WO2015004896A1 - 化合物、及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

化合物、及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2015004896A1
WO2015004896A1 PCT/JP2014/003589 JP2014003589W WO2015004896A1 WO 2015004896 A1 WO2015004896 A1 WO 2015004896A1 JP 2014003589 W JP2014003589 W JP 2014003589W WO 2015004896 A1 WO2015004896 A1 WO 2015004896A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
ring
formulas
unsubstituted
Prior art date
Application number
PCT/JP2014/003589
Other languages
English (en)
French (fr)
Inventor
圭 吉田
俊裕 岩隈
亮平 橋本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US14/903,746 priority Critical patent/US10505123B2/en
Publication of WO2015004896A1 publication Critical patent/WO2015004896A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a compound and an organic electroluminescence device using the compound.
  • Organic electroluminescence (EL) elements include a fluorescent type and a phosphorescent type, and an optimum element design has been studied according to each light emission mechanism. With respect to phosphorescent organic EL elements, it is known from their light emission characteristics that high-performance elements cannot be obtained by simple diversion of fluorescent element technology. The reason is generally considered as follows. Since phosphorescent light emission is light emission using triplet excitons, the energy gap of the compound used for the light emitting layer needs to be large. This is because the value of the energy gap (hereinafter also referred to as singlet energy) of a compound usually refers to the triplet energy of the compound (in the present invention, the energy difference between the lowest excited triplet state and the ground state). This is because it is larger than the value of).
  • a host material having a triplet energy larger than the triplet energy of the phosphorescent dopant material must first be used for the light emitting layer.
  • Patent Document 1 discloses a polycyclic compound as an organic EL device material, and specifically discloses a compound in which the polycyclic compound is bonded via a linking group.
  • Patent Document 2 discloses a compound that links an indolocarbazole skeleton with an aromatic hydrocarbon group that is not a condensed ring structure as a linking group as a material for an organic EL element.
  • An object of the present invention is to provide a compound that can contribute to lower voltage and higher efficiency of an organic EL device.
  • Xa is O, S, N (R), or C (Ra) (Rb)
  • Xb and Xc are each independently O, S, N (R), C (R1a) (R1b), or simply It is a bond. However, at least one of Xb and Xc is a single bond.
  • R is a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted ring carbon number 6 Or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms.
  • R1a and R1b are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted ring forming cycloalkyl group having 3 to 30 carbon atoms, a substituted or unsubstituted ring forming An aromatic hydrocarbon ring group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms.
  • Xa and Xb, or Xa and Xc are not both C (R1a) (R1b), and Xa and Xb, or Xa and Xc are not both N (R).
  • Z 1 , Z 2 and Z 3 are each independently a substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aromatic group having 3 to 30 ring atoms. It is a heterocyclic group. However, the structures represented by two or more formulas (1) may be the same or different. ]
  • a compound that can contribute to lower voltage and higher efficiency of an organic EL device can be provided.
  • the compound according to one embodiment of the present invention includes two or more structures represented by the following formula (1) in the same molecule, and at least two of the structures represented by the formula (1) are directly bonded to each other through single bonds.
  • Xa is O, S, NR, or C (R1a) (R1b).
  • Xb and Xc are each independently O, S, NR, C (R1a) (R1b), or a single bond. However, at least one of Xb and Xc is a single bond.
  • R is a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, a substituted or unsubstituted ring carbon number 6 Or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms.
  • R1a and R1b are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted ring forming cycloalkyl group having 3 to 30 carbon atoms, a substituted or unsubstituted ring forming An aromatic hydrocarbon ring group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms.
  • Xa and Xb, or Xa and Xc are not both C (R1a) (R1b), and Xa and Xb, or Xa and Xc are not both N (R).
  • Z 1 , Z 2 and Z 3 are each independently a substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aromatic group having 3 to 30 ring atoms. It is a heterocyclic group. However, the structures represented by two or more formulas (1) may be the same or different. ]
  • the compound according to one embodiment of the present invention can be expected to be driven at a low voltage when used as a material for an organic EL device because it has a structure in which polycyclic heteroaromatic rings having high planarity are directly connected to each other.
  • the compound according to one embodiment of the present invention has a structure in which a wide-gap polycyclic heteroaromatic ring is directly connected without an aromatic ring linking group, so that triplet energy is high. It is a compound suitable as a material used for a short-wavelength phosphorescent element.
  • the compound according to one embodiment of the present invention is preferably a compound represented by any of the following formulas (1a) to (1e).
  • La and Lb are each independently any one of structures represented by the following formulas (a) to (e).
  • X 1 and X 2 are each independently O, S, N (R), or C (R 1a) (R 1b).
  • Y 1 to Y 10 are each independently C (R1) or a nitrogen atom.
  • R and R1 are each independently a single bond, a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 ring carbon atoms, substituted or unsubstituted. Or an aromatic hydrocarbon ring group having 6 to 30 ring carbon atoms or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms. R1 bonded to adjacent carbon atoms may form a ring with each other.
  • R1a and R1b are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted ring forming cycloalkyl group having 3 to 30 carbon atoms, a substituted or unsubstituted ring forming An aromatic hydrocarbon ring group having 6 to 30 carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms.
  • Both La and Lb are bonded to any of X 1 to X 2 and Y 1 to Y 10 , respectively, or one of La and Lb is bonded to any of X 1 to X 2 and any of Y 1 to Y 10 , La and Lb are bonded to Lc, and Lc is bonded to any of X 1 to X 2 and Y 1 to Y 10 .
  • Lc is a substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 30 ring carbon atoms or a substituted or unsubstituted aromatic heterocyclic group having 3 to 30 ring atoms.
  • Any two of X 1 to X 2 and Y 1 to Y 10 are any one selected from N (R) in which R is a single bond and C (R1) in which R 1 is a single bond, Each single bond becomes a bond with any two of La, Lb, and Lc.
  • X 1 and X 2 are, that they are not both C (R1a) (R1b), X 1 and X 2 are not both together N (R). ) (In the formulas (a), (b), (c), (d) and (e), X 11 and X 12 are the same as X 1 and X 2 in the formulas (1a) to (1e), respectively.
  • Y 11 to Y 20 are the same as Y 1 to Y 10 in the formulas (1a) to (1e), respectively. At least one of X 11 to X 12 and Y 11 to Y 20 is bonded to the structure represented by the formulas (1a) to (1e). )
  • X 1 and X 2 and Y 1 to Y 10 in the above formulas (1a) to (1e) and X 11 and X 12 and Y 11 to Y 20 in the above formulas (a) to (e) may be the same as each other. May be different.
  • the compound according to one embodiment of the present invention is a compound represented by the formula (1a)
  • La is a structure represented by the formula (a)
  • Lb is a structure represented by the formula (b)
  • X 11 in X 11 of the formula (a) (b) may be identical to or different from each other.
  • La and Lb are bonded to any one of X 1 to X 2 and Y 1 to Y 10 , respectively.
  • one of X 1 and X 2 is N (R), and the other of X 1 and X 2 is an oxygen atom or a sulfur atom.
  • X 1 and X 2 are each independently an oxygen atom or a sulfur atom.
  • At least one of La and Lb is preferably a structure represented by any of the following formulas (f) to (j). [In the formulas (f) to (j), X 12 , R, and Y 11 to Y 20 are the same as the above formulas (a) to (e). ]
  • the compound according to one embodiment of the present invention is preferably a compound represented by the following formula (2).
  • X 1 , X 2 , Y 1 , Y 3 to Y 6 , Y 8 to Y 10 , La and Lb are the same as in the above formulas (1a) to (1e).
  • At least one of La and Lb is preferably any one of the above formulas (f) to (j).
  • both La and Lb are each independently represented by any one of formulas (f) to (j), and both Rs are single bonds, represented by formula (2a). It binds to the carbon atom at the * position.
  • X 1 , X 2 , Y 1 to Y 6 , Y 8 to Y 10 , La and Lb are the same as in the above formula (2)).
  • unsubstituted in “substituted or unsubstituted...” Means that a hydrogen atom is bonded.
  • the hydrogen atom includes isotopes having different numbers of neutrons, that is, light hydrogen (protium), deuterium (deuterium), and tritium.
  • the “ring-forming carbon” means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring, and the “ring-forming atom” includes a hetero ring (including a saturated ring, an unsaturated ring, and an aromatic ring). ) Is a carbon atom and a hetero atom.
  • Lc is a linking group of La and Lb, and X 1 to X 2 and Y 1 to Y 10 , and examples of the aromatic hydrocarbon ring group and the aromatic heterocyclic group of Lc include the specific examples described later. Corresponding residues are mentioned.
  • aromatic hydrocarbon ring group examples include phenyl group, tolyl group, xylyl group, naphthyl group, phenanthryl group, pyrenyl group, chrysenyl group, benzo [c] phenanthryl group, benzo [g] Examples include chrycenyl group, benzoanthryl group, triphenylenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, biphenyl group, terphenyl group, and fluoranthenyl group.
  • aryl groups include both fused and non-fused aryl groups.
  • aromatic heterocyclic group examples include pyrrolyl group, pyrazolyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, pyridyl group, triazinyl group, indolyl group, Isoindolyl group, imidazolyl group, benzimidazolyl group, indazolyl group, imidazo [1,2-a] pyridinyl group, furyl group, benzofuranyl group, isobenzofuranyl group, dibenzofuranyl group, azadibenzofuranyl group, thiophenyl group, Benzothiophenyl group, dibenzothiophenyl group, azadibenzothiophenyl group, quinolyl group, isoquinolyl group, quinoxalinyl group, quinazolinyl group, naphth
  • the azacarbazolyl group is, for example, an azacarbazolyl group containing 2 to 5 nitrogen atoms, and examples thereof include monovalent groups derived from the following azacarbazole.
  • the bond may be present on any nitrogen atom or any carbon atom, and any nitrogen atom or any carbon atom may be substituted.
  • alkyl group examples include linear, branched and cyclic alkyl groups.
  • linear and branched alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, and n-hexyl.
  • the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group, a 1-norbornyl group, and a 2-norbornyl group.
  • Preferred are a cyclopentyl group and a cyclohexyl group.
  • the compound according to one embodiment of the present invention can be used as a material for an organic EL element, can be preferably used as a material for a light-emitting layer of an organic EL element, and is particularly preferably used as a host material for a blue phosphorescent light-emitting layer. Can do. This is because the triplet energy of the compound according to one embodiment of the present invention is sufficiently large, so that even when a blue phosphorescent dopant material is used, the triplet energy of the phosphorescent dopant material is efficiently emitted. This is because it can be confined inside.
  • the compound according to one embodiment of the present invention can be used not only in a blue light emitting layer but also in a light emitting layer of light having a longer wavelength (such as green to red).
  • the material for an organic electroluminescence element according to one embodiment of the present invention includes the compound according to one embodiment of the present invention.
  • the organic EL device of the present invention has an organic thin film layer containing a light emitting layer between a cathode and an anode, and at least one of the organic thin film layers is a compound according to an embodiment of the present invention (or the present invention).
  • a material for an organic electroluminescence element according to an embodiment of the present invention Thereby, the organic EL element can be driven at a low voltage.
  • the organic thin film layer include, but are not limited to, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a space layer, and a barrier layer.
  • FIG. 1 is a schematic diagram showing a layer configuration of an embodiment of an organic EL element according to an embodiment of the present invention.
  • the organic EL element 1 has a configuration in which an anode 20, a hole transport zone 30, a light emitting layer 40, an electron transport zone 50, and a cathode 60 are laminated on a substrate 10 in this order.
  • the hole transport zone 30 refers to a layer sandwiched between the anode 20 and the light emitting layer 40 and means, for example, a hole transport layer, a hole injection layer, an electron barrier layer, or the like.
  • the electron transport zone 50 refers to a layer sandwiched between the cathode 60 and the light emitting layer 40 and means, for example, an electron transport layer, an electron injection layer, a hole barrier layer, or the like.
  • the barrier layer can confine electrons and holes in the light emitting layer 40 and increase the probability of exciton generation in the light emitting layer 40. These need not be formed, but preferably one or more layers are formed.
  • the organic thin film layer is each organic layer provided in the hole transport zone 30, each light emitting layer 40, and each organic layer provided in the electron transport zone 50.
  • the light emitting layer containing the compound according to one embodiment of the present invention preferably contains a phosphorescent dopant (phosphorescent material).
  • phosphorescent dopant include metal complex compounds, preferably a compound having a metal atom selected from Ir, Pt, Os, Au, Cu, Re and Ru and a ligand.
  • the ligand preferably has an ortho metal bond.
  • the phosphorescent dopant is preferably a compound containing a metal atom selected from Ir, Os and Pt in that the phosphorescent quantum yield is high and the external quantum efficiency of the light-emitting element can be further improved, and an iridium complex, It is more preferable that it is a metal complex such as an osmium complex and a platinum complex, among which an iridium complex and a platinum complex are more preferable, and an orthometalated iridium complex is most preferable.
  • the dopant may be a single type or a mixture of two or more types.
  • the addition concentration of the phosphorescent dopant in the light emitting layer is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass.
  • the light emitting layer may be a double host (also referred to as a host / cohost). Specifically, the carrier balance in the light emitting layer may be adjusted by combining an electron transporting host and a hole transporting host in the light emitting layer. Moreover, it is good also as a double dopant.
  • each dopant emits light by adding two or more dopant materials having a high quantum yield. For example, a yellow light emitting layer may be realized by co-evaporating a host, a red dopant, and a green dopant.
  • the light emitting layer may be a single layer or a laminated structure.
  • the recombination region can be concentrated on the light emitting layer interface by accumulating electrons and holes at the light emitting layer interface. Thereby, quantum efficiency can be improved.
  • the compound according to one embodiment of the present invention for a layer adjacent to the light emitting layer.
  • the layer adjacent to the light emitting layer 40 (the anode side adjacent layer) in the hole transport zone 30 of the element of FIG. 1 contains the compound according to one embodiment of the present invention, the layer functions as an electron barrier layer. And functions as an exciton blocking layer.
  • the layer (cathode side adjacent layer) adjacent to the light emitting layer 40 in the electron transport zone 50 contains the compound according to one embodiment of the present invention, the layer functions as a hole blocking layer or as an exciton blocking layer. Can function.
  • the barrier layer is a layer having a function of a carrier movement barrier or an exciton diffusion barrier.
  • the organic layer for preventing electrons from leaking from the light-emitting layer to the hole transport zone can be defined mainly as an electron barrier layer, and the organic layer for preventing holes from leaking from the light-emitting layer to the electron transport zone is defined as a hole barrier. Can be defined as a layer.
  • an exciton blocking layer is an organic layer for preventing triplet excitons generated in the light emitting layer from diffusing into a peripheral layer having triplet energy lower than that of the light emitting layer. May be defined.
  • the compound according to one embodiment of the present invention may be used for a layer adjacent to the light emitting layer 40 and further used for another organic thin film layer bonded to the adjacent layer.
  • the compound according to one embodiment of the present invention can be preferably used as a space layer material formed between the light-emitting layers.
  • the electron injection / transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
  • an aromatic heterocyclic compound containing at least one hetero atom in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, such as a pyridine ring. , Pyrimidine ring, triazine ring, benzimidazole ring, phenanthroline ring, quinazoline ring and the like.
  • an organic layer having semiconductivity may be formed by doping a donor material (n) and acceptor material (p).
  • a donor material (n) and acceptor material (p) A typical example of N doping is to dope a metal such as Li or Cs into an electron transporting material, and a typical example of P doping is F4TCNQ (2,3,5,6-Tetrafluoro- 7,7,8,8-tetracyanoquinodimethane) and the like (see, for example, Patent 3695714).
  • the electron injecting / transporting layer is appropriately selected with a film thickness of several nm to several ⁇ m. However, particularly when the film thickness is large, in order to avoid a voltage increase, 10 4 to 10 6.
  • the electron mobility is preferably at least 10 ⁇ 5 cm 2 / Vs or more when an electric field of V / cm is applied.
  • the hole injection / transport layer is a layer that assists hole injection into the light emitting layer and transports it to the light emitting region, and has a high hole mobility and a small ionization energy of usually 5.6 eV or less.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material.
  • a cross-linkable material can be used as the material for the hole injection / transport layer.
  • a glass plate, a polymer plate or the like can be used as the substrate.
  • the glass plate include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfone, and polysulfone.
  • the anode is made of, for example, a conductive material, and a conductive material having a work function larger than 4 eV is suitable.
  • the conductive material include carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, and their alloys, ITO substrate, tin oxide used for NESA substrate, indium oxide, and the like.
  • examples thereof include metal oxides and organic conductive resins such as polythiophene and polypyrrole.
  • the anode may be formed with a layer structure of two or more layers if necessary.
  • the cathode is made of, for example, a conductive material, and a conductive material having a work function smaller than 4 eV is suitable.
  • the conductive material include, but are not limited to, magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and alloys thereof.
  • the alloy include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto.
  • the ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio.
  • the cathode may be formed with a layer structure of two or more layers, and the cathode can be produced by forming a thin film from the conductive material by a method such as vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is preferably greater than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200 nm.
  • each layer of the organic EL device of the present invention a known method such as a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, dipping, or flow coating is applied. be able to.
  • a dry film forming method such as vacuum deposition, sputtering, plasma, or ion plating
  • a wet film forming method such as spin coating, dipping, or flow coating
  • the film thickness of each layer is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
  • Example 1 Compound A was synthesized by the following method. (1) Synthesis of intermediate (1-1) 70 g (363 mmol) of 1,3-difluoro-2-bromobenzene and 11.8 g (72.6 mmol) of iron chloride were added to 350 ml of chloroform and stirred at 0 ° C. Next, 62.7 g (399 mmol) of bromine was added dropwise and stirred for 4 hours. After adding 1 L of water to the reaction solution to separate the organic phase, the organic phase was washed with an aqueous sodium hydroxide solution, and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in heptane and purified by silica gel column chromatography (developing solvent: only heptane) to obtain 89.1 g (yield 90%) of the target intermediate (1-1). .
  • Example 2 Compound B was synthesized by the following method. (1) Synthesis of intermediate (2-1) Dibenzothiophene-4-boronic acid 12.9 g (56.6 mmol), 2-nitrobromobenzene 12.6 g (62.2 mmol), Pd (PPh 3 ) 4 1.3 g (1.13 mmol), 2M Na 2 CO 3 aqueous solution 85 ml was added to 260 ml of 1,2-dimethoxyethane (DME), and the mixture was stirred for 24 hours under heating and refluxing conditions in an argon atmosphere. After returning to room temperature, 500 ml of toluene was added to separate the organic phase, and then the solvent was distilled off under reduced pressure.
  • DME 1,2-dimethoxyethane
  • Example 3 A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode (manufactured by Geomatic) was subjected to ultrasonic cleaning for 5 minutes in isopropyl alcohol, and further subjected to UV (Ultraviolet) ozone cleaning for 30 minutes. .
  • the glass substrate with the ITO electrode line after cleaning is attached to the substrate holder of the vacuum deposition apparatus, and the following compound (HI1) is first thickened to cover the ITO electrode line on the surface on which the ITO electrode line is formed. Then, the following compound (HT1) was vapor-deposited by resistance heating at a thickness of 60 nm, and thin films were sequentially formed.
  • the film formation rate was 1 ⁇ / s. These thin films function as a hole injection layer and a hole transport layer, respectively.
  • the compound A produced in Example 1 as a host material and the compound (D1) which is a phosphorescent material were simultaneously deposited by resistance heating to form a thin film having a thickness of 40 nm.
  • the compound (D1) was deposited so as to have a mass ratio of 20% with respect to the total mass of the compound A and the compound (D1).
  • This thin film functions as a phosphorescent light emitting layer.
  • a thin film having a thickness of 5 nm was formed on this phosphorescent layer by resistance heating vapor deposition of the compound (HBL1).
  • This thin film functions as a hole blocking layer.
  • the following compound (ET1) was deposited by resistance heating vapor deposition on this barrier layer to form a thin film having a thickness of 25 nm.
  • This film functions as an electron injection layer.
  • LiF having a film thickness of 1.0 nm was deposited on the electron injection layer.
  • metal aluminum was vapor-deposited on the LiF film to form a metal cathode having a thickness of 80 nm, thereby manufacturing an organic EL element.
  • the organic EL device obtained above was caused to emit light by direct current drive, the luminance and current density were measured, and the voltage and luminous efficiency (external quantum efficiency) at a current density of 1 mA / cm 2 were determined.
  • the evaluation results of these light emitting performances are shown in Table 1.
  • Example 4 An organic EL device was produced and evaluated in the same manner as in Example 3 except that Compound B was used instead of Compound A. The results are shown in Table 1.
  • Comparative Example 1 An organic EL device was produced and evaluated in the same manner as in Example 3 except that the following comparative compound 1 was used instead of the compound A. The results are shown in Table 1.
  • Example 5 Except that compound (H1) was used as a host material instead of compound A to form a phosphorescent light emitting layer, and compound A was used instead of compound (HBL1) to form a hole blocking layer, Example 3 Similarly, an organic EL device was produced.
  • the organic EL device obtained above was caused to emit light by direct current drive, the luminance and current density were measured, and the voltage and luminous efficiency (external quantum efficiency) at a current density of 1 mA / cm 2 were determined. Furthermore, the brightness
  • Example 6 An organic EL device was produced and evaluated in the same manner as in Example 5 except that the hole blocking layer was formed using Compound B instead of Compound A. The results are shown in Table 2.
  • Comparative Example 2 An organic EL device was produced and evaluated in the same manner as in Example 5 except that the hole blocking layer was formed using Comparative Compound 1 instead of Compound A. The results are shown in Table 2.
  • the triplet energy of the compounds used in the examples was measured by the following method. The results are shown in Table 3.
  • the phosphorescence measurement sample placed in the quartz cell was cooled to 77 (K), and the phosphorescence measurement sample was irradiated with excitation light, and the phosphorescence intensity was measured while changing the wavelength.
  • E T triplet energy
  • the glass transition point (Tg, ° C.) of the compound used in the examples was measured. The results are shown in Table 4.
  • the glass transition point of the compound was measured using a commercially available differential thermal scanning calorimeter (PYRIS Diamond DSC, manufactured by Perkin Elmer).
  • the specific heat change point was determined as the glass transition point from the specific heat change curve obtained when heated at a temperature elevation rate of 10 ° C./min in a nitrogen stream.
  • the compound of the present invention since the compound of the present invention has a structure in which polycyclic heteroaromatic rings having high triplet energy and high planarity are directly connected to each other, low voltage and high efficiency are obtained. It is considered that a simple organic EL element can be produced. Further, from the results of Table 4, it is clear that the compound has a high glass transition point and excellent thermal stability, and is a compound suitable for producing an organic EL device which requires a heat load.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

同一分子内に下記式(1)で表わされる構造を2以上含み、前記式(1)で表わされる構造の少なくとも2つが単結合で互いに直接結合している構造を含む化合物。

Description

化合物、及びそれを用いた有機エレクトロルミネッセンス素子
 本発明は、化合物、及びそれを用いた有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス(EL)素子には、蛍光型及び燐光型があり、それぞれの発光メカニズムに応じ、最適な素子設計が検討されている。燐光型の有機EL素子については、その発光特性から、蛍光素子技術の単純な転用では高性能な素子が得られないことが知られている。その理由は、一般的に以下のように考えられている。
 燐光発光は、三重項励起子を利用した発光であるため、発光層に用いる化合物のエネルギーギャップが大きい必要がある。これは、ある化合物のエネルギーギャップ(以下、一重項エネルギーともいう。)の値は、通常、その化合物の三重項エネルギー(本発明では、最低励起三重項状態と基底状態とのエネルギー差をいう。)の値よりも大きいためである。
 燐光発光性ドーパント材料の三重項エネルギーを効率的に発光層内に閉じ込めるためには、まず、燐光発光性ドーパント材料の三重項エネルギーよりも大きい三重項エネルギーのホスト材料を発光層に用いなければならない。
 有機EL素子の駆動電圧を低減するためには、電荷注入性もしくは電荷輸送性に優れる材料を用いる必要がある。しかし、このように電荷注入性、電荷輸送性に優れる材料を用いる場合、駆動電圧が低減する代わりに、発光層内の電荷バランスが悪化し、素子の短寿命化に繋がるケースがある。即ち素子の寿命を維持した上で、駆動電圧を低減する電荷輸送材料が必要となる。
 以上のような理由から、燐光型の有機EL素子の高性能化には、蛍光型の有機EL素子と異なる材料選択及び素子設計が必要になっている。
 材料研究は鋭意行われており、いくつかの報告がなされている。
 特許文献1は、有機EL素子用材料として多環系化合物を開示し、具体的には多環系化合物が連結基を介して結合する化合物を開示する。
 また、特許文献2は、有機EL素子用材料として縮環構造でない芳香族炭化水素基等を連結基として、インドロカルバゾール骨格を連結する化合物を開示する。
WO2009/148016号パンフレット WO2007/063754号パンフレット
 本発明の目的は、有機EL素子の低電圧化及び高効率化に寄与できる化合物を提供することである。
 本発明の一形態によれば、以下の化合物が提供される。
 同一分子内に下記式(1)で表わされる構造を2以上含み、前記式(1)で表わされる構造の少なくとも2つが単結合で互いに直接結合している構造を含む化合物。
Figure JPOXMLDOC01-appb-C000001
[式(1)中、
 Xaは、O、S、N(R)、又はC(Ra)(Rb)である
 Xb及びXcは、それぞれ独立に、O、S、N(R)、C(R1a)(R1b)、又は単結合である。但し、Xb及びXcの少なくとも一方は単結合である。
 Rは、単結合、水素原子、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
 R1a及びR1bは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
 但し、Xa及びXb、又はXa及びXcが、共にC(R1a)(R1b)であることはなく、Xa及びXb、又はXa及びXcが、共にN(R)であることはない。
 Z、Z及びZは、それぞれ独立に、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
 但し、2以上の式(1)で表される構造は、それぞれ同一又は異なっていてもよい。]
 本発明によれば、有機EL素子の低電圧化及び高効率化に寄与できる化合物が提供できる。
本発明の一形態に係る有機EL素子の一実施形態の層構成を示す概略図である。
 本発明の一形態に係る化合物は、同一分子内に下記式(1)で表わされる構造を2以上含み、式(1)で表わされる構造の少なくとも2つが単結合で互いに直接結合している構造を含む。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、
 Xaは、O、S、NR、又はC(R1a)(R1b)である
 Xb及びXcは、それぞれ独立に、O、S、NR、C(R1a)(R1b)、又は単結合である。但し、Xb及びXcの少なくとも一方は単結合である。
 Rは、単結合、水素原子、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
 R1a及びR1bは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
 但し、Xa及びXb、又はXa及びXcが、共にC(R1a)(R1b)であることはなく、Xa及びXb、又はXa及びXcが、共にN(R)であることはない。
 Z、Z及びZは、それぞれ独立に、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
 但し、2以上の式(1)で表される構造は、それぞれ同一又は異なっていてもよい。]
 本発明の一形態に係る化合物は、平面性が高い多環系ヘテロ芳香族環同士が直接連結した構造を有することで有機EL素子用材料として使用した場合に低電圧駆動が期待できる。
 また、本発明の一形態に係る化合物は、ワイドギャップな多環系ヘテロ芳香族環同士が芳香族環の連結基を介することなく、直接連結した構造を有することで、三重項エネルギーを高いレベルで保つことができ、短波長の燐光素子に用いる材料として適した化合物である。
 本発明の一形態に係る化合物は、好ましくは下記式(1a)~(1e)のいずれかで表わされる化合物である。
Figure JPOXMLDOC01-appb-C000003
(式(1a)、(1b)、(1c)、(1d)及び(1e)中、
 La及びLbは、それぞれ独立に、下記式(a)~(e)で表わされる構造のいずれかである。
 X及びXは、それぞれ独立に、O、S、N(R)、又はC(R1a)(R1b)である。
 Y~Y10は、それぞれ独立に、C(R1)又は窒素原子である。
 R及びR1は、それぞれ独立に、単結合、水素原子、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
 隣接する炭素原子に結合するR1は、互いに環を形成してもよい。
 R1a及びR1bは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
 La及びLbの両方が、X~X及びY~Y10のいずれかとそれぞれ結合する、又はLa及びLbのいずれか一方がX~X及びY~Y10のいずれかと結合し、La及びLbの他方が、Lcと結合し、前記LcがX~X及びY~Y10のいずれかと結合する。
 Lcは置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
 X~X及びY~Y10のいずれか2つは、Rが単結合であるN(R)、及びR1が単結合であるC(R1)から選択されるいずれかであり、当該単結合がそれぞれLa、Lb及びLcのいずれか2つとの結合手となる。
 但し、X及びXが、共にC(R1a)(R1b)であることはなく、X及びXが、共にN(R)であることはない。)
Figure JPOXMLDOC01-appb-C000004
(式(a)、(b)、(c)、(d)及び(e)中、
 X11及びX12は、前記式(1a)~(1e)のX及びXとそれぞれ同様である。
 Y11~Y20は、前記式(1a)~(1e)のY~Y10とそれぞれ同様である。
 X11~X12及びY11~Y20の少なくとも1つは前記式(1a)~(1e)で表わされる構造と結合する。)
 上記式(1a)~(1e)のX及びX並びにY~Y10と、上記式(a)~(e)のX11及びX12並びにY11~Y20は、それぞれ互いに同じでも異なってもよい。
 例えば本発明の一形態に係る化合物が式(1a)で表わされる化合物であって、Laが式(a)で表わされる構造であり、Lbが式(b)で表わされる構造である場合、式(1a)のX、式(a)のX11、及び式(b)のX11は、それぞれ同じでも異なってもよい。
 上記式(1a)~(1e)において、好ましくはLa及びLbが、それぞれX~X及びY~Y10のいずれかと結合する。
 上記式(1a)~(1e)において、好ましくはX及びXの一方がN(R)であり、X及びXの他方が酸素原子又は硫黄原子である。
 上記式(1a)~(1e)において、好ましくはX及びXが、それぞれ独立に酸素原子又は硫黄原子である。
 式(1a)~(1e)において、好ましくはLa及びLbの少なくとも一方が、下記式(f)~(j)の何れかで表される構造である。
Figure JPOXMLDOC01-appb-C000005
[式(f)~(j)中、X12、R、Y11~Y20は、前記式(a)~(e)と同様である。]
 本発明の一形態に係る化合物は、好ましくは下記式(2)で表わされる化合物である。
Figure JPOXMLDOC01-appb-C000006
[式(2)中、X、X、Y、Y~Y、Y~Y10、La及びLbは、上記式(1a)~(1e)と同様である。]
 上記式(2)において、好ましくはLa及びLbの少なくとも一方が、上記式(f)~(j)のいずれかである。
 上記式(2)において、好ましくはLa及びLbが共に、それぞれ独立に、式(f)~(j)の何れかで表され、そのRが共に単結合であり、式(2a)で表される*の部位の炭素原子と結合する。
Figure JPOXMLDOC01-appb-C000007
(式(2a)中、X、X、Y~Y、Y~Y10、La及びLbは、上記式(2)と同様である)
 以下、上述した式(1)等の各基について説明する。
 尚、本発明において、「置換もしくは無置換の・・・・」の「無置換」とは、水素原子が結合していることを意味する。また、水素原子とは、中性子数が異なる同位体、即ち、軽水素(protium)、重水素(deuterium)、三重水素(tritium)を包含する。
 また、「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味し、「環形成原子」とはヘテロ環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 加えて、Lcは、La及びLb、並びにX~X及びY~Y10の連結基であり、Lcの芳香族炭化水素環基及び芳香族複素環基としては、後述する具体例の対応する残基が挙げられる。
 芳香族炭化水素環基(アリ-ル基)の具体例としては、フェニル基、トリル基、キシリル基、ナフチル基、フェナントリル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、ベンゾアントリル基、トリフェニレニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、ビフェニル基、ターフェニル基、フルオランテニル基等が挙げられ、好ましくはフェニル基、ビフェニル基、ナフチル基である。
 置換基を有する芳香族炭化水素基としては、トリル基、キシリル基、9,9-ジメチルフルオレニル基等が挙げられる。
 具体例が示すように、アリール基は、縮合アリール基及び非縮合アリール基の両方を含む。
 芳香族複素環基(ヘテロアリール基、ヘテロ芳香族環基、複素環基)の具体例としては、ピロリル基、ピラゾリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、ピリジル基、トリアジニル基、インドリル基、イソインドリル基、イミダゾリル基、ベンズイミダゾリル基、インダゾリル基、イミダゾ[1,2-a]ピリジニル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、ジベンゾフラニル基、アザジベンゾフラニル基、チオフェニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、アザジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、キナゾリニル基、ナフチリジニル基、カルバゾリル基、アザカルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、ベンズオキサゾリル基、チエニル基、チアゾリル基、チアジアゾリル基、ベンズチアゾリル基、トリアゾリル基、テトラゾリル基等が挙げられ、好ましくは、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、である。
 上記アザカルバゾリル基は、例えば2~5個の窒素原子を含むアザカルバゾリル基であり、下記アザカルバゾールから誘導される1価の基が挙げられる。結合手はいずれの窒素原子、いずれの炭素原子上に存在していてもよく、また、いずれの窒素原子、いずれの炭素原子も置換されていてもよい。
 アルキル基としては、直鎖状、分岐状及び環状のアルキル基がある。直鎖状及び分岐状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられ、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基が挙げられ、さらに好ましくはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基である。
 シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、1-ノルボルニル基、2-ノルボルニル基等が挙げられる。好ましくはシクロペンチル基、シクロヘキシル基である。
 以下、本発明の一形態に係る化合物の具体例を示す。但し、本発明の一形態に係る化合物の具体例には限定されない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 本発明の一形態に係る化合物は、有機EL素子の材料として用いることができ、有機EL素子の発光層の材料として好適に用いることができ、青色燐光発光層のホスト材料として特に好適に用いることができる。これは、本発明の一形態に係る化合物は、三重項エネルギーが十分に大きいため、青色の燐光発光性ドーパント材料を使用しても、燐光発光性ドーパント材料の三重項エネルギーを効率的に発光層内に閉じ込めることができるからである。
 また、本発明の一形態に係る化合物は、青色発光層に限らず、より長波長の光(緑~赤色等)の発光層にも使用できる。
 本発明の一形態に係る有機エレクトロルミネッセンス素子用材料は、上記本発明の一形態に係る化合物を含む。
[有機EL素子]
 本発明の有機EL素子は、陰極と陽極の間に発光層を含有する有機薄膜層を有し、この有機薄膜層のうちの少なくとも1層が本発明の一形態に係る化合物(又は、本発明の一形態に係る有機エレクトロルミネッセンス素子用材料)を含む。これにより、有機EL素子の低電圧駆動が可能となる。有機薄膜層の例としては、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、スペース層、及び障壁層等が挙げられるが、これらに限定されるものではない。
 図1は、本発明の一形態に係る有機EL素子の一実施形態の層構成を示す概略図である。
 有機EL素子1は、基板10上に、陽極20、正孔輸送帯域30、発光層40、電子輸送帯域50及び陰極60を、この順で積層した構成を有する。正孔輸送帯域30は、陽極20と発光層40に挟まれた層をいい、例えば正孔輸送層、正孔注入層、電子障壁層等を意味する。同様に、電子輸送帯域50は、陰極60と発光層40に挟まれた層をいい、例えば電子輸送層、電子注入層、正孔障壁層等を意味する。障壁層は、電子や正孔を発光層40に閉じ込めて、発光層40における励起子の生成確率を高めることができる。これらは形成しなくともよいが、好ましくは1層以上形成する。この素子において有機薄膜層は、正孔輸送帯域30に設けられる各有機層、発光層40及び電子輸送帯域50に設けられる各有機層である。
 以下、各層の材料等について説明するが、各層の材料は下記材料に限定されず、公知の材料等を使用できる。
[発光層]
 本発明の一形態に係る化合物を含む発光層は、好ましくは燐光ドーパント(燐光発光性材料)を含有する。
 上記燐光ドーパントとしては、金属錯体化合物が挙げられ、好ましくはIr,Pt,Os,Au,Cu,Re及びRuから選択される金属原子と、配位子とを有する化合物である。配位子は、オルトメタル結合を有すると好ましい。
 燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、燐光ドーパントは、Ir,Os及びPtから選ばれる金属原子を含有する化合物であると好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体であるとさらに好ましく、中でもイリジウム錯体及び白金錯体がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。
 ドーパントは、1種単独でも、2種以上の混合物でもよい。
 発光層における燐光ドーパントの添加濃度は特に限定されるものではないが、好ましくは0.1~30質量%、より好ましくは0.1~20質量%である
 発光層は、ダブルホスト(ホスト・コホストともいう)としてもよい。具体的に、発光層において電子輸送性のホストと正孔輸送性のホストを組み合わせることで、発光層内のキャリアバランスを調整してもよい。
 また、ダブルドーパントとしてもよい。発光層において、量子収率の高いドーパント材料を2種類以上入れることによって、それぞれのドーパントが発光する。例えば、ホストと赤色ドーパント、緑色のドーパントを共蒸着することによって、黄色の発光層を実現することがある。
 発光層は単層でもよく、また、積層構造でもよい。発光層を積層させると、発光層界面に電子と正孔を蓄積させることによって再結合領域を発光層界面に集中させることができる。これによって、量子効率を向上させることができる。
[阻止層]
 発光層に隣接する層に本発明の一形態に係る化合物を使用することも好ましい。
 例えば、図1の素子の正孔輸送帯域30のうち発光層40に隣接する層(陽極側隣接層)が本発明の一形態に係る化合物を含有する場合、該層は電子障壁層としての機能や励起子阻止層としての機能を有する。
 電子輸送帯域50のうち発光層40に隣接する層(陰極側隣接層)が本発明の一形態に係る化合物を含有する場合、該層は正孔障壁層としての機能や励起子阻止層としての機能できる。
 上記障壁層(阻止層)とは、キャリアの移動障壁、又は励起子の拡散障壁の機能を有する層である。発光層から正孔輸送帯域へ電子が漏れることを防ぐための有機層を主に電子障壁層と定義でき、発光層から電子輸送帯域へ正孔が漏れることを防ぐための有機層を正孔障壁層と定義できる。また、発光層で生成された三重項励起子が、三重項エネルギーが発光層よりも低い準位を有する周辺層へ拡散することを防止するための有機層を励起子阻止層(トリプレット障壁層)と定義する場合がある。
 また、本発明の一形態に係る化合物を発光層40に隣接する層に用い,かつ更にその隣接する層に接合する他の有機薄膜層に用いてもよい。
 加えて、発光層を2層以上形成する場合、本発明の一形態に係る化合物は、発光層間に形成するスペース層材料としても好適に用いることができる。
[電子注入層及び電子輸送層]
 電子注入・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きい層である。
 電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましく、例えば、ピリジン環、ピリミジン環、トリアジン環、ベンズイミダゾール環、フェナントロリン環、キナゾリン環等を骨格に含む化合物が挙げられる。
 その他、ドナー性材料のドーピング(n)、アクセプター材料のドーピング(p)により、半導体性を備えた有機層を形成してもよい。Nドーピングの代表例は、電子輸送性材料にLiやCs等の金属をドーピングさせるものであり、Pドーピングの代表例は、正孔輸送性材料にF4TCNQ(2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane)等のアクセプター材をドープするものである(例えば、特許3695714参照)。
 有機EL素子は発光した光が電極(例えば陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子注入・輸送層は数nm~数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、10~10V/cmの電界印加時に電子移動度が少なくとも10-5cm/Vs以上であることが好ましい。
[正孔注入層及び正孔輸送層(正孔注入・輸送層)]
 正孔注入・輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.6eV以下と小さい層である。
 また、p型Si、p型SiC等の無機化合物も正孔注入材料として使用することができる。
 正孔注入・輸送層の材料には架橋型材料を用いることができる。
[基板]
 基板としてはガラス板、ポリマー板等を用いることができる。
 ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフォン、ポリサルフォン等を挙げることができる。
[陽極]
 陽極は例えば導電性材料からなり、4eVより大きな仕事関数を有する導電性材料が適している。
 上記導電性材料としては、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が挙げられる。
 陽極は、必要があれば2層以上の層構成により形成されていてもよい。
[陰極]
 陰極は例えば導電性材料からなり、4eVより小さな仕事関数を有する導電性材料が適している。
 上記導電性材料としては、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びこれらの合金が挙げられるが、これらに限定されるものではない。
 また、上記合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。
 陰極は、必要があれば2層以上の層構成により形成されていてもよく、陰極は上記導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
 発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μmであり、好ましくは50~200nmである。
 本発明の有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法等の公知の方法を適用することができる。
 各層の膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。
[ヘテロ縮合環連結化合物の合成]
実施例1
 下記方法で化合物Aを合成した。
(1)中間体(1-1)の合成
Figure JPOXMLDOC01-appb-C000020
 1,3-ジフルオロ-2-ブロモベンゼン70g(363mmol)、塩化鉄11.8g(72.6mmol)をクロロホルム350mlに加え、0℃で撹拌した。次いで、臭素62.7g(399mmol)を滴下し、4時間撹拌した。反応溶液に水1Lを加えて有機相を分取した後、有機相を水酸化ナトリウム水溶液で洗浄し、溶媒を減圧下で留去した。得られた残渣をヘプタンに溶解し、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタンのみ)で精製することにより、目的物である中間体(1-1)を89.1g(収率90%)得た。
(2)中間体(1-2)の合成
Figure JPOXMLDOC01-appb-C000021
 アルゴン雰囲気下、中間体(1-1)89.1g(328mmol)、2-メトキシフェニルボロン酸109.6g(721mmol)、テトラキス(トリフェニルホスフィン)パラジウム[Pd(PPh]15.2g(13.1mmol)、2MNaCO水溶液990mlを1,2-ジメトキシエタン(DME)1.3Lに加えて、アルゴン雰囲気下、加熱還流条件で36時間撹拌した。室温に戻したのち、酢酸エチル1Lを加えて有機相を分取した後、溶媒を減圧下で留去した。得られた残渣をトルエンに溶解し、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製することにより、目的物である中間体(1-2)を98.8g(収率92%)得た。
(3)中間体(1-3)の合成
Figure JPOXMLDOC01-appb-C000022
 中間体(1-2)98.8g(303mmol)をN,N-ジメチルホルムアミド(DMF)500mlに加えた溶液に、DMF300mlに溶解したN-ブロモコハク酸イミド(NBS)113.2g(636mmol)を1時間かけて滴下した。室温で1時間撹拌した後、亜硫酸ナトリウム水溶液を反応液に加え、析出した固体を濾集した。この固体をメタノール、水で順次洗浄し、加熱したトルエンに溶解させた。この溶液を保温しながらシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製し、さらにヘプタンで懸濁洗浄することにより、目的物である中間体(1-3)を136.2g(収率92%)得た。
(4)中間体(1-4)の合成
Figure JPOXMLDOC01-appb-C000023
 アルゴン雰囲気下、中間体(1-3)70.3g(145mmol)をジクロロメタン400mlに加えた反応溶液を0℃で撹拌した。次いで、三臭化ホウ素80.0g(319mmol)のジクロロメタン溶液を滴下し、室温に戻してから、18時間撹拌した。再び、0℃に冷却してから、水300mlを加え、有機相を分取した。溶媒を減圧下で留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製することにより、目的物である中間体(1-4)を66.0g(収率99%)得た。
(5)中間体(1-5)の合成
Figure JPOXMLDOC01-appb-C000024
 アルゴン雰囲気下、中間体(1-4)10.0g(21.9mmol)、炭酸カリウム12.0g(87.7mmol)をN-メチルピロリドン(NMP)100mlに加え、180℃で15時間撹拌した。室温に戻して、水100mlを加え、析出した固体を濾集した。固体をキシレンに加熱溶解し、シリカゲル10gを加えてから、濾過した。濾液を濃縮し、析出した固体をキシレン溶媒で再結晶を繰り返して精製することにより、目的物である中間体(1-5)を4.1g(収率45%)得た。
(6)化合物Aの合成
Figure JPOXMLDOC01-appb-C000025
 アルゴン雰囲気下、中間体(1-5)2.5g(6.01mmol)、WO2009-148015公報に記載の方法に従って合成した中間体(A)3.9g(15.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)[Pd(dba)]0.22g(0.24mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボラート[t-BuP-HBF]0.28g(0.96mmol)、t-ブトキシナトリウム1.6g(16.6mmol)をキシレン50mlに加え、150℃で24時間撹拌した。トルエン800mlを加え、加熱溶解させたものを、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製した。溶媒を減圧下で留去して析出した固体をアセトンで洗浄を繰り返すことにより、3.9g(収率84%)の白色固体として化合物Aを得た。
 FD-MS分析の結果、化合物Aは、分子量768に対してm/e=768であった。
実施例2
 下記方法で化合物Bを合成した。
(1)中間体(2-1)の合成
Figure JPOXMLDOC01-appb-C000026
 ジベンゾチオフェン-4-ボロン酸12.9g(56.6mmol)、2-ニトロブロモベンゼン12.6g(62.2mmol)、Pd(PPh1.3g(1.13mmol)、2MNaCO水溶液85mlを1,2-ジメトキシエタン(DME)260mlに加えて、アルゴン雰囲気下、加熱還流条件で24時間撹拌した。室温に戻したのち、トルエン500mlを加えて有機相を分取した後、溶媒を減圧下で留去した。得られた残渣をトルエンに溶解し、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製し、さらにトルエン溶媒で再結晶を繰り返すことにより、目的物である中間体(2-1)を13.7g(収率80%)得た。
(2)中間体(2-2)の合成
Figure JPOXMLDOC01-appb-C000027
 中間体(2-1)13.7g(44.9mmol)、トリフェニルホスフィン29.4g(112mmol)をo-ジクロロベンゼン200mlに加えて、185℃で20時間撹拌した。溶媒を減圧下で留去して、メタノールを加えて析出した固体を濾集し、トルエンを加えて加熱懸濁洗浄することにより、目的物である中間体(2-2)を5.5g(収率45%)得た。
(3)化合物Bの合成
Figure JPOXMLDOC01-appb-C000028
 中間体(A)の代わりに中間体(2-2)を用いた他は、合成実施例1(6)と同様の方法により、化合物Bを合成した。
 FD-MS分析の結果、化合物Bは、分子量800に対してm/e=800であった。
[有機EL素子の作製及び評価]
実施例3
 25mm×75mm×1.1mmのITO透明電極付きガラス基板(ジオマティック社製)に、イソプロピルアルコール中での5分間の超音波洗浄を施し、さらに、30分間のUV(Ultraviolet)オゾン洗浄を施した。
 洗浄後のITO電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まずITO電極ラインが形成されている側の面上に、ITO電極ラインを覆うようにして下記化合物(HI1)を厚さ20nmで、次いで下記化合物(HT1)を厚さ60nmで抵抗加熱蒸着し、順次薄膜を成膜した。成膜レートは1Å/sとした。これらの薄膜は、それぞれ正孔注入層及び正孔輸送層として機能する。
 次に、正孔輸送層上に、ホスト材料として実施例1で製造した化合物Aと燐光発光材料である化合物(D1)とを同時に抵抗加熱蒸着して膜厚40nmの薄膜を成膜した。このとき、化合物(D1)を、化合物Aと化合物(D1)の総質量に対し質量比で20%になるように蒸着した。この薄膜は、燐光発光層として機能する。
 次に、この燐光発光層上に、化合物(HBL1)を抵抗加熱蒸着して膜厚5nmの薄膜を成膜した。この薄膜は正孔阻止層として機能する。
 次に、この障壁層上に、下記化合物(ET1)を抵抗加熱蒸着して膜厚25nmの薄膜を成膜した。この膜は電子注入層として機能する。
 次に、この電子注入層上に膜厚1.0nmのLiFを蒸着した。
 次に、このLiF膜上に金属アルミニウムを蒸着し、膜厚80nmの金属陰極を形成して有機EL素子を製造した。
 以下に、有機EL素子の作製で使用した化合物を示す。
Figure JPOXMLDOC01-appb-C000029
 上記で得られた有機EL素子を直流電流駆動により発光させ、輝度、電流密度を測定し、電流密度1mA/cmにおける電圧及び発光効率(外部量子効率)を求めた。これら発光性能の評価結果を表1に示す。
実施例4
 化合物Aの代わりに化合物Bを用いた他は実施例3と同様にして有機EL素子を製造し、評価した。結果を表1に示す。
比較例1
 化合物Aの代わりに下記比較化合物1を用いた他は実施例3と同様にして有機EL素子を製造し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-T000001
実施例5
 化合物Aの代わりにホスト材料として化合物(H1)を使用して燐光発光層を形成し、化合物(HBL1)の代わりに化合物Aを使用して正孔障壁層を形成した他は、実施例3と同様にして有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000031
 上記で得られた有機EL素子を直流電流駆動により発光させ、輝度、電流密度を測定し、電流密度1mA/cmにおける電圧及び発光効率(外部量子効率)を求めた。さらに初期輝度3,000cd/mにおける輝度70%寿命(輝度が70%まで低下する時間)を求めた。これら発光性能の評価結果を表2に示す。
実施例6
 化合物Aの代わりに化合物Bを用いて正孔障壁層を形成した他は実施例5と同様にして有機EL素子を製造し、評価した。結果を表2に示す。
比較例2
 化合物Aの代わりに比較化合物1を用いて正孔障壁層を形成した他は実施例5と同様にして有機EL素子を製造し、評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例に用いた化合物の三重項エネルギーを下記方法で測定した。結果を表3に示す。
 尚、上記三重項エネルギーは、市販の装置F-4500(日立社製)を用いて測定した。具体的には、各化合物をEPA溶媒(ジエチルエーテル:イソペンタン:エタノール=5:5:5(容積比)、各溶媒は分光用グレード)に溶解し(試料10μmol/リットル)、燐光測定用試料とした。石英セルへ入れた燐光測定用試料を77(K)に冷却し、励起光を燐光測定用試料に照射し、波長を変えながら燐光強度を測定した。
 三重項エネルギー(E)の換算式は以下の通りである。
 E(eV)=1239.85/λph
 式中、「λph」(単位:nm)は、縦軸に燐光強度、横軸に波長をとって、燐光スペクトルを表したときに、燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線とベースラインの交点の波長値を意味する。
Figure JPOXMLDOC01-appb-T000003
 実施例に用いた化合物のガラス転移点(Tg、℃)を測定した。結果を表4に示す。
 尚、化合物のガラス転移点は、市販の示差熱走査型熱量計(パーキンエルマー社製、PYRIS Diamond DSC)を用いて測定した。窒素気流中、昇温速度10℃/分の条件で加熱した場合に得られる比熱変化曲線から、比熱の変化点をガラス転移点として求めた。
Figure JPOXMLDOC01-appb-T000004
 表1~3の結果から、本発明の化合物は、高い三重項エネルギーを有しつつ、平面性が高い多環系ヘテロ芳香族環同士が直接連結した構造を有するために、低電圧・高効率な有機EL素子を作製することができると考えられる。また、表4の結果から、ガラス転移点が高く、熱安定性に優れた化合物であることが明らかであり、熱負荷のかかる有機EL素子作製において適した化合物である。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (18)

  1.  同一分子内に下記式(1)で表わされる構造を2以上含み、前記式(1)で表わされる構造の少なくとも2つが単結合で互いに直接結合している構造を含む化合物。
    Figure JPOXMLDOC01-appb-C000032
    [式(1)中、
     Xaは、O、S、N(R)、又はC(Ra)(Rb)である
     Xb及びXcは、それぞれ独立に、O、S、N(R)、C(R1a)(R1b)、又は単結合である。但し、Xb及びXcの少なくとも一方は単結合である。
     Rは、単結合、水素原子、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
     R1a及びR1bは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
     但し、Xa及びXb、又はXa及びXcが、共にC(R1a)(R1b)であることはなく、Xa及びXb、又はXa及びXcが、共にN(R)であることはない。
     Z、Z及びZは、それぞれ独立に、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
     但し、2以上の式(1)で表される構造は、それぞれ同一又は異なっていてもよい。]
  2.  下記式(1a)~(1e)のいずれかで表わされる請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000033
    (式(1a)、(1b)、(1c)、(1d)及び(1e)中、
     La及びLbは、それぞれ独立に、下記式(a)~(e)で表わされる構造のいずれかである。
     X及びXは、それぞれ独立に、O、S、N(R)、又はC(R1a)(R1b)である。
     Y~Y10は、それぞれ独立に、C(R1)又は窒素原子である。
     R及びR1は、それぞれ独立に、単結合、水素原子、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
     隣接する炭素原子に結合するR1は、互いに環を形成してもよい。
     R1a及びR1bは、それぞれ独立に、水素原子、置換若しくは無置換の炭素数1~30のアルキル基、置換若しくは無置換の環形成炭素数3~30のシクロアルキル基、置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
     La及びLbの両方が、X~X及びY~Y10のいずれかとそれぞれ結合する、又はLa及びLbのいずれか一方がX~X及びY~Y10のいずれかと結合し、La及びLbの他方が、Lcと結合し、前記LcがX~X及びY~Y10のいずれかと結合する。
     Lcは置換若しくは無置換の環形成炭素数6~30の芳香族炭化水素環基、又は置換若しくは無置換の環形成原子数3~30の芳香族複素環基である。
     但し、X及びXが、共にC(R1a)(R1b)であることはなく、X及びXが、共にNRであることはない。)
    Figure JPOXMLDOC01-appb-C000034
    (式(a)、(b)、(c)、(d)及び(e)中、
     X11及びX12は、前記式(1a)~(1e)のX及びXとそれぞれ同様である。
     Y11~Y20は、前記式(1a)~(1e)のとY~Y10それぞれ同様である。
     X11~X12及びY11~Y20のいずれか1つは前記式(1a)~(1e)で表わされる構造と結合する。)
  3.  La及びLbが、それぞれX~X及びY~Y10のいずれかと結合する請求項2に記載の化合物。
  4.  前記式(1a)~(1e)におけるX及びXの一方がN(R)であり、X及びXの他方が酸素原子又は硫黄原子である請求項2又は3に記載の化合物。
  5.  前記式(1a)~(1e)におけるX及びXが、それぞれ独立に酸素原子又は硫黄原子である請求項2又は3に記載の化合物。
  6.  La及びLbの少なくとも一方が、下記式(f)~(j)の何れかで表される請求項2~5のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000035
    [式(f)~(j)中、X12、R、Y11~Y20は、前記式(1a)~(1e)と同様である。]
  7.  下記式(2)で表わされる請求項2~6のいずれかに記載の化合物。
    Figure JPOXMLDOC01-appb-C000036
    [式(2)中、X、X、Y、Y~Y、Y~Y10、La及びLbは、前記式(1a)~(1e)と同様である。]
  8.  前記式(2)において、La及びLbの少なくとも一方が、前記式(f)~(j)のいずれかである請求項7に記載の化合物。
  9.  前記式(2)において、La及びLbが、それぞれ独立に、前記式(f)~(j)の何れかで表され、前記式(f)~(j)のRが共に単結合であり、式(2a)で表される*の部位の炭素原子と結合する請求項7又は8に記載の化合物。
    Figure JPOXMLDOC01-appb-C000037
    (式(2a)中、X、X、Y~Y、Y~Y10、La及びLbは、前記式(2)と同様である)
  10.  請求項1~9のいずれかに記載の化合物を含む有機エレクトロルミネッセンス素子用材料。
  11.  陰極と陽極との間に発光層を含む1以上の有機薄膜層を有し、前記有機薄膜層の少なくとも1層が、請求項10に記載の有機エレクトロルミネッセンス素子用材料を含有する有機エレクトロルミネッセンス素子。
  12.  前記発光層が前記有機エレクトロルミネッセンス素子用材料を含む請求項11に記載の有機エレクトロルミネッセンス素子。
  13.  前記有機薄膜層が、1以上の発光層を含み、
     前記発光層の少なくとも一層が、請求項10に記載の有機エレクトロルミネッセンス素子用材料と燐光発光性材料とを含む請求項11又は12に記載の有機エレクトロルミネッセンス素子。
  14.  前記燐光発光性材料が金属錯体化合物を含有し、
     前記金属錯体化合物が、Ir、Pt、Os、Au、Cu、Re及びRuからなる群より選択される金属原子と配位子とを有する請求項13に記載の有機エレクトロルミネッセンス素子。
  15.  発光層と陽極との間に正孔輸送帯域を有し、該正孔輸送帯域が1以上の有機薄膜層を有し、該有機薄膜層の少なくとも一層が請求項10に記載の有機エレクトロルミネッセンス素子用材料を含む有機エレクトロルミネッセンス素子。
  16.  前記正孔輸送帯域のうち前記発光層に隣接する有機薄膜層が、前記有機エレクトロルミネッセンス素子用材料を含む請求項15に記載の有機エレクトロルミネッセンス素子。
  17.  発光層と陰極との間に電子輸送帯域を有し、該電子輸送帯域が1以上の有機薄膜層を有し、該有機薄膜層の少なくとも一層が請求項10に記載の有機エレクトロルミネッセンス素子用材料を含む有機エレクトロルミネッセンス素子。
  18.  前記電子輸送帯域のうち前記発光層に隣接する有機薄膜層が、前記有機エレクトロルミネッセンス素子用材料を含む請求項17に記載の有機エレクトロルミネッセンス素子。
     
PCT/JP2014/003589 2013-07-11 2014-07-07 化合物、及びそれを用いた有機エレクトロルミネッセンス素子 WO2015004896A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/903,746 US10505123B2 (en) 2013-07-11 2014-07-07 Compound and organic electroluminescent device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013145586A JP2016179943A (ja) 2013-07-11 2013-07-11 化合物、及びそれを用いた有機エレクトロルミネッセンス素子
JP2013-145586 2013-07-11

Publications (1)

Publication Number Publication Date
WO2015004896A1 true WO2015004896A1 (ja) 2015-01-15

Family

ID=52279601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003589 WO2015004896A1 (ja) 2013-07-11 2014-07-07 化合物、及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (3)

Country Link
US (1) US10505123B2 (ja)
JP (1) JP2016179943A (ja)
WO (1) WO2015004896A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133097A1 (ja) * 2015-02-16 2016-08-25 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110903295A (zh) * 2018-09-18 2020-03-24 江苏三月光电科技有限公司 一种以苯并呋喃衍生物为核心的有机化合物及其应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148062A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2009148016A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2010136109A1 (de) * 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010143434A1 (ja) * 2009-06-12 2010-12-16 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2011025282A2 (ko) * 2009-08-26 2011-03-03 주식회사 두산 신규한 유기 화합물 및 이를 이용한 유기 발광 소자
KR20110066766A (ko) * 2009-12-11 2011-06-17 덕산하이메탈(주) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011149284A2 (ko) * 2010-05-26 2011-12-01 덕산하이메탈(주) 헤테로 원자를 포함하는 카바졸과 플루오렌이 융합된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2012013271A1 (de) * 2010-07-30 2012-02-02 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2012136295A1 (de) * 2011-04-05 2012-10-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2013056776A1 (de) * 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2013157886A1 (en) * 2012-04-19 2013-10-24 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2013179645A1 (ja) * 2012-05-30 2013-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2014106524A2 (de) * 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10058578C2 (de) 2000-11-20 2002-11-28 Univ Dresden Tech Lichtemittierendes Bauelement mit organischen Schichten
KR101082258B1 (ko) 2005-12-01 2011-11-09 신닛테츠가가쿠 가부시키가이샤 유기 전계 발광소자용 화합물 및 유기 전계 발광소자
US8057919B2 (en) 2008-06-05 2011-11-15 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device using the same
US8318323B2 (en) * 2008-06-05 2012-11-27 Idemitsu Kosan Co., Ltd. Polycyclic compounds and organic electroluminescence device employing the same
KR20120052879A (ko) * 2010-11-16 2012-05-24 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
DE102010056151A1 (de) * 2010-12-28 2012-06-28 Merck Patent Gmbh Materiallen für organische Elektrolumineszenzvorrichtungen

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148062A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2009148016A1 (ja) * 2008-06-05 2009-12-10 出光興産株式会社 ハロゲン化合物、多環系化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2010136109A1 (de) * 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010143434A1 (ja) * 2009-06-12 2010-12-16 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2011025282A2 (ko) * 2009-08-26 2011-03-03 주식회사 두산 신규한 유기 화합물 및 이를 이용한 유기 발광 소자
KR20110066766A (ko) * 2009-12-11 2011-06-17 덕산하이메탈(주) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011149284A2 (ko) * 2010-05-26 2011-12-01 덕산하이메탈(주) 헤테로 원자를 포함하는 카바졸과 플루오렌이 융합된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2012013271A1 (de) * 2010-07-30 2012-02-02 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2012136295A1 (de) * 2011-04-05 2012-10-11 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2013056776A1 (de) * 2011-10-20 2013-04-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2013157886A1 (en) * 2012-04-19 2013-10-24 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2013179645A1 (ja) * 2012-05-30 2013-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2014106524A2 (de) * 2013-01-03 2014-07-10 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133097A1 (ja) * 2015-02-16 2016-08-25 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
CN107207522A (zh) * 2015-02-16 2017-09-26 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子器件

Also Published As

Publication number Publication date
JP2016179943A (ja) 2016-10-13
US10505123B2 (en) 2019-12-10
US20160163996A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
CN109476988B (zh) 用于有机光电装置的组成物、有机光电装置以及显示装置
CN110437213B (zh) 化合物、组合物、有机光电子器件及显示器件
EP3664172B1 (en) Compound for organic optoelectronic diode, organic optoelectronic diode, and display device
CN109415625B (zh) 化合物及其组成物、有机光电装置及显示装置
TWI500604B (zh) 有機光電元件用組成物及有機光電元件及顯示元件
EP2674429B1 (en) Biscarbazole derivative and organic electroluminescent element using same
US9604972B2 (en) Nitrogen-containing heteroaromatic ring compound
TWI641607B (zh) 用於有機光電裝置的化合物、用於有機光電裝置的組成物以及有機光電裝置及顯示裝置
TWI613197B (zh) 有機光電元件用組成物、有機光電元件及顯示元件
CN109415624B (zh) 化合物、组合物、有机光电装置及显示装置
WO2014092083A1 (ja) 有機エレクトロルミネッセンス素子
WO2014104346A1 (ja) 有機エレクトロルミネッセンス素子
EP2876104B1 (en) Polycyclic compound and organic electronic device comprising same
JP2016122672A (ja) 発光装置
WO2015053459A1 (ko) 유기광전자소자용 유기합화물, 유기 광전자 소자 및 표시 장치
JPWO2013175789A1 (ja) 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
CN113285038B (zh) 一种有机电致发光器件及电子装置
JP6189296B2 (ja) 有機エレクトロルミネッセンス素子
JP6145158B2 (ja) ヘテロ縮合環を有するアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
KR20130100948A (ko) 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
WO2014013721A1 (ja) 含窒素ヘテロ芳香族環化合物、それを用いた有機エレクトロルミネッセンス素子
JP2015078169A (ja) 新規な化合物
WO2015004896A1 (ja) 化合物、及びそれを用いた有機エレクトロルミネッセンス素子
CN113121572B (zh) 杂环化合物、有机电致发光器件和电子设备
CN113773320A (zh) 含氮化合物以及使用其的电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14903746

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP