用ガス回路R0bを形成する。この場合に形成される第2排気用ガス回路R0bの動作および作用効果は、実施の形態1の場合と同じである。
 第2吸着工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図6で示す第2吸着回収用ガス回路R1bを形成する。この場合に形成される第2吸着回収用ガス回路R1bの動作および作用効果は、実施の形態1の場合と同じである。
 オゾン供給装置300においては、吸着工程中のガス回路は、制御部6にあらかじめ設定された第1温度設定値Aおよび第2温度設定値B(ただし、第1温度設定値Aは第2温度設定値Bよりも低いものとする))に対して、制御部6に入力された第3温度計測部8cの測定値が次に示す条件となった際に、制御部6が回路切替を行う。
 すなわち、第3温度計測部8cの測定値が、第1温度設定値A以下の場合には、第2排気用ガス回路R0bを選択し、第3温度計測部8cの測定値が、第1温度設定値Aと第2温度設定値Bの間の値である場合には、第2吸着回収用ガス回路R1bを選択し、第3温度計測部8cの測定値が第2温度設定値B以上の場合には、第2排気用ガス回路R0bを選択するものである。
 制御部6が第3温度計測部8cの測定値に応じた制御を行うことにより、第3温度計測部8cの測定値から推定されるオゾン濃度から、外部に排出されるオゾン量が少ないガス回路を選択でき、第1供給工程において吸脱着塔3aに残留した高濃度オゾンの漏出量、および第2吸着工程において吸脱着塔3bから吸着されずに排気されるオゾンの漏出量を最小限に抑えることが可能となる。
 第2供給工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図7で示す第2供給用ガス回路R2bを形成する。この場合に形成される第2供給用ガス回路R2bの動作および作用効果は、実施の形態1の場合と同じである。
 以上説明したように、この実施の形態3のオゾン供給装置300は、オゾン分解設備9および第3温度計測部8cを備え、計測される温度を参照したガス回路切替を行うことにより、濃度計測部7が無い構成においても、実施の形態1のオゾン供給装置100と同様に高いオゾン利用率を実現することができる。
実施の形態4.
 実施の形態4のオゾン供給装置400について図13に基づいて説明する。
 実施の形態4のオゾン供給装置400と実施の形態1のオゾン供給装置100との差異は、吸脱着塔3から供給対象にオゾンガスを供給する流路上のガス回路に供給されるオゾンガスの濃度を計測する第3濃度計測部7cおよび流量を計測する流量計測部10を備え、吸着工程におけるガス回路切替の参照値として、第3濃度計測部7cで計測されるオゾン濃度および流量計測部10で計測されるオゾン流量から制御部6にて算出されるオゾン供給量を参照する点である。
 オゾン供給量Q1は、第3濃度計測部7cで計測されるオゾン濃度C1、流量計測部10で計測されるオゾン流量F1、および供給時間T1を用いて、制御部6にて以下の計算式で算出される。
 オゾン供給量Qi=Σ(オゾン濃度Ci×オゾン流量Fi) (i=0~T1)
上式で算出されるオゾン供給量Q1をあらかじめ設定されたオゾン吸着量Q2から差し引くことにより、供給工程終了後の吸脱着塔内のオゾンの残留量Q3を推定することができる。
 その他の構成は実施の形態1の場合と同じであるので、図1に示した実施の形態1と対応もしくは相当する構成部分には、同一の符号を付してここでは詳しい説明は省略する。
 次にオゾン供給装置400の動作に関して説明する。
 この実施の形態4のオゾン供給装置400においても、実施の形態1の場合と同様に、制御部6からの制御指令により、回路切替器5を開閉制御することにより、第1排気用ガス回路R0aおよび第2排気用ガス回路R0b、第1吸着回収用ガス回路R1aおよび第2吸着回収用ガス回路R1b、第1供給用ガス回路R2aおよび第2供給用ガス回路R2bが形成される。
 以下、このオゾン供給装置400の第1排気用ガス回路R0aおよび第2排気用ガス回路R0b、第1吸着回収用ガス回路R1aおよび第2吸着回収用ガス回路R1b、第1供給用ガス回路R2aおよび第2供給用ガス回路R2bの構成およびその作用について説明する。
 第1吸着工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図2で示す第1排気用ガス回路R0aおよび図3で示す第1吸着回収用ガス回路R1aを形成する。この場合に形成される第1排気用ガス回路R0aおよび第1吸着回収用ガス回路R1aの動作および作用効果は、実施の形態1の場合(図2および図3)と同じである。
 オゾン供給装置400においては、第1吸着工程中のガス回路は、制御部6にあらかじめ設定した第1オゾン残留設定値Aおよび第2オゾン残留設定値B(ただし、第1オゾン残留設定値Aは第2オゾン残留設定値Bよりも低いものとする)に対して、制御部6にて算出されたオゾン残留量Q3が以下の条件の際に、制御部6が回路切替を行う。
 先ずは、オゾン残留量Q3が、第1オゾン残留設定値A以下の場合は、第1吸着回収用ガス回路R1aを選択し、ガス回路切替を行わない。
 次に、オゾン残留量Q3が、第1オゾン残留設定値Aと第2オゾン残留設定値Bとの間の状態の場合には、あらかじめ制御部6に設定される切替時間が経過した後、第1排気用ガス回路R0aから第1吸着回収用ガス回路R1aにガス回路を切り替える。
 さらに、オゾン残留量Q3が、第2オゾン残留設定値B以上の場合は、第1排気用ガス回路R0aを選択し、ガス回路切替を行わない。
 制御部6が、ガス回路切替の制御を行うことにより、算出されたオゾン残留量Q3から、外部に排出されるオゾン量が少ないガス回路を選択できる。
 制御部6は、第1吸脱着塔3aの内に収容されている吸着剤4aへのオゾンの吸着量が一定量に達した場合、または吸着に係る時間が所定時間を経過した場合、あるいは動作移行信号が外部より入力される場合など、予め設定した条件を満たしたと判断すると、回路切替器5を制御することにより、第1供給工程に移行する。
 第1供給工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図4で示す第1供給用ガス回路R2aを形成する。この場合に形成される第1供給用ガス回路R2aの動作および作用効果は、実施の形態1の場合(図4)と同じであるから、ここでは詳しい説明は省略する。
 第2吸着工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図5で示す第2排気用ガス回路R0bを形成する。この場合に形成される第2排気用ガス回路R0bの動作および作用効果は、実施の形態1の場合(図5)と同じであるから、ここでは詳しい説明は省略する。
 第2吸着工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図6で示す第2吸着回収用ガス回路R1bを形成する。この場合に形成される第2吸着回収用ガス回路R1bの動作および作用効果は、実施の形態1の場合(図6)と同じであるから、ここでは詳しい説明は省略する。
 オゾン供給装置400においては、第2吸着工程中のガス回路は、制御部6にあらかじめ設定した第1オゾン残留設定値Aおよび第2オゾン残留設定値B(ただし、第1オゾン残留設定値Aは第2オゾン残留設定値Bよりも低いものとする)に対して、制御部6にて算出されたオゾン残留量Q3が以下の条件に当てはまる場合には、その内容に応じて制御部6が回路切替の制御を行う。
 先ずは、オゾン残留量Q3が、第1オゾン残留設定値A以下の場合は、第2吸着回収用ガス回路R1bを選択し、ガス回路切替を行わない。
 次に、オゾン残留量Q3が、第1オゾン残留設定値Aと第2オゾン残留設定値Bとの間の状態の場合には、あらかじめ制御部6に設定される切替時間が経過した後、第2排気用ガス回路R0bから第2吸着回収用ガス回路R1bにガス回路を切り替える。
 さらに、オゾン残留量Q3が、第2オゾン残留設定値B以上の場合は、第2排気用ガス回路R0bを選択し、ガス回路切替を行わない。
 制御部6が、ガス回路切替の制御を行うことにより、算出されたオゾン残留量Q3に基づいて、外部に排出されるオゾン量が少ないガス回路を選択でき、第1供給工程において吸脱着塔3aに残留した高濃度オゾンの漏出量、および第2吸着工程において吸脱着塔3bから吸着されずに排気されるオゾンの漏出量を最小限に抑えることが可能となる。
 第2供給工程においては、制御部6からの制御指令により回路切替器5を開閉制御することで、図7で示す第2供給用ガス回路R2bを形成する。この場合に形成される第2供給用ガス回路R2bの動作および作用効果は、実施の形態1の場合と同じである。
 以上説明したように、この実施の形態4のオゾン供給装置400は、第3濃度計測部7cおよび流量計測部10を備え、第3濃度計測部7cで計測されるオゾン濃度および流量計測部10で計測されるオゾン流量から制御部6にて算出されるオゾン供給量を参照したガス回路の切替を行うことにより、濃度計測部7が無い構成においても、実施の形態1のオゾン供給装置100と同様に高いオゾン利用率を実現することができる。
 なお、制御部6は、ハードウエアの一例を図14に示すように、プロセッサ600と記憶装置601から構成される。記憶装置は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ600は、記憶装置601から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ600にプログラムが入力される。また、プロセッサ600は、演算結果等のデータを記憶装置601の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。
 本開示は、様々な例示的な実施の形態および実施例が記載されているが、1つまたは複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の改良例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 原料ガス源、2 オゾン発生部、3a 第1吸脱着塔、3a1、3b1 第1入出口、3a2、3b2 第2入出口、3b 第2吸脱着塔、4a、4b 吸着剤、5 回路切替器、5a1 第1回路切替器、5a2 第2回路切替器、5a3 第3回路切替器、5a4 第4回路切替器、5b1 第5回路切替器、5b2 第6回路切替器、5b3 第7回路切替器、5b4 第8回路切替器、6 制御部、7a 第1濃度計測部、7b 第2濃度計測部、7c 第3濃度計測部、8a 第1温度計測部、8b 第2温度計測部、8c 第3温度計測部、9 オゾン分解設備、10 流量計測部、100、200、300、400 オゾン供給装置、R0 排気用ガス回路、R0a 第1排気用ガス回路、R0b 第2排気用ガス回路、R1 吸着回収用ガス回路、R1a 第1吸着回収用ガス回路、R1b 第2吸着回収用ガス回路、R2 供給用ガス回路、R2a 第1供給用ガス回路、R2b 第2供給用ガス回路

Claims (15)

  1.  吸着剤が収容された第1吸脱着塔および第2吸脱着塔によりオゾンガスを濃縮して供給するオゾン供給装置において、前記第1吸脱着塔から排出されるガスを装置外へ排出する排気用ガス回路と、前記排気用ガス回路とは異なり前記第1吸脱着塔から排出したガスを前記第2吸脱着塔に通してから装置外部へ排出する吸着回収用ガス回路と、前記排気用ガス回路と前記吸着回収用ガス回路の流路を切り替える回路切替器と、前記第1吸脱着塔の状態と前記第2吸脱着塔の状態とに応じて前記回路切替器の開閉を制御する制御部を備えたオゾン供給装置。
  2.  前記第1吸脱着塔内の状態を計測する第1濃度計測部と、前記第2吸脱着塔内の状態を計測する第2濃度計測部とを備えオゾン濃度または酸素濃度に応じて前記回路切替器が制御される請求項1に記載のオゾン供給装置。
  3.  前記第1吸脱着塔内の吸着剤上部の温度の状態を計測する第1温度計測部と、前記第2吸脱着塔内の吸着剤上部の温度の状態を計測する第2温度計測部とを備え、温度状態に応じて前記回路切替器が制御される請求項1に記載のオゾン供給装置。
  4.  前記制御部は、前記第1吸脱着塔から排出されるオゾンのオゾン濃度が、前記第2吸脱着塔のオゾン濃度よりも高い場合に、前記第1吸脱着塔の前記排気用ガス回路が前記吸着回収用ガス回路に流路を切り替え、
     前記第1吸脱着塔から排出されるオゾンのオゾン濃度が、前記第2吸脱着塔のオゾン濃度よりも低い場合に、前記第1吸脱着塔の前記吸着回収用ガス回路から前記排気用ガス回路に流路を切り替えるように制御する請求項1または2に記載のオゾン供給装置。
  5.  前記制御部は、前記第1吸脱着塔から排出されるオゾンの酸素濃度が、前記第2吸脱着塔のオゾンの酸素濃度よりも低い場合に、前記第1吸脱着塔の前記排気用ガス回路から前記吸着回収用ガス回路に流路を切り替え、
     前記第1吸脱着塔から排出されるオゾンの酸素濃度が、前記第2吸脱着塔のオゾンの酸素濃度よりも高い場合に、前記第1吸脱着塔の前記吸着回収用ガス回路から前記排気用ガス回路に流路を切り替えるように制御する請求項1または2に記載のオゾン供給装置。
  6.  前記第1吸脱着塔から漏出するオゾン濃度もしくは酸素濃度があらかじめ設定した所定値に達する、もしくは吸着に係る時間が所定時間を経過した後に前記回路切替器の開閉の制御を開始する請求項1または2に記載のオゾン供給装置。
  7.  前記第1濃度計測部は、前記吸着回収用ガス回路と前記排気用ガス回路との分岐点と前記第1吸脱着塔との間に設置され、前記第2濃度計測部は、前記吸着回収用ガス回路と前記排気用ガス回路との分岐点と前記第2吸脱着塔との間に設置される請求項2に記載のオゾン供給装置。
  8.  オゾン脱着終了時に、吸着したオゾンを吸脱着塔の内に残留させることによって供給するオゾン量を変動させ得る請求項1に記載のオゾン供給装置。
  9.  前記第1吸脱着塔の状態および前記第2吸脱着塔の状態が、前記第1吸脱着塔の内の温度状態と前記第2吸脱着塔の内の温度状態であって、前記第1吸脱着塔の内の温度が、前記第2吸脱着塔の内の温度よりも低い場合に、前記排気用ガス回路から前記吸着回収用ガス回路に流路を切り替え、前記第1吸脱着塔の内の温度が、前記第2吸脱着塔の内の温度よりも高い場合に、前記吸着回収用ガス回路から前記排気用ガス回路に流路を切り替える請求項3に記載のオゾン供給装置。
  10.  前記第1吸脱着塔の内の温度があらかじめ設定した所定値に達した後に前記回路切替器の開閉の制御を開始する請求項3または8に記載のオゾン供給装置。
  11.  前記第1吸脱着塔および前記第2吸脱着塔から排出されるオゾンガスを分解処理するオゾン分解設備と、前記オゾン分解設備から排出されるガスの温度を計測する温度計測部を備え、前記温度計測部でのガス温度が第1所定値に達した際に、前記排気用ガス回路から前記吸着回収用ガス回路に流路を切り替え、前記温度計測部でのガス温度が第2所定値に達した際に、前記吸着回収用ガス回路から前記排気用ガス回路に流路を切り替える請求項1に記載のオゾン供給装置。
  12.  オゾン脱着時において、脱着オゾンの流量を計測する流量計測部と、脱着オゾンのオゾン濃度を計測する濃度計測部を備え、前記流量計測部と前記濃度計測部により計測された脱着オゾンの流量および濃度から算出されたオゾン脱着量に応じて、前記排気用ガス回路から前記吸着回収用ガス回路に流路を切替えるタイミングおよび前記吸着回収用ガス回路から前記排気用ガス回路に流路を切り替えるタイミングを決定する制御部を備える請求項1に記載のオゾン供給装置。
  13.  吸着剤を内部に収容した第1吸脱着塔および吸着剤を内部に収容した第2吸脱着塔によってオゾンガスを濃縮して供給するオゾン供給装置を使用して、オゾン吸着時に、前記第1吸脱着塔から排出するオゾン濃度が前記第2吸脱着塔から排出するオゾン濃度よりも高い場合には前記第1吸脱着塔から排出されるガスを装置外へ排出し、前記第1吸脱着塔から排出するオゾン濃度が前記第2吸脱着塔から排出するオゾン濃度よりも低い場合に、前記第1吸脱着塔から排出したガスを前記第2吸脱着塔に通してから装置外部へ排出する制御を行うオゾン供給方法。
  14.  吸着剤を内部に収容した第1吸脱着塔および吸着剤を内部に収容した第2吸脱着塔によってオゾンガスを濃縮して供給するオゾン供給装置を使用して、オゾン吸着時に、前記第1吸脱着塔から排出する酸素濃度が前記第2吸脱着塔から排出する酸素濃度よりも高い場合に、前記第1吸脱着塔から排出されるガスを装置外へ排出し、前記第1吸脱着塔から排出する酸素濃度が前記第2吸脱着塔から排出する酸素濃度よりも低い場合に、前記第1吸脱着塔から排出したガスを前記第2吸脱着塔に通してから装置外部へ排出する制御を行うオゾン供給方法。
  15.  オゾン脱着終了時に、吸着したオゾンを前記第2吸脱着塔の内に残留させ、供給するオゾンの量を制御するようにした請求項13または14に記載のオゾン供給方法。
PCT/JP2019/014057 2019-03-29 2019-03-29 オゾン供給装置およびオゾン供給方法 WO2020202271A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/014057 WO2020202271A1 (ja) 2019-03-29 2019-03-29 オゾン供給装置およびオゾン供給方法
CN201980094536.5A CN113614031A (zh) 2019-03-29 2019-03-29 臭氧供给装置以及臭氧供给方法
SG11202108536UA SG11202108536UA (en) 2019-03-29 2019-03-29 OZONE SUPPLY APPARATUS and OZONE SUPPLY METHOD
JP2019546936A JP6667730B1 (ja) 2019-03-29 2019-03-29 オゾン供給装置およびオゾン供給方法
EP19922375.1A EP3950580A4 (en) 2019-03-29 2019-03-29 OZONE SUPPLY DEVICE AND METHOD OF OZONE SUPPLY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014057 WO2020202271A1 (ja) 2019-03-29 2019-03-29 オゾン供給装置およびオゾン供給方法

Publications (1)

Publication Number Publication Date
WO2020202271A1 true WO2020202271A1 (ja) 2020-10-08

Family

ID=70000558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014057 WO2020202271A1 (ja) 2019-03-29 2019-03-29 オゾン供給装置およびオゾン供給方法

Country Status (5)

Country Link
EP (1) EP3950580A4 (ja)
JP (1) JP6667730B1 (ja)
CN (1) CN113614031A (ja)
SG (1) SG11202108536UA (ja)
WO (1) WO2020202271A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116390A (ja) * 1973-12-29 1975-09-11
JPH09235104A (ja) 1996-03-01 1997-09-09 Mitsubishi Electric Corp オゾン貯蔵方法およびオゾン貯蔵装置
JPH1143308A (ja) * 1997-07-24 1999-02-16 Mitsubishi Electric Corp オゾン製造装置
JPH1143309A (ja) * 1997-07-24 1999-02-16 Mitsubishi Electric Corp オゾン製造装置
WO2009069772A1 (ja) * 2007-11-30 2009-06-04 Mitsubishi Electric Corporation オゾン濃縮装置
JP2009215164A (ja) * 2009-06-17 2009-09-24 Mitsubishi Electric Corp オゾン供給方法
US20180065079A1 (en) * 2016-09-08 2018-03-08 Frank R. Fitch Methods for separating ozone
CN207591553U (zh) * 2017-12-04 2018-07-10 北京北大先锋科技有限公司 一种变压吸附分离臭氧与氧气的装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5730783A (en) * 1995-02-06 1998-03-24 Nippon Sanso Corporation Ozone concentrating process
GB9712165D0 (en) * 1997-06-11 1997-08-13 Air Prod & Chem Processes and apparatus for producing a gaseous product
NO329817B1 (no) * 1998-04-02 2010-12-27 Mitsubishi Heavy Ind Ltd Fremgangsmate og apparat for fremstilling av ozongass med hoy konsentrasjon
JP5492566B2 (ja) * 2007-11-30 2014-05-14 東芝三菱電機産業システム株式会社 高濃度オゾンガス生成装置および高濃度オゾンガス生成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50116390A (ja) * 1973-12-29 1975-09-11
JPH09235104A (ja) 1996-03-01 1997-09-09 Mitsubishi Electric Corp オゾン貯蔵方法およびオゾン貯蔵装置
JPH1143308A (ja) * 1997-07-24 1999-02-16 Mitsubishi Electric Corp オゾン製造装置
JPH1143309A (ja) * 1997-07-24 1999-02-16 Mitsubishi Electric Corp オゾン製造装置
WO2009069772A1 (ja) * 2007-11-30 2009-06-04 Mitsubishi Electric Corporation オゾン濃縮装置
JP2009215164A (ja) * 2009-06-17 2009-09-24 Mitsubishi Electric Corp オゾン供給方法
US20180065079A1 (en) * 2016-09-08 2018-03-08 Frank R. Fitch Methods for separating ozone
CN207591553U (zh) * 2017-12-04 2018-07-10 北京北大先锋科技有限公司 一种变压吸附分离臭氧与氧气的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950580A4

Also Published As

Publication number Publication date
SG11202108536UA (en) 2021-09-29
EP3950580A4 (en) 2022-04-06
JPWO2020202271A1 (ja) 2021-04-30
CN113614031A (zh) 2021-11-05
EP3950580A1 (en) 2022-02-09
JP6667730B1 (ja) 2020-03-18

Similar Documents

Publication Publication Date Title
JP2008078140A (ja) スタック停止時の追い出し(パージ)方法
JP6224859B1 (ja) 不純物除去装置およびその不純物除去装置を備えるリサイクルガス回収精製システム
WO2020196822A1 (ja) 水素製造装置の運転方法及び水素製造装置
WO2019234882A1 (ja) オゾン供給装置およびオゾン供給方法
JP2007261824A (ja) 原料ガス中の一酸化炭素分離回収方法
WO2020202271A1 (ja) オゾン供給装置およびオゾン供給方法
TWI720164B (zh) 臭氧氣體的濃縮方法、以及臭氧氣體的濃縮裝置
JP3769742B2 (ja) オゾン発生装置の制御方法
JP3766983B2 (ja) オゾン発生濃縮装置
JP2022188322A (ja) 二酸化炭素回収装置
JP7203293B1 (ja) オゾン供給装置及びオゾン供給方法
CN109071224B (zh) 臭氧气体的浓缩方法以及臭氧气体的浓缩装置
JP2020163247A (ja) 二酸化炭素回収装置、炭化水素製造装置、および、二酸化炭素回収方法
JP7312688B2 (ja) 炭化水素製造装置、炭化水素製造方法、および、コンピュータプログラム
JP2000290004A (ja) オゾン供給装置及び方法
WO2020196823A1 (ja) 水素製造装置の運転方法及び水素製造装置
JP7292554B1 (ja) オゾン供給装置およびオゾン供給方法
JP4126766B2 (ja) オゾン吸脱着装置
JP6937087B2 (ja) ガス精製装置及びその制御方法、並びに水素製造装置
JP2010280535A (ja) 水素製造装置、方法、及びプログラム
JP2000203807A (ja) 高濃度オゾンの供給方法及び装置
JP2023169520A (ja) 二酸化炭素貯蔵装置、二酸化炭素回収システム、および二酸化炭素貯蔵装置の制御方法
JP2000203806A (ja) 高濃度オゾンの供給方法及び装置
JPH1067501A (ja) 低酸素濃度オゾンの供給方法
JP2022152353A (ja) 圧力変動吸着式ガス精製装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019546936

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019922375

Country of ref document: EP

Effective date: 20211029