WO2020199997A1 - 一种取代的1,3,5-三嗪化合物、组合物及其应用 - Google Patents

一种取代的1,3,5-三嗪化合物、组合物及其应用 Download PDF

Info

Publication number
WO2020199997A1
WO2020199997A1 PCT/CN2020/081036 CN2020081036W WO2020199997A1 WO 2020199997 A1 WO2020199997 A1 WO 2020199997A1 CN 2020081036 W CN2020081036 W CN 2020081036W WO 2020199997 A1 WO2020199997 A1 WO 2020199997A1
Authority
WO
WIPO (PCT)
Prior art keywords
independently
substituted
group
alkyl
membered monocyclic
Prior art date
Application number
PCT/CN2020/081036
Other languages
English (en)
French (fr)
Inventor
王悦
李成龙
张佐伦
Original Assignee
吉林省元合电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林省元合电子材料有限公司 filed Critical 吉林省元合电子材料有限公司
Priority to JP2021560329A priority Critical patent/JP7205950B2/ja
Priority to KR1020217035152A priority patent/KR102650797B1/ko
Publication of WO2020199997A1 publication Critical patent/WO2020199997A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • the invention relates to a substituted 1,3,5-triazine compound, composition and application thereof.
  • Pope et al. first reported the phenomenon of organic electroluminescence. They observed the blue light emitted by anthracene when a high voltage of 400 volts was applied on both sides of an anthracene single crystal (see M. Pope, H. Kallmann and P. Magnante, J. Chem. Phys., 1963, 38, 2042). However, because single crystals are difficult to grow and the device drive voltage is high, the processes they use have almost no practical use. Until 1987, CWTang et al.
  • the device obtains green light emission with a brightness of up to 1000 cd/m 2 under a driving voltage of 10V, and the device efficiency is 1.5 lm/W (see CWTang and SAVan Slyke, Appl. Phys. Lett., 1987, 51, 913). This breakthrough has enabled organic electroluminescence research to be carried out rapidly and deeply in the world.
  • phosphorescent materials generally use precious metals such as iridium and platinum, which are expensive.
  • precious metals such as iridium and platinum
  • they still have chemical instability, and the device has problems such as large efficiency roll-off under high current density.
  • An OLED device that uses cheap and stable organic small molecule materials and can achieve high-efficiency light emission is extremely important.
  • organic electroluminescence technology has received extensive research and attention in the scientific and industrial circles.
  • Organic small molecule optoelectronic materials are widely used as high-performance materials because of their clear structure, easy modification, simple purification and processing.
  • traditional fluorescent dye molecules often have very high fluorescence quantum yields, but their doped OLED devices are limited by the internal quantum efficiency of 25%, and the external quantum efficiency is generally lower than 5%, which is lower than the efficiency of phosphorescent devices.
  • red dye DCM see CWTang, SAVan Slyke, and CH Chen, J. Appl.
  • fluorescent OLED devices that can break through the 25% internal quantum efficiency limit mainly adopt a delayed fluorescence mechanism, which can effectively utilize the triplet excited state energy in the device.
  • TTA Triplet-Triplet Annihilation, triplet-triple annihilation
  • TADF Thermally Activated Delayed Fluorescence
  • the TTA mechanism is a mechanism that uses the fusion of two triplet excitons to generate singlet excitons to increase the generation rate of singlet excitons, but the maximum internal quantum efficiency of the device is only 40% to 62.5%.
  • the TADF mechanism uses organic small molecular materials with a small singlet-triplet energy level difference ( ⁇ EST).
  • the triplet excitons can be converted into singlet through the reverse intersystem crossing (RISC) process under ambient thermal energy.
  • RISC reverse intersystem crossing
  • the mechanism of heavy state excitons In theory, the quantum efficiency of the device can reach 100%.
  • TADF molecules are mainly used as guest materials doped in wide-bandgap host materials to achieve high-efficiency thermally activated delayed fluorescence (see Q. Zhang, J. Li, K. Shizu, S.
  • TADF material Because it can simultaneously use singlet and triplet excitons to emit light, the performance of the electroluminescent device of TADF material is significantly improved compared with traditional fluorescent devices. In addition, compared with traditional phosphorescent materials, TADF materials are inexpensive, which is more conducive to their commercial promotion and application. At present, TADF molecules of various light colors have been synthesized from deep blue to near-infrared light emission, and the performance of some devices is comparable to traditional phosphorescent devices. Traditional single-molecule TADF materials generally consist of donor (D) and acceptor (A) units.
  • Exciplex luminescence is a charge transfer excited state luminescence behavior between a donor molecule and an acceptor molecule. Its luminescence comes from the electrons between the LUMO orbital of the acceptor molecule and the HOMO orbital of the donor molecule. Jump. Since the HOMO and LUMO orbitals of the exciplex are concentrated on the donor and acceptor molecules, the corresponding singlet and triplet energy level differences tend to be smaller compared with single-molecule TADF materials.
  • exciplexes can also achieve efficient thermally activated delayed fluorescence emission.
  • Donor molecules and acceptor molecules can not only form exciplexes as a light-emitting layer to emit light, but also serve as hole transport and electron transport layers, respectively, which simplifies the structure of the device to a certain extent.
  • the molecular interface between the donor and acceptor can also produce exciplex luminescence similar to the planar heterojunction (PN) (see: Advanced Materials, 2016, 28 , 239-244).
  • PN planar heterojunction
  • Electroluminescent devices prepared with excimer complexes as co-hosts have many advantages such as low turn-on, high efficiency, and low roll-off, and have become a hot topic in current research (see: Advanced Functional Materials, 2015, 25, 361-366).
  • CN108218836A discloses two tris (phenyl/pyridine-benzimidazole) benzene/pyridine compounds (E1 and E2) as shown below. These two compounds can be used as electron acceptors and electron donors to construct a light-emitting layer. Similar materials can also be used as electron transport in electroluminescent devices.
  • E1 or E2 is used as an electron acceptor and an electron donor to construct a light-emitting layer, while E1 or E2 is used as an electron transport material, the efficiency of the prepared light-emitting device is low, and the stability of the device is poor.
  • the molecule as an electron acceptor material can be combined with some electron donor materials as the host material of the electroluminescence device, and the material can also be used as an electron transport layer for the electroluminescence device at the same time.
  • CN106946859A discloses a series of triazine compounds substituted with bisbenzimidazole and its derivatives, and points out that these compounds can be used as hole blocking layers and electron transport layers in electroluminescent devices, and these compounds can be used as light extraction layers or electron transport layers.
  • the layer is used in electroluminescent devices, which can improve the efficiency of the device to a certain extent.
  • CBP 4,4'-dicarbazole biphenyl
  • CN102593374B discloses the following three compounds (TPT-07, TBT-07 and TBT-14) as the electron transport layer and host material for the preparation of electroluminescent devices. However, the efficiency of the prepared light-emitting device is low.
  • the problem to be solved by the present invention is the deficiency of existing electron acceptor materials and electron transport materials, and provides a 1,3,5-triazine compound, composition and application thereof.
  • the 1,3,5-triazine compound of the present invention can not only be used as an electron transport material for preparing the electron transport layer of an electroluminescent device, but also can be used as an electron acceptor material, and a combination of it and an electron donor material can be used as The host material of the electroluminescent device, the electroluminescent device prepared therefrom has the advantages of higher efficiency and longer life; furthermore, the 1,3,5-triazine compound is used as the electron transport layer at the same time as The combination of the electron acceptor material and the electron donor material constructs a light-emitting layer, and the prepared electroluminescent device has the advantages of better high efficiency, longer life and the like.
  • the present invention solves the above technical problems through the following technical solutions.
  • the present invention provides a 1,3,5-triazine compound as shown in formula I,
  • Ring A is a phenyl group, a phenyl group substituted by one or more Rd-1 , a 6-membered monocyclic heteroaryl group, or a 6-membered monocyclic heteroaryl group substituted by one or more Rd-2 ;
  • the heteroatom in the 6-membered monocyclic heteroaryl group and the 6-membered monocyclic heteroaryl group substituted by one or more Rd-2 is defined as: the heteroatom is N , The number of heteroatoms is 1 to 3; when R d-1 and Rd-2 are independently multiple, they are the same or different;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently hydrogen, deuterium, halogen, cyano, C 1 ⁇ C 10 alkyl, C substituted by one or more R a-1 1 ⁇ C 10 alkyl group, C 1 ⁇ C 10 alkyl group -O-, with one or more R a-2 substituted C 1 ⁇ C 10 alkyl group -O-, C 6 ⁇ C 14 aryl, a Or more C 6 ⁇ C 14 aryl groups substituted by Ra-3 , 5-6 membered monocyclic heteroaryl groups, 5-6 membered monocyclic heteroaryl groups substituted by one or more Ra -4 or The heteroatoms in the 5-6 membered mono
  • R 24 is independently n1 and n2 are independently 1, 2, 3 or 4; n3 is 1, 2 or 3;
  • R 1-1 , R 2-1 , R 1-2 , R 2-2 , R 1-3 , R 1-4 , R 2-3 are independently hydrogen, deuterium, halogen, cyano, C 1 ⁇ C 10 alkyl group, C 1 ⁇ C 10 alkyl group substituted by one or more R b-1 , C 1 ⁇ C 10 alkyl group-O-, C 1 ⁇ C 10 substituted by one or more R b-2 alkyl -O-, C 6 ⁇ C 14 aryl group, substituted with one or more R b-3 is unsubstituted C 6 ⁇ C 14 aryl, 5-6 membered monocyclic heteroaryl, substituted with one or more R b -4 substituted 5-6 membered monocyclic heteroaryl, or
  • phenyl Independently is phenyl, phenyl substituted with one or more R c-1 , 5-6 membered monocyclic heteroaryl, or, 5-6 membered monocyclic heterocyclic substituted with one or more R c-2 Aryl; the 5-6 membered monocyclic heteroaryl group and the 5-6 membered monocyclic heteroaryl group substituted by one or more R c-2 in the "5-6 membered monocyclic heteroaryl group"
  • the heteroatom of is defined as: the heteroatom is N, and the number of heteroatoms is 1 to 3; when R c-1 and R c-2 are independently multiple, they are the same or different;
  • R a-1 , R a-2 , R a-3 , R a-4 , R b-1 , R b-2 , R b-3 , R b-4 , R c-1 , R c-2 , R d-1 and R d-2 are independently the following substituents: deuterium, halogen, cyano, trifluoromethyl, C 1 -C 6 alkyl, or C 1 -C 6 alkyl-O-.
  • the definitions of certain substituents in the 1,3,5-triazine compound represented by formula I can be as follows, and the definitions of unmentioned substituents are as described in any of the above schemes .
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently halogens, and the halogens (such as fluorine, chlorine, bromine or iodine) are independently It is fluorine.
  • R 1-1 , R 2-1 , R 1-2 , R 2-2 , R 1-3 , R 1-4 and R 2-3 are independently halogen
  • the halogen e.g., fluorine, chlorine, bromine or iodine
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently C 1 ⁇ C 10 alkyl, substituted by one or more R a-1 C 1 ⁇ C 10 alkyl group, C 1 ⁇ C 10 alkyl group by one or more -O- R a-2 substituted by C 1 ⁇ C 10 alkyl group -O-, said C 1 ⁇ C 10 Alkyl groups are independently C 1 -C 6 alkyl groups (for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, isobutyl, pentyl or he
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently C 6 ⁇ C 14 aryl groups or substituted by one or more R a-3
  • the C 6 -C 14 aryl group is independently a C 6 -C 10 aryl group; for example, phenyl or naphthyl.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22, and R 23 are independently 5-6 membered monocyclic heteroaryl groups or by one or more R a-4
  • the C 1 -C 12 heteroaryl group is independently selected from N with heteroatoms, and the number of heteroatoms is 1 to 3; preferably, it is pyridyl.
  • R 1-1 , R 2-1 , R 1-2 , R 2-2 , R 1-3 , R 1-4 and R 2-3 are independently C 1 ⁇ C 10 alkyl group, C 1 ⁇ C 10 alkyl group substituted by one or more R b-1 , C 1 ⁇ C 10 alkyl group-O- or C 1 ⁇ C substituted by one or more R b-2
  • the C 1 ⁇ C 10 alkyl is independently C 1 ⁇ C 6 alkyl (such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl Group, sec-butyl, isobutyl, pentyl or hexyl), preferably C 1 -C 4 alkyl (such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl , Isobutyl
  • R 1-1 , R 2-1 , R 1-2 , R 2-2 , R 1-3 , R 1-4 and R 2-3 are independently C 6 ⁇ In a C 14 aryl group or a C 6 ⁇ C 14 aryl group substituted by one or more R b-3 , the C 6 ⁇ C 14 aryl group is independently a C 6 ⁇ C 10 aryl group; for example, phenyl or Naphthyl.
  • R 1-1 , R 2-1 , R 1-2 , R 2-2 , R 1-3 , R 1-4 and R 2-3 are independently 5-6
  • the C 1 ⁇ C 12 heteroaryl group is independently a heteroatom selected from N, hetero The number of atoms is 1 to 3; preferably pyridyl.
  • ring A is a 6-membered monocyclic heteroaryl group or a 6-membered monocyclic heteroaryl group substituted by one or more Rd-2 , the 6-membered monocyclic heteroaryl group
  • the group is independently a heteroatom selected from N, and the number of heteroatoms is 1 to 2; it is preferably a pyridyl group.
  • said 5-6 membered monocyclic heteroaryl group is independently a 5-6 membered monocyclic heteroaryl group or a 5-6 membered monocyclic heteroaryl group substituted with one or more R c-2 , said 5-6 membered monocyclic heteroaryl group is independently
  • the heteroatom is selected from N, and the number of heteroatoms is 1 to 2; preferably, it is pyridyl.
  • R 21 , R 22 and R 23 are the same.
  • R 24 when L is , R 24 is located independently versus The ortho, meta or para position of the connection site.
  • Ra -1 , Ra -2 , Ra -3 , Ra -4 , R b-1 , R b-2 , R b-3 , R b-4 , R c-1, R c- 2, R d-1 and R d- 2 independently halogen, said halogen (e.g. fluoro, chloro, bromo or iodo) independently fluorine.
  • said halogen e.g. fluoro, chloro, bromo or iodo
  • Ra -1 , Ra -2 , Ra -3 , Ra -4 , R b-1 , R b-2 , R b-3 , R b-4 , R c-1 , R c-2 , R d-1 and R d- 2 are independently C 1 ⁇ C 6 alkyl or C 1 ⁇ C 6 alkyl-O-, said C 1 ⁇ C 6 alkyl, or C 1 ⁇ C 6 alkyl in -O- C 1 ⁇ C 6 alkyl (e.g., methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, sec-butyl, butyl, pentyl or hexyl group) is independently C 1 ⁇ C 4 alkyl group (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobuty
  • Ra -1 , Ra -2 , Ra -3 , Ra -4 , R b-1 , R b-2 , R b-3 , R b-4 , R c-1, R c- 2, R d-1 and R d- number 2 are independently 1, 2 or 3.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently C 1 ⁇ C 10 alkyl substituted by one or more R a-1 Or C 1 ⁇ C 10 alkyl-O- substituted by one or more Ra -2 , the substituted C 1 ⁇ C 10 alkyl or substituted C 1 ⁇ C 10 alkyl-O-
  • the substituted C 1 -C 10 alkyl group of is independently trifluoromethyl.
  • R 1-1 , R 2-1 , R 1-2 , R 2-2 , R 1-3 , R 1-4 and R 2-3 are separated by one or
  • R b- 1 substituted C 1 ⁇ C 10 alkyl groups or one or more R b-2 substituted C 1 ⁇ C 10 alkyl groups-O- the substituted C 1 ⁇ C 10 alkane or substituted C unsubstituted C 1 ⁇ C 10 alkyl group -O- in 1 ⁇ C 10 alkyl group is independently trifluoromethyl.
  • R 1-1 , R 1-2 , R 1-3 and R 1-4 are independently hydrogen, deuterium, C 1 ⁇ C 10 alkyl group, and one or more R b-1 is substituted with C 1 ⁇ C 10 alkyl group, C 6 ⁇ C 14 aryl group, substituted with one or more R b-3 is unsubstituted C 6 ⁇ C 14 aryl, 5-6 membered monocyclic heteroaryl, 5-6 membered monocyclic heteroaryl substituted by one or more R b-4 or R 2-1 , R 2-2 and R 2-3 are independently hydrogen.
  • ring A is phenyl or phenyl substituted with one or more Rd-1 .
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently hydrogen, deuterium, halogen, cyano, C 1 ⁇ C 10 alkyl, and one R a-1 or more substituted with C 1 ⁇ C 10 alkyl group, C 6 ⁇ C 14 aryl group by one or more R a-3 substituted C 6 ⁇ C 14 aryl group; preferably hydrogen or halogen.
  • R 24 is independently
  • L is a single bond or Ring A is phenyl or phenyl substituted with one or more R d-1 ;
  • R 21 , R 22 and R 23 are the same;
  • R 24 is independently
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently hydrogen, deuterium, halogen, cyano, C 1 ⁇ C 10 alkyl, C substituted by one or more R a-1 1 ⁇ C 10 alkyl group, C 6 ⁇ C 14 aryl group by one or more R a-3 substituted C 6 ⁇ C 14 aryl group; preferably hydrogen, deuterium, halogen.
  • ring A is phenyl
  • R 24 is independently
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently hydrogen, halogen, C 1 to C substituted by one or more R a-1 10 alkyl;
  • R 3 , R 8 , R 13 and R 18 are independently hydrogen, halogen, C 1 to C 10 alkyl substituted by one or more Ra -1 ;
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 , R 10 , R 11 , R 12 , R 14 , R 15 , R 16 , R 17 , R 19 , R 20 , R 21 , R 22 and R 23 are independently hydrogen;
  • R a- 1 is independently halogen, such as fluorine;
  • Ra -1 is independently halogen, such as fluorine.
  • R 3, R 8, R 13 and R 18 are independently hydrogen, halo, 1 a-substituted by one or more R C 1 ⁇ C 10 alkyl group; R a e.g. -1 is independently halogen, such as fluorine. Another example is that the C 1 -C 10 alkyl substituted by one or more Ra -1 is trifluoromethyl.
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 , R 10 , R 11 , R 12 , R 14 , R 15 , R 16 , R 17 , R 19 , R 20 , R 21 , R 22 and R 23 are independently hydrogen.
  • R 1-1 , R 2-1 , R 1-2 , R 2-2 , R 1-3 , R 1-4 , R 2-3 are independently hydrogen, C 6 ⁇ C 14 aryl group, substituted with one or more R b-3 is unsubstituted C 6 ⁇ C 14 aryl, 5-6 membered monocyclic heteroaryl, or
  • R 1-1, R 1-2, R 1-3, R 1-4 are independently hydrogen, C 6 ⁇ C 14 aryl group, substituted with one or more R b-3 is unsubstituted C 6 ⁇ C 14 Aryl, 5-6 membered monocyclic heteroaryl, or R 2-1 , R 2-2 , R 2-3 are independently hydrogen; R b-3 is independently halogen, trifluoromethyl or C 1 ⁇ C 6 alkyl; Independently phenyl; Independently 5-6 membered monocyclic heteroaryl.
  • R 1-1 , R 1-2 , R 1-3 , and R 1-4 are independently hydrogen, C 6 ⁇ C 14 aryl, and one or more R b- 3- substituted C 6 ⁇ C 14 aryl, 5-6 membered monocyclic heteroaryl, or
  • R b-3 is independently halogen, trifluoromethyl or C 1 ⁇ C 6 alkyl
  • R b-3 is independently halogen, trifluoromethyl, or C 1 -C 6 alkyl.
  • R 2-1 , R 2-2 and R 2-3 are independently hydrogen.
  • L is a single bond or Ring A is phenyl
  • R 24 is independently
  • R 1-1 , R 2-1 , R 1-2 , R 2-2 , R 1-3 , R 1-4 , R 2-3 are independently hydrogen, C 6 ⁇ C 14 aryl, and one or Multiple R b-3 substituted C 6 ⁇ C 14 aryl groups, 5-6 membered monocyclic heteroaryl groups, or
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently hydrogen, halogen, C 1 ⁇ C 10 alkyl substituted by one or more Ra -1 ;
  • R b-3 is independently halogen, trifluoromethyl or C 1 ⁇ C 6 alkyl
  • Ra -1 is independently halogen, such as fluorine. Another example is that the C 1 -C 10 alkyl group substituted with one or more Ra -1 is trifluoromethyl.
  • L is a single bond or Ring A is phenyl
  • R 24 is independently
  • R 2-1 , R 2-2 and R 2-3 are independently hydrogen
  • R 1-1, R 1-2, R 1-3 , R 1-4 are independently hydrogen, C 6 ⁇ C 14 aryl group, substituted with one or more R b-3 is unsubstituted C 6 ⁇ C 14 aryl group , 5-6 membered monocyclic heteroaryl, or
  • R b-3 is independently halogen, trifluoromethyl or C 1 ⁇ C 6 alkyl
  • R 3 , R 8 , R 13 and R 18 are independently hydrogen, halogen, or C 1 to C 10 alkyl substituted by one or more Ra -1 ;
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 , R 10 , R 11 , R 12 , R 14 , R 15 , R 16 , R 17 , R 19 , R 20 , R 21 , R 22 and R 23 are independently hydrogen;
  • R a-1 is independently halogen, such as fluorine
  • the 1,3,5-triazine compound represented by formula I is any one of the following compounds:
  • the compound of formula I of the present invention can be prepared according to conventional chemical synthesis methods in the art, and the steps and conditions can refer to the steps and conditions of similar reactions in the art.
  • the present invention provides a preparation method of 1,3,5-triazine compound as shown in formula I, which may include any of the following schemes:
  • R 1'and R 2' have the same definitions as R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 , R 1-1 , R 2- 1.
  • R 1-2 , R 2-2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , n1, n2 and n3 are as defined above Said, m1 and m2 are 0, 1, 2, 3 or 4 independently.
  • the present invention provides an application of a 1,3,5-triazine compound as shown in formula I as an electronic material.
  • the electronic material is used as an electron transport material and/or electron acceptor material; preferably an electron transport material and/or electron acceptor material in an organic electroluminescence device.
  • the invention provides an application of a 1,3,5-triazine compound represented by formula I in the field of organic electroluminescence devices.
  • the 1,3,5-triazine compound represented by formula I is used to prepare the electron transport layer, the hole blocking layer and the light emitting layer in an organic electroluminescent device One or more of.
  • the present invention provides an organic electroluminescent composition, which includes an electron donor material and the 1,3,5-triazine compound represented by formula I.
  • the electron donor material in the organic electroluminescence composition may be a conventional phenyl or naphthylcarbazole electron donor material in the art; the benzene
  • the phenyl or naphthylcarbazole type electron donor material preferably contains 2-3 phenylcarbazole or naphthylcarbazole group structures; the phenyl or naphthylcarbazole type electron donor material preferably Any of the following compounds:
  • the molar ratio of the 1,3,5-triazine compound shown in formula I and the electron donor material can be a conventional molar ratio in the art (for example, a conventional excitation in the art).
  • the molar ratio of the electron acceptor material to the electron donor material in the matrix composite), preferably, the 1,3,5-triazine compound shown in formula I and the electron donor material The molar ratio is 3:1 to 1:3; preferably 1:1.
  • the organic electroluminescent composition may also include a doped luminescent material; the doped luminescent material may be a conventional doped luminescent material in the field, such as fluorescent light. Materials and/or phosphorescent luminescent materials (also called phosphorescent complex luminescent materials).
  • the mass percentage of the doped luminescent material in the organic electroluminescent composition can be a conventional mass percentage in the art.
  • the doped luminescent material is a fluorescent luminescent material
  • the The mass percentage of the doped luminescent material in the composition is preferably 0.5 WT %-2.0 WT % (for example, 1 WT %)
  • the doped luminescent material is a phosphorescent luminescent material
  • the The mass percentage of the doped luminescent material in the composition is preferably 5.0 WT %-15.0 WT % (for example, 10 WT %).
  • the phosphorescent luminescent material in the doped luminescent material, may be a conventional phosphorescent luminescent material in the art. In the present invention, it is preferably any of the following compounds:
  • Ra 1 , Ra 3 , Rb 1 , Rb 3 , Rd 1 , Rd 3 , Re 4 , Re 5 , Re 6 , Rf 7 , Rf 8 , Rf 9 , Rb 10-1 , Rb 10-2 , Re 10 -1 , Re 10-2 , Rf 10-1 and Rf 10-2 are independently H or a linear or branched alkyl group containing 1-5 C;
  • Ra 2 , Rb 2 and Rd 2 are independently H, a linear or branched alkyl group containing 1 to 5 C, a phenyl group, or a phenyl substituted with a linear or branched chain alkyl group of 1 to 5 C;
  • the phosphorescent luminescent material in the doped luminescent material, is IrPPy 3
  • the fluorescent luminescent material in the doped luminescent material, may be a conventional fluorescent luminescent material in the art. In the present invention, it is preferably any of the following compounds:
  • Rg 11-1 , Rg 11-2 , Rh 11-1 , and Rh 11-2 are independently linear or branched alkyl groups containing 1-5 C;
  • Rg 12-1 , Rg 12-2 , Rh 13-1 , Rh 13-2 , Rh 13-3 and Rh 13-4 represent linear or branched alkyl groups containing 1-5 C, F or CF 3 ;
  • Rm 22-1 , Rn 25-1 , Ro 28-11 and Rp 33-1 are linear or branched alkyl groups containing 1-4 Cs.
  • the fluorescent luminescent material in the doped luminescent material, is
  • the present invention provides an application of the above-mentioned organic electroluminescent composition as an organic electroluminescent material.
  • the organic electroluminescent material is used to prepare the light-emitting layer in an organic electroluminescent device.
  • the present invention provides an organic electroluminescent device, which contains the organic electroluminescent composition as described above.
  • the organic electroluminescent composition is a light-emitting layer (the light-emitting principle of the light-emitting layer is based on the exciplex formed by electron donor molecules and electron acceptor molecules, namely molecules formed by Exciplex Charge transfer between excited states).
  • the organic electroluminescent device further includes a substrate, and an anode layer, an organic light-emitting functional layer, and a cathode layer sequentially formed on the substrate;
  • the organic light-emitting functional layer includes
  • the light-emitting layer as described above may also include any one or a combination of a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer, and an electron injection layer; preferably
  • the electron transport material in the electron transport layer has the same structure as the 1,3,5-triazine compound in the organic electroluminescence composition.
  • the invention provides an application of the organic electroluminescence device in an organic electroluminescence display or an organic electroluminescence illumination light source.
  • the number of the "substituted" can be one or more; when there are more than one, it can be 2, 3 or 4.
  • the “substitution” when the number of the "substitution" is multiple, the “substitution” may be the same or different.
  • the position of "substitution" can be any position unless otherwise specified.
  • the hydrogen or H is a hydrogen element in natural abundance, that is, a mixture of isotopes protium, deuterium and tritium, in which the abundance of protium is 99.98%.
  • the deuterium is D or 2 H, which is also called deuterium.
  • the abundance of deuterium at the deuterium substitution site is greater than 99%.
  • the term "containing” or “including (including)” can be open, semi-closed, and closed. In other words, the term also includes “substantially consisting of” or “consisting of”.
  • C 1 ⁇ C 6 alkyl group refers to alkyl groups having a total of 5 or 6 carbon atoms as defined below.
  • the total number of carbon atoms in the simplified notation does not include carbons that may be present in the substituents of the group.
  • the numerical range defined in the substituents such as 0 to 4, 1-4, 1 to 3, etc., indicates an integer within the range, for example, 1-6 is 0, 1, 2, 3, 4, 5, 6.
  • halogen means fluorine, chlorine, bromine or iodine.
  • alkyl is meant to include branched and straight-chain chains with the specified number of carbon atoms Saturated aliphatic hydrocarbon group. For example, C 1 ⁇ C 10 . As defined in "C 1 -C 6 alkyl", it includes groups having 1, 2, 3, 4, 5, or 6 carbon atoms in a linear or branched structure.
  • the C 1 ⁇ C 6 alkyl groups are each independently methyl, ethyl, propyl, butyl, pentyl or hexyl; wherein, propyl is C 3 alkyl (including the same Isomers, such as n-propyl or isopropyl); butyl is C 4 alkyl (including isomers, such as n-butyl, sec-butyl, isobutyl or tert-butyl); pentyl is C 5 alkyl (including isomers, such as n-pentyl, 1-methyl-butyl, 1-ethyl-propyl, 2-methyl-1-butyl, 3-methyl-1- butyl, isopentyl, tert-pentyl or neopentyl); for the hexyl group C 6 alkyl group (including isomers, e.g. n-hexyl or isohexyl).
  • aryl refers to a monocyclic or polycyclic group having 6-14 ring atoms and zero heteroatoms provided in the aromatic ring system (E.g., bicyclic or tricyclic) 4n+2 aromatic ring system (e.g., having 6, 10, or 14 shared p electrons in a cyclic array) group ("C 6 ⁇ C 14 aryl) ").
  • aromatic ring system E.g., bicyclic or tricyclic
  • 4n+2 aromatic ring system e.g., having 6, 10, or 14 shared p electrons in a cyclic array
  • Examples of the aforementioned aryl unit include phenyl, naphthyl, phenanthryl, or anthracenyl.
  • heteroaryl refers to having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system (where each hetero Atoms independently selected from nitrogen, oxygen and sulfur) 5-6 membered monocyclic or polycyclic (for example, bicyclic or tricyclic) 4n+2 aromatic ring system group ("5-6 member Heteroaryl").
  • Heteroaryl groups within the scope of this definition include but are not limited to: acridinyl, carbazolyl, cinnolinyl, quinoxalinyl, pyrazolyl, indolyl, benzotriazolyl, furyl, thienyl , Benzothienyl, benzofuranyl, quinolinyl, isoquinolinyl, oxazolyl, isoxazolyl, indolyl, pyrazinyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, Tetrahydroquinoline.
  • part refers to specific fragments or functional groups in a molecule.
  • the chemical moiety is generally considered to be a chemical entity embedded or attached to a molecule.
  • the present invention adopts traditional methods of mass spectrometry and elemental analysis, and the steps and conditions can refer to the conventional operating steps and conditions in the art.
  • the present invention adopts standard nomenclature and standard laboratory procedures and techniques of analytical chemistry, synthetic organic chemistry and optics. In some cases, standard techniques are used for chemical synthesis, chemical analysis, and performance testing of light-emitting devices.
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as deuterium ( 2 H). All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive progress effect of the present invention is that: the substituted 1,3,5-triazine compound represented by formula I provided by the present invention has good electron-accepting ability and electron-transporting ability; and has good thermal stability ( The thermal decomposition temperature of all compounds is between 420-440°C).
  • Such compounds can be used in the field of organic electroluminescence. It can be used alone as an electron transport layer or hole blocking layer, or combined with an electron donor material to form a composite host material, and used alone in an organic electroluminescent device.
  • This composite host material can be used with some luminescent materials (including phosphorescence and (Fluorescent material) doped to construct the light-emitting layer of the organic electroluminescent material.
  • this material can be simultaneously used as a functional material in the light-emitting layer and electron transport layer/hole blocking layer of electroluminescent devices. Its advantage is that the electron transport layer and the electron acceptor material in the light-emitting layer belong to the same molecule. When electrons enter the light-emitting layer from the electron transport layer, there is no customer service barrier, which is beneficial to reduce the driving voltage and efficiency roll-off of the light-emitting device, and improve the efficiency and life of the device.
  • the molecular ion mass determined by mass spectrometry analysis is: 732.40 (calculated value: 732.27); theoretical element content (%) C 49 H 32 N 8 : C, 80.31; H, 4.40; N, 15.29; measured element content (%): C, 80.22; H, 4.35; N, 15.27.
  • the above analysis results show that the obtained product is the target product.
  • the molecular ion mass determined by mass spectrometry analysis is: 732.58 (calculated value: 732.27); theoretical element content (%) C 49 H 32 N 8 : C, 80.31; H, 4.40; N, 15.29; measured element content (%): C, 80.50; H, 4.35; N, 15.33.
  • the above analysis results show that the obtained product is the target product.
  • Example 2 According to the synthesis of Example 2, the steps are the same, the compound N-(3-pyridyl)-1,2-phenylenediamine is used instead of the compound o-aminodiphenylamine to obtain 1.00g of white compound (yield 66.7%), which is confirmed by mass spectrometry
  • the molecular ion mass of is: 733.28 (calculated value: 733.27); theoretical element content (%) C 48 H 31 N 9 : C,78.56; H, 4.26; N, 17.18, measured element content (%): C, 78.75 ; H, 4.41; N, 16.93.
  • the above analysis results show that the obtained product is the target product.
  • Example 2 According to the synthesis of Example 2, the steps were the same, and the compound N-(4-pyridyl)-1,2-phenylenediamine was used instead of the compound o-aminodiphenylamine to obtain 0.628 g of a white compound (yield 57.2%), which was confirmed by mass spectrometry
  • the molecular ion mass of is: 733.33 (calculated value: 733.27); theoretical element content (%) C 48 H 31 N 9 : C,78.56; H, 4.26; N, 17.18, measured element content (%): C, 78.58 ; H, 4.34; N, 17.25.
  • the above analysis results show that the obtained product is the target product.
  • Example 1 According to the synthesis of Example 1, the steps were the same, and the compound 3-aldehyde pyridine was used instead of the compound benzaldehyde to obtain 0.537 g of a white compound (yield 48.9%).
  • the molecular ion mass determined by mass spectrometry was 733.15 (calculated value: 733.27) );
  • Theoretical element content (%) C 48 H 31 N 9 C, 78.56; H, 4.26; N, 17.18, the measured element content (%): C, 78.75; H, 4.41; N, 16.93.
  • the above analysis results show that the obtained product is the target product.
  • Example 1 According to the synthesis of Example 1, the procedure was the same, and the compound 4-aldehyde pyridine was used instead of the compound benzaldehyde to obtain 0.523 g of a white compound (yield 66.7%).
  • the molecular ion mass determined by mass spectrometry was 733.19 (calculated value: 733.27) );
  • Theoretical element content (%) C 48 H 31 N 9 C, 78.56; H, 4.26; N, 17.18, the measured element content (%): C, 78.66; H, 4.40; N, 16.97.
  • the above analysis results show that the obtained product is the target product.
  • Example 1 According to the synthesis of Example 1, the steps were the same, and the compound 2-fluorobenzaldehyde was substituted for the compound benzaldehyde to obtain 1.033g of a white compound (yield 68.9%).
  • the molecular ion mass determined by mass spectrometry was 750.22 (calculated value: 750.27) );
  • Theoretical element content (%) C 49 H 31 FN 8 C, 78.38; H, 4.16; F, 2.53; N, 14.92, the measured element content (%): C, 78.48; H, 4.06; F, 2.55; N, 14.94.
  • the above analysis results show that the obtained product is the target product.
  • Example 1 According to the synthesis of Example 1, the steps were the same, and the compound 3-fluorobenzaldehyde was substituted for the compound benzaldehyde to obtain 0.880 g of a white compound (yield 58.7%).
  • the mass of the molecular ion determined by mass spectrometry was 750.09 (calculated value: 750.27) );
  • Theoretical element content (%) C 49 H 31 FN 8 C, 78.38; H, 4.16; F, 2.53; N, 14.92, the measured element content (%): C, 78.42H, 4.11; F, 2.55; N ,14.83.
  • the above analysis results show that the obtained product is the target product.
  • Example 1 According to the synthesis of Example 1, the steps were the same, and the compound 4-fluorobenzaldehyde was substituted for the compound benzaldehyde to obtain 0.672 g of a white compound (yield 44.8%).
  • the mass of molecular ion determined by mass spectrometry was 750.25 (calculated value: 750.27) );
  • Theoretical element content (%) C 49 H 31 FN 8 C, 78.38; H, 4.16; F, 2.53; N, 14.92, the measured element content (%): C, 78.44; H, 4.25; F, 2.77; N, 14.88.
  • the above analysis results show that the obtained product is the target product.
  • Example 1 According to the synthesis of Example 1, the steps were the same, and the compound 3,5-difluorobenzaldehyde was used instead of the compound benzaldehyde to obtain 0.597 g of white compound (yield 39.8%).
  • the molecular ion mass determined by mass spectrometry was 768.33 (calculated value) Is: 768.26); theoretical element content (%) C 49 H 30 F 2 N 8 : C, 76.55; H, 3.93; F, 4.94; N, 14.57, measured element content (%): C, 76.53; H, 3.91 ; F, 4.58; N, 14.68.
  • the above analysis results show that the obtained product is the target product.
  • Example 2 According to the synthesis of Example 2, the steps were the same, and the compound N-(2-fluorophenyl)-1,2-phenylenediamine was used instead of the compound o-aminodiphenylamine to obtain 0.672 g of a white compound (yield 44.8%).
  • Mass analysis The determined molecular ion mass is: 750.34 (calculated value: 750.27); theoretical element content (%) C 49 H 31 FN 8 : C, 78.38; H, 4.16; F, 2.53; N, 14.92, measured element content (% ): C, 78.25; H, 4.21; F, 2.39; N, 14.77.
  • the above analysis results show that the obtained product is the target product.
  • Example 2 According to the synthesis of Example 2, the steps were the same, and the compound N-(3-fluorophenyl)-1,2-phenylenediamine was used instead of the compound o-aminodiphenylamine to obtain 0.754g of white compound (yield 50.3%).
  • Mass analysis The determined molecular ion mass is: 750.12 (calculated value: 750.27); theoretical element content (%) C 49 H 31 FN 8 : C, 78.38; H, 4.16; F, 2.53; N, 14.92, measured element content (% ): C, 78.54; H, 4.20; F, 2.44; N, 14.97.
  • the above analysis results show that the obtained product is the target product.
  • Example 2 According to the synthesis of Example 2, the steps were the same, and the compound N-(4-fluorophenyl)-1,2-phenylenediamine was used instead of the compound o-aminodiphenylamine to obtain 0.724g of white compound (yield 48.3%).
  • Mass analysis The determined molecular ion mass is: 750.19 (calculated value: 750.27); theoretical element content (%) C 49 H 31 FN 8 : C, 78.38; H, 4.16; F, 2.53; N, 14.92, measured element content (% ): C, 78.52; H, 4.14; F, 2.57; N, 14.85.
  • the above analysis results show that the obtained product is the target product.
  • Example 2 According to the synthesis of Example 2, the steps are the same, and the compound N-(3,5-difluorophenyl)-1,2-phenylenediamine is used instead of the compound o-aminodiphenylamine to obtain 0.776 g of a white compound (yield 51.7%) ,
  • the molecular ion mass determined by mass spectrometry analysis is: 768.33 (calculated value: 768.26); theoretical element content (%) C 49 H 30 F 2 N 8 : C, 76.55; H, 3.93; F, 4.94; N, 14.57, Measured element content (%): C, 76.53; H, 3.91; F, 4.58; N, 14.68.
  • the above analysis results show that the obtained product is the target product.
  • Example 5 According to the synthesis of Example 5, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine, 0.707g of white compound was obtained (yield 43.9%), the molecular ion mass determined by mass spectrometry analysis was: 805.41 (calculated value: 805.23); theoretical element content (%) C 48 H 27 F 4 N 9 : C, 71.55; H, 3.38; F, 9.43; N, 15.64, measured element content (%): C, 71.61; H, 3.33; F, 9.47; N, 15.66. The above analysis results show that the obtained product is the target product.
  • Example 6 According to the synthesis of Example 6, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine, 0.834g of white compound was obtained (yield 51.8%), the molecular ion mass determined by mass spectrometry analysis was: 805.19 (calculated value: 805.23); theoretical element content (%) C 48 H 27 F 4 N 9 : C, 71.55; H, 3.38; F, 9.43; N, 15.64, measured element content (%): C, 71.66; H, 3.42; F, 9.39; N, 15.79. The above analysis results show that the obtained product is the target product.
  • Example 3 According to the synthesis of Example 3, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine, 0.737g of white compound was obtained (yield 45.8%), the molecular ion mass determined by mass spectrometry analysis was: 805.31 (calculated value: 805.23); theoretical element content (%) C 48 H 27 F 4 N 9 : C, 71.55; H, 3.38; F, 9.43; N, 15.64, measured element content (%): C, 71.70; H, 3.51; F, 9.50; N, 15.71.
  • the above analysis results show that the obtained product is the target product.
  • Example 4 According to the synthesis of Example 4, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine, 0.745g white compound was obtained (yield 46.3%), the molecular ion mass determined by mass spectrometry analysis was: 805.17 (calculated value: 805.23); theoretical element content (%) C 48 H 27 F 4 N 9 : C, 71.55; H, 3.38; F, 9.43; N, 15.64, measured element content (%): C, 71.39; H, 3.42; F, 9.38; N, 15.55. The above analysis results show that the obtained product is the target product.
  • Example 7 According to the synthesis of Example 7, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine, 0.523g of white compound was obtained (yield 66.7%), the molecular ion mass determined by mass spectrometry analysis was: 822.23 (calculated value: 822.23); theoretical element content (%) C 49 H 27 F 5 N 8 : C, 71.53; H, 3.31; F, 11.54; N, 13.62, measured element content (%): C, 71.53; H, 3.31; F, 11.54; N, 13.62. The above analysis results show that the obtained product is the target product.
  • Example 8 According to the synthesis of Example 8, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine, 0.868g of white compound was obtained (yield 52.8%), the molecular ion mass determined by mass spectrometry analysis was: 822.41 (calculated value: 822.23); theoretical element content (%) C 49 H 27 F 5 N 8 : C, 71.53; H, 3.31; F, 11.54; N, 13.62, measured element content (%): C, 71.66; H, 3.51; F, 11.49; N, 13.72. The above analysis results show that the obtained product is the target product.
  • Example 9 According to the synthesis of Example 9, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine, 0.819g of white compound was obtained (yield 49.8%), the molecular ion mass determined by mass spectrometry analysis was 822.17 (calculated value: 822.23); theoretical element content (%) C 49 H 27 F 5 N 8 : C, 71.53; H, 3.31; F, 11.54; N, 13.62, measured element content (%): C, 71.62; H, 3.50; F, 11.47; N, 13.59.
  • the above analysis results show that the obtained product is the target product.
  • Example 10 According to the synthesis of Example 10, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine, 0.894g of white compound was obtained (yield 53.2%), the molecular ion mass determined by mass spectrometry was 840.31 (calculated value: 840.22); theoretical element content (%) C 49 H 26 F 6 N 8 : C, 70.00; H, 3.12; F, 13.56; N, 13.33, measured element content (%): C, 70.11; H, 3.08; F, 13.49; N, 13.26. The above analysis results show that the obtained product is the target product.
  • Example 11 According to the synthesis of Example 11, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine to obtain 0.811g of white compound (yield 48.3%), the molecular ion mass determined by mass spectrometry analysis is: 822.30 (calculated value: 822.23); theoretical element content (%) C 49 H 27 F 5 N 8 : C, 71.53; H, 3.31; F, 11.54; N, 13.62, measured element content (%): C, 71.55; H, 3.30; F, 11.52; N, 13.61.
  • the above analysis results show that the obtained product is the target product.
  • Example 12 According to the synthesis of Example 12, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine to obtain 0.826g of white compound (yield 49.2%), the molecular ion mass determined by mass spectrometry analysis is: 822.33 (calculated value: 822.23); theoretical element content (%) C 49 H 27 F 5 N 8 : C, 71.53; H, 3.31; F, 11.54; N, 13.62, measured element content (%): C, 71.55; H, 3.42; F, 11.49; N, 13.64.
  • the above analysis results show that the obtained product is the target product.
  • Example 13 According to the synthesis of Example 13, the steps are the same, and the compound 2-chloro-4,6-bis(4-fluorophenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6-diphenyl -1,3,5-triazine, 0.850g of white compound was obtained (yield 50.6%), the molecular ion mass determined by mass spectrometry analysis was: 822.35 (calculated value: 822.23); theoretical element content (%) C 49 H 27 F 5 N 8 : C, 71.53; H, 3.31; F, 11.54; N, 13.62, measured element content (%): C, 71.60; H, 3.41; F, 11.59; N, 13.54. The above analysis results show that the obtained product is the target product.
  • Example 2 According to the synthesis of Example 2, the steps were the same, and the compound N 1 -(3-(3-pyridyl)phenyl)-1,2-phenylenediamine was used instead of the compound o-aminodiphenylamine to obtain 0.889g of a white compound (yield 54.9%), the molecular ion mass determined by mass spectrometry analysis is: 809.25 (calculated value: 809.30); theoretical element content (%) C 54 H 35 N 9 : C, 80.08; H, 4.36; N, 15.56, measured element content (%): C, 80.18; H, 4.46; N, 15.66.
  • the above analysis results show that the obtained product is the target product.
  • the molecular ion mass determined by mass spectrometry analysis is: 808.12 (calculated value: 808.31); theoretical element content (%) C 55 H 36 N 8 : C, 81.66; H, 4.49; N, 13.85; measured element content (%): C, 81.76; H, 4.50; N, 13.89.
  • the above analysis results show that the obtained product is the target product.
  • Example 10 According to the synthesis of Example 10, the steps are the same, and the compound N 1 -(2-bromophenyl)-1,2-phenylenediamine is substituted for the compound N 1 -(4-bromophenyl)-1,2-phenylenediamine , Obtain 0.438 g of white compound (yield 54.2%).
  • the mass of molecular ion determined by mass spectrometry is 808.32 (calculated value: 808.31); theoretical element content (%) C 55 H 36 N 8 : C, 81.66; H, 4.49; N, 13.85; Measured element content (%): C, 81.72; H, 4.53; N, 13.79.
  • the above analysis results show that the obtained product is the target product.
  • Example 10 According to the synthesis of Example 10, the steps are the same, and the compound N 1 -(3-bromophenyl)-1,2-phenylenediamine is used instead of the compound N 1 -(4-bromophenyl)-1,2-phenylenediamine , To obtain 0.427 g of white compound (yield 52.9%).
  • the molecular ion mass determined by mass spectrometry is 808.38 (calculated value: 808.31); theoretical element content (%) C 55 H 36 N 8 : C, 81.66; H, 4.49; N, 13.85; Measured element content (%): C, 81.62; H, 4.43; N, 13.99.
  • the above analysis results show that the obtained product is the target product.
  • the molecular ion mass determined by mass spectrometry analysis is: 808.28 (calculated value: 808.31); theoretical element content (%) C 55 H 36 N 8 : C, 81.66; H, 4.49; N, 13.85; measured element content (%): C, 81.63; H, 4.45; N, 13.89.
  • the above analysis results show that the obtained product is the target product.
  • Example 30 According to the synthesis of Example 30, the procedure was the same, and the compound 4-formylphenylboronic acid was used instead of the compound 3-formylphenylboronic acid to obtain 0.675g (yield 83.5%) of the white compound.
  • the molecular ion mass determined by mass spectrometry was 808.42 (calculated value) Is: 808.31); theoretical element content (%) C 55 H 36 N 8 : C, 81.66; H, 4.49; N, 13.85; measured element content (%): C, 81.63; H, 4.53; N, 13.88.
  • the above analysis results show that the obtained product is the target product.
  • Example 30 According to the synthesis of Example 30, the steps are the same, and the compound 2-formylphenylboronic acid is used instead of the compound 3-formylphenylboronic acid to obtain 0.728 g of a white compound (yield 90.1%).
  • the molecular ion mass determined by mass spectrometry is 808.32 (calculated value) Is: 808.31); theoretical element content (%) C 55 H 36 N 8 : C, 81.66; H, 4.49; N, 13.85; measured element content (%): C, 81.58; H, 4.46; N, 13.87.
  • the above analysis results show that the obtained product is the target product.
  • Example 1 According to the synthesis of Example 1, the steps were the same, and the compound 3-trifluoromethylbenzaldehyde was used instead of the compound benzaldehyde to obtain 0.625g of a white compound (yield 52.1%).
  • the mass of molecular ion determined by mass spectrometry was 800.23 (calculated value) Is: 800.26); theoretical element content (%) C 50 H 31 F 3 N 8 : C, 74.99; H, 3.90; F, 7.12; N, 13.99, measured element content (%): C, 75.05; H, 3.94 ; F,7.02; N,13.99.
  • the above analysis results show that the obtained product is the target product.
  • Example 1 According to the synthesis of Example 1, the steps were the same, and the compound 3,5-bis(trifluoromethyl)benzaldehyde was used instead of the compound benzaldehyde to obtain 0.432g of white compound (yield 33.2%).
  • the mass of the molecular ion determined by mass spectrometry was : 868.22 (calculated value: 868.25); theoretical element content (%) C 51 H 30 F 6 N 8 : C, 70.50; H, 3.48; F, 13.12; N, 12.90, measured element content (%): C, 70.52; H, 3.50; F, 13.17; N, 12.92.
  • the above analysis results show that the obtained product is the target product.
  • Example 2 According to the synthesis of Example 2, the steps are the same, the compound N-(3-trifluoromethylphenyl)-1,2-phenylenediamine is used instead of the compound o-aminodiphenylamine to obtain 0.622g of a white compound (yield 51.8%) ,
  • the molecular ion mass determined by mass spectrometry analysis is: 800.29 (calculated value: 800.26); theoretical element content (%) C 50 H 31 F 3 N 8 : C,74.99; H,3.90; F,7.12; N,13.99, Measured element content (%): C, 75.00; H, 3.92; F, 7.09; N, 13.92.
  • the above analysis results show that the obtained product is the target product.
  • Example 2 According to the synthesis of Example 2, the steps are the same, and the compound N-(3,5-bis(trifluoromethyl)phenyl)-1,2-phenylenediamine is substituted for the compound o-aminodiphenylamine to obtain 0.675g of a white compound ( Yield 51.8%), the molecular ion mass determined by mass spectrometry analysis is: 868.27 (calculated value: 868.25); theoretical element content (%) C 51 H 30 F 6 N 8 : C, 70.50; H, 3.48; F, 13.12 ; N, 12.90, measured element content (%): C, 70.44; H, 3.46; F, 13.19; N, 12.98. The above analysis results show that the obtained product is the target product.
  • Example 3 According to the synthesis of Example 3, the steps are the same, and the compound 2-chloro-4,6-bis(4-trifluoromethylphenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6- Diphenyl-1,3,5-triazine, 0.657g of white compound (yield 43.6%) was obtained, and the molecular ion mass determined by mass spectrometry analysis was 1005.22 (calculated value: 1005.22); theoretical element content (%) C 52 H 27 F 12 N 9 : C, 62.10; H, 2.71; F, 22.67; N, 12.53, measured element content (%): C, 62.13; H, 2.72; F, 22.66; N, 12.55.
  • the above analysis results show that the obtained product is the target product.
  • Example 7 According to the synthesis of Example 7, the steps are the same, and the compound 2-chloro-4,6-bis(4-trifluoromethylphenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6- Diphenyl-1,3,5-triazine, the compound 3-trifluoromethylbenzaldehyde was substituted for the compound 3-fluorobenzaldehyde to obtain 0.847g of white compound (yield 52.7%), the molecular ion mass determined by mass spectrometry Is: 1072.25 (calculated value: 1072.21); theoretical element content (%) C 54 H 27 F 15 N 8 : C, 60.46; H, 2.54; F, 26.56; N, 10.44, measured element content (%): C , 60.49; H, 2.53; F, 26.55; N, 10.52. The above analysis results show that the obtained product is the target product.
  • Example 10 According to the synthesis of Example 10, the steps are the same, and the compound 2-chloro-4,6-bis(4-trifluoromethylphenyl)-1,3,5-triazine is used instead of the compound 2-chloro-4,6- Diphenyl-1,3,5-triazine, using the compound 3,5-bis(trifluoromethyl)benzaldehyde instead of the compound 3,5-difluorobenzaldehyde to obtain 0.869g of a white compound (yield 50.8%) ,
  • the molecular ion mass determined by mass spectrometry analysis is: 1140.23 (calculated value: 1140.20); theoretical element content (%) C 55 H 26 F 18 N 8 : C, 57.91; H, 2.30; F, 29.98; N, 9.82, Measured element content (%): C, 57.93, 2.33; F, 29.95; N, 9.95.
  • the above analysis results show that the obtained product is the target product.
  • Example 12 According to the synthesis of Example 12, the steps were the same, and the compound 2-chloro-4,6-bis(4-trifluoromethylphenyl)-1,3,5-triazine was used instead of the compound 2-chloro-4,6- Diphenyl-1,3,5-triazine, N-(3-trifluoromethylphenyl)-1,2-phenylenediamine instead of compound N-(3-fluorophenyl)-1,2-benzene Diamine, 0.791g of white compound (yield 49.2%) was obtained, the molecular ion mass determined by mass spectrometry analysis was: 1072.28 (calculated value: 1072.21); theoretical element content (%) C 54 H 27 F 15 N 8 : C, 60.46; H, 2.54; F, 26.56; N, 10.44, measured element content (%): C, 60.52; H, 2.56; F, 26.58; N, 10.38. The above analysis results show that the obtained product is the target product.
  • Example 7 According to the synthesis of Example 7, the steps were the same, and the compound 2-isopropylbenzaldehyde was used instead of the compound 2-fluorobenzaldehyde to obtain 0.535 g of a white compound (yield 26.4%).
  • the molecular ion mass determined by mass spectrometry analysis is: 774.31 (calculated value: 774.32); theoretical element content (%) C 52 H 38 N 8 : C, 80.60; H, 4.94; N, 14.46; measured element content (%): C, 80.64; H, 4.97; N, 14.39.
  • the above analysis results show that the obtained product is the target product.
  • Example 8 According to the synthesis of Example 8, the steps were the same, and the compound 3-isopropylbenzaldehyde was used instead of the compound 3-fluorobenzaldehyde to obtain 0.514 g of a white compound (yield 27.4%).
  • the molecular ion mass determined by mass spectrometry analysis is: 774.34 (calculated value: 774.32); theoretical element content (%) C 52 H 38 N 8 : C, 80.60; H, 4.94; N, 14.46; measured element content (%): C, 80.64; H, 4.97; N, 14.39.
  • the above analysis results show that the obtained product is the target product.
  • Example 9 According to the synthesis of Example 9, the steps were the same, and the compound 4-isopropylbenzaldehyde was substituted for the compound 4-fluorobenzaldehyde to obtain 0.535 g of a white compound (yield 26.4%).
  • the molecular ion mass determined by mass spectrometry analysis is: 774.31 (calculated value: 774.32); theoretical element content (%) C 52 H 38 N 8 : C, 80.60; H, 4.94; N, 14.46; measured element content (%): C, 80.64; H, 4.97; N, 14.39.
  • the above analysis results show that the obtained product is the target product.
  • Example 10 According to the synthesis of Example 10, the steps were the same, and the compound 3,5-diisopropylbenzaldehyde was used instead of the compound 3,5-difluorobenzaldehyde to obtain 0.549g of a white compound (yield 22.3%).
  • the molecular ion mass determined by mass spectrometry analysis is: 816.30 (calculated value: 816.37); theoretical element content (%) C 55 H 44 N 8 : C, 80.86; H, 5.43; N, 13.72; measured element content (%): C, 80.84; H, 5.47; N, 13.69.
  • the above analysis results show that the obtained product is the target product.
  • Example 11 According to the synthesis of Example 11, the steps are the same, and the compound N 1 -(2-isopropylphenyl)benzene-1,2-diamine is used instead of the compound N 1 -(2-fluorophenyl)benzene-1,2- Diamine, 0.515 g of a white compound (yield 25.4%) was obtained.
  • the molecular ion mass determined by mass spectrometry analysis is: 774.37 (calculated value: 774.32); theoretical element content (%) C 52 H 38 N 8 : C, 80.60; H, 4.94; N, 14.46; measured element content (%): C, 80.64; H, 4.97; N, 14.39.
  • the above analysis results show that the obtained product is the target product.
  • Example 12 According to the synthesis of Example 12, the steps were the same, and the compound N 1 -(3-isopropylphenyl)benzene-1,2-diamine was used instead of the compound N 1 -(3-fluorophenyl)benzene-1,2- Diamine, 0.510 g of a white compound (yield 25.9%) was obtained.
  • the molecular ion mass determined by mass spectrometry analysis is: 774.34 (calculated value: 774.32); theoretical element content (%) C 52 H 38 N 8 : C, 80.60; H, 4.94; N, 14.46; measured element content (%): C, 80.64; H, 4.97; N, 14.39.
  • the above analysis results show that the obtained product is the target product.
  • Example 13 According to the synthesis of Example 13, the steps are the same, and the compound N 1 -(4-isopropylphenyl)benzene-1,2-diamine is substituted for the compound N 1 -(4-fluorophenyl)benzene-1,2- Diamine, 0.515 g of a white compound (yield 25.4%) was obtained.
  • the molecular ion mass determined by mass spectrometry analysis is: 774.37 (calculated value: 774.32); theoretical element content (%) C 52 H 38 N 8 : C, 80.60; H, 4.94; N, 14.46; measured element content (%): C, 80.64; H, 4.97; N, 14.39.
  • the above analysis results show that the obtained product is the target product.
  • Example 14 According to the synthesis of Example 14, the steps are the same, and the compound N 1 -(3,5-diisopropylphenyl)benzene-1,2-diamine is used instead of the compound N 1 -(3,5-fluorophenyl)benzene -1,2-diamine, 0.529 g of white compound was obtained (yield 27.2%).
  • the molecular ion mass determined by mass spectrometry analysis is: 816.30 (calculated value: 816.37); theoretical element content (%) C 55 H 44 N 8 : C, 80.86; H, 5.43; N, 13.72; measured element content (%): C, 80.84; H, 5.47; N, 13.69.
  • the above analysis results show that the obtained product is the target product.
  • Example 27 According to the synthesis of Example 27, the steps were the same, and the compound 3-isopropylbenzaldehyde was used instead of the compound benzaldehyde to obtain 0.523 g of a white compound (yield 37.9%).
  • the molecular ion mass determined by mass spectrometry analysis is: 850.36 (calculated value: 850.35); theoretical element content (%) C 58 H 42 N 8 : C, 81.86; H, 4.97; N, 13.17; measured element content (%): C, 81.85; H, 4.91; N, 13.24.
  • the above analysis results show that the obtained product is the target product.
  • Example 28 According to the synthesis of Example 28, the steps were the same, and the compound 3-isopropylbenzaldehyde was used instead of the compound benzaldehyde to obtain 0.503 g of a white compound (yield 37.6%).
  • the molecular ion mass determined by mass spectrometry analysis is: 850.38 (calculated value: 850.35); theoretical element content (%) C 58 H 42 N 8 : C, 81.86; H, 4.97; N, 13.17; measured element content (%): C, 81.85; H, 4.91; N, 13.24.
  • the above analysis results show that the obtained product is the target product.
  • Example 29 According to the synthesis of Example 29, the steps were the same, and the compound 3-isopropylbenzaldehyde was used instead of the compound benzaldehyde to obtain 0.501 g of a white compound (yield 37.6%).
  • the molecular ion mass determined by mass spectrometry analysis is: 850.39 (calculated value: 850.35); theoretical element content (%) C 58 H 42 N 8 : C, 81.86; H, 4.97; N, 13.17; measured element content (%): C, 81.85; H, 4.91; N, 13.24.
  • the above analysis results show that the obtained product is the target product.
  • Example 30 According to the synthesis of Example 30, the steps are the same, and the compound N 1 -(3-isopropylphenyl)benzene-1,2-diamine is substituted for the compound N 1 -phenylbenzene-1,2-diamine to obtain a white color Compound 0.520g (yield 34.9%).
  • the molecular ion mass determined by mass spectrometry analysis is: 850.34 (calculated value: 850.35); theoretical element content (%) C 58 H 42 N 8 : C, 81.86; H, 4.97; N, 13.17; measured element content (%): C, 81.85; H, 4.91; N, 13.24.
  • the above analysis results show that the obtained product is the target product.
  • Example 31 According to the synthesis of Example 31, the steps are the same, and the compound N 1 -(4-isopropylphenyl)benzene-1,2-diamine is substituted for the compound N 1 -phenylbenzene-1,2-diamine to obtain a white color Compound 0.503g (yield 23.9%).
  • the molecular ion mass determined by mass spectrometry analysis is: 850.37 (calculated value: 850.35); theoretical element content (%) C 58 H 42 N 8 : C, 81.86; H, 4.97; N, 13.17; measured element content (%): C, 81.85; H, 4.91; N, 13.24.
  • the above analysis results show that the obtained product is the target product.
  • Example 32 According to the synthesis of Example 32, the steps are the same, and the compound N 1 -(4-isopropylphenyl)benzene-1,2-diamine is substituted for the compound N 1 -phenylbenzene-1,2-diamine to obtain a white color Compound 0.523g (yield 37.9%).
  • the molecular ion mass determined by mass spectrometry analysis is: 850.31 (calculated value: 850.35); theoretical element content (%) C 58 H 42 N 8 : C, 81.86; H, 4.97; N, 13.17; measured element content (%): C, 81.85; H, 4.92; N, 13.23.
  • the above analysis results show that the obtained product is the target product.
  • Example 27 According to the synthesis of Example 27, the steps were the same, and the compound 2-methylbenzaldehyde was used instead of the compound benzaldehyde to obtain 0.538 g of a white compound (yield 39.9%).
  • the molecular ion mass determined by mass spectrometry analysis is: 822.34 (calculated value: 822.32); theoretical element content (%) C 56 H 38 N 8 : C, 81.73; H, 4.65; N, 13.62; measured element content (%): C, 81.75; H, 4.61; N, 13.64.
  • the above analysis results show that the obtained product is the target product.
  • Example 28 According to the synthesis of Example 28, the steps were the same, and the compound 3-methylbenzaldehyde was used instead of the compound benzaldehyde to obtain 0.614 g of a white compound (yield 37.4%).
  • the molecular ion mass determined by mass spectrometry analysis is: 822.38 (calculated value: 822.32); theoretical element content (%) C 56 H 38 N 8 : C, 81.73; H, 4.65; N, 13.62; measured element content (%): C, 81.79; H, 4.60; N, 13.61.
  • the above analysis results show that the obtained product is the target product.
  • Example 29 According to the synthesis of Example 29, the procedure was the same, and the compound 3-methylbenzaldehyde was used instead of the compound benzaldehyde to obtain 0.523 g of a white compound (yield 37.9%).
  • the molecular ion mass determined by mass spectrometry analysis is: 822.38 (calculated value: 822.32); theoretical element content (%) C 56 H 38 N 8 : C, 81.73; H, 4.65; N, 13.62; measured element content (%): C, 81.78; H, 4.61; N, 13.61.
  • the above analysis results show that the obtained product is the target product.
  • Example 30 According to the synthesis of Example 30, the steps were the same, and the compound N 1 -(p-tolyl)benzene-1,2-diamine was used instead of the compound N 1 -phenylbenzene-1,2-diamine to obtain 0.598g of a white compound ( Yield 37.2%).
  • the molecular ion mass determined by mass spectrometry analysis is: 822.39 (calculated value: 822.32); theoretical element content (%) C 56 H 38 N 8 : C, 81.73; H, 4.65; N, 13.62; measured element content (%): C, 81.78; H, 4.62; N, 13.60.
  • the above analysis results show that the obtained product is the target product.
  • Example 31 According to the synthesis of Example 31, the steps were the same, and the compound N 1 -(p-tolyl)benzene-1,2-diamine was used instead of the compound N 1 -phenylbenzene-1,2-diamine to obtain 0.523g of a white compound ( The yield is 37.9%).
  • the molecular ion mass determined by mass spectrometry analysis is: 822.36 (calculated value: 822.32); theoretical element content (%) C 56 H 38 N 8 : C, 81.73; H, 4.65; N, 13.62; measured element content (%): C, 81.78; H, 4.61; N, 13.61.
  • the above analysis results show that the obtained product is the target product.
  • Example 32 According to the synthesis of Example 32, the steps were the same, and the compound N 1 -(m-tolyl)benzene-1,2-diamine was substituted for the compound N 1 -phenylbenzene-1,2-diamine to obtain 0.510 g of a white compound ( Yield 35.9%).
  • the molecular ion mass determined by mass spectrometry analysis is: 822.36 (calculated value: 822.32); theoretical element content (%) C 56 H 38 N 8 : C, 81.73; H, 4.65; N, 13.62; measured element content (%): C, 81.78; H, 4.61; N, 13.61.
  • the above analysis results show that the obtained product is the target product.
  • the specific device preparation process is as follows: transparent ITO glass is used as the base material for the preparation of the device, and then ultrasonically treated with 5% ITO lotion for 30 minutes, followed by distilled water (2 times ), acetone (2 times), isopropanol (2 times) ultrasonic washing, and finally the ITO glass is stored in isopropanol. Before each use, carefully wipe the surface of the ITO glass with an acetone cotton ball and an isopropyl alcohol cotton ball, rinse it with isopropyl alcohol and dry it, and then treat it with plasma for 5 minutes. The device is prepared by vacuum coating equipment using vacuum evaporation process.
  • the deposition rate is determined by Sainz Film Thickness Meter using vacuum evaporation process.
  • Various organic layers, LiF electron injection layers and metal Al electrodes are sequentially deposited on the ITO glass (see the following effect examples for specific device structures).
  • the current, voltage, brightness, luminescence spectrum and other characteristics of the device are tested simultaneously with PR 650 spectral scanning luminance meter and Keithley K 2400 digital source meter system.
  • the performance test of the device is carried out in anhydrous and oxygen-free glove box.
  • HATCN is used as the hole injection layer
  • DBBA is used as the first hole transport layer
  • TCTA is used as the second hole
  • the transport layer is used.
  • TCTA is mixed with the compound 1-60 of the present invention as a host material (the weight mixing ratio of TCTA and compound 1-60 is 1:1), and the compound 1-60 of the present invention is used as a host material. Used as an electronic transmission material.
  • the structure of the organic electroluminescent device is [ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:n+10 wt %IrPPy 3 /n(30nm)/LiF(1nm)/Al( 100nm)].
  • n represents the compound number: 1-60.
  • the compound used in the host material is the same as that used in the electron transport layer, and IrPPy 3 is used as the doped luminescent material (the doping concentration is 10 WT % by weight).
  • Table 1-1 The results of the effect examples are shown in Table 1-1.
  • HATCN was used as the hole injection layer
  • DBBA was used as the first hole transport layer
  • TCTA was used as the second hole transport layer Use
  • TCTA is mixed with 3P-T2T, E1 or E2 as the host material in the light-emitting layer, the two materials are mixed in a weight ratio of 1:1, and IrPPy 3 doped luminescent material is used (the weight ratio doping concentration is 10 WT %)
  • 3P-T2T, E1 or E2 are used as electron transport materials at the same time.
  • Comparative Examples 1-1 to 3-1 organic electroluminescent device structure is [ITO/HATCN (5nm)/DBBA (60nm)/TCTA (10nm)/TCTA: 3P-T2T or E1 or E2+10wt% IrPPy 3 / 3P-T2T or E1 or E2(30nm)/LiF(1nm)/Al(100nm)].
  • HATCN was used as the hole injection layer
  • DBBA was used as the first hole transport layer
  • TCTA was used as the second hole transport layer
  • TBT-07, TBT-14, ET85, 1, 2, 3, 4, 40, 45, 47, 50, 55, and 60 are used as electron transport layer (ETL) materials, respectively Used as a host material in the light-emitting layer.
  • ETL electron transport layer
  • Comparative Examples 4-1 to 16-1 organic electroluminescent device structure is [ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/n+10wt%IrPPy 3 /n(30nm)/LiF(1nm) )/Al(100nm)].
  • n represents the compound number.
  • the compound used in the host material is the same as the compound used in the electron transport layer, and IrPPy 3 is used as the doped luminescent material (the weight ratio doping concentration is 10 WT %).
  • Table 2-1 The results of the comparative example are shown in Table 2-1.
  • Test data of the device of the embodiment under the condition of a drive current density of 10 mA/cm 2 (constant current drive mode) (device life T90 represents the time it takes for the device brightness to decay to 90% of the initial brightness).
  • Test data of the comparative example device under the condition of a drive current density of 10 mA/cm 2 (constant current drive mode) (device life T90 represents the time it takes for the device brightness to decay to 90% of the initial brightness).
  • the 1,3,5-triazine compound of the present invention is used as the electron transport layer, and at the same time as the electron acceptor material and the electron donor material to construct the light emitting layer.
  • the brightness of the organic electroluminescent device can reach 8315cd/m 2 -8898cd/m 2 ; the current efficiency can reach 80cd/A-91cd/A; the device life can reach 1078 hours -1300 hours (T90)
  • HATCN is used as the hole injection layer
  • DBBA is used as the first hole transport layer
  • TCTA is used as the second hole
  • the transport layer is used.
  • TCTA is mixed with the compound 1-60 of the present invention as the host material (the weight mixing ratio of TCTA and the compound 1-60 is 1:1), and TPBI is used as the electron transport material.
  • the structure of the organic electroluminescent device is [ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:n+10 wt %IrPPy 3 /TPBI(30nm)/LiF(1nm)/Al( 100nm)].
  • n represents the compound number: 1-60.
  • the compound used in the host material is the same as that used in the electron transport layer, and IrPPy 3 is used as the doped luminescent material (the doping concentration is 10 WT % by weight).
  • Table 1-2 The results of the effect examples are shown in Table 1-2.
  • HATCN was used as the hole injection layer
  • DBBA was used as the first hole transport layer
  • TCTA was used as the second hole transport layer Use
  • TCTA is mixed with one of 3P-T2T, E1, E2, TBT-07, TBT-14 and ET85 as the host material in the light-emitting layer, the two materials are mixed in a weight ratio of 1:1, and IrPPy 3 doped light-emitting material. (Weight ratio doping concentration is 10 WT %)
  • TPBI is used as an electron transport material.
  • Organic electroluminescent device structure is [ITO/HATCN (5nm)/DBBA (60nm)/TCTA (10nm)/TCTA: 3P-T2T, E1, E2, TBT-07, TBT -14 or ET85+10wt% IrPPy 3 /TPBI(30nm)/LiF(1nm)/Al(100nm)].
  • HATCN was used as the hole injection layer
  • DBBA was used as the first hole transport layer
  • TCTA was used as the second hole transport layer.
  • Compounds 1, 2, 3, 4, 40, 45, 47, 50, 55 and 60 in the layer are used as host materials, and IrPPy 3 is used as doped luminescent materials (the doping concentration by weight is 10 WT %); TPBI is used Used as an electronic transmission material.
  • Comparative Examples 7-2 to 15-2 organic electroluminescent device structures are [ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/n+10wt%IrPPy 3 /TPBI(30nm)/LiF(1nm) )/Al(100nm)].
  • the results of the comparative example are shown in Table 2-2.
  • Test data of the device of the embodiment under the condition of a driving current density of 10 mA/cm 2 (constant current driving mode) (device life T90 represents the time it takes for the device brightness to decay to 90% of the initial brightness).
  • Test data of the comparative example device under the condition of a drive current density of 10 mA/cm 2 (constant current drive mode) (device life T90 represents the time it takes for the device brightness to decay to 90% of the initial brightness).
  • the 1,3,5-triazine compound of the present invention is used as the combination of the electron acceptor material and the electron donor material to construct the light-emitting layer, and the prepared organic electroluminescence
  • the brightness of the light-emitting device can reach 7156cd/m 2 -7890cd/m 2 ; the current efficiency can reach 70cd/A-80cd/A; the lifetime of the device can reach 841 hours to 980 hours (T90).
  • the organic electroluminescent device prepared by using the 1,3,5-triazine compound of the present invention as the electron acceptor material and the electron donor material to construct the light emitting layer is prepared by the light emitting layer constructed with the above compound Compared with the organic electroluminescent device, the brightness is increased by 25% to 56%, the current efficiency is increased by 11% to 78%, and the life of the device is increased by 25% to 139%.
  • HATCN is used as the hole injection layer
  • DBBA is used as the first hole transport layer
  • TCTA is used as the second hole
  • the transport layer is used
  • TCTA is used as a host material in the light-emitting layer
  • compounds 1-60 are used as electron transport materials.
  • Effect Example The structure of the organic electroluminescent device is [ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA+10 wt %IrPPy 3 /n(30nm)/LiF(1nm)/Al(100nm) ].
  • n represents the compound number: 1-60.
  • the compound used in the host material is the same as that used in the electron transport layer, and IrPPy 3 is used as the doped luminescent material (the doping concentration is 10 WT % by weight).
  • the results of the effect examples are shown in Table 1-3.
  • HATCN was used as the hole injection layer
  • DBBA was used as the first hole transport layer
  • TCTA was used as the second hole transport layer Use
  • TCTA as the host material in the light-emitting layer
  • IrPPy 3 doped light-emitting material weight ratio doping concentration is 10 WT %)
  • 3P-T2T, E1, E2, TBT-07, TBT-14 and ET85 are used respectively Used as an electronic transmission material.
  • Comparative Examples 1-3 to 6-3 organic electroluminescent device structure is [ITO/HATCN (5nm)/DBBA (60nm)/TCTA (10nm)/TCTA+10wt% IrPPy 3 /3P-T2T, E1, E2, TBT-07, TBT-14 or ET85(30nm)/LiF(1nm)/Al(100nm)].
  • the results of the comparative example are shown in Table 2-3.
  • Test data of the device of the embodiment under the condition of a driving current density of 10 mA/cm 2 (constant current driving mode) (device life T90 represents the time it takes for the device brightness to decay to 90% of the initial brightness).
  • Test data of the comparative example device under the condition of a driving current density of 10 mA/cm 2 (constant current driving mode) (device life T90 represents the time it takes for the device brightness to decay to 90% of the initial brightness).
  • the brightness of the organic electroluminescent device prepared by using the 1,3,5-triazine compound of the present invention as the electron transport layer can reach 6379cd/m 2 -7068cd/ m 2 ; current efficiency can reach 65cd/A-85cd/A; device lifetime can reach 791 hours-878 hours (T90).
  • the organic electroluminescent device prepared by using the compound in the above comparative example as the electron transport layer has a brightness of 4862cd/m 2 -5196cd/m 2 and a current efficiency of 50cd /A-56cd/A; device life is 361 hours -496 hours (T90).
  • the 1,3,5-triazine compound of the present invention is compared with the above-mentioned existing compounds, and the brightness of the organic electroluminescent device prepared as the electron transport layer is increased by 22.8%-45%, and the current efficiency Increased by 16%-70%; device life increased by 60%-143%.
  • HATCN is used as the hole injection layer
  • DBBA is used as the first hole transport layer
  • TCTA is used as the second hole
  • the transport layer is used.
  • TCTA is mixed with the compound 1-60 of the present invention as a host material (the weight mixing ratio of TCTA and compound 1-60 is 1:1), and the compound 1-60 of the present invention is Used as an electronic transmission material.
  • the structure of the organic electroluminescent device is [ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:n+1 wt %DPh2AAN/n(30nm)/LiF(1nm)/Al(100nm) )].
  • n represents the compound number: 1-60.
  • the compound used in the host material is the same as the compound used in the electron transport layer, and DPh2AAN is used as the doped luminescent material (weight ratio doping concentration is 1 WT %). See Table 1-5 for the results of the effect examples.
  • HATCN was used as the hole injection layer
  • DBBA was used as the first hole transport layer
  • TCTA was used as the second hole transport layer Use
  • TCTA is mixed with 3P-T2T, E1 or E2 respectively as the host material in the light-emitting layer, the two materials are mixed in a weight ratio of 1:1
  • DPh2AAN doped luminescent material is used (the weight ratio doping concentration is 1 WT %)
  • 3P-T2T, E1 or E2 are used as electron transport materials respectively.
  • Comparative Examples 1-1 to 3-1 organic electroluminescent device structure is [ITO/HATCN (5nm)/DBBA (60nm)/TCTA (10nm)/TCTA: 3P-T2T or E1 or E2+10wt%DPh2AAN/3P -T2T or E1 or E2(30nm)/LiF(1nm)/Al(100nm)].
  • Test data of the device of the embodiment under the condition of a driving current density of 10 mA/cm 2 (constant current driving mode) (device life T90 represents the time it takes for the brightness of the device to decay to 90% of the initial brightness).
  • Test data of the comparative example device under the condition of a driving current density of 10 mA/cm 2 (constant current driving mode) (device life T90 represents the time it takes for the device brightness to decay to 90% of the initial brightness).
  • the 1,3,5-triazine compound of the present invention is used as the electron transport layer, and at the same time as the electron acceptor material and the electron donor material to construct the light emitting layer, the prepared
  • the brightness of the electroluminescent device can reach 3531cd/m 2 -3885 cd/m 2 ; the current efficiency can reach 54cd/A-62cd/A; the lifetime of the device can reach 914 hours -987 hours (T90).
  • the brightness of the organic electroluminescent device prepared by using the above compound as the electron transport layer and at the same time as the electron acceptor material to construct the light-emitting layer is 2350cd/m 2 -2571cd/m 2 ;
  • the current efficiency is 39cd/A-41cd/A;
  • the device life is 402 hours-462 hours (T90).
  • HATCN is used as the hole injection layer
  • DBBA is used as the first hole transport layer
  • TCTA is used as the second hole
  • the transport layer is used.
  • TCTA is mixed with the compound 1-60 of the present invention as the host material (the weight mixing ratio of TCTA and the compound 1-60 is 1:1), and TPBI is used as the electron transport material.
  • the structure of the organic electroluminescent device is [ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:n+1 wt %DPh2AAN/TPBI(30nm)/LiF(1nm)/Al(100nm) )].
  • n represents compound number: 1-60
  • DPh2AAN is used as doped luminescent material (weight ratio doping concentration is 1 WT %). See Table 1-5 for the results of the effect examples.
  • HATCN was used as the hole injection layer
  • DBBA was used as the first hole transport layer
  • TCTA was used as the second hole transport layer Use
  • TCTA is mixed with 3P-T2T, E1 or E2 respectively as the host material in the light-emitting layer, the two materials are mixed in a weight ratio of 1:1
  • DPh2AAN doped luminescent material is used (the weight ratio doping concentration is 1 WT %)
  • TPBI is used as an electronic transmission material.
  • Comparative Examples 1-5 to 3-5 organic electroluminescent device structure is [ITO/HATCN (5nm)/DBBA (60nm)/TCTA (10nm)/TCTA: 3P-T2T or E1 or E2+10wt%DPh2AAN/TPBI (30nm)/LiF(1nm)/Al(100nm)].
  • Test data of the device of the embodiment under the condition of a driving current density of 10 mA/cm 2 (constant current driving mode) (device life T90 represents the time it takes for the device brightness to decay to 90% of the initial brightness).
  • Test data of the comparative example device under the condition of a driving current density of 10 mA/cm 2 (constant current driving mode) (device life T90 represents the time it takes for the device brightness to decay to 90% of the initial brightness).
  • the 1,3,5-triazine compound of the present invention is used as the electron acceptor material and the electron donor material to construct the light emitting layer, and the brightness of the organic electroluminescent device prepared is It can reach 3251cd/m 2 -3594cd/m 2 ; current efficiency can reach 48cd/A-56cd/A; device life can reach 650 hours -748 hours (T90).
  • the organic electroluminescent device prepared by using the above compound as the electron acceptor material to construct the luminescent layer has a brightness of 2032cd/m 2 -2205cd/m 2 and a current efficiency of 34cd/A -38cd/A; device lifetime is 342 hours -375 hours (T90).
  • the 1,3,5-triazine compound of the present invention is compared with the above-mentioned existing compounds as an electron acceptor material to construct the light-emitting layer of the organic electroluminescent device, and the brightness is increased by 47%-77 %, the current efficiency is increased by 26%-65%; the device life is increased by 73%-119%.
  • the mother nucleus of the 1,3,5-triazine compound shown in formula I of the present invention is a benzene ring linking two triazines and a benzimidazole derivative through a single bond
  • the molecular structure is very complicated, mainly in: (1) Two triazine heterocycles and one benzimidazole heterocycle constitute a complex heterocyclic ring system; (2) A benzene ring is connected to two triazine derivatives and one benzimidazole derivative through a single bond on the periphery The molecular conformation structure of this molecule is very complicated; (3) Triazine derivatives and benzimidazole derivatives are both electron-deficient groups, and triazine derivatives have stronger electron-deficient properties than benzimidazole derivatives.
  • this molecule will have certain intramolecular charge transfer characteristics. Based on the above three characteristics, it is impossible to predict or judge the basic electroluminescence properties of molecules based on two triazines and one benzimidazole based on the existing physical and chemical knowledge, because the above three characteristics have an effect on the electroluminescence properties of a material. Luminous properties (mainly including efficiency and stability) have important effects. Therefore, it is necessary to verify the electroluminescence properties of these materials through experimental verification of actual examples.
  • a good electron transport material may not necessarily be a good host material.
  • As a good host material it should generally have balanced and good electron and hole transport properties.
  • the properties of the host material also depend on the carrier transport properties of the matched doped luminescent material and the overall carrier transport properties of the doped film after doping. For example, if a host material dominated by electron transport is matched with a doped material with a certain hole transport ability, it is possible to obtain better results, and if it is matched with a doped material with a certain electron transport ability, it is possible to obtain a poor effect. .
  • the carrier transport performance of the composite film obtained after the host/guest doping is often not a simple superposition of the two separate properties.
  • the carrier transport performance of the doped composite film is difficult to accurately predict, and specific experiments must be conducted.
  • the analysis and verification party can obtain the ideal matching combination.
  • the host material composed of the two-component electron donor and electron acceptor will be more complicated, and its performance is also difficult to accurately infer based on experience.
  • the existing compounds E1, E2 or 3P-T2T are used as one of the electron transport material and the host material of the light-emitting layer at the same time, or only as one of the host materials of the light-emitting layer.
  • the efficiency and lifetime of the prepared organic electroluminescent device are not significantly improved.
  • CN102593374B discloses the compound TPT-07 as an electron transport layer, or as an electron transport layer, it is used as a host material for the preparation of electroluminescent devices. However, the efficiency of the prepared light-emitting device is still low.
  • the compound of the present invention when used as a combination of electron acceptor material and electron donor material, when used as the host material of the light-emitting layer, under the same driving current density,
  • the brightness, efficiency and lifetime of the prepared organic electroluminescent device are significantly higher than that of the materials disclosed in the prior art; further, when the compound of the present invention is used as an electron transport layer, it is used as an electron acceptor material and an electron donor material at the same time
  • the light-emitting layer is constructed, and the organic electroluminescent device prepared under the same driving current density can obtain better brightness, efficiency and lifetime.
  • the stability of the device has the most obvious technical effect advantage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种取代的1,3,5-三嗪化合物、组合物及其应用。本发明提供了一种如式I所示的1,3,5-三嗪类化合物。本发明的1,3,5-三嗪类化合物不仅可作为电子传输材料,还可作为电子受体材料;其可制备电子传输层、或与电子给体材料的组合物作为电致发光器件的主体材料,由此制备得到的电致发光器件具有较高效率、较长寿命等优点;进一步地由该1,3,5-三嗪类化合物作为电子传输层的同时,作为电子受体材料与电子给体材料的组合物构建发光层,制备得到的电致发光器件具有更优的高效率、更长的寿命等优点。

Description

一种取代的1,3,5-三嗪化合物、组合物及其应用
本申请要求申请日为2019/3/29的中国专利申请2019102518018的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种取代的1,3,5-三嗪化合物、组合物及其应用。
背景技术
二十世纪六十年代初,Pope等人最早报道了有机电致发光现象,他们在蒽单晶两侧施加四百伏的高压时观察到了蒽发出的蓝光(见M.Pope,H.Kallmann and P.Magnante,J.Chem.Phys.,1963,38,2042)。但是由于单晶难于生长,器件驱动电压很高,他们所采用的工艺几乎没有实际用途。直到1987年,美国Kodak公司的C.W.Tang等人采用超薄膜技术以空穴传输效果较好的芳香胺作为空穴传输层,以8-羟基喹啉的铝配合物作为发光层,以氧化铟锡(ITO)薄膜和金属合金分别作为阳极和阴极,制备了发光器件。该器件在10V驱动电压下得到了亮度高达1000cd/m 2的绿光发射,器件的效率为1.5lm/W(见C.W.Tang and S.A.VanSlyke,Appl.Phys.Lett.,1987,51,913)。这一突破性进展使得有机电致发光研究在世界范围内迅速深入地开展起来。
1998年美国普林斯顿大学的Forrest等人研究发现,使用一般有机材料或采用荧光染料掺杂技术制备的有机发光器件,由于受自旋守恒的量子力学跃迁规律约束,其最大发光内量子效率为25%。他们将磷光染料八乙基卟啉铂(PtOEP)掺杂于主体发光材料中,制备出外量子效率为4%,内量子效率达23%的发光器件,从而开辟了磷光电致发光的新领域(见M.A.Baldo,D.F.O'Brienetal.,Nature,1998,395,151)。但一方面磷光材料普遍使用铱铂等贵金属,价格昂贵,另一方面对于深蓝光磷光材料来说其仍存在着化学不稳定性,器件在高电流密度下效率滚降较大等问题,所以开发一种使用廉价稳定的有机小分子材料而又能实现高效率发光的OLED器件显得极为重要。
新材料在有机电致发光器件中的应用是推动电致发光技术不断进步并进入实用化阶段的必需手段。近年来,人们对新材料的开发投入了巨大的财力和精力,大量性能优良的材料使有机电致发光取得了一些突破性进展(见U.S.Pat.No.5,150,006;5,141,671;5,073,446;5,061,569;5,059,862;5,059,861;5,047,687;4,950,950;5,104,740;5,227,252;5,256,945;5,069,975;5,122,711;5,554,450;5,683,823;5,593,788;5,645,948;5,451,343;5,623,080;5,395,862)。
近年来,随着在全色显示和固态白光照明领域展示出巨大的应用前景,有机电致发光技术在科研界以及产业界都得到了广泛的研究和关注。有机小分子光电材料因其结构明确、易于修饰、提纯加工简单等优点而被大量的用来开发作为高性能材料。目前来说,传统荧光染料分子往往具有很高的荧光量子产率,但其掺杂OLED器件由于受限于25%的内量子效率,外量子效率普遍低于5%,与磷光器件的效率还有很大差距。如红光染料DCM(见C.W.Tang,S.A.VanSlyke,and C.H.Chen,J.Appl.Phys., 1989,65,3610;U.S.Pat.No.5,908,581),器件效率<10cd/A;绿光染料喹吖啶酮(见U.S.Pat.No.5,227,252;5,593,788;CN1482127A;CN1219778;CN1660844),器件效率<20cd/A等。
目前能实现突破25%的内量子效率限制的荧光OLED器件主要采用了延迟荧光机制,其能有效利用器件内的三重激发态能量。其机制主要有两类,一类是TTA(Triplet-Triplet Annihilation,三重态-三重态湮灭)机制(见D.Kondakov,T.D.Pawlik,T.K.Hatwar,and J.P.Spindler,J.Appl.Phys.,2009,106,124510)。另一类是TADF(Thermally Activated Delayed Fluorescence,热活化延迟荧光)机制(见H.Uoyama,K.Goushi,K.Shizu,H.Nomura,C.Adachi,Nature.,2012,492,234)。TTA机制是利用两个三重态激子融合产生单重态激子,提高单重态激子生成比率的机制,但其器件最大内量子效率只有40%~62.5%。TADF机制是利用具有较小单重态-三重态能级差(ΔEST)的有机小分子材料,其三重态激子在环境热能下可通过反向系间窜越(RISC)这一过程转化为单重态激子的机制。理论上其器件内量子效率能达到100%。通常情况下,TADF分子主要作为客体材料掺杂在宽禁带主体材料中实现高效率的热活化延迟荧光(见Q.Zhang,J.Li,K.Shizu,S.Huang,S.Hirata,H.Miyazaki,C.Adachi,J.Am.Chem.Soc.2012,134,14706;H.Uoyama,K.Goushi,K.Shizu,H.Nomura,C.Adachi,Nature.,2012,492,234;T.Nishimoto,T.Yasuda,S.Y.Lee,R.Kondo,C.Adachi,Mater.Horiz.,2014,1,264)。
由于能够同时利用单线态和三线态激子进行发光,TADF材料的电致发光器件性能与传统荧光器件相比有着显著提升。此外,与传统磷光材料相比,TADF材料价格低廉,更有利于其商业化的推广与应用。目前,从深蓝光到近红外发光,各种光色的TADF分子被合成出来,部分器件性能已经可以和传统的磷光器件相媲美。传统的单分子TADF材料,一般由给体(D)和受体(A)单元两部分组成。通过精心地分子设计使HOMO和LUMO轨道分别集中在给体和受体两端以获得较小的单线态三线态能级差,并以此来实现有效地反向系间窜越,从而实现高效的TADF发光。另外,激基复合物(Exciplex)发光是一种给体分子与受体分子之间的电荷转移激发态发光行为,其发光源于受体分子的LUMO轨道与给体分子HOMO轨道之间的电子跃迁。由于激基复合物的HOMO和LUMO轨道分别集中在给体和受体两个分子上,相应的单线态和三线态能级差与单分子TADF材料相比往往会更小。与单分子TADF材料相比,激基复合物也可以实现高效的热活化延迟荧光发射。给体分子和受体分子不仅可以形成激基复合物作为发光层进行发光,还可以分别充当空穴传输和电子传输层,这在一定程度上简化了器件的结构。除了通过掺杂形成激基复合物进行发光外,在给体与受体的分子界面处也可以产生类似于平面异质结(P-N)的激基复合物发光(见:Advanced Materials,2016,28,239-244)。以激基复合物作为共主体制备的电致发光器件具有低开启、高效率、低滚降等诸多优点也成为了目前研究的热门(见:Advanced Functional Materials,2015,25,361-366)。
CN108218836A公开了两个如下所示的三(苯基/吡啶-苯并咪唑)苯/吡啶化合物(E1和E2),这两个化合物可以作为电子受体与电子给体复合构造发光层,同时这类材料也可以作为电子传输用于电致发光器件。
Figure PCTCN2020081036-appb-000001
但是,由于E1或E2作为电子受体与电子给体复合构造发光层,同时E1或E2作为电子传输材料,制备得到的发光器件的效率偏低,同时器件稳定性较差。
现有技术(ACS Appl.Mater.Interfaces 2018,10,2151-2157;ACS Appl.Mater.Interfaces 2018,10,24090-24098)公开了如下所示的分子3P-T2T。
Figure PCTCN2020081036-appb-000002
该分子作为电子受体材料可以与一些电子给体材料复合作为电致发光器件的主体材料,同时这个材料还可以同时作为电子传输层用于电致发光器件。但是,由3P-T2T分子与一些电子给体材料复合作为电致发光器件的主体材料,同时3P-T2T分子作为电子传输层,制备得到的发光器件的稳定性较差。
CN106946859A公开一系列双苯并咪唑及其衍生物取代的三嗪化合物,并指出这些化合物可以在电致发光器件中作为空穴阻挡层和电子传输层使用,这些化合物可作为光取出层或者电子传输层用于电致发光器件,可以一定程度上提高器件的效率。但是,由于采用单一的4,4’-二咔唑联苯(CBP)为主体材料,CBP的电子传输能力较差,因此器件效率仍较低。
CN102593374B公开了如下所示的三个化合物(TPT-07、TBT-07和TBT-14)单独作为电子传输层、主体材料用于制备电致发光器件。但是,制备得到的发光器件的效率偏低。
Figure PCTCN2020081036-appb-000003
因此,与单分子TADF材料相比,目前激基复合物的器件性能仍有待提高。
发明内容
本发明所要解决的问题是现有的电子受体材料、电子传输材料不足的缺陷,而提供了一种1,3,5-三嗪类化合物、组合物及其应用。本发明的1,3,5-三嗪类化合物不仅可作为电子传输材料用于制备电致发光器件的电子传输层,还可作为电子受体材料,其与电子给体材料的组合物可作为电致发光器件的主体材料,由此制备得到的电致发光器件具有较高效率、较长寿命等优点;进一步地由该1,3,5-三嗪类化合物作为电子传输层的同时,作为电子受体材料与电子给体材料的组合物构建发光层,制备得到的电致发光器件具有更优的高效率、更长的寿命等优点。
本发明是通过下述技术方案来解决上述技术问题的。
本发明提供了一种如式I所示的1,3,5-三嗪类化合物,
Figure PCTCN2020081036-appb-000004
其中,L为单键或
Figure PCTCN2020081036-appb-000005
环A为苯基、被一个或多个R d-1取代的苯基、6元单环杂芳基、或、被一个或多个R d-2取代的6元单环杂芳基;所述的6元单环杂芳基和被一个或多个R d-2取代的6元单环杂芳基里的“6元单环杂芳基”中的杂原子定义为:杂原子为N,杂原子个数为1~3个;当R d-1和R d-2独立地为多个时,为相同或不同;
R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为氢、氘、卤素、氰基、C 1~C 10烷基、被一个或多个R a-1取代的C 1~C 10烷基、C 1~C 10烷基-O-、被一个或多个R a-2取代的C 1~C 10烷基-O-、C 6~C 14芳基、被一个或多个R a-3取代的C 6~C 14芳基、5-6元单环杂芳基、被一个或多个R a-4取代的5-6元单环杂芳基或
Figure PCTCN2020081036-appb-000006
所述的5-6元单环杂芳基和被一个或多个R a-4取代的5-6元单环杂芳基里的“5-6元单环杂芳基”中的杂原子定义为:杂原子选自N、O和S中的一种或多种,杂原子数为1~4个;当R a-1、R a-2、R a-3和R a-4独立地为多个时,相同或不同;其中,
Figure PCTCN2020081036-appb-000007
Figure PCTCN2020081036-appb-000008
Figure PCTCN2020081036-appb-000009
通过单键连接;
R 24独立地为
Figure PCTCN2020081036-appb-000010
n1和n2独立地为1、2、3或4;n3为1、2或3;
R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4、R 2-3独立地为氢、氘、卤素、氰基、C 1~C 10烷基、被一个或多个R b-1取代的C 1~C 10烷基、C 1~C 10烷基-O-、被一个或多个R b-2取代的C 1~C 10烷基-O-、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、被一个或多个R b-4取代的5-6元单环杂芳基、或
Figure PCTCN2020081036-appb-000011
所述的5-6元单环杂芳基和被一个或多个R b-4取代的5-6元单环杂芳基里的“5-6元单环杂芳基”中的杂原子定义为:杂原子选自N、O和S中的一种或多种,杂原子数为1~4个;当R b-1、R b-2、R b-3和R b-4为多个时,R b-1、R b-2、R b-3和R b-4独立地为相同或不同;其中,
Figure PCTCN2020081036-appb-000012
Figure PCTCN2020081036-appb-000013
Figure PCTCN2020081036-appb-000014
通过单键连接;
Figure PCTCN2020081036-appb-000015
独立地为苯基、被一个或多个R c-1取代的苯基、5-6元单环杂芳基、或、被一个或多个R c-2取代的5-6元单环杂芳基;所述的5-6元单环杂芳基和被一个或多个R c-2取代的5-6元单环杂芳基里的“5-6元单环杂芳基”中的杂原子定义为:杂原子为N,杂原子个数为1~3个;当R c-1和R c-2独立地为多个时,相同或不同;
R a-1、R a-2、R a-3、R a-4、R b-1、R b-2、R b-3、R b-4、R c-1、R c-2、R d-1和R d-2独立地为如下取代基:氘、卤素、氰基、三氟甲基、C 1~C 6烷基或C 1~C 6烷基-O-。
本发明中,所述的如式I所示的1,3,5-三嗪类化合物中某些取代基的定义可如下所述,未提及的取代基的定义均如上任一方案所述。
在本发明的某一实施方案中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为卤素中,所述的卤素(例如氟、氯、溴或碘)独立地为氟。
在本发明的某一实施方案中,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为卤素中,所述的卤素(例如氟、氯、溴或碘)独立地为氟。
在本发明的某一实施方案中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为C 1~C 10烷基、被一个或多个R a-1取代的C 1~C 10烷基、C 1~C 10烷基-O-或被一个或多个R a-2取代的C 1~C 10烷基-O-中,所述的C 1~C 10烷基独立地为C 1~C 6烷基(例如甲基、乙基、正丙基、异丙基、正丁基、叔丁基、仲丁基、异丁基、戊基或己基),较佳地为C 1~C 4的烷基(例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基),更佳地为甲基或异丙基。
在本发明的某一实施方案中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为C 6~C 14芳基或被一个或多个R a-3取代的C 6~C 14芳基中,所述的C 6~C 14芳基独立地为C 6~C 10芳基;例如苯基或萘基。
在本发明的某一实施方案中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为5-6元单环杂芳基或被一个或多个R a-4取代的5-6元单环杂芳基中,所述的C 1~C 12杂芳基独立地为杂原子选自N,杂原子数为1~3个;较佳地为吡啶基。
在本发明的某一实施方案中,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为C 1~C 10烷基、被一个或多个R b-1取代的C 1~C 10烷基、C 1~C 10烷基-O-或被一个或多个R b-2取代的C 1~C 10烷基-O-中,所述的C 1~C 10烷基独立地为C 1~C 6烷基(例如甲基、乙基、正丙基、异丙基、正丁基、叔丁基、仲丁基、异丁基、戊基或己基),较佳地为C 1-C 4的烷基(例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基),更佳地为甲基或异丙基。
在本发明的某一实施方案中,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为C 6~C 14芳基或被一个或多个R b-3取代的C 6~C 14芳基中,所述的C 6~C 14芳基独立地为C 6~C 10芳基;例如苯基或萘基。
在本发明的某一实施方案中,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为5-6元单环杂芳基或被一个或多个R b-4取代的5-6元单环杂芳基中,所述的C 1~C 12杂芳基独立地为杂原子选自N,杂原子数为1~3个;较佳地为吡啶基。
在本发明的某一实施方案中,环A为6元单环杂芳基或被一个或多个R d-2取代的6元单环杂芳基中,所述的6元单环杂芳基独立地为杂原子选自N,杂原子数为1~2个;较佳地为吡啶基。
在本发明的某一实施方案中,当
Figure PCTCN2020081036-appb-000016
独立地为苯基时,
Figure PCTCN2020081036-appb-000017
独立地为
Figure PCTCN2020081036-appb-000018
(例如
Figure PCTCN2020081036-appb-000019
Figure PCTCN2020081036-appb-000020
在本发明的某一实施方案中,
Figure PCTCN2020081036-appb-000021
独立地为5-6元单环杂芳基或被一个或多个R c-2取代的5-6元单环杂芳基中,所述的5-6元单环杂芳基独立地为杂原子选自N,杂原子数为1~2个;较佳地为吡啶基。
在本发明的某一实施方案中,
Figure PCTCN2020081036-appb-000022
R 21、R 22和R 23相同。
在本发明的某一实施方案中,当L为
Figure PCTCN2020081036-appb-000023
时,R 24独立地位于
Figure PCTCN2020081036-appb-000024
Figure PCTCN2020081036-appb-000025
连接位点的邻位、间位或对位。
在本发明的某一实施方案中,R a-1、R a-2、R a-3、R a-4、R b-1、R b-2、R b-3、R b-4、R c-1、R c-2、R d-1和R d- 2独立地为卤素中,所述的卤素(例如氟、氯、溴或碘)独立地为氟。
在本发明的某一实施方案中,R a-1、R a-2、R a-3、R a-4、R b-1、R b-2、R b-3、R b-4、R c-1、R c-2、R d-1和R d- 2独立地为C 1~C 6烷基或C 1~C 6烷基-O-中,所述的C 1~C 6烷基或C 1~C 6烷基-O-中的C 1~C 6烷基(例如甲基、乙基、正丙基、异丙基、正丁基、叔丁基、仲丁基、异丁基、戊基或己基)独立地为C 1~C 4的烷基(例如甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基),更佳地为甲基或异丙基。
在本发明的某一实施方案中,R a-1、R a-2、R a-3、R a-4、R b-1、R b-2、R b-3、R b-4、R c-1、R c-2、R d-1和R d- 2的个数独立地为1、2或3。
在本发明的某一实施方案中,当R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为被一个或多个R a-1取代的C 1~C 10烷基或被一个或多个R a-2取代的C 1~C 10烷基-O-时,所述的取代的C 1~C 10烷基或取代的C 1~C 10烷基-O-中的取代的C 1~C 10烷基独立地为三氟甲基。
在本发明的某一实施方案中,当R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3立地为被一个或多个R b- 1取代的C 1~C 10烷基或被一个或多个R b-2取代的C 1~C 10烷基-O-时,所述的取代的C 1~C 10烷基或取代的C 1~C 10烷基-O-中的取代的C 1~C 10烷基独立地为三氟甲基。
在本发明的某一实施方案中,R 1-1、R 1-2、R 1-3和R 1-4独立地为氢、氘、C 1~C 10烷基、被一个或多个R b-1取代的C 1~C 10烷基、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、被一个或多个R b-4取代的5-6元单环杂芳基或
Figure PCTCN2020081036-appb-000026
R 2-1、R 2-2和R 2-3独立地为氢。
在本发明的某一实施方案中,
Figure PCTCN2020081036-appb-000027
独立地为
Figure PCTCN2020081036-appb-000028
Figure PCTCN2020081036-appb-000029
Figure PCTCN2020081036-appb-000030
Figure PCTCN2020081036-appb-000031
较佳地为
Figure PCTCN2020081036-appb-000032
Figure PCTCN2020081036-appb-000033
在本发明的某一实施方案中,
Figure PCTCN2020081036-appb-000034
独立地为
Figure PCTCN2020081036-appb-000035
Figure PCTCN2020081036-appb-000036
Figure PCTCN2020081036-appb-000037
较佳地 为
Figure PCTCN2020081036-appb-000038
Figure PCTCN2020081036-appb-000039
在本发明的某一实施方案中,
Figure PCTCN2020081036-appb-000040
独立地为
Figure PCTCN2020081036-appb-000041
在本发明的某一实施方案中,环A为苯基或被一个或多个R d-1取代的苯基。
在本发明的某一实施方案中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为氢、氘、卤素、氰基、C 1~C 10烷基、被一个或多个R a-1取代的C 1~C 10烷基、C 6~C 14芳基或被一个或多个R a-3取代的C 6~C 14芳基;较佳地为氢或卤素。
在本发明的某一实施方案中,R 24独立地为
Figure PCTCN2020081036-appb-000042
在本发明的某一实施方案中,L为单键或
Figure PCTCN2020081036-appb-000043
环A为苯基或被一个或多个R d-1取代的苯基;
Figure PCTCN2020081036-appb-000044
相同,R 21、R 22和R 23相同;
R 24独立地为
Figure PCTCN2020081036-appb-000045
R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为氢、氘、卤素、氰基、C 1~C 10烷基、被一个或多个R a-1取代的C 1~C 10烷基、C 6~C 14芳基或被一个或多个R a-3取代的C 6~C 14芳基;较佳地为氢、氘、卤素。
在本发明的某一实施方案中,环A为苯基。
在本发明的某一实施方案中,R 24独立地为
Figure PCTCN2020081036-appb-000046
在本发明的某一实施方案中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为氢、卤素、被一个或多个R a-1取代的C 1~C 10烷基;
例如,R 3、R 8、R 13和R 18独立地为氢、卤素、被一个或多个R a-1取代的C 1~C 10烷基;R 1、R 2、R 4、R 5、R 6、R 7、R 9、R 10、R 11、R 12、R 14、R 15、R 16、R 17、R 19、R 20、R 21、R 22和R 23独立地为氢;R a- 1独立地为卤素,例如氟;
又例如
Figure PCTCN2020081036-appb-000047
相同。
在本发明的某一实施方案中,R a-1独立地为卤素,例如氟。
在本发明的某一实施方案中,R 3、R 8、R 13和R 18独立地为氢、卤素、被一个或多个R a-1取代的C 1~C 10烷基;例如R a-1独立地为卤素,例如氟,又例如所述的被一个或多个R a-1取代的C 1~C 10烷基为三氟甲基。
在本发明的某一实施方案中,R 1、R 2、R 4、R 5、R 6、R 7、R 9、R 10、R 11、R 12、R 14、R 15、R 16、R 17、R 19、R 20、R 21、R 22和R 23独立地为氢。
在本发明的某一实施方案中,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4、R 2-3独立地为氢、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、或
Figure PCTCN2020081036-appb-000048
例如,R 1-1、R 1-2、R 1-3、R 1-4独立地为氢、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、或
Figure PCTCN2020081036-appb-000049
R 2-1、R 2-2、R 2-3独立地为氢;R b-3独立地为卤素、三氟甲基或C 1~C 6烷基;
Figure PCTCN2020081036-appb-000050
独立地为苯基;
Figure PCTCN2020081036-appb-000051
独立地为5-6元单环杂芳基。
在本发明的某一实施方案中,R 1-1、R 1-2、R 1-3、R 1-4独立地为氢、C 6~C 14芳基、被一个或多个R b- 3取代的C 6~C 14芳基、5-6元单环杂芳基、或
Figure PCTCN2020081036-appb-000052
例如,R b-3独立地为卤素、三氟甲基或C 1~C 6烷基;
Figure PCTCN2020081036-appb-000053
独立地为苯基;
Figure PCTCN2020081036-appb-000054
独立地为5-6元单环杂芳基。
在本发明的某一实施方案中,
Figure PCTCN2020081036-appb-000055
独立地为苯基。
在本发明的某一实施方案中,
Figure PCTCN2020081036-appb-000056
独立地为5-6元单环杂芳基。
在本发明的某一实施方案中,R b-3独立地为卤素、三氟甲基或C 1~C 6烷基。
在本发明的某一实施方案中,R 2-1、R 2-2、R 2-3独立地为氢。
在本发明的某一实施方案中,L为单键或
Figure PCTCN2020081036-appb-000057
环A为苯基;
R 24独立地为
Figure PCTCN2020081036-appb-000058
R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4、R 2-3独立地为氢、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、或
Figure PCTCN2020081036-appb-000059
R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为氢、卤素、被一个或多个R a-1取代的C 1~C 10烷基;
例如,
Figure PCTCN2020081036-appb-000060
相同,R b-3独立地为卤素、三氟甲基或C 1~C 6烷基;
R a-1独立地为卤素,例如氟,又例如所述的被一个或多个R a-1取代的C 1~C 10烷基为三氟甲基。
在本发明的某一实施方案中,L为单键或
Figure PCTCN2020081036-appb-000061
环A为苯基;
R 24独立地为
Figure PCTCN2020081036-appb-000062
R 2-1、R 2-2、R 2-3独立地为氢;
R 1-1、R 1-2、R 1-3、R 1-4独立地为氢、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、或
Figure PCTCN2020081036-appb-000063
R b-3独立地为卤素、三氟甲基或C 1~C 6烷基;
Figure PCTCN2020081036-appb-000064
独立地为苯基;
Figure PCTCN2020081036-appb-000065
独立地为5-6元单环杂芳基;
R 3、R 8、R 13和R 18独立地为氢、卤素、被一个或多个R a-1取代的C 1~C 10烷基;
R 1、R 2、R 4、R 5、R 6、R 7、R 9、R 10、R 11、R 12、R 14、R 15、R 16、R 17、R 19、R 20、R 21、R 22和R 23独立地为氢;
R a-1独立地为卤素,例如氟;
Figure PCTCN2020081036-appb-000066
相同。
在本发明的某一实施方案中,所述的如式I所示的1,3,5-三嗪类化合物为如下任何一个化合物:
Figure PCTCN2020081036-appb-000067
Figure PCTCN2020081036-appb-000068
Figure PCTCN2020081036-appb-000069
Figure PCTCN2020081036-appb-000070
本发明所述式I化合物可按照本领域常规的化学合成方法制备得到,其步骤和条件可参考本领域类似反应的步骤和条件。
本发明提供了一种如式I所示的1,3,5-三嗪化合物的制备方法,其可包括如下任一方案:
方案一,合成路线如下所示:
Figure PCTCN2020081036-appb-000071
方案二,合成路线如下所示:
Figure PCTCN2020081036-appb-000072
方案三,合成路线如下所示:
Figure PCTCN2020081036-appb-000073
方案四,合成路线如下所示:
Figure PCTCN2020081036-appb-000074
其中,R 1’和R 2’的定义同R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9和R 10,R 1-1、R 2-1、R 1-2、R 2-2、R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、n1、n2和n3的定义如上所述,m1和m2独立地为0、1、2、3或4。
本发明提供了一种如式I所示的1,3,5-三嗪类化合物作为电子材料的应用。
在本发明的某一实施方案中,所述的电子材料作为电子传输材料和/或电子受体材料;较佳地为有机电致发光器件中的电子传输材料和/或电子受体材料。
本发明提供了一种如式I所示的1,3,5-三嗪类化合物在有机电致发光器件领域中的应用。
在本发明的某一实施方案中,所述的如式I所示的1,3,5-三嗪类化合物用于制备有机电致发光器件中的电子传输层、空穴阻挡层和发光层中的一种或多种。
本发明提供了一种有机电致发光组合物,其包括电子给体材料和所述的如式I所示的1,3,5-三嗪类化合物。
在本发明的某一实施方案中,所述的有机电致发光组合物中的所述电子给体材料可为本领域常规的苯基或萘基咔唑类电子给体材料;所述的苯基或萘基咔唑类电子给体材料较佳地为含有2-3个苯基咔唑或者萘基咔唑基结构;所述的苯基或萘基咔唑类电子给体材料较佳地为如下任一化合物:
Figure PCTCN2020081036-appb-000075
Figure PCTCN2020081036-appb-000076
Figure PCTCN2020081036-appb-000077
例如
Figure PCTCN2020081036-appb-000078
本发明中,所述的如式I所示的1,3,5-三嗪类化合物与所述的电子给体材料的摩尔比可为本领域常规的摩尔比(例如本领域中常规的激基复合物中电子受体材料与电子给体材料的摩尔比),较佳地,所述的如式I所示的1,3,5-三嗪类化合物与所述的电子给体材料的摩尔比为3:1至1:3;较佳地为1:1。
在本发明的某一实施方案中,所述的有机电致发光组合物中还可包括掺杂发光材料;所述的掺杂发光材料可为本领域中常规的掺杂发光材料,例如荧光发光材料和/或磷光发光材料(又称磷光配合物发光材料)。
本发明中,所述的掺杂发光材料在所述的有机电致发光组合物中的质量百分比可为本领域常规的质量百分比,当所述的掺杂发光材料为荧光发光材料时,所述的掺杂发光材料在所述的组合物中的质量百分比较佳地为0.5 WT%-2.0 WT%(例如1 WT%);当所述的掺杂发光材料为磷光发光材料时,所述的掺杂发光材料在所述的组合物中的质量百分比较佳地为5.0 WT%-15.0 WT%(例如10 WT%)。
在本发明的某一实施方案中,所述的掺杂发光材料中,所述的磷光发光材料可为本领域中常规的磷光发光材料,本发明中较佳地为如下任一化合物:
Figure PCTCN2020081036-appb-000079
其中,Ra 1、Ra 3、Rb 1、Rb 3、Rd 1、Rd 3、Re 4、Re 5、Re 6、Rf 7、Rf 8、Rf 9、Rb 10-1、Rb 10-2、Re 10-1、Re 10-2、Rf 10-1和Rf 10-2独立地为H或含有1-5个C的直链或支链烷基;
Ra 2、Rb 2和Rd 2独立地为H、含有1-5个C的直链或支链烷基、苯基或1-5个C的直链或支链烷基取代的苯基;
Figure PCTCN2020081036-appb-000080
独立地为含有1-2个N的六元芳香杂环。
在本发明的某一实施方案中,所述的掺杂发光材料中,所述的磷光发光材料为IrPPy 3
Figure PCTCN2020081036-appb-000081
在本发明的某一实施方案中,所述的掺杂发光材料中,所述的荧光发光材料可为本领域中常规的荧光发光材料,本发明中较佳地为如下任一化合物:
Figure PCTCN2020081036-appb-000082
Figure PCTCN2020081036-appb-000083
其中,Rg 11-1、Rg 11-2、Rh 11-1、Rh 11-2独立地为含有1-5个C的直链或支链烷基;
Rg 12-1、Rg 12-2、Rh 13-1、Rh 13-2、Rh 13-3和Rh 13-4代表含有1-5个C的直链或支链烷基、F或CF 3
Ri 14-1、Ri 14-2、Ri 15-1、Ri 15-2、Rj 16-1、Rj 16-2、Rj 17-1、Rj 17-2、Rk 18-1、Rk 18-2、Rk 18-3、Rk 18-4、Rk 19-1、Rk 19-2、Rk 19-3、Rk 19-4、Rl 20-1、Rl 20-2、Rl 20-3、Rl 20-4、Rm 23-1、Rm 24-1、Rn 26-1、Rn 27-1、Ro 29-1、Ro 30-1、Ro 32-1、Rp 34-1、Rp 35-1、Rp 36-1和Rp 37-1独立地为含有1-5个C的直链或支链烷基、环己烷或异丙基苯;
Rm 22-1、Rn 25-1、Ro 28-11和Rp 33-1为含有1-4个C的直链或支链烷基。
在本发明的某一实施方案中,所述的掺杂发光材料中,所述的荧光发光材料为
Figure PCTCN2020081036-appb-000084
本发明提供了一种如上所述的有机电致发光组合物作为有机电致发光材料的应用。
在本发明的某一实施方案中,所述的有机电致发光材料用于制备有机电致发光器件中的发光层。
本发明提供了一种有机电致发光器件,其含如上所述的有机电致发光组合物。
在本发明的某一实施方案中,所述的有机电致发光组合物为发光层(发光层的发光原理是基于电子给体分子与电子受体分子形成的激基复合物即Exciplex形成的分子间电荷转移激发态)。
在本发明的某一实施方案中,所述有机电致发光器件中还包括基板,以及依次形成在基板上的阳极层、有机发光功能层和阴极层;所述的有机发光功能层中,包括含如上所述的发光层,还可包括空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层和电子注入层中的任意一种或者多种的组合;较佳地,所述的电子传输层中的电子传输材料与所述的有机电致发光组合物中的1,3,5-三嗪类化合物的结构相同。
本发明提供了一种所述的有机电致发光器件在有机电致发光显示器或有机电致发光照明光源中的应用。
本领域技术人员可以理解,根据本领域中使用的惯例,本申请描述基团的结构式中所使用的
Figure PCTCN2020081036-appb-000085
是指,相应的基团通过该位点与化合物I中的其它片段、基团进行连接。
本发明中,如无特殊说明,所述的“取代”的个数可为一个或多个;当为多个时,可为2个、3个或4个。
本发明中,当所述的“取代”的个数为多个时,所述的“取代”可相同或不同。
本发明中,“取代”的位置,如未做特别说明,位置可为任意。
本发明中,如无特殊说明,所述的氢或H为自然丰度下的氢元素,即同位素氕、氘和氚的混合物,其中为氕的丰度为99.98%。
本发明中,所述的氘为D或 2H,也被称为重氢。
本发明中,氘取代位点的氘的丰度大于99%。
术语说明
除非另外定义,否则本文中所用的全部技术与科学术语均具有如本发明所属领域的普通技术人员通常理解的相同含义。
如本文所用,术语“含有”或“包括(包含)”可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由…构成”、或“由…构成”。
基团定义
可在参考文献(包括Carey and Sundberg"ADVANCED ORGANIC CHEMISTRY 4TH ED."Vols.A(2000)and B(2001),Plenum Press,New York)中找到对标准化学术语的定义。
在本说明书中,可由本领域技术人员选择基团及其取代基以提供稳定的结构部分和化合物。当通过从左向右书写的常规化学式描述取代基时,该取代基也同样包括从右向左书写结构式时所得到的在化学上等同的取代基。
本文所用的章节标题仅用于组织文章的目的,而不应被解释为对所述主题的限制。本申请中引用的所有文献或文献部分包括但不限于专利、专利申请、文章、书籍、操作手册和论文,均通过引用方式整体并入本文。
在本文中定义的某些化学基团前面通过简化符号来表示该基团中存在的碳原子总数。例如,C 1~C 6烷基是指具有总共1、2、3、4、5或6个碳原子的如下文所定义的烷基。简化符号中的碳原子总数不包括可能存在于所述基团的取代基中的碳。
在本文中,取代基中定义的数值范围如0至4、1-4、1至3等表明该范围内的整数,如1-6为0、1、2、3、4、5、6。
除前述以外,当用于本申请的说明书及权利要求书中时,除非另外特别指明,否则以下术语具有如下所示的含义。
在本申请中,术语“卤素”是指氟、氯、溴或碘。
在本申请中,作为基团或是其它基团的一部分(例如用在卤素取代的烷基等基团中),术语“烷基”意指包括具有指定碳原子数目的支链和直链的饱和脂族烃基。例如,C 1~C 10。如在“C 1~C 6烷基”中定义为包括在直链或者支链结构中具有1、2、3、4、5、或者6个碳原子的基团。例如,本发明中,所 述的C 1~C 6烷基各自独立地为甲基、乙基、丙基、丁基、戊基或己基;其中,丙基为C 3烷基(包括同分异构体,例如正丙基或异丙基);丁基为C 4烷基(包括同分异构体,例如正丁基、仲丁基、异丁基或叔丁基);戊基为C 5烷基(包括同分异构体,例如正戊基、1-甲基-丁基、1-乙基-丙基、2-甲基-1-丁基、3-甲基-1-丁基、异戊基、叔戊基或新戊基);己基为C 6烷基(包括同分异构体,例如正己基或异己基)。
在本申请中,作为基团或是其它基团的一部分,术语“芳基”是指具有6-14个环原子以及提供在芳香族环系统中的零个杂原子单环的或多环的(例如,二环的或三环的)4n+2芳香族环系统(例如,在循环阵列中具有6,10,或14个共享的p电子)的基团(“C 6~C 14芳基”)。上述芳基单元的实例包括苯基、萘基、菲基、或者蒽基。
在本申请中,作为基团或是其它基团的一部分,术语“杂芳基”是指具有环碳原子以及提供在该芳香族环系统中的1-4个环杂原子(其中每个杂原子独立地选自氮、氧以及硫)的5-6元单环的或多环的(例如,二环的或三环的)4n+2芳香族环系统的基团(“5-6元杂芳基”)。在此定义范围内的杂芳基包括但不限于:吖啶基、咔唑基、噌啉基、喹喔啉基、吡唑基、吲哚基、苯并三唑基、呋喃基、噻吩基、苯并噻吩基、苯并呋喃基、喹啉基、异喹啉基、噁唑基、异噁唑基、吲哚基、吡嗪基、哒嗪基、吡啶基、嘧啶基、吡咯基、四氢喹啉。
本文所用术语“部分”、“结构部分”、“化学部分”、“基团”、“化学基团”是指分子中的特定片段或官能团。化学部分通常被认为是嵌入或附加到分子上的化学实体。
除非另有规定,本文使用的所有技术术语和科学术语具有要求保护主题所属领域的标准含义。倘若对于某术语存在多个定义,则以本文定义为准。
应该理解,在本发明中使用的单数形式,如“一种”,包括复数指代,除非另有规定。此外,术语“包括”是开放性限定并非封闭式,即包括本发明所指明的内容,但并不排除其他方面的内容。
除非另有说明,本发明采用质谱、元素分析的传统方法,各步骤和条件可参照本领域常规的操作步骤和条件。
除非另有指明,本发明采用分析化学、有机合成化学和光学的标准命名及标准实验室步骤和技术。在某些情况下,标准技术被用于化学合成、化学分析、发光器件性能检测。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氘( 2H)。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:本发明提供的所述如式I所示的取代的1,3,5-三嗪化合物具有良好的接受电子能力和电子传输能力;且具有良好的热稳定性(所有化合物的热分解温度在420-440℃之间)。该类化合物可被用于有机电致发光领域。其可以单独使用作为电子传输层或空穴阻挡层使用,或与电子给体材料复合形成复合主体材料,单独用于有机电致发光器件,这种复合主体材料可以与一些发光 材料(包括磷光和荧光材料)掺杂构造有机电致发光材料的发光层。因此这种材料可以同时作为功能材料在电致发光器件的发光层及电子传输层/空穴阻挡层中应用,其优势在于电子传输层与发光层中的电子受体材料属于相同的分子,这样电子从电子传输层中进入到发光层中时无需客服势垒,因此有利于降低发光器件的驱动电压及效率滚降、提高器件的效率和寿命。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1
Figure PCTCN2020081036-appb-000086
10mL水溶解NaHSO 3(4.70g,45.0mmol),加入苯甲醛0.175g(1.65mmol),常温搅拌5h。然后加入N 1-(3,5-二溴苯基)-1,2-苯二胺0.513g(1.50mmol),加入40mL乙醇,氮气保护下回流24h。冷却到室温后过滤,得到白色粗产品0.578g(产率90.0%)。
将上述粗产品0.428g(1.00mmol),联硼酸频那醇酯1.02g(4.00mmol),干燥的醋酸钾1.96g(20.0mmol),以及干燥的1,4-二氧六环120mL于250mL双口瓶中,在氮气保护条件下加入催化剂[1,1'-双(二苯基膦基)二茂铁]二氯化钯146mg(0.20mmol),回流24h。冷却到室温后,过滤除去醋酸钾,滤液除去二氧六环后用二氯甲烷/水洗涤,有机相除去有机溶剂后,用二氯甲烷做展开剂柱层析,得到白色固体中间体437mg(产率83.7%)。
将上述白色中间体418mg(0.800mmol),2-氯-4,6-二苯基-1,3,5-三嗪0.534g(2.00mmol),碳酸钾331mg(2.40mmol)加入到100mL双口瓶中,加入THF 25mL,H 2O 2mL,氮气条件下加入催化剂四(三苯基膦)钯30.0mg,回流24h。用二氯甲烷/水洗涤反应液,有机相旋去溶剂后,柱层析提纯,得白色固体化合物425mg(产率72.5%)。质谱分析确定的分子离子质量为:732.40(计算值为:732.27);理论元素含量(%)C 49H 32N 8:C,80.31;H,4.40;N,15.29;实测元素含量(%):C,80.22;H,4.35;N,15.27。上述分析结果表明,获得的产物为目标产品。
实施例2
Figure PCTCN2020081036-appb-000087
10mL水溶解NaHSO 3(4.70g,45.0mmol),加入3,5-二溴苯甲醛0.792g(3.00mmol),常温搅拌5h。然后加入邻氨基二苯胺0.607g(3.30mmol),加入40mL乙醇,氮气保护下回流24h。冷却到室温后过滤,得到白色粗产品1.13g(产率88.3%)。
将上述粗产品0.856g(2.00mmol),联硼酸频那醇酯2.03g(8.00mmol),干燥的醋酸钾3.92g(40.0mmol),以及干燥的1,4-二氧六环120mL于250mL双口瓶中,在氮气保护条件下加入催化剂[1,1'-双(二苯基膦基)二茂铁]二氯化钯293mg(0.40mmol),回流24h。冷却到室温后,过滤除去醋酸钾,滤液除去二氧六环后用二氯甲烷/水洗涤,有机相除去有机溶剂后,用二氯甲烷做展开剂柱层析,得到白色固体中间体845mg(产率81.2%)。
将上述白色中间体783mg(1.50mmol),2-氯-4,6-二苯基-1,3,5-三嗪1.00g(3.75mmol),碳酸钾621mg(4.5mmol)加入到100mL双口瓶中,加入THF 25mL,H 2O 3mL,氮气条件下加入催化剂四(三苯基膦)钯50.0mg,回流12h。用二氯甲烷/水洗涤反应液,有机相旋去溶剂后,柱层析提纯,得白色固体化合物725mg(产率66.0%)。质谱分析确定的分子离子质量为:732.58(计算值为:732.27);理论元素含量(%)C 49H 32N 8:C,80.31;H,4.40;N,15.29;实测元素含量(%):C,80.50;H,4.35;N,15.33。上述分析结果表明,获得的产物为目标产品。
实施例3
Figure PCTCN2020081036-appb-000088
依照实施例2的合成,步骤相同,用化合物N-(3-吡啶基)-1,2-苯二胺代替化合物邻氨基二苯胺,得到白色化合物1.00g(产率66.7%),质谱分析确定的分子离子质量为:733.28(计算值为:733.27);理论元素含量(%)C 48H 31N 9:C,78.56;H,4.26;N,17.18,实测元素含量(%):C,78.75;H,4.41;N,16.93。上述分析结果表明,获得的产物为目标产品。
实施例4
Figure PCTCN2020081036-appb-000089
依照实施例2的合成,步骤相同,用化合物N-(4-吡啶基)-1,2-苯二胺代替化合物邻氨基二苯胺,得到白色化合物0.628g(产率57.2%),质谱分析确定的分子离子质量为:733.33(计算值为:733.27);理论元素含量(%)C 48H 31N 9:C,78.56;H,4.26;N,17.18,实测元素含量(%):C,78.58;H,4.34;N,17.25。上述分析结果表明,获得的产物为目标产品。
实施例5
Figure PCTCN2020081036-appb-000090
依照实施例1的合成,步骤相同,用化合物3-醛基吡啶代替化合物苯甲醛,得到白色化合物0.537g(产率48.9%),质谱分析确定的分子离子质量为:733.15(计算值为:733.27);理论元素含量(%)C 48H 31N 9:C,78.56;H,4.26;N,17.18,实测元素含量(%):C,78.75;H,4.41;N,16.93。上述分析结果表明,获得的产物为目标产品。
实施例6
Figure PCTCN2020081036-appb-000091
依照实施例1的合成,步骤相同,用化合物4-醛基吡啶代替化合物苯甲醛,得到白色化合物0.523g(产率66.7%),质谱分析确定的分子离子质量为:733.19(计算值为:733.27);理论元素含量(%)C 48H 31N 9:C,78.56;H,4.26;N,17.18,实测元素含量(%):C,78.66;H,4.40;N,16.97。上述分析结果表明,获得的产物为目标产品。
实施例7
Figure PCTCN2020081036-appb-000092
依照实施例1的合成,步骤相同,用化合物2-氟苯甲醛代替化合物苯甲醛,得到白色化合物1.033g(产率68.9%),质谱分析确定的分子离子质量为:750.22(计算值为:750.27);理论元素含量(%)C 49H 31FN 8:C,78.38;H,4.16;F,2.53;N,14.92,实测元素含量(%):C,78.48;H,4.06;F,2.55;N,14.94。上述分析结果表明,获得的产物为目标产品。
实施例8
Figure PCTCN2020081036-appb-000093
依照实施例1的合成,步骤相同,用化合物3-氟苯甲醛代替化合物苯甲醛,得到白色化合物0.880g(产率58.7%),质谱分析确定的分子离子质量为:750.09(计算值为:750.27);理论元素含量(%)C 49H 31FN 8:C,78.38;H,4.16;F,2.53;N,14.92,实测元素含量(%):C,78.42H,4.11;F,2.55;N,14.83。上述分析结果表明,获得的产物为目标产品。
实施例9
Figure PCTCN2020081036-appb-000094
依照实施例1的合成,步骤相同,用化合物4-氟苯甲醛代替化合物苯甲醛,得到白色化合物0.672g(产率44.8%),质谱分析确定的分子离子质量为:750.25(计算值为:750.27);理论元素含量(%)C 49H 31FN 8:C,78.38;H,4.16;F,2.53;N,14.92,实测元素含量(%):C,78.44;H,4.25;F,2.77;N,14.88。上述分析结果表明,获得的产物为目标产品。
实施例10
Figure PCTCN2020081036-appb-000095
依照实施例1的合成,步骤相同,用化合物3,5-二氟苯甲醛代替化合物苯甲醛,得到白色化合物0.597g(产率39.8%),质谱分析确定的分子离子质量为:768.33(计算值为:768.26);理论元素含量(%)C 49H 30F 2N 8:C,76.55;H,3.93;F,4.94;N,14.57,实测元素含量(%):C,76.53;H,3.91;F,4.58;N,14.68。上述分析结果表明,获得的产物为目标产品。
实施例11
Figure PCTCN2020081036-appb-000096
依照实施例2的合成,步骤相同,用化合物N-(2-氟苯基)-1,2-苯二胺代替化合物邻氨基二苯胺,得到白色化合物0.672g(产率44.8%),质谱分析确定的分子离子质量为:750.34(计算值为:750.27);理论元素含量(%)C 49H 31FN 8:C,78.38;H,4.16;F,2.53;N,14.92,实测元素含量(%):C,78.25;H,4.21;F,2.39;N,14.77。上述分析结果表明,获得的产物为目标产品。
实施例12
Figure PCTCN2020081036-appb-000097
依照实施例2的合成,步骤相同,用化合物N-(3-氟苯基)-1,2-苯二胺代替化合物邻氨基二苯胺,得到白色化合物0.754g(产率50.3%),质谱分析确定的分子离子质量为:750.12(计算值为:750.27);理论元素含量(%)C 49H 31FN 8:C,78.38;H,4.16;F,2.53;N,14.92,实测元素含量(%):C,78.54;H,4.20;F,2.44;N,14.97。上述分析结果表明,获得的产物为目标产品。
实施例13
Figure PCTCN2020081036-appb-000098
依照实施例2的合成,步骤相同,用化合物N-(4-氟苯基)-1,2-苯二胺代替化合物邻氨基二苯胺,得到白色化合物0.724g(产率48.3%),质谱分析确定的分子离子质量为:750.19(计算值为:750.27);理论元素含量(%)C 49H 31FN 8:C,78.38;H,4.16;F,2.53;N,14.92,实测元素含量(%):C,78.52;H,4.14;F,2.57;N,14.85。上述分析结果表明,获得的产物为目标产品。
实施例14
Figure PCTCN2020081036-appb-000099
依照实施例2的合成,步骤相同,用化合物N-(3,5-二氟苯基)-1,2-苯二胺代替化合物邻氨基二苯胺,得到白色化合物0.776g(产率51.7%),质谱分析确定的分子离子质量为:768.33(计算值为:768.26);理论元素含量(%)C 49H 30F 2N 8:C,76.55;H,3.93;F,4.94;N,14.57,实测元素含量(%):C,76.53;H,3.91;F,4.58;N,14.68。上述分析结果表明,获得的产物为目标产品。
实施例15
Figure PCTCN2020081036-appb-000100
依照实施例5的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.707g(产率43.9%),质谱分析确定的分子离子质量为:805.41(计算值为:805.23);理论元素含量(%)C 48H 27F 4N 9:C,71.55;H,3.38;F,9.43;N,15.64,实测元素含量(%):C,71.61;H,3.33;F,9.47;N,15.66。上述分析结果表明,获得的产物为目标产品。
实施例16
Figure PCTCN2020081036-appb-000101
依照实施例6的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.834g(产率51.8%),质谱分析确定的分子离子质量为:805.19(计算值为:805.23);理论元素含量(%)C 48H 27F 4N 9:C,71.55;H,3.38;F,9.43;N,15.64,实测元素含量(%):C,71.66;H,3.42;F,9.39;N,15.79。上述分析结果表明,获得的产物为目标产品。
实施例17
Figure PCTCN2020081036-appb-000102
依照实施例3的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.737g(产率45.8%),质谱分析确定的分子离子质量为:805.31(计算值为:805.23);理论元素含量(%)C 48H 27F 4N 9:C,71.55;H,3.38;F,9.43;N,15.64,实测元素含量(%):C,71.70;H,3.51;F,9.50;N,15.71。上述分析结果表明,获得的产物为目标产品。
实施例18
Figure PCTCN2020081036-appb-000103
依照实施例4的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.745g(产率46.3%),质谱分析确定的分子离子质量为:805.17(计算值为:805.23);理论元素含量(%)C 48H 27F 4N 9:C,71.55;H,3.38;F,9.43;N,15.64,实测元素含量(%):C,71.39;H,3.42;F,9.38;N,15.55。上述分析结果表明,获得的产物为目标产品。
实施例19
Figure PCTCN2020081036-appb-000104
依照实施例7的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.523g(产率66.7%),质谱分析确定的分子离子质量为:822.23(计算值为:822.23);理论元素含量(%)C 49H 27F 5N 8:C,71.53;H,3.31;F,11.54;N,13.62,实测元素含量(%):C,71.53;H,3.31;F,11.54;N,13.62。上述分析结果表明,获得的产物为目标产品。
实施例20
Figure PCTCN2020081036-appb-000105
依照实施例8的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.868g(产率52.8%),质谱分析确定的分子离子质量为:822.41(计算值为:822.23);理论元素含量(%)C 49H 27F 5N 8:C,71.53;H,3.31;F,11.54;N,13.62,实测元素含量(%):C,71.66;H,3.51;F,11.49;N,13.72。上述分析结果表明,获得的产物为目标产品。
实施例21
Figure PCTCN2020081036-appb-000106
依照实施例9的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.819g(产率49.8%),质谱分析确定的分子离子质量为:822.17(计算值为:822.23);理论元素含量(%)C 49H 27F 5N 8:C,71.53;H,3.31;F,11.54;N,13.62,实测元素含量(%):C,71.62;H,3.50;F,11.47;N,13.59。上述分析结果表明,获得的产物为目标产品。
实施例22
Figure PCTCN2020081036-appb-000107
依照实施例10的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.894g(产率53.2%),质谱分析确定的分子离子质量为:840.31(计算值为:840.22);理论元素含量(%)C 49H 26F 6N 8:C,70.00;H,3.12;F,13.56;N,13.33,实测元素含量(%):C,70.11;H,3.08;F,13.49;N,13.26。上述分析结果表明,获得的产物为目标产品。
实施例23
Figure PCTCN2020081036-appb-000108
依照实施例11的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.811g(产率48.3%),质谱分析确定的分子离子质量为:822.30(计算值为:822.23);理论元素含量(%)C 49H 27F 5N 8:C,71.53;H,3.31;F,11.54;N,13.62,实测元素含量(%):C,71.55;H,3.30;F,11.52;N,13.61。上述分析结果表明,获得的产物为目标产品。
实施例24
Figure PCTCN2020081036-appb-000109
依照实施例12的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.826g(产率49.2%),质谱分析确定的分子离子质量为:822.33(计算值为:822.23);理论元素含量(%)C 49H 27F 5N 8:C,71.53;H,3.31;F,11.54;N,13.62,实测元素含量(%):C,71.55;H,3.42;F,11.49;N,13.64。上述分析结果表明,获得的产物为目标产品。
实施例25
Figure PCTCN2020081036-appb-000110
依照实施例13的合成,步骤相同,用化合物2-氯-4,6-二(4-氟苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.850g(产率50.6%),质谱分析确定的分子离子质量为:822.35(计算值为:822.23);理论元素含量(%)C 49H 27F 5N 8:C,71.53;H,3.31;F,11.54;N,13.62,实测元素含量(%):C,71.60;H,3.41;F,11.59;N,13.54。上述分析结果表明,获得的产物为目标产品。
实施例26
Figure PCTCN2020081036-appb-000111
依照实施例2的合成,步骤相同,用化合物N 1-(3-(3-吡啶基)苯基)-1,2-苯二胺代替化合物邻氨基二苯胺,得到白色化合物0.889g(产率54.9%),质谱分析确定的分子离子质量为:809.25(计算值为:809.30);理论元素含量(%)C 54H 35N 9:C,80.08;H,4.36;N,15.56,实测元素含量(%):C,80.18;H,4.46;N,15.66。上述分析结果表明,获得的产物为目标产品。
实施例27
Figure PCTCN2020081036-appb-000112
2-氯-4,6-二苯基-1,3,5-三嗪5.87g(22.0mmol),5-溴-1,3-苯二硼酸2.44g(10.0mmol),碳酸钾3.45g(25.0mmol)加入到250mL双口瓶中,加入THF 100mL,H 2O 13mL,氮气条件下加入催化剂四(三苯基膦)钯100mg,回流24h。用二氯甲烷/水洗涤反应液,有机相旋去溶剂后,柱层析提纯,得白色固体化合物A,1.83g(产率29.6%)。
15mL水溶解NaHSO 3 3.12g(30mmol),加入苯甲醛730mg(2.00mmol),常温搅拌5h。然后加入N 1-(4-溴苯基)-1,2-苯二胺524mg(2mmol),加入30mL乙醇,氮气保护下回流24h。冷却到室温后过滤,得到白色粗产品B。
将上述粗产品B(0.696g,2.00mmol),联硼酸频那醇酯1.02g(4.00mmol),干燥的醋酸钾1.96g(20.0mmol),以及干燥的1,4-二氧六环120mL于250mL双口瓶中,在氮气保护条件下加入催化剂 [1,1'-双(二苯基膦基)二茂铁]二氯化钯150mg(0.20mmol),回流24h。冷却到室温后,过滤除去醋酸钾,滤液除去二氧六环后用二氯甲烷/水洗涤,有机相除去有机溶剂后,用二氯甲烷做展开剂柱层析,得到白色固体中间体C,745mg。
将上述白色中间体A(649mg,1.05mmol),中间体C(348mg,1.00mmol),碳酸钾207mg(1.5mmol)加入到100mL双口瓶中,加入THF 25mL,H 2O 1mL,氮气条件下加入催化剂四(三苯基膦)钯25.0mg,回流12h。用二氯甲烷/水洗涤反应液,有机相旋去溶剂后,柱层析提纯,得白色固体化合物509mg(产率63.2%)。质谱分析确定的分子离子质量为:808.12(计算值为:808.31);理论元素含量(%)C 55H 36N 8:C,81.66;H,4.49;N,13.85;实测元素含量(%):C,81.76;H,4.50;N,13.89。上述分析结果表明,获得的产物为目标产品。
实施例28
Figure PCTCN2020081036-appb-000113
依照实施例10的合成,步骤相同,用化合物N 1-(2-溴苯基)-1,2-苯二胺代替化合物N 1-(4-溴苯基)-1,2-苯二胺,得到白色化合物0.438g(产率54.2%)质谱分析确定的分子离子质量为808.32(计算值为:808.31);理论元素含量(%)C 55H 36N 8:C,81.66;H,4.49;N,13.85;实测元素含量(%):C,81.72;H,4.53;N,13.79。上述分析结果表明,获得的产物为目标产品。
实施例29
Figure PCTCN2020081036-appb-000114
依照实施例10的合成,步骤相同,用化合物N 1-(3-溴苯基)-1,2-苯二胺代替化合物N 1-(4-溴苯基)-1,2-苯二胺,得到白色化合物0.427g(产率52.9%)质谱分析确定的分子离子质量为808.38(计算值为:808.31);理论元素含量(%)C 55H 36N 8:C,81.66;H,4.49;N,13.85;实测元素含量(%):C,81.62;H,4.43;N,13.99。上述分析结果表明,获得的产物为目标产品。
实施例30
Figure PCTCN2020081036-appb-000115
2-氯-4,6-二苯基-1,3,5-三嗪5.87g(22.0mmol),5-溴-1,3-苯二硼酸2.44g(10.0mmol),碳酸钾3.45g(25.0mmol)加入到250mL双口瓶中,加入THF 100mL,H 2O 13mL,氮气条件下加入催化剂四(三苯基膦)钯100mg,回流24h。用二氯甲烷/水洗涤反应液,有机相旋去溶剂后,柱层析提纯,得白色固体化合物A(1.83g,产率29.6%)。
将上述白色中间体A(522mg,1.50mmol),3-甲酰基苯硼酸248mg(1.65mmol),碳酸钾455mg(3.3mmol)加入到100mL双口瓶中,加入THF 25mL,H 2O 1.5mL,氮气条件下加入催化剂四(三苯基膦)钯25.0mg,回流12h。用二氯甲烷/水洗涤反应液,有机相旋去溶剂后,柱层析提纯,得白色固体化合物D,900mg。
5mL水溶解NaHSO 3(1.56g,15.0mmol),加入中间体D(0.644g,1.00mmol),常温搅拌5h。然后加入邻氨基二苯胺0.193g(1.05mmol),加入20mL乙醇,氮气保护下回流12h。冷却到室温后过滤,得到白色粗产品。用二氯甲烷柱层析得到白色固体产品0.721g(产率89.2%)。质谱分析确定的分子离子质量为:808.28(计算值为:808.31);理论元素含量(%)C 55H 36N 8:C,81.66;H,4.49;N,13.85;实测元素含量(%):C,81.63;H,4.45;N,13.89。上述分析结果表明,获得的产物为目标产品。
实施例31
Figure PCTCN2020081036-appb-000116
依照实施例30的合成,步骤相同,用化合物4-甲酰基苯硼酸代替化合物3-甲酰基苯硼酸,得到白色化合物0.675g(产率83.5%)质谱分析确定的分子离子质量为808.42(计算值为:808.31);理论元素含量(%)C 55H 36N 8:C,81.66;H,4.49;N,13.85;实测元素含量(%):C,81.63;H,4.53;N,13.88。上述分析结果表明,获得的产物为目标产品。
实施例32
Figure PCTCN2020081036-appb-000117
依照实施例30的合成,步骤相同,用化合物2-甲酰基苯硼酸代替化合物3-甲酰基苯硼酸,得到白色化合物0.728g(产率90.1%)质谱分析确定的分子离子质量为808.32(计算值为:808.31);理论元素含量(%)C 55H 36N 8:C,81.66;H,4.49;N,13.85;实测元素含量(%):C,81.58;H,4.46;N,13.87。上述分析结果表明,获得的产物为目标产品。
实施例33
Figure PCTCN2020081036-appb-000118
依照实施例1的合成,步骤相同,用化合物3-三氟甲基苯甲醛代替化合物苯甲醛,得到白色化合物0.625g(产率52.1%),质谱分析确定的分子离子质量为:800.23(计算值为:800.26);理论元素含量(%)C 50H 31F 3N 8:C,74.99;H,3.90;F,7.12;N,13.99,实测元素含量(%):C,75.05;H,3.94;F,7.02;N,13.99。上述分析结果表明,获得的产物为目标产品。
实施例34
Figure PCTCN2020081036-appb-000119
依照实施例1的合成,步骤相同,用化合物3,5-二(三氟甲基)苯甲醛代替化合物苯甲醛,得到白色化合物0.432g(产率33.2%),质谱分析确定的分子离子质量为:868.22(计算值为:868.25);理论元素含量(%)C 51H 30F 6N 8:C,70.50;H,3.48;F,13.12;N,12.90,实测元素含量(%):C,70.52;H,3.50;F,13.17;N,12.92。上述分析结果表明,获得的产物为目标产品。
实施例35
Figure PCTCN2020081036-appb-000120
依照实施例2的合成,步骤相同,用化合物N-(3-三氟甲基苯基)-1,2-苯二胺代替化合物邻氨基二苯胺,得到白色化合物0.622g(产率51.8%),质谱分析确定的分子离子质量为:800.29(计算值为:800.26);理论元素含量(%)C 50H 31F 3N 8:C,74.99;H,3.90;F,7.12;N,13.99,实测元素含量(%):C,75.00;H,3.92;F,7.09;N,13.92。上述分析结果表明,获得的产物为目标产品。
实施例36
Figure PCTCN2020081036-appb-000121
依照实施例2的合成,步骤相同,用化合物N-(3,5-二(三氟甲基)苯基)-1,2-苯二胺代替化合物邻氨基二苯胺,得到白色化合物0.675g(产率51.8%),质谱分析确定的分子离子质量为:868.27(计算值为:868.25);理论元素含量(%)C 51H 30F 6N 8:C,70.50;H,3.48;F,13.12;N,12.90,实测元素含量(%):C,70.44;H,3.46;F,13.19;N,12.98。上述分析结果表明,获得的产物为目标产品。
实施例37
Figure PCTCN2020081036-appb-000122
依照实施例3的合成,步骤相同,用化合物2-氯-4,6-二(4-三氟甲基苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,得到白色化合物0.657g(产率43.6%),质谱分析确定的分子离子质量为:1005.22(计算值为:1005.22);理论元素含量(%)C 52H 27F 12N 9:C,62.10;H,2.71;F,22.67;N,12.53,实测元素含量(%):C,62.13;H,2.72;F,22.66;N,12.55。上述分析结果表明,获得的产物为目标产品。
实施例38
Figure PCTCN2020081036-appb-000123
依照实施例7的合成,步骤相同,用化合物2-氯-4,6-二(4-三氟甲基苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,用化合物3-三氟甲基苯甲醛代替化合物3-氟苯甲醛,得到白色化合物0.847g(产率52.7%),质谱分析确定的分子离子质量为:1072.25(计算值为:1072.21);理论元素含量(%)C 54H 27F 15N 8:C,60.46;H,2.54;F,26.56;N,10.44,实测元素含量(%):C,60.49;H,2.53;F,26.55;N,10.52。上述分析结果表明,获得的产物为目标产品。
实施例39
Figure PCTCN2020081036-appb-000124
依照实施例10的合成,步骤相同,用化合物2-氯-4,6-二(4-三氟甲基苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,用化合物3,5-二(三氟甲基)苯甲醛代替化合物3,5-二氟苯甲醛,得到白色化合物0.869g(产率50.8%),质谱分析确定的分子离子质量为:1140.23(计算值为:1140.20);理论元素含量(%)C 55H 26F 18N 8:C,57.91;H,2.30;F,29.98;N,9.82,实测元素含量(%):C,57.93,2.33;F,29.95;N,9.95。上述分析结果表明,获得的产物为目标产品。
实施例40
Figure PCTCN2020081036-appb-000125
依照实施例12的合成,步骤相同,用化合物2-氯-4,6-二(4-三氟甲基苯基)-1,3,5-三嗪代替化合物2-氯-4,6-二苯基-1,3,5-三嗪,N-(3-三氟甲基苯基)-1,2-苯二胺代替化合物N-(3-氟苯基)-1,2-苯二胺,得到白色化合物0.791g(产率49.2%),质谱分析确定的分子离子质量为:1072.28(计算值为:1072.21);理论元素含量(%)C 54H 27F 15N 8:C,60.46;H,2.54;F,26.56;N,10.44,实测元素含量(%):C,60.52;H,2.56;F,26.58;N,10.38。上述分析结果表明,获得的产物为目标产品。
实施例41
Figure PCTCN2020081036-appb-000126
依照实施例7的合成,步骤相同,用化合物2-异丙基苯甲醛代替化合物2-氟苯甲醛,得到白色化合物0.535g(产率26.4%)。质谱分析确定的分子离子质量为:774.31(计算值为:774.32);理论元素含量(%)C 52H 38N 8:C,80.60;H,4.94;N,14.46;实测元素含量(%):C,80.64;H,4.97;N,14.39。上述分析结果表明,获得的产物为目标产品。
实施例42
Figure PCTCN2020081036-appb-000127
依照实施例8的合成,步骤相同,用化合物3-异丙基苯甲醛代替化合物3-氟苯甲醛,得到白色化合物0.514g(产率27.4%)。质谱分析确定的分子离子质量为:774.34(计算值为:774.32);理论元素含量(%)C 52H 38N 8:C,80.60;H,4.94;N,14.46;实测元素含量(%):C,80.64;H,4.97;N,14.39。上述分析结果表明,获得的产物为目标产品。
实施例43
Figure PCTCN2020081036-appb-000128
依照实施例9的合成,步骤相同,用化合物4-异丙基苯甲醛代替化合物4-氟苯甲醛,得到白色化合物0.535g(产率26.4%)。质谱分析确定的分子离子质量为:774.31(计算值为:774.32);理论元素含量(%)C 52H 38N 8:C,80.60;H,4.94;N,14.46;实测元素含量(%):C,80.64;H,4.97;N,14.39。上述分析结果表明,获得的产物为目标产品。
实施例44
Figure PCTCN2020081036-appb-000129
依照实施例10的合成,步骤相同,用化合物3,5-二异丙基苯甲醛代替化合物3,5-二氟苯甲醛,得到白色化合物0.549g(产率22.3%)。质谱分析确定的分子离子质量为:816.30(计算值为:816.37);理论元素含量(%)C 55H 44N 8:C,80.86;H,5.43;N,13.72;实测元素含量(%):C,80.84;H,5.47;N,13.69。上述分析结果表明,获得的产物为目标产品。
实施例45
Figure PCTCN2020081036-appb-000130
依照实施例11的合成,步骤相同,用化合物N 1-(2-异丙基苯基)苯-1,2-二胺代替化合物N 1-(2-氟苯基)苯-1,2-二胺,得到白色化合物0.515g(产率25.4%)。质谱分析确定的分子离子质量为:774.37(计算值为:774.32);理论元素含量(%)C 52H 38N 8:C,80.60;H,4.94;N,14.46;实测元素含量(%):C,80.64;H,4.97;N,14.39。上述分析结果表明,获得的产物为目标产品。
实施例46
Figure PCTCN2020081036-appb-000131
依照实施例12的合成,步骤相同,用化合物N 1-(3-异丙基苯基)苯-1,2-二胺代替化合物N 1-(3-氟苯基)苯-1,2-二胺,得到白色化合物0.510g(产率25.9%)。质谱分析确定的分子离子质量为:774.34(计算值为:774.32);理论元素含量(%)C 52H 38N 8:C,80.60;H,4.94;N,14.46;实测元素含量(%):C,80.64;H,4.97;N,14.39。上述分析结果表明,获得的产物为目标产品。
实施例47
Figure PCTCN2020081036-appb-000132
依照实施例13的合成,步骤相同,用化合物N 1-(4-异丙基苯基)苯-1,2-二胺代替化合物N 1-(4-氟苯基)苯-1,2-二胺,得到白色化合物0.515g(产率25.4%)。质谱分析确定的分子离子质量为:774.37(计算值为:774.32);理论元素含量(%)C 52H 38N 8:C,80.60;H,4.94;N,14.46;实测元素含量(%):C,80.64;H,4.97;N,14.39。上述分析结果表明,获得的产物为目标产品。
实施例48
Figure PCTCN2020081036-appb-000133
依照实施例14的合成,步骤相同,用化合物N 1-(3,5-二异丙基苯基)苯-1,2-二胺代替化合物N 1-(3,5-氟苯基)苯-1,2-二胺,得到白色化合物0.529g(产率27.2%)。质谱分析确定的分子离子质量为:816.30(计算值为:816.37);理论元素含量(%)C 55H 44N 8:C,80.86;H,5.43;N,13.72;实测元素含量(%):C,80.84;H,5.47;N,13.69。上述分析结果表明,获得的产物为目标产品。
实施例49
Figure PCTCN2020081036-appb-000134
依照实施例27的合成,步骤相同,用化合物3-异丙基苯甲醛代替化合物苯甲醛,得到白色化合物0.523g(产率37.9%)。质谱分析确定的分子离子质量为:850.36(计算值为:850.35);理论元素含量(%)C 58H 42N 8:C,81.86;H,4.97;N,13.17;实测元素含量(%):C,81.85;H,4.91;N,13.24。上述分析结果表明,获得的产物为目标产品。
实施例50
Figure PCTCN2020081036-appb-000135
依照实施例28的合成,步骤相同,用化合物3-异丙基苯甲醛代替化合物苯甲醛,得到白色化合物0.503g(产率37.6%)。质谱分析确定的分子离子质量为:850.38(计算值为:850.35);理论元素含量(%)C 58H 42N 8:C,81.86;H,4.97;N,13.17;实测元素含量(%):C,81.85;H,4.91;N,13.24。上述分析结果表明,获得的产物为目标产品。
实施例51
Figure PCTCN2020081036-appb-000136
依照实施例29的合成,步骤相同,用化合物3-异丙基苯甲醛代替化合物苯甲醛,得到白色化合物0.501g(产率37.6%)。质谱分析确定的分子离子质量为:850.39(计算值为:850.35);理论元素含量(%)C 58H 42N 8:C,81.86;H,4.97;N,13.17;实测元素含量(%):C,81.85;H,4.91;N,13.24。上述分析结果表明,获得的产物为目标产品。
实施例52
Figure PCTCN2020081036-appb-000137
依照实施例30的合成,步骤相同,用化合物N 1-(3-异丙基苯基)苯-1,2-二胺代替化合物N 1-苯基苯-1,2-二胺,得到白色化合物0.520g(产率34.9%)。质谱分析确定的分子离子质量为:850.34(计算值为:850.35);理论元素含量(%)C 58H 42N 8:C,81.86;H,4.97;N,13.17;实测元素含量(%):C,81.85;H,4.91;N,13.24。上述分析结果表明,获得的产物为目标产品。
实施例53
Figure PCTCN2020081036-appb-000138
依照实施例31的合成,步骤相同,用化合物N 1-(4-异丙基苯基)苯-1,2-二胺代替化合物N 1-苯基苯-1,2-二胺,得到白色化合物0.503g(产率23.9%)。质谱分析确定的分子离子质量为:850.37(计算值为:850.35);理论元素含量(%)C 58H 42N 8:C,81.86;H,4.97;N,13.17;实测元素含量(%):C,81.85;H,4.91;N,13.24。上述分析结果表明,获得的产物为目标产品。
实施例54
Figure PCTCN2020081036-appb-000139
依照实施例32的合成,步骤相同,用化合物N 1-(4-异丙基苯基)苯-1,2-二胺代替化合物N 1-苯基苯-1,2-二胺,得到白色化合物0.523g(产率37.9%)。质谱分析确定的分子离子质量为:850.31(计算值为:850.35);理论元素含量(%)C 58H 42N 8:C,81.86;H,4.97;N,13.17;实测元素含量(%):C,81.85;H,4.92;N,13.23。上述分析结果表明,获得的产物为目标产品。
实施例55
Figure PCTCN2020081036-appb-000140
依照实施例27的合成,步骤相同,用化合物2-甲基苯甲醛代替化合物苯甲醛,得到白色化合物0.538g(产率39.9%)。质谱分析确定的分子离子质量为:822.34(计算值为:822.32);理论元素含量(%)C 56H 38N 8:C,81.73;H,4.65;N,13.62;实测元素含量(%):C,81.75;H,4.61;N,13.64。上述分 析结果表明,获得的产物为目标产品。
实施例56
Figure PCTCN2020081036-appb-000141
依照实施例28的合成,步骤相同,用化合物3-甲基苯甲醛代替化合物苯甲醛,得到白色化合物0.614g(产率37.4%)。质谱分析确定的分子离子质量为:822.38(计算值为:822.32);理论元素含量(%)C 56H 38N 8:C,81.73;H,4.65;N,13.62;实测元素含量(%):C,81.79;H,4.60;N,13.61。上述分析结果表明,获得的产物为目标产品。
实施例57
Figure PCTCN2020081036-appb-000142
依照实施例29的合成,步骤相同,用化合物3-甲基苯甲醛代替化合物苯甲醛,得到白色化合物0.523g(产率37.9%)。质谱分析确定的分子离子质量为:822.38(计算值为:822.32);理论元素含量(%)C 56H 38N 8:C,81.73;H,4.65;N,13.62;实测元素含量(%):C,81.78;H,4.61;N,13.61。上述分析结果表明,获得的产物为目标产品。
实施例58
Figure PCTCN2020081036-appb-000143
依照实施例30的合成,步骤相同,用化合物N 1-(对甲苯基)苯-1,2-二胺代替化合物N 1-苯基苯-1,2-二胺,得到白色化合物0.598g(产率37.2%)。质谱分析确定的分子离子质量为:822.39(计算值为:822.32);理论元素含量(%)C 56H 38N 8:C,81.73;H,4.65;N,13.62;实测元素含量(%):C,81.78; H,4.62;N,13.60。上述分析结果表明,获得的产物为目标产品。
实施例59
Figure PCTCN2020081036-appb-000144
依照实施例31的合成,步骤相同,用化合物N 1-(对甲苯基)苯-1,2-二胺代替化合物N 1-苯基苯-1,2-二胺,得到白色化合物0.523g(产率37.9%)。质谱分析确定的分子离子质量为:822.36(计算值为:822.32);理论元素含量(%)C 56H 38N 8:C,81.73;H,4.65;N,13.62;实测元素含量(%):C,81.78;H,4.61;N,13.61。上述分析结果表明,获得的产物为目标产品。
实施例60
Figure PCTCN2020081036-appb-000145
依照实施例32的合成,步骤相同,用化合物N 1-(间甲苯基)苯-1,2-二胺代替化合物N 1-苯基苯-1,2-二胺,得到白色化合物0.510g(产率35.9%)。质谱分析确定的分子离子质量为:822.36(计算值为:822.32);理论元素含量(%)C 56H 38N 8:C,81.73;H,4.65;N,13.62;实测元素含量(%):C,81.78;H,4.61;N,13.61。上述分析结果表明,获得的产物为目标产品。
效果实施例1
以下利用本发明的材料制备电致发光器件实施例,具体的器件制备工艺如下:透明ITO玻璃作为制备器件的基底材料,后先以5%ITO洗液超声处理30min,之后依次以蒸馏水(2次)、丙酮(2次)、异丙醇(2次)超声洗涤,最后将ITO玻璃保存在异丙醇中。每次使用前,先用丙酮棉球和异丙醇棉球小心擦拭ITO玻璃表面,待异丙醇冲洗后烘干,之后用等离子体处理5min。器件的制备利用真空镀膜设备采用真空蒸镀工艺完成,当真空蒸镀系统的真空度达到5×10 -4Pa以下时开始蒸镀,沉积速率由赛恩斯膜厚仪,利用真空蒸镀工艺在ITO玻璃上依次沉积各种有机层及LiF电子注入层和金属Al电极(具体器件结构见如下效果实施例)。器件的电流、电压、亮度、发光光谱等特性采用PR 650光谱扫描亮度计和Keithley K 2400数字源表系统同步测试。器件的性能测试在无水无氧手套箱中进行。
在效果实施例1-1至60-1的有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用、在发光层中TCTA分别与本发 明中的化合物1-60混合作为主体材料使用(TCTA与化合物1-60的重量混合比例为1:1)、本发明中的化合物1-60被用作电子传输材料使用。效果实施例有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:n+10 wt%IrPPy 3/n(30nm)/LiF(1nm)/Al(100nm)]。n代表化合物序号:1-60,在同一个器件中主体材料里采用的化合物与电子传输层采用的化合物相同,IrPPy 3作为掺杂发光材料使用(重量比掺杂浓度为10 WT%)。效果实施例结果见表1-1。
对比施例1
对比施例1-1至3-1有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用;在发光层中TCTA分别与3P-T2T、E1或E2混合作为主体材料,两种材料按照重量比1:1混合,IrPPy 3掺杂发光材料使用(重量比掺杂浓度为10 WT%),3P-T2T、E1或E2分别同时被用作电子传输材料使用。对比实施例1-1至3-1有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:3P-T2T或E1或E2+10wt%IrPPy 3/3P-T2T或E1或E2(30nm)/LiF(1nm)/Al(100nm)]。
对比实施例4-1至16-1器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用;对比实施例4-1至16-1器件中TBT-07、TBT-14、ET85、1、2、3、4、40、45、47、50、55和60分别被用作电子传输层(ETL)材料使用、在发光层中作为主体材料使用。对比实施例4-1至16-1有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/n+10wt%IrPPy 3/n(30nm)/LiF(1nm)/Al(100nm)]。n代表化合物序号,在同一个器件中主体材料里采用的化合物与电子传输层采用的化合物相同,IrPPy 3作为掺杂发光材料使用(重量比掺杂浓度为10 WT%)。对比实施例结果见表2-1。
效果实施例及对比实施例中涉及的化合物结构如下:
Figure PCTCN2020081036-appb-000146
Figure PCTCN2020081036-appb-000147
表1-1.实施例器件在驱动电流密度为10mA/cm 2条件下(恒流驱动模式)的测试数据(器件寿命T90表示器件亮度衰减到初始亮度90%所消耗的时间)。
Figure PCTCN2020081036-appb-000148
Figure PCTCN2020081036-appb-000149
Figure PCTCN2020081036-appb-000150
表2-1.对比实施例器件在驱动电流密度为10mA/cm 2条件下(恒流驱动模式)的测试数据(器件寿命T90表示器件亮度衰减到初始亮度90%所消耗的时间)。
Figure PCTCN2020081036-appb-000151
由上述效果实施例1及表1-1可知,采用本发明的1,3,5-三嗪类化合物作为电子传输层,同时作为电子受体材料与电子给体材料构建发光层,制备得到的有机电致发光器件的亮度可达8315cd/m 2-8898cd/m 2;电流效率可达80cd/A-91cd/A;器件寿命可达1078小时-1300小时(T90)
由上述对比实施例1及表2-1可知,采用上述化合物作为电子传输层,同时作为电子受体材料构建发光层制备得到的有机电致发光器件的亮度为5082cd/m 2-5743cd/m 2;电流效率为50cd/A-61cd/A;器件寿命为410小时-689小时(T90)。
由此可见,采用本发明的1,3,5-三嗪类化合物作为电子传输层,同时作为电子受体材料与电子给体材料构建发光层制备得到的有机电致发光器件,与上述化合物作为电子传输层,同时作为电子受体 材料构建发光层制备得到的有机电致发光器件相比较,亮度提高45%-75%,电流效率提高了31%-82%;器件寿命提高了56.5%-217%。
效果实施例2
在效果实施例1-2至60-2的有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用、在发光层中TCTA分别与本发明中的化合物1-60混合作为主体材料使用(TCTA与化合物1-60的重量混合比例为1:1)、TPBI被用作电子传输材料使用。效果实施例有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:n+10 wt%IrPPy 3/TPBI(30nm)/LiF(1nm)/Al(100nm)]。n代表化合物序号:1-60,在同一个器件中主体材料里采用的化合物与电子传输层采用的化合物相同,IrPPy 3作为掺杂发光材料使用(重量比掺杂浓度为10 WT%)。效果实施例结果见表1-2。
对比实施例2
对比实施例1-2至6-2有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用;在发光层中TCTA与3P-T2T、E1、E2、TBT-07、TBT-14和ET85之一混合作为主体材料,两种材料按照重量比1:1混合,IrPPy 3掺杂发光材料使用(重量比掺杂浓度为10 WT%),TPBI被用作电子传输材料使用。对比实施例1-2至6-2有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:3P-T2T、E1、E2、TBT-07、TBT-14或ET85+10wt%IrPPy 3/TPBI(30nm)/LiF(1nm)/Al(100nm)]。
对比实施例7-2至16-2器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用、在发光层中化合物1、2、3、4、40、45、47、50、55和60作为主体材料使用、IrPPy 3被作为掺杂发光材料使用(重量比掺杂浓度为10 WT%);TPBI被用作电子传输材料使用。对比实施例7-2至15-2有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/n+10wt%IrPPy 3/TPBI(30nm)/LiF(1nm)/Al(100nm)]。对比实施例结果见表2-2。
表1-2.实施例器件在驱动电流密度为10mA/cm 2条件下(恒流驱动模式)的测试数据(器件寿命T90表示器件亮度衰减到初始亮度90%所消耗的时间)。
Figure PCTCN2020081036-appb-000152
Figure PCTCN2020081036-appb-000153
Figure PCTCN2020081036-appb-000154
表2-2.对比实施例器件在驱动电流密度为10mA/cm 2条件下(恒流驱动模式)的测试数据(器件寿命T90表示器件亮度衰减到初始亮度90%所消耗的时间)。
Figure PCTCN2020081036-appb-000155
Figure PCTCN2020081036-appb-000156
由上述效果实施例2及表1-2可知,采用本发明的1,3,5-三嗪类化合物作为电子受体材料与电子给体材料的组合物构建发光层,制备得到的有机电致发光器件的亮度可达7156cd/m 2-7890cd/m 2;电流效率可达70cd/A-80cd/A;器件寿命可达841小时-980小时(T90)。
由上述对比实施例2及表2-2可知,采用上述化合物构建发光层制备得到的有机电致发光器件的亮度为5046cd/m 2-5715cd/m 2;电流效率为45cd/A-63cd/A;器件寿命为410小时-672小时(T90)。
由此可见,采用本发明的1,3,5-三嗪类化合物作为电子受体材料与电子给体材料构建发光层制备得到的有机电致发光器件,与上述化合物构建的发光层制备得到的有机电致发光器件相比较,亮度提高了25%-56%,电流效率提高了11%-78%;器件寿命提高了25%-139%。
效果实施例3
在效果实施例1-3至60-3的有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用、在发光层中TCTA作为主体材料使用、化合物1-60分别被用作电子传输材料使用。效果实施例有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA+10 wt%IrPPy 3/n(30nm)/LiF(1nm)/Al(100nm)]。n代表化合物序号:1-60,在同一个器件中主体材料里采用的化合物与电子传输层采用的化合物相同,IrPPy 3作为掺杂发光材料使用(重量比掺杂浓度为10 WT%)。效果实施例结果见表1-3。
对比实施例3
对比实施例1-3至6-3有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用;在发光层中TCTA作为主体材料,IrPPy 3掺杂发光材料使用(重量比掺杂浓度为10 WT%),3P-T2T、E1、E2、TBT-07、TBT-14和ET85分别被用作电子传输材料使用。对比实施例1-3至6-3有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA+10wt%IrPPy 3/3P-T2T、E1、E2、TBT-07、TBT-14或ET85(30nm)/LiF(1nm)/Al(100nm)]。对比实施例结果见表2-3。
表1-3.实施例器件在驱动电流密度为10mA/cm 2条件下(恒流驱动模式)的测试数据(器件寿命T90表示器件亮度衰减到初始亮度90%所消耗的时间)。
Figure PCTCN2020081036-appb-000157
Figure PCTCN2020081036-appb-000158
Figure PCTCN2020081036-appb-000159
表2-3.对比实施例器件在驱动电流密度为10mA/cm 2条件下(恒流驱动模式)的测试数据(器件寿命T90表示器件亮度衰减到初始亮度90%所消耗的时间)。
Figure PCTCN2020081036-appb-000160
Figure PCTCN2020081036-appb-000161
由上述效果实施例3及表1-3可知,采用本发明的1,3,5-三嗪类化合物作为电子传输层制备得到的有机电致发光器件的亮度可达6379cd/m 2-7068cd/m 2;电流效率可达65cd/A-85cd/A;器件寿命可达791小时-878小时(T90)。
由上述对比实施例3及表2-3可知,采用上述对比实施例中化合物作为电子传输层,制备得到的有机电致发光器件的亮度为4862cd/m 2-5196cd/m 2;电流效率为50cd/A-56cd/A;器件寿命为361小时-496小时(T90)。
由此可见,采用本发明的1,3,5-三嗪类化合物与上述现有化合物相比较,作为电子传输层制备得到的有机电致发光器件的亮度提高了22.8%-45%,电流效率提高了16%-70%;器件寿命提高了60%-143%。
效果实施例4
在效果实施例1-4至60-4的有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用、在发光层中TCTA分别与本发明中的化合物1-60混合作为主体材料使用(TCTA与化合物1-60的重量混合比例为1:1)、本发明中的化合物1-60被用作电子传输材料使用。效果实施例有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:n+1 wt%DPh2AAN/n(30nm)/LiF(1nm)/Al(100nm)]。n代表化合物序号:1-60,在同一个器件中主体材料里采用的化合物与电子传输层采用的化合物相同,DPh2AAN作为掺杂发光材料使用(重量比掺杂浓度为1 WT%)。效果实施例结果见表1-5。
对比实施例4
对比实施例1-4至3-4有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用;在发光层中TCTA分别与3P-T2T、E1或E2混合作为主体材料,两种材料按照重量比1:1混合,DPh2AAN掺杂发光材料使用(重量比掺杂浓度为1 WT%),3P-T2T、E1或E2分别被用作电子传输材料使用。对比实施例1-1至3-1有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:3P-T2T或E1或E2+10wt%DPh2AAN/3P-T2T或E1或E2(30nm)/LiF(1nm)/Al(100nm)]。
表1-4.实施例器件在驱动电流密度为10mA/cm 2条件下(恒流驱动模式)的测试数据(器件寿命T90表示器件亮度衰减到初始亮度90%所消耗的时间)。
Figure PCTCN2020081036-appb-000162
Figure PCTCN2020081036-appb-000163
Figure PCTCN2020081036-appb-000164
表2-4.对比实施例器件在驱动电流密度为10mA/cm 2条件下(恒流驱动模式)的测试数据(器件寿命T90表示器件亮度衰减到初始亮度90%所消耗的时间)。
Figure PCTCN2020081036-appb-000165
由上述效果实施例及表1-4可知,采用本发明的1,3,5-三嗪类化合物作为电子传输层,同时作为电子受体材料与电子给体材料构建发光层,制备得到的有机电致发光器件的亮度可达3531cd/m 2-3885 cd/m 2;电流效率可达54cd/A-62cd/A;器件寿命可达914小时-987小时(T90)。
由上述对比实施例及表2-4可知,采用上述化合物作为电子传输层,同时作为电子受体材料构建发光层制备得到的有机电致发光器件的亮度为2350cd/m 2-2571cd/m 2;电流效率为39cd/A-41cd/A;器件寿命为402小时-462小时(T90)。
由此可见,采用本发明的1,3,5-三嗪类化合物作为电子传输层,同时作为电子受体材料与电子给体材料构建发光层制备得到的有机电致发光器件,与上述化合物作为电子传输层,同时作为电子受体材料构建发光层制备得到的有机电致发光器件相比较,亮度提高了37%-65%,电流效率提高了31%-59%;器件寿命提高了98%-146%。
效果实施例5
在效果实施例1-5至60-5的有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用、在发光层中TCTA分别与本发明中的化合物1-60混合作为主体材料使用(TCTA与化合物1-60的重量混合比例为1:1)、TPBI被用作电子传输材料使用。效果实施例有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:n+1 wt%DPh2AAN/TPBI(30nm)/LiF(1nm)/Al(100nm)]。n代表化合物序号:1-60,DPh2AAN作为掺杂发光材料使用(重量比掺杂浓度为1 WT%)。效果实施例结果见表1-5。
对比实施例5
对比实施例1-5至3-5有机电致发光器件中,HATCN被用来作为空穴注入层使用、DBBA被用来作为第1空穴传输层使用、TCTA被作为第2空穴传输层使用;在发光层中TCTA分别与3P-T2T、E1或E2混合作为主体材料,两种材料按照重量比1:1混合,DPh2AAN掺杂发光材料使用(重量比掺杂浓度为1 WT%),TPBI被用作电子传输材料使用。对比实施例1-5至3-5有机电致发光器件结构为[ITO/HATCN(5nm)/DBBA(60nm)/TCTA(10nm)/TCTA:3P-T2T或E1或E2+10wt%DPh2AAN/TPBI(30nm)/LiF(1nm)/Al(100nm)]。
表1-5.实施例器件在驱动电流密度为10mA/cm 2条件下(恒流驱动模式)的测试数据(器件寿命T90表示器件亮度衰减到初始亮度90%所消耗的时间)。
Figure PCTCN2020081036-appb-000166
Figure PCTCN2020081036-appb-000167
Figure PCTCN2020081036-appb-000168
表2-5.对比实施例器件在驱动电流密度为10mA/cm 2条件下(恒流驱动模式)的测试数据(器件寿命T90表示器件亮度衰减到初始亮度90%所消耗的时间)。
Figure PCTCN2020081036-appb-000169
由上述效果实施例及表1-5可知,采用本发明的1,3,5-三嗪类化合物作为电子受体材料与电子给体材料构建发光层,制备得到的有机电致发光器件的亮度可达3251cd/m 2-3594cd/m 2;电流效率可达48cd/A-56cd/A;器件寿命可达650小时-748小时(T90)。
由上述对比实施例及表2-5可知,采用上述化合物作为电子受体材料构建发光层制备得到的有机电致发光器件的亮度为2032cd/m 2-2205cd/m 2;电流效率为34cd/A-38cd/A;器件寿命为342小时-375小时(T90)。
由此可见,采用本发明的1,3,5-三嗪类化合物与上述现有化合物相比较,作为电子受体材料构建 发光层制备得到的有机电致发光器件,亮度提高了47%-77%,电流效率提高了26%-65%;器件寿命提高了73%-119%。
由于本发明如式I所示的1,3,5-三嗪类化合物母核为一个苯环通过单键链接两个三嗪和一个苯并咪唑衍生物的分子结构很复杂,主要表现在:(1)两个三嗪杂环和一个苯并咪唑杂环构成了一个复杂的复合杂环体系;(2)一个苯环外围通过单键链接两个三嗪衍生物和一个苯并咪唑衍生物,这种分子的分子构象结构非常复杂;(3)三嗪衍生物和苯并咪唑衍生物均属于缺电子基团,而且三嗪衍生物比苯并咪唑衍生物具有更强的缺电子特性,因此会导致这种分子具有一定的分子内电荷转移特性。基于上述三个特点,按照已有的物理化学知识无法对于基于两个三嗪和一个苯并咪唑组成的分子的基本电致发光特性进行预测或判断,因为上述三个特点对于一个材料的电致发光性能(主要包括效率及稳定性)均具有重要影响。因此,必须通过实际实施例的实验验证方可以对于这些材料的电致发光性质做出判断。
有机电致发光材料与器件领域内的技术人员公知的是,一个良好的电子传输材料不一定就可能是一个良好的主体材料。作为一个良好的主体材料,通常是应该具有平衡且较好的电子和空穴传输特性。但是,主体材料的性质还取决于与其匹配的掺杂发光材料的载流子传输特性以及掺杂以后掺杂薄膜整体的载流子传输特性。例如一个电子传输主导的主体材料与具有一定空穴传输能力的掺杂材料相匹配就有可能获得较好的效果,与一个一定电子传输能力的掺杂材料相匹配就有可能获得较差的效果。需要指出的是,主体/客体掺杂后获得的复合薄膜的载流子传输性能往往不是两者单独性能的简单叠加,掺杂复合薄膜的载流子传输性能很难准确推测,必须通过具体实验分析验证方可以获得理想的匹配组合。另外,对于由电子给体和电子受体双组份构成的主体材料会更加复杂,其性能也很难凭着经验准确推断。
例如,由上述表2-1、2-2及3-2可知,将现有化合物E1、E2或3P-T2T同时作为电子传输材料和发光层主体材料之一,或者仅作为发光层主体材料之一,与其仅作为电子传输材料相比,制备得到的有机电致发光器件的效率及寿命并没有明显的提高。
虽然CN102593374B公开了化合物TPT-07作为电子传输层,或作为电子传输层的同时,单独作为主体材料用于制备电致发光器件。但是,制备得到的发光器件的效率仍偏低。
根据上述效果实施例及对比实施例的性能指标对比可知,采用本发明的化合物作为电子受体材料与电子给体材料的组合物,作为发光层主体材料使用时,在同样的驱动电流密度下,制备得到的有机电致发光器件的亮度、效率及寿命明显高于现有技术所公开的材料;进一步地,当采用本发明的化合物作为电子传输层,同时作为电子受体材料与电子给体材料构建发光层,在同样的驱动电流密度下,制备得到的有机电致发光器件,可获得更优的亮度、效率及寿命。特别是在于器件的稳定性具有最明显的技术效果优势。

Claims (20)

  1. 一种如式I所示的1,3,5-三嗪类化合物,
    Figure PCTCN2020081036-appb-100001
    其中,L为单键或
    Figure PCTCN2020081036-appb-100002
    环A为苯基、被一个或多个R d-1取代的苯基、6元单环杂芳基、或、被一个或多个R d-2取代的6元单环杂芳基;所述的6元单环杂芳基和被一个或多个R d-2取代的6元单环杂芳基里的“6元单环杂芳基”中的杂原子定义为:杂原子为N,杂原子个数为1~3个;当R d-1和R d-2独立地为多个时,为相同或不同;
    R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为氢、氘、卤素、氰基、C 1~10烷基、被一个或多个R a-1取代的C 1~C 10烷基、C 1~C 10烷基-O-、被一个或多个R a-2取代的C 1~C 10烷基-O-、C 6~C 14芳基、被一个或多个R a-3取代的C 6~C 14芳基、5-6元单环杂芳基、被一个或多个R a-4取代的5-6元单环杂芳基或
    Figure PCTCN2020081036-appb-100003
    所述的5-6元单环杂芳基和被一个或多个R a-4取代的5-6元单环杂芳基里的“5-6元单环杂芳基”中的杂原子定义为:杂原子选自N、O和S中的一种或多种,杂原子数为1~4个;当R a-1、R a-2、R a-3和R a-4独立地为多个时,相同或不同;其中,
    Figure PCTCN2020081036-appb-100004
    Figure PCTCN2020081036-appb-100005
    Figure PCTCN2020081036-appb-100006
    通过单键连接;
    R 24独立地为
    Figure PCTCN2020081036-appb-100007
    n1和n2独立地为0、1、2、3或4;n3为0、1、2或3;
    R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4、R 2-3独立地为氢、氘、卤素、氰基、C 1~C 10烷基、被一个或多个R b-1取代的C 1~C 10烷基、C 1~C 10烷基-O-、被一个或多个R b-2取代的C 1~C 10烷基-O-、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、被一个或多个R b-4取代的5-6元单环杂芳 基、或
    Figure PCTCN2020081036-appb-100008
    所述的5-6元单环杂芳基和被一个或多个R b-4取代的5-6元单环杂芳基里的“5-6元单环杂芳基”中的杂原子定义为:杂原子选自N、O和S中的一种或多种,杂原子数为1~4个;当R b-1、R b-2、R b-3和R b-4为多个时,R b-1、R b-2、R b-3和R b-4独立地为相同或不同;其中,
    Figure PCTCN2020081036-appb-100009
    Figure PCTCN2020081036-appb-100010
    Figure PCTCN2020081036-appb-100011
    通过单键连接;
    Figure PCTCN2020081036-appb-100012
    独立地为苯基、被一个或多个R c-1取代的苯基、5-6元单环杂芳基、或、被一个或多个R c-2取代的5-6元单环杂芳基;所述的5-6元单环杂芳基和被一个或多个R c-2取代的5-6元单环杂芳基中的5-6元单环杂芳基,杂原子为N,杂原子个数为1~3个;当R c- 1和R c-2独立地为多个时,相同或不同;
    R a-1、R a-2、R a-3、R a-4、R b-1、R b-2、R b-3、R b-4、R c-1、R c-2、R d-1和R d-2独立地为如下取代基:氘、卤素、氰基、三氟甲基、C 1~C 6烷基或C 1~C 6烷基-O-。
  2. 如权利要求1所述的如式I所示的1,3,5-三嗪类化合物,其特征在于,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为卤素中,所述的卤素独立地为氟、氯、溴或碘;
    和/或,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为卤素中,所述的卤素独立地为氟、氯、溴或碘;
    和/或,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为C 1~C 10烷基、被一个或多个R a-1取代的C 1~C 10烷基、C 1~C 10烷基-O-或被一个或多个R a-2取代的C 1~C 10烷基-O-中,所述的C 1~C 10烷基独立地为C 1~C 6烷基;
    和/或,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为C 6~C 14芳基或被一个或多个R a-3取代的C 6~C 14芳基中,所述的C 6~C 14芳基独立地为C 6~C 10芳基;
    和/或,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为5-6元单环杂芳基或被一个或多个R a-4取代的5-6元单环杂芳基中,所述的C 1~C 12杂芳基独立地为杂原子选自N,杂原子数为1~3个;
    和/或,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为C 1~C 10烷基、被一个或多个R b-1取代的C 1~C 10烷基、C 1~C 10烷基-O-或被一个或多个R b-2取代的C 1~C 10烷基-O-中,所述的C 1~C 10烷基独立地为C 1~C 6烷基;
    和/或,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为C 6~C 14芳基或被一个或多个R b-3取代的C 6~C 14芳基中,所述的C 6~C 14芳基独立地为C 6~C 10芳基;
    和/或,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为5-6元单环杂芳基或被一个或多个R b-4取代的5-6元单环杂芳基中,所述的C 1~C 12杂芳基独立地为杂原子选自N,杂原子数为1~3个;
    和/或,环A为6元单环杂芳基或被一个或多个R d-2取代的6元单环杂芳基中,所述的6元单环杂芳基独立地为杂原子选自N,杂原子数为1~2个;
    和/或,当
    Figure PCTCN2020081036-appb-100013
    独立地为苯基时,
    Figure PCTCN2020081036-appb-100014
    Figure PCTCN2020081036-appb-100015
    独立地为
    Figure PCTCN2020081036-appb-100016
    和/或,
    Figure PCTCN2020081036-appb-100017
    独立地为5-6元单环杂芳基或被一个或多个R c- 2取代的5-6元单环杂芳基中,所述的5-6元单环杂芳基独立地为杂原子选自N,杂原子数为1~2个;
    和/或,
    Figure PCTCN2020081036-appb-100018
    相同,R 21、R 22和R 23相同;
    和/或,当L为
    Figure PCTCN2020081036-appb-100019
    时,R 24独立地位于
    Figure PCTCN2020081036-appb-100020
    Figure PCTCN2020081036-appb-100021
    连接位点的邻位、间位或对位;
    和/或,R a-1、R a-2、R a-3、R a-4、R b-1、R b-2、R b-3、R b-4、R c-1、R c-2、R d-1和R d-2独立地为卤素中,所述的卤素独立地为氟、氯、溴或碘;
    和/或,R a-1、R a-2、R a-3、R a-4、R b-1、R b-2、R b-3、R b-4、R c-1、R c-2、R d-1和R d-2独立地为C 1~C 6烷基或C 1~C 6烷基-O-中,所述的C 1~C 6烷基或C 1~C 6烷基-O-中的C 1~C 6烷基独立地为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基;
    和/或,R a-1、R a-2、R a-3、R a-4、R b-1、R b-2、R b-3、R b-4、R c-1、R c-2、R d-1和R d-2的个数独立地为1、2或3;
    和/或,环A为苯基或被一个或多个R d-1取代的苯基;
    和/或,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为氢、氘、卤素、氰基、C 1~C 10烷基、被一个或多个R a-1取代的C 1~C 10烷基、C 6~C 14芳基或被一个或多个R a-3取代的C 6~C 14芳基;
    和/或,R 24独立地为
    Figure PCTCN2020081036-appb-100022
  3. 如权利要求2所述的如式I所示的1,3,5-三嗪类化合物,其特征在于,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为氢或卤素;
    和/或,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为卤素中,所述的卤素独立地为氟;
    和/或,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为卤素中,所述的卤素独立地为氟;
    和/或,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为C 1~C 10烷基、被一个或多个R a-1取代的C 1~C 10烷基、C 1~C 10烷基-O-或被一个或多个R a-2取代的C 1~C 10烷基-O-中,所述的C 1~C 10烷基独立地为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基
    和/或,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为C 6~C 14芳基或被一个或多个R a-3取代的C 6~C 14芳基中,所述的C 6~C 14芳基独立地为苯基或萘基;
    和/或,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为5-6元单环杂芳基或被一个或多个R a-4取代的5-6元单环杂芳基中,所述的C 1~C 12杂芳基独立地为吡啶基;
    和/或,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为C 1~C 10烷基、被一个或多个R b-1取代的C 1~C 10烷基、C 1~C 10烷基-O-或被一个或多个R b-2取代的C 1~C 10烷基-O-中,所述的C 1~C 10烷基独立地为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基或叔丁基;
    和/或,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为C 6~C 14芳基或被一个或多个R b-3取代的C 6~C 14芳基中,所述的C 6~C 14芳基独立地为苯基或萘基;
    和/或,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为5-6元单环杂芳基或被一个或多个R b-4取代的5-6元单环杂芳基中,所述的C 1~C 12杂芳基独立地为吡啶基;
    和/或,环A为6元单环杂芳基或被一个或多个R d-2取代的6元单环杂芳基中,所述的6元单环杂芳基独立地为吡啶基;
    和/或,当
    Figure PCTCN2020081036-appb-100023
    独立地为苯基时,
    Figure PCTCN2020081036-appb-100024
    Figure PCTCN2020081036-appb-100025
    独立地为
    Figure PCTCN2020081036-appb-100026
    和/或,
    Figure PCTCN2020081036-appb-100027
    独立地为5-6元单环杂芳基或被一个或多个R c- 2取代的5-6元单环杂芳基中,所述的5-6元单环杂芳基独立地为吡啶基;
    和/或,当R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为被一个或多个R a-1取代的C 1~C 10烷基或被一个或多个R a-2取代的C 1~C 10烷基-O-时,所述的取代的C 1~C 10烷基或取代的C 1~C 10烷基-O-中的取代的C 1~C 10烷基独立地为三氟甲基;
    和/或,当R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4和R 2-3独立地为被一个或多个R b-1取代的C 1~C 10烷基或被一个或多个R b-2取代的C 1~C 10烷基-O-时,所述的取代的C 1~C 10烷基或取代的C 1~C 10烷基-O-中的取代的C 1~C 10烷基独立地为三氟甲基。
  4. 如权利要求3所述的如式I所示的1,3,5-三嗪类化合物,其特征在于,
    Figure PCTCN2020081036-appb-100028
    独立地为
    Figure PCTCN2020081036-appb-100029
    Figure PCTCN2020081036-appb-100030
    和/或,
    Figure PCTCN2020081036-appb-100031
    独立地为
    Figure PCTCN2020081036-appb-100032
    Figure PCTCN2020081036-appb-100033
    和/或,
    Figure PCTCN2020081036-appb-100034
    独立地为
    Figure PCTCN2020081036-appb-100035
  5. 如权利要求4所述的如式I所示的1,3,5-三嗪类化合物,其特征在于,
    Figure PCTCN2020081036-appb-100036
    独立地为
    Figure PCTCN2020081036-appb-100037
    Figure PCTCN2020081036-appb-100038
    和/或,
    Figure PCTCN2020081036-appb-100039
    独立地为
    Figure PCTCN2020081036-appb-100040
    Figure PCTCN2020081036-appb-100041
    Figure PCTCN2020081036-appb-100042
  6. 如权利要求1所述的如式I所示的1,3,5-三嗪类化合物,其特征在于,
    环A为苯基;
    和/或,R 24独立地为
    Figure PCTCN2020081036-appb-100043
    和/或,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为氢、卤素、被一个或多个R a-1取代的C 1~C 10烷基;例如,R 3、R 8、R 13和R 18独立地为氢、卤素、被一个或多个R a-1取代的C 1~C 10烷基;R 1、R 2、R 4、R 5、R 6、R 7、R 9、R 10、R 11、R 12、R 14、R 15、R 16、R 17、R 19、R 20、R 21、R 22和R 23独立地为氢;R a-1独立地为卤素;
    和/或,
    Figure PCTCN2020081036-appb-100044
    相同;
    和/或,R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4、R 2-3独立地为氢、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、或
    Figure PCTCN2020081036-appb-100045
    例如,R 1-1、R 1-2、R 1-3、R 1-4独立地为氢、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、或
    Figure PCTCN2020081036-appb-100046
    R 2-1、R 2-2、R 2-3独立地为氢;R b-3独立地为卤素、三氟甲基或C 1~C 6烷基;
    Figure PCTCN2020081036-appb-100047
    独立地为苯基;
    Figure PCTCN2020081036-appb-100048
    独立地为5-6元单环杂芳基。
  7. 如权利要求1所述的如式I所示的1,3,5-三嗪类化合物,其特征在于,其为如下方案1或方案2:
    方案1、
    L为单键或
    Figure PCTCN2020081036-appb-100049
    环A为苯基;
    R 24独立地为
    Figure PCTCN2020081036-appb-100050
    R 1-1、R 2-1、R 1-2、R 2-2、R 1-3、R 1-4、R 2-3独立地为氢、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、或
    Figure PCTCN2020081036-appb-100051
    例如,R b-3独立地为卤素、三氟甲基或C 1~C 6烷基;
    R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14、R 15、R 16、R 17、R 18、R 19、R 20、R 21、R 22和R 23独立地为氢、卤素、被一个或多个R a-1取代的C 1~C 10烷基;R a-1独立地为卤素;
    Figure PCTCN2020081036-appb-100052
    相同;
    方案2、
    L为单键或
    Figure PCTCN2020081036-appb-100053
    环A为苯基;
    R 24独立地为
    Figure PCTCN2020081036-appb-100054
    R 2-1、R 2-2、R 2-3独立地为氢;
    R 1-1、R 1-2、R 1-3、R 1-4独立地为氢、C 6~C 14芳基、被一个或多个R b-3取代的C 6~C 14芳基、5-6元单环杂芳基、或
    Figure PCTCN2020081036-appb-100055
    R b-3独立地为卤素、三氟甲基或C 1~C 6烷基;
    Figure PCTCN2020081036-appb-100056
    独立地为苯基;
    Figure PCTCN2020081036-appb-100057
    独立地为5-6元单环杂芳基;
    R 3、R 8、R 13和R 18独立地为氢、卤素、被一个或多个R a-1取代的C 1~C 10烷基;
    R 1、R 2、R 4、R 5、R 6、R 7、R 9、R 10、R 11、R 12、R 14、R 15、R 16、R 17、R 19、R 20、R 21、R 22和R 23独立地为氢;
    R a-1独立地为卤素;
    Figure PCTCN2020081036-appb-100058
    相同。
  8. 如权利要求1所述的如式I所示的1,3,5-三嗪类化合物,其特征在于,其为如下任何一个化合 物:
    Figure PCTCN2020081036-appb-100059
    Figure PCTCN2020081036-appb-100060
    Figure PCTCN2020081036-appb-100061
  9. 一种如权利要求1~8中任一项所述的式I所示的1,3,5-三嗪类化合物作为电子材料、或在有机电致发光器件领域中的应用。
  10. 如权利要求9所述的应用,所述的电子材料为电子传输材料和/或电子受体材料;
    和/或,所述的式I所示的1,3,5-三嗪类化合物用于制备有机电致发光器件中的电子传输层、空穴阻挡层和发光层中的一种或多种。
  11. 一种有机电致发光组合物,其包括电子给体材料和如权利要求1~8中任一项所述的如式I所示的1,3,5-三嗪类化合物。
  12. 如权利要求11所述的有机电致发光组合物,其特征在于,所述电子给体材料为苯基或萘基咔唑类电子给体材料;
    和/或,所述的如式I所示的1,3,5-三嗪类化合物与所述的电子给体材料的摩尔比为3:1至1:3;
    和/或,所述的有机电致发光组合物中还包括掺杂发光材料。
  13. 如权利要求12所述的有机电致发光组合物,其特征在于,所述电子给体材料为苯基或萘基咔唑类电子给体材料中,所述的苯基或萘基咔唑类电子给体材料为含有2-3个苯基咔唑或者萘基咔唑基结构;
    和/或,所述的如式I所示的1,3,5-三嗪类化合物与所述的电子给体材料的摩尔比为1:1;
    和/或,所述的有机电致发光组合物中还包括掺杂发光材料时,所述的掺杂发光材料为荧光发光材料和/或磷光发光材料。
  14. 如权利要求13所述的有机电致发光组合物,其特征在于,所述电子给体材料为如下任一化合物:
    Figure PCTCN2020081036-appb-100062
    Figure PCTCN2020081036-appb-100063
    和/或,所述的有机电致发光组合物中还包括掺杂发光材料、且所述的掺杂发光材料为荧光发光材料时,所述的掺杂发光材料在所述的组合物中的质量百分比为0.5 WT%-2.0 WT%;
    和/或,所述的有机电致发光组合物中还包括掺杂发光材料、且所述的掺杂发光材料为磷光发光材料时,所述的掺杂发光材料在所述的组合物中的质量百分比为5.0 WT%-15.0 WT%;
    和/或,所述的有机电致发光组合物中还包括掺杂发光材料、且所述的掺杂发光材料为磷光发光材料时,所述的掺杂发光材料为如下任一化合物:
    Figure PCTCN2020081036-appb-100064
    Figure PCTCN2020081036-appb-100065
    其中,Ra 1、Ra 3、Rb 1、Rb 3、Rd 1、Rd 3、Re 4、Re 5、Re 6、Rf 7、Rf 8、Rf 9、Rb 10-1、Rb 10-2、Re 10-1、Re 10-2、Rf 10-1和Rf 10-2独立地为H或含有1-5个C的直链或支链烷基;Ra 2、Rb 2和Rd 2独立地为H、含有1-5个C的直链或支链烷基、苯基或1-5个C的 直链或支链烷基取代的苯基;
    Figure PCTCN2020081036-appb-100066
    独立地为含有1-2个N的六元芳香杂环;
    和/或,所述的有机电致发光组合物中还包括掺杂发光材料、且所述的掺杂发光材料为荧光发光材料时,所述的掺杂发光材料为如下任一化合物:
    Figure PCTCN2020081036-appb-100067
    Figure PCTCN2020081036-appb-100068
    其中,Rg 11-1、Rg 11-2、Rh 11-1、Rh 11-2独立地为含有1-5个C的直链或支链烷基;Rg 12-1、Rg 12-2、Rh 13-1、Rh 13-2、Rh 13-3和Rh 13-4代表含有1-5个C的直链或支链烷基、F或CF 3;Ri 14- 1、Ri 14-2、Ri 15-1、Ri 15-2、Rj 16-1、Rj 16-2、Rj 17-1、Rj 17-2、Rk 18-1、Rk 18-2、Rk 18-3、Rk 18-4、Rk 19-1、Rk 19-2、 Rk 19-3、Rk 19-4、Rl 20-1、Rl 20-2、Rl 20-3、Rl 20-4、Rm 23-1、Rm 24-1、Rn 26-1、Rn 27-1、Ro 29-1、Ro 30-1、Ro 32-1、Rp 34-1、Rp 35-1、Rp 36-1和Rp 37-1独立地为含有1-5个C的直链或支链烷基、环己烷或异丙基苯;Rm 22- 1、Rn 25-1、Ro 28-11和Rp 33-1为含有1-4个C的直链或支链烷基。
  15. 如权利要求14所述的有机电致发光组合物,其特征在于,所述电子给体材料为
    Figure PCTCN2020081036-appb-100069
    和/或,所述的有机电致发光组合物中还包括掺杂发光材料、且所述的掺杂发光材料为荧光发光材料时,所述的掺杂发光材料在所述的组合物中的质量百分比为1.0 WT%;
    和/或,所述的有机电致发光组合物中还包括掺杂发光材料、且所述的掺杂发光材料为磷光发光材料时,所述的掺杂发光材料在所述的组合物中的质量百分比为10.0 WT%;
    和/或,所述的有机电致发光组合物中还包括掺杂发光材料、且所述的掺杂发光材料为磷光发光材料时,所述的掺杂发光材料为
    Figure PCTCN2020081036-appb-100070
    和/或,所述的有机电致发光组合物中还包括掺杂发光材料、且所述的掺杂发光材料为荧光发光材料时,所述的掺杂发光材料为
    Figure PCTCN2020081036-appb-100071
  16. 一种如权利要求11~15中任一项所述的有机电致发光组合物作为有机电致发光材料的应用。
  17. 一种有机电致发光器件,其特征在于,其含如权利要求11~15中任一项所述的有机电致发光组合物。
  18. 如权利要求17所述的有机电致发光器件,其特征在于,所述的有机电致发光组合物为发光层;
    和/或,所述有机电致发光器件中还包括基板,以及依次形成在基板上的阳极层、有机发光功能层和阴极层;所述的有机发光功能层中,包括含如上所述的发光层,还包括空穴注入层、空穴传输层、 电子阻挡层、空穴阻挡层、电子传输层和电子注入层中的任意一种或者多种的组合。
  19. 如权利要求17所述的有机电致发光器件,其特征在于,当所述的有机发光功能层中,包括电子传输层时,所述的电子传输层中的电子传输材料与所述的有机电致发光组合物中的1,3,5-三嗪类化合物的结构相同。
  20. 一种如权利要求17~19任一项所述的有机电致发光器件用于制备有机电致发光显示器或有机电致发光照明光源。
PCT/CN2020/081036 2019-03-29 2020-03-25 一种取代的1,3,5-三嗪化合物、组合物及其应用 WO2020199997A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021560329A JP7205950B2 (ja) 2019-03-29 2020-03-25 置換された1,3,5-トリアジン系化合物、組成物及びその使用
KR1020217035152A KR102650797B1 (ko) 2019-03-29 2020-03-25 치환된 1,3,5-트리아진 화합물, 조성물 및 이의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910251801.8A CN111747936B (zh) 2019-03-29 2019-03-29 一种取代的1,3,5-三嗪化合物、组合物及其应用
CN201910251801.8 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020199997A1 true WO2020199997A1 (zh) 2020-10-08

Family

ID=72664538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081036 WO2020199997A1 (zh) 2019-03-29 2020-03-25 一种取代的1,3,5-三嗪化合物、组合物及其应用

Country Status (5)

Country Link
JP (1) JP7205950B2 (zh)
KR (1) KR102650797B1 (zh)
CN (1) CN111747936B (zh)
TW (1) TWI724832B (zh)
WO (1) WO2020199997A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111747933B (zh) * 2019-03-29 2022-03-01 吉林省元合电子材料有限公司 一种取代的1,3,5-三嗪化合物、组合物及其应用
CN110283134B (zh) * 2019-06-21 2021-03-16 武汉尚赛光电科技有限公司 一种三嗪苯衍生物及其应用
CN114105894B (zh) * 2021-11-16 2022-10-04 季华实验室 发光化合物、发光层材料、有机电致发光器件及电子设备
CN115611873A (zh) * 2022-12-20 2023-01-17 吉林省元合电子材料有限公司 一种含有苯并咪唑和蒽结合结构的有机光电功能材料及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101128559A (zh) * 2004-12-17 2008-02-20 伊斯曼柯达公司 带有激子阻挡层的磷光oled
CN102593374A (zh) * 2011-12-19 2012-07-18 友达光电股份有限公司 电子传输材料及有机发光元件
US20120313091A1 (en) * 2010-02-22 2012-12-13 Dong-Min Kang Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
KR20170065282A (ko) * 2015-12-03 2017-06-13 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
CN108409721A (zh) * 2018-02-07 2018-08-17 瑞声科技(南京)有限公司 一种有机发光材料及有机发光二极管器件
CN110283134A (zh) * 2019-06-21 2019-09-27 武汉尚赛光电科技有限公司 一种三嗪苯衍生物及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008064200A1 (de) * 2008-12-22 2010-07-01 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
JP2015127312A (ja) 2013-12-27 2015-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. カルバゾール誘導体、および有機発光素子
JP6750783B2 (ja) * 2016-03-30 2020-09-02 エルジー・ケム・リミテッド 化合物およびこれを用いる有機発光素子
CN106946860A (zh) * 2017-04-28 2017-07-14 江苏三月光电科技有限公司 一种以三嗪和苯并咪唑为核心的有机化合物及其应用
CN109449304B (zh) * 2017-05-11 2021-02-02 中节能万润股份有限公司 一种基于三嗪和苯并咪唑的有机化合物及其在有机电致发光器件上的应用
CN114702480A (zh) * 2017-07-14 2022-07-05 辛诺拉有限公司 有机分子,特别是用于光电子器件的有机分子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101128559A (zh) * 2004-12-17 2008-02-20 伊斯曼柯达公司 带有激子阻挡层的磷光oled
US20120313091A1 (en) * 2010-02-22 2012-12-13 Dong-Min Kang Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
CN102593374A (zh) * 2011-12-19 2012-07-18 友达光电股份有限公司 电子传输材料及有机发光元件
KR20170065282A (ko) * 2015-12-03 2017-06-13 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
CN108409721A (zh) * 2018-02-07 2018-08-17 瑞声科技(南京)有限公司 一种有机发光材料及有机发光二极管器件
CN110283134A (zh) * 2019-06-21 2019-09-27 武汉尚赛光电科技有限公司 一种三嗪苯衍生物及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAOYAN LIANG, WANG JIAXUAN, CUI YUANYUAN, WEI JINBEI, WANG YUE: "Benzimidazole-Triazine Based Exciplex Films as Emitters and Hosts to Construct Highly Efficient OLEDs with a Small Efficiency Roll-off", JOURNAL OF MATERIALS CHEMISTRY C, vol. 8, no. 8, 13 January 2020 (2020-01-13), pages 2700 - 2708, XP055738888, ISSN: 2050-7526, DOI: 10.1039/C9TC06212B *

Also Published As

Publication number Publication date
TWI724832B (zh) 2021-04-11
TW202035378A (zh) 2020-10-01
JP7205950B2 (ja) 2023-01-17
CN111747936B (zh) 2021-10-22
KR102650797B1 (ko) 2024-03-25
JP2022528750A (ja) 2022-06-15
CN111747936A (zh) 2020-10-09
KR20210144856A (ko) 2021-11-30

Similar Documents

Publication Publication Date Title
CN110862381B (zh) 一种有机电致发光化合物及其制备方法和应用
WO2020199997A1 (zh) 一种取代的1,3,5-三嗪化合物、组合物及其应用
Cui et al. A simple systematic design of phenylcarbazole derivatives for host materials to high-efficiency phosphorescent organic light-emitting diodes
TW201533027A (zh) 有機化合物與組成物以及有機光電元件與顯示元件
Liang et al. Versatile functionalization of trifluoromethyl based deep blue thermally activated delayed fluorescence materials for organic light emitting diodes
JP2012526804A (ja) 有機光電素子用化合物およびこれを含む有機光電素子
TW200815408A (en) Compound having triazine ring structure substituted with pyridyl group and organic electroluminescent device
CN105722947A (zh) 杂环化合物及使用其的有机发光元件
CN104981471B (zh) 杂环化合物及使用其的有机发光元件
CN108069951B (zh) 一类基于苯甲酰基衍生物的有机电致发光材料及制备方法
WO2020199996A1 (zh) 一种取代的1,3,5-三嗪化合物、组合物及其应用
WO2016173020A1 (zh) 含有二(苯砜基)苯结构的共轭化合物及其制备方法和应用
TW200938543A (en) Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device
CN106883240A (zh) 三均三嗪化合物及发光器件
WO2021135517A1 (zh) 有机化合物、电子元件和电子装置
Yu et al. Multipath exciton harvesting in diazine-based luminescent materials and their applications for organic light-emitting diodes
Zhang et al. Phosphorescent OLEDs with extremely low efficiency roll-off enabled via rationally designed benzimidazole-based bipolar hosts
CN106898709B (zh) 一种红色磷光有机电致发光器件
Mei et al. Accelerating PLQY and RISC rates in deep-blue TADF materials with the acridin-9 (10 H)-one acceptor by tuning the peripheral groups on carbazole donors
Cai et al. Highly efficient thermally activated delayed fluorescence emitter developed by replacing carbazole with 1, 3, 6, 8-tetramethyl-carbazole
CN103288811A (zh) 含二苯并噻吩砜有机半导体材料、其制备方法及有机电致发光器件
WO2022217791A1 (zh) 一种组合物及包含其的电子元件和电子装置
TW201127782A (en) Triphenylene based aromatic compounds and OLEDs utilizing the same
WO2020199998A1 (zh) 一种1,3,5-三嗪类化合物、组合物及其应用
WO2015004896A1 (ja) 化合物、及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217035152

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20784839

Country of ref document: EP

Kind code of ref document: A1