WO2019234882A1 - オゾン供給装置およびオゾン供給方法 - Google Patents

オゾン供給装置およびオゾン供給方法 Download PDF

Info

Publication number
WO2019234882A1
WO2019234882A1 PCT/JP2018/021845 JP2018021845W WO2019234882A1 WO 2019234882 A1 WO2019234882 A1 WO 2019234882A1 JP 2018021845 W JP2018021845 W JP 2018021845W WO 2019234882 A1 WO2019234882 A1 WO 2019234882A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
ozone
gas
desorption
circuit
Prior art date
Application number
PCT/JP2018/021845
Other languages
English (en)
French (fr)
Inventor
洋航 松浦
昇 和田
学 生沼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018560696A priority Critical patent/JP6516941B1/ja
Priority to CN201880089807.3A priority patent/CN112203974B/zh
Priority to PCT/JP2018/021845 priority patent/WO2019234882A1/ja
Publication of WO2019234882A1 publication Critical patent/WO2019234882A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone

Definitions

  • the present application relates to an ozone supply apparatus and an ozone supply method for concentrating and supplying ozone using an adsorption phenomenon.
  • Ozone is used as a powerful oxidant in a wide range of fields such as water purification and semiconductor cleaning. Due to the recent increase in environmental awareness, there is an increasing demand for ozone generation technology with high concentration and high efficiency.
  • the upper limit of the ozone concentration generated by the ozone generation unit alone is about 20%, and ozone has a property of self-decomposition, so that it is difficult to store in a gas phase at room temperature.
  • an ozone supply device that intermittently generates ozone as necessary.
  • an ozone supply device in the prior art, one that stores and concentrates ozone using an adsorption phenomenon and intermittently supplies a high-concentration ozonized gas is disclosed.
  • a method of depressurizing the adsorption / desorption tower for example, Patent Document 1 below
  • a method of transporting oxygen to the adsorption / desorption tower and replacing gas for example, Patent Document 2 below
  • the present application discloses a technique for solving the above-described problems, suppresses the decrease in the concentration of ozone desorbed at the end of ozone supply, and provides a stable supply of high-concentration ozonized gas.
  • An object is to provide an ozone supply device and an ozone supply method that are realized.
  • An ozone supply device disclosed in the present application includes an ozone generation unit that generates ozone by a source gas supplied from a source gas source, and an ozonization gas that contains ozone generated by the ozone generation unit.
  • An ozone concentrating section having two areas consisting of a first adsorption / desorption area and a second adsorption / desorption area, and the ozonized gas generated in the ozone generation section is supplied to the first adsorption / desorption area and the second adsorption / desorption area.
  • An adsorption operation gas circuit for adsorbing to at least the adsorbent in the first adsorption / desorption region, and the ozonized gas adsorbed to the adsorbent in the first adsorption / desorption region of the ozone concentrating unit to desorb the second gas
  • a gas circuit for concentration operation that is collected by adsorbing the adsorbent in the adsorption / desorption region, and the ozonized gas collected by the adsorbent in the second adsorption / desorption region while conveying the source gas from the source gas source.
  • a gas circuit for selectively forming a gas circuit for supply operation for carrying out the desorbed ozonized gas to the outside of the ozone concentrating section via the first adsorption / desorption region.
  • a circuit switch is provided.
  • the ozone supply method disclosed in the present application includes an ozone generator that generates ozone-containing ozonized gas from a source gas supplied from a source gas source, and an ozone generator that generates the ozone gas generated in the ozone generator.
  • the ozonized gas generated in the ozone generation unit is converted into the first ozone generation device using an ozone supply unit including an ozone concentrating unit having two regions consisting of a first adsorption / desorption region and a second adsorption / desorption region.
  • a process step of a concentration operation in which the ozonized gas is desorbed and adsorbed and collected by the adsorbent in the second adsorption / desorption region, and the second adsorption / desorption is performed while conveying the source gas from the source gas source. Desorbing recovered ozonized gas adsorbent region, and a processing step of the supply operation for unloading to the outside of the ozone concentration unit The desorbed ozonized gas through the first adsorption and desorption region.
  • the present application relates to an ozone generation unit that generates ozone-containing ozonized gas from a source gas supplied from a source gas source, and a first adsorption / desorption region that adsorbs and desorbs the ozonized gas generated in the ozone generation unit with an adsorbent.
  • an ozone concentrating unit having two regions composed of a second adsorption / desorption region, wherein the ozonized gas generated in the ozone generation unit is supplied to the first adsorption / desorption region and the second adsorption / desorption region.
  • the ozonized gas recovered by the adsorbent in the second adsorption / desorption region is desorbed while conveying the source gas from the source gas source, This prolapse Since the supply operation of carrying out the ozonized gas to the outside of the ozone concentrating unit via the first adsorption / desorption region is performed, the ozone concentration is prevented from decreasing at the end of the ozonized gas supply operation.
  • the ozone contained in the ozonized gas can be stably supplied in a state where the ozone is maintained at a high concentration.
  • FIG. 1 is a configuration diagram illustrating an ozone supply device according to Embodiment 1.
  • FIG. FIG. 3 is a gas circuit diagram configured for an adsorption operation of the ozone supply device according to the first embodiment.
  • FIG. 3 is a gas circuit diagram configured for the concentration operation of the ozone supply device according to the first embodiment.
  • FIG. 3 is a gas circuit diagram configured for a supply operation of the ozone supply device according to the first embodiment.
  • 1 is a configuration diagram illustrating an ozone supply device of a comparative example that is a comparison target with respect to Embodiment 1.
  • FIG. It is a gas circuit diagram comprised for the adsorption
  • FIG. 5 is a configuration diagram illustrating an ozone supply device according to Embodiment 2.
  • FIG. FIG. 6 is a gas circuit diagram configured for an adsorption operation of the ozone supply device according to the second embodiment.
  • FIG. 6 is a gas circuit diagram configured for the concentration operation of the ozone supply device according to the second embodiment.
  • 6 is a gas circuit diagram configured for a supply operation of an ozone supply device according to a second embodiment.
  • FIG. It is a block diagram which shows the modification of the ozone supply apparatus of Embodiment 2.
  • It is a block diagram which shows the modification of the ozone supply apparatus of Embodiment 2.
  • It is a block diagram which shows the other modification of the ozone supply apparatus of Embodiment 2.
  • FIG. 6 is a configuration diagram illustrating an ozone supply device according to Embodiment 3.
  • FIG. FIG. 6 is a gas circuit diagram configured for a first supply operation of an ozone supply device according to a third embodiment.
  • FIG. 10 is a gas circuit diagram configured for a second supply operation of the ozone supply apparatus according to the third embodiment. It is a characteristic figure which shows the time-dependent change of ozone in the concentration operation
  • FIG. It is a block diagram which shows the ozone supply apparatus by Embodiment 4.
  • FIG. 10 is a configuration diagram illustrating a modification of the ozone supply device according to the fourth embodiment.
  • FIG. 1 is a block diagram showing an ozone supply apparatus according to Embodiment 1 of the present application.
  • the ozone supply apparatus 100 includes a first source gas source 1a, a second source gas source 1b, an ozone generator 2, an ozone concentrator 3, first to fifth circuit switches 6a to 6e, and a booster blower. 7 and a control unit 8.
  • first to fifth circuit switchers 6a to 6e are collectively referred to as a circuit switcher, the reference numeral 6 is used.
  • gases other than ozone such as oxygen, nitrogen, and nitrogen oxides, are referred to as source gas, and a mixture of source gas and ozone gas is referred to as ozonized gas.
  • the first source gas source 1a and the second source gas source 1b for example, a cylinder, a PSA (Pressure Swing Adsorption) apparatus or the like is used.
  • the first source gas source 1a supplies the source gas to the ozone generating unit 2, and the second source gas source 1b.
  • the source gas source 1 b supplies a source gas containing oxygen to the ozone concentrating unit 3.
  • the ozone generation part 2 produces
  • the first source gas source 1a and the second source gas source 1b are provided separately here, they may be shared depending on the configuration of the gas circuit.
  • the ozone concentrating unit 3 includes a first adsorption / desorption region 5a and a second adsorption / desorption region 5b in which an ozonized gas containing ozone generated in the ozone generation unit 2 is adsorbed and desorbed by an adsorbent inside a single adsorption / desorption tower 4. It is provided adjacent to each other.
  • the adsorbent contained in the first adsorption / desorption region 5a and the second adsorption / desorption region 5b preferentially adsorbs ozone contained in the ozonized gas introduced from the ozone generator 2 into the adsorption / desorption tower 4.
  • the first adsorption / desorption region 5a and the second adsorption / desorption region 5b may be the same type or different types.
  • the adsorbent for example, silica gel is used. Due to the adsorption characteristics of the adsorbent, the ozone concentration on the surface of the adsorbent is higher than the ozone concentration in the ozonized gas.
  • the circuit switch 6 (6a to 6e) opens and closes a gas circuit installed to connect the respective components, thereby allowing an adsorption operation gas circuit R0, a concentration operation gas circuit R1, and a supply operation to be described later. This is for selectively forming the working gas circuit R2.
  • the four circuit switch 6d and the one installed in the middle of the gas circuit opened to the outside from the first adsorption / desorption region 5a in the adsorption / desorption tower 4 are referred to as a fifth circuit switch 6e, respectively.
  • a second circuit switch 6b and a booster blower 7 are sequentially arranged.
  • a junction with the gas circuit connected to the first source gas source 1a is provided in the middle of the gas circuit connecting the generating unit 2.
  • the booster blower 7 converts the pressure of the ozonized gas leaked from the second adsorption / desorption region 5b into the ozone generator 2 when an adsorption operation gas circuit R0 described later is formed by circuit switching of the circuit switch 6.
  • the gas containing oxygen supplied from the first source gas source 1a and the gas containing oxygen supplied from the booster blower 7 can be supplied together by increasing the pressure to a pressure greater than the pressure of the ozonized gas generated in It is like that.
  • the control unit 8 is configured by, for example, a microcomputer, and selectively installs an adsorption operation gas circuit R0, a concentration operation gas circuit R1, and a supply operation gas circuit R2 to be described later by installing a predetermined control program. Therefore, the switching operation is controlled by giving a control command to the circuit switch 6. Note that the opening / closing operation of the circuit switching device 6 can be manually operated as well as the control command from the control unit 8.
  • the ozone supply device 100 controls the opening and closing of the circuit switch 6 according to a control command from the control unit 8 to thereby perform an adsorption operation gas circuit R0, a concentration operation gas circuit R1, and a supply operation.
  • a gas circuit R2 is selectively formed.
  • the adsorption operation gas circuit R0 sequentially passes the ozonized gas generated in the ozone generating unit 2 through the first adsorption / desorption region 5a and the second adsorption / desorption region 5b of the ozone concentrating unit 3 to adsorb each desorption region. It is a gas circuit for making it adsorb
  • the gas circuit R1 for concentration operation desorbs the ozonized gas adsorbed on the adsorbent in the first adsorption / desorption region 5a of the ozone concentrating unit 3, adsorbs it on the adsorbent in the second adsorption / desorption region 5b, and collects it. It is a gas circuit.
  • the supply operation gas circuit R2 desorbs the ozonized gas collected by the adsorbent in the second adsorption / desorption region 5b while conveying the source gas from the second source gas source 1b, and the desorbed ozonized gas is removed. It is a gas circuit that is carried out of the ozone concentrating unit 3 via the first adsorption / desorption region 5a.
  • the configuration and operation of the adsorption operation gas circuit R0, the concentration operation gas circuit R1, and the supply operation gas circuit R2 will be described in more detail with reference to FIGS.
  • the gas treatment in the adsorption operation gas circuit R0 is referred to as an adsorption operation
  • the gas treatment in the concentration operation gas circuit R1 is referred to as a concentration operation
  • the gas treatment in the supply operation gas circuit R2 is referred to as a supply operation.
  • the adsorption operation gas circuit R0 opens both the first circuit switch 6a and the second circuit switch 6b in response to a control command from the controller 8, and the third circuit switch 6c, It is formed by closing both the 4-circuit switch 6d and the fifth circuit switch 6e.
  • a source gas containing oxygen is introduced from the first source gas source 1a into the ozone generator 2, and the ozone generator 2 ozonizes the source gas.
  • the ozonized gas generated in the ozone generator 2 passes through the first circuit switch 6a in the order from the first adsorption / desorption region 5a to the second adsorption / desorption region 5b of the adsorption / desorption tower 4 constituting the ozone concentration unit 3, Ozone is adsorbed by the adsorbent contained in each region.
  • the ozonized gas that has not been adsorbed in the ozone concentrating unit 3 is introduced into the booster blower 7 through the second circuit switch 6b.
  • the pressure increasing blower 7 increases the pressure of the raw material gas that introduces the ozonized gas that has not been adsorbed into the ozone generating unit 2.
  • the pressurized ozonized gas is reintroduced into the ozone generator 2 and reused as a raw material gas for generating ozone.
  • the control unit 8 determines whether the adsorption amount of ozone to the adsorbent contained in the first adsorption / desorption region 5a and the second adsorption / desorption region 5b reaches a certain amount, or when a certain time has elapsed, or the operation shifts. When it is determined that a preset condition is satisfied, such as when a signal is input from the outside, the circuit switching unit 6 is controlled to shift to formation of the gas circuit R1 for concentration operation.
  • the transition to the formation of the gas circuit R1 for the concentration operation needs to be performed at a stage where the adsorption amount of ozone to the adsorbent in the second adsorption / desorption region 5b is smaller than the saturated adsorption amount. Therefore, the control unit 8 controls the circuit switch 6 at a timing before the adsorption amount of ozone to the adsorbent in the second adsorption / desorption region 5b reaches the saturated adsorption amount, and the next gas circuit for concentration operation Transition to formation of R1.
  • the gas circuit for concentration operation R1 opens only the third circuit switching unit 6c, the first circuit switching unit 6a, the second circuit switching unit 6b, the second circuit switching unit 6c according to a control command from the control unit 8. It is formed by closing both the 4-circuit switch 6d and the fifth circuit switch 6e.
  • the ozonized gas generated in the ozone generator 2 is not introduced into the adsorption / desorption tower 4 and is absorbed.
  • the ozonized gas desorbed from the first adsorption / desorption region 5a in the desorption tower 4 is introduced into the second adsorption / desorption region 5b. Further, the ozonized gas desorbed from the first adsorption / desorption region 5a and the second adsorption / desorption region 5b is carried out of the adsorption / desorption tower 4 through the third circuit switch 6c.
  • a method for desorbing the ozonized gas adsorbed in the adsorption / desorption tower 4 when the gas circuit for concentration operation R1 is formed for example, a method for reducing the pressure in the adsorption / desorption tower 4 using a decompression device (not shown). There is a method of heating the adsorbent in the adsorption / desorption tower 4 using a heating device. Due to the adsorption characteristics of the adsorbent contained in the first adsorption / desorption region 5a and the second adsorption / desorption region 5b, the desorption rate of ozone is lower than the desorption rate of the raw material gas.
  • the source gas other than ozone is preferentially exhausted from the first adsorption / desorption region 5a and the second adsorption / desorption region 5b, and the inside of the adsorption / desorption tower 4 constituting the ozone concentrating unit 3 is exhausted.
  • the ozone concentration increases.
  • the ozonized gas desorbed from the first adsorption / desorption region 5a is introduced into the second adsorption / desorption region 5b in the adsorption / desorption tower 4, but As described above, the adsorption amount of ozone to the adsorbent in the second adsorption / desorption region 5b shifts from the adsorption operation gas circuit R0 to the formation of the concentration operation gas circuit R1 at a timing before reaching the saturated adsorption amount.
  • the ozonized gas desorbed from the first adsorption / desorption region 5a can be recovered by the adsorbent in the second adsorption / desorption region 5b.
  • the adsorbent in the second adsorption / desorption region 5b preferentially adsorbs ozone contained in the ozonized gas, ozone can be selectively recovered. Therefore, the ozonized gas carried out from the second adsorption / desorption region 5b to the outside of the ozone concentrating unit 3 through the third circuit switch 6c is mainly carried out of the raw material gas after ozone recovery. Therefore, the ozone concentration in the ozone concentration unit 3 is improved.
  • the control unit 8 is set in advance when ozone is concentrated in the adsorption / desorption tower 4 and the ozone concentration reaches a certain amount, when a certain time has passed, or when an operation transition signal is input from the outside. If it is determined that the condition is satisfied, the circuit switching device 6 is controlled to shift to the formation of the supply operation gas circuit R2.
  • the supply operation gas circuit R ⁇ b> 2 opens the fourth circuit switch 6 d and the fifth circuit switch 6 e in response to a control command from the control unit 8, and sets the first circuit switch 6 a and the second circuit switch 6 e.
  • the circuit switch 6b and the third circuit switch 6c are both closed.
  • the raw material gas is introduced into the adsorption / desorption tower 4 from the second raw material gas source 1b through the fourth circuit switch 6d. Then, in the adsorption / desorption tower 4, the source gas from the second source gas source 1b is introduced, and the ozonized gas adsorbed and concentrated by the concentration operation prior to this is absorbed from the second adsorption / desorption region 5b into the first adsorption / desorption. Desorption is sequentially performed in the region 5a. The ozonized gas thus desorbed is further supplied to the outside of the adsorption / desorption tower 4 through the fifth circuit switch 6e.
  • the controller 8 adjusts the opening degree of the fourth circuit switch 6d to control the flow rate of the carrier gas from the second source gas source 1b, thereby concentrating ozone gas with a stable high ozone concentration. It can be supplied from the unit 3 to the outside.
  • the ozone recovered in the second adsorption / desorption region 5b is desorbed by the concentration operation prior to this, and the ozonized gas containing the desorbed ozone is desorbed in the first adsorption / desorption. Introduced into region 5a. Therefore, the first adsorption / desorption at the end of the supply operation is compared with the case where the source gas from the second source gas source 1b is directly introduced into the first adsorption / desorption region 5a without passing through the second adsorption / desorption region 5b. Since a decrease in the ozone partial pressure in the region 5a can be suppressed, it is possible to prevent a significant decrease in the concentration of ozone supplied to the outside from the ozone concentrating unit 3 through the fifth circuit switch 6e.
  • the ozone supply apparatus 101 shown in FIG. 5 is taken as a comparative example, and the configuration will be described.
  • the configuration of the ozone supply apparatus 101 in FIG. 5 as a comparative example is different from the first embodiment (FIG. 1) in that a gas circuit opened to the outside from the second adsorption / desorption region 5b in the adsorption / desorption tower 4 is provided. Therefore, the third circuit switcher 6c in the middle of this gas circuit is also omitted. Since other configurations are the same as those in the first embodiment, the same reference numerals are given to components corresponding to or corresponding to those in the first embodiment shown in FIG. 1, and detailed description thereof will be omitted here.
  • the circuit switch 6 is controlled to be opened and closed by the control command from the control unit 8, so that the gas circuit R0 for adsorption operation and the concentration operation are controlled.
  • a gas circuit R1 for supply and a gas circuit R2 for supply operation are formed.
  • the configuration and operation of the adsorption operation gas circuit R0, the concentration operation gas circuit R1, and the supply operation gas circuit R2 of the ozone supply apparatus 101 will be described in more detail with reference to FIGS.
  • the adsorption operation gas circuit R0 opens both the first circuit switch 6a and the second circuit switch 6b according to a control command from the control unit 8, and sets the fourth circuit switch 6d and It is formed by closing both the fifth circuit switcher 6e. Since the operation and effect of the adsorption operation gas circuit R0 formed in this case are the same as those in the first embodiment (FIG. 2), detailed description thereof is omitted here.
  • the gas circuit R1 for concentration operation opens only the fifth circuit switch 6e in response to a control command from the control unit 8, and switches the first circuit switch 6a and the second circuit switch.
  • the circuit 6b and the fourth circuit switch 6d are both closed.
  • the ozonized gas is desorbed in the direction from the second adsorption / desorption region 5b in the adsorption / desorption tower 4 to the first adsorption / desorption region 5a, and the ozonized gas is further separated into the first adsorption / desorption region.
  • 5a is carried out of the adsorption / desorption tower 4 through the fifth circuit switch 6e.
  • the supply operation gas circuit R2 opens both the fourth circuit switch 6d and the fifth circuit switch 6e in response to a control command from the controller 8, and the first circuit switch 6a and the first circuit switch 6a. It is formed by closing both the two-circuit switch 6b.
  • the raw material gas is introduced into the adsorption / desorption tower 4 from the second raw material gas source 1b through the fourth circuit switch 6d, and in the adsorption / desorption tower 4, the raw material from the second raw material gas source 1b is introduced.
  • the ozonized gas concentrated by the concentration operation prior to the gas is sequentially desorbed from the second adsorption / desorption region 5b to the first adsorption / desorption region 5a.
  • the ozonized gas thus desorbed is further carried out of the adsorption / desorption tower 4 through the fifth circuit switch 6e.
  • FIG. 9 shows the concentration of ozone contained in the ozonized gas carried out from the adsorption / desorption tower 4 in the concentration operation gas circuit R1 and the supply operation gas circuit R2 formed by the ozone supply device 100 of the first embodiment.
  • FIG. 10 is a characteristic diagram showing the change of C with time T as compared with the case of the ozone supply device 101 of the comparative example.
  • FIG. 10 shows the case where the gas circuit for concentration operation R1 and the gas circuit for supply operation R2 are formed.
  • the ozonized gas adsorbed by saturation mainly from the first adsorption / desorption region 5a is desorbed and carried out of the adsorption / desorption tower 4.
  • the concentration C0 of the ozonized gas carried out of the adsorption / desorption tower 4 increases as the pressure in the adsorption / desorption tower 4 is reduced, as indicated by the broken line in FIG.
  • control unit 8 controls the opening degree of the fourth circuit switch 6d so that the feed gas is transported together with the feed gas transport.
  • an ozonized gas having a predetermined ozone concentration C 0 is supplied to the outside of the adsorption / desorption tower 4.
  • the ozone desorbed from the first adsorption / desorption region 5a as in Embodiment 1 is used in the concentration operation gas circuit R1 prior to the formation of the supply operation gas circuit R2. Since the activated gas is not actively adsorbed and collected by the adsorbent in the second adsorption / desorption region 5b, ozone desorbed from the second adsorption / desorption region 5b at the end of the supply operation gas circuit R2 is formed. The chemical gas is not reintroduced as a carrier gas to the first adsorption / desorption region 5a.
  • the ozone supply device 100 of the first embodiment when the gas circuit R1 for concentration operation is formed, the ozone supply device 100 desorbs from the adsorbent in the first adsorption / desorption region 5a.
  • the ozonized gas is actively adsorbed and collected by the adsorbent in the second adsorption / desorption region 5b. Therefore, the concentration C1 of ozone contained in the ozonized gas carried out from the adsorption / desorption tower 4 to the outside via the third circuit switch 6c is a very low value.
  • the initial stage is the same as in the case of the ozone supply device 101 of the comparative example, by the control unit 8 controlling the opening degree of the fourth circuit switch 6d,
  • the ozonized gas having a predetermined concentration is supplied from the adsorption / desorption tower 4 to the outside via the fifth circuit switch 6e by keeping the pressure in the adsorption / desorption tower 4 constant along with the conveyance of the raw material gas.
  • the ozonized gas recovered by the adsorbent in the second adsorption / desorption region 5b in the gas circuit for concentration operation R1 formed prior thereto is used as a carrier gas to the first adsorption / desorption region 5a.
  • the amount of ozonized gas desorbed from the first adsorption / desorption region 5a is unlikely to decrease, and is included in the ozonized gas supplied from the adsorption / desorption tower 4 to the outside via the fifth circuit switch 6e.
  • the ozone concentration C1 is maintained for a long time in a stable state.
  • the ozone partial pressure in the first adsorption / desorption region 5a is the ozone content in the case of the ozone supply device 100 of the first embodiment shown by the solid line.
  • the pressure P1 and the ozone partial pressure P0 in the case of the ozone supply device 101 of the comparative example shown by the broken line both of them decrease with a similar tendency due to desorption of the ozonized gas from the first adsorption / desorption region 5a.
  • the second adsorption / desorption region 5b in the adsorption / desorption tower 4 is provided. Since the ozone gas recovered in step 1 is not used after being desorbed, the concentration of ozone contained in the ozonized gas adsorbed in the first adsorption / desorption region 5a decreases as shown by the broken line in FIG. The decrease in P0 continues.
  • the second supply gas source 1b In order to desorb and use the ozone gas collected in the second adsorption / desorption region 5b in the concentration gas circuit R1 formed prior to the source gas to be supplied, as shown by the solid line in FIG.
  • the decrease in the ozone partial pressure P1 in the 1 adsorption / desorption region 5a is suppressed and maintained at a high value for a long time. For this reason, the ozonized gas can be supplied from the adsorption / desorption tower 4 to the outside through the fifth circuit switch 6e at a stable concentration for a long time.
  • the ozone supply device 100 suppresses a decrease in the ozone partial pressure in the first adsorption / desorption region 5a at the end of the supply operation, compared with the ozone supply device 101 shown as the comparative example. Therefore, it is possible to supply a stable and high ozone concentration ozonized gas to the outside.
  • FIG. FIG. 11 is a block diagram showing an ozone supply apparatus according to Embodiment 2 of the present application, and the same reference numerals are assigned to components corresponding to or corresponding to those of Embodiment 1 (FIG. 1).
  • the ozone supply apparatus 200 of the second embodiment is similar to the ozone supply apparatus 100 of the first embodiment in that the first source gas source 1a, the second source gas source 1b, the ozone generator 2, the ozone concentrator 3, the first 1 to 5 circuit switchers 6a to 6e, a booster blower 7 and a control unit 8 are provided.
  • the ozone concentrating unit 3 includes the first adsorption / desorption tower 4a provided with the first adsorption / desorption area 5a and the second adsorption / desorption tower 4b provided with the second adsorption / desorption area 5b.
  • the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b are provided separately and independently from each other.
  • the 6th circuit switcher 6f is installed in the middle of the gas circuit which connects the 1st adsorption / desorption tower 4a and the 2nd adsorption / desorption tower 4b.
  • first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b are only one, but the first adsorption / desorption tower 4a provided with the first adsorption / desorption area 5a is divided into a plurality of towers.
  • the second adsorption / desorption tower 4b provided with the two adsorption / desorption regions 5b can also be made into a plurality of towers.
  • the first circuit switch 6a connects the first adsorption / desorption tower 4a and the booster blower 7 in the middle of the gas circuit connecting the ozone generator 2 and the first adsorption / desorption tower 4a.
  • the second circuit switching unit 6b is provided in the middle of the gas circuit to be operated, and the third circuit switching unit 6c is provided in the middle of the gas circuit opened to the outside from the second adsorption / desorption column 4b.
  • a fourth circuit switch 6d is installed in the middle of the gas circuit connecting the source 1b, and a fifth circuit switch 6e is installed in the middle of the gas circuit opened to the outside from the first adsorption / desorption tower 4a. Since other configurations are the same as those in the first embodiment, detailed description thereof is omitted here.
  • the switching circuit 6 (6a to 6f) is controlled to open and close by a control command from the control unit 8, thereby performing the adsorption operation gas circuit R0 and the concentration operation gas circuit R1. And a gas circuit R2 for supply operation is selectively formed.
  • the gas processing in the adsorption operation gas circuit R0 is the adsorption operation
  • the gas treatment in the concentration operation gas circuit R1 is the concentration operation
  • the gas in the supply operation gas circuit R2 The process is referred to as a supply operation.
  • the adsorption operation gas circuit R0 opens both the first circuit switch 6a and the second circuit switch 6b in response to a control command from the controller 8, the third circuit switch 6c, The four-circuit switch 6d, the fifth circuit switch 6e, and the sixth circuit switch 6f are all closed.
  • a source gas containing oxygen is introduced from the first source gas source 1a into the ozone generator 2, and the ozone generator 2 ozonizes the source gas.
  • the ozonized gas generated in the ozone generator 2 is introduced into the first adsorption / desorption tower 4a constituting the ozone concentrating section 3 through the first circuit switch 6a, and the first adsorption / desorption of the first adsorption / desorption tower 4a.
  • Ozone is adsorbed by the adsorbent contained in the region 5a.
  • the ozonized gas that has not been adsorbed in the first adsorption / desorption region 5a of the first adsorption / desorption tower 4a is introduced into the booster blower 7 through the second circuit switch 6b.
  • the pressure increasing blower 7 increases the pressure of the raw material gas that introduces the ozonized gas that has not been adsorbed into the ozone generating unit 2.
  • the pressurized ozonized gas is reintroduced into the ozone generator 2 and reused as a raw material gas for generating ozone.
  • the control unit 8 determines whether the adsorption amount of ozone to the adsorbent contained in the first adsorption / desorption region 5a of the first adsorption / desorption tower 4a reaches a certain amount, or when a certain amount of time has elapsed, or the operation shifts. When it is determined that a preset condition is satisfied, such as when a signal is input from the outside, the circuit switching unit 6 is controlled to shift to the formation of the gas circuit for concentration operation R1.
  • the third circuit switch 6c and the sixth circuit switch 6f are both opened by the control command from the control unit 8, and the first circuit switch 6a, The second circuit switching unit 6b, the fourth circuit switching unit 6d, and the fifth circuit switching unit 6e are all closed.
  • the ozonized gas generated in the ozone generator 2 is not introduced into the first adsorption / desorption tower 4a.
  • the ozonized gas adsorbed in the first adsorption / desorption region 5a of the first adsorption / desorption tower 4a is desorbed and introduced into the second adsorption / desorption tower 4b through the sixth circuit switch 6f. Further, the desorbed ozonized gas is carried out of the ozone concentration unit 3 from the second adsorption / desorption tower 4b through the third circuit switch 6c.
  • the ozonized gas desorbed from the first adsorption / desorption tower 4a is introduced into the second adsorption / desorption tower 4b.
  • the second adsorption / desorption is performed. Since the ozonized gas is not adsorbed to the adsorbent in the region 5b, the ozonized gas desorbed from the first adsorption / desorption tower 4a can be sufficiently recovered by the adsorbent contained in the second adsorption / desorption region 5b. It is.
  • the adsorbent contained in the second adsorption / desorption region 5b of the second adsorption / desorption tower 4b preferentially adsorbs ozone contained in the ozonized gas
  • the ozone desorbed from the first adsorption / desorption tower 4a is selected. Can be recovered automatically. Therefore, the ozonized gas carried out from the second adsorption / desorption tower 4b to the outside of the ozone concentrating unit 3 through the third circuit switch 6c is mainly carried out of the raw material gas after ozone recovery. Therefore, the ozone concentration in the ozone concentration unit 3 is improved.
  • the control unit 8 sets in advance when ozone is concentrated in the first adsorption / desorption tower 4a and the ozone concentration reaches a certain amount, when a certain time has passed, or when an operation transition signal is input from the outside. If it is determined that the above conditions are satisfied, the circuit switching device 6 is controlled to shift to the formation of the supply operation gas circuit R2.
  • the fourth circuit switch 6d, the fifth circuit switch 6e, and the sixth circuit switch 6f are all open according to a control command from the controller 8.
  • the first circuit switch 6a, the second circuit switch 6b, and the third circuit switch 6c are all closed.
  • the raw material gas is introduced from the second raw material gas source 1b to the second adsorption / desorption tower 4b through the fourth circuit switch 6d.
  • the 6th circuit switch 6f provided in the middle of the gas circuit which connects between the 1st adsorption / desorption tower 4a and the 2nd adsorption / desorption tower 4b is in an open state, the 2nd source gas While the source gas from the source 1b is introduced, the ozonized gas adsorbed and concentrated by the concentration operation prior to this is sequentially desorbed from the second adsorption / desorption region 5b to the first adsorption / desorption region 5a.
  • the ozonized gas thus desorbed is further supplied to the outside of the first adsorption / desorption tower 4a through the fifth circuit switch 6e.
  • the controller 8 adjusts the opening degree of the fourth circuit switch 6d to control the flow rate of the carrier gas from the second source gas source 1b, thereby concentrating ozone gas with a stable high ozone concentration. It can be supplied from the unit 3 to the outside.
  • the ozone supply device 200 includes the first adsorption / desorption tower 4a for adsorbing ozone by the adsorption operation among the first and second adsorption / desorption towers 4a, 4b.
  • the adsorption / desorption tower 4b collects the ozonized gas desorbed from the first adsorption / desorption tower 4a in the concentration operation, and introduces the collected ozonized gas into the first adsorption / desorption tower 4a in the subsequent supply operation.
  • the roles are shared.
  • the ozonized gas is not introduced into the adsorbent contained in the second adsorption / desorption region 5b of the second adsorption / desorption tower 4b, but is introduced only into the first adsorption / desorption tower 4a.
  • the ozonized gas desorbed from the first adsorption / desorption tower 4a is introduced into the second adsorption / desorption tower 4b via the sixth circuit switch 6f, so that the second adsorption / desorption tower 4b
  • the ozonized gas desorbed from the first adsorption / desorption tower 4a using the adsorbent contained in the two adsorption / desorption region 5b can be sufficiently adsorbed and recovered.
  • the ozonized gas collected in the second adsorption / desorption region 5b of the second adsorption / desorption tower 4b is desorbed by the concentration operation prior to this, and the desorbed ozonized gas is converted into the sixth circuit switch 6f.
  • the first adsorption / desorption tower 4a Therefore, the first adsorption / desorption at the end of the supply operation is compared with the case where the source gas from the second source gas source 1b is directly introduced into the first adsorption / desorption tower 4a without passing through the second adsorption / desorption tower 4b.
  • FIGS. 15 and 16 are configuration diagrams showing a modification of the ozone supply device 200 according to the second embodiment of the present application, and components corresponding to or corresponding to those in the second embodiment (FIG. 11) are denoted by the same reference numerals. .
  • the ozone supply device 201 shown in FIGS. 15 and 16 is characterized by ozone in addition to the sixth circuit switcher 6f in the middle of the gas circuit connecting the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b.
  • a total 9a (FIG. 15) or a pressure gauge 9b (FIG. 16) is provided.
  • the ozone concentration of the ozonized gas desorbed from the first adsorption / desorption tower 4a in the concentration operation is measured, and the measurement result is controlled by the control unit 8 Send to.
  • the control unit 8 controls the circuit switch 6 (6a to 6f) on the condition that the concentration of ozone contained in the ozonized gas measured by the ozone meter 9a exceeds a preset reference value. The process proceeds to the formation of the supply operation gas circuit R2.
  • the pressure gauge 9b when the pressure gauge 9b is used as shown in FIG. 16, the pressure of the ozonized gas desorbed from the first adsorption / desorption tower 4a in the concentration operation is measured, and the measurement result is controlled by the control unit. 8 to send.
  • the control unit 8 controls the circuit switch 6 (6a to 6f) on the condition that the pressure of the ozonized gas measured by the pressure gauge 9b is lower than a preset reference value, thereby supplying the supply operation gas.
  • the process proceeds to formation of the circuit R2.
  • the ozone concentration in the ozonized gas carried out from the first adsorption / desorption tower 4a in the concentration operation and the supply operation does not depend on the temperature in the first adsorption / desorption tower 4a, It has been found that it depends uniquely on the pressure in the first adsorption / desorption tower 4a. Therefore, by setting a pressure reference value corresponding to the desired ozone concentration in advance, even if the temperature of the first adsorption / desorption tower 4a changes, the operation shifts to the supply operation when the desired ozone concentration is reached. It is possible.
  • the ozone meter 9a or the pressure gauge 9b in the middle of the gas circuit connecting the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b, an appropriate timing from the concentration operation to the supply operation is obtained.
  • the ozonized gas that starts supplying from the ozone concentrating unit 3 to the outside can be controlled to a desired ozone concentration.
  • the pressure gauge 9b or the ozone gauge 9a is installed, but the configuration in which both the pressure gauge 9b and the ozone gauge 9a are installed is also possible.
  • the arrangement when both are installed may be in series or in parallel.
  • the pressure gauge 9b and the ozone gauge 9a are connected to the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b. It may be arranged either before or after the gas circuit between.
  • Other configurations and operational effects are the same as those of the second embodiment (FIG. 11), and thus detailed description thereof is omitted here.
  • FIG. 17 is a configuration diagram illustrating another modification of the ozone supply device according to the second embodiment of the present application, and the same reference numerals are given to components corresponding to or corresponding to those of the second embodiment (FIG. 11).
  • the feature of the ozone supply device 202 shown in FIG. 17 is that the surroundings of the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b are covered with containers 16a and 16b, respectively, and the containers 16a and 16b are filled with refrigerant and filled. Refrigerant is circulated. Then, the temperature of the refrigerant is adjusted by the first temperature adjusting unit 10a and the second temperature adjusting unit 10b separately provided for the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b, so that the first adsorption / desorption is performed. The temperature of the tower 4a and the second adsorption / desorption tower 4b can be controlled.
  • the temperature adjustment of the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b by the first temperature adjustment unit 10a and the second temperature adjustment unit 10b may be an air cooling type or a water cooling type.
  • the refrigerant contact method for adjusting the temperatures of the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b is not limited to the structure in which the containers 16a, 16b are filled with the refrigerant.
  • a structure may be adopted in which coiled tubes for circulating the refrigerant are respectively introduced into the adsorption / desorption tower 4a and the second adsorption / desorption tower 4b.
  • the temperature of the second adsorption / desorption tower 4b is set to the temperature of the first adsorption / desorption tower 4a by the first temperature adjustment unit 10a and the second temperature adjustment unit 10b. Control to make it lower. That is, the first adsorption / desorption tower 4a is heated by the first temperature adjustment unit 10a, and the second adsorption / desorption tower 4b is cooled by the second temperature adjustment unit 10b, so that the adsorbent contained in the first adsorption / desorption region 5a.
  • the adsorption of the ozonized gas can be promoted by the adsorbent contained in the second adsorption / desorption region 5b. Therefore, the ozonized gas that can be adsorbed and recovered by the adsorbent contained in the second adsorption / desorption region 5b while improving the desorption rate of the ozonized gas from the adsorbent contained in the first adsorption / desorption region 5a in the concentration operation. The amount can be increased.
  • first temperature adjusting unit 10a and the second temperature adjusting unit 10b are individually provided for the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b, the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4a It can also be set as the structure which provided the temperature control part only in either one of the 2 adsorption / desorption towers 4b. Further, either one of the two temperature adjusting units 10a and 10b may be used in combination with the cooling of the ozone generating unit 2. In this case, the ozone generating unit 2 and the first adsorption / desorption tower 4a or the second adsorption / desorption are performed.
  • the tower 4b may be installed in series, or the ozone generator 2 and the first adsorption / desorption tower 4a or the second adsorption / desorption tower 4b may be installed in parallel. Since other configurations and operational effects are the same as those of the second embodiment (FIG. 11), detailed description thereof is omitted here.
  • FIG. 18 is a block diagram showing an ozone supply device according to Embodiment 3 of the present application, and components corresponding to or corresponding to those of Embodiment 2 (FIG. 11) are denoted by the same reference numerals.
  • the ozone supply device 300 of the third embodiment has a first source gas source 1a, a second source gas source 1b, an ozone generator 2, an ozone concentrator 3, a first 1 to 6 circuit switchers 6a to 6f, a booster blower 7 and a control unit 8 are provided.
  • the third embodiment is provided with a gas circuit for connecting the second source gas source 1b and the first adsorption / desorption tower 4a to the configuration of the second embodiment (FIG. 11).
  • a seventh circuit switcher 6g is installed in the middle of the gas circuit. Further, in the middle of the gas circuit opened to the outside from the first adsorption / desorption tower 4a, the concentration of ozone contained in the ozonized gas supplied to the outside from the first adsorption / desorption tower 4a together with the fifth circuit switch 6e is set.
  • An ozone meter 11 for measurement is installed.
  • the installed ozone meter 11 may be an in-line type or a sampling type. Since other configurations are the same as those of the second embodiment (FIG. 11), detailed description is omitted here.
  • the ozone supply device 300 controls the opening and closing of the circuit switch 6 (6a to 6g) in accordance with a control command from the control unit 8, so that the gas circuit for adsorption operation is the same as in the second embodiment.
  • R0, the gas circuit for concentration operation R1, and the gas circuit for supply operation R2 are selectively formed.
  • the seventh circuit switch 6g is always controlled to be closed. Therefore, the configuration is the same as that of the ozone supply device 200 of the second embodiment. Therefore, the actions and effects of the adsorption operation gas circuit R0 and the enrichment operation gas circuit R1 are substantially the same as those of the second embodiment, and thus detailed description thereof is omitted here.
  • the supply operation gas circuit R2 is different from the second embodiment in that the first supply operation gas circuit R21 is controlled by opening / closing control of the circuit switch 6 (6a to 6g) according to a control command from the control unit 8. And the formation of the second supply operation gas circuit R22.
  • the gas process in the first supply operation gas circuit R21 is referred to as a first supply operation
  • the gas process in the second supply operation gas circuit R22 is referred to as a second supply operation.
  • the seventh circuit switch 6g and the fifth circuit switch 6e are both opened, and the first circuit switch 6a and the second circuit switch 6b, the third circuit switcher 6c, the fourth circuit switcher 6d, and the sixth circuit switcher 6f are all closed.
  • the source gas is introduced into the first adsorption / desorption tower 4a from the second source gas source 1b through the seventh circuit switch 6g, and is included in the first adsorption / desorption region 5a.
  • the ozonized gas adsorbed and concentrated by the adsorbent was desorbed, and the ozonized gas was discharged from the first adsorption / desorption tower 4a to the outside of the ozone concentrating unit 3 via the fifth circuit switch 6e and the ozone meter 11. Supplied.
  • the sixth circuit switch 6f is in the closed state in the first supply operation gas circuit R21, the ozonized gas detached from the second adsorption / desorption tower 4b is introduced into the first adsorption / desorption tower 4a.
  • the source gas is conveyed from the second source gas source 1b to the first adsorption / desorption tower 4a. Therefore, the ozonized gas containing high-concentration ozone is stably supplied to the outside of the ozone concentrating unit 3.
  • control unit 8 controls the flow rate of the source gas from the second source gas source 1b so that the pressure in the first adsorption / desorption tower 4a becomes constant by adjusting the opening of the seventh circuit switch 6g.
  • a stable high ozone concentration ozonized gas can be supplied to the outside at a predetermined flow rate.
  • the ozone in the first adsorption / desorption tower 4a with time elapses.
  • the partial pressure decreases, and the ozone concentration gradually decreases accordingly.
  • the circuit switching device 6 is controlled to proceed to formation of the second supply operation gas circuit R22.
  • the second supply operation gas circuit R22 opens the fourth circuit switcher 6d, the fifth circuit switcher 6e, and the sixth circuit switcher 6f, and opens the first circuit switcher. 6a, the second circuit switcher 6b, and the third circuit switcher 6c are all closed.
  • the operation and effect of the second supply operation gas circuit R22 formed in this case is substantially the same as that of the supply operation in the ozone supply apparatus 200 of the second embodiment. That is, in the second supply operation gas circuit R22, the source gas is introduced from the second source gas source 1b into the second adsorption / desorption tower 4b through the fourth circuit switch 6d.
  • the sixth circuit switch 6f provided between the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b is in an open state, the source gas from the second source gas source 1b
  • the ozonized gas adsorbed and concentrated by the concentration operation prior to this is sequentially desorbed from the second adsorption / desorption region 5b to the first adsorption / desorption region 5a.
  • the ozonized gas thus desorbed is further supplied to the outside from the first adsorption / desorption tower 4a through the fifth circuit switch 6e.
  • the controller 8 adjusts the opening degree of the fourth circuit switch 6d to control the flow rate of the carrier gas from the second source gas source 1b, thereby concentrating ozone gas with a stable high ozone concentration. It can be supplied from the unit 3 to the outside.
  • the supply operation is divided into two stages, and in the first supply operation, the source gas is introduced from the second source gas source 1b into the first adsorption / desorption tower 4a, and the first adsorption / desorption is performed.
  • the ozonized gas is desorbed from the region 5a, and then, in the second supply operation, the source gas is introduced into the second adsorption / desorption tower 4b from the second source gas source 1b, and the second adsorption / desorption region 5b and first adsorption / desorption
  • the ozonized gas is sequentially desorbed from the region 5a.
  • the concentration of ozone contained in the supplied ozonized gas is When it falls below the preset reference value, the supply ozone concentration can be prevented from lowering by shifting from the first supply operation to the second supply operation.
  • the supply operation gas circuit R2 is formed by forming the first supply operation gas circuit R21 and the second supply operation gas circuit R22. The effect of the two steps will be described in more detail.
  • FIG. 21 shows the concentration of ozone contained in the ozonized gas supplied from the ozone concentrating unit 3 to the outside in the gas circuit for concentration operation R1 and the gas circuit for adsorption operation R2 formed by the ozone supply device 300 of the third embodiment. It is a characteristic view which shows the change with the elapsed time T of the density
  • the time change of the concentration C3 of ozone contained in the ozonized gas supplied from the ozone concentration unit 3 to the outside shows the same tendency as the time change of the ozone concentration C2 in the case of Embodiment 2 (shown by a one-dot chain line in the figure).
  • the ozone concentration C3 supplied to the outside from the ozone concentrating unit 3 is the same as the first adsorption / desorption tower 4a for the source gas from the second source gas source 1b. Therefore, the ozone concentration C0 gradually decreases in the same manner as the ozone concentration C0 (indicated by a broken line in the figure) in the comparative example. For this reason, compared with the time change of the ozone concentration C2 in the case of Embodiment 2 (indicated by the alternate long and short dash line in the figure), the average ozone concentration is low.
  • the gas circuit is switched so that the source gas is introduced from the second source gas source 1b into the second adsorption / desorption tower 4b.
  • the ozonized gas desorbed from the second adsorption / desorption tower 4b is used as a carrier gas to the first adsorption / desorption tower 4a together with the raw material gas.
  • region 5b uses it as carrier gas. It becomes late and the fall of the density
  • the ozone meter 9a or the pressure gauge 9b is replaced with the first adsorption / desorption tower 4a and the second adsorption / desorption tower. You may install in the middle of the gas circuit which connects between 4b. Moreover, it can also be set as the structure which can adjust the temperature of the 1st, 2nd adsorption / desorption towers 4a and 4b by providing the 1st, 2nd temperature adjustment parts 10a and 10b.
  • the ozone supply apparatus 300 performs the supply operation with the first supply operation for introducing the raw material gas from the second raw material gas source 1b into the first adsorption / desorption tower 4a, and the raw material gas.
  • the second supply operation for introducing the gas into the second adsorption / desorption tower 4b compared with the second embodiment, the ozonization supplied to the outside from the ozone concentrating unit 3 at the end of the supply operation A decrease in the concentration of ozone contained in the gas can be further suppressed, and the concentration of ozone supplied to the outside can be further stabilized throughout the supply operation. Since other functions and effects are the same as those of the second embodiment, detailed description thereof is omitted here.
  • FIG. FIG. 22 is a block diagram showing an ozone supply device according to Embodiment 4 of the present application, and the same reference numerals are given to components corresponding to or corresponding to those of Embodiment 1 (FIG. 1).
  • the ozone supply device 400 is supplied from the ozone concentrating unit 3 to the outside with respect to the configuration of the first embodiment (FIG. 1) on the assumption that the ozone treatment target is supplied in the state of an ozone solution.
  • the gas-liquid mixing apparatus 12 which mixes the ozone contained in the ozonized gas with a liquid, and the ozone reaction part 14 which makes the liquid which ozone melt
  • the gas-liquid mixing device 12 mixes the ozonized gas desorbed from the adsorption / desorption tower 4 with a liquid, and for example, an ejector or an air diffuser is used.
  • a liquid for example, water is mainly used in many cases. However, in some cases, a solution to which a pH adjusting agent such as an acid or hydroxide is added, sludge, or the like may be used.
  • the ozone reaction part 14 makes the produced
  • Examples of the ozone treatment target that needs to be supplied in the state of an ozone solution include cleaning of a filter or a separation membrane in water and sewage treatment.
  • the ozone supply device 400 of the fourth embodiment having this configuration, when an ejector is used as the gas-liquid mixing device 12, the ozonized gas and liquid desorbed from the adsorption / desorption tower 4 in the concentration operation and the supply operation are mixed. Then, an ozone solution is generated, and the ozone solution thus generated is supplied to the ozone reaction unit 14 to react with the ozone treatment target.
  • the ozonized gas desorbed from the adsorption / desorption tower 4 in the concentration operation and the supply operation is mixed with the liquid charged in the ozone reaction unit 14.
  • An ozone solution is generated, and the ozone solution thus generated is reacted with an ozone treatment target.
  • the ozone supply device 400 has a configuration in which the gas-liquid mixing device 12 and the ozone reaction unit 14 are provided, so that the ozone treatment target needs to be ozone treated with the ozone solution. Can also respond appropriately. Further, when the ozone treatment target is in a liquid state, the ozonized gas desorbed from the adsorption / desorption tower 4 inside the gas-liquid mixing device 12 by directly introducing the ozone treatment target itself into the gas-liquid mixing device 12. Can be reacted.
  • the ozone reaction with the ozone treatment target is promoted by converting the ozonized gas to be sucked into microbubbles and increasing the gas-liquid contact area to be brought into contact with the liquid. be able to. Since other configurations and operational effects are the same as those in the first embodiment (FIG. 1), detailed description thereof is omitted here.
  • the ozone supply device of the fourth embodiment shown in FIG. 22 has been described based on the configuration of the first embodiment (FIG. 1), but is not limited to this, and the ozone supply device 200 of the second embodiment (FIG. 11).
  • the present invention can also be applied to a configuration in which a plurality of adsorption / desorption towers are installed as shown in FIG. In that case, as disclosed as a modification of the second embodiment (FIGS. 15 to 17), the ozone meter 9a and the pressure gauge 9b are connected between the first adsorption / desorption tower 4a and the second adsorption / desorption tower 4b. You may install in the middle of a gas circuit.
  • the present invention can also be applied to a case where the supply operation is performed in two stages as in the ozone supply apparatus 300 (FIG. 18) of the third embodiment.
  • FIG. 23 is a configuration diagram showing a modification of the ozone supply device according to the fourth embodiment of the present application, and components corresponding to or corresponding to those in the fourth embodiment (FIG. 22) are denoted by the same reference numerals.
  • the feature of the ozone supply device 401 shown in FIG. 23 is that ozonization is performed in the middle of a gas circuit for carrying out ozonized gas from the adsorption / desorption tower 4 to the outside via the third circuit switch 6c and the fifth circuit switch 6e.
  • the ozone reaction part 15 which makes gas contact an ozone treatment object is provided. Since other configurations are the same as those in the fourth embodiment (FIG. 22), detailed description thereof is omitted here.
  • the ozonized gas can be supplied to a solid-phase ozone treatment target that requires ozone treatment in the gas phase. . Therefore, it is possible to perform ozone treatment even on an ozone treatment target that cannot be brought into contact with a liquid. Further, the ozone treatment in the liquid phase can be performed by the gas-liquid mixing device 12 provided in the subsequent stage with the ozonized gas that has not reacted in the ozone reaction section 15.
  • a single ozone reaction unit is provided in the middle of the gas circuit connecting the adsorption / desorption tower 4 and the gas-liquid mixing device 12.
  • a reaction part may be installed, and the arrangement may be installed in series or in parallel.
  • Other functions and effects are the same as in the case of the fourth embodiment (FIG. 22), and a detailed description thereof is omitted here.
  • Ozone supply device 100, 101, 200, 201, 202, 300 Ozone supply device, 400, 401 Ozone supply device, 1a First source gas source, 1b Second source gas source, 2 Ozone generator, 3 Ozone concentrator, 4 Adsorption / desorption tower 4a, first adsorption / desorption tower, 4b, second adsorption / desorption tower, 5a, first adsorption / desorption area, 5b, second adsorption / desorption area, 6 circuit switcher, 6a first circuit switcher, 6b second circuit switcher, 6c second 3 circuit switcher, 6d 4th circuit switcher, 6e 5th circuit switcher, 6f 6th circuit switcher, 6g 7th circuit switcher, 7 booster blower, 8 control unit, 9a ozone meter, 9b pressure gauge, 10a 1st temperature adjustment part, 10b 2nd temperature adjustment part, 11 ozone meter, 12 gas-liquid mixing device, 13 liquid supply part, 14, 15 ozone reaction part, R0 gas circuit for adsorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

オゾン発生部(2)で発生したオゾン化ガスを吸脱着塔(4)の第1吸脱着領域(5a)および第2吸脱着領域(5b)に吸着させる吸着動作と、第1吸脱着領域(5a)からオゾン化ガスを脱着させて第2吸脱着領域(5b)で吸着させて回収する濃縮動作と、原料ガス源(1a)からの原料ガスを搬送しながら第2吸脱着領域(5a)で回収したオゾン化ガスを脱着させて第1吸脱着領域(5a)から吸脱着塔(4)の外部に供給する供給動作を行う。

Description

オゾン供給装置およびオゾン供給方法
 本願は、吸着現象を利用してオゾンを濃縮して供給するオゾン供給装置およびオゾン供給方法に関するものである。
 オゾンは強力な酸化剤として水環境浄化、半導体洗浄等、多岐に渡る分野で利用されており、近年の環境意識の高まりにより、高濃度かつ高効率なオゾン発生技術への要求が高まっている。オゾン発生部単体の発生オゾン濃度の上限値は体積分率20%程度であり、オゾンは自己分解する性質があるため常温での気相保管は困難である。
 そのため、必要に応じてオゾンを間欠的に発生させるオゾン供給装置が提供されている。このようなオゾン供給装置として、従来技術では、吸着現象を利用してオゾンの貯蔵および濃縮を行い、高濃度のオゾン化ガスを間欠的に供給するものが開示されている。その場合、貯蔵したオゾンを脱着させるために、吸脱着塔を減圧する方法(例えば、下記の特許文献1)、酸素を吸脱着塔に搬送してガス置換する方法(例えば、下記の特許文献2)が提案されている。
特開平11-43310号公報 特許5020151号
 しかし、上記特許文献1に開示されている構成では、オゾン脱着時に吸脱着塔を常に減圧し続けることにより、脱着されるオゾンの濃度は上昇するものの、脱着されるオゾンの流量は低下し続けるため、高濃度のオゾンガスを安定して供給することができない。また、上記特許文献2に開示されている構成では、オゾン供給の終盤において、酸素搬送によって吸脱着塔内のオゾン分圧が大幅に低下するため、脱着したオゾンガスを所定濃度に維持できず、高濃度のオゾンガスを安定して供給することができないという問題があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、オゾン供給の終盤において脱着するオゾンの濃度が低下することを抑制し、安定した高い濃度のオゾン化ガスの供給を実現するオゾン供給装置およびオゾン供給方法を提供することを目的とする。
 本願に開示されるオゾン供給装置は、原料ガス源から供給される原料ガスによりオゾンを発生させるオゾン発生部と、上記オゾン発生部で発生したオゾンを含むオゾン化ガスを吸着剤で吸脱着させる第1吸脱着領域および第2吸脱着領域からなる2つの領域を有するオゾン濃縮部とを備えるとともに、上記オゾン発生部で発生したオゾン化ガスを上記第1吸脱着領域と上記第2吸脱着領域の内の少なくとも上記第1吸脱着領域の吸着剤に吸着させる吸着動作用ガス回路と、上記オゾン濃縮部の上記第1吸脱着領域の吸着剤に吸着させたオゾン化ガスを脱着させて上記第2吸脱着領域の吸着剤に吸着させて回収する濃縮動作用ガス回路と、上記原料ガス源からの原料ガスを搬送しながら上記第2吸脱着領域の吸着剤で回収したオゾン化ガスを脱着させ、この脱着したオゾン化ガスを上記第1吸脱着領域を経由して上記オゾン濃縮部の外部に搬出する供給動作用ガス回路と、をそれぞれ選択的に形成するためのガス回路形成用の回路切替器を備える。
 また、本願に開示されるオゾン供給方法は、原料ガス源から供給される原料ガスによりオゾンを含むオゾン化ガスを発生させるオゾン発生部と、上記オゾン発生部で発生した上記オゾン化ガスを吸着剤で吸脱着させる第1吸脱着領域および第2吸脱着領域からなる2つの領域を有するオゾン濃縮部とを備えたオゾン供給装置を用いて、上記オゾン発生部で発生したオゾン化ガスを上記第1吸脱着領域と上記第2吸脱着領域の内の少なくとも上記第1吸脱着領域の吸着剤に吸着させる吸着動作の処理ステップと、上記オゾン濃縮部の上記第1吸脱着領域の吸着剤に吸着させたオゾン化ガスを脱着させて上記第2吸脱着領域の吸着剤に吸着させて回収する濃縮動作の処理ステップと、上記原料ガス源からの原料ガスを搬送しながら上記第2吸脱着領域の吸着剤で回収したオゾン化ガスを脱着させ、この脱着したオゾン化ガスを上記第1吸脱着領域を経由して上記オゾン濃縮部の外部に搬出する供給動作の処理ステップとを含む。
 本願は、原料ガス源から供給される原料ガスによりオゾンを含むオゾン化ガスを発生させるオゾン発生部と、上記オゾン発生部で発生した上記オゾン化ガスを吸着剤で吸脱着させる第1吸脱着領域および第2吸脱着領域からなる2つの領域を有するオゾン濃縮部とを備えた構成であって、上記オゾン発生部で発生したオゾン化ガスを上記第1吸脱着領域と上記第2吸脱着領域の内の少なくとも上記第1吸脱着領域の吸着剤に吸着させる吸着動作を行い、次に上記オゾン濃縮部の上記第1吸脱着領域の吸着剤に吸着させたオゾン化ガスを脱着させて上記第2吸脱着領域の吸着剤に吸着させて回収する濃縮動作を行った後、上記原料ガス源からの原料ガスを搬送しながら上記第2吸脱着領域の吸着剤で回収したオゾン化ガスを脱着させ、この脱着したオゾン化ガスを上記第1吸脱着領域を経由して上記オゾン濃縮部の外部に搬出する供給動作を行うようにしているので、オゾン化ガスの供給動作の終盤におけるオゾン濃度の低下を抑制し、オゾン化ガスに含まれるオゾンを高濃度に維持した状態で安定して供給することができる。
実施の形態1によるオゾン供給装置を示す構成図である。 実施の形態1のオゾン供給装置の吸着動作のために構成されるガス回路図である。 実施の形態1のオゾン供給装置の濃縮動作のために構成されるガス回路図である。 実施の形態1のオゾン供給装置の供給動作のために構成されるガス回路図である。 実施の形態1に対する比較対象となる比較例のオゾン供給装置を示す構成図である。 比較例のオゾン供給装置の吸着動作のために構成されるガス回路図である。 比較例のオゾン供給装置の濃縮動作のために構成されるガス回路図である。 比較例のオゾン供給装置の供給動作のために構成されるガス回路図である。 実施の形態1のオゾン供給装置の濃縮動作と供給動作における外部に搬出されるオゾン化ガスのオゾン濃度の経時変化を、比較例と比較して示す特性図である。 実施の形態1のオゾン供給装置の濃縮動作と供給動作における第1吸脱着領域のオゾン分圧の経時変化を、比較例と比較して示す特性図である。 実施の形態2によるオゾン供給装置を示す構成図である。 実施の形態2のオゾン供給装置の吸着動作のために構成されるガス回路図である。 実施の形態2のオゾン供給装置の濃縮動作のために構成されるガス回路図である。 実施の形態2のオゾン供給装置の供給動作のために構成されるガス回路図である。 実施の形態2のオゾン供給装置の変形例を示す構成図である。 実施の形態2のオゾン供給装置の変形例を示す構成図である。 実施の形態2のオゾン供給装置の他の変形例を示す構成図である。 実施の形態3によるオゾン供給装置を示す構成図である。 実施の形態3のオゾン供給装置の第1供給動作のために構成されるガス回路図である。 実施の形態3のオゾン供給装置の第2供給動作のために構成されるガス回路図である。 実施の形態3のオゾン供給装置の濃縮動作と吸着動作におけるオゾンの経時変化を、比較例および実施の形態2の場合と比較して示す特性図である。 実施の形態4によるオゾン供給装置を示す構成図である。 実施の形態4のオゾン供給装置の変形例を示す構成図である。
実施の形態1.
 図1は本願の実施の形態1のオゾン供給装置を示す構成図である。
 この実施の形態1のオゾン供給装置100は、第1原料ガス源1a、第2原料ガス源1b、オゾン発生部2、オゾン濃縮部3、第1~第5回路切替器6a~6e、昇圧ブロア7、および制御部8を備える。
 以下、第1~第5回路切替器6a~6eを総称するときには単に回路切替器と称して符号6を用いるものとする。また、以下において、酸素、窒素、窒素酸化物等のオゾン以外のガスを原料ガスと、また、原料ガスとオゾンガスとの混合体をオゾン化ガスと称するものとする。
 第1原料ガス源1aおよび第2原料ガス源1bは、例えばボンベ、PSA(Pressure Swing Adsorption)装置などが使用され、第1原料ガス源1aはオゾン発生部2に原料ガスを供給し、第2原料ガス源1bは、オゾン濃縮部3に酸素を含む原料ガスを供給する。また、オゾン発生部2は、第1原料ガス源1aから供給される原料ガスを利用してオゾンを含むオゾン化ガスを生成する。なお、ここでは第1原料ガス源1aと第2原料ガス源1bとは別個に設けた構成としているが、ガス回路の構成によっては両者を共通化することも可能である。
 オゾン濃縮部3は、単一の吸脱着塔4の内部にオゾン発生部2で発生したオゾンを含むオゾン化ガスを吸着剤で吸脱着させる第1吸脱着領域5aおよび第2吸脱着領域5bが互いに隣接して設けられて構成されている。この場合、第1吸脱着領域5aおよび第2吸脱着領域5bに内包される吸着剤は、オゾン発生部2から吸脱着塔4に導入したオゾン化ガスに含まれるオゾンを優先的に吸着するものが好適に使用される。この場合の吸着剤としては、第1吸脱着領域5aおよび第2吸脱着領域5bについて共に同じ種類のものであっても、あるいは互いに異なる種類のものであってもよい。吸着剤の具体例としては、例えばシリカゲルが使用される。吸着剤の吸着特性により、吸着剤の表面でのオゾン濃度はオゾン化ガス中のオゾン濃度よりも高くなる。
 回路切替器6(6a~6e)は、各構成要素間を接続するために設置されたガス回路を開閉することにより、後述する吸着動作用ガス回路R0、濃縮動作用ガス回路R1、および供給動作用ガス回路R2をそれぞれ選択的に形成するためのものである。ここでは、オゾン発生部2と吸脱着塔4内の第1吸脱着領域5aとを接続するガス回路の途中に設置されたものを第1回路切替器6aと、吸脱着塔4内の第2吸脱着領域5bと昇圧ブロア7とを接続するガス回路の途中に設置されたものを第2回路切替器6bと、吸脱着塔4内の第2吸脱着領域5bから外部に開口されたガス回路の途中に設置されたものを第3回路切替器6cと、吸脱着塔4内の第2吸脱着領域5bと第2原料ガス源1bとを接続するガス回路の途中に設置されたものを第4回路切替器6dと、吸脱着塔4内の第1吸脱着領域5aから外部に開口されたガス回路の途中に設置されたものを第5回路切替器6eと、それぞれ称するものとする。
 吸脱着塔4内の第2吸脱着領域5bとオゾン発生部2との間を結ぶガス回路の途中には第2回路切替器6bと昇圧ブロア7が順次配置されるとともに、昇圧ブロア7とオゾン発生部2とを接続するガス回路の途中には、第1原料ガス源1aと接続されたガス回路との合流点が設けられている。そして、昇圧ブロア7は、回路切替器6の回路切替により後述する吸着動作用ガス回路R0が形成された場合には、第2吸脱着領域5bから漏出したオゾン化ガスの圧力をオゾン発生部2で発生されるオゾン化ガスの圧力よりも大きい圧力まで増加させることにより、第1原料ガス源1aから供給される酸素を含むガスと、昇圧ブロア7から供給される酸素を含むガスを共に供給できるようになっている。
 制御部8は、例えばマイクロコンピュータ等で構成され、所定の制御プログラムをインストールすることにより、後述する吸着動作用ガス回路R0、濃縮動作用ガス回路R1、および供給動作用ガス回路R2をそれぞれ選択的に形成するために、回路切替器6に対して制御指令を与えることによりその開閉動作を制御する。なお、回路切替器6の開閉動作は、制御部8からの制御指令だけでなく、手動によって動作させることも可能である。
 次に、上記構成を備えたオゾン供給装置100の動作について説明する。
 この実施の形態1のオゾン供給装置100は、制御部8からの制御指令により、回路切替器6を開閉制御することにより、吸着動作用ガス回路R0、濃縮動作用ガス回路R1、および供給動作用ガス回路R2が選択的に形成される。
 ここに、吸着動作用ガス回路R0は、オゾン発生部2で発生したオゾン化ガスをオゾン濃縮部3の第1吸脱着領域5aと第2吸脱着領域5bを順次通過させて各脱着領域の吸着剤に吸着させるためのガス回路である。また、濃縮動作用ガス回路R1は、オゾン濃縮部3の第1吸脱着領域5aの吸着剤に吸着させたオゾン化ガスを脱着させて第2吸脱着領域5bの吸着剤に吸着させて回収するガス回路である。さらに、供給動作用ガス回路R2は、第2原料ガス源1bからの原料ガスを搬送しながら第2吸脱着領域5bの吸着剤で回収したオゾン化ガスを脱着させ、この脱着したオゾン化ガスを第1吸脱着領域5aを経由してオゾン濃縮部3の外部に搬出するガス回路である。
 以下、吸着動作用ガス回路R0、濃縮動作用ガス回路R1、および供給動作用ガス回路R2の構成およびその作用について、図2から図4を用いてさらに詳述する。なお、ここでは吸着動作用ガス回路R0におけるガス処理を吸着動作と称し、濃縮動作用ガス回路R1におけるガス処理を濃縮動作と称し、供給動作用ガス回路R2におけるガス処理を供給動作と称する。
 吸着動作用ガス回路R0は、図2に示すように、制御部8からの制御指令により、第1回路切替器6aおよび第2回路切替器6bを共に開状態、第3回路切替器6c、第4回路切替器6d、および第5回路切替器6eをいずれも閉状態にすることにより形成される。
 この吸着動作用ガス回路R0では、第1原料ガス源1aから酸素を含む原料ガスがオゾン発生部2へ導入され、オゾン発生部2は原料ガスをオゾン化する。オゾン発生部2で発生されたオゾン化ガスは、第1回路切替器6aを通じてオゾン濃縮部3を構成する吸脱着塔4の第1吸脱着領域5aから第2吸脱着領域5bの順に通過し、各領域に内包された吸着剤にオゾンが吸着される。このため、常に(第1吸脱着領域5aの吸着剤に吸着されるオゾン量)≧(第2吸脱着領域5bの吸着剤に吸着されるオゾン量)の関係にある。
 オゾン濃縮部3内で吸着されなかったオゾン化ガスは、第2回路切替器6bを通じて昇圧ブロア7に導入される。昇圧ブロア7は、吸着されなかったオゾン化ガスをオゾン発生部2に導入する原料ガスの圧力まで昇圧する。昇圧されたオゾン化ガスは、オゾン発生部2に再度導入されて、オゾン発生のための原料ガスとして再利用される。
 制御部8は、第1吸脱着領域5aおよび第2吸脱着領域5bに内包されている吸着剤へのオゾンの吸着量が一定量に達した場合、または一定時間が経過した場合、あるいは動作移行信号が外部より入力される場合など、予め設定した条件を満たしたと判断すると、回路切替器6を制御することにより、濃縮動作用ガス回路R1の形成に移行する。
 ただし、濃縮動作用ガス回路R1の形成への移行は、第2吸脱着領域5bにおける吸着剤へのオゾンの吸着量が、飽和吸着量より小さい段階で実施する必要がある。このため、制御部8は、第2吸脱着領域5bにおける吸着剤へのオゾンの吸着量が、飽和吸着量に達する前のタイミングで回路切替器6を制御して、次の濃縮動作用ガス回路R1の形成に移行する。
 濃縮動作用ガス回路R1は、図3に示すように、制御部8からの制御指令により、第3回路切替器6cのみを開状態、第1回路切替器6a、第2回路切替器6b、第4回路切替器6dおよび第5回路切替器6eをいずれも閉状態とすることにより形成される。
 この濃縮動作用ガス回路R1は、第1回路切替器6aが閉状態になっていることから、オゾン発生部2で発生されたオゾン化ガスが吸脱着塔4に導入されることはなく、吸脱着塔4内において第1吸脱着領域5aから脱着されたオゾン化ガスが第2吸脱着領域5bに導入される。さらに、第1吸脱着領域5aおよび第2吸脱着領域5bから脱着されたオゾン化ガスは、第3回路切替器6cを通じて吸脱着塔4の外部へ搬出される。
 この濃縮動作用ガス回路R1が形成された場合の吸脱着塔4内に吸着されたオゾン化ガスの脱着方法としては、例えば、図示しない減圧装置を使用して吸脱着塔4内の減圧する方法、加温装置を使用して吸脱着塔4内の吸着剤を昇温する方法がある。第1吸脱着領域5aおよび第2吸脱着領域5bに内包されている吸着剤の吸着特性により、原料ガスの脱着率に比べ、オゾンの脱着率は低いため、吸脱着塔4内が減圧、あるいは昇温されると、第1吸脱着領域5aおよび第2吸脱着領域5bからはオゾン以外の原料ガスが優先的に排気されることになり、オゾン濃縮部3を構成する吸脱着塔4内のオゾン濃度が高まる。
 また、この濃縮動作用ガス回路R1が形成された場合、吸脱着塔4内では、第2吸脱着領域5bには第1吸脱着領域5aから脱着されたオゾン化ガスが導入されるが、前述のように、第2吸脱着領域5bにおける吸着剤へのオゾンの吸着量が、飽和吸着量に達する前のタイミングで吸着動作用ガス回路R0から濃縮動作用ガス回路R1の形成に移行することから、第1吸脱着領域5aから脱着するオゾン化ガスを第2吸脱着領域5bの吸着剤で回収することが可能である。特に、第2吸脱着領域5bの吸着剤は、オゾン化ガスに含まれるオゾンを優先的に吸着するため、オゾンを選択的に回収することができる。したがって、第2吸脱着領域5bから第3回路切替器6cを通じてオゾン濃縮部3の外部へと搬出されるオゾン化ガスは、オゾン回収後の原料ガスが主として搬出される。そのため、オゾン濃縮部3におけるオゾン濃度が向上する。
 制御部8は、吸脱着塔4内でオゾンが濃縮されてオゾン濃度が一定量に達した場合、または一定時間が経過した場合、あるいは動作移行信号が外部より入力された場合など、予め設定した条件を満たしたと判断すると、回路切替器6を制御することにより、供給動作用ガス回路R2の形成に移行する。
 供給動作用ガス回路R2は、図4に示すように、制御部8からの制御指令により、第4回路切替器6dおよび第5回路切替器6eを開状態、第1回路切替器6a、第2回路切替器6b、および第3回路切替器6cをいずれも閉状態とすることにより形成される。
 この供給動作用ガス回路R2では、第2原料ガス源1bから第4回路切替器6dを通じて吸脱着塔4内に原料ガスが導入される。そして、吸脱着塔4内では第2原料ガス源1bからの原料ガスが導入されるとともに、これに先立つ濃縮動作により吸着および濃縮されたオゾン化ガスが第2吸脱着領域5bから第1吸脱着領域5aへと順に脱着される。こうして脱着されたオゾン化ガスは、さらに第5回路切替器6eを通じて吸脱着塔4の外部へ供給される。その際、制御部8が第4回路切替器6dの開度を調整して第2原料ガス源1bからの搬送ガスの流量を制御することにより、安定した高いオゾン濃度のオゾン化ガスをオゾン濃縮部3から外部に供給することができる。
 このように、供給動作用ガス回路R2が形成された場合、これに先立つ濃縮動作により第2吸脱着領域5bで回収したオゾンが脱着し、この脱着したオゾンを含むオゾン化ガスが第1吸脱着領域5aに導入される。そのため、第2原料ガス源1bからの原料ガスを第2吸脱着領域5bを経由することなく直接に第1吸脱着領域5aに導入した場合と比較して、供給動作の終盤における第1吸脱着領域5aのオゾン分圧の低下を抑制できるので、第5回路切替器6eを通じてオゾン濃縮部3から外部に供給するオゾン濃度の大幅な低下を防ぐことが可能である。
 次に、この実施の形態1のオゾン供給装置100の有利性を理解するために、比較例として図5に示すオゾン供給装置101を採りあげ、その構成について説明する。
 比較例としての図5のオゾン供給装置101の構成において、実施の形態1(図1)と異なる点は、吸脱着塔4内の第2吸脱着領域5bから外部に開口されたガス回路は設けられておらず、したがって、このガス回路の途中の第3回路切替器6cも省略されていることである。
 その他の構成は実施の形態1の場合と同じであるので、図1に示した実施の形態1と対応もしくは相当する構成部分には、同一の符号を付してここでは詳しい説明は省略する。
 次に、上記構成を備えた比較例のオゾン供給装置101の動作について説明する。
 この比較例のオゾン供給装置101においても、実施の形態1の場合と同様に、制御部8からの制御指令により、回路切替器6を開閉制御することにより、吸着動作用ガス回路R0、濃縮動作用ガス回路R1、および供給動作用ガス回路R2が形成される。
 以下、このオゾン供給装置101の吸着動作用ガス回路R0、濃縮動作用ガス回路R1、および供給動作用ガス回路R2の構成およびその作用について、図6から図8を用いてさらに詳述する。
 吸着動作用ガス回路R0は、図6に示すように、制御部8からの制御指令により、第1回路切替器6aおよび第2回路切替器6bを共に開状態に、第4回路切替器6dおよび第5回路切替器6eを共に閉状態とすることにより形成される。この場合に形成される吸着動作用ガス回路R0の動作および作用効果は、実施の形態1の場合(図2)と同じであるから、ここでは詳しい説明は省略する。
 次に、濃縮動作用ガス回路R1は、図7に示すように、制御部8からの制御指令により、第5回路切替器6eのみを開状態に、第1回路切替器6a、第2回路切替器6b、および第4回路切替器6dをいずれも閉状態にすることにより形成される。
 この濃縮動作用ガス回路R1では、吸脱着塔4内の第2吸脱着領域5bから第1吸脱着領域5aの方向にオゾン化ガスが脱着され、このオゾン化ガスは、さらに第1吸脱着領域5aから第5回路切替器6eを通じて吸脱着塔4の外部へ搬出される。
 供給動作用ガス回路R2は、図8に示すように、制御部8からの制御指令により、第4回路切替器6dおよび第5回路切替器6eを共に開状態、第1回路切替器6aおよび第2回路切替器6bを共に閉状態とすることにより形成される。
 この供給動作用ガス回路R2では、第2原料ガス源1bから第4回路切替器6dを通じて吸脱着塔4内に原料ガスが導入され、吸脱着塔4内では第2原料ガス源1bからの原料ガスが導入されるとともに、これに先立つ濃縮動作により濃縮されたオゾン化ガスが第2吸脱着領域5bから第1吸脱着領域5aへと順に脱着される。こうして脱着されたオゾン化ガスは、さらに第5回路切替器6eを通じて吸脱着塔4の外部へ搬出される。
 次に、実施の形態1のオゾン供給装置100(図1)と比較例のオゾン供給装置101(図5)とのオゾンに対する濃縮動作と供給動作に伴う作用効果の相違点について、さら詳しく説明する。
 図9は、実施の形態1のオゾン供給装置100で形成される濃縮動作用ガス回路R1と供給動作用ガス回路R2において吸脱着塔4から外部に搬出されるオゾン化ガスに含まれるオゾンの濃度Cの経過時間Tに伴う変化を比較例のオゾン供給装置101の場合と対比して示す特性図、図10は、濃縮動作用ガス回路R1と供給動作用ガス回路R2が形成された場合において、実施の形態1のオゾン供給装置100の吸脱着塔4内の第1吸脱着領域5aのオゾン分圧Pの経過時間Tに伴う変化を比較例のオゾン供給装置101の場合と対比して示す特性図である。
 比較例のオゾン供給装置101は、濃縮動作用ガス回路R1が形成される場合、主として第1吸脱着領域5aから飽和吸着されたオゾン化ガスが脱着されて吸脱着塔4の外部へと搬出される。そのため、吸脱着塔4の外部へ搬出されるオゾン化ガスの濃度C0は、図9の破線で示すように、吸脱着塔4内の減圧に伴って増加する。
 また、供給動作用ガス回路R2が形成される場合、その序盤は、制御部8が第4回路切替器6dの開度を制御することにより、原料ガスの搬送と合わせて、吸脱着塔4の圧力を一定とすることで、所定のオゾン濃度C0のオゾン化ガスが吸脱着塔4の外部へ供給される。
 しかし、この比較例のオゾン供給装置101の場合、供給動作用ガス回路R2の形成に先立つ濃縮動作用ガス回路R1においては、本実施の形態1のように第1吸脱着領域5aから脱着したオゾン化ガスが第2吸脱着領域5b内の吸着剤で積極的に吸着回収することはないので、供給動作用ガス回路R2が形成された場合の終盤において、第2吸脱着領域5bから脱着したオゾン化ガスが第1吸脱着領域5aへの搬送ガスとして再導入されることがない。
 このため、吸脱着塔4内の第1吸脱着領域5aで吸着されたオゾン化ガスに含まれるオゾンの濃度C0が低下し、これに伴いオゾン分圧の低下が継続するため、吸脱着塔4から第5回路切替器6eを経由して外部へ供給されるオゾン化ガスに含まれるオゾンの濃度が大幅に低下する。このため、安定した高いオゾン濃度のオゾン化ガスを吸脱着塔4から外部に供給することが難しい。
 これに対して、実施の形態1のオゾン供給装置100では、図9の実線で示すように、濃縮動作用ガス回路R1が形成された場合、第1吸脱着領域5a内の吸着剤から脱着するオゾン化ガスを第2吸脱着領域5b内の吸着剤で積極的に吸着回収される。そのため、吸脱着塔4から第3回路切替器6cを介して外部へ搬出されるオゾン化ガスに含まれるオゾンの濃度C1は、非常に低い値となる。
 また、供給動作用ガス回路R2が形成された場合、その序盤は、比較例のオゾン供給装置101の場合と同様に、制御部8が第4回路切替器6dの開度を制御することにより、原料ガスの搬送と合わせて、吸脱着塔4内の圧力を一定とすることで、所定濃度のオゾン化ガスを吸脱着塔4から第5回路切替器6eを経由して外部へ供給する。さらに、その終盤においては、これに先立って形成された濃縮動作用ガス回路R1において第2吸脱着領域5b内の吸着剤で回収されたオゾン化ガスが第1吸脱着領域5aへの搬送ガスとして再導入される。このため、第1吸脱着領域5aから脱着されるオゾン化ガスのガス量が低下し難く、吸脱着塔4から第5回路切替器6eを経由して外部へ供給されるオゾン化ガスに含まれるオゾンの濃度C1は安定した状態で長時間に渡って維持される。
 また、図10に示すように、濃縮動作用ガス回路R1が形成された場合、第1吸脱着領域5aのオゾン分圧は、実線で示す実施の形態1のオゾン供給装置100の場合のオゾン分圧P1と、破線で示す比較例のオゾン供給装置101の場合のオゾン分圧P0とでは、第1吸脱着領域5aからのオゾン化ガスの脱着により、両者共にほとんど同様の傾向で低下する。
 一方、供給動作用ガス回路R2が形成された場合、比較例のオゾン供給装置101では、これに先立って形成された濃縮動作用ガス回路R1において、吸脱着塔4内の第2吸脱着領域5bで回収したオゾンガスを脱着して使用しないので、図10の破線で示すように、第1吸脱着領域5aで吸着されたオゾン化ガスに含まれるオゾンの濃度が低下し、これに伴いオゾン分圧P0の低下が継続する。
 これに対して、この実施の形態1のオゾン供給装置100は、供給動作用ガス回路R2が形成された場合、第1吸脱着領域5aへ導入される搬送ガスとして、第2原料ガス源1bから供給される原料ガスと共に、これに先立って形成された濃縮動作用ガス回路R1において、第2吸脱着領域5bで回収したオゾンガスを脱着して使用するため、図10の実線で示すように、第1吸脱着領域5aのオゾン分圧P1の低下が抑制されて長時間に渡って高い値で維持される。このため、吸脱着塔4から第5回路切替器6eを経由して外部へオゾン化ガスを安定した濃度で長時間供給することができる。
 以上説明したように、この実施の形態1のオゾン供給装置100は、比較例として示したオゾン供給装置101に比べて、供給動作の終盤における第1吸脱着領域5aのオゾン分圧の低下を抑制できるため、安定した高いオゾン濃度のオゾン化ガスを外部に供給することができる。
実施の形態2.
 図11は本願の実施の形態2のオゾン供給装置を示す構成図であり、実施の形態1(図1)と対応もしくは相当する構成部分に同一の符号を付す。
 この実施の形態2のオゾン供給装置200は、実施の形態1のオゾン供給装置100と同様に、第1原料ガス源1a、第2原料ガス源1b、オゾン発生部2、オゾン濃縮部3、第1~第5回路切替器6a~6e、昇圧ブロア7、および制御部8を備える。
 特に、この実施の形態2においては、オゾン濃縮部3が、第1吸脱着領域5aが設けられた第1吸脱着塔4aと、第2吸脱着領域5bが設けられた第2吸脱着塔4bから構成されており、第1吸脱着塔4aと第2吸脱着塔4bとは互いに分離独立して設けられている。そして、第1吸脱着塔4aと第2吸脱着塔4bとを接続するガス回路の途中に第6回路切替器6fが設置されている。
 なお、ここでは、第1吸脱着塔4aと第2吸脱着塔4bはそれぞれ1塔のみとしているが、第1吸脱着領域5aが設けられた第1吸脱着塔4aを複数塔に、また第2吸脱着領域5bが設けられた第2吸脱着塔4bも複数塔にすることも可能である。
 また、この実施の形態2では、オゾン発生部2と第1吸脱着塔4aとを接続するガス回路の途中に第1回路切替器6aが、第1吸脱着塔4aと昇圧ブロア7とを接続するガス回路の途中に第2回路切替器6bが、第2吸脱着塔4bから外部に開口されたガス回路の途中に第3回路切替器6cが、第2吸脱着塔4bと第2原料ガス源1bとを接続するガス回路の途中に第4回路切替器6dが、第1吸脱着塔4aから外部に開口されたガス回路の途中に第5回路切替器6eが、それぞれ設置されている。
 その他の構成は、実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。
 次に、上記構成を備えたオゾン供給装置200の動作について説明する。
 この実施の形態2のオゾン供給装置200では、制御部8からの制御指令により、回路切替器6(6a~6f)を開閉制御することにより、吸着動作用ガス回路R0、濃縮動作用ガス回路R1、および供給動作用ガス回路R2が選択的に形成される。
 以下、吸着動作用ガス回路R0、濃縮動作用ガス回路R1、および供給動作用ガス回路R2の構成およびその作用について、図12から図14を用いてさらに詳述する。なお、ここでは、実施の形態1の場合と同様、吸着動作用ガス回路R0におけるガス処理を吸着動作と、濃縮動作用ガス回路R1におけるガス処理を濃縮動作と、供給動作用ガス回路R2におけるガス処理を供給動作と称する。
 吸着動作用ガス回路R0は、図12に示すように、制御部8からの制御指令により、第1回路切替器6aおよび第2回路切替器6bを共に開状態、第3回路切替器6c、第4回路切替器6d、第5回路切替器6e、および第6回路切替器6fをいずれも閉状態にすることにより形成される。
 この吸着動作用ガス回路R0では、第1原料ガス源1aから酸素を含む原料ガスがオゾン発生部2へ導入され、オゾン発生部2は原料ガスをオゾン化する。オゾン発生部2で発生されたオゾン化ガスは、第1回路切替器6aを通じてオゾン濃縮部3を構成する第1吸脱着塔4a内に導入され、この第1吸脱着塔4aの第1吸脱着領域5aに内包された吸着剤にオゾンが吸着される。
 第1吸脱着塔4aの第1吸脱着領域5aで吸着されなかったオゾン化ガスは、第2回路切替器6bを通じて昇圧ブロア7に導入される。昇圧ブロア7は、吸着されなかったオゾン化ガスをオゾン発生部2に導入する原料ガスの圧力まで昇圧する。昇圧されたオゾン化ガスは、オゾン発生部2に再度導入されて、オゾン発生のための原料ガスとして再利用される。
 制御部8は、第1吸脱着塔4aの第1吸脱着領域5aに内包されている吸着剤へのオゾンの吸着量が一定量に達した場合、または一定時間が経過した場合、あるいは動作移行信号が外部より入力された場合など、予め設定した条件を満たしたと判断すると、回路切替器6を制御することにより、濃縮動作用ガス回路R1の形成に移行する。
 濃縮動作用ガス回路R1は、図13に示すように、制御部8からの制御指令により、第3回路切替器6cおよび第6回路切替器6fが共に開状態に、第1回路切替器6a、第2回路切替器6b、第4回路切替器6d、および第5回路切替器6eがいずれも閉状態とすることにより形成される。
 この濃縮動作用ガス回路R1は、第1回路切替器6aが閉状態になっていることから、オゾン発生部2で発生されたオゾン化ガスが第1吸脱着塔4aに導入されることはなく、第1吸脱着塔4aの第1吸脱着領域5aに吸着されたオゾン化ガスが脱着されて、第6回路切替器6fを通じて第2吸脱着塔4bへ導入される。さらに、この脱着されたオゾン化ガスは、第2吸脱着塔4bから第3回路切替器6cを通じてオゾン濃縮部3の外部へ搬出される。
 この濃縮動作用ガス回路R1が形成された場合、第1吸脱着塔4aから脱着されたオゾン化ガスが第2吸脱着塔4bに導入されるが、これに先立つ吸着動作では、第2吸脱着領域5bの吸着剤にはオゾン化ガスを吸着させていないため、第1吸脱着塔4aから脱着したオゾン化ガスを第2吸脱着領域5bに内包された吸着剤によって十分に回収することが可能である。
 特に、第2吸脱着塔4bの第2吸脱着領域5bに内包された吸着剤は、オゾン化ガスに含まれるオゾンを優先的に吸着するため、第1吸脱着塔4aから脱着したオゾンを選択的に回収することができる。したがって、第2吸脱着塔4bから第3回路切替器6cを通じてオゾン濃縮部3の外部へと搬出されるオゾン化ガスは、オゾン回収後の原料ガスが主として搬出される。そのため、オゾン濃縮部3におけるオゾン濃度が向上する。
 制御部8は、第1吸脱着塔4aにおいてオゾンが濃縮されてオゾン濃度が一定量に達した場合、または一定時間が経過した場合、あるいは動作移行信号が外部より入力された場合など、予め設定した条件を満たしたと判断すると、回路切替器6を制御することにより、供給動作用ガス回路R2の形成に移行する。
 供給動作用ガス回路R2は、図14に示すように、制御部8からの制御指令により、第4回路切替器6d、第5回路切替器6e、および第6回路切替器6fがいずれも開状態に、第1回路切替器6a、第2回路切替器6b、および第3回路切替器6cがいずれも閉状態とすることにより形成される。
 この供給動作用ガス回路R2では、第2原料ガス源1bから第4回路切替器6dを通じて第2吸脱着塔4bへ原料ガスが導入される。この場合、第1吸脱着塔4aと第2吸脱着塔4bとの間を接続するガス回路の途中に設けられた第6回路切替器6fが開状態になっていることから、第2原料ガス源1bからの原料ガスが導入されるとともに、これに先立つ濃縮動作により吸着および濃縮されたオゾン化ガスが第2吸脱着領域5bから第1吸脱着領域5aへと順に脱着される。こうして脱着されたオゾン化ガスは、さらに第5回路切替器6eを通じて第1吸脱着塔4aの外部に供給される。その際、制御部8が第4回路切替器6dの開度を調整して第2原料ガス源1bからの搬送ガスの流量を制御することにより、安定した高いオゾン濃度のオゾン化ガスをオゾン濃縮部3から外部に供給することができる。
 このように、この実施の形態2のオゾン供給装置200は、第1および第2吸脱着塔4a、4bの内、第1吸脱着塔4aは吸着動作でオゾンを吸着するためのもの、第2吸脱着塔4bは濃縮動作で第1吸脱着塔4aから脱着するオゾン化ガスを回収し、その後の供給動作でこの回収したオゾン化ガスを第1吸脱着塔4aに導入するためのものとして、その役割を分担している。
 これにより、吸着動作においては、第2吸脱着塔4bの第2吸脱着領域5bに内包されている吸着剤にはオゾン化ガスが導入されず、第1吸脱着塔4aにのみ導入される。そして、次の濃縮動作において、第1吸脱着塔4aから脱着したオゾン化ガスが第6回路切替器6fを介して第2吸脱着塔4bに導入されるので、第2吸脱着塔4bの第2吸脱着領域5bに内包されている吸着剤を用いて第1吸脱着塔4aから脱着したオゾン化ガスを十分に吸着回収することができる。
 そして、次の供給動作では、これに先立つ濃縮動作により第2吸脱着塔4bの第2吸脱着領域5bで回収したオゾン化ガスが脱着し、この脱着したオゾン化ガスが第6回路切替器6fを通じて第1吸脱着塔4aに導入される。そのため、第2原料ガス源1bからの原料ガスを第2吸脱着塔4bを経由することなく直接に第1吸脱着塔4aに導入した場合と比較して、供給動作の終盤における第1吸脱着領域5aのオゾン分圧の低下を抑制でき、第1吸脱着塔4aに導入するためのオゾン化ガスを十分に確保することができる。これにより、安定した高いオゾン濃度のオゾン化ガスを第5回路切替器6eを通じてオゾン濃縮部3から外部に供給することができる。
 その他の作用効果は、実施の形態1と同様であるから、ここでは詳しい説明は省略する。
 図15および図16は、本願の実施の形態2のオゾン供給装置200の変形例を示す構成図であり、実施の形態2(図11)と対応もしくは相当する構成部分には同一の符号を付す。
 図15および図16に示すオゾン供給装置201の特徴は、第1吸脱着塔4aと第2吸脱着塔4bとの間を接続するガス回路の途中に、第6回路切替器6fに加えてオゾン計9a(図15)、あるいは圧力計9b(図16)が設けられていることである。
 このオゾン供給装置201において、図15に示すようにオゾン計9aを用いる場合は、濃縮動作において第1吸脱着塔4aから脱着するオゾン化ガスのオゾン濃度を測定し、その測定結果を制御部8に送信する。制御部8は、オゾン計9aで測定されるオゾン化ガスに含まれるオゾンの濃度が予め設定した基準値を上回ったことを条件として、回路切替器6(6a~6f)を制御することにより、供給動作用ガス回路R2の形成へ移行する。
 また、このオゾン供給装置201において、図16に示すように圧力計9bを用いる場合は、濃縮動作において第1吸脱着塔4aから脱着するオゾン化ガスの圧力を測定し、その測定結果を制御部8に送信する。制御部8は、圧力計9bで測定されるオゾン化ガスの圧力が予め設定した基準値を下回ったことを条件として、回路切替器6(6a~6f)を制御することにより、供給動作用ガス回路R2の形成へ移行する。
 また、発明者らの過去の検討から、濃縮動作および供給動作において第1吸脱着塔4aから搬出されるオゾン化ガス中のオゾン濃度が、第1吸脱着塔4a内の温度に依存せず、第1吸脱着塔4a内の圧力に一意に依存することを見出している。そのため、所望のオゾン濃度に対応する圧力の基準値を予め設定しておくことで、第1吸脱着塔4aの温度が変化しても、所望のオゾン濃度に達した際に供給動作に移行することが可能である。
 このように、第1吸脱着塔4aと第2吸脱着塔4bとの間を接続するガス回路の途中にオゾン計9aあるいは圧力計9bを設置することにより、濃縮動作から供給動作へ適切なタイミングで移行することができ、オゾン濃縮部3から外部への供給を開始するオゾン化ガスを所望のオゾン濃度に制御することができる。
 なお、図15および図16に示した構成のオゾン供給装置201では、圧力計9bあるいはオゾン計9aのいずれか一方を設置しているが、圧力計9bおよびオゾン計9aの両方を設置した構成でもよく、その場合、両方が設置される際の配置は、直列でも並列でもよく、直列に配置する場合は、圧力計9bおよびオゾン計9aを第1吸脱着塔4aと第2吸脱着塔4bとの間のガス回路に対して前後のいずれに配置してもよい。
 その他の構成、および作用効果は、実施の形態2(図11)の場合と同様であるから、ここでは詳しい説明は省略する。
 図17は、本願の実施の形態2のオゾン供給装置の他の変形例を示す構成図であり、実施の形態2(図11)と対応もしくは相当する構成部分には同一の符号を付す。
 図17に示すオゾン供給装置202の特徴は、第1吸脱着塔4aおよび第2吸脱着塔4bの周囲をそれぞれ容器16a、16bで覆い、各容器16a、16b内を冷媒で満たし、充填された冷媒を循環させている。そして、冷媒の温度を、第1吸脱着塔4aおよび第2吸脱着塔4bに対して個別に設けた第1温度調整部10aおよび第2温度調整部10bで調整することで、第1吸脱着塔4aおよび第2吸脱着塔4bの温度を制御可能な構造としている。
 この場合、第1温度調整部10aおよび第2温度調整部10bにより第1吸脱着塔4aおよび第2吸脱着塔4bの温度を調整する構成としては、空冷式でも水冷式でもよい。また、第1吸脱着塔4aおよび第2吸脱着塔4bの温度を調整するための冷媒の接触方法は、容器16a、16b内を冷媒で満す構造とするものに限らず、例えば、第1吸脱着塔4aおよび第2吸脱着塔4bの内部にそれぞれ冷媒を循環するコイル状のチューブを導入する構造でもよい。
 制御部8は、濃縮動作用ガス回路R1を形成する際には、第1温度調整部10aおよび第2温度調整部10bにより、第2吸脱着塔4bの温度を第1吸脱着塔4aの温度より低くする制御を行う。すなわち、第1温度調整部10aにより第1吸脱着塔4aを加温、第2温度調整部10bにより第2吸脱着塔4bを冷却することで、第1吸脱着領域5aに内包された吸着剤からのオゾン化ガスの脱着が促進される一方、第2吸脱着領域5bに内包された吸着剤によりオゾン化ガスの吸着を促進させることができる。そのため、濃縮動作において第1吸脱着領域5aに内包された吸着剤からのオゾン化ガスの脱着速度を向上させるとともに、第2吸脱着領域5bに内包された吸着剤によって吸着回収できるオゾン化ガスの量を増加させることができる。
 なお、ここでは、第1吸脱着塔4aおよび第2吸脱着塔4bに対して個別に第1温度調整部10aおよび第2温度調整部10bを設けているが、第1吸脱着塔4aおよび第2吸脱着塔4bのいずれか一方にのみ温度調整部を設けた構造とすることもできる。さらに、2つの温度調整部10a、10bの内のどちらか一方は、オゾン発生部2の冷却と併用してもよく、その場合、オゾン発生部2と第1吸脱着塔4aまたは第2吸脱着塔4bを直列に設置しても、あるいはオゾン発生部2と第1吸脱着塔4aまたは第2吸脱着塔4bを並列に設置してもよい。
 その他の構成および作用効果は、実施の形態2(図11)と同様であるからここでは詳しい説明は省略する。
実施の形態3.
 図18は本願の実施の形態3のオゾン供給装置を示す構成図であり、実施の形態2(図11)と対応あるいは相当する構成部分には同一の符号を付す。
 この実施の形態3のオゾン供給装置300は、実施の形態2のオゾン供給装置200と同様に、第1原料ガス源1a、第2原料ガス源1b、オゾン発生部2、オゾン濃縮部3、第1~第6回路切替器6a~6f、昇圧ブロア7、および制御部8を備える。
 特に、この実施の形態3においては、実施の形態2(図11)の構成に対して、第2原料ガス源1bと第1吸脱着塔4aとの間を接続するガス回路が設けられ、このガス回路の途中に第7回路切替器6gが設置されている。また、第1吸脱着塔4aから外部に開口されたガス回路の途中には、第5回路切替器6eとともに第1吸脱着塔4aから外部に供給されるオゾン化ガスに含まれるオゾンの濃度を測定するオゾン計11が設置されている。なお、設置するオゾン計11はインライン式でもサンプリング式でもよい。
 その他の構成は、実施の形態2(図11)と同様であるから、ここでは詳しい説明は省略する。
 次に、上記構成を備えたオゾン供給装置300の動作について説明する。
 この実施の形態3のオゾン供給装置300は、制御部8からの制御指令により、回路切替器6(6a~6g)を開閉制御することにより、実施の形態2と同様に、吸着動作用ガス回路R0、濃縮動作用ガス回路R1、および供給動作用ガス回路R2が選択的に形成される。
 この場合に回路切替器6(6a~6g)の開閉制御により形成される上記の吸着動作用ガス回路R0および濃縮動作用ガス回路R1については、第7回路切替器6gが常に閉状態に制御されているので、実施の形態2のオゾン供給装置200の場合と同じ構成となる。したがって、吸着動作用ガス回路R0および濃縮動作用ガス回路R1の作用、効果は、実施の形態2と実質的に同じであるため、ここでは詳しい説明を省略する。
 一方、供給動作用ガス回路R2については、実施の形態2の場合と異なり、制御部8からの制御指令による回路切替器6(6a~6g)の開閉制御により、第1供給動作用ガス回路R21の形成と、第2供給動作用ガス回路R22の形成と、の2段階に渡って形成される。
 なお、ここでは第1供給動作用ガス回路R21におけるガス処理を第1供給動作、第2供給動作用ガス回路R22におけるガス処理を第2供給動作と称する。
 上記の第1供給動作用ガス回路R21は、図19に示すように、第7回路切替器6gおよび第5回路切替器6eを共に開状態に、第1回路切替器6a、第2回路切替器6b、第3回路切替器6c、第4回路切替器6d、および第6回路切替器6fをいずれも閉状態にすることにより形成される。
 この第1供給動作用ガス回路R21では、第2原料ガス源1bから第7回路切替器6gを通じて第1吸脱着塔4a内に原料ガスが導入されるとともに、第1吸脱着領域5aに内包された吸着剤で吸着および濃縮されたオゾン化ガスが脱着されて、第1吸脱着塔4aから第5回路切替器6eおよびオゾン計11を経由してオゾン濃縮部3の外部へとオゾン化ガスが供給される。
 このように、第1供給動作用ガス回路R21は、第6回路切替器6fが閉状態にあるので、第2吸脱着塔4bから着脱したオゾン化ガスが第1吸脱着塔4aに導入されることはなく、第1吸脱着塔4aからのオゾン化ガスの脱着に加えて、第1吸脱着塔4aに第2原料ガス源1bから原料ガスが搬送される。そのため、高濃度のオゾンを含むオゾン化ガスが安定してオゾン濃縮部3の外部に供給される。その際、制御部8が第7回路切替器6gの開度を調整して第1吸脱着塔4a内の圧力が一定となるように第2原料ガス源1bからの原料ガスの流量を制御することにより、安定した高いオゾン濃度のオゾン化ガスを所定の流量で外部に供給することができる。
 また、この第1供給動作用ガス回路R21においては、第2原料ガス源1bからの原料ガスを第1吸脱着塔4a内に直接導入するため、時間経過と共に第1吸脱着塔4a内のオゾン分圧が低下し、これに伴ってオゾン濃度も次第に低下する。制御部8は、オゾン計11によって測定されるオゾン濃縮部3から外部に供給されるオゾン化ガスに含まれるオゾンの濃度が予め設定された基準値を下回る場合、または一定時間が経過した場合、あるいは動作移行信号が外部より入力された場合など、予め設定した条件を満たしたと判断すると、回路切替器6を制御することにより、第2供給動作用ガス回路R22の形成に移行する。
 第2供給動作用ガス回路R22は、図20に示すように、第4回路切替器6d、第5回路切替器6e、および第6回路切替器6fをいずれも開状態に、第1回路切替器6a、第2回路切替器6b、および第3回路切替器6cをいずれも閉状態とすることにより形成される。
 この場合に形成される第2供給動作用ガス回路R22の作用効果は、実施の形態2のオゾン供給装置200における供給動作の場合と実質的に同じである。すなわち、この第2供給動作用ガス回路R22では、第2原料ガス源1bから第4回路切替器6dを通じて第2吸脱着塔4b内へ原料ガスが導入される。この場合、第1吸脱着塔4aと第2吸脱着塔4bとの間に設けられた第6回路切替器6fが開状態になっていることから、第2原料ガス源1bからの原料ガスに加えて、これに先立つ濃縮動作により吸着および濃縮されたオゾン化ガスが第2吸脱着領域5bから第1吸脱着領域5aへと順に脱着される。こうして脱着されたオゾン化ガスは、さらに第5回路切替器6eを通じて第1吸脱着塔4aから外部に供給される。その際、制御部8が第4回路切替器6dの開度を調整して第2原料ガス源1bからの搬送ガスの流量を制御することにより、安定した高いオゾン濃度のオゾン化ガスをオゾン濃縮部3から外部に供給することができる。
 このように、この実施の形態3では、供給動作を2段階に分け、第1供給動作において第2原料ガス源1bから第1吸脱着塔4aに対して原料ガスを導入して第1吸脱着領域5aからオゾン化ガスを脱着し、その後の第2供給動作で、第2原料ガス源1bから第2吸脱着塔4b内に原料ガスを導入して第2吸脱着領域5bおよび第1吸脱着領域5aからオゾン化ガスを順次脱着する。すなわち、第2供給動作において、これに先立つ濃縮動作で第2吸脱着領域5bの吸着剤で吸着回収したオゾン化ガスを脱着して利用するため、供給するオゾン化ガスに含まれるオゾンの濃度が予め設定した基準値を下回るまで低下した際には、第1供給動作から第2供給動作に移行することで、供給オゾン濃度の低下を抑制することができる。
 次に、実施の形態3のオゾン供給装置300(図18)において、供給動作用ガス回路R2の形成を、第1供給動作用ガス回路R21の形成と第2供給動作用ガス回路R22の形成との2段階としたことの作用効果について、さらに詳しく説明する。
 図21は、この実施の形態3のオゾン供給装置300で形成される濃縮動作用ガス回路R1と吸着動作用ガス回路R2においてオゾン濃縮部3から外部に供給されるオゾン化ガスに含まれるオゾンの濃度Cの経過時間Tに伴う変化を、実施の形態2のオゾン供給装置200および比較例のオゾン供給装置101と対比して示す特性図である。
 この実施の形態3のオゾン供給装置300において、濃縮動作用ガス回路R1が形成される場合、オゾン濃縮部3から外部へ供給するオゾン化ガスに含まれるオゾンの濃度C3の時間変化(図中、実線で示す)は、実施の形態2の場合のオゾンの濃度C2の時間変化(図中、一点鎖線で示す)と同様の傾向を示す。
 次に、第1供給動作用ガス回路R21が形成される場合には、オゾン濃縮部3から外部へ供給するオゾン濃度C3は、第2原料ガス源1bからの原料ガスを第1吸脱着塔4aにのみ導入するため、比較例の場合のオゾン濃度C0(図中、破線で示す)と同様に次第に低下する。このため、実施の形態2の場合のオゾン濃度C2(図中、一点鎖線で示す)の時間変化と比較して、平均すると低いオゾン濃度となる。
 しかし、これに引き続いて第2供給動作用ガス回路R22が形成されると、第2原料ガス源1bから原料ガスを第2吸脱着塔4bに原料ガスを導入するようにガス回路を切り替えるので、第2吸脱着塔4bから脱着したオゾン化ガスを原料ガスと共に第1吸脱着塔4aへの搬送ガスとして利用される。このため、実施の形態2のオゾン供給装置200の場合のオゾン濃度C2の経時変化と比較して、第2吸脱着領域5bに吸着されたオゾン化ガスを脱着して搬送ガスとして使用するタイミングが遅くなり、外部への供給されるオゾン化ガスに含まれるオゾンの濃度C3の低下を抑制することができる。これにより、供給動作の終盤でも高いオゾン濃度C3を維持することができる。
 なお、この実施の形態3においても、実施の形態2の変形例(図15~図17)として開示したように、オゾン計9aまたは圧力計9bを第1吸脱着塔4aと第2吸脱着塔4bとの間を接続するガス回路の途中に設置してもよい。また、第1、第2温度調整部10a、10bを設けて第1、第2吸脱着塔4a、4bの温度を調整可能な構成とすることもできる。
 以上説明したように、この実施の形態3のオゾン供給装置300は、供給動作を、第2原料ガス源1bからの原料ガスを第1吸脱着塔4aに導入する第1供給動作と、原料ガスを第2吸脱着塔4bに導入する第2供給動作との2段階としているので、実施の形態2の場合と比較して、供給動作の終盤において、オゾン濃縮部3から外部に供給するオゾン化ガスに含まれるオゾンの濃度低下をさらに抑制することができ、供給動作全体を通して、外部に供給するオゾン濃度をより一層安定化することができる。
 その他の作用効果は、実施の形態2と同様であるから、ここでは詳しい説明は省略する。
実施の形態4.
 図22は、本願の実施の形態4のオゾン供給装置を示す構成図であり、実施の形態1(図1)と対応あるいは相当する構成部分には同一の符号を付す。
 この実施の形態4のオゾン供給装置400は、オゾン処理対象にオゾン溶液の状態で供給することを想定し、実施の形態1(図1)の構成に対して、オゾン濃縮部3から外部に供給されるオゾン化ガスに含まれるオゾンを液体と混合する気液混合装置12と、この気液混合装置12によりオゾンが溶解した液体をオゾン処理対象に接触させるオゾン反応部14とを備えている。
 気液混合装置12は、吸脱着塔4から脱着したオゾン化ガスを液体と混合するもので、例えばエジェクタ、または散気管が使用される。
 ここに、気液混合装置12としてエジェクタを使用する場合には、エジェクタに液体を導入するための液体供給部13を備えることが望ましい。また、気液混合装置12として散気管を使用する場合は、オゾン反応部14の内部に設置されることが望ましい。気液混合装置12で使用する液体としては、主に水を使用することが多いが、場合によっては酸または水酸化物等のpH調整剤を添加した溶液、汚泥等を使用する場合もある。
 オゾン反応部14は、生成したオゾン溶液とオゾン処理対象とを接触させるものである。オゾン溶液の状態で供給する必要があるオゾン処理対象としては、例えば上下水処理におけるフィルタまたは分離膜の洗浄等がある。
 この構成の実施の形態4のオゾン供給装置400では、気液混合装置12としてエジェクタを使用する場合には、濃縮動作および供給動作において吸脱着塔4から脱着されるオゾン化ガスと液体とを混合してオゾン溶液が生成し、こうして生成されたオゾン溶液をオゾン反応部14に供給してオゾン処理対象と反応させる。
 また、気液混合装置12として、散気管を使用する場合には、濃縮動作および供給動作において吸脱着塔4から脱着されるオゾン化ガスをオゾン反応部14内に充填された液体と混合してオゾン溶液を生成し、こうして生成されたオゾン溶液をオゾン処理対象と反応させる。
 このように、この実施の形態4のオゾン供給装置400は、気液混合装置12およびオゾン反応部14を設けた構成とすることにより、オゾン処理対象がオゾン溶液によってオゾン処理する必要がある場合にも適切に対応することができる。また、オゾン処理対象が液体状のものに対しては、オゾン処理対象自体を気液混合装置12に直接導入することにより、気液混合装置12の内部で吸脱着塔4から脱着するオゾン化ガスと反応させることができる。また、エジェクタ等の気液混合装置12においては、吸引するオゾン化ガスをマイクロバブル状に変換し、液体と接触させる気液接触面積を増大させることにより、オゾン処理対象とのオゾン反応を促進することができる。
 なお、その他の構成および作用効果は、実施の形態1(図1)の場合と同様であるから、ここでは詳しい説明は省略する。
 図22に示した実施の形態4のオゾン供給装置は、実施の形態1(図1)の構成を前提として説明したが、これに限らず、実施の形態2のオゾン供給装置200(図11)に示すように複数の吸脱着塔を設置した構成の場合にも適用することができる。その場合、実施の形態2の変形例(図15~図17)として開示したように、オゾン計9aおよび圧力計9bを第1吸脱着塔4aと第2吸脱着塔4bとの間を接続するガス回路の途中に設置してもよい。また、第1、第2温度調整部10a、10bを用いて第1、第2吸脱着塔4a、4bの温度を調整可能な構成とすることもできる。また、実施の形態3のオゾン供給装置300(図18)のように供給動作を2段階とした場合にも適用することができる。
 図23は、本願の実施の形態4のオゾン供給装置の変形例を示す構成図であり、実施の形態4(図22)と対応もしくは相当する構成部分には同一の符号を付す。
 図23に示すオゾン供給装置401の特徴は、吸脱着塔4から第3回路切替器6cおよび第5回路切替器6eを経由して外部にオゾン化ガスを搬出するガス回路の途中に、オゾン化ガスをオゾン処理対象に接触させるオゾン反応部15が設けられていることである。
 その他の構成は、実施の形態4(図22)の場合と同様であるから、ここでは詳しい説明は省略する。
 気液混合装置12の手前にオゾン反応部15を追加して設置することにより、気相でのオゾン処理を必要とする固相のオゾン処理対象に対してもオゾン化ガスを供給することができる。そのため、液体と接触させることのできないオゾン処理対象に関しても、オゾン処理を施すことが可能である。また、このオゾン反応部15で反応しなかったオゾン化ガスを後段に設けた気液混合装置12によって液相でのオゾン処理を実施することができる。
 なお、図23に示すオゾン供給装置401では、吸脱着塔4と気液混合装置12との間を接続するガス回路の途中には、単一のオゾン反応部を設けているが、複数のオゾン反応部を設置してもよく、その配置は直列に設置しても並列に設置してもよい。
 その他の作用効果は、実施の形態4(図22)の場合と同様であるから、ここでは詳しい説明は省略する。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
100,101,200,201,202,300 オゾン供給装置、400,401 オゾン供給装置、1a 第1原料ガス源、1b 第2原料ガス源、2 オゾン発生部、3 オゾン濃縮部、4 吸脱着塔、4a 第1吸脱着塔、4b 第2吸脱着塔、5a 第1吸脱着領域、5b 第2吸脱着領域、6 回路切替器、6a 第1回路切替器、6b 第2回路切替器、6c 第3回路切替器、6d 第4回路切替器、6e 第5回路切替器、6f 第6回路切替器、6g 第7回路切替器、7 昇圧ブロア、8 制御部、9a オゾン計、9b 圧力計、10a 第1温度調整部、10b 第2温度調整部、11 オゾン計、12 気液混合装置、13 液体供給部、14,15 オゾン反応部、R0 吸着動作用ガス回路、R1 濃縮動作用ガス回路、R2 供給動作用ガス回路、R21 第1供給動作用ガス回路、R22 第2供給動作用ガス回路。

Claims (12)

  1. 原料ガス源から供給される原料ガスによりオゾンを発生させるオゾン発生部と、上記オゾン発生部で発生したオゾンを含むオゾン化ガスを吸着剤で吸脱着させる第1吸脱着領域および第2吸脱着領域からなる2つの領域を有するオゾン濃縮部とを備えるとともに、
    上記オゾン発生部で発生したオゾン化ガスを上記第1吸脱着領域と上記第2吸脱着領域の内の少なくとも上記第1吸脱着領域の吸着剤に吸着させる吸着動作用ガス回路と、上記オゾン濃縮部の上記第1吸脱着領域の吸着剤に吸着させたオゾン化ガスを脱着させて上記第2吸脱着領域の吸着剤に吸着させて回収する濃縮動作用ガス回路と、上記原料ガス源からの原料ガスを搬送しながら上記第2吸脱着領域の吸着剤で回収したオゾン化ガスを脱着させ、この脱着したオゾン化ガスを上記第1吸脱着領域を経由して上記オゾン濃縮部の外部に供給する供給動作用ガス回路と、をそれぞれ選択的に形成するためのガス回路形成用の回路切替器を備えるオゾン供給装置。
  2. 上記回路切替器の切り替え動作を自動的に制御する制御部を備える請求項1に記載のオゾン供給装置。
  3. 上記オゾン濃縮部と上記オゾン発生部との間には、上記回路切替器の回路切替により上記吸着動作用ガス回路が形成された場合に上記オゾン濃縮部から漏出したオゾン化ガスを上記オゾン発生部に導入するための昇圧ブロワが設けられている請求項2に記載のオゾン供給装置。
  4. 上記オゾン濃縮部は、上記第1吸脱着領域が設けられた第1吸脱着塔と、上記第2吸脱着領域が設けられた第2吸脱着塔を備え、上記第1吸脱着塔と上記第2吸脱着塔とは互いに分離独立して設けられている請求項2または請求項3に記載のオゾン供給装置。
  5. 上記第1吸脱着塔および上記第2吸脱着塔には、内部温度調節用の温度調整部が設けられている請求項4に記載のオゾン供給装置。
  6. 上記回路切替器の回路切替により上記吸着動作用ガス回路が形成される場合には、上記オゾン発生部で発生したオゾン化ガスが上記第1吸脱着塔の上記第1吸脱着領域のみを通過するように構成される請求項4または請求項5に記載のオゾン供給装置。
  7. 上記第1吸脱着塔と上記第2吸脱着塔とを結ぶガス回路にはオゾン計または圧力計が設けられ、上記オゾン計で測定されるオゾン化ガスに含まれるオゾンの濃度が予め設定した基準値に達した場合、または上記圧力計で測定されるオゾン化ガスの圧力が予め設定した基準値に達した場合には、これに応じて上記制御部は、上記回路切替器を制御して上記濃縮動作用ガス回路から上記供給動作用ガス回路の形成に移行させる請求項4から請求項6のいずれか1項に記載のオゾン供給装置。
  8. 上記回路切替器の回路切替により上記供給動作用ガス回路が形成される場合には、上記原料ガス源からの原料ガスを上記第2吸脱着塔から上記第1吸脱着塔を経由した搬送に先だって、上記第1吸脱着塔にのみ搬送して上記第1吸脱着領域から脱着したオゾン化ガスを外部に搬出するように構成される請求項4から請求項7のいずれか1項に記載のオゾン供給装置。
  9. 上記オゾン濃縮部から外部に搬出されるオゾン化ガスに含まれるオゾンの濃度を測定するオゾン計を備え、上記オゾン計で測定されたオゾン濃度が予め設定した基準値に達した場合には、これに応じて上記制御部は、上記回路切替器を制御して原料ガスの搬送を上記第1吸脱着塔から上記第2吸脱着塔に切り替える請求項8に記載のオゾン供給装置。
  10. [規則91に基づく訂正 05.10.2018] 
    上記オゾン濃縮部から外部に搬出されるオゾン化ガスに含まれるオゾンを液体と混合する気液混合装置と、上記気液混合装置によりオゾンが溶解した液体をオゾン処理対象に接触させるオゾン反応部とを備える請求項1から請求項9のいずれか1項に記載のオゾン供給装置。
  11. 上記オゾン濃縮部から外部にオゾン化ガスを搬出するガス回路の途中に、オゾン化ガスをオゾン処理対象に接触させるオゾン反応部が設けられている請求項1から請求項10のいずれか1項に記載のオゾン供給装置。
  12. 原料ガス源から供給される原料ガスによりオゾンを含むオゾン化ガスを発生させるオゾン発生部と、上記オゾン発生部で発生した上記オゾン化ガスを吸着剤で吸脱着させる第1吸脱着領域および第2吸脱着領域からなる2つの領域を有するオゾン濃縮部と、を備えたオゾン供給装置を用いて、
    上記オゾン発生部で発生したオゾン化ガスを上記第1吸脱着領域と上記第2吸脱着領域の内の少なくとも上記第1吸脱着領域の吸着剤に吸着させる吸着動作の処理ステップと、
    上記オゾン濃縮部の上記第1吸脱着領域の吸着剤に吸着させたオゾン化ガスを脱着させて上記第2吸脱着領域の吸着剤に吸着させて回収する濃縮動作の処理ステップと、
    上記原料ガス源からの原料ガスを搬送しながら上記第2吸脱着領域の吸着剤で回収したオゾン化ガスを脱着させ、この脱着したオゾン化ガスを上記第1吸脱着領域を経由して上記オゾン濃縮部の外部に供給する供給動作の処理ステップと、
    を含むオゾン供給方法。
PCT/JP2018/021845 2018-06-07 2018-06-07 オゾン供給装置およびオゾン供給方法 WO2019234882A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018560696A JP6516941B1 (ja) 2018-06-07 2018-06-07 オゾン供給装置およびオゾン供給方法
CN201880089807.3A CN112203974B (zh) 2018-06-07 2018-06-07 臭氧供给装置及臭氧供给方法
PCT/JP2018/021845 WO2019234882A1 (ja) 2018-06-07 2018-06-07 オゾン供給装置およびオゾン供給方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/021845 WO2019234882A1 (ja) 2018-06-07 2018-06-07 オゾン供給装置およびオゾン供給方法

Publications (1)

Publication Number Publication Date
WO2019234882A1 true WO2019234882A1 (ja) 2019-12-12

Family

ID=66625507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021845 WO2019234882A1 (ja) 2018-06-07 2018-06-07 オゾン供給装置およびオゾン供給方法

Country Status (3)

Country Link
JP (1) JP6516941B1 (ja)
CN (1) CN112203974B (ja)
WO (1) WO2019234882A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116457072A (zh) * 2020-12-15 2023-07-18 三菱电机株式会社 臭氧供给装置及臭氧供给方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6607337B1 (ja) * 2019-06-03 2019-11-20 三菱電機株式会社 オゾン供給装置およびオゾン供給方法
JP7203293B1 (ja) * 2022-06-08 2023-01-12 三菱電機株式会社 オゾン供給装置及びオゾン供給方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481192A (en) * 1977-12-13 1979-06-28 Mitsubishi Electric Corp Ozone generator
JPH1143310A (ja) * 1997-07-24 1999-02-16 Mitsubishi Electric Corp オゾン供給装置
JPH1143307A (ja) * 1997-07-24 1999-02-16 Mitsubishi Electric Corp オゾン製造装置
JP2010195673A (ja) * 2009-01-23 2010-09-09 Air Products & Chemicals Inc オゾン製造のための方法及び装置
JP2013040077A (ja) * 2011-08-17 2013-02-28 Kyuchaku Gijutsu Kogyo Kk 吸着剤を利用したオゾン/酸素分離方法と装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248794A (ja) * 2000-03-02 2001-09-14 Kansai Electric Power Co Inc:The オゾン貯蔵方法および装置
JP3837280B2 (ja) * 2000-09-01 2006-10-25 岩谷産業株式会社 高濃度オゾンガス供給方法及びその装置
DE102006035022A1 (de) * 2006-07-28 2008-01-31 Carl Zeiss Smt Ag Verfahren zum Herstellen einer optischen Komponente, Interferometeranordnung und Beugungsgitter
JP5492566B2 (ja) * 2007-11-30 2014-05-14 東芝三菱電機産業システム株式会社 高濃度オゾンガス生成装置および高濃度オゾンガス生成方法
US8029603B2 (en) * 2009-01-23 2011-10-04 Air Products And Chemicals, Inc. Pressure swing adsorption cycle for ozone production
JP5888908B2 (ja) * 2011-09-09 2016-03-22 岩谷産業株式会社 オゾンガスの濃縮方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481192A (en) * 1977-12-13 1979-06-28 Mitsubishi Electric Corp Ozone generator
JPH1143310A (ja) * 1997-07-24 1999-02-16 Mitsubishi Electric Corp オゾン供給装置
JPH1143307A (ja) * 1997-07-24 1999-02-16 Mitsubishi Electric Corp オゾン製造装置
JP2010195673A (ja) * 2009-01-23 2010-09-09 Air Products & Chemicals Inc オゾン製造のための方法及び装置
JP2013040077A (ja) * 2011-08-17 2013-02-28 Kyuchaku Gijutsu Kogyo Kk 吸着剤を利用したオゾン/酸素分離方法と装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116457072A (zh) * 2020-12-15 2023-07-18 三菱电机株式会社 臭氧供给装置及臭氧供给方法

Also Published As

Publication number Publication date
JPWO2019234882A1 (ja) 2020-07-02
CN112203974B (zh) 2023-08-04
JP6516941B1 (ja) 2019-05-22
CN112203974A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2019234882A1 (ja) オゾン供給装置およびオゾン供給方法
CA2690414C (en) Ozone production by pressure swing adsorption using a noble gas additive
JP5080594B2 (ja) ガス混合物の分離方法
KR20020062979A (ko) 가스의 분리정제방법 및 그 장치
TWI680791B (zh) 氦氣之純化方法及純化系統
JP2001096121A (ja) 流体分離方法及びそのための分離装置
JP2009269805A (ja) 炭酸ガス回収方法およびその装置
JP5584887B2 (ja) オゾンガス濃縮方法及びその装置
WO2017187786A1 (ja) オゾンガスの濃縮方法、およびオゾンガスの濃縮装置
JP5657327B2 (ja) 排水処理方法及び排水処理システム
JP2005270953A (ja) 混合ガスの分離方法、並びに窒素ガス分離装置及び窒素ガス消費システム
JP2019150769A (ja) ガス分離方法
TWI742056B (zh) 臭氧氣體的濃縮方法、以及臭氧氣體的濃縮裝置
JPH09142808A (ja) オゾン発生装置の制御方法
JP2002355519A (ja) 水素精製用4塔式圧力スイング吸着装置の安定運転方法
JP3694343B2 (ja) 低濃度酸素用psa
JP7203293B1 (ja) オゾン供給装置及びオゾン供給方法
JPH0881204A (ja) オゾン発生濃縮装置
WO2020202271A1 (ja) オゾン供給装置およびオゾン供給方法
JP2000203807A (ja) 高濃度オゾンの供給方法及び装置
WO2017163792A1 (ja) 濃縮された目的ガスの製造方法
JP4126766B2 (ja) オゾン吸脱着装置
JPH1067501A (ja) 低酸素濃度オゾンの供給方法
JP5816059B2 (ja) 圧力スイング吸着法によるco2の分離方法
JP2008208026A (ja) 高濃度オゾンガスの製造方法とその装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560696

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921697

Country of ref document: EP

Kind code of ref document: A1